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ABSTRACT

Given a closed oriented 3-manifold M, we establish an isomorphism between the Heegaard Floer homology group
HF+(−M) and the embedded contact homology group ECH(M). Starting from an open book decomposition (S, h) of
M, we construct a chain map �+ from a Heegaard Floer chain complex associated to (S, h) to an embedded contact
homology chain complex for a contact form supported by (S, h). The chain map �+ commutes up to homotopy with
the U-maps defined on both sides and reduces to the quasi-isomorphism � from (Colin et al. in Publ. Math. Inst. Hautes
Études Sci., 2024a, 2024b) on subcomplexes defining the hat versions. Algebraic considerations then imply that the map
�+ is a quasi-isomorphism.

1. Introduction

This is the last paper in the series which proves the isomorphism between certain
Heegaard Floer homology and embedded contact homology groups. References from [I]
(resp. [II]) will be written as “Section I.x” (resp. “Section II.x”) to mean “Section x” of [I]
(resp. [II]), for example.

Let M be a closed oriented 3-manifold. Let ̂HF(M) and HF+(M) be the hat and
plus versions of Heegaard Floer homology of M and let ̂ECH(M) and ECH(M) be the
hat and usual versions of the embedded contact homology of M. As usual, embedded
contact homology will be abbreviated as ECH. In [0], we introduced the ECH chain
group ̂ECC(N, ∂N) and showed that ̂ECH(N, ∂N) � ̂ECH(M). In the papers [I, II], we
defined a chain map

� : ̂CF(−M) → ̂ECC(N, ∂N),

which induced an isomorphism

�∗ : ̂HF(−M)
∼→ ̂ECH(M).

The goal of this paper is to extend the above result and prove the following theo-
rem:

Theorem 1.0.1. — If M is a closed oriented 3-manifold, then there is a chain map

�+ : CF+(−M)
∼→ ECC(M)
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which is a quasi-isomorphism and which commutes with the U-maps up to homotopy. On the level of

homology �+ maps the contact class to the contact class.

We use F = Z/2Z coefficients for both Heegaard Floer homology and ECH. As
is the case for the hat versions, we expect Theorem 1.0.1 to hold over the integers; see
Remark I.1.0.1.

Remark 1.0.2. — The construction of �+ can be carried out with twisted coeffi-
cients as in Sections I.6.4 and I.7.1.

Let (S, h) be an open book decomposition for M, where S is a genus g ≥ 2 bor-
dered surface with connected boundary and h ∈ Diff(S, ∂S).1 In particular we identify

M � (S × [0,1])/ ∼,

where (x,1) ∼ (h(x),0) for all x ∈ S and (x, t) ∼ (x, t′) for all x ∈ ∂S and t, t′ ∈ [0,1]. We
write St = S ×{t} for t ∈ [0,1]. Let � = S0 ∪−S1/2 be the Heegaard surface correspond-
ing to (S, h).

Given a pair (�0, h0) consisting of a surface �0 and h0 ∈ Diff(�0), we write the
mapping torus of (�0, h0) as:

N(�0,h0) = (�0 × [0,2])/(x,2) ∼ (h0(x),0).

The map �, defined in Section I.6.2, is induced by the cobordism W+ which is an S0-
fibration and which restricts to a half-cylinder over [0,1] × S0 at the positive end and to
a half-cylinder over the mapping torus N(S0,h) at the negative end. We say that W+ is a
cobordism “from [0,1] × S0 to N(S0,h).”

Remark 1.0.3. — We will interchangeably write [0,1] × S0 and S0 × [0,1]. This
is partly due to the fact that the open book is usually written as (S × [0,1])/ ∼ and the
positive end of W+ is a “symplectization” R × [0,1] × S0.

The map �+ is induced by a cobordism X+ from [0,1] × � to M which extends
W+ and is described below. Although � was defined in terms of just one page S0, we can
no longer ignore the S1/2 portion of � when defining �+, since we do not know how to
express HF+(−M) in terms of S0.

A symplectic cobordism similar to X+ is constructed by Wendl in [We].

1.0.1. The cobordism X+. — We give a description of X+ = X0
+ ∪ X1

+ ∪ X2
+ and

W+ = W0
+ ∪ W1

+ ∪ W2
+ as topological spaces, where Wi

+ ⊂ Xi
+ for i = 0,1,2. See Fig-

ure 1. The description given here is the simplified version of the actual construction, and the notation of

Section 1.0.1 is not used outside of Section 1.0.1.

1 The condition g ≥ 2 is a technical condition which will used in the definition of �+.



HF=ECH III: FROM HAT TO PLUS

FIG. 1. — Schematic diagram for X0
+ ∪ X1

+ which indicates the fibers over each subsurface

First extend h ∈ Diff(S0, ∂S0) to h+ ∈ Diff(�) so that h+|S1/2 = id . Let N(�,h+) and
N(S0,h) be the mapping tori of h+ and h and let

π : [0,∞) × N(�,h+) → [0,∞) × R/2Z

be the projection (s, x, t) �→ (s, t). Then define B0
+ = ([0,∞) × R/2Z) − Bc

+, where Bc
+

is the subset [2,∞) × [1,2] with the corners rounded. We then set

X0
+ := π−1(B0

+), W0
+ := π−1(B0

+) ∩ ([0,∞) × N(S0,h)).

Observe that W0
+ is the “top half ” of W+ defined in Section I.5.1. Next we set

X1
+ := S1/2 × D2, W1

+ := ∅

and identify {0} × S1/2 × R/2Z ⊂ ∂X0
+ with S1/2 × ∂D2 ⊂ ∂X1

+ via the map (0, x, t) �→
(x, eπ it). Then one component of ∂(X0

+∪X1
+) is given by M = ({0}×N(S0,h))∪(∂S0 ×D2).

Finally we set

X2
+ := (−∞,0] × M, W2

+ := (−∞,0] × ({0} × N(S0,h)),

where {0} × M is identified with M.

1.0.2. Sketch of proof. — The proof of Theorem 1.0.1 proceeds as follows:
Step 1. Express the U-map on HF+(−M) as a count of IHF = 2 curves that pass through
a point, in analogy with the definition of U in ECH. This is given by Theorem 3.1.4.
Step 2. Construct a symplectic cobordism (X+,�X+) from [0,1] × � to M, together
with stable Hamiltonian and contact structures on [0,1] × � and M. This is the goal of
Section 4.
Step 3. Define the chain map �+ as a count of IX+ = 0 curves in X+ and show that �+

commutes with the U-maps on both sides up to a chain homotopy K. This is done in
Section 5.
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Step 4. By an algebraic theorem (Theorem 6.1.5), �+ is a quasi-isomorphism if a map

�alg : ̂CF(−M) → ̂ECC(M),

defined using �+ and K, is a quasi-isomorphism.
Step 5. By Theorem 6.4.1, the map �alg is a quasi-isomorphism. This is proved by relating
�alg to the quasi-isomorphism � from [I, II].

2. Heegaard Floer chain complexes

The goal of this section is to introduce some notation and recall the definition of
the chain complex CF+(�,α,β, zf , J), whose homology is HF+(−M).

2.1. Heegaard data. — Let M be a closed oriented 3-manifold and let (S, h) be an
open book decomposition for M.

We use the following notation, which is similar to that of Section I.4.9.1:

– � = S0 ∪ −S1/2 is the associated genus 2g Heegaard surface of M;
– a = {a1, . . . , a2g} is a basis of arcs for S and b is a small pushoff of a as given in

Figure I.1;
– xi and x′

i are the endpoints of ai in ∂S0 that correspond to the coordinates of the
contact class and x′′

i is the unique point of ai ∩ bi ∩ int(S1/2);
– α = (a × { 1

2}) ∪ (a × {0}) and β = (b × { 1
2}) ∪ (h(a) × {0}) are the collections

of compressing curves on the Heegaard surface �;
– zf is a point in the large (i.e., non-thin-strip) component of S1/2 −α −β and (z′)f

is a point which is close but not equal to zf .

We say that the pointed Heegaard diagram (�,α,β, zf ) is compatible with (S, h). We let
x = {x1, . . . , x2g} and consider the contact element [x,0]. In the definition of x we could
replace any component xi with x′

i .

Remark 2.1.1. — The orientation for � is opposite to that of Section I.4.9.1. This is done
so that the triple (S,a, h(a)), used in [I, II], embeds in (�,α,β) in an orientation-
preserving manner.

2.2. Symplectic data. — The stable Hamiltonian structure on [0,1] × � with coor-
dinates (t, x) is given by (λ,ω), where λ = dt and ω is an area form on � which makes
(α,β, zf ) weakly admissible with respect to ω, i.e., each periodic domain has zero ω-area. The
plane field ξ = kerλ is equal to the tangent plane field of {t} × � and the Hamiltonian
vector field is R = ∂

∂ t
.

We introduce the “symplectization”

(X,�) = (R × [0,1] × �, ds ∧ dt + ω),
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where (s, t) are coordinates on R ×[0,1]. Let πB : X → B = R ×[0,1] be the projection
along the fibers {(s, t)} × �.

Let J be an �X-admissible almost complex structure on X; we assume that J is
regular (cf. Lemma I.4.7.2 and [Li, Proposition 3.8]). We also define the Lagrangian
submanifolds

Lα = R × {1} × α, Lβ = R × {0} × β.

2.3. The chain complex CF+(�,α,β, zf , J). — In this subsection we recall the defi-
nition of the chain complex CF+(�,α,β, zf , J), whose homology group

HF+(�,α,β, zf , J)

is isomorphic to HF+(−M). This definition is due to Lipshitz [Li], with one modification:
we are using the ECH index IHF from Definition I.4.5.11. We will often suppress J from
the notation.

Let S = Sα,β be the set of 2g-tuples y = {y1, . . . , y2g} of intersection points of α and
β for which there exists some permutation σ ∈S2g such that yj ∈ αj ∩ βσ(j) for all j. Then
CF+(�,α,β, zf , J) is generated over F by pairs [y, i], where y ∈ S and i ∈ N, with the
French convention that 0 ∈ N.

The differential ∂ = ∂HF is given by

∂[y, i] =
∑

[y′,j]∈S×N

〈∂[y, i], [y′, j]〉 · [y′, j],

where the coefficient 〈∂[y, i], [y′, j]〉 is the count of index IHF = 1 finite energy holo-
morphic multisections in (X, J) with Lagrangian boundary Lα ∪ Lβ from y to y′, whose
algebraic intersection with the holomorphic strip R × [0,1] × {(z′)f } is (i − j). We will
often refer to such curves as curves from [y, i] to [y′, j].

Let us write ∂ = ∑∞
k=0 ∂k , where ∂k only counts curves whose algebraic intersection

with R × [0,1] × {(z′)f } is k.

Lemma 2.3.1. — The contact element [x,0] is a cycle and its homology class does not depend

on the choice of xi or x′
i as its coordinates.

Proof. — The proof of the first statement is the same as that for the contact element
x in the hat version since curves from [x,0] cannot intersect R×[0,1]×{zf }. The second
statement follows from Claim I.4.9.2. �

3. The geometric U-map

3.1. Introduction. — In [OSz, Li], the U-map

U : CF+(�,α,β, zf ) → CF+(�,α,β, zf ),
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is defined algebraically as U([y, i]) = [y, i − 1] if i > 0 and U([y,0]) = 0. The goal of
this section is to give a geometric definition of the U-map which is analogous to that of
ECH.

Let zf , (z′)f be as before and let z = (zb, zf ) ∈ X = B × �, where zb ∈ int(B). Let
J♦ be a generic C�-small perturbation of J such that J♦ = J away from a small neighbor-
hood N(z) ⊂ X of z and such that N(z) ∩ (R × [0,1] × {(z′)f }) = ∅. In particular, we
assume that there are no J♦-holomorphic curves that are homologous to {pt} × � and
pass through z.

Remark 3.1.1. — When we refer to “C�-close” almost complex structures, etc., we
assume that � > 0 is sufficiently large.

Let MI=k

J♦ ([y, i], [y′, j]) (resp. MI=k

J♦ ([y, i], [y′, j], z)) be the moduli space of IHF = k

finite energy holomorphic curves in (X, J♦) with Lagrangian boundary Lα ∪ Lβ from
[y, i] to [y′, j] (resp. from [y, i] to [y′, j] that pass through z). There is a natural forgetful
map

MI=k

J♦ ([y, i], [y′, j], z) →MI=k

J♦ ([y, i], [y′, j]),
which is an injection when I ≤ 3: If a curve u passes through z twice (or passes through z

once with a singularity at z), then the nodal or singular point contributes 2 to I. Also, by
our choice of J♦, “passing through z” is a generic codimension 2 condition, and therefore
ind(u) ≥ 2. Hence, by the index inequality (I.4.5.5), I(u) ≥ 4, a contradiction.

Also note that, by a simple count of I and the ECH index inequality for I as in
Equation (I.7.5.6), an I(u) ≤ 3 curve that passes through z cannot have a fiber compo-
nent.

Definition 3.1.2 (Geometric U-map). — The geometric U-map with respect to the
point z is the map:

Uz([y, i]) =
∑

[y′,j]∈S×N

#MI=2
J♦ ([y, i], [y′, j], z) · [y′, j].

Proposition 3.1.3. — Uz is a chain map.

Proof. — Since we are using almost complex structures of type J♦, the transversal-
ity of MI=3

J♦ ([y, i], [y′, j], z) follows from the combination of Theorems 3.1.7 and 3.4.1
of [MS], with modifications as in Proposition I.5.8.8. The compactness follows from
Lemma I.4.6.1 and the usual SFT compactness; also see [Li, Corollary 7.2]. Fiber bub-
bling was already eliminated. Finally, gluing is as in Propositions A.1 and A.2 of [Li,
Appendix A]. �
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Theorem 3.1.4. — There exists a chain homotopy

H : CF+(�,α,β, zf ) → CF+(�,α,β, zf )

such that

(3.1.1) Uz − U = H ◦ ∂HF + ∂HF ◦ H.

Moreover, for all y ∈ S , one has H([y,0]) = 0.

The rest of this section is devoted to the proof of Theorem 3.1.4.

3.2. A model calculation. — Let � be a closed surface of genus k. We consider the
manifold D × �, where D = {|z| ≤ 1} ⊂ C. Let πD : D × � → D and π� : D × � → �

be the projections of D × � onto the first and second factors. Let β = {β1, . . . , βk} be the
set of β-curves for �. Choose zf ∈ � − β and let z = (0, zf ) ∈ D × �.

Let J = jD × j� be a product complex structure on D × � and J♦ be a generic
C�-small perturbation of J such that J♦ = J away from a small neighborhood of z. The
key feature of J♦ is that all the J♦-holomorphic curves that pass through z are regular.

We then define the moduli space MA(D × �, J∗), ∗ = ∅ or ♦, of stable maps

u : (F, j) → (D × �, J∗)

in the class A = [{pt} × �] + k[D × {pt}] ∈ H2(D × �,∂D × β), such that ∂F has k

connected components and each component of ∂F maps to a distinct Lagrangian ∂D ×
βi , i = 1, . . . , k. We choose points wi ∈ βi , i = 1, . . . , k, and define

w = {(1,w1), . . . , (1,wk)} ⊂ D × �.

Let MA(D × �, J∗; z,w) be the moduli space of stable maps u as above, with the extra
data of an interior puncture and k boundary punctures that map to z and w. There is a
forgetful map

MA(D × �, J∗; z,w) →MA(D × �, J∗),

which is an injection when we restrict to curves that pass through z only once and there
is no singularity at z. This will be the case in our setting. The points of w are distinct and
there is no risk of passing through the same point of w twice. We use the modifier “irr”
to denote the subset of irreducible curves.

3.2.1. ECH index. — We briefly indicate the definition of the ECH index I of a
homology class B ∈ H2(D × �,∂D × β) which admits a representative F such that each
component of ∂F maps to a distinct ∂D × βi . Although we call I the “ECH index”, what
we are defining here is a relative version of Taubes’ index from [T].
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Let τ be a trivialization of T� along β, given by a nonsingular tangent vector field
Y1 along β, and let τ ′ be a trivialization of TD along ∂D, given by an outward-pointing
radial vector field Y2 along ∂D. Let Q(τ,τ ′)(B) be the intersection number between an
embedded representative u of B and its pushoff, where the boundary of u is pushed off in
the direction given by J(Y1).

Definition 3.2.1. — The ECH index of the homology class B is:

I(B) = c1(T(D × �)|B, (τ, τ ′)) + μ(τ,τ ′)(∂B) + Q(τ,τ ′)(B).

The following is the relative version of the adjunction inequality:

Lemma 3.2.2 (Index inequality). — Let u : (F, j) → (D × �, J∗) be a holomorphic curve in

the class B ∈ H2(D × �,∂D × β). Then

ind(u) + 2δ(u) = I(B),

where δ(u) ≥ 0 is an integer count of the singularities.

Proof. — Similar to the proof of Theorem I.4.5.13. �

We now calculate some ECH and Fredholm indices:

Lemma 3.2.3. — If B = [{pt} × �] + k0[D × {pt}] with k0 ≤ k, then

I(B) = 2 − 2k + 3k0.

Proof. — We compute that

I(B) = I([{pt} × �] + k0[D × {pt}])
= I([{pt} × �]) + k0 · I([D × {pt}]) + 2k0 · 〈[{pt} × �], [D × {pt}]〉
= (2 − 2k) + k0 · 1 + 2k0 = 2 − 2k + 3k0.

Here 〈, 〉 denotes the algebraic intersection number. �

Lemma 3.2.4. — If B = [{pt} × �] + k0[D × {pt}] with k0 ≤ k and u is an irreducible

J♦-holomorphic curve in the class B, then

ind(u) = 2 − 2k + 3k0 − δ(u).

Proof. — Follows from Lemma 3.2.3 and the index inequality. �
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3.2.2. Main result. — The following is the main result of this subsection:

Theorem 3.2.5. — If J♦ is generic, then the following hold:

(1) MA(D × �, J♦; z,w) =Mirr
A (D × �, J♦; z,w);

(2) MA(D × �, J♦; z,w) is compact, regular, and 0-dimensional;

(3) the curves of MA(D × �, J♦; z,w) are embedded; and

(4) #MA(D × �, J♦; z,w) ≡ 1 mod 2.

Hence #MA(D × �, J♦; z,w) is a certain relative Gromov-Witten invariant [IP]
which is computed to be 1 mod 2. (What we are really computing here is a relative
Gromov-Taubes invariant [T], although the two invariants coincide in this case.)

Proof. — (1) Let us write M = MA(D × �, J♦; z,w). Arguing by contradiction,
suppose u ∈ M − Mirr . Then u consists of an irreducible component u0 which passes
through z and k0 < k points of w, together with k−k0 copies of D×{pt}. By Lemma 3.2.4,
ind(u0) ≤ 2−2k +3k0. On the other hand, the point constraints are (k0 +2)-dimensional.
Hence u0 does not exist for generic J♦, which is a contradiction.

(2), (3) The compactness follows from the usual Gromov compactness theorem:
We have already specified the homology class A and the genus bound is a consequence
of Lemma 3.2.2, from which we see that the Euler characteristic term that appears in the
formula for ind(u) is controlled by the homology class A. The regularity of M is imme-
diate from the genericity of J♦ and (1). Lemma 3.2.4 implies the dimension calculation,
as well as (3).

(4) We degenerate � along the union C of k − 1 separating curves into a nodal
surface ˜� whose irreducible components are k tori which are successively attached to
one another; let J♦τ , τ ∈ [0,∞), be the family of almost complex structures corresponding
to the degeneration. We choose C so that they are disjoint from β and each irreducible
component contains exactly one component of β (and hence exactly one wi ). Since the
basepoint z remains in one component, the almost complex structure on D × ˜� is a
product almost complex structure in all but one of the irreducible components of D × ˜�.
In order to attain transversality, we need to further perturb J♦τ to J♥

τ on a compact subset
K ⊂ int(D) × (� − C) such that each component of K ∩ (D × (� − C)) nontrivially
intersects each curve of Mirr

A (D × �, J♦τ ; z,w). By a standard continuation argument,

#Mirr
A (D × �, J♦τ ; z,w) = #Mirr

A (D × �, J♥
τ ; z,w);

from now on we will work with the latter almost complex structure.
As � degenerates into ˜�, a sequence uτ ∈ Mirr

A (D × �, J♥
τ ; z,w) of holomorphic

curves with τ → ∞ (after passing to a subsequence) degenerates into a nodal holomor-
phic curve u1 ∪ · · · ∪ uk in D × ˜�, where each ui lies on a separate level and ui is attached
to ui+1 for i = 1, . . . , k − 1. Starting with the component u1 that passes through z, the in-
cidence condition between u1 and u2 is analogous to a point constraint for u2, and so on.
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Hence it suffices to prove Theorem 3.2.5(4) for k = 1; this is the content of Lemma 3.3.4
in Section 3.3. See Section II.2.4.4 for a similar argument. �

Remark 3.2.6. — The section {∞} × � is not regular, and thus neither J♦S nor J♥
S

are generic almost complex structures. What we are computing here is a simple instance
of relative Gromov-Witten invariant in the sense of [IP].

3.3. Computation of #MA(D × �, J♦; z,w) when k = 1 and � is a torus. — The first
step is to degenerate D into D∪S2, where 0 ∈ D is identified with ∞ ∈ S2 ∼= C∪{∞} (we
will refer to the identified point by n) and z = (0, zf ) ∈ S2 ×�; equivalently, we are taking
a 1-parameter family J♦κ , κ ∈ [0,∞), and taking the limit κ → ∞. Let J♦D ∪ J♦S2 denote the
limit almost complex structure on (D × �) ∪ (S2 × �), which we assume to be a small
perturbation of a product almost complex structure JD ∪ JS2 in a small neighborhood of
z.

Let v1 ∪ v2 be a limit of a sequence uκ ∈ MA(D × �, J♦κ ; z,w) of curves with
κ → ∞. Then v1 is the trivial multisection D × {w1} in D × � and

v2 ∈M♦
B :=MB(S2 × �, J♦S2; z,w = {(∞,w1)}),

where M♦
B is the moduli space of J♦S2 -holomorphic curves in S2 × � representing the

homology class B = [S2] + [�] and passing through z = (0, zf ) and (∞,w1).
In order to analyze M♦

B , we first describe MB := MB(S2 × �, JS2; z,w) for a
product complex structure JS2 :

Lemma 3.3.1. — If k = 1, then:

(1) MA(D × �, J; z,w) is a one-element set consisting of a degenerate curve (D × {w1}) ∪
({0} × �); and

(2) MB is a two-element set consisting of degenerate curves v21 := (S2 ×{w1})∪ ({0}×�)

and v22 := (S2 × {zf }) ∪ ({n} × �).

Proof. — (1) follows from the homological constraint

A = [{pt} × �] + [D × {pt}].
If u : (F, j) → (D × �, J) is a stable map in MA(D × �, J; z,w), then πD ◦ u and π� ◦ u

are degree 1 maps. This implies that F consists of two components F1,F2 and πD ◦ u|F1

and π� ◦ u|F2 are biholomorphisms. On the other hand, π� ◦ u|F1 maps to a point since
F1 is a disk and πD ◦ u|F2 maps to a point since otherwise the cardinality of (πD ◦ u)−1(pt)

for generic pt will be larger than deg(πD ◦ u) = 1.
(2) is similar and follows from the fact that there are no degree 1 holomorphic maps

from the torus � to S2. �



HF=ECH III: FROM HAT TO PLUS

By Gromov compactness and Lemma 3.3.1(2), all the curves of M♦
B are close to

the degenerate curves in MB described in Lemma 3.3.1(2). Note that elements in M♦
B

can be reducible and only the irreducible component passing through z has to be regular.
Simple considerations taking into account the homological and point constraints imply:

Lemma 3.3.2. — If k = 1 and J♦, w, and β are generic, then the only element v′
22 ∈M♦

B −
M♦,irr

B is close to v22 and consists of {n}×� together with one sphere in the class [S2] passing through

z.

We also have:

Lemma 3.3.3. — If k = 1 and J♦, w, and β are generic, then:

(1) the curves of M♦,irr
B are embedded; and

(2) M♦,irr
B is compact, regular, and 0-dimensional.

Proof. — (1) The proof is similar to that of Lemma 3.2.5(3) and follows from the
adjunction inequality [M1, M2] (compare with Lemma 3.2.2): If v ∈M♦,irr

B , then

I(v) = c1(v
∗T(S2 × �)) + Q(v),

where Q(v) is the self-intersection number of v, and

ind(v) + 2δ(v) = I(v),

where δ(v) ≥ 0 is an integer count of the singularities. Since c1(v
∗T(S2 × �)) = 2 and

Q(v) = 2, it follows that I(v) = 4. On the other hand,

ind(v) = −χ(F) + 2c1(v
∗T(S2 × �)) = −0 + 2(2) = 4,

where F is the domain of v with χ(F) = 0. Hence v is embedded by the adjunction
inequality.

(2) Since v is embedded and c1(v
∗T(S2 × �)) = 2, the regularity of v without the

point constraints follows from automatic transversality (cf. Hofer-Lizan-Sikorav [HLS,
Theorem 1]). The regularity with point constraints is the consequence of the genericity
of J♦, w, and β. The rest of the assertion is immediate. �

Next we argue that v1 ∪v′
22 cannot appear as the limit of uκ . This can be proved by

an analysis of the limit in the SFT sense (or equivalently in the relative Gromov-Witten
sense): in brief, we can view the component {n}×� of v′

22 as an intermediate irreducible
level with image in S2 × �, is in the class [{pt} × �] + [S2 × {pt}], and passes through
(∞,w1) and (0, zf ). Such a curve does not exist since there are no degree 1 holomorphic
maps from the torus � to S2. Therefore,

#MA(D × �, J♦; z,w) ≡ #M♦,irr
B mod 2.
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The following lemma then completes the proof of Theorem 3.1.4.

Lemma 3.3.4. — #M♦,irr
B ≡ 1 mod 2.

Proof. — The lemma follows from [MS, Example 8.6.12], but one can also argue
more explicitly by degenerating � = T2 into a nodal surface �0 ∪ �1, where the sphere
�0 contains z, the sphere �1 contains w1, and n1 and n2 are the two nodes.

Consider a limit u0 ∪ u1 of uτ ∈ M♥,irr
B,τ as τ → ∞, where we are using J♥ instead

of J♦ and the subscript τ indicates the dependence of J♥ on τ ∈ [0,∞) as we degenerate
�. Here u0 has image in S2 ×�0 and passes through (0, zf ), and u1 has image in S2 ×�1

and passes through (∞,w1). Since uτ is C0-close to v21 for τ , the curve u0 represents
the homology class [�0], while the curve u1 represents the homology class [S2] + [�1].
Moreover the images of u0 and u1 match at S2 × {n1,n2}. The image of u0 is a small
perturbation of the graph of a degree zero holomorphic map �0 → S2 and the image
of u1 is a small perturbation of the graph of a degree one holomorphic map �1 → S2.
Then by elementary complex analysis there is a unique choice for u0, while the choice for
u1 becomes unique once the intersection of its image with S2 × {n1,n2} is fixed. Hence
#M♦,irr

B ≡ 1 mod 2. �

3.4. Family of cobordisms. — We now describe a family of marked points zτ ∈ X
and a family of almost complex structures J♦τ on X for τ ∈ [0,1), as well as their limits
for τ = 1. These families give rise to the chain homotopy H of Theorem 3.1.4.

Let zb
τ ∈ int(B), τ ∈ [0,1), be a family of points such that zb

0 = zb, limτ→1 zb
τ =

(0,0), and zb
τ ∈ {s = 0} for τ ∈ [ 1

2 ,1). Then let zτ = (zb
τ , zf ) ∈ X.

Assume that the almost complex structure J on X is a product complex structure
on R × [0, ε] × � for ε > 0 small. We then define a family of C�-small perturbations J♦τ ,
τ ∈ [0,1), of J such that J♦τ = J away from a small neighborhood N(zτ ) of zτ and

N(zτ ) ∩ (R × [0,1] × {(z′)f }) = ∅.

In the limit τ = 1, the base ˜B is (B � D)/ ∼, where D = {|z| ≤ 1} ⊂ C and ∼
identifies (0,0) ∈ B with −1 ∈ D, and the total space ˜X is (X � (D × �))/ ∼, where
((0,0), x) ∼ (−1, x) for all x ∈ �. See Figure 2. We write wb for the node [(0,0)] =
[−1] ∈˜B. Let πB : X → B and πD : D × � → D be the projections onto the first factors.

The limit z1 of zτ is in D×� and we assume that zb
1 = 0 ∈ int(D). When τ = 1, the

almost complex structure J♦1 restricts to the complex structure J on X and to the almost
complex structure J♦D, where JD is a product complex structure on D × � and J♦D is a
C�-small perturbation of JD such that J♦D = JD away from a small neighborhood N(z1) of
z1 and

N(z1) ∩ (D × {(z′)f }) = ∅.
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FIG. 2. — The degeneration of the base B together with the marked point zb
τ as τ → 1. (Color figure online)

The Lagrangian boundary condition for τ ∈ [0,1) is Lα ∪ Lβ. In the limit τ = 1,
we use Lα ∪ Lβ for X and ∂D × β for D × �.

The degeneration for τ → 1 can be described in an equivalent way as a neck-
stretching along a stable Hamiltonian hypersurface γ × �, where γ is a boundary-
parallel arc in the base B which separates a disk containing the zb

τ .

3.5. Proof of Theorem 3.1.4. — Let uτi
, τi → 1, be a sequence of IHF = 2 curves

in (X, J♦τi
) from [y, i] to [y′, i − k] that pass through zτi

. Applying SFT compactness in
the neck-stretching setting and transferring the result to the nodal degeneration picture,
we obtain the limit ũ = uB ∪ uD, where uB ⊂ X, uD ⊂ D × �, and uD passes through z1.
Components of ũ that map to the fiber {wb} × � will be viewed as components of uD.

Lemma 3.5.1.

(1) [uD] = k0[{pt} × �] + 2g[D × {pt}] ∈ H2(D × �) for some 0 < k0 ≤ k.

(2) I(uD) = 2k0 + 2g ≥ 2g + 2.

Proof. — (1) deg(πD ◦ uD) = 2g, since uτi
is a degree 2g multisection of X for each

τi , away from a neighborhood of zb
τi

. Also, since 〈uτi
,B × {(zf )′}〉 = k for all τi , it follows

that 〈uD,D × {(zf )′}〉 = k0, where 0 < k0 ≤ k. Here k0 > 0 since uD passes through z1.
(2) is a consequence of (1) and computations as in the proof of Lemma 3.2.3. We

remind the reader that the genus of � is 2g. �

Lemma 3.5.2. — I(uD) = 2g + 2 and IHF(uB) = 0. In particular, y = y′, uB consists of

2g trivial strips, and k0 = k = 1.

Proof. — The gluing constraints give IHF(uτ ) = I(uD) + IHF(uB) − 2g = 2. Strictly
speaking, if there are (possibly multiply-covered) fiber components over z = −1 in D,
then we should view ũ as an SFT limit, in which case there will be intermediate levels
with image in D × �, where D has nodes at z = ±1, and there are no fiber components
over z = ±1. We can then view uD as the union of all the levels besides uB, to which
one can apply gluing constraints. By the regularity of J and the index inequality, we
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have IHF(uB) ≥ 0. The first sentence of the lemma then follows from Lemma 3.5.1(2); the
second sentence is a consequence of the first. �

The first sentence of Theorem 3.1.4 follows from the usual construction of chain
homotopies in Floer theory: By Lemma 3.5.2, Uz is chain homotopic to aU, where a

is the count of holomorphic curves uD in (D × �, J♦D) that pass through z1 and w =
{(0, y1), . . . , (0, y2g)}, where y = {y1, . . . , y2g}. Since a = 1 modulo 2 by Theorem 3.2.5,
Uz is chain homotopic to U.

Next we prove the second sentence of Theorem 3.1.4. For all y ∈ S , H([y,0]) is
obtained by counting IHF = 1 curves that pass through zτ for some τ ∈ (0,1) and that
do not cross the holomorphic strip R × [0,1] × {(z′)f }. There are no such curves since
R×[0,1]× {zf } is holomorphic and homologous to R×[0,1]× {(z′)f }: if a curve passes
through zτ , its intersection with R × [0,1] × {zf } is strictly positive by the positivity of
intersections, and so is its intersection with R × [0,1] × {(z′)f }.

4. The cobordism X+

In this section we give the construction of the symplectic cobordism (X+,�X+)

from [0,1] × � to M, together with the Lagrangian submanifold Lα ⊂ ∂X+.

4.1. Construction of (X+,�X+). — We describe the construction of X+, leaving
some key details for later:2 First we construct fibrations π0 : X0

+ → B0
+ and π1 : X1

+ → D2

with fibers diffeomorphic to � and S1/2. Here B0
+ = ([0,∞) × R/2Z) − Bc

+ with coordi-
nates (s, t) and Bc

+ is the subset [2,∞) × [1,2] with the corners rounded. We then glue
X0

+ and X1
+ and smooth a boundary component B of X0

+ ∪ X1
+ to obtain ˜B � M. Finally

we attach the negative end X2
+ = (−∞,0] × ˜B to obtain X+.

Let δ > 0 be a small irrational number and N a large positive number which de-
pends on δ and whose dependence will be described later.

Lemma 4.1.1. — There exists a symplectic manifold (X+,�X+) which depends on δ > 0
and which satisfies the following:

(1) There is a symplectic surface Szf := {zf }× (B0
+ ∪ D2), obtained by gluing sections {zf }×

B0
+ ⊂ X0

+ and {zf } × D2 ⊂ X1
+.

(2) �X+ = d�+ for some 1-form �+ on X+ − N(Szf ), where N(Szf ) is a small neighbor-

hood of Szf .

(3) �+ is exact on the Lagrangian submanifold Lα ⊂ ∂X+.

(4) On the positive end

π−1
0 ([3,∞) × [0,1]) = [3,∞) × � × [0,1] ⊂ X0

+

2 Compare with the description in Section 1.0.1, keeping in mind that the notation will be slightly different.
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of X+, �X+ restricts to ω̃ + ds ∧ dt, where ω̃ is an area form on �. Moreover,

Lα ∩ {s ≥ 3} = ([3,∞) × {0} × β′
) ∪ ([3,∞) × {1} × α),

where β′ is isotopic to β.

(5) On the negative end X2
+ of X+, �X+ restricts to the negative symplectization of a contact

form λ− on ˜B � M which is adapted to the open book decomposition (S, h).

(6) The manifold ˜B � M admits a decomposition into three disjoint pieces: the mapping torus

N(S0,h), a closed neighborhood N(K) of the binding K, and an open thickened torus N in

between that we refer to as the “no man’s land”.

(7) All the orbits of the Reeb vector field Rλ− of λ− in int(N(K)) ∪ N have λ−-action ≥
1
2δ

−κ , where κ > 0 is independent of δ. Moreover, T+ = ∂N(K) (resp. T− = ∂N(S0,h))

is a positive (resp. negative) Morse-Bott torus of meridian orbits.

(8) There is an embedding of W+, defined in Section I.5.1.1, into X+ such that the restriction

π1 : W+ ∩ X0
+ → B0

+ is a fibration with fiber S0, W+ ∩ X1
+ = ∅, W+ ∩ X2

+ =
(−∞,0] × N(S0,h), and W+ ∩ N(Szf ) = ∅.

Here X+, �X+ , �+, Lα , and λ− depend on δ > 0.

The S1-family P+ (resp. P−) of simple orbits of T+ (resp. T−) can be viewed equiv-
alently as a pair e′, h′ (resp. e, h) consisting of an elliptic orbit and a hyperbolic orbit. The
proof of Lemma 4.1.1 will be given in Section 4.3.

Let A[−1,N] � [−1,N] × S1 be a small neighborhood of ∂S0 = {0} × S1 in � with
coordinates (r1, θ1), such that zf �∈ A[−1,N], A[−1,0] ⊂ S0 and A[0,N] ⊂ S1/2. Here we write
AI = I× S1 if I is a subset of [−1,N]. Also let N(zf ) ⊂ S1/2 − A[0,N] − α − β be a small
ball Dτ = {r′ ≤ τ } about zf , where we are using polar coordinates (r′, θ ′).

The actual construction of (X+,�X+) is a bit involved, and consists of several steps.
Step 1. The following lemma is a rephrasing of Lemma I.2.1.2 and its proof.

Lemma 4.1.2. — After possibly isotoping h relative to ∂S0, there exists a factorization h =
h0 ◦ h1 and a contact form λ = ft(x)dt + βt(x), (x, t) ∈ S0 × [0,2], on N(S0,h0) with Reeb vector

field Rλ, such that the following hold:

(1) h : S0 × {0} ∼→ S0 × {0} is the first return map of Rλ.

(2) h has no elliptic periodic point of period ≤ 2g in int(S0), as required for technical reasons

in II.1.0.1.

(3) h0 = id on A[−1/2,0].
(4) h1 is the flow of Rλ from S0 × {0} to S0 × {2}.3
(5) Rλ is parallel to ∂t on (S0 − A[−1,0]) × [0,2]. In particular, h1 = id on S0 − A[−1,0].

3 In a departure from the stable Hamiltonian vector field R0 = ∂t from Section I.5.1, we are not assuming Rλ to be
parallel to ∂t on all of S0 × [0,2].



VINCENT COLIN, PAOLO GHIGGINI, KO HONDA

(6) ft(r1, θ1) = 1 + εr2
1/2 and βt(r1, θ1) = (C + r1)dθ1 on A[−1/2,0], for ε > 0 sufficiently

small and C > 0. In particular, ft and βt are independent of t and Rλ is parallel to

∂t − εr1∂θ on A[−1/2,0].
(7) |d2ft|A[−1/2,0] |C0 ≤ δ and 1

2 ≤ ft ≤ 2.

Here ε > 0 depends on δ > 0, d2 is the differential in the S0-direction, and the C0-norm is with respect

to a fixed Riemannian metric on S0.

Step 2. We then extend h0, h1, h ∈ Diff(S0, ∂S0) to h+
0 , h+

1 , h+ = h+
0 ◦ h+

1 ∈ Diff(�) and
the contact form λ to the contact form λ+ = ftdt +βt to N(�−N(zf ),h+

0 ), all of which depend
on δ > 0, as follows:

(3’) h+
0 = id on S1/2.

(4’) h+
1 |�−N(zf ) is the flow of Rλ+ from (� − N(zf )) × {0} to (� − N(zf )) × {2}

and h+
1 |N(zf ) = id .

(5’) ft and βt are independent of t on S1/2 − N(zf ). Hence Rλ+ is parallel to
∂t + Xf , where Xf is the Hamiltonian vector field satisfying iXf

ω = d2f and
ω is an area form on � which agrees with d2βt on � − N(zf ).

(6a’) ft(r
′, θ ′) = const > 0 and βt(r

′, θ ′) = (−C′ + r′)dθ ′ near ∂N(zf ), for −C′ > 0.
In particular, Rλ+ is parallel to ∂t near the mapping torus of ∂N(zf ).

(6b’) ft(r1, θ1) = 1 + εr2
1/2 near A{0} and βt(r1, θ1) = (C + r1)dθ1 on A[0,N].

(7’) |d2ft|S1/2−N(zf )|C0 ≤ δ and 1
2 ≤ ft|S1/2−N(zf ) ≤ 2.

Without loss of generality we may assume that α×{1} is Legendrian with respect to
λ+. This is an easy consequence of the Legendrian realization principle; see for example
[H, Theorem 3.7].
Step 3 (Construction of (X0

+,�0
X+)). Let

˜X0
+ = ([0,∞) × � × [0,2])/(s, x,2) ∼ (s, h+

0 (x),0)

and let π0 : ˜X0
+ → [0,∞) × R/2Z be the projection (s, x, t) �→ (s, t). We then set

X0
+ := π−1

0 (B0
+).

Let g : [0, 1
2 ] → R be a smooth function such that g(r) = 1 + εr2/2 near r = 0,

0 < g′(r) ≤ δ for r ∈ (0, 1
2), g′(r) is monotonically decreasing for r ∈ ( 1

4 ,
1
2), g′( 1

2) = 0, and
g( 1

2) = 1 + ε. In particular, this requires 2ε < δ. Then let

λ+,s = fs,tdt + βt, s ∈ [0,∞),

be a 1-parameter family of contact forms4 on N(�−N(zf ),h+
0 ) such that the following hold:

(a) λ+,s = λ+ if s ≥ 3
2 or (x, t) ∈ N(S0,h0).

4 Note that βt does not depend on s.
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(b) λ+,s is independent of s if s ∈ [0, 1
2 ].

(c) f0,t(r1, θ1) = g(r1) on A[0,1/2].
(d) f0,t|S1/2−A[0,1/2]−N(zf ) = 1 + ε. In particular, dλ+,0 = d2βt and R = ∂t on the map-

ping torus of S1/2 − A[0,1/2] − N(zf ).
(e) fs,t is a constant Cs > 0 near ∂N(zf ).
(f) |d2fs,t|A[−1/2,0]∪S1/2−N(zf )|C0 ≤ δ, |∂sfs,t|A[−1/2,0]∪S1/2−N(zf )|C0 ≤ δ and 1

2 ≤ fs,t|�−N(zf ) ≤
2 for all s, t.

We then define:

�0
X+ := ω̃ + ds ∧ dt,

where

ω̃ =
{

dλ+,s on X0
+ − (N(zf ) × B0

+);
ω on N(zf ) × B0

+;
and ω is an area form on � which agrees with d2βt on � − N(zf ). The 2-form �0

X+ is
symplectic by an easy calculation which uses (f).
Step 4 (Construction of (X1

+,�1
X+) and primitives �+

0 ,�+
1 ). Let

X1
+ := S′

1/2 × D2, S′
1/2 := S1/2 − A[0,1/2].

We use polar coordinates (r2, θ2) on D2 = {r2 ≤ 1}. We identify neighborhoods of {0} ×
S′

1/2 × R/2Z ⊂ ∂X0
+ and S′

1/2 × ∂D2 ⊂ ∂X1
+ as follows:

φ01 : [−ε′, ε′] × S′
1/2 × R/2Z

∼→ S′
1/2 × {(r2, θ2) | e−πε′ ≤ r2 ≤ eπε′ },

(s, x, t) �→ (x, eπ s,π t),

where ε′ > 0 is sufficiently small.
Let ωD2 be an area form on D2 satisfying:

ωD2 =
{

r2dr2dθ2 near r2 = 0;
1

π2r2
dr2dθ2 near r2 = 1.

We then define

�1
X+ := ω̃|S′

1/2
+ ωD2 .

An easy calculation shows that ωD2 = ds ∧ dt, and hence �1
X+ = �0

X+ , on their overlap.
We write ωD2 = d(φ(r2)dθ2), where φ : [0,1] → R satisfies

φ(r2) =
{

r2
2/2 near r2 = 0;
1
π2 log r2 + 1

10 near r2 = 1.
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FIG. 3. — Schematic diagram for rounding the corner of B. The diagram shows a neighborhood N(B) of B, where we are
projecting X0

+ ∩ N(B) to coordinates (s, r1) and X1
+ ∩ N(B) to coordinates (r2, r1). (Color figure online)

Then φ(r2)dθ2 = (s + π

10)dt on their overlap. The choice of the constant π

10 < 1 will be
used in the proof of Lemma 5.4.2. We then define primitives �+

i of �i
X+ , i = 0,1, as

follows:

�+
0 = λ+,s + (s + π

10)dt on X0
+ − (N(zf ) × B0

+);(4.1.1)

�+
1 = λ+,0 + φ(r2)dθ2 on X1

+ − (N(zf ) × D2).(4.1.2)

We have �+
0 = �+

1 on their overlap.
Step 5 (Corner smoothing). We now have a 4-manifold X0

+ ∪ X1
+ with a concave cor-

ner along (∂S′
1/2) × ∂D2. The component B of ∂(X0

+ ∪ X1
+) that contains the corner is

homeomorphic to M and (∂S′
1/2) × D2 is a neighborhood of the binding (∂S′

1/2) × {0}.
In this step we round the corner of B to obtain the smoothing ˜B ⊂ X0

+ ∪ X1
+. We

write ˜Bi = ˜B ∩ Xi
+, i = 0,1. We define the contact form λ− on ˜B so that λ−|˜Bi

= �+
i |˜Bi

,
i = 0,1. Here the notation |A refers to the pullback to A. See Figure 3.
Construction of ˜B0. There exist ε0, ε1 > 0 small with ε1

2ε0
< δ and ε1 < ε′ and a smooth map

ψ : [0, 1
2 + ε0] → R such that:

– ψ(r1) = ε1 on [0, 1
2 − ε0];

– ψ ′(r1) is monotonically decreasing and −δ ≤ ψ ′(r1) < 0 on ( 1
2 − ε0,

1
2 + ε0); and

– ψ( 1
2 + ε0) = 0 and ψ ′( 1

2 + ε0) = −δ.

We then let ˜B0 = ˜B00 ∪ ˜B01, where

˜B00 = {s = ε1} × N(S0,h0),
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˜B01 = {s = ψ(r1), r1 ∈ [0, 1
2 + ε0]} × R/2Z × S1.

Here R/2Z × S1 has coordinates (t, θ1).

Lemma 4.1.3. — There exists a unique r∗
1 ∈ (0, 1

2 + ε0) such that each orbit in ˜B01 ∩ {r1 �=
r∗
1} is directed by some ∂t + δ′∂θ1 , where 0 < |δ′| ≤ δ and δ′ depends on the orbit. Also ˜B01 ∩ {r1 =

1
2 + ε0} is directed by ∂t + δ∂θ1 .

Proof. — The 1-form λ−|˜B00
is clearly a contact form and

(4.1.3) λ−|˜B01
= (ψ(r1) + f0,t(r1, θ1) + π/10)dt + (C + r1)dθ1,

with respect to coordinates (r1, θ1, t). The Reeb vector field Rλ− is parallel to ∂t − ∂

∂r1
(ψ +

f0,t)∂θ1 . Let r∗
1 ∈ [0, 1

2 +ε0] be the point where ∂

∂r1
(ψ + f0,t) = 0. Then 0 < − ∂

∂r1
(ψ + f0,t) ≤

δ for r1 ∈ [r∗
1 ,

1
2 + ε0], − ∂

∂r1
(ψ + f0,t)(

1
2 + ε0) = δ, and 0 < ∂

∂r1
(ψ + f0,t) ≤ δ for r1 ∈ (0, r∗

1),
which imply the lemma. �

Construction of ˜B1. Let ζ : [0,1] → R be a smooth map such that:

– ζ(r2) = k0 − k1r2
2/2 near r2 = 0, where k0, k1 � 0;

– ζ ′′ < 0 on (0,1];
– ζ(1) = 1

2 + ε0.

We then define ˜B1 = {r1 = ζ(r2)}.
Lemma 4.1.4. — There exist k0, k1 � 0, N = N(k0, k1) � 0, and ζ such that Rλ−|˜B1

is

directed by π∂θ2 + δ∂θ1 , which agrees with ∂t + δ∂θ1 on ˜B0.

Proof. — λ−|˜B1
is given by

(4.1.4) λ−|˜B1
= (φ(r2) + (1 + ε)/π)dθ2 + (C + ζ(r2))dθ1,

with respect to coordinates (θ1, r2, θ2). The Reeb vector field Rλ− is parallel to π∂θ2 −
π φ′

ζ ′ ∂θ1 . By choosing k0, k1 � 0, N(k0, k1) � 0, and ζ suitably, we may assume that

−φ′
ζ ′ (r2) = δ

π
for all r2 ∈ (0,1]. �

We also define N(K) ⊂ ˜B as the closed neighborhood of the binding K = {r2 = 0}
that is bounded by the torus {r1 = r∗

1}. The region N = {0 < r1 < r∗
1} ⊂ ˜B will be called

“no man’s land”.
Step 6 (Construction of (X2

+,�2
X+)). Let X01

+ ⊂ X0
+ ∪X1

+ be the closure of the component
of (X0

+ ∪ X1
+) − ˜B that does not contain B. We then glue the negative cylindrical end

(X2
+,�2

X+) := ((−∞,0] × ˜B, d(es′λ−))
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to X01
+ along ˜B, where s′ is the coordinate for (−∞,0]. This concludes the construction

of (X+,�X+).

4.2. Further definitions.

Hamiltonian structure on �×[0,1]. Let ω = ω̃|s= 3
2
. The Hamiltonian structure on �×[0,1]

at the positive end of X+ is given by (dt,ω|�×[0,1]). Let h+
2 be the flow of the corresponding

Hamiltonian vector field from � × {0} to � × {1}; this is different from h+
1 , which is the flow

from �×{0} to �×{2}. Also note that we do not necessarily have h+
2 = id by construction.

Lagrangian submanifold Lα . As in Section I.5.2.1, we define the Lagrangian submanifold
Lα ⊂ ∂X+ by placing a copy of α on the fiber π−1(3,1) over (3,1) ∈ ∂B0

+ and using
the symplectic connection �X+ to parallel transport α along the boundary component
(∂B0

+) ∩ {s ≥ 1} of B0
+. Observe that

(4.2.1) Lα ∩ {s ≥ 3} = ([3,∞) × {0} × h+
0 (α)) ∪ ([3,∞) × {1} × α).

Lemma 4.2.1. — β′ := h+ ◦ (h+
2 )−1(α) is isotopic to β.

Proof. — Observe that h+
1 and h+

2 are isotopic to the identity. Then h+ is isotopic
to h+

0 where h+
0 |S1/2 = id and h+

0 |S0 is isotopic to h . The lemma then follows. �

Submanifolds Sz, Cθ , and H. Given z ∈ N(zf ), let

Sz = {z} × (B0
+ ∪ D2),

where {z} × B0
+ ⊂ X0

+ and {z} × D2 ⊂ X1
+. Also let

Cθ = ({θ} × B0
+) ∪ ({θ} × (−∞,0]s′ × R/2Z),

where θ ∈ ∂S0, and let H = ∪θ∈∂S0Cθ .
Definition of W+. Let W+ be the closure of the component of X+ − H which is disjoint
from S(z′)f . In particular, the restriction π1 : W+ ∩ X0

+ → B0
+ is a fibration with fiber S0,

W+ ∩ X1
+ = ∅, and W+ ∩ X2

+ = (−∞,0]× N(S0,h). The cobordism W+ is diffeomorphic
to the cobordism used to define the map � in Section I.5.1.

4.3. Proof of Lemma 4.1.1. — (1), (5), (6), (8) are clear from the construction.
(2) follows by letting �+ = �+

i , i = 0,1,2, where defined.
(3) By construction, Lα is Lagrangian and d�+|Lα

= 0. It then suffices to observe
that �+ = 0 on Lα ∩ π−1(3,1). This follows from the fact that α × {1} is a Legendrian
submanifold of (N(�−N(zf ),h+

0 ), λ+).
(4) The first sentence follows from the construction and the second sentence follows

from Lemma 4.2.1.
(7) By Lemma 4.1.4, the Reeb vector field Rλ− has no closed orbits in ˜B1 since δ > 0

is irrational. By Lemma 4.1.3 and Equation (4.1.3), each orbit of Rλ− in ˜B01 ∩ {r1 �= r∗
1}
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has λ−-action ≥ 1
2δ

− (C + 1
2), where C > 0 is independent of δ. The second sentence of

(7) is immediate from the construction of λ−.

5. The chain map �+

The goal of this section is to define the chain map

�+ : CF+(�,α,β, zf ) → ECC(M, λ−),

which is induced by the symplectic cobordism (X+,�X+) and an admissible almost com-
plex structure J+. We can write β = h+

2 ◦ h+ ◦ (h+
2 )−1(α), in view of Equation (4.2.1) and

Lemma 4.2.1 and the fact that h+
2 is the flow of the Hamiltonian vector field of ω̃|s=s0 ,

s0 � 0, from � × {0} to � × {1} before normalization.
For simplicity we identify X+ ∩ {s ≥ s0} � [s0,∞) × [0,1] × � with coordinates (s, t, x)

so that h+
2 = id and the Hamiltonian vector field is ∂t .

5.1. Almost complex structures. — Let ω = ω̃|s=3/2.

Lemma 5.1.1. — There exists a family (λτ ,ω), τ ∈ [0,1], of stable Hamiltonian structures

on N(S0,h0) such that λ1 = λ, λτ is a contact form for τ > 0, and λ0 = dt. The 1-forms λτ =
ft,τ dt + βt,τ can be normalized so that 1

2 < |ft,τ | ≤ 2.

Proof. — Follows from the discussion of Section I.3.1. �

Definition 5.1.2. — An almost complex structure J+ on X+ is (X+,�X+)-admissible if the

following hold:

(1) J+ is tamed by �X+ ;

(2) J+ is s-invariant for {s ≥ 3
2} ∩ X0

+ and is adapted to the stable Hamiltonian structure

(dt,ω|�×[0,1]) at the positive end;

(3) J+ is s′-invariant for {s′ ≤ − 1
2}∩X2

+ and is adapted to the contact form λ− at the negative

end;

(4) the restriction J+ of J+ to W+ is C�-close to a regular admissible almost complex structure

J0
+ on W+ with respect to (λ0,ω) (cf. Definitions I.5.4.1 and I.5.8.5);

(5) the surfaces S(z′)f and Cθ are J+-holomorphic for all θ ∈ ∂S0.

Let J, J′ be the adapted almost complex structures that agree with J+ at the positive and negative ends.

Note that (4) imposes additional conditions on �X+ and λ−. In practice, the order
in which we construct �X+ and J+ is a little convoluted: (i) choose a regular J0

+, (ii) choose
τ > 0 sufficiently small and J+ sufficiently close to J0

+, (iii) construct �X+ using λτ in place
of λ, and (iv) extend J+ to the rest of X+.

Let JX+ be the set of all (X+,�X+)-admissible almost complex structures.



VINCENT COLIN, PAOLO GHIGGINI, KO HONDA

5.2. The ECH index. — Let P = Pλ− be the set of simple orbits of Rλ− and let
O =Oλ− be the set of orbit sets constructed from P .

Let J+ ∈ JX+ be an admissible almost complex structure. Let MJ+(y,γ) be the
set of holomorphic maps u : (Ḟ, j) → (X+, J+) from y ∈ Sα,β to γ ∈ O, such that each
component of ∂Ḟ is mapped to a distinct component of Lα and each component of Lα

is used exactly once. Here (F, j) is a compact Riemann surface with boundary, Ḟ = F −
q+ − q−, q+ is the set of boundary punctures, and q− is the set of interior punctures.
Elements of MJ+(y,γ) will be called X+-curves.

Let X̌+ be X+ with the ends {s > 3} and {s′ < −1} removed and let

Zy,γ = (Lα ∩ X̌+) ∪ ({3} × [0,1] × y) ∪ ({−1} × γ)

as in Section I.5.4.2. The class [u] of u ∈ MJ+(y,γ) is the relative homology class of the
compactification ǔ in H2(X̌+,Zy,γ). Given A ∈ H2(X̌+,Zy,γ), we write MJ+(y,γ,A) ⊂
MJ+(y,γ) for the subset of X+-curves u in the class A.

Definition 5.2.1 (Filtration F ). — Given a X+-curve u that limits to y at the positive end and

γ at the negative end, we define

F(u) = 〈[u],S(z′)f 〉,
where 〈, 〉 is the algebraic intersection number. Since S(z′)f is a holomorphic divisor, F(u) ≥ 0. We will

also refer to u as an X+-curve from [y,F(u)] to y.

The definition of the ECH index given in Section I.5.6 also extends directly to our
case. The ECH index of a X+-curve from y to γ in the class A is denoted by IX+(γ,A).

5.3. Homology of X+. — The goal of this subsection is to compute H2(X+). Let us
write N = N(S0,h), N0 = N(S1/2,h+|S1/2 ) and N = N(�,h+).

Lemma 5.3.1. — H2(N) ∼= H2(M) and H1(N) ∼= H1(M) ⊕ Z, where the extra Z factor

is generated by a meridian of the binding.

Proof. — The lemma follows from the exact sequence of the pair (M,N). �

Lemma 5.3.2. — H2(X0
+) ∼= H2(N) ⊕ H2(N0) ⊕ H2(�).

Proof. — Observe that X0
+ is homotopy equivalent to N. We compute H2(N) using

the Mayer-Vietoris sequence:

H2(N ∩ N0)
i→ H2(N) ⊕ H2(N0) → H2(N) → H1(N ∩ N0)

j→ H1(N) ⊕ H1(N0).
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Since i = 0 and ker j = Z〈∂S0〉 = Z〈∂S1/2〉, the lemma follows. �

Lemma 5.3.3. — H2(X+) ∼= H2(M) ⊕ H2(�).

Proof. — X+ is homotopy equivalent to X0
+ ∪ X1

+ and X0
+ ∩ X1

+ ∼= N0. Since X1
+ is

homotopy equivalent to S1/2, the Mayer-Vietoris sequence becomes:

H2(N0)
i→ H2(X0

+) → H2(X+) → H1(N0)
j→ H1(X0

+) ⊕ H1(S1/2).

The map i surjects onto the factor H2(N0) in the decomposition of H2(X0
+) coming from

Lemma 5.3.2. The map j is injective, since H1(N0) ∼= H1(S1/2)⊕ H1(S1) by the Künneth
formula, the restriction j : H1(S1/2) → H1(S1/2) is an isomorphism, and the restriction
j : H1(S1) → H1(N) � H1(X0

+) is injective because the image of the generator of H1(S1)

is dual to the fiber �. The lemma then follows from Lemma 5.3.1. �

5.4. Energy bound.

Definition 5.4.1. — Let C+ be the set of nondecreasing functions φ : [0,+∞) → [0,1] such

that φ(s) = s + π

10 near s = 05 and let C− be the set of nondecreasing functions ψ : (−∞,0] →
[0,1] such that ψ(s′) = es′ near s′ = 0. Let

�+
φ,ψ :=

⎧

⎨

⎩

ω̃ + dφ(s) ∧ dt on X0
+ ∩ X01

+ ;
�1

X+ on X1
+ ∩ X01

+ ;
d(ψ(s′)λ−) on X2

+,

where (φ,ψ) ∈ C+ × C−.6 Then the energy of an X+-curve u : Ḟ → X+ from [y, k] to γ is given

by:

(5.4.1) E(u) = sup
φ,ψ

∫

F
u∗�+

φ,ψ,

where the supremum is taken over all pairs (φ,ψ) ∈ C+ × C−.

The condition imposed on the intersection with S(z′)f gives an energy bound:

Lemma 5.4.2 (Energy bound). — For all k ∈ N, there exists Nk > 0 such that E(u) ≤ Nk

for all y ∈ Sα,β, γ ∈O, and u ∈MF=k
J+ (y,γ).

Proof. — Let u : (Ḟ, j) → (X+, J+) be an element of MF=k
J+ (y,γ). By (2) and (3) of

Lemma 4.1.1, �X+ = d�+ on X◦
+ := X+ − N(Szf ) and �+ is exact on the Lagrangian

5 See the discussion in the second paragraph of the proof of Lemma 5.4.2 which justifies this definition.
6 φ,ψ used here are not to be confused with φ,ψ which appeared in Section 4.1.
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Lα . Hence
∫

∂Ḟ u∗�+ only depends on y. Since �+ = (s + π

10)dt + λ+ along Im u(∂Ḟ) by
Equation (4.1.1) and Section 4.1, Step 3, Item (a), there exists a constant C(y) such that

(5.4.2)
∫

∂Ḟ
u∗λ+ < C(y).

Let v : Ḟ′ → X◦
+ be a representative of the homology class [u] − k[�] ∈

H2(X̌+,Zy,γ). Since the energy is obtained by integrating a closed form,

(5.4.3) E(u) = E(v) + k

∫

�

ω̃.

Now �+
φ,ψ = d�+

φ,ψ on X◦
+, where

�+
φ,ψ =

⎧

⎨

⎩

λ+,s + φ(s)dt on X0
+ ∩ X◦

+ ∩ X01
+ ;

�+
1 on X1

+ ∩ X◦
+ ∩ X01

+ ;
ψ(s′)λ− on X2

+.

By Equations (4.1.1) and (4.1.2), �+
1 can be written as λ+,s + (s + π

10)dt on X0
+ ∩ X1

+ ∩
X◦

+ ∩ X01
+ . Observe that, since π

10 < 1, there exist φ ∈ C+ such that φ(s) = s + π

10 near
s = 0; the compatibility with �+

1 justifies the definition of C+.
By Stokes’ theorem,

E(v) ≤
∫

{s}×[0,1]×y,s≥3/2
λ+ + sup

φ∈C+
lim
s→∞

∫

{s}×[0,1]×y
φdt(5.4.4)

+
∫

∂Ḟ′
v∗λ+ + sup

φ∈C+

∫

∂Ḟ′
φdt − inf

ψ∈C−

∫

γ

ψλ−

≤ 4g +
∫

[0,1]×y
λ+ +

∫

∂Ḟ′
v∗λ+.

Recall that λ+,s = λ+ for s ≥ 3
2 . In the above calculation,

sup
φ∈C+

lim
s→∞

∫

{s}×[0,1]×y
φdt = 2g, sup

φ∈C+

∫

∂Ḟ′
φdt = 2g, inf

ψ∈C−

∫

γ

ψλ− = 0.

Combining Equations (5.4.2), (5.4.3), and (5.4.4), we obtain

E(u) ≤ 4g + C(y) +
∫

[0,1]×y
λ+ + k

∫

�

ω̃,

which is the desired bound. �
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5.5. Regularity. — Define the subset Mh
J+(y,γ,A) ⊂ MJ+(y,γ,A) consisting of

holomorphic curves without vertical fiber components. As in Lemma I.5.8.2, the set J reg

X+
of regular J+ ∈ JX+ for which all the moduli spaces Mh

J+(y,γ,A) are transversally cut
out is a dense subset of JX+ . We can restrict attention to Mh

J+(y,γ,A) for the following
reason:

Lemma 5.5.1. — If J+ ∈ J reg

X+ and u ∈ MJ+(y,γ,A) − Mh
J+(y,γ,A), then IX+(u) ≥

2 + 2g.

Proof. — Suppose u = u1 ∪ u2, where u1 is regular and u2 is homologous to k ≥ 1
times a fiber. Since 〈u1, u2〉 = k · 2g,

I(u) = I(u1) + I(u2) + 2k(2g)

≥ 0 + k(2 − 2g) + 4kg ≥ k(2 + 2g).

Here I(u1) ≥ 0 since I(u1) ≥ ind(u1) by the index inequality and ind(u1) ≥ 0 by the regu-
larity of u1. �

5.6. Holomorphic curves in X+ without positive ends. — In this subsection and the next,
we make essential use of the assumption g(S) ≥ 2.

Let S′′ = S1/2 − A[0,N] and let S
′′ = S′′ ∪ {∞} be the one-point compactification of

S′′. We define the “projection” πS
′′ : X+ → S

′′
as follows:

– on X0
+, πS

′′(s, x, t) = x if x ∈ S′′ and πS
′′(s, x, t) = ∞ if x �∈ S′′;

– on X1
+, πS

′′(x, r2, θ2) = x if x ∈ S′′ and πS
′′(x, r2, θ2) = ∞ if x �∈ S′′;

– πS
′′(X2

+) = {∞}.
Lemma 5.6.1. — If u : Ḟ → (X+, J+) is a holomorphic map without positive ends, then

g(F) ≥ 2.

Proof. — The map πS
′′ ◦ u can be extended to a continuous map f : F → S

′′
.

Observe that the curve u must intersect S(z′)f because the symplectic form is exact
on X+ − S(z′)f . Hence deg f > 0. Now we use the following fact: If f : �1 → �2 is
a positive degree map between closed oriented surfaces, then g(�1) ≥ g(�2). Since
g(S) = g(S

′′
) ≥ 2, it follows that g(F) ≥ 2. �

Lemma 5.6.2. — There are no I = 0 closed holomorphic curves in (X+, J+).

Proof. — We argue by contradiction. Let A = [u∗(F)]. By Lemma 5.3.3, the inter-
section form on H2(X+) is trivial. Hence A · A = 0. If I(A) = A · A + c1(A) = 0, then it
follows that c1(A) = 0.
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Suppose that u is simple. Then χ(F) ≥ 0 by the adjunction formula. This contra-
dicts Lemma 5.6.1. In particular I(u) > 0 by the regularity of u and the index inequality.
If v is a degree d branched cover of u in the class A, then I(v) = I(dA) = dI(A) ≥ d using
the formula

(5.6.1) I(dA) = dI(A) + (d2 − d)A · A.

Lemma 5.6.3. — A multiply-covered holomorphic curve u with only negative ends has I(u) >

0.

Proof. — This follows from the inequality

(5.6.2) I(dC) ≥ dI(C) + (d2 − d)

2
(2g(C) − 2 + ind(C) + h)

from [Hu, Section 5.1], where C is a simple curve, ind(C) is the Fredholm index of C
(which is nonnegative), and h is the number of hyperbolic ends. Here 2g(C) − 2 > 0 by
Lemma 5.6.1. �

5.7. The map �+. — Let J+ ∈J reg

X+ . The chain map �+ is given as follows:

�+ : (CF+(�,α,β, zf ), ∂) → (ECC(M, λ−), ∂ ′),

[y, i] �→
∑

γ,A

#MF=i,IX+=0
J+ (y,γ,A) · γ,

where the summation is over all γ ∈ Oλ− and A ∈ H2(X̌+,Zy,γ). Here ∂ ′ is the usual
ECH differential on ECC(M, λ−).

By a combination of Lemma 5.4.2 and the Gromov-Taubes compactness theorem
(cf. Section I.3.4), the sum in the definition of �+ is finite. Hence �+ is well-defined.

Theorem 5.7.1. — If g(S) ≥ 2, then �+ is a chain map.

Proof. — Similar to that of Theorem I.6.2.4, with slight modifications in view of
Lemmas 5.6.2 and 5.6.3. �

Remark 5.7.2. — One can define the twisted coefficient analog of �+, taking into
account Lemma 5.3.3.

5.8. Restriction to �. — In this subsection δ still denotes the constant that appears
in the construction of λ−. Let P|N be the subset of P consisting of orbits that are con-
tained in N = N(S0,h). Also let γθ ∈P− be the orbit corresponding to θ ∈ ∂S0.
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Lemma 5.8.1. — For δ > 0 sufficiently small, if u ∈MF=0
J+ (y,γ), y ∈ Sα,β, y ⊂ S0, and

γ ∈O, then γ is constructed from P|N ∪ {e′, h′}.

Proof. — If MF=0
J+ (y,γ) is nonempty, then by considerations similar to those of

Lemma 5.4.2:

4g + C(y) +
∫

[0,1]×y
λ+ ≥Aλ−(γ),

where Aλ−(γ) is the action of γ with respect to λ−. By taking the maximum of the left-
hand side over all y, we obtain an upper bound for Aλ−(γ) which is independent of y
and δ. By Lemma 4.1.1(7), all the orbit sets γ in int(N(K)) ∪N satisfy Aλ−(γ) ≥ 1

2δ
− κ .

Hence, for δ > 0 sufficiently small, no negative end of u is asymptotic to an orbit in
int(N(K)) ∪N . �

Lemma 5.8.2. — If u ∈ MF=0
J+ (y,γ), where y ∈ Sα,β, y ⊂ S0, and γ is constructed from

P|N ∪ {e′, h′}, then Im(u) ⊂ W+ and γ ∈O|N.

Proof. — Let u ∈MF=0
J+ (y,γ) such that u(Ḟ) �⊂ W+.

Suppose that u is not a multi-level Morse-Bott building. Then u(Ḟ) ∩ Cθ0 �= ∅ for
some θ0 ∈ ∂S0 −α−β, and moreover we may assume that γθ0 is not an asymptotic limit of
u at −∞. Since J+ is admissible, all the curves Cθ are holomorphic. Hence 〈u(Ḟ),Cθ0〉 > 0
by the positivity of intersections.

Let Dθ , θ ∈ ∂S0, be a meridian disk of the solid torus N ∪ N(K) that is bounded
by {θ}× R/2Z and is disjoint from e′ and h′, and let Dθ,s′ = {s′} × Dθ ⊂ X2

+, where s′ < 0
and θ ∈ ∂S0. We then define

Cθ,s′0 := (Cθ − {s′ < s′
0}) ∪ Dθ,s′0,

where s′
0 < 0. When s′

0 is sufficiently negative, the curve u(Ḟ) intersects Cθ0,s
′
0

only in the
region Cθ0 −{s′ < s′

0}, since γ is constructed from P|N ∪{e′, h′} and Dθ0 does not intersect
e′ and h′. Hence 〈u(Ḟ),Cθ0,s

′
0
〉 > 0. Now, since [S(z′)f ] = [Cθ0,s

′
0
] in H2(X̌+, ∂X̌+ − Zy,γ),

we have

F(u) = 〈[u],S(z′)f 〉 = 〈[u],Cθ0,s
′
0
〉 > 0.

This contradicts our assumption that F(u) = 0.
If u is a multi-level Morse-Bott building, then we need to make the appropriate

modifications (left to the reader), but the same argument goes through. For example, we
need to replace Cθ0 by a multi-level building Cθ0 ∪ (R × γθ0) ∪ · · · ∪ (R × γθ0). Note
that if u is a Morse-Bott building, then it could have a component u1 with a negative end
that limits to some γθ1 , followed by a gradient trajectory from θ1 to θ2, and then by a
component u2 with a positive end that limits to γθ2 . �
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Theorem 5.8.3. — For δ > 0 sufficiently small, if u ∈ MF=0
J+ (y,γ), y ∈ Sα,β, y ⊂ S0,

and γ ∈O, then Im(u) ⊂ W+ and γ ∈O|N.

Proof. — Follows from Lemmas 5.8.1 and 5.8.2. �

Corollary 5.8.4. — �+([x,0]) = e2g , where e is the elliptic orbit of the negative Morse-Bott

family on T− = ∂N(S0,h).

Proof. — By Theorem 5.8.3, any curve u ∈ MF=0
J+ (x,γ) must have image in W+.

Then, by Lemma I.6.2.3 and its consequence in Theorem I.6.2.4, the only curves from
x that do not intersect S(z′)f are curves of type Cθ . �

The restriction � of �+ to (W+, J+) is given as follows:

� : ̂CF(�,α,β, zf ) → ECC2g(M, λ−),

[y,0] �→
∑

γ,A

#MIW+=0
J+ (y,γ,A) · γ,

where MIW+=0
J+ (y,γ,A) is the subset of MJ+(y,γ,A) consisting of curves with image in

W+.

Theorem 5.8.5. — � is a quasi-isomorphism.

Proof. — The almost complex structure J+ is sufficiently close to J0
+. For J0

+, the
analogous chain map was shown to be a quasi-isomorphism (Theorem II.1.0.1). Consid-
erations similar to those of Theorem I.3.6.1 imply that � is a quasi-isomorphism. �

5.9. Commutativity with the U-map. — Let zb be a point in R × [0,1] with t-
coordinate 1

2 and let z = (zb, zf ) ∈ X. Let Uz be the geometric U-map with respect to
z on the HF side. On the ECH side, let z′ = (s, zM) be a generic point in R × int(N(K))

near the binding K. We define U′ = U′
z′ so that 〈U′(γ),γ′〉 is the count of IECH = 2 curves

in the symplectization (R × M, J′) from γ to γ′ that pass through z′.

Theorem 5.9.1. — There exists a chain homotopy

K : CF+(�,α,β, zf ) → ECC(M, λ−)

which satisfies

U′ ◦ �+ − �+ ◦ Uz = ∂ ′ ◦ K + K ◦ ∂.

Proof. — The commutativity of �+ with the U-maps up to homotopy is obtained
by moving the point constraint in the cobordism X+ from s = +∞ to s = −∞.



HF=ECH III: FROM HAT TO PLUS

The 1-parameter family of points (zτ )τ∈R is chosen as follows: For τ ≥ 0, let zτ =
(zb

τ , zf ), where zb
τ approaches (s, t) = (+∞, 1

2) as τ → +∞ and zb
0 is near the center of

the disk D2 = {r2 ≤ 1}. Next, for τ ∈ [−1,0], let zτ = (zb
0, zf

τ ) so that (zb
0, z

f

−1) ∈ {0}× ˜B is
near the binding K. For τ ≤ −1, let zτ = (τ +1, zM) ∈ (−∞,0]×M, where zM ∈ M = ˜B
is a point near the binding. Finally, we consider a small perturbation of (zτ )τ∈R to make
it generic (without changing its name).

We define the 1-parameter family of almost complex structures (J+
τ )τ∈R so that J+

τ

is C�-close to J+ and agrees with J+ outside a small neighborhood of zτ .
The rest of the chain homotopy argument is standard, with the exception of the

obstruction theory that was carried out in [HT1, HT2]. �

Theorem 5.9.2. — For δ > 0 sufficiently small, if y ∈ Sα,β and y ⊂ S0, then K([y,0]) =
0.

Proof. — The coefficient 〈K([y,0]),γ〉 is given by the count of IX+ = 1 curves from
y to γ that pass through zτ for some τ and do not intersect S(z′)f . If such a curve u exists,
then Im(u) �⊂ W+. This is not possible by the proof of Theorem 5.8.3. �

6. Proof of Theorem 1.0.1

In this section we prove Theorem 1.0.1. In Section 6.1 we prove an algebraic
result (Theorem 6.1.5) which is sufficient to prove that �+ is a quasi-isomorphism. The
conditions of Theorem 6.1.5 are verified in Section 6.4.

6.1. Some algebra.

Definition 6.1.1. — Let (A, d) be a chain complex. We say that a chain map f : A → A is

homologically almost nilpotent (abbreviated han) if for every x ∈ H(A) there exists n ∈ N such

that (f∗)n(x) = 0.

Prototypical examples of han maps are the U-maps in HF+ and ECH.
Let (A, dA) and (B, dB) be chain complexes with han maps UA : A → A and

UB : B → B and let �+ : A → B be a chain map such that the diagram

A
�+

UA

B

UB

A
�+

B
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commutes up to a chain homotopy K. We form a chain complex D = A ⊕ A ⊕ B ⊕ B
with differential

dD =

⎛

⎜

⎜

⎝

dA 0 0 0
UA dA 0 0
�+ 0 dB 0
K �+ UB dB

⎞

⎟

⎟

⎠

.

Given a chain map f , we denote its mapping cone by C(f ).

Lemma 6.1.2. — There is an exact triangle:

(6.1.1) H(C(UA))
(�alg)∗

H(C(UB))

H(D)

where �alg =
(

�+ 0
K �+

)

.

Proof. — From the shape of dD, it is evident that (D, dD) is the mapping cone of
�alg : C(UA) → C(UB). �

Lemma 6.1.3. — There is an exact triangle:

(6.1.2) H(C(�+))
(U�+ )∗

H(C(�+))

H(D)

where U�+ =
(

UA 0
K UB

)

.

Proof. — Let C(�+) = A ⊕ B be the cone of �+ with differential d�+ =
(

dA 0
�+ dB

)

. Then U�+ : (C(�+), d�+) → (C(�+), d�+) is a chain map. Hence the com-

plex (D′, dD′), where D′ = A ⊕ B ⊕ A ⊕ B and

dD′ =
(

d�+ 0
U�+ d�+

)

=

⎛

⎜

⎜

⎝

dA 0 0 0
�+ dB 0 0
UA 0 dA 0
K UB �+ dB

⎞

⎟

⎟

⎠

,
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is the cone of U�+ . Moreover f : D → D′ where

f =

⎛

⎜

⎜

⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟

⎟

⎠

is an isomorphism of complexes. �

Lemma 6.1.4. — U�+ is a han map.

Proof. — Consider the following commutative diagram with exact rows:

H(B)
i∗

Un
B

H(C(�+))
j∗

Un
�+

H(A)

Un
A

H(B)
i∗

Um
B

H(C(�+))
j∗

Um
�+

H(A)

Um
A

H(B)
i∗

H(C(�+))
j∗

H(A)

Given x ∈ H(C(�+)), we choose n ∈ N sufficiently large so that Un
A(j∗(x)) = j∗(Un

�+(x)) =
0. Then Un

�+(x) = i∗(y) for some y ∈ H(B). Next choose m ∈ N sufficiently large so that
Um

B(y) = 0. Then Un+m
�+ (x) = Um

�+(i∗(y)) = i∗(Um
B(y)) = 0. �

Theorem 6.1.5. — If �alg is a quasi-isomorphism, then �+ is a quasi-isomorphism.

Proof. — If �alg is a quasi-isomorphism, then H(D) = 0 by Exact Triangle (6.1.1).
This in turn implies that U�+ is a quasi-isomorphism by Exact Triangle (6.1.2). However
the han map U�+ cannot be a quasi-isomorphism, unless H(C(�+)) = 0. Finally, the
triangle

H(A)
�+∗

H(B)

H(C(�+))

implies that �+ is a quasi-isomorphism. �

We finish this subsection with a lemma which compares the homology of C(U)

with that of ker U.
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Lemma 6.1.6. — Let (C, d) be a chain complex and let U : C → C be a chain map. If U is

surjective, then the inclusion

i : ker U → C(U)

x �→
(

x

0

)

is a quasi-isomorphism.

Proof. — Let U : C/ ker U → C be the map induced by U. We have a short exact
sequence of complexes

0 → ker U → C(U) → C(U) → 0,

which induces the exact triangle:

H(ker U)
i∗

H(C(U))

H(C(U))

Since U is surjective, U is an isomorphism. Hence H(C(U)) = 0 and the lemma follows.
�

6.2. Heegaard Floer chain complexes. — Recall the subcomplex ̂CF′(S0,a, h(a)) of
̂CF(�,α,β, zf ) from Section I.4.9.3, which is generated by Sa,h(a); let

j ′ : ̂CF′(S0,a, h(a)) → ̂CF(�,α,β, zf )

be the natural inclusion map. We are viewing

̂CF(�,α,β, zf ) ⊂ CF+(�,α,β, zf )

as the subcomplex generated by elements of the form [y,0]. The chain complex
̂CF(S0,a, h(a)) is the quotient ̂CF′(S0,a, h(a))/ ∼, defined in Section I.4.9.3.

Lemma 6.2.1. — There is an isomorphism j : ̂HF(S0,a, h(a)) → ̂HF(�,α,β, zf ) given

by [Z] �→ [Z].

Proof. — This follows from the discussion of Theorem I.4.9.4. Note that the natu-
ral candidate

̂CF(S0,a, h(a)) → ̂CF(�,α,β, zf ), [Z] → Z
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for a chain map is not a well-defined map. �

Lemma 6.2.2. — The inclusion i : ̂CF(�,α,β, zf ) → C(U) given by y �→
([y,0]

0

)

is

a quasi-isomorphism.

Proof. — This follows from Lemma 6.1.6, since U([y, i]) = [y, i − 1] for i ≥ 1 and
ker U � ̂CF(�,α,β, zf ). �

6.3. ECH chain complexes. — We describe several ECH chain complexes that are
related to (ECC(M, λ−), ∂ ′) and are constructed from certain subsets S of the set P =
Pλ− of simple orbits of Rλ− . Many of these appeared in [0, Section 9]. Let U′ be the
U-map of ECC(M, λ−) with respect to (s0, zM) ∈ R × M, where zM is a generic point
which is sufficiently close to the binding.

Let OS be the set of orbit sets that are constructed from S . Then S is closed if
γ′ ∈ OS , whenever γ ∈ OS , γ′ ∈ OP , and 〈∂ ′γ,γ′〉 �= 0 or 〈U′γ,γ′〉 �= 0. If S is closed,
then let (AS, ∂ ′

S) be the subcomplex of ECC(M, λ−) generated by OS and let U′
S be the

restriction of U′ to AS . Let P|N ⊂ P be the set of orbits in the mapping torus N. The
subsets

S1 =P|N ∪ {e′, h′}, S2 =P|N∪N ∪ {e′, h′}, P|N ∪ {h′}, P|N∪N ∪ {h′}, P|N
are closed and we write Ai = ASi

, ∂ ′
i = ∂ ′

Si
, and U′

i = U′
Si

for i = 1,2, as well as

̂ECC
�

(N) = AP |N∪{h′}, ̂ECC
��

(N) = AP |N∪N ∪{h′}, ECC(N) = AP |N .

Also let ECC2g(N) ⊂ ECC(N) be the subcomplex generated by orbit sets γ satisfying
〈γ,S × {t}〉 = 2g. Let

q1 : ECC2g(N) → ̂ECC
�

(N), q2 : ECC2g(N) → ̂ECC
��

(N)

be the chain maps given by the natural inclusion. Then we have the following:

Lemma 6.3.1. — The chain maps q1 and q2 are quasi-isomorphisms.

Proof. — The chain map q1 is a quasi-isomorphism by Section II.5 and Sec-
tion 0.9.9. By a direct limit argument similar to that of Proposition 0.7.2.1, there is a

quasi-isomorphism r : ̂ECC
��

(N) → ̂ECC
�

(N) such that r ◦ q2 = q1. This implies that q2

is also a quasi-isomorphism. �

Lemma 6.3.2. — The inclusions p1 : ̂ECC
�

(N) → C(U′
1) and p2 : ̂ECC

��

(N) →
C(U′

2) given by � �→
(

�

0

)

are quasi-isomorphisms.
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Proof. — This follows from Lemma 6.1.6. The map U′
i , i = 1,2, is given by:

(6.3.1) U′
i((e

′)k(h′)l�) = (e′)k−1(h′)l�,

where � ∈O|N or O|N∪N ; see Claim 0.9.9.3 for a similar calculation. Hence U′
i is surjec-

tive, ker U′
1 = ̂ECC

�

(N), and ker U′
2 = ̂ECC

��

(N). This implies the lemma. �

Lemma 6.3.3. — The inclusion i : ̂ECC
��

(N) → C(U′) given by � �→
(

�

0

)

is a quasi-

isomorphism.

Proof. — This is similar to the argument in [0, Section 9].
Choose an identification η : H1(N(K);Z)

∼→ Z such that the homology class of
the binding is 1. Define the filtration F : ECC(M) → Z≥0 such that

F
(

∑

i

γi ⊗ �i

)

= max
i

η([γi]),

where γi ∈ O|N(K) and �i ∈ O|N∪N . Let F �� : ̂ECC
��

(N) → Z≥0 be its restriction to
̂ECC

��

(N). (Note that F �� is a trivial filtration.) Next define the filtration ̂F : C(U′) →
Z≥0 such that

̂F
(∑

i γi ⊗ �i
∑

j γ
′
j ⊗ �′

j

)

= max
i,j

{η([γi]), η([γ′
j])}.

The map i is an (F ��, ̂F)-filtered chain map. The induced map

E1(i) : E1(F ��) → E1(̂F)

on the E1-level agrees with the isomorphism (p2)∗; the proof is similar to that of Sec-
tion 0.9. If a filtered chain map between filtered chain complexes which are bounded
below is an isomorphism on the Er-level, then it is a quasi-isomorphism. This implies
that i is a quasi-isomorphism. �

6.4. Completion of proof of Theorem 1.0.1. — By Theorems 3.1.4, 5.7.1, and 5.9.1,
the map

�+ : CF+(�,α,β, zf ) → ECC(M, λ−)

is a chain map which commutes with U and U′ up to the chain homotopy K+ = K +
�+ ◦ H, where H is given in Theorem 3.1.4 and K is given in Theorem 5.9.1. Here U is
the original algebraically-defined U-map on (CF+(�,α,β, zf ), ∂) and U′ is the U-map
on (ECC(M, λ−), ∂ ′).
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In view of Theorem 6.1.5, the quasi-isomorphism statement of Theorem 1.0.1
immediately follows from:

Theorem 6.4.1. — The algebraic map �alg is a quasi-isomorphism.

Let �′ : ̂CF′(S0,a, h(a)) → ECC2g(N) be the map from Definition I.6.2.1. The
map �′ descends to � : ̂CF(S0,a, h(a)) → ECC2g(N), which was shown to be a quasi-
isomorphism in [I, II]. Here we are using ECC2g(N) instead of PFC2g(N), but there is no
substantial difference; see Theorem I.3.6.1.

Observe that there is a discrepancy between the algebra and the geometry: the
map �alg which we are using here is not the map �, and we need to reconcile the two.

Proof. — If Z ∈ ̂CF′(S0,a, h(a)), then �+(Z) = �′(Z) by Theorem 5.8.3. We ob-
served in Theorem 3.1.4 that H(Z) = 0. Moreover, K(Z) = 0 by Theorem 5.9.2 and thus
K+(Z) = 0. Hence

�alg

(

Z
0

)

=
(

�+(Z)

K+(Z)

)

=
(

�′(Z)

0

)

,

and the following diagram is commutative:

̂CF′(S0,a, h(a))
�′

i◦j′

ECC2g(N)

i◦q2

C(U)
�alg

C(U′).

This gives rise to the following commutative diagram of homology groups:

̂HF(S0,a, h(a))
�∗

i∗◦j

ECH2g(N)

(i◦q2)∗

H(C(U))
(�alg)∗

H(C(U′)).

Since j, i∗, �∗, (q2)∗, and i∗ are isomorphisms by Lemma 6.2.1, Lemma 6.2.2, [I, II],
Lemma 6.3.1, and Lemma 6.3.3, �alg itself is a quasi-isomorphism. �

Finally, the statement about �+ mapping the contact class to the contact class
follows from Corollary 5.8.4.
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