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Abstract In this paper, a model of mumps transmission with quarantine measure is proposed and then the

control reproduction number Rc of the model is obtained. This model admits a unique endemic equilibrium P ∗

if and only if Rc > 1, while the disease-free equilibrium P 0 always exists. By using the technique of constructing

Lyapunov functions and the generalized Lyapunov-LaSalle theorem, we first show that the equilibrium P 0 is

globally asymptotically stable (GAS) if Rc ≤ 1; second, we prove that the equilibrium P ∗ is GAS if Rc > 1.

Our results reveal that mumps can be eliminated from the community for Rc ≤ 1 and it will be persistent for

Rc > 1, and quarantine measure can also effectively control the mumps transmission.
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1 Introduction

Mumps (epidemic parotitis) is an airborne infectious disease which is resulted from a viral
infection of the parotid gland[18]. Mumps virus can be spread by sick people sneezing or
coughing with tiny droplets of contaminated saliva, which may be breathed in by others, so as
to make them be infected[21]. In winter and early spring, mumps infections spread very easily[9].
Rubin et al.[19] (also see Dittrich et al.[5]) pointed out that the proportion of asymptomatically
infected people was about one third to one half. It was demonstrated by Davis et al.[3] that
the exposed period of mumps is 2–3 weeks and it can be diagnosed clinically. Following the
discussion of Gutierrez[9], patients are most contagious in the first 1–2 days and the last 5
days of symptoms of mumps, and about 80% to 90% of non-immune family contacts become
infected. Above all, the current pandemic COVID-19 can be transmitted in the exposed and
asymptomatic periods. It is essential to consider the exposed and asymptomatic transmission
for traditional infectious disease models. In this paper, as proof of principle, we concerntrate
on modeling of mumps which has the exposed and asymptomatic transmission components.
Brauer and Castillo-Chavez[1] pointed out the importance of quarantine in a epidemiological
framework (also see Erdem et al.[7]). Kutty et al.[12] also indicated that quarantine was an
effective measure to control mumps, and the health care and public health providers in the
United States suggested the quarantine period was about five days.

Nowadays, mumps has been reemerging in teenagers and young people around the world. In
China, the number of infected people with mumps was more than 300,000 in recent years[13]. In
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2004, the quantity of mumps notifications in England and Wales was 16436, and most of them
were young adults presenting at universities or colleges[20]. During 2006, the United States
experienced one multi-state mumps outbreak, reporting 6584 cases, of which 18-24 years old
had the most infections, and most of them were college students[4]. The United States reported
an unusually large number of mumps cases (more than 13800 cases) from the end of 2015 to
the end of 2017[16]. Although the vaccine is the main preventive measure to prevent mumps,
it is no longer fully protective for college students because the vaccine was given in childhood.
Some countries do not even get the vaccine, such as Japan. Dayan et al.[4] showed that young
people who have attended universities or colleges are the main infected group of mumps in
recent years.

Epidemiological models, which can help to put forward many practical prevention measures
to control the epidemic disease, can be used to better understand the dynamics of infectious
diseases. Now, there are a few papers about dynamic models of infectious diseases to describe
mumps transmission. In 2002, Jansen et al.[11] considered a discrete model, in which they main-
ly used a finite–difference method. Li et al.[13] proposed an SVEILR (S: susceptible individuals,
V: vaccinated individuals, E: exposed individuals, I: severely infectious individuals, L: mild
infections individuals, R: recovered individuals) dynamical transmission model. They mainly
considered homogeneous mixing and optimized parameters to depict the infection dynamics of
mumps transmission in China. Liu et al.[14] discussed the effects of heterogeneity for spreading
mumps, so they established a multi-group SVEIAR (I: symptomatically infected individuals, A:
asymptomatically infected individuals) model with exposed and asymptomatic infection stages.
They also studied the dynamics property of the model. Qu et al.[17] built a non-autonomous
SVEILHR (I: mild infectious individuals, L: severe infectious individuals, H: hospitalized indi-
viduals) model to understand the epidemic of mumps. They focused on the influence of periodic
transmission rates. Based on the researches above, to investigate the effect of exposed individ-
uals and the heterogeneity of infectious rate on the spread and control of mumps, we propose a
mathematical model with exposed period and quarantine measure. In our model, we show that
the infected people are also contagious in exposed stage, and the infection rates are different
among the exposed, symptomatic infectious and asymptomatic infectious individuals.

The remainder of this paper is organized as below. In Sect. 2, the formulations of the model
are given. In Sect. 3, we prove that the endemic equilibrium of the model exists if and only if
the control reproduction number is greater than one. In Sect. 4, the corresponding necessary
and sufficient conditions for global stability of equilibria of the model are presented. Finally, a
brief discussion and conclusion is presented.

2 Model Formulation

The population is classified into six compartments which are denoted by S: susceptible indi-
viduals, E: exposed individuals, I: symptomatically infected individuals, A: asymptomatically
infected individuals, Q: quarantined individuals and R: recovered individuals, respectively.
Then the dynamic model of mumps transmission is proposed as below:

Ṡ(t) = Λ− µS(t)− βS(t)(δE(t) + I(t) +mA(t)),

Ė(t) = βS(t)(δE(t) + I(t) +mA(t))− µE(t)− wE(t),

İ(t) = pwE(t)− µI(t)− φI(t)− γI(t),

Ȧ(t) = (1− p)wE(t)− µA(t)− γA(t),

Q̇(t) = φI(t)− µQ(t)− γQ(t),

Ṙ(t) = γI(t) + γA(t) + γQ(t)− µR(t).

(2.1)
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Here, all parameters of system (2.1) are assumed to be positive. Let Λ be the birth rate, µ
be the natural death rate, along with β represents the transmission rate; δ and m indicate
regulatory factors for infection probability of the exposed and the asymptomatically infected
individuals, respectively. Besides, w stands for transition rate of the exposed individuals to
the infected classes; p denotes the transition probability of the symptomatically infected class.
Moreover, φ is the quarantined rate of the symptomatically infected class and γ is the recovery
rate.

By the fundamental theorem of ordinary differential equations[15] and [2, Proposition 1.1],
it is not difficult to obtain the nonnegative cone R6

+ is a positive invariant set of system (2.1)
which satisfies the well-posedness and the dissipativeness. Hence, we will discuss the global
dynamics of system (2.1) in R6

+.

3 Existence of Endemic Equilibrium

In this section, we shall discuss the global properties of equilibria of system (2.1) by the
Lyapunov function method. Obviously, system (2.1) always has a disease-free equilibrium
P 0 = (S0, 0, 0, 0, 0, 0), where S0 = Λ/µ. For the existence of an endemic equilibrium (i.e.,
positive equilibrium) P ∗ = (S∗, E∗, I∗, A∗, Q∗, R∗) of system (2.1), we first give the control
reproduction number of system (2.1) by using the approach in [6]:

Rc =
Λδβ

µ(w + µ)
+

Λpwβ

µ(w + µ)B
+

Λ(1− p)wmβ

µ(µ+ w)(γ + µ)
,

whereB := φ+γ+µ. Here, the first term Λδβ/µ(w+µ) can be interpreted as the average number
of new infections generated through exposed individuals. The second term Λpwβ/µ(w + µ)B
can be interpreted as the average number of new infections generated through symptomatically
infected individuals. The third term Λ(1− p)wmβ/µ(w + µ)(γ + µ) can be interpreted as the
average number of new infections generated through asymptomatically infected individuals.

Lemma 3.1. System (2.1) has a unique endemic equilibrium P ∗ if and only if Rc > 1 holds.

Proof. By the equilibrium equations of system (2.1), we can get

S =
Λ(γ + µ)B

βpw(γ + µ)E + [(βδE + µ)(γ + µ) + β(1− p)wmE]B
=

Λ− (µ+ w)E

µ
, (3.1)

I =
pwE

B
, A =

(1− p)wE

γ + µ
, Q =

φpwE

(γ + µ)B
, R =

γφpwE

µ(γ + µ)B
+
γpwE

µB
+

(1− p)wγE

µ(γ + µ)
.

From equation (3.1), it follows
E(aE − b) = 0, (3.2)

where

a =
µ(γ + µ)(w + µ)2BRc

Λ
> 0, b = µ(γ + µ)(w + µ)B(Rc − 1).

Consequently, system (2.1) exists a unique endemic equilibrium P ∗ ≫ 0 which is equivalent
to 0 < E∗ = b/a < Λ/(w + µ). Obviously, equation (3.2) admits a unique positive root
E∗ < Λ/(w + µ) if and only if Rc > 1. Therefore, the conclusion of Lemma 3.1 holds.

4 Global Stability

In this section, we will obtain the global stability results of equilibria P 0 and P ∗. Consider the
following differential system

ẋ(t) = g(x), (4.1)
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where g : Rn → Rn is continuous, and a solution of system (4.1) with any ϕ ∈ Rn exists
uniquely, which depends continuously upon the initial data. Let X be a subset of Rn and the
solution x(t) of system (4.1) through any ϕ ∈ X exist on [0,∞) and X be positively invariant
for system (4.1). Let ω(ϕ) be the ω-limit set of ϕ with respect to system (4.1) and P ∈ X an
equilibrium of system (4.1). To prove our main results, we need the following two lemmas (also
see [8]). In fact, the following lemma is also a corollary of the Lyapunov-LaSalle theorem.

Lemma 4.1 (Generalized Lyapunov-LaSalle theorem). Let the solution x(t) of system (4.1)
through any ϕ ∈ X be bounded. If there is T = T (ϕ) ≥ 0 such that V is a Lyapunov function
on OT (ϕ) := {x(t) : t ≥ T} (that is, V is continuous on OT (ϕ) (the closure of OT (ϕ)) and
V̇ ≤ 0 on OT (ϕ)), then V̇ = 0 on ω(ϕ).

Lemma 4.2. Let V ∈ C(Rn,R+) be a positive definite function with respect to the equilibrium
P . If there exists T > 0 which is independent of ϕ such that V is continuous on OT (ϕ) and
uT (X), respectively, and for any ψ ∈ OT (ϕ),

V̇ (ψ) ≤ 0, (4.2)

then the equilibrium P is uniformly stable.

For the disease-free equilibrium P 0, we have the following theorem.

Theorem 4.3. The disease-free equilibrium P 0 is GAS if and only if Rc ≤ 1 holds.

Proof. It easily follows from [6, Theorem 2] that the equilibrium P 0 is unstable if Rc > 1. We
thus only need to prove sufficiency. We shall first prove that the equilibrium P 0 is globally
attractive. Assuming

U(t) := (S(t), E(t), I(t), A(t), Q(t), R(t))

is the solution of system (2.1) through any ϕ := (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6) ∈ R6
+. Clearly, U(t) is

bounded and S(t) > 0 for t > 0. Let we define a function V on Ω = {ϕ ∈ R6
+ : ϕ1 > 0} as

follows,

V (ϕ) = ϕ1 − S0 − S0 ln
ϕ1
S0

+ ϕ2 +
βS0

B
ϕ3 +

βS0m

γ + µ
ϕ4. (4.3)

It can be easily seen that V is a continuous function on Ω ⊆ R6
+. The derivative of V along

U(t) for t > 0 can be expressed by

V̇ (U(t)) =
(
1− S0

S(t)

)
Ṡ(t) + Ė(t) +

βS0

B
İ(t) +

βS0m

γ + µ
Ȧ(t)

= Λ− µS(t)− S0Λ

S(t)
+ µS0 + βS0δE(t)− (w + µ)E(t)

+
βS0pwE(t)

B
+
βS0m(1− p)wE(t)

γ + µ

=− µ
(S0 − S(t))2

S(t)
+ E(t)(w + µ)(Rc − 1)

≤ 0. (4.4)

By (4.3) and (4.4), S(t) is persistent, that is, there is some ϵ = ϵ(ϕ) > 0 such that lim inft→∞ S(t)
> ϵ. Thus, we have ω(ϕ) ⊆ Ω. Hence ifRc ≤ 1, V is a Lyapunov function on {U(t) : t ≥ 1} ⊆ Ω.
From Lemma 4.1, we know that for any ψ ∈ ω(ϕ), V̇ (ψ) = 0. Next, to prove the equilibrium
P 0 is globally attractive, we only verify ω(ϕ) = {P 0}.

Assume that U(t) = (S(t), E(t), I(t), A(t), Q(t), R(t)) is the solution of system (2.1) through
any ψ ∈ ω(ϕ). Then by the invariance of ω(ϕ), we have that U(t) ∈ ω(ϕ) for all t ∈ R. Because
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V̇ (U(t)) = 0 for all t ∈ R and (4.4), it follows S(t) = S0 for all t ∈ R. Next, by the first
equation of system (2.1), it holds I(t) = A(t) = E(t) = 0 for all t ∈ R. From the fifth and
the sixth equations of system (2.1) and the invariance of ω(ϕ), it holds Q(t) = R(t) = 0 for all
t ∈ R. Thus, we have ω(ϕ) = {P 0}.

In the following, we only prove the equilibrium P 0 is stable.
Considering that the first four equations of system (2.1) can constitute an independent

subsystem, denoted as system (I). Clearly, the nonnegative cone R4
+ is positive invariant for

system (I). It follows from (4.3), (4.4) and Lemma 4.2 that the disease-free equilibrium X0 =
(S0, 0, 0, 0) of system (I) is stable. Let l := min{γ+µ

φ , µγ , 1}. By the definition of stability of an

equilibrium, we have that for any ε > 0, there can be found δ ≤ εl/5 such that for any ψ ∈ R4
+

and ∥ψ −X0∥ < δ, it holds

∥X(t)−X0∥ < εl2

5
, for all t ≥ 0,

where X(t) is the solution of system (I) through ψ. The solutions of the fifth and the sixth
equations of system (2.1) with any ϕ ∈ R6

+ can be obtained as follows:

Q(t) = ϕ5e
−(γ+µ)t + φe−(γ+µ)t

∫ t

0

I(s)e(γ+µ)sds,

R(t) = ϕ6e
−µt + γe−µt

∫ t

0

Q(s)eµsds+ γe−µt

∫ t

0

I(s)eµsds+ γe−µt

∫ t

0

A(s)eµsds.

(4.5)

For any ϕ ∈ R6
+ and ∥ϕ− P 0∥ < δ, we have that for any t ≥ 0,

Q(t) <
εl

5
e−(γ+µ)t + φ

εl2

5
e−(γ+µ)t

∫ t

0

e(γ+µ)sds ≤ εl

5
e−(γ+µ)t + φ

εl

5

γ + µ

φ

1− e−(γ+µ)t

γ + µ
=
εl

5

and

R(t) <
3ε

5
e−µt + γ

ε

5

µ

γ

1− e−µt

µ
+ γ

ε

5

µ

γ

1− e−µt

µ
+ γ

ε

5

µ

γ

1− e−µt

µ
=

3ε

5
.

As a consequence,

∥U(t)− P 0∥ ≤ ∥X(t)−X0∥+Q(t) +R(t) <
εl2

5
+
εl

5
+

3ε

5
≤ ε.

Thus, the equilibrium P 0 is stable.

The following conclusion is about the global property of the equilibrium P ∗.

Theorem 4.4. The endemic equilibrium P ∗ is GAS if and only if Rc > 1 in Γ = {ϕ ∈ R6
+ :

ϕ2 > 0}.

Proof. By Lemma 3.1, we only need to prove sufficiency. Clearly, the set Γ is positively invariant
for system (2.1). We first show that the equilibrium P ∗ is globally attractive. Assuming
U(t) = (S(t), E(t), I(t), A(t), Q(t), R(t)) is the solution of system (2.1) through any ϕ ∈ Γ. It
is easy to find that U(t) is bounded and U(t) ≫ 0 for t > 0. To show that the equilibrium P ∗

is globally attractive, we only prove ω(ϕ) = {P ∗}. Now, define a function V on Int(R6
+) (the

interior of R6
+) as follows,

V (ϕ) = S∗h
(ϕ1
S∗

)
+ E∗h

( ϕ2
E∗

)
+
βS∗I∗

pwE∗ I
∗h

(ϕ3
I∗

)
+

βmS∗A∗

(1− p)wE∗A
∗h

( ϕ4
A∗

)
, (4.6)
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where h(ϑ) = ϑ− 1− lnϑ, ϑ > 0. For t > 0, the derivative of V along U(t)(∈ Int(R6
+)) can be

obtained by

V̇ (U(t)) =
(
1− S∗

S(t)

)
Ṡ(t) +

(
1− E∗

E(t)

)
Ė(t) +

βS∗I∗

pwE∗

(
1− I∗

I(t)

)
İ(t)

+
βmS∗A∗

(1− p)wE∗

(
1− A∗

A(t)

)
Ȧ(t)

=− Λ
(
h
( S∗

S(t)

)
+ h

(S(t)
S∗

))
+ (βS∗I∗ + βmS∗A∗ + βδS∗E∗)h

(S(t)
S∗

)
− βS∗I∗

(E(t)I∗

E∗I(t)
+
S(t)I(t)E∗

S∗I∗E(t)
− ln

S(t)

S∗ − 2
)

− βmS∗A∗
(E(t)A∗

E∗A(t)
+
S(t)A(t)E∗

S∗A∗E(t)
− ln

S(t)

S∗ − 2
)

− βδS∗E∗
(S(t)
S∗ − 1− ln

S(t)

S∗

)
=− Λh

( S∗

S(t)

)
− (µS∗ + βδS∗E∗)h

(S(t)
S∗

)
− βS∗I∗

(
h
(E(t)I∗

E∗I(t)

)
+ h

(S(t)I(t)E∗

S∗I∗E(t)

))
− βmS∗A∗

(
h
(E(t)A∗

E∗A(t)

)
+ h

(S(t)A(t)E∗

S∗A∗E(t)

))
≤ 0, (4.7)

where the equations of the endemic equilibrium P ∗: µ = Λ/S∗ − β(I∗ +mA∗ + δE∗),

w + µ = β
S∗I∗

E∗ + βm
S∗A∗

E∗ + βδS∗, µ+ φ = pw
E∗

I∗
− γ, γ + µ = (1− p)w

E∗

A∗

are used.
By virtue of (4.6) and (4.7), we can prove that ω(ϕ) ⊆ Int(R6

+). Accordingly, if Rc > 1,
V is a Lyapunov function on {U(t) : t ≥ 1} ⊆ Int(R6

+). It follows from Lemma 4.1 that for
any ψ = (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6) ∈ ω(ϕ), there hold ψ1 = S∗, ψ2I

∗ = E∗ψ3, ψ2A
∗ = E∗ψ4.

Assume that U(t) = (S(t), E(t), I(t), A(t), Q(t), R(t)) is the solution of system (2.1) through
any ψ ∈ ω(ϕ). Then it follows from the invariance of ω(ϕ) that U(t) ∈ ω(ϕ) for all t ∈ R. In
consequence, S(t) = S∗, E∗I(t) = E(t)I∗ and E(t)A∗ = E∗A(t) for all t ∈ R. Hence, we have

E∗İ(t) = E∗pwE(t)−BE∗I(t) = E∗pwE(t)−BE(t)I∗ = E(t)(pwE∗ −BI∗) = 0,

which hints that I(t) is a constant function on R. The invariance of ω(ϕ) and the system
(2.1) yield that the four functions E(t), A(t), Q(t) and R(t) are all constants. In consequence,
U(t) (≫ 0) is a positive equilibrium of system (2.1). Consider that the positive equilibrium is
unique, we thus have U(t) = P ∗ for all t ∈ R. Therefore, we can obtain ω(ϕ) = {P ∗}.

The following proof shows that the equilibrium P ∗ is stable.
By a similar argument as in the proof of Theorem 3.1, we can get that for any ε > 0, there

can be found δ ≤ εl/5 such that for any ψ ∈ Γ0 = {ψ = (ψ1, ψ2, ψ3, ψ4) ∈ R4
+ : ψ2 > 0} and

∥ψ −X∗∥ < δ, it follows

∥X(t)−X∗∥ < εl2

5
for all t ≥ 0,

where X∗ = (S∗, E∗, I∗, A∗) is the endemic equilibrium of system (I). Now, we consider the
solutions Q(t) and R(t) of the fifth and the sixth equations of system (2.1) with any ϕ ∈ Γ as
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obtained in (4.5). For any ϕ ∈ Γ and ∥ϕ− P ∗∥ < δ, we have that for any t ≥ 0,

∥Q(t)−Q∗∥ < εl

5
e−(γ+µ)t + φ

εl2

5
e−(γ+µ)t

∫ t

0

e(γ+µ)sds

≤ εl

5
e−(γ+µ)t + φ

εl

5

γ + µ

φ

1− e−(γ+µ)t

γ + µ

=
εl

5

and

∥R(t)−R∗∥ < ε

5
e−µt + γ

εl

5

1− e−µt

µ
+ γ

εl

5

1− e−µt

µ
+ γ

εl

5

1− e−µt

µ

<
3ε

5
e−µt + γ

ε

5

µ

γ

1− e−µt

µ
+ γ

ε

5

µ

γ

1− e−µt

µ
+ γ

ε

5

µ

γ

1− e−µt

µ

=
3ε

5
,

where

Q∗ = Q∗e−(γ+µ)t + φe−(γ+µ)t

∫ t

0

I∗e(γ+µ)sds,

R∗ = R∗e−µt + γe−µt

∫ t

0

Q∗eµsds+ γe−µt

∫ t

0

I∗eµsds+ γe−µt

∫ t

0

A∗eµsds.

In consequence,

∥U(t)− P ∗∥ ≤ ∥X(t)−X∗∥+ ∥Q(t)−Q∗∥+ ∥R(t)−R∗∥ < εl2

5
+
εl

5
+

3ε

5
≤ ε.

Therefore, the equilibrium P ∗ is stable. Thus, the equilibrium P ∗ is GAS if Rc > 1.

5 Discussion and Conclusion

It is not easy to analyse the stability of the equilibrium P ∗ by Lyapunov indirect method,
i.e., the stability of the equilibrium P ∗ is determined by analyzing the eigenvalues of charac-
teristic equation of the corresponding linearized system of system (2.1) at the equilibrium P ∗.
Consequently, we gain the stability of equilibria of system (2.1) by using Lemma 4.2 with the
original details. Consider that Lyapunov functions (4.3) and (4.6) do not meet the condition
of the classical Lyapunov-LaSalle theorem (see [10, Theorem X.1.3]), and the largest invariant
set M ⊂ E = {ϕ ∈ R6

+ : V̇ (ϕ) = 0} in the theorem may be unbounded. Thus, we introduce the
generalized Lyapunov-LaSalle theorem (see Lemma 4.1) to obtain global stability of equilibria
of system (2.1).

In this study, we have proposed and analyzed an SEIAQR model of mumps transmission.
The global dynamics of the model has been discussed in terms of the control reproduction
number Rc. The mathematical results have shown that the equilibrium P 0 is GAS in R6

+ if and
only if Rc ≤ 1 holds; the equilibrium P ∗ is GAS in Γ if and only if Rc > 1 holds. These mean
that mumps can be eliminated from the community when Rc ≤ 1 and it will be persistent when
Rc > 1. Besides, it can also be used to study current COVID-19 pandemic by our modeling
ideas.

Note that the control reproduction number Rc is an increasing function with respect to
the parameters δ and m respectively, which are the proportion of exposed individuals and
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asymptomatically infected individuals respectively who can transmit the disease to susceptible
individuals. If all other parameters are fixed, the dynamics of model (2.1) can changed signif-
icantly as parameters δ and m increase, once Rc increases from less than 1 to more than 1.
In addtion, Rc is a decreasing function with respect to the quarantined rate φ, which means
that Rc will decrease with φ increasing. Thus, we can more effectively control the mumps
transmission by improving the quarantined rate.

Acknowledgments. The authors would like to thank Prof. Jing-an Cui for his valuable
suggestions.
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