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ABSTRACT
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â , Lτ,−

̂b
Lagrangian submanifolds on Wτ

m(+∞), m(−∞) Marked points on W− and W−∞,2, respectively
m(τ )= (m

b
(τ ),m

f
(τ )) 1-parameter family of marked points on Wτ

n∗(u), n∗,alt(u) Intersection numbers defined in Equation (3.2.3)
Wτ Total space of the projection πBτ

:Wτ → Bτ

W−∞ =W−∞,1 ∪W−∞,2 Limit of Wτ as τ →−∞
x#

i1, x#
i2, x#

i3 Intersection points of ai and bi besides z∞

� VC supported by the Institut Universitaire de France, ANR Symplexe, ANR Floer Power, and ERC Geodycon.
�� PG supported by ANR Floer Power and ANR TCGD.

� � � KH supported by NSF Grants DMS-0805352, DMS-1105432, and DMS-1406564.

© The Author(s) 2024
https://doi.org/10.1007/s10240-024-00146-w

http://crossmark.crossref.org/dialog/?doi=10.1007/s10240-024-00146-w&domain=pdf


VINCENT COLIN, PAOLO GHIGGINI, KO HONDA

1. Introduction

This paper is the sequel to [I] and is devoted to proving some of the technical parts
of the isomorphism between ̂HF(−M) and ̂ECH(M). References from [I] will be written
as “Section I.x” to mean “Section x” of [I], for example. The notation from [I] carries
over to this paper and is summarized in the “Notation common to [I]–[III]” that appears
at the beginning of [I].

In [I] we defined the chain maps

� : ̂CF(S,a, h(a))→ PFC2g(N),

� : PFC2g(N)→ ̂CF(S,a, h(a)).

In this paper we prove the following two results:

Theorem 1.0.1 (Quasi-isomorphism). — The chain maps � and � are quasi-isomorphisms,

provided the monodromy map h does not have any elliptic periodic points of period ≤ 2g and and rotation

number θ /∈ [− 1
2g
, 1

2g
].

Theorem 1.0.1 is quite involved and takes up most of this paper. The condition on
h is a technical assumption which simplifies gluing and one should be able to remove this
condition with more work.

Theorem 1.0.2 (Stabilization). — ̂ECH(M)� PFH2g(N).

By successively stabilizing the open book (S, h) and applying Theorem 1.0.1 to
the stabilizations, we obtain a sequence of stable Hamiltonian structures (α0,ω

2k) with
contact perturbations α2k , for k ≥ g, such that

ECH2k(N, α2k)∼= PFH2k(N, α0,ω
2k)

and the stabilization maps

ECC2k(N, α2k)→ ECC2k+2(N, α2k+2), γ �→ e2
K2k(γ )

are quasi-isomorphisms, where

K2k : ECC2k(N, α2k)→ ECC2k(N, α2k+2)

is a chain map inducing the continuation map. Then Theorem 1.0.2 follows from Theo-
rem I.2.5.6.

Theorem 1.0.2 is proved in Section 5.

Notation 1.0.3 (Sub/superscripts ∗). — In this paper, as in [I], ∗ is often used to
denote a variety of possible subscripts/superscripts (e.g., intersection numbers n∗(u) in
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Equation (3.2.3), curves v∗ and their domains Ḟ∗ as in Notation 3.4.1, and moduli spaces
M∗(�) as in Notation 3.2.12).

Organization of this paper. In Sections 3 and 4 we prove the chain homotopy between the
chain maps � ◦� and a quasi-isomorphism, as well as the chain homotopy between the
chain maps � ◦� and id. The necessary Gromov-Witten type calculations are carried
out in Section 2. Finally, Section 5 is devoted to proving Theorem 1.0.2.

2. Gromov-Witten type computations

This section is devoted to Gromov-Witten type calculations which are used in the
proof of Theorem 1.0.1. After a brief review of relative Gromov-Witten invariants in
Section 2.1, we treat a slightly simpler model situation in Section 2.2. We then tackle the
specific situations of interest in this paper in Sections 2.3 and 2.4.

2.1. Relative Gromov-Witten invariants. — Relative Gromov-Witten invariants were
introduced independently by Ionel and Parker in [IP1] and Li and Ruan in [LR]. The
reader can see also McDuff [M] for a review of the topic. Although we were heavily
inspired by their work, our definition is different from the original one.

Let X be a four-dimensional symplectic manifold and V ⊂ X a codimension
two symplectic submanifold with trivial self-intersection.1 Throughout this section we
will fix an almost complex structure which is integrable (and therefore locally split)
on a neighborhood of V and generic elsewhere. We fix a primitive homology class
A ∈ H2(X;Z) such that A · V = d > 0 and denote by MJ

g,n(A) the moduli space of
J-holomorphic maps u : (F, j,x)→ (X, J), where (F, j) is a genus g closed Riemann sur-
face and x= (x1, . . . , xn) is an ordered n-tuple of marked points. In practice, we will also
allow F to have boundary or constrain the evaluation at the marked points on some fixed
cycles in X which are not contained in V; straightforward variations on the theme are left
to the reader. Whenever there is no risk of confusion, the almost complex structure will
be dropped from the notation.

Since A is a primitive class, every J-holomorphic map in the class A is simple, and
moreover its image is not contained in V because A · V > 0. Therefore the standard
Fredholm theory for J-holomorphic curves applies and the moduli space Mg,n(A) is a
smooth manifold of dimension

(2.1.1) dimMg,n(A)= 2g − 2+ 2〈c1(TX),A〉 + 2n.

Definition 2.1.1. — We define a map evV : Mg,n(A) → Symd(V) such that evV(u)

is the set of intersection points between u(F) and V counted with multiplicity: that is, evV(u) =
1 This simplifying condition will be satisfied in all our examples but is not strictly necessary.
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{(z1, d1), . . . , (zl, dl)} such that {z1, . . . , zl} = u(F)∩V and di is the multiplicity of the intersection

point zi.

This definition makes sense because of the local properties of J-holomorphic maps.
Note that evV is not sensitive to the cardinality of the preimage, e.g., it does not distinguish
between a unique point of F mapped to V with order two and two points of F mapped
to V with order one. This is undesirable, but in the examples the possibility of multiple
points of F mapped to the same point of V will be excluded by topological considerations.

In order to show that evV is a smooth map, we need the following weaker version
of the Weierstrass preparation theorem. Let Dn

ε denote the ball of radius ε in Rn centered
at 0.

Lemma 2.1.2. — If for some ε, δ > 0 a smooth map F :Dn
ε×D2

δ →C satisfies the following

properties:

– for every t ∈Dn
ε the map ft(z)= F(t, z) is holomorphic, and

– f0(0)= 0 is a zero of order k,

then there exist 0 < ε′ < ε and 0 < δ′ < δ such that on Dn
ε′ × D2

δ′ we can decompose F(t, z) =
P(t, z)Q(t, z), where P and Q are smooth maps which satisfy

– pt(z)= P(t, z) is a monic polynomial of degree k in z for every t ∈Dn
ε′ , and

– Q(t, z) �= 0 for every (t, z) ∈Dn
ε′ ×D2

δ′ .

In particular ft and pt have the same zeros with the same multiplicities for every t

and the coefficients of pt depend smoothly on t. For the proof of this lemma see the proof
of [Hör, Theorem 7.51].

Lemma 2.1.3. — If every J-holomorphic map in Mg,n(A) is graphical over V near its inter-

section points with V, then the map evV :Mg,n(A)→ Symd(V) is smooth.

The hypothesis that every J-holomorphic be graphical is strong and probably un-
necessary, but it will hold for topological reasons in all our applications.

Proof. — Take u0 ∈Mg,n(A) with evV(u0)= {(z1, d1), . . . , (zl, dl)} and fix a smooth
parametrization Dm

ε →Mg,n(A), t �→ ut , of a neighborhood of u0. We will show that the
composition

Dm
ε → Symd(V), t �→ evV(ut)

is smooth. Choose pairwise disjoint neighborhoods U1, . . . ,Ul ⊂ V around the points
z1, . . . , zl and identify each of them holomorphically with a disk D2

δ ⊂ C in such a way
that zi is identified with the origin. Since the almost complex structure J is locally split
and the J-holomorphic maps are graphical near V, after possibly making ε smaller, in a
neighborhood of V we can identify the image of the J-holomorphic maps ut for t ∈ Dm

ε
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with graphs of holomorphic functions f i
t : Ui

∼= D2
δ → C for i = 1, . . . , l such that zi is a

zero of order di for f i
0 and the zeros of f i

t correspond to the intersections of the image of ut

with V near zi . Then we apply Lemma 2.1.2 to obtain monic polynomials pi
t of degree di

with the same zeros as f i
t and whose coefficients are smooth functions of t, after possibly

shrinking the neighborhoods Ui.
The zeros of the functions f i

t (and the polynomials pi
t ) give a map

t �→ Symd1(U1)× · · · × Symdl (Ul)⊂ Symd(V).

The holomorphic identifications Ui
∼=D2

δ give embeddings

Symd(Ui) ↪→ Symdi(C)∼=Cdi .

The identification Symdi(C) ∼= Cdi comes from the correspondence between roots and
coefficients of degree di monic polynomials and induces the smooth structure on the
symmetric product. Since the coefficients of pi

t define a smooth map Dm
ε →Cdi , the map

Dm
ε → Symd(C) defined by the zeros is also smooth. �

Let evX :Mg,n(A)→ Xn be the evaluation at the marked points. The two maps
combine into an evaluation map

ev = (evX, evV) :Mg,n(A)→Xn × Symd(V).

Definition 2.1.4. — If Mg,n(A) is compact, the relative Gromov-Witten invariant
GWV

X,A,g,n is the class

ev∗[Mg,n(A)] ∈H∗(Xn × Symd(V)).

In order to obtain numerical invariants, we will intersect ev∗[Mg,n(A)] with ho-
mology classes of the appropriate codimension. In practice Mg,n(A) is rarely compact,
so we will need to either replace it by a moduli space with point constraints, or compact-
ify it by adding nodal J-holomorphic curves. Instead of developing a general theory, we
prefer to deal with this issue case by case in the applications.

2.2. First relative Gromov-Witten calculation. — This first calculation is a warm-up
for the following more involved ones, and will never be used in the paper. Let � be
a surface of genus g ≥ 1. We consider (X,ω) = � × CP1 with a product symplectic
form. Let π1 and π2 be the projections of X onto � and CP1, respectively. Let V =
� × {∞}, A = [�] + 2g[CP1], g = g(�) and n = g + 1. The moduli space Mg,g+1(A)
then has virtual dimension 8g + 4 by Lemma 2.2.2 below; this is equal to the dimension
of Xg+1 × Sym2g(V). Hence, given generic x= ((z1, y1), . . . , (zg+1, yg+1)) ∈Xg+1 and z=
{(z′1,∞), . . . , (z′2g,∞)} ∈ Sym2g(V) we define

G1(�,x, z)= #ev−1(x, z),
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where # denotes the cardinality modulo 2.

Theorem 2.2.1. — For generic (x, z), G1(�,x, z)= 1.

In the proof of Theorem 2.2.1 we will use a product complex structure J= j�× jCP1

to carry out our calculations. This is legitimate because of certain automatic transversality
results, as explained in the next lemma.

First recall that Mg(A) =Mg,0(A) is the moduli space of J-holomorphic maps
u : (F, j)→ (X, J) in the class A, modulo automorphisms of the domain. Here F is a
closed surface of genus g and j ranges over all complex structures on F.

Lemma 2.2.2. — The moduli space Mg,g+1(A) is regular and

dimMg,g+1(A)= 8g + 4.

Proof. — Every curve u ∈Mg(A) is embedded, since the projection π1 ◦u is a holo-
morphic map of degree one, and therefore a biholomorphism. Then, by the adjunction
formula,

(2.2.1) 〈c1(TX),A〉 = χ(�)+A ·A= 2g + 2.

Hence the expected dimension of Mg,g+1(A) is 8g + 4 by Equation (2.1.1). Since every
u ∈Mg(A) is embedded and 〈c1(TX),A〉 > 0, Hofer, Lizan and Sikorav’s automatic
transversality theorem [HLS, Theorem 1] (first suggested by Gromov [Gr]) implies that
Mg(A) is regular. Since adding free marked points has no effect on regularity, Mg,g+1(A)
is also regular and is a manifold of the dimension 8g + 4. �

Let u ∈Mg(A). Since π1 ◦ u : F → � has degree one, it follows that (F, j) is bi-
holomorphic to our chosen (�, j�). Hence there is a one-to-one correspondence between
maps u ∈Mg(A) and meromorphic functions (i.e., branched covers)

v = π2 ◦ u :�→CP1

of degree 2g. Meromorphic functions can be studied using the classical Riemann-Roch
theorem, which states that:

l(D)− l(K−D)= deg(D)+ 1− g,

where D is a divisor on �, K is the canonical divisor, and l(D) is the complex dimension
of the space of meromorphic functions on � with poles at most at D.

Lemma 2.2.3. — If deg(D)= 2g − 1+ m with m≥ 0, then l(D)= g + m.

Proof. — Since deg(K) = 2g − 2, we have deg(K − D) < 0 and l(K − D) = 0.
Hence l(D)= deg(D)+ 1− g = (2g − 1+ m)+ 1− g = g + m. �
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Given (x, z) ∈Xg+1 × Sym2g(V) we write Mg,g+1(A,x, z)= ev−1(x, z).

Lemma 2.2.4. — If (x, z) is generic, then Mg,g+1(A,x, z) is compact.

Proof. — Arguing by contradiction, let ui ∈Mg,g+1(A,x, z) be a sequence that con-
verges to a limit nodal curve u : F→X. Since u is J-holomorphic, π1 ◦ u is holomorphic
and one component of F must be biholomorphic to �. Hence F is obtained from � by at-
taching spheres which are mapped by u to {z′′i }×CP1, 1≤ i ≤ k. Moreover, k ≤ 2g by the
positivity of intersections, since u(F) represents the homology class A = [�] + 2g[CP1]
and A · [�] = 2g.

(1) Suppose that u(�) �=V=� × {∞}. Since A · [V] = 2g and the intersection points of
u(F) and V are (z′1,∞), . . . , (z′2g,∞), we must have

{z′′1, . . . , z′′k } ⊂ {z′1, . . . , z′2g}.
We claim that the map u|� cannot exist. Let us write v = π2 ◦ u|� : �→ CP1. Then v

is a meromorphic function with poles at {z′1, . . . , z′2g} \ {z′′1, . . . , z′′k }, subject to v(zi)= yi

for all i = 1, . . . , g + 1. Hence v ∈ l(D′ − D′′), where D′ = z′1 + · · · + z′2g and D′′ =
z′′1 + · · · + z′′k . By Lemma 2.2.3, l(D′ −D′′)≤ g. [Apply the lemma to D′ − z′′1, which has
degree 2g − 1. This gives us l(D′ − z′′1)= g. Then observe that l(D′ − z′′1)≥ l(D′ −D′′),
more or less by definition.] On the other hand, there are more constraints v(zi)= yi than
there are linearly independent functions. Hence v cannot exist provided {z1, . . . , zg+1}
and {y1, . . . , yg+1} are generic, a contradiction.

(2) Now suppose that u(�)= V. Then u consists of u|� , together with 2g bubbles {z′′i } ×
CP1, i = 1, . . . ,2g. The set {z′′1, . . . , z′′2g} contains {z1, . . . , zg+1} and may also contain
k ≤ g − 1 elements of {z′1, . . . , z′2g}. (Recall that the points zi , z′i and yi are in generic
position.) We then apply the renormalization procedure of [IP1, Proposition 6.6] to the
sequence ui restricted to a neighborhood of V. After choosing suitable restrictions and
rescalings, the sequence ui converges to a nonconstant meromorphic function ξ : �→
CP1 which encodes how the curves ui(�) approach V. The function ξ has poles at most
at D′′ = z′′1 + · · · + z′′2g and zeros at 2g − k ≥ g + 1 points of {z′1, . . . , z′2g}. The details of
this argument are left to the reader. Since l(D′′)= g+1 by Lemma 2.2.3, we have at least
as many constraints as linearly independent functions. This implies that ξ = 0, which is
again a contradiction. �

Proof of Theorem 2.2.1. — By Lemma 2.2.2 and Lemma 2.2.4, G1(x, z) is the num-
ber of meromorphic functions v :�→CP1 with poles at z′1, . . . , z′2g such that v(zi)= yi

for all i = 1, . . . , g + 1. By Lemma 2.2.3, l(z′1 + · · · + z′2g)= g + 1. On the other hand,
since there are g + 1 constraints v(zi) = yi , there is a unique solution for generic (x, z).
This shows that G1(x, z)= 1. �
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2.3. Second relative Gromov-Witten calculation.

2.3.1. Definition of the invariant. — Let � = S, where S = S ∪ D2 is obtained by
capping off a page S of an open book decomposition with connected binding as in Sec-
tion I.5.1.2. Also recall the “point at infinity” z∞ = {ρ = 0} ∈ S.

Consider (X,ω), where X = � × CP1 and ω is a product symplectic form. Let
V = V1 ∪ V∞, where V∗ = � × {∗} and ∗ = 1,∞. We take A = [�] + 2g[CP1],
g = g(�) = g(S) and n = 1. We say that piecewise smooth simple closed curves a′i ,
i = 1, . . . ,2g, in � homotopic to ai , i = 1, . . . ,2g are in good position if � \ (a′1 ∪ · · · ∪ a′2g)

is connected and either of the following conditions is satisfied:

(P1) each a′i is smoothly embedded, z∞ /∈ a′1 ∪ · · · ∪ a′2g , each pair a′i, a′j , i �= j,
intersects transversely in at most one point, and no point in � belongs to
more than two curves; or

(P2) the curves a′i , i = 1, . . . ,2g, all intersect at z∞ and at no other point, and are
smoothly embedded away from z∞, where they are allowed to have a corner.

We will need Condition (P2) in the proof of Lemma 4.3.4 and Condition (P1) in the
computation. Throughout this section we will assume that the curves a′1, . . . , a′2g are in
good position and write a′ = (a′1, . . . , a′2g). We will denote by [a′1 × · · · × a′2g] the image
of a′1 × · · · × a′2g in Sym2g(V∞) using the identification � ∼= V∞ given by the projection
� ×CP1 →�.

Lemma 2.3.1. — If a′ satisfies Condition (P1), then [a′1×· · ·×a′2g] is a smooth submanifold

of Sym2g(V∞).

Proof. — By Condition (P1) and after taking complex charts near the double
points, it is enough to consider the case of two smooth simple curves γi : (−ε, ε)→ C,
i = 1,2, such that γ1(0)= γ2(0)= 0 and (γ̇1(0), γ̇2(0)) is a basis of C. We define

� : (−ε, ε)2 → Sym2(C), �(x, y)= {γ1(x), γ2(y)}.
Recall the identification

� : Sym2(C)→C2, �({z,w})= (z+w, zw),

which defines the smooth structure on Sym2(C). We have

� ◦ �(x, y)= (γ1(x)+ γ2(y), γ1(x)γ2(y)).

Computing the differential of this map and checking that it is injective at (0,0) is
straightforward and therefore � : (−ε, ε)2 → Sym2(C) parametrizes a regular surface
in Sym2(C). �
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We will use a product complex structure J= j� × jCP1 on � ×CP1. We recall the
moduli space Mg,1(A) and the evaluation map

ev = (evX, evV1, evV∞) :Mg,1(A)→X× Sym2g(V1)× Sym2g(V∞)

defined in the previous section.

Definition 2.3.2. — For every z = {(z1, d1), . . . , (zl, dl)} ∈ Sym2g(V1) and generic a′ in

good position, we define the relative Gromov-Witten invariant

G2(�, z)= #ev−1({(z∞,0)} × {z} × [a′1 × · · · × a′2g]),
where # denotes the cardinality modulo 2.

In the definition, the genericity condition on a′ is in the space of curves in good
position and depends on z. Before proceeding, a couple of remarks are necessary. First,
neither the complex structure nor the placement of the point (z∞,0) is generic. The
meaningfulness of this definition will follow from automatic transversality results for the
moduli spaces and the evaluation maps. Second, when Condition (P2) holds, the con-
straint [a′1 × · · · × a′2g] may be singular when one or more coordinates are equal to z∞.
While, strictly speaking, a cycle would be enough to define the relative Gromov-Witten
invariant (and the set in question surely is a cycle), a number of arguments are simpler
if we are allowed to use the machinery of smooth topology. The key observation here is
that we can still reason as if [a′1 × · · · × a′2g] were smooth because topological constraints
prevent the J-holomorphic curves in Mg,1(A) from passing both through (z∞,0) and the
singular locus of [a′1 × · · · × a′2g]. The main result of the section is the following.

Theorem 2.3.3. — For every z ∈ Sym2g(V1 \ {z∞}) we have G2(�, z)= 1.

Recall from the previous section that the moduli space Mg(A) is regular and can
be identified with the space of meromorphic functions � → CP1 with poles of total
degree 2g.

Lemma 2.3.4. — The evaluation map

(evX, evV1) :Mg,1(A)→X× Sym2g(V1)

is a submersion.

Proof. — The first step of the proof is to show that evV1 is a submersion. Each fiber
π−1(z), where z= {(z1, d1), . . . , (zl, dl)} ∈ Sym2g(V1), can be viewed, after identifying V1

with �, as the space of meromorphic functions �→ CP1 with a pole of order di at zi

for i = 1, . . . , l. This space is an open dense subset of H0(�,O(z)), where we identify V1

with � and regard z as the divisor d1z1 + · · · + dlzl . By Lemma 2.2.3, H0(�,O(z)) is a
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complex vector space of dimension l(z)= g + 1 for each z ∈ Sym2g(�); the denseness of
π−1(z) is a consequence of the fact that l(z′)= g if z′ ∈ Sym2g−1(�) and z′ ≤ z (i.e., z− z′

is effective). Hence evV1 is the restriction of a holomorphic vector bundle

π : E→ Sym2g(�), π−1(z)=H0(�,O(z))

to an dense open subset of E . In particular, π is a submersion.
For (u, x) ∈ Mg,1(A) (here x is the marked point on the domain of u, which

we identify with �), let Nu be the normal bundle of u and Du the linearized normal
Cauchy-Riemann operator on Nu. Since u is an embedding, there is an identification
T(u,x)Mg,1(A)= ker Du⊕Tx� and d(u,x)evX(ξ, v)= ξ(x)+dxu(v), while d(u,x)evV1|Tx� = 0.

Since evV1 is a submersion, then by the discussion above, the pair (evX, evV1)

is a submersion if for every (u, x) there exists ξ ∈ ker Du such that ξ(x) �= 0 and
d(u,x)evV1(ξ,0)= 0.

We define an action of C on Mg,1(A) as follows. For every (u, x) ∈Mg,1(A), we
identify u with a meromorphic function �→CP1 with poles at evV1(u), and we define

C×Mg,1(A) � (a, (u, x)) �→ (u+ a, x).

Let ξ ∈ ker Du be the infinitesimal generator of this action. It is clear that ξ(x) �= 0 (and
in fact ξ has no zeros) and that d(u,x)evV1(ξ,0)= 0 because evV1(u)= evV1(u+ a) for every
a ∈C. �

For z ∈ Sym2g(V1) let us write

Mg,1(A, z∞, z)= ev−1({(z∞,0)} × {z} × [a′1 × · · · × a′2g]).
The following statement is a corollary of the automatic transversality for the moduli space
Mg,1(A) (see Lemma 2.2.2), Lemma 2.3.4, and the dimension formula (2.1.1).

Lemma 2.3.5. — For every z ∈ Sym2g(V1) and generic a′ in good position, the moduli space

Mg,1(A, z∞, z) is regular and zero-dimensional.

Proof. — For every z ∈ Sym2g(V1) the moduli space

˜Mg,1(A, z∞, z)= (evX, evV1)
−1({(z∞,0)} × {z})

is regular by Lemma 2.3.4. We consider the restriction of the evaluation map

evV∞ : ˜Mg,1(A, z∞, z)→ Sym2g(V∞).

If a′ satisfies Condition (P1), generically evV∞ is transverse to [a′1 × · · · × a2g] by the
standard transversality theorem since [a′1 × · · · × a2g] is a smooth manifold.

The only issue which remains to be considered is the nonsmoothness of [a′1×· · ·×
a′2g] when a′ satisfies Condition (P2). In that case, the nonsmoothness is concentrated in
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the locus where at least one of the coordinates is equal to (z∞,∞). However, it is not
possible that u ∈Mg,1(A) passes through (z∞,0) and (z∞,∞) at the same time because
A · [{z∞} × CP1] = 1. Therefore, for every u ∈Mg,1(A), evV∞(u) is disjoint from the
singular part of [a′1×· · ·×a′2g], and therefore we can still apply the standard transversality
theorem. �

Given a′ in good position, we define subsets G1(a′),G2(a′)⊂ Sym2g(�) as follows:
Let G1(a′) be the set of elements z = {(z1, d1), . . . , (zl, dl)} ∈ Sym2g(�) such that zi ∈
a′1 ∪ · · · ∪ a′2g or zi = z∞ for some i ∈ {1, . . . , l}.

If a′ satisfies Condition (P1), then we set G2(a′) = ∅. In order to define G2(a′)
when a′ satisfies Condition (P2), we first introduce the set D(a′) of divisors w1+· · ·+w2g

such that wi ∈ a′i for i = 1, . . . ,2g and wi = z∞ for at least one i. Then we define G2(a′) as
the set of divisors z of degree 2g which are linearly equivalent to a divisor of D(a′), which
means that there exist a divisor w ∈ D(a′) and a meromorphic function f : �→ CP1

whose associated divisor is w− z. Finally, we set

G(a′)=G1(a′)∪G2(a′).

Lemma 2.3.6. — For every z ∈ Sym2g(� \ {z∞}) we have z /∈G(a′) for a generic a′.

Proof. — If z ∈ Sym2g(� \ {z∞}), then z /∈G1(a′) is immediate for generic a′. Next
we show that z /∈G2(a′) for generic a′: Let [a′1×· · ·×a′2g]∞ be the subset of [a′1×· · ·×a′2g]
where at least one of the coordinates is equal to z∞. Then z /∈ G2(a′) if and only if the
linear equivalence class of z, seen as a divisor, is disjoint from [a′1 × · · · × a′2g]∞. The
linear equivalence class of z can be identified with the quotient of the space of nonzero
meromorphic functions on � with poles at most at z by the action of C∗ by multiplication.
By Lemma 2.2.3 this quotient is CPg , so it has real dimension 2g. On the other hand,
[a′1 × · · · × a′2g]∞ is a union of submanifolds of dimension at most 2g − 1, and therefore
generically these two subsets do not intersect in Sym2g(�). �

Lemma 2.3.7. — If z ∈ Sym2g(V1) \G(a′), then Mg,1(A, z∞, z) is compact.

Proof. — Arguing by contradiction, let ui ∈ Mg,1(A, z∞, z) be a sequence that
converges to a nodal J-holomorphic curve u : F′ → X. Recall the holomorphic pro-
jections π1 : X → � and π2 : X → CP1. Since u(F) represents the homology class
A = [�] + 2g[CP1] and π1 ◦ u is holomorphic, one of the irreducible components of
F′ must be biholomorphic to � and all other irreducible components must be spheres
which u maps biholomorphically onto {wi} × CP1 for i = 1, . . . , k. Moreover, since
A ·V1 = A ·V∞ = 2g, the positivity of intersections implies that k ≤ 2g.

(1) Suppose that a′ satisfies Condition (P1).
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If wi /∈ {z1, . . . , zl} for some i, then the image of u must contain V1; otherwise, by
the positivity of intersections, the total multiplicity of the intersections between u(F′) and
V1 would be at least equal to 2g + 1, contradicting A · V1 = 2g. Hence the image of u

consists of V1 and 2g bubbles {wi} ×CP1 for i = 1, . . . ,2g. Moreover one bubble must
pass through (z∞,0) and the total number of bubbles intersecting a′1 ∪ · · · ∪ a′2g , counted
with multiplicity, is 2g, which is impossible.

If wi ∈ {z1, . . . , zl} for some i, then there is an intersection between u(F′) and V∞
which does not belong to any of a′1, . . . , a′2g since z /∈G1(a′) (i.e., no zi lies on a′1∪· · ·∪a′2g ).
Hence the image of u consists of V∞ with some bubbles attached that map to {zi} ×CP1

with multiplicity di for i = 1, . . . , l. It is impossible by intersection reasons that such a
curve passes through (z∞,0).

(2) Suppose that a′ satisfies Condition (P2).
If wi ∈ {z1, . . . , zl} for some i, then again there is an intersection between u(F′) and

V∞ which does not belong to any of a′1, . . . , a′2g , and this gives a contradiction as in (1).
If wi /∈ {z1, . . . , zl} for some i, then, as in (1), the image of u consists of V1 and

2g bubbles {w1} × CP1 with wi ∈ a1. Moreover wi = z∞ for at least one i because the
image of u must contain (z∞,0). Define the divisor w=w1 + · · · +w2g on �. Applying
the renormalization procedure of [IP1, Proposition 6.6] as in Lemma 2.2.4, we obtain a
meromorphic function ξ :�→CP1 with divisor D(ξ)=w− z. Clearly w ∈D(a′), and
therefore the existence of ξ contradicts z /∈G2(a′). �

Proposition 2.3.8. — For every z ∈ Sym2g(� \ {z∞}) and generic a′ in good position, the

relative Gromov-Witten invariant G2(�, z) is well-defined and its value does not depend on the choice

of a′ in good position, complex structure on � and z.

Proof. — Fix z ∈ Sym2g(� \ {z∞}). By Lemma 2.3.6, z /∈G(a′) for a generic a′ in
good position and therefore by Lemmas 2.3.5 and 2.3.7 the moduli spaces Mg,1(A, z∞, z)
are regular, zero-dimensional, and compact. This proves that G2(�, z) is well-defined.

At first we prove invariance when Condition (P1) holds: in this case G(a′)=G1(a′)
and therefore Sym2g(V1) \G(a′) is connected because

Sym2g(V1) \G1(a′)∼= Sym2g(� \ (a′1 ∪ · · · ∪ a′2g ∪ {z∞})).

Then, if we have pairs

(i) a′0 and a′1 of generic 2g-tuples of curves in good position satisfying Condition
(P1),

(ii) j0 and j1 of complex structures on �, and
(iii) z0 and z1 of points in Sym2g(V1) such that zi /∈G(a′i), i = 1,2,
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then we can find generic paths2 a′t , jt and zt interpolating between them, where a′t is in
good position and satisfies Condition (P1), and zt ∈ Sym2g(V1) \G(a′t).

Since we can repeat the proofs of the Lemmas 2.3.5 and 2.3.7 for paths, the invari-
ance follows in a standard manner.

If, instead, a′ satisfies Condition (P2) and z ∈ Sym2g(V1) \ G(a′), then we can
find an open neighborhood U of z and a small perturbation a′t of a′ such that the good
position condition is preserved all along the deformation, the final 2g-tuple of curves
satisfies Condition (P1), and U ∩ G(a′t) = ∅ all along the deformation. Then we can
prove the analogues of Lemmas 2.3.5 and 2.3.7 for paths where z remains in U, and again
the invariance follows in a standard manner. This concludes the proof of the proposition.

�

2.3.2. Case of T2. — We consider the situation where � =T2. We suppose that a′

satisfies Condition (P1). By the correspondence between J-holomorphic curves in T2 ×
CP1 representing the homology class A = [T2] + 2[CP1] and degree 2 meromorphic
functions on T2 for a generic z= {z1, z2} ⊂ Sym2(V1) \G(a′) with z1 �= z2, the relative
Gromov-Witten invariant G2(T2, z) is equal to the number of meromorphic functions
v : T2 → CP1 of degree 2 such that v(z∞)= 0, v(z1)= v(z2)= 1 and the poles are on
a′.

Lemma 2.3.9. — If z1 �= z2, then every meromorphic function on T2 with poles at z1 and z2

of order 1 can be written as α1 + α2f , where α1, α2 ∈ C, α2 �= 0, and f is a fixed function on T2

with poles at z1 and z2 of order 1.

In other words, f is unique up to a postcomposition by a fractional linear transfor-
mation CP1 →CP1 which fixes ∞.

Proof. — By Lemma 2.2.3, l(zi)= 1 and is given by the constants, and l(z1+ z2)=
2 and one dimension is taken by the constants. The lemma follows. �

Lemma 2.3.10. — G2(T2, z)= 1.

Proof. — Degree two meromorphic functions on T2 are branched double covers
T2 →CP1. According to Lemma 2.3.9, a branched double cover v :T2 →CP1 satisfying
v(z0)= 0 and v(z1)= v(z2)= 1 is determined up to postcomposition by η ∈ PSL(2,C)

which fixes 0 and 1; see Figure 1.

2 A complication here is that the smooth structure on Sym2g(�) depends on the complex structure on �, and
therefore for different values of t the symmetric product Sym2g(�) could have different smooth structures, which are all
diffeomorphic but not through the identity. However they can all be put in a smooth fiber bundle over [0,1] such that the
fiber over t has the smooth structure defined by jt . The necessary modifications to the proof are standard but notationally
heavy, so we prefer to leave them to the reader.
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FIG. 1. — The branched double cover v of the torus T2. The branch points w1, . . . ,w4 of v are indicated by ◦. (Color
figure online)

Let w1, . . . ,w4 ∈ CP1 be the branch points of v. Since z1 and z2 can be chosen
generic, we may assume that wi /∈ {0,1,∞} for i = 1, . . . ,4 and are all distinct. Let
Cij be a simple closed curve which bounds a small neighborhood of an arc from wi to
wj . We may assume that C12 and C23 intersect only at 2 points y1, y2. Let a′1, a′2 be lifts
of C12,C23 to T2 such that #(a′1 ∩ a′2) = 1 and v(a′1 ∩ a′2) = y1. We now impose the
condition η ◦ v(z3)= η ◦ v(z4)=∞, where z3 ∈ a′1, z4 ∈ a′2, and η is a fractional linear
transformation which fixes 0,1. This is possible only if z3, z4 ∈ v−1(yi) for i = 1 or 2. On
the other hand, since y1, y2 are not branch points, z3 and z4 must be distinct. Hence the
only possibility is {z3, z4} = v−1(y2) and η ∈ PSL(2,C) is the uniquely determined by
η(0)= 0, η(1)= 1, η(y2)=∞. This completes the proof of the lemma. �

2.3.3. Reduction to a torus. — Now we reduce the computation of G2(�, z) to the
case � =T2 by a degeneration argument. In this section we assume again that the curves
a′ satisfy Condition (P1).

Let �τ = (S, j�τ
), τ ∈ [0,∞), be a 1-parameter family of Riemann surfaces which

degenerate into a nodal Riemann surface

(�∞,n)= ((�−,n−) � (�+,n+)) /n− ∼ n+,



HF=ECH VIA OPEN BOOK DECOMPOSITIONS II

where �− has genus one, �+ has genus g − 1 and n = {n−,n+}/ ∼. Let j�+ and j�−
be the complex structures on �+ and �− respectively. Topologically �∞ is obtained as
follows: Let γ be a separating curve in S and let ∼0 be an equivalence relation on S
such that x ∼0 y if x, y ∈ γ . Then �∞ = S/ ∼0. We assume that z∞ is disjoint from γ

and is mapped to �−. We also assume that the curves in a′ are disjoint from γ and that
α′1, α

′
2 are mapped to �−, while α′3, . . . , α

′
2g are mapped to �+. Finally we choose z =

{z1, . . . , z2g} ∈ Sym2g(V1)\G(a′) such that zi /∈ γ for i = 1, . . . ,2g, {z1, z2} are mapped to
�− and {z3, . . . , z2g} are mapped to �+. We denote z− = {z1, z2} and z+ = {z3, . . . , z2g}.

Define product complex structures Jτ = j�τ
× jCP1 on �τ × CP1 and J± = j�± ×

jCP1 on �± ×CP1. We denote Pn = {n} ×CP1, which we see as a submanifold of both
�+ ×CP1 and �− ×CP1. We define the parametric moduli space3

M∗
g,1(A, z∞, z)=

{

(u, τ ) | τ ∈ [0,∞), u ∈MJτ
g,1(A, z∞, z)

}

.

Proposition 2.3.11. — Let M∗
g,1(A, z∞, z) be the compactification of M∗

g,1(A, z∞, z).
Then

M∗
g,1(A, z∞, z)−M∗

g,1(A, z∞, z)=MJ−
1,1(A−, z∞, z−)×Pn

MJ+
g−1(A+, z+),

where A+ = [�+] + 2(g − 1)[CP1] and A− = [�−] + 2[CP1].

Proof. — By Gromov compactness, up to passing to a subsequence, (un, τn) con-
verges to (u+, u0, u−), where u± maps to �± ×CP1 and u0 maps to {n} ×CP1. Let A±
be the homology class in H2(�± ×CP1) represented by u±, and let k0[CP1] be the ho-
mology class represented by u0. A simple computation shows that A± = [�±]+ k±[CP1],
where k+ + k− + k0 = 2g. The point constraints for u± imply that k+ ≥ 2g− 2 and k− ≥ 2
and, on the other hand, k0 ≥ 0 and k0 = 0 if and only if u0 is constant. This implies that
k+ = 2g− 2, k− = 2, and u0 is constant. By Lemma 2.3.7, u− is irreducible, and therefore
u− ∈MJ−

1,1(A−, z∞, z−).
By the positivity of intersections, the image of u− must intersect Pn at a single point

w. Without loss of generality we can assume that w /∈ a′3∪ · · · ∪ a′2g , since u− is the unique

element of MJ−
1,1(A−, z∞, z−) by Lemma 2.3.10. Since the Gromov limit of a sequence of

connected holomorphic curves is connected, u+ must also pass through w, once we have
identified {n+} ×CP1 with {n−} ×CP1. Then we can repeat the proof of Lemma 2.3.7
and show that u+ is also irreducible, and therefore u+ ∈MJ+

g−1,1(A+,w, z+). This shows
that

M∗
g,1(A, z∞, z)−M∗

g,1(A, z∞, z)⊆MJ−
1,1(A−, z∞, z−)×Pn

MJ+
g−1(A+, z+).

3 We do not know if a′ is generic for every τ . The proper way to proceed would be to choose generic paths τ �→ zτ
and τ �→ a′τ such that zτ ∈ Sym2g(V1) \G(a′τ ) for all τ . The caveat about the smooth structure of the symmetric product
explained in Footnote 2 also applies here.
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The reverse inclusion follows from what Seidel in [Se, Proposition 2.7] calls an
average specimen of the “gluing theorem” type. �

Proof of Theorem 2.3.3. — We prove the theorem by induction on the genus of �.
The case g = 1 follows from Proposition 2.3.8 and Lemma 2.3.10. If � has genus g and
we assume that the statement is true for genus g − 1, we use Proposition 2.3.8 to modify
the curves a′ and the points z so that we can apply Proposition 2.3.11. Then

G2(�, z)=G2(�−, z−)G2(�+, z+)

and G2(�, z)= 1 by Lemma 2.3.10 and the inductive hypothesis. �

2.4. Third relative Gromov-Witten calculation.

2.4.1. Definitions. — Let D2 be the closed unit disk {|z| ≤ 1} ⊂ C and let � = S.
We consider (X,ω), where X=� ×D2 and ω is a product symplectic form.

Recall â⊂ S as well as its components âi , i = 1, . . . ,2g, from Section I.5.2.2; here
âi is an open arc, {z∞} = ai− âi , and z∞ is the point at infinity. Then Lâ = â× ∂D2 ⊂ ∂X
is a Lagrangian submanifold of (X,ω).4 We write πi, i = 1,2, for the projection of X
onto the ith factor. Let A be the relative homology class

A= [�] + 2g · [D2] ∈H2(X,Lâ),

and let (F, j, x0,x) be a compact Riemann surface (F, j) of genus g with 2g boundary
components, together with an interior marked point x0 and boundary marked points
x= (x1, . . . , x4g), where xi, x2g+i are on the ith boundary component ∂iF.

Again, we work with a product almost complex structure J = j� × iD2 on X. Let
Mg,1,4g(A) (resp. Mg,0,0(A)) be the moduli space of holomorphic maps

u : (F, j, x0,x)→ (X, J) (resp. u : (F, j)→ (X, J))

such that u(∂iF)⊂ L̂ai
and u∗([F])= A, modulo automorphisms of the domain. We con-

sider the evaluation maps

evX :Mg,1,4g(A)→X, (u, x0,x) �→ u(x0);(2.4.1)

ev∂ :Mg,1,4g(A)→ L̂a1 × · · · × L̂a2g
× L̂a1 × · · · × L̂a2g

,(2.4.2)

(u, x0,x) �→ (u(x1), . . . , u(x4g)).

and ev = (evX, ev∂). Let z= (z1, . . . , z4g) be a 4g-tuple of points in � such that zi, z2g+i ∈
âi , i = 1, . . . ,2g. Then we write

Mg,1,4g(A, z∞)= ev−1
X (z∞,0) and

4 We also could have used La = a× ∂D2 ⊂ ∂X, but we write Lâ to emphasize that the holomorphic maps never
intersect {z∞}× ∂D2.
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Mg,1,4g(A, z∞,z)

= ev−1((z∞,0), (z1,1), . . . , (z2g,1), (z2g+1,−1), . . . , (z4g,−1)).

Definition 2.4.1. — The relative Gromov-Witten type invariant G3(�,z) is the cardinality

modulo two of Mg,1,4g(A, z∞,z) for z generic.

Theorem 2.4.2. — If z is generic, then G3(�,z)= 1.

Proof. — The regularity and compactness for the moduli space Mg,1,4g(A, z∞,z)
are proved in Corollary 2.4.10 and Lemma 2.4.12, respectively. The independence of
G3(�,z) of the almost complex structure and z is proved in Lemma 2.4.13, and finally
G3(�,z) is computed in Sections 2.4.4–2.4.6. �

2.4.2. Transversality. — We recall the following automatic transversality result
from [HLS]; see Theorem 2 and Remark (1) following the statement of Theorem 2 in
[HLS]:

Theorem 2.4.3 (Hofer-Lizan-Sikorav). — Let (F, j) be a compact Riemann surface with

nonempty boundary, (M, J) be an almost complex 4-manifold, and L⊂ (M, J) be a totally real surface.

Let

u0 : (F, ∂F, j)→ (M,L, J)

be a holomorphic map which sends ∂F to L. If u0 is immersed and the sum of the Maslov indices of

u0|∂F with respect to any unitary trivialization of u∗0TM is positive, then the set of holomorphic maps

u : (F, ∂F, j)→ (M,L, J) near u0 is regular.

Remark 2.4.4. — Strictly speaking, Theorem 2.4.3 applies to the case where (M, J)
has no boundary. However, we note that Theorem 2.4.3 is a local result, i.e., only uses
an open neighborhood of the image of u0. The complex manifold (X= � ×D2, J) can
then be slightly enlarged to a product complex manifold � ×D2

1+ε, where D2
1+ε is a disk

of radius 1+ ε, so that the theorem applies. We then note that any nearby curve in the
enlargement with boundary on Lâ has image in X by considering the projection to D2

1+ε.

Using Theorem 2.4.3, we prove the following key result:

Lemma 2.4.5. — The moduli space Mg,0,0(A) is regular and has dimension

dimMg,0,0(A)= 4g + 2.

Proof. — Let u ∈Mg,0,0(A), where u : (F, j)→ (X, J). Since u maps each ∂iF to a
distinct L̂ai

, there are no branch points of π2 ◦ u along ∂F and the curve u is immersed
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near ∂F. On the other hand, the restriction of π1 ◦ u to int(F) is a biholomorphism onto
its image. Hence u is an immersion on all of F.

The total Maslov index μ(u) relative to the Lagrangian Lâ, with respect to any
unitary trivialization of u∗TX is:

μ(u)= 2g ·μ({pt} ×D2)+ 2c1(T�),

where {pt} × D2 has boundary on Lâ and μ({pt} × D2) is computed with respect to a
trivialization of TX|{pt}×D2. An easy calculation gives μ({pt} × D2) = 2 and c1(T�) =
χ(�)= 2− 2g. Hence

(2.4.3) μ(u)= 2g(2)+ 2(2− 2g)= 4 > 0.

The regularity of Mg,0,0(A) then follows from Theorem 2.4.3, in view of Remark 2.4.4.
Using the usual index formula for holomorphic curves with Lagrangian boundary, we
obtain:

dimMg,0,0(A)=−χ(F)+μ(u)=−(2− 4g)+ 4= 4g + 2,

This completes the proof of Lemma 2.4.5. �

Corollary 2.4.6. — The moduli space Mg,1,4g(A) is regular and has dimension

dimMg,1,4g(A)= 8g + 4.

Since the point z∞ is not generic, we also need an automatic transversality result
for the evaluation map.

Lemma 2.4.7. — The evaluation map evX :Mg,1,4g(A)→X is a submersion.

Proof. — For every (u, x0,x) ∈Mg,1,4g(A), the differential

d(u,x0,x)evX :T(u,x0,x)Mg,1,4g(A)→Tu(x0)X

is surjective thank to the following two local deformations of (u, x0,x): (i) postcomposition
of u by a fractional linear transformation and (ii) variation of the point x. �

Corollary 2.4.8. — The moduli space Mg,1,4g(A, z∞) is regular and has dimension

dimMg,1,4g(A, z∞)= 8g.

Next we consider the evaluation map at the boundary points.

Lemma 2.4.9. — For a generic z= (z1, . . . , z4g), the point

z∗ = ((z1,1), . . . , (z2g,1), (z2g+1,−1), . . . , (z4g,−1))
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is a regular value of the evaluation map

ev∂ :Mg,1,4g(A, z∞)→ L̂a1 × · · · × L̂a2g
× L̂a1 × · · · × L̂a2g

,

defined as restriction of the map from Equation (2.4.2).

Proof. — We take the generic z to be a regular value of the composition of ev∂ with
the projection

L̂a1 × · · · × L̂a2g
× L̂a1 × · · · × L̂a2g

π1−→ â1 × · · · × â2g × â1 × · · · × â2g;
by Sard’s theorem the set of such z is open and dense.

We claim that if z is generic, then a regular value of π1 ◦ ev∂ is a regular value of
ev∂ : In fact we decompose

T(zj ,±1)L̂aj
=Tzj

âj ⊕T±1∂D2

and observe that the directions tangent to ∂D2 are covered by moving the boundary
marked points (since u is an embedding) and the directions tangent to the arcs âj are
covered by moving the J-holomorphic curve in the moduli space as long as z is a regular
value of π1 ◦ ev∂ . �

Corollary 2.4.10. — The moduli space Mg,1,4g(A, z∞,z) is regular and has dimension

dimMg,1,4g(A, z∞,z)= 0.

We consider now a slightly different moduli space. Let

A′ = [�] + (2g − 1)[D2] ∈H2(X,Lâ),

and let z′ = (z1, . . . , z2g−1, z2g+1, . . . , z4g−1) be a (4g − 2)-tuple of points such that
zi, z2g+i ∈ âi , i = 1, . . . ,2g − 1. We define the moduli space Mg,1,4g−2(A′, z∞,z′) in a
manner analogous to Mg,1,4g(A, z∞,z).

Lemma 2.4.11. — For generic z the moduli space Mg,1,4g−2(A′, z∞,z′) is empty.

Proof. — For generic z′ the moduli space Mg,1,4g−2(A′, z∞,z′) is regular; the proof
is the same as the proof of Corollary 2.4.10. One can compute from the dimen-
sion formula that the virtual dimension of Mg,1,4g−2(A′, z∞,z′) is −1. This proves the
lemma. �

Observe that the lemma is still valid if the unoccupied arc is any âi instead of â2g .



VINCENT COLIN, PAOLO GHIGGINI, KO HONDA

2.4.3. Compactness.

Lemma 2.4.12. — The moduli space Mg,1,4g(A, z∞,z) is compact for generic z.

Proof. — Let ui : Fi → X be a sequence of curves in Mg,1,4g(A, z∞,z) that limits
to u : F → X. The compactness of holomorphic curves with this kind of singular La-
grangian boundary condition has already been discussed in detail in Section I.7.3 in the
SFT setting, but here the existence of the limit can be justified more easily as follows. The
Lagrangian boundary condition is the product of a Lagrangian submanifold in D2 (i.e.,
∂D2) and an immersed Lagrangian submanifold in � = S (i.e., the arcs a). Since we work
with split almost complex structures, we can apply the Gromov compactness theorem on
the two components separately. On the component where the Lagrangian boundary con-
dition is smooth, this is of course classical, and on the component where the Lagrangian
boundary condition is immersed we apply [EES, Theorem 9.2]. It is true that the ref-
erence only considers disks, but the only new ingredient in the higher genus case are
domain degenerations, which happen at the source, and the necessary adjustments are
straightforward.

We will eliminate all possible degenerations in the limit to show that u ∈
Mg,1,4g(A, z∞,z). Note in particular that we are assuming that all the points of z are
distinct.

(i) We first claim that the domain of u can have no irreducible component which is a disk.
Arguing by contradiction, suppose that u has a disk component u′. Since π1 ◦ ui|int(Fi) is a
biholomorphism onto its image for all i, Im(u′)= {z} ×D2 for some z. Also there is no
fiber component of u of the form � × {pt} where pt ∈ ∂D2, since otherwise u cannot pass
through (z∞,0) and be in the class A. The point z must then be an element of {z1, . . . , z2g}
by considering the intersections of u with � × {1}. Similarly z ∈ {z2g+1, . . . , z4g}. This is
contradicts the assumption that all points in z are distinct.

(ii) Next we claim that u(∂F) does not intersect {z∞} × ∂D2. Arguing by contradiction,
suppose that u(∂F)∩({z∞}×∂D2) �=∅. Since u cannot have a disk component {z∞}×D2

by (i), there exists a point z ∈ � − a close to z∞, such that u intersects {z} ×D2 at two
points: once near (z∞,0) and once near {z∞} × ∂D2. Hence 〈u, {z} ×D2〉 ≥ 2, which is
a contradiction. This also implies that u has no nodes along the boundary: since each ui

maps each component of ∂Fi to a different L̂ai
, such a node could only be at a point of

{z∞}× ∂D2.

(iii) Finally we eliminate interior nodes. Since u has no disk components and sphere com-
ponents (the latter easily follows from π2(X)= 0), if u has an interior node, it must have
a component u′ : F′ → X of genus < g. Since π1 ◦ u′|int(F′) cannot map onto the genus g

surface � − (̂a−N(z∞)), we have a contradiction. �
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Corollary 2.4.10 and Lemma 2.4.12 imply that Mg,1,4g(A, z∞,z) is a finite set, and
therefore the count modulo two

G3(�,z)= #Mg,1,4g(A, z∞,z)

is well-defined, when z is generic.

Lemma 2.4.13. — The count G3(�,z) is independent of the choice of product complex struc-

ture J and z generic.

Proof. — Given Ji and zi generic, i = 0,1, we can connect them by generic paths
Jt and zt , t ∈ [0,1]. We further assume that the path zt satisfies the following (generic)
properties:

(1) the number of parameters t ∈ [0,1] for which two points in zt coincide is finite,
(2) at a given t ∈ [0,1] at most two points coincide, and
(3) if for some t ∈ [0,1] two points of zt coincide, the remaining 4g− 2 are generic

in the sense of Lemma 2.4.11.

We define the parametric moduli space

M{Jt}
g,1,4g(A, z∞, {zt}) := {(t, u) | t ∈ [0,1], u ∈MJt

g,1,4g(A, z∞,zt)}.
We prove the compactness of M{Jt}

g,1,4g(A, z∞, {zt}). The proof is similar to that
of Lemma 2.4.12 and the only difference is that, when two points of zt (say, without
loss of generality, z2g,t and z4g,t ) come together for some isolated t0 ∈ (0,1), a fam-
ily of Jt-holomorphic curves ut could degenerate, as t → t0, into a nodal curve with a
disk component {z2g,t0} × D2 and one irreducible component u′ : F′ → X with 2g − 1
boundary components which passes through (0, z∞) and (z1,1), . . . , (z2g−1,1), (z2g+1,

−1), . . . , (z4g−1,−1). The component u′ however cannot exist by Lemma 2.4.11 and
Property (3) of the path {zt}.

The regularity of M{Jt}
g,1,4g(A, z∞, {zt}) follows from Corollary 2.4.10 adapted to a

generic 1-parameter family. The compactness and regularity then imply the lemma. �

2.4.4. Reduction to a torus. — We now explain how to reduce to the case of a torus.
As in Section 2.3.3, we degenerate �τ = (�, j�τ

), τ ∈ [0,∞), into a nodal Riemann
surface

(�∞,n)= ((�−,n−) � (�+,n+)) /n− ∼ n+,

where �− has genus one and �+ has genus g − 1 by pinching along a separating curve
γ . We denote Dn = {n} ×D2. Let j�+ and j�− be the complex structures on �+ and �−,
and define product complex structures Jτ = j�τ

× iD2 and J± = j�± × iD2 . Here we assume
the following:
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(i) z∞, z, and â are fixed for all τ ∈ [0,∞);
(ii) γ is disjoint from z, â1, â2, but intersects â3, . . . , â2g at two points each;

(iii) in the limit z∞, z1, z2, z2g+1, z2g+2 ∈�− and z3, . . . , z2g, z2g+3, . . . , z4g ∈�+.

Let ã be the quotient of â at τ =∞. Let vτ = π2 ◦ uτ , where π2 is the projection to D2.
We write z− = (z1, z2, z2g+1, z2g+2) and z+ = (z3, . . . , z2g, z2g+3, . . . , z4g).

Proposition 2.4.14. — Let M{Jτ }
g,1,4g(A, z∞,z) be the compactification of M{Jτ }

g,1,4g(A, z∞,z).
Then

M{Jτ }
g,1,4g(A, z∞,z)−M{Jτ }

g,1,4g(A, z∞,z)

=MJ−
1,1,4(A−, z∞,z−)×Dn

MJ+
g−1,0,4g−4(A+,z+).

Proof. — Consider a sequence (uτi , x0,τi
,xτi

) ∈MJτi
g,1,4g(A, z∞,z). We first note that

uτi cannot degenerate as τi approaches a finite τ∗. This is as argued in Lemma 2.4.12.
Hence we may assume that τi →∞.

Let u= u− ∪ u0 ∪ u+ be the limit of uτi as τi →∞, where Im(u±)⊂�± ×D2, u±
has no components in Dn, and u0 maps to Dn, and let v± = π2 ◦ u±. By the argument
of Part (i) of the proof of Lemma 2.4.12, u cannot have disk components {z} ×D2, since
otherwise they would introduce extra intersection points with

�∞ × {w} = ((�+ ��−)/∼)× {w},
where w ∈ int(D2). In particular, this implies that u0 =∅.

Let F± be the domain of u±. By Part (ii) of the proof of Lemma 2.4.12, u−(∂F−)
does not intersect {z∞} × ∂D2. Let #(∂F±) be the number of boundary components of
F±.

We claim that #(∂F−)= 2 and #(∂F+)= 2g − 2. First observe that #(∂F−) ≥ 2,
since two boundary components are needed to map to ãi , i = 1,2; similarly #(∂F+) ≥
2g − 2 since z3, . . . , z2g, z2g+3, . . . , z4g ∈�+.

The restriction of v− to each component C of ∂F− is either a positive degree map
C→ ∂D2 or is a constant map to a point w ∈ ∂D2. If v− maps C to a point w ∈ ∂D2,
then u− maps an irreducible component of F− to a fiber �− × {w}. This in turn implies
that u− has disk components, a contradiction. Hence the restriction of v− to each C is
a positive degree map. If #(∂F−) > 2, then deg(v−|∂F−) > 2. Similarly we obtain that
deg(v+|∂F+)≥ 2g− 2. This implies that deg((v+ ∪ v−)|∂F) > 2g, which is a contradiction.
Hence #(∂F0)= 2 and #(∂F−)= 2g − 2.

The above claim implies that

u− ∈MJ−
1,1,4(A−, z∞,z−), u+ ∈MJ+

g−1,0,4g−4(A+,z+).
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Moreover, the images of u− and u+ intersect Dn at the same point because the Gromov
limit is compact. This proves the inclusion

M{Jτ }
g,1,4g(A, z∞,z)−M{Jτ }

g,1,4g(A, z∞,z)

⊆MJ−
1,1,4(A−, z∞,z−)×Dn

MJ+
g−1,0,4g−4(A+,z+).

The opposite inclusion follows from the usual gluing argument. �

By the usual gluing argument we obtain the following:

Corollary 2.4.15.

G3(�,z)=G3(�−,z1)×G3(�+,z+).

Proof. — By Proposition 2.4.14 we have

G3(�,z)= #
(

MJ−
1,1,4(A−, z∞,z−)×Dn

MJ+
g−1,0,4g−4(A+,z+)

)

.

We have, by definition, #MJ−
1,1,4(A−, z∞,z−) = G3(T2,z−). Moreover, every curve u ∈

MJ−
1,1,4(A−, z∞,z−) intersects Dn at a unique point (n,w) ∈�− ×D2. Now we observe

that n plays the role of z∞ for the arcs ã in �+ (i.e., it is the unique intersection point
of all the arcs). Moreover, we can assume w = 0 after an automorphism of CP1 that
fixes +1 and −1. This means that, for every curve u− ∈ #MJ−

1,1,4(A−, z∞,z−), there are
G3(�+,z+) curves in MJ+

g−1,0,4g−4(A+,z+) which intersect Dn at the same point as u−.
�

2.4.5. Two calculations on CP1 × D2. — We now calculate two model situations
which are key ingredients in the proof of Lemma 2.4.19 below. Note that all the holo-
morphic curves on CP1 ×D2 that are considered below satisfy automatic transversality;
see Hofer-Lizan-Sikorav [HLS, Theorem 2′].

Fix real numbers a > b > 0. Let S1 be the set of pairs (v1,w), where v1 is a degree 1
holomorphic map D2 →CP1 (more precisely, is a biholomorphism onto its image when
restricted to int(D2)) such that v1(∂D2)⊂R+, v1(1)= a, v1(−1)= b, v1(0)=∞, and w

is a point in D2 such that v1(w) = 0, and let C1 be the set of points w for which there
is some v1 with (v1,w) ∈ S1. Similarly, let S2 be the set of pairs (v2,w), where v2 is a
degree 1 holomorphic map D2 → CP1 such that v2(∂D2) ⊂ R, v2(1) = a, v2(−1) = b,
v2(0)=∞, and w is a point on D2 such that v2(w)=−i, and let C2 be the set of points
w for which there is some v2 with (v2,w) ∈ S2.

Let Rθ be the restriction to D2 of the radial ray which passes through 0 ∈D2 and
makes an angle of θ with the positive real axis.
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FIG. 2. — Rough pictures of curves C1 and C1 appearing in Lemmas 2.4.16 and 2.4.17. (Color figure online)

Lemma 2.4.16. — There exists 0 < θ0 <
π

2 such that C1 ⊂D2 can be written as the image

of a curve which is parametrized by θ ∈ (π − θ0,π + θ0), C1(θ) = C1 ∩ int(Rθ ) (here we are

abusing notation and using C1 for both the curve and its image), and

lim
θ→(π+θ0)−

C1(θ)= ei(π+θ0), lim
θ→(π−θ0)+

C1(θ)= ei(π−θ0).

See Figure 2 for a rough picture of the curve C1.

Proof. — By the Schwarz reflection principle, a map v1 with (v1,w) ∈ S1 extends
to a degree 2 branched cover CP1 → CP1 with two branch points which lie on R+ ⊂
CP1. Hence v1 admits a factorization

D2 f→H
ṽ1→CP1 g→CP1,

where H= {Im(z)≥ 0} is the upper half plane, f :D2 ∼→H is a fractional linear transfor-
mation, ṽ1(z)= z2, and g ∈ PSL(2,R). In order for v1(0)=∞ and v1(w)= 0 to hold, f

must map the ray Rθ through 0 and w to the line {Re(z)= 0} ⊂H. We may set f (eiθ )= 0
and f (0) = i; these conditions uniquely determine f = fθ . We leave it to the reader to
verify that for each θ , there is a one-to-one correspondence between (v1,w) ∈ S1 with
w ∈Rθ and w ∈Rθ satisfying the following equality of cross ratios:

(2.4.4) (ṽ1 ◦ fθ (w), ṽ1 ◦ fθ (1); ṽ1 ◦ fθ (−1),−1)= (0, b; a,∞).

Note that ṽ1 ◦ fθ (Rθ ) = [−1,0] and that there is at most one w ∈Rθ such that Equa-
tion (2.4.4) holds.

When θ = π , ṽ1 ◦ fπ(1)=∞ and ṽ1 ◦ fπ(−1)= 0. Hence there is a unique w ∈Rπ

satisfying Equation (2.4.4). As θ moves from π to 3π
2 , the points ṽ1 ◦ fθ (1) and ṽ1 ◦ fθ (−1)

approach each other and become equal when θ = 3π
2 . Hence there exists 0 < θ0 <

π

2

such that there is no w ∈ Rθ for π + θ0 < θ < 3π
2 and there is a unique w ∈ Rθ for

π ≤ θ < π + θ0. The situation of θ ∈ (π2 ,π ] is symmetric. The lemma then follows. �
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Lemma 2.4.17. — There exists a parametrization of C2 ⊂D2 by θ ∈ (π2 ,
3π
2 ) such that

lim
θ→ π

2 +
C2(θ)= 1, lim

θ→ 3π
2 −

C2(θ)=−1.

See Figure 2 for a rough picture of the curve C2.

Proof. — As in the proof of Lemma 2.4.16, v2 can be factored as

D2 fθ→H
ṽ2→CP1 g→CP1,

where ṽ2(z) = z2 and fθ maps 0 to i and Rθ to {Re(z) = 0,0 ≤ Im(z) ≤ 1} ⊂H. Note
that there is a unique fractional linear transformation g such that g(−1)=∞, g(0)= b,
and g(∞) = a. For each θ ∈ (π2 ,

3π
2 ), there exists (v2,C2(θ)) ∈ S2 such that C2(θ) is in

one of the half-disks of D2 divided by Rθ ∪Rθ+π . As a reference point, C2(π) is in the
upper half-disk. As θ approaches π

2 from above, the corresponding v2 sends −1 and 1 to
arbitrarily close points. Hence lim

θ→ π
2 +

C2(θ)= 1. Similarly, lim
θ→ 3π

2 −
C2(θ)=−1. �

The following lemma is immediate from Lemmas 2.4.16 and 2.4.17; the key in-
gredient is that the endpoints of C1 and C2 alternate on ∂D2:

Lemma 2.4.18. — The total count of intersection points between C1 and C2 is 1 modulo 2.

2.4.6. Reduction to CP1×D2. — We now explain how to further reduce from T2 to
S2. We pinch T2 along three parallel, disjoint, essential closed curves γ1, γ2, γ3 to obtain
a “sausage”

(2.4.5)
(

(�1,w1,w
′
2) � (�2,w2,w

′
3) � (�3,w3,w

′
1)

)

/∼,
where �i � S2, i = 1,2,3, and wi ∼ w′

i , i = 1,2,3. More precisely, pick an oriented
identification T2 � R2/Z2 with coordinates (x, y) so that a1 = {y= 0} and a2 = {x = 0}.
Then γ1 = {x = 1

4}, γ2 = {x = 1
2}, and γ3 is obtained from {x = 3

4} by applying a finger
move along the arc [ 3

4 ,1+ε]×{ 1
2} so that γ3 has two intersections y= 1

2−ε, 1
2+ε with â2.

We also assume that z1, z3 ∈ â1 lie on { 1
4 < x < 1

2} and z2, z4 ∈ â2 lie on { 1
2−ε < y < 1

2+ε}.
Then �1 is obtained from the closure of the connected component of T2 −∪3

i=1γi which
is bounded by (copies of) γ1 and γ2, by identifying all of γ1 to w1 and all of γ2 to w′

2. The
other components �2 and �3 are defined similarly. In particular, z∞ ∈�3. See Figure 3.

Lemma 2.4.19. — G3(T2,z)= 1, where z= {z1, . . . , z4}.
Proof. — We degenerate the Riemann surfaces �τ = (T2, iτ ), τ →∞, by pinching

along γ1 ∪ γ2 ∪ γ3. Then a sequence of holomorphic maps

uτ : (F, jτ )→ (�τ ×D2, Jτ )
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FIG. 3. — The top diagram is the torus T2, where the sides are identified and the top and the bottom are identified. The
arrow indicates the projection of T2 onto �1 ��2 ��3/∼, given in (2.4.5). The components of ãi = ai/∼ which do not
contain points in the set {z1, . . . , z4} are not drawn in �i . Also the two disks on the left and the right of the bottom diagram
are glued into �3. (Color figure online)

in MJτ
1,4(A, z∞,z) converges to a nodal curve (u1, u2, u3), where

ui : Fi →�i ×D2, i = 1,2,3,

and F1 = F1 = D2, F3 = CP1. This is because z1, z3 ∈ �1 and z2, z4 ∈ �2, and the total
number of boundary components

∑3
i=1 #(∂Fi) is equal to two by the argument in Sec-

tion 2.4.4. Now, u3 must have image �3 × {0} since z∞ ∈ �3. The sets S1 and S2 for
vi = π2 ◦ ui, i = 1,2, were determined in Section 2.4.5. The gluing of intersecting curves
u1 and u2 is given by the signed intersection number of C1 and C2, which is 1 modulo 2
by Lemma 2.4.18. �

Proof of Theorem 2.4.2. — By Lemma 2.4.13 we can write G3(�) = G3(�,z)
for generic z. By Corollary 2.4.15, if � has genus g, then G(�) = G(T2)g . Then
Lemma 2.4.19 implies that G3(�)= 1. �

3. Homotopy of cobordisms I

In this section and the next we prove Theorem 1.0.1. The chain homotopies that
appear in the proof of Theorem 1.0.1 are induced by homotopies of cobordisms W

±
τ

and W
∓
τ which are parametrized by τ ∈ R. In this section we treat W

±
τ , leaving W

∓
τ for

Section 4. If± is understood (as it will be in the rest of this section), then it will be omitted.
We now give a brief informal description of Wτ , leaving precise definitions for

later. The base Bτ of Wτ is biholomorphic to an annulus with one puncture on each
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boundary component; the neighborhoods of the punctures are viewed as strip-like ends.
As τ →+∞, Wτ degenerates to the stacking of W+ “on top of ” W−, where W+ and W−
are used in the definitions of the chain maps � and � . (This is the reason why there is a
± in W

±
τ .) On the other hand, as τ →−∞, Wτ degenerates to W−∞, whose base B−∞

is (more or less) given by:

(3.0.1) B−∞ = ((R× [0,1]) �D) /∼,
where D = {|z| ≤ 1} ⊂ C and ∼ identifies (0,1) ∈ R × [0,1] with 1 ∈ D and (0,0) ∈
R× [0,1] with −1 ∈D.

3.1. Construction of the homotopy of cobordisms for � ◦�.

3.1.1. Recollections. — In this subsection we recall some notation from [I].
Recall that S is a compact oriented surface of genus g with connected boundary

(a page of an open book (S, h)), S = S ∪D2 is a closed surface obtained by capping off
S, h = hm : S

∼→ S is an extension of h which is dependent on the integer m � 0 as in
Section I.5.1.2, and ω is the area form on S from Section I.5.1.2 which is invariant under
h . Also z∞ is the origin ρ = 0 of D2 = {ρ ≤ 1} with polar coordinates (ρ,φ).

The mapping tori

N= (S× [0,2])/(x,2)∼ (h(x),0), N= (S× [0,2])/(x,2)∼ (h(x),0)

were defined in Section I.5.1. Let W=R×[0,1]×S, W=R×[0,1]×S, W′ =R×N,
and W′ = R×N; they admit symplectic fibrations with fibers diffeomorphic to S, S, S,
and S, respectively. We also have the symplectic fibrations πB+ :W+ → B+, πB+ :W+ →
B+, and πB− :W− → B− from Sections I.5.1.1 and I.5.1.2, with fibers diffeomorphic to
S, S, and S, respectively.

The fibration W (or W) was used in the definition of ̂CF(S,a, h(a)) and the fibra-
tion W′ (or W′) in the definition of PFC2g(N). The positive end of W+ and the negative
end of W− agree with those of W and the negative end of W+ and the positive end of
W− agree with those of W′. The fibrations πB+ and πB− were used in the definitions of
the chain maps

� : ̂CF(S,a, h(a))→ PFC2g(N),

� : PFC2g(N)→ ̂CF(S,a, h(a)).

3.1.2. Definition of the family (Wτ ,m(τ )). — For each r ∈ [2,∞), consider the fi-
bration

πr :R×Nr →R× (R/rZ),
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where

Nr = (S× [0, r])/(x, r)∼ (h(x),0)

and (s, t) are coordinates on R× (R/rZ). For each l, r ∈ [2,∞), define Wl,r = π−1
r (Bl,r),

where the base Bl,r is obtained by smoothing the corners of

{−l ≤ s ≤ l} ∪ {0≤ t ≤ 1} ⊂R× (R/rZ).

Next choose a function

(3.1.1) η= (l, r) :R→[2,∞)× [2,∞),

which is obtained by smoothing

η0(τ )=
{

(τ + 2,2), for τ ≥ 0;
(2,2− τ), for τ ≤ 0;

near τ = 0. We then let Wτ =Wη(τ) and Bτ = Bη(τ). Let πBτ
:Wτ → Bτ be the projection

along {(s, t)} × S.

3.1.3. Neck-stretching. — As τ → +∞, the cobordism Wτ approaches the con-
catenation of W+ and W−; see Figure 4. On the other hand, for τ � 0 we can view the
rectangle [−2,2] × [ 3

2 ,
3
2 − τ ] ⊂ Bτ as a neck and by taking τ →−∞ we are stretch-

ing along this neck and degenerating the cobordism Wτ into a 2-component manifold
W−∞ =W−∞,1 ∪W−∞,2, which we describe now; see Figure 5.

The base of W−∞ = W−∞,1 ∪ W−∞,2 is B−∞ = B−∞,1 ∪ B−∞,2, where B−∞,1 is
obtained from {−2 ≤ s ≤ 2} ∪ {0 ≤ t ≤ 1} ⊂ R2 by smoothing the corners and B−∞,2 =
[−2,2] × R. Here both R2 and [−2,2] × R have coordinates (s, t). The component
B−∞,1 has four strip-like ends: the ends s→+∞, s→−∞, t →+∞, t →−∞ will be
referred to as the top, bottom, left, and right ends. The component B−∞,2 has two strip-
like ends: the ends t →+∞ and t →−∞ will be referred to as the left and right ends.
As usual, B−∞ is endowed with identifications of the compactifications of the strip-like
ends. More precisely, if the compactification B̌−∞,1 is obtained from B−∞,1 by attaching
{±∞} × [0,1] and [−2,2] × {±∞} and the compactification B̌−∞,2 is obtained from
B−∞,2 by attaching [−2,2] × {±∞}, then we identify (s,±∞) ∈ B̌−∞,1 with (s,∓∞) ∈
B̌−∞,2.

Let W−∞,i = B−∞,i × S for i = 1,2. The 2-component building W−∞ =W−∞,1 ∪
W−∞,2 is endowed with identifications of compactifications of the ends. The com-

pactification W̌−∞,1 is obtained from W−∞,1 by attaching {±∞} × [0,1] × S and

[−2,2] × {±∞} × S, the compactification W̌−∞,2 is obtained from W−∞,2 by attach-

ing [−2,2] × {±∞}× S, and we identify (s,+∞, x) ∈ W̌−∞,1 with (s,−∞, x) ∈ W̌−∞,2
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FIG. 4. — The bases of the family Wτ . The parameter τ increases as we go to the right. The sides are identified in this
picture, as indicated. The location of mb

(τ ) is indicated by ×

FIG. 5. — The bases of W−∞,2 to the left and W−∞,1 to the right

and (s,+∞, x) ∈ W̌−∞,2 with (s,−∞, h(x)) ∈ W̌−∞,1. We write πB−∞,i
:W−∞,i → B−∞,i

for the projection along S.
We write cl(Bτ ), cl(B+), cl(B−) to denote the compactifications of Bτ , B+, B−, ob-

tained by adjoining a point at infinity for each end s=±∞. Similarly, we write cl(B−∞,1)

for the compactification of B−∞,1, obtained by adding 4 points s = ±∞ and t = ±∞,
and cl(B−∞,2) for the compactification of B−∞,2, obtained by adding 2 points t =±∞.

3.1.4. Marked points. — We choose a 1-parameter family of marked points

m(τ )= (m
b
(τ ),m

f
(τ ))= ((−l(τ )+ 2, (r(τ )+ 1)/2), z∞) ∈Wτ .

Observe that the map τ �→m
b
(τ ) is a smoothing of the function

τ �→
{(−τ, 3

2

)

, for τ ≥ 0;
(

0, 3−τ
2

)

, for τ ≤ 0,

and therefore m
b
(τ ) is always on the axis {t = (r(τ )+ 1)/2} of involution for the involu-

tion (s, t) �→ (s,1− t) of Bτ and always at a fixed distance from the lower component of
∂Bτ . See Figure 4 for a schematic representation of Bτ and the placement of mb

(τ ).
The following also hold:
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(i) as τ → +∞, m(τ ) limits to m(+∞) = (m
b
(+∞),m

f
(+∞)), where

m
b
(+∞)= (0, 3

2) ∈ B− and m
f
(+∞)= z∞;

(ii) as τ → −∞, m(τ ) limits to m(−∞) = (m
b
(−∞),m

f
(−∞)), where

m
b
(−∞)= (0,0) ∈ B−∞,2 and m

f
(−∞)= z∞.

Convention 3.1.1. — In this section and the next, m will denote a 1-parameter
family (as opposed to a single marked point).

Let us write Lt0 for the locus {t = t0}, viewed as a subset of B+, B−, Bτ , as
appropriate. Of particular interest is L(r(τ )+1)/2, which passes through m

b
(τ ) ∈ Bτ or

m
b
(+∞) ∈ B−.

3.1.5. Stable Hamiltonian structures and symplectic forms. — We first consider Wτ . The
stable Hamiltonian structure on Nr(τ ) = (S×[0, r(τ )])/∼ is obtained from (dt,ω) on S×
[0, r(τ )] by passing to the quotient, where ω is the area form on S from Section I.5.1.2.
The 2-plane field is ξτ = ker dt = TS and the Hamiltonian vector field is Rτ = ∂t . The
symplectic form �τ is obtained from the symplectic form ds∧ dt+ω on R×S×[0, r(τ )]
by passing to the quotient R×Nr(τ ) and then restricting to Wτ .

Next we consider W−∞ =W−∞,1∪W−∞,2. Let ω−∞,1 be the restriction of the area
form ds ∧ dt on R2 to B−∞,1 and let ω−∞,2 = ds ∧ dt on B−∞,2 = [−2,2] ×R. Then we
set �−∞,i = ω−∞,i +ω. The stable Hamiltonian structure at the s→±∞ ends of W−∞,1

are given by (dt,ω) and the stable Hamiltonian structure at the t →±∞ ends of W−∞,1

are given by (ds,ω).

3.2. Holomorphic curves and moduli spaces.

3.2.1. Lagrangian boundary conditions. — Recall that the monodromy map h = hm :
S→ S depends on the integer m� 0. Also a= {a1, . . . , a2g} is the extension of the basis
a= {a1, . . . , a2g} to S so that ai = ai ∪ ai,0, ∪ ai,1, as described in Section I.5.2.2. We also
note that a depends on m.

We first describe the pushoff b of a which also depends on m: Let

ε0 = ε0(m)= 2π
mK(m)

> 0,

where K(m) is a positive integer such that limm→∞K(m) =∞, and let bi be a ε0-close
transverse pushoff of ai which satisfies the following:

– in a neighborhood of z∞, bi is obtained from ai by a −ε0-rotation; and
– ai and bi intersect at three points x#

i1, x#
i2 and x#

i3 (besides at z∞); x#
i2 ∈ int(S) and

x#
i1, x#

i3 ∈ S− S.
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FIG. 6. — The arcs ai , bi , h(ai), and h(bi) near z∞

See Figure 6. We also write bi,j for the portion of bi analogous to ai,j . When we want to
signal that z∞ is an intersection point of ai and bi , then we write it as z#

∞.
Let us write φ(ai,j) for the φ-coordinate of the portion of ai,j near z∞, subject to

the condition 0≤ φ(ai,j) < 2π ; similarly define φ(bi,j), etc. Then, near z∞,

(3.2.1) 0 < φ(bi,j) < φ(ai,j) < φ(h(bi,j)) < φ(h(ai,j)) < c(m),

where c(m)→ 0 as m→∞; cf. Section I.5.2.2.

Remark 3.2.1. — In view of the choices of ai,j and h(ai,j) from Section I.5.2.2 and
the choices of bi,j above, as m→∞:

– φ(ai,j)− φ(bi,j)→ 0 the fastest;
– φ(h(ai,j))− φ(ai,j)→ 0 the next fastest;
– φ(ai,j)− φ(ai′,j′)→ 0 the slowest if (i, j) �= (i′, j ′).

The symplectic fibration

πBτ
: (Wτ ,�τ )→ (Bτ , ds ∧ dt)

induces a symplectic connection, defined as the �τ -orthogonal of the tangent plane to
the fibers. We place a copy of a on the fiber π−1

Bτ
(s,1) with s > l(τ ) and use the symplec-

tic connection to parallel transport a along ∂Wτ . (Note that ∂Wτ is equal to the vertical

boundary ∂vWτ := π−1
Bτ
(∂Bτ ).) This gives us a singular Lagrangian submanifold Lτ,+

a . (Note
that a is a singular Lagrangian submanifold of S with singularity z∞ and is a union of
radial rays in a neighborhood of z∞. Hence the singular set of Lτ,+

a and its neighborhood
in Lτ,+

a are obtained from those of a by multiplying with the upper boundary of Bτ .)
Similarly, we place a copy of b on the fiber π−1

Bτ
(s,1) with s < −l(τ ) and use the sym-

plectic connection to parallel transport b along ∂Wτ to construct the singular Lagrangian
submanifold Lτ,−

b
. The Lagrangian submanifolds Lτ,+

â , Lτ,+
âi

, Lτ,−
̂b

, Lτ,−
̂bi

, etc. are defined
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similarly, where â= {̂a1, . . . , â2g} and âi = ai − {zi} were defined in Section I.5.2.2 and ̂b
and̂bi are defined analogously.

On (W−∞,�−∞), we define the singular Lagrangian submanifolds as follows: Let
us write

∂B−∞,1 =�4
i=1∂iB−∞,1,

where the boundary components, in order from i = 1 to i = 4, satisfy

s > 0, t > 1/2; s < 0, t > 1/2; s < 0, t < 1/2; and s > 0, t < 1/2.

Also let ∂iW−∞,1 be the component of ∂W−∞,1 corresponding to ∂iB−∞,1. Then we de-
fine:

– L−∞,1
a,1 = ∂1B−∞,1 × a on ∂1W−∞,1;

– L−∞,1
b,2

= ∂2B−∞,1 × b on ∂2W−∞,2;

– L−∞,1
h(b),3

= ∂3B−∞,1 × h(b) on ∂3W−∞,1;

– L−∞,1
h(a),4

= ∂4B−∞,1 × h(a) on ∂4W−∞,1;

– L−∞,2
a,+ = {2} ×R× a on ∂W−∞,2;

– L−∞,2
b,− = {−2} ×R× b on ∂W−∞,2.

3.2.2. Almost complex structures. — Recall the space JW of admissible almost com-
plex structures J on W from Definition I.5.3.2, the space JW′ of adapted almost complex
structures J′ on W′ from Definition I.5.3.14, and the spaces JW+ and JW− of admissible
almost complex structures J+ and J− on W+ and W− from Definition I.5.4.1.

Definition 3.2.2. — An almost complex structure J−∞,2 on W−∞,2 is admissible if the fol-

lowing hold:

(1) J−∞,2 is t-invariant, J−∞,2(∂t)=−∂s, and J−∞,2(TS)=TS; and

(2) there exists ε > 0 such that J−∞,2 restricts to the standard complex structure on the subsurface

D2
ε = {ρ ≤ ε} ⊂ S of each fiber.

The space of all admissible J−∞,2 will be denoted by JW−∞,2
.

Definition 3.2.3. — An almost complex structure J−∞,1 on W−∞,1 is admissible if the fol-

lowing hold:

(1) the projection πB−∞,1 is (J−∞,1, j−∞,1)-holomorphic with respect to the standard complex

structure j−∞,1 on B−∞,1;

(2) there exists ε > 0 such that J−∞,1 restricts to the standard complex structure on the subsurface

D2
ε = {ρ ≤ ε} ⊂ S of each fiber;
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(3) there exist J ∈ JW and J−∞,2 ∈ JW−∞,2
such that J−∞,1 agrees with J on W = R ×

[0,1] × S, with J−∞,2 on [−2,2] × [3,+∞) × S, and with (id × h)∗(J−∞,2) on

[−2,2] × [−2,−∞)× S.

If (3) holds, we say that J−∞,1 is compatible with J ∈ JW and J−∞,2 ∈ JW−∞,2
. The space of

admissible J−∞,1 will be denoted by JW−∞,1
.

Definition 3.2.4. — An almost complex structure J−∞ = J−∞,1 ∪ J−∞,2 on W−∞ =
W−∞,1∪W−∞,2 is admissible if J−∞,i ∈JW−∞,i

for i = 1,2 and J−∞,1 is compatible with J−∞,2.

The space of admissible J−∞ will be denoted by JW−∞ .

Definition 3.2.5. — An almost complex structure Jτ on Wτ is admissible if the following

hold:

(1) the projection πBτ
is (Jτ , jτ )-holomorphic with respect to the standard complex structure jτ

on Bτ ;

(2) there exists ε > 0 such that Jτ restricts to the standard complex structure on the subsurface

D2
ε = {ρ ≤ ε} ⊂ S of each fiber;

(3) if τ ≥ 0, then Jτ is the restriction of some J′ ∈ JW′ ;

(4) if τ ≤ 0, then Jτ agrees with some J ∈ JW on W = R × [0,1] × S and with some

J−∞,2 ∈JW−∞,2
on [−2,2] × [3, r(τ )− 2] × S (provided r(τ )≥ 5).

If (3) holds, we say that Jτ is compatible with J′ ∈JW′ and if (4) holds, we say that Jτ is compatible
with J ∈JW and J−∞,2 ∈JW−∞,2

. The space of all admissible Jτ on Wτ will be denoted by JWτ
.

Definition 3.2.6. — A family {Jτ ∈ JWτ
}τ∈R of almost complex structures is admissible if

there exist J′ ∈ JW′ , J ∈ JW, J+ ∈ JW+ , J− ∈ JW− and J−∞ = J−∞,1 ∪ J−∞,2 ∈ JW−∞ such that

the following hold:

(1) Jτ converges to J−∞ as τ →−∞;

(2) Jτ converges to J+ and J− as τ →+∞;

(3) J+ and J− are compatible with J′ and J; and

(4) Jτ is compatible with J and J−∞,2 for τ ≤ 0 and with J′ for τ ≥ 0.

The convergence of almost complex structures is to be understood in the sense of neck-stretching as in

[BEHWZ, Section 3.4]. The space of all admissible {Jτ ∈JWτ
}τ∈R will be denoted by I .

3.2.3. Some notation and conventions. — We now collect some notation and conven-
tions.

Notation 3.2.7 (Tuples and orbit sets). — When we write a tuple of a ∩ h(a) as y or
an orbit set of N as γ (with possible superscripts, subscripts and other decorations), it is
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assumed that y⊂ S and γ ⊂N. In particular, y and γ do not contain any multiples of z∞
or δ0.

Notation 3.2.8 (Sections at ∞). — The sections {ρ = 0} of W, W′ = R × N, Wτ ,
W+, W− and W−∞,i are holomorphic with respect to almost complex structures in JW,
JW′ , JWτ

, etc. They are called sections at∞ and are denoted by σ∞, σ ′∞, σ τ
∞, σ+∞, σ−∞ and

σ−∞,i
∞ .

Notation 3.2.9 (The intersection numbers n∗(u) and n∗,alt(u)). — Let δρ0,φ0 be a closed
orbit of the Hamiltonian vector field ∂t which lies on the torus

{ρ = ρ0} ⊂Nr = (S× [0, r])/(x,1)∼ (h(x),0)

for appropriate r and ρ0 > 0 sufficiently small and which passes through the point
(t, ρ,φ)= (0, ρ0, φ0). Since h = hm is a 2π

m
-rotation on D2

1/2 = {ρ ≤ 1/2} ⊂D2, the orbit
δρ0,φ0 winds m times in the longitudinal direction and once in the meridian direction. The
point (0, ρ0, φ0) is with respect to balanced coordinates on Nr ; see Section I.5.1.2. We
assume additionally that δρ0,φ0 does not intersect the projections of the Lagrangians of
Wτ , W+ and W− to Nr .

Recall from Section 3.2.1 that φ(ai,j) is the φ-coordinate of ai,j near z∞ such that
0≤ φ(ai,j) < 2π . Also let ε0 = 2π

nK(m)
be the constant appearing in the definition of b and

let ε1 be a constant satisfying 0 < ε1 < ε0. We consider two possibilities for φ0:

φ±0 = φ(ai,j)± ε1.

Comparing with Equation (3.2.1), we obtain:

(3.2.2) 0 < φ(bi,j) < φ−0 < φ(ai,j) < φ+0 < φ(h(bi,j)) < φ(h(ai,j)) < c(m).

We write (σ ∗∞)
†,± for the restriction of R× δρ0,φ

±
0

to W∗, where ∗ =∅, ′, τ , +, or
−. For W−∞,i , we write

(σ−∞,i
∞ )†,± = B−∞,i × {ρ = ρ0, φ = φ±0 + 2πk/m, k ∈ Z}.

Finally we define:

(3.2.3) n∗(u)= 〈u, (σ ∗∞)†,+〉, n∗,alt(u)= 〈u, (σ ∗∞)†,−〉,
where ∗ =∅, ′, τ , +, −, or (−∞, i). The two quantities n∗ and n∗,alt can be used inter-
changeably, except when τ =−∞; for the most part we will use n∗.

Notation 3.2.10 (Components of a holomorphic curve u). — Given a holomorphic curve
u in W, W′, etc., we write

u= u′ ∪ u′′ = u′ ∪ u� ∪ u� ∪ uf ,
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where

– u′ is a possibly disconnected branched cover of σ ∗∞;
– u′′ is the union of irreducible components which do not branch cover σ ∗∞;
– u� is the union of components of u′′ which are asymptotic to a multiple of δ0 or

z∞ at one or more ends;
– u� is the union of the remaining non-fiber components of u′′; and
– uf is the union of fiber components of u, including ghosts.

If u is a multisection, then deg u is the degree of u as a multisection.

The choice of hyperbolic orbit. By the definition of the monodromy map h , ∂N is a negative
Morse-Bott torus; we denote the negative Morse-Bott family of simple orbits on ∂N by
N . Let φγ be the φ-coordinate of γ ∈N . Also recall the orbit δ0 = {z∞} × [0,2]/∼ of
N.

Let J′ ∈ JW′ . Without loss of generality, we may assume that there is only one
holomorphic cylinder Zγ in (W′ = R× N, J′) from δ0 to any orbit γ ∈N , modulo R-
translation. Each Zγ corresponds to a radial ray Rφγ = {φ = φγ ,ρ ≥ 0} ⊂ D2, which is
the asymptotic direction of πD2(Zγ ) at the positive end. Here πD2 : N− int(N)→ D2 is
the projection with respect to the balanced coordinates; see Section I.5.1.2.

We now choose a hyperbolic orbit h and an elliptic orbit e in N . The choice of
h= γφh

is the same as that of Convention I.6.6.4: h is generic and φh is close to− 2π
m

, where
the integer m which appears in the definition of hm additionally satisfies the conditions of
Section I.5.2.2. In particular, the radial ray Rφh

does not lie on the thin wedges from ai

to h(ai) for all i. There are no restrictions on e except that e �= h.

3.2.4. Holomorphic maps to Wτ . — Let (F, j) be a compact Riemann surface, pos-
sibly disconnected, with two k-tuples of boundary punctures q+ = {q+1 , . . . , q+k } and
q− = {q−1 , . . . , q−k } on ∂F= ∂+F � ∂−F, such that:

(i) each component of F nontrivially intersects ∂+F and ∂−F;
(ii) each of ∂+F and ∂−F is a union of connected components of ∂F; and

(iii) on each component of ∂+F (resp. ∂−F) there is at least one puncture from q+

(resp. q−) and none from q− (resp. q+).

We write Ḟ= F− q+ − q−, ∂+Ḟ= ∂+F− q+ and ∂−Ḟ= ∂−F− q−.
Let z= {zp

∞(
−→D )} ∪ y, p≥ 0, be a k-tuple of points of a ∩ h(a), where k ≤ 2g, z∞

has multiplicity p, and
−→D is the data at z

p
∞ with respect to a ∩ h(a). The definition of z

and the notion of data at z
p
∞ are given in Section I.5.7. In particular, by definition, each

arc of {ai, h(ai)}2g

i=1 is used at most once. Also let z′ = {zq
∞(
−→D ′)} ∪ y′, q ≥ 0, be a k-tuple

of points of b ∩ h(b), where z∞ has multiplicity q and
−→D ′ is the data at z

q
∞ with respect

to b∩ h(b).
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Let Jτ ∈ JWτ
. If u′ : Ḟ → (Wτ , Jτ ) is a branched cover of σ τ

∞, then u′ comes
equipped with data C (cf. Definition I.5.7.1), which is a map from π0(∂+Ḟ) (resp. π0(∂−Ḟ))
to the set of arcs ai,j (resp. bi,j ). In words, u′ is viewed as mapping each component of ∂+Ḟ

(resp. ∂−Ḟ) to some Lτ,+
ai,j

(resp. Lτ,−
bi,j

). Then C determines the data
−→D and

−→D ′ at the
positive and negative ends.

We then make the following definition:

Definition 3.2.11. — Let Jτ ∈ JWτ
, z = {zp

∞(
−→D )} ∪ y be a k-tuple of a ∩ h(a) and

z′ = {zq
∞(
−→D ′)} ∪ y′ be a k-tuple of b∩ h(b).

A degree k multisection of (Wτ , Jτ ) from z to z′ is a pair (u,C) consisting of a holomor-

phic map

u= u′ ∪ u′′ : (Ḟ= Ḟ′ � Ḟ′′, j)→ (Wτ , Jτ )

which is a degree k multisection of πBτ
:Wτ → Bτ and data C for u′, and which additionally satisfies

the following:

(1) u′′(∂+Ḟ′′)⊂ Lτ,+
â and u′′(∂−Ḟ′′)⊂ Lτ,−

̂b
;

(2) u maps each connected component of ∂+Ḟ to a different Lτ,+
ai

and each connected component of

∂−Ḟ to a different Lτ,−
bi

(here we are using C to assign some Lτ,+
ai

or Lτ,−
bi

to each component

of ∂±Ḟ′);
(3) lim

w→q+i
πR ◦ u(w)=+∞ and lim

w→q−i
πR ◦ u(w)=−∞;

(4) u converges to a strip over [0,1] × z near q+ and to a strip over [0,1] × z′ near q−;

(5) the positive and negative ends of u which limit to z∞ are described by
−→D and

−→D ′.

Here πR :Wτ →R is the projection to the s-coordinate.

A (Wτ , Jτ )-curve from y to y′ is a degree 2g multisection of (Wτ , Jτ ) satisfying n∗(u)= m.

(Recall that the integer m is the integer on which the monodromy map h = hm depends.)

Let MJτ
(z,z′) be the moduli space of degree k multisections of (Wτ , Jτ ) from z

to z′ and let MJτ
(z,z′;m(τ )) be the moduli space of degree k multisections of (Wτ , Jτ )

from z to z′ and with a marked point mapped to m(τ ). By a slight abuse of terminology
we call this the moduli space of multisections passing through m(τ ).

We write

M{Jτ }(z,z′) := {(τ, u) | τ ∈R, u ∈MJτ
(z,z′)},

M{Jτ }(z,z′;m) := {(τ, u) | τ ∈R, u ∈MJτ
(z,z′;m(τ ))}.

Notation 3.2.12 (Modifiers). — For any moduli space M�1(�2), we may place modi-
fiers ∗ as in M∗

�1
(�2) to denote the subset of M�1(�2) satisfying ∗. Typical self-explanatory

modifiers are I= i, n∗ = m, and deg= k. Note that the degree can be inferred from �2.
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The following is a list of non-self-explanatory modifiers:

† = no component of u branch covers σ ∗∞ with possibly empty branch locus.
s = all the components of u are simply covered.

irr = the curve u is irreducible.

3.2.5. Holomorphic maps to W−∞. — We first discuss holomorphic curves without
ends at z∞.

Definition 3.2.13. — Let J−∞,1 ∈ JW−∞,1
, y1 ∈ Sa,h(a), y2 ∈ Sb,a, y3 ∈ Sb,h(b) and

y4 ∈ Sh(a),h(b). (Recall that an element of Sa,h(a) is a tuple of intersection points ai ∩ h(aj), where

each ai and each h(aj) is used at most once; the other S∗,∗ are defined analogously. In this definition all

the tuples are k-tuples.)

A degree k ≤ 2g multisection u of (W−∞,1, J−∞,1) with ends y1,y2,y3,y4 is a holo-

morphic map

u : (Ḟ, j)→ (W−∞,1, J−∞,1)

which is degree k multisection of πB−∞,1 :W−∞,1 → B−∞,1 and which additionally satisfies the fol-

lowing:

(1) u(∂Ḟ) ⊂ L−∞,1
a,1 ∪ L−∞,1

b,2
∪ L−∞,1

h(b),3
∪ L−∞,1

h(a),4
and u maps each component of ∂Ḟ to a

different L−∞,1
ai,1 , L−∞,1

bi,2
, L−∞,1

h(bi),3
, or L−∞,1

h(ai),4
;

(2) u converges to a strip over [0,1]×y1 as s→+∞; [−2,2]×y2 as t →+∞; [0,1]×
y3 as s→−∞; and [−2,2] × y4 as t →−∞.

A (W−∞,1, J−∞,1)-curve with ends y1, . . . ,y4 is a degree 2g multisection of (W−∞,1,

J−∞,1) satisfying n∗(u)= 0.

We will use the convention to list the ends of a multisection u of W−∞,1 in counter-
clockwise order, starting with the top end.

Definition 3.2.14. — Let J−∞,2 ∈ JW−∞,2
and y,y′ ∈ Sb,a. A degree k ≤ 2g multisec-

tion u of (W−∞,2, J−∞,2) with ends y and y′ is a holomorphic map

u : (Ḟ, j)→ (W−∞,2, J−∞,2)

which is degree k multisection of πB−∞,2 :W−∞,2 → B−∞,2 and which additionally satisfies the fol-

lowing:

(1) u(∂Ḟ) ⊂ L−∞,2
a,+ ∪ L−∞,2

b,− and u maps each component of ∂Ḟ to a different L−∞,2
ai,+ or a

different L−∞,2
bi,− ;

(2) u converges to a cylinder over [−2,2]×y as t →+∞ and to a cylinder over [−2,2]×y′

as t →−∞.
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A (W−∞,2, J−∞,2)-curve with ends y and y′ is a degree 2g multisection of (W−∞,2, J−∞,2)

satisfying n∗(u)= m.

Note that the definition is not symmetric in y and y′; the t = +∞ end is always
written first.

Next we discuss holomorphic curves with ends at z∞. For s = 1, . . . ,4, the data−→D s at z
ps∞ (cf. Section I.5.7) corresponding to the sth end is given by

−→D s = {(i′s,�, j ′s,�)→ (is,�, js,�)}ps

�=1.

When s= 1, Dfrom

s=1 = {(i′1,�, j ′1,�)}p1
�=1 and Dto

s=1 = {(i1,�, j1,�)}p1
�=1 specify the initial points on

h(ai′1,�,j′1,�) and terminal points on ai1,�,j1,� , respectively; the cases s= 2,3,4 are analogous.
We then extend the definition of a degree k multisection u of W−∞,1 to include

those with ends zs = {zps∞(
−→D s)} ∪ ys, s = 1, . . . ,4, by attaching data C to u′ (cf. Defini-

tion I.5.7.1) and modifying Definition 3.2.13 in the same way Definition I.5.7.2 modifies
Definition I.4.3.1. Degree k multisections of W−∞,2 with ends z = {zp

∞(
−→D )} ∪ y and

z′ = {zq
∞(
−→D ′)} ∪ y′ are defined similarly.

Let MJ−∞,1
(z1,z2,z3,z4) be the moduli space of degree k multisections of

(W−∞,1, J−∞,1) with ends zs, s= 1, . . . ,4, and let MJ−∞,2
(z,z′) be the moduli space of de-

gree k multisections of (W−∞,2, J−∞,2) with ends z and z′. Also let MJ−∞,2
(z,z′;m(−∞))

be the moduli space of multisections as above passing through m(−∞)).
We define the extended moduli spaces M†,ext

J−∞,1
(z1,z2,z3,z4) and M†,ext

J−∞,2
(z,z′) in

a manner similar to that of Section I.5.7.11. The precise definitions will be omitted.

3.2.6. Indices. — We now discuss the Fredholm index ind(u) and the ECH index
I(u) of a Wτ -curve u : Ḟ→Wτ from y to y′ (i.e., when u′ = ∅). The discussion will be
brief since all the key ingredients have already been discussed in Sections I.5.5 and I.5.6.

We remark that, once again, ind(u) and I(u) do not take into account the point
constraint m(τ ) and that the condition “passing through m(τ )” is a codimension 2 con-
dition; more precisely, adding a marked point increases the dimension of the moduli space
by 2 and constraining the marked point to m(τ ) reduces the dimension by 4.

Let W̌τ be the compactification of Wτ that we identify with Wτ −{s > l(τ )+ 1}−
{s < −l(τ ) − 1}, where l(τ ) is given in Equation (3.1.1). Let ǔ : F̌ → W̌τ be the com-
pactification of u, where F̌ is obtained by performing a real blow-up of F at its boundary
punctures. We also define

Zy,y′ = ({l(τ )+ 1} × [0,1] × y)∪ ({−l(τ )− 1} × [0,1] × y′)

∪ ((Lτ,+
â ∪ Lτ,−

̂b
)∩ W̌τ ).
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The trivialization τ � of TS along Zy,y′ is defined in a manner similar to that of Sec-
tion I.4.4.2:5 First we define the trivialization τ � of TS|π−1

Bτ (l(τ )+1,1) (resp. TS|π−1
Bτ (−l(τ )−1,1))

along the âi (resp.̂bi ) by choosing a nonsingular tangent vector field along âi (resp.̂bi ). We
then parallel transport τ � along ∂Wτ and extend τ � arbitrarily to {l(τ )+ 1} × [0,1] × y
and {−l(τ )− 1} × [0,1] × y′.

Let Qτ�(ǔ) be the relative intersection form given by intersecting ǔ and a pushoff

of ǔ in the direction of Jτ � along ∂W̌τ . Then

I(u)= c1(ǔ
∗
TS, τ �)+Qτ�(ǔ)+μτ�(y)−μτ�(y′)− 2g,(3.2.4)

ind(u)=−χ(Ḟ)+ 2c1(ǔ
∗
TS, τ �)+μτ�(y)−μτ�(y′)− 2g,(3.2.5)

These index formulas are obtained by adding the index formulas for holomorphic curves
in W± of [I]. The index inequality holds as usual:

(3.2.6) ind(u)+ 2δ(u)≤ I(u),

where δ(u)≥ 0 and equals zero if and only if u is an embedding.
In the general case when u′ �=∅, modifications can be made as in Section I.5.7.5

and one can easily verify the following:

I(σ+∞)= ind(σ+∞)=−1;(3.2.7)

I(σ−∞)= ind(σ−∞)= 0;(3.2.8)

I(σ τ
∞)= ind(σ τ

∞)=−1.(3.2.9)

The Fredholm and ECH indices for W−∞,i-curves can be defined and computed
similarly. We now prove the following:

Lemma 3.2.15. — If there exists a W−∞,2-curve u with I = 2 and ends y and y′, then

y= {x#
ij(i)}2g

i=1 and y′ = {x#
ik(i)}2g

i=1, where j(i) is odd and k(i) is even for all i.

In other words, y is a summand of the top generator �a,b ∈ ̂HF(a,b) and y′

is a summand of the top generator �b,a ∈ ̂HF(b,a). We remind the reader that our
convention is that y and y′ do not contain z∞.

Proof. — The proof is similar to the index calculation of Lemma 2.2.2. Let u be a
W−∞,2-curve; note that n∗(u)= m by definition. First consider the situation where u is in
the homology class consisting of a copy {pt} × S of the fiber and 2g trivial strips. Then

ind({pt} × S)=−χ(S)+ 2c1(TS)=−(2− 2g)+ 2(2− 2g)= 2− 2g.

5 Here we are writing τ � instead of τ due to the notational conflict with τ ∈R.
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The strips contribute 0 to ind and there are 2g intersection points. Hence

I(u)= (2− 2g)+ 0+ 2(2g)= 2g + 2

when y′ = y. The only way to lower I(u) to 2 is to take y= {x#
ij(i)}2g

i=1 and y′ = {x#
ik(i)}2g

i=1 so
that all the j(i) are odd and all the k(i) are even. �

3.2.7. Regularity. — We now discuss the regularity of the family {Jτ }τ∈R.

Definition 3.2.16.

(1) J−∞,2 ∈ JW−∞,2
is regular if all the moduli spaces M†,ext

J−∞,2
(z,z′) are transversely cut

out.

(2) J−∞,1 ∈ JW−∞,1
is regular if all the moduli spaces M†,ext

J−∞,1
(z1, . . . ,z4) are transversely

cut out and the restrictions J−∞,2 and J of J−∞,1 to the ends are regular.

(3) J−∞ = J−∞,1 ∪ J−∞,2 ∈JW−∞ is regular if J−∞,i are regular for i = 1,2.

Definition 3.2.17. — The family {Jτ }τ∈R ∈ I is regular if:

(1) all the moduli spaces M†,ext

{Jτ } (z,z′) are transversely cut out;

(2) the restriction J of Jτ to the positive and negative ends is regular;

(3) J+ and J− in the limit τ →+∞ are regular; and

(4) J−∞ in the limit τ →−∞ is regular.

Let I reg
be the space of regular {Jτ } ∈ I . As usual, we have:

Lemma 3.2.18. — The generic {Jτ } ∈ I is regular, provided no points of (a∩ h(a))−{z∞}
are fixed points of h .6

Proof. — This is analogous to the proof of regularity for J+, with one caveat: the
family {Jτ } is not sufficiently generic to achieve the transversality of negative index hori-
zontal sections, where by a horizontal section we mean the restriction of a cylinder over
an orbit that passes through a fixed point y of h . The additional assumption on the fixed
points of h eliminates the horizontal sections besides σ τ

∞, which we do not consider be-
cause of the superscript †. �

Next we discuss the regularity of moduli spaces passing through m. Since the point
constraints m(τ ) are nongeneric, we need to introduce a perturbation of the family {Jτ }:

6 Here (and henceforth) we make this additional assumption on h , which we are free to do.
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Definition 3.2.19. — Let ε > 0 and let {Uτ }τ∈R, Uτ ⊂Wτ , be a family of open sets such

that Uτ ��m(τ ). Then a family {J♦τ }τ∈R of almost complex structures on {Wτ } is (ε, {Uτ })-close to

a regular {Jτ } if:

– J
♦
τ = Jτ on Wτ −Uτ ;

– J
♦
τ is ε-close to Jτ on Uτ ; and

– ∇J
♦
τ is ε-close to ∇Jτ on Uτ .

Here the ε-closeness is measured with respect to a family {gτ }τ∈R of Riemannian
metrics which is defined as follows: Let h be an s-invariant metric on R×N2 such that h,
viewed as a metric on R× [0,2] × S, is also t-invariant on R× [1,2] × S. There is an
extension of h to hτ on R× [0, r(τ )] × S which is s- and t-invariant on R× [2, r(τ )] × S.
We then view hτ as a metric on R×Nr(τ ) and define gτ as the restriction of hτ to Wτ ⊂
R×Nr(τ ).

Let p(τ )⊂ int(Bτ ), τ ∈ [−∞,∞], be a family of points, where:

– the cardinality #p(τ ) is finite and independent of τ ∈ [−∞,∞];
– p(τ ) is smooth for τ ∈ (−∞,∞);
– limτ→+∞ p(τ ) exists and equals p(+∞);
– limτ→−∞ p(τ ) exists and equals p(−∞).

In order for limτ→+∞ p(τ ) to be defined we require the existence of C > 0 such that, for
all τ � 0, p(τ ) is contained in a C-neighborhood of ∂Bτ . Then p(τ ) can be viewed as a
subset of B+ ∪ B− and we are asking limτ→+∞ p(τ )= p(+∞) in B+ ∪ B−. limτ→−∞ p(τ )

is defined analogously.

– p(+∞) is a nontrivial union of points of int(B+) and int(B−); similarly, p(−∞)

is a nontrivial union of points of int(B−∞,1) and int(B−∞,2);
– for each τ ∈ [−∞,∞], mb

(τ ) /∈ p(τ ).

We will use the following specific open sets Uτ : For τ ∈ R, let Uτ be an open δ-
neighborhood of Kτ = π−1

Bτ
(p(τ ))− {ρ < 2δ}, where δ > 0 is arbitrarily small. Then let

U±∞ and K±∞ be the limits of Uτ and Kτ as τ →±∞. When we want to emphasize
(ε,Uτ ) or (ε, δ,p(τ )), we write J

♦
τ (ε,Uτ ) or J

♦
τ (ε, δ,p(τ )) for J

♦
τ , Uε,δ,p(τ ) for Uτ , and

Kp(τ ),δ for Kτ .

We define a degree k almost multisection u of (Wτ , J
♦
τ ) in the same way as a degree k

multisection of (Wτ , Jτ ), with the following difference: u is a degree k multisection when
restricted to

πBτ :Wτ − π−1
B− (Vτ )→ Bτ −Vτ , Vτ = πB−(Uτ ),

but u is just a degree k map when restricted to π−1
B− (Vτ )→ Vτ . The moduli spaces of

almost multisections are defined in the same way as the moduli spaces of multisections,
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with J
♦
τ replacing Jτ . If {Kτ �� m(τ )} is a family of compact sets of Wτ , then the modi-

fier {Kτ } means that the image of u in Wτ intersects Kτ . We stress the fact that, unlike
the basepoint m, the modifier {Kτ } is not meant to define a moduli space with a point
constraint at Kτ , but only to select a subset of the moduli space.

Almost complex structures J
♦
−∞,i , almost multisections on (W−∞,i, J

♦
−∞,i), and mod-

uli spaces of almost multisections are defined similarly.

Definition 3.2.20. — The family {J♦τ } is {Kτ }-regular with respect to m if all the {J♦τ }-
holomorphic maps in M†,ext,{Kτ }

{J♦τ }
(z,z′;m) are regular, i.e., their linearized Cauchy-Riemann operator,

taking into account the variation of domain complex structure and the parameter τ , is surjective.

If {J♦τ } is {Kτ }-regular with respect to m, then M†,ext,{Kτ }
{J♦τ }

(z,z′;m) is an open subset

of M†,ext

{J♦τ }
(z,z′;m) and is a transversely cut out manifold.

Lemma 3.2.21. — A generic family {J♦τ } is {Kτ }-regular with respect to m.

Proof. — The proof is similar to the combination of Theorems 3.1.7 and 3.4.1 of
[MS], with modifications as in Proposition I.5.8.8. �

The following can also be proved using a standard regularity and compactness
argument:

Lemma 3.2.22. — If {Jτ } is a generic family, then for ε, δ > 0 sufficiently small, there exist a

generic family {J♦τ (ε, δ,p(τ ))} which is {Kp(τ ),δ}-regular with respect to m and disjoint finite subsets

T1,T2 ⊂R with the following properties:

(1) τ ∈ T1 if and only if there exists vτ ∈M†,s,irr,ind=−1
Jτ

(z,z′) for some z and z′.

(2) τ ∈ T2 if and only if there exists vτ ∈M†,s,irr,{Kτ },ind=1

J
♦
τ (ε,δ,p(τ ))

(z,z′;m) for some z and z′.

Moreover, for each τ ∈ Ti there is a unique such irreducible curve vτ .

Sketch of proof. — The existence of discrete sets T1 and T2 as in the lemma follows
from Lemmas 3.2.18 and 3.2.21. Note that the only section which is not transversely cut
out is the section at infinity σ ∗∞, which is excluded from the moduli space by the modifier
†.

The finiteness of T1 and T2 relies on an SFT compactness result which will be dis-
cussed in the next section; see Equations (3.4.1) and (3.5.1). If either T1 or T2 is infinite,
then there exists a limit J±∞-holomorphic building of the same total index by SFT com-
pactness. However, since J±∞ are regular, at least one level in the building will have index
which is too low to exist. �
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By shrinking I , we assume that all {Jτ } ∈ I satisfy Lemma 3.2.22.

3.3. Proof of half of Theorem 1.0.1. — In this subsection we prove that � ◦� is an
isomorphism on the level of homology.

In the next several paragraphs we briefly recall the chain complexes

(̂CF′(S,a, h(a)), ∂ ′), (̂CF(S,a, h(a)), ∂), (˜CF(S,a, h(a)),˜∂),

from Sections I.4.9.3 and I.6.6, where the first and third have isomorphic homology
groups; the quotient map

q :̂CF′(S,a, h(a))→ ̂CF(S,a, h(a));
and the maps ˜�, � , and � ′ from Sections I.6.6 and I.7.1.

The chain complex ̂CF′(S,a, h(a)) is generated by the set Sa,h(a) of 2g-tuples of in-
tersection points of a and h(a), where each y ∈ Sa,h(a) intersects ai and h(ai) exactly once,
and the differential ∂ ′ counts I= 1, degree 2g multisections of W=R× [0,1] × S. The
chain complex ̂CF(S,a, h(a)) is the quotient of ̂CF′(S,a, h(a)) under the equivalence
relation ∼ which identifies y∼ y′ if y′ can be obtained from y by successively replacing
xi by x′i or x′i by xi for any i = 1, . . . ,2g; the map q is the corresponding quotient map,
which is a chain map. Here xi and x′i are intersection points of ai and h(ai) on ∂S given in
Section I.4.9.1.

The chain complex ˜CF(S,a, h(a)) is a variant of ̂CF(S,a, h(a)) (with isomorphic
homology groups) generated by 2g-tuples of intersection points {z∞,i}i∈I ∪ y′ of a and
h(a) with I ⊂ {1, . . . ,2g}, where:

– z∞ can be used more than once, but is always viewed as an intersection point of
ai and h(ai) and hence is written as z∞,i ;

– writing y′ = {y′i}i∈Ic where I c = {1, . . . ,2g} − I , there exists a permutation σ of
I c such that y′i ∈ ai ∩ h(aσ(i)) for all i ∈ I c.

The differential ˜∂ counts I= 1, degree 2g multisections u= u′ ∪ u′′ of W with n∗(u) ≤ 1
such that u′ has empty branch locus; see Definition I.6.6.1.

The map

˜� : ˜CF(S,a, h(a))→ PFC2g(N),

defined in Section I.6.6, is a variant of the map � : ̂CF(S,a, h(a))→ PFC2g(N) and

〈˜�({z∞,i}i∈I ∪ y′),γ〉,
counts I= 0, degree 2g multisections of W+ with n∗ ≤ |I| from {z∞,i}i∈I ∪ y′ to γ.

The map

� ′ : PFC2g(N)→̂CF′(S,a, h(a)),
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defined in Section I.7.1, counts I = 2, degree 2g almost multisections of (W−, J
♦
−) (cf.

Definition I.5.8.3) with n∗ = m that pass through m(+∞). The map

� : PFC2g(N)→ ̂CF(S,a, h(a))

is then given as the composition q ◦� ′.
The following is proved in this subsection:

Theorem 3.3.1. — Suppose m� 0. Then there exist maps

H′,�′
0 : ˜CF(S,a, h(a))→̂CF′(S,b, h(b)),

˜V : ˜CF(S,a, h(a))→ ˜CF(S,b, h(b)),

which satisfy the following:

(3.3.1) � ′ ◦˜�−�′
0 = (∂ ′H′ +H′̃∂)+˜∂1 ◦˜V,

where ˜∂1, defined in Equation (I.7.1.1), satisfies:

˜∂1({z∞,i} ∪ y′)= {xi} ∪ y′ + {x′i} ∪ y′

for all i = 1, . . . ,2g and is zero for any other generator. (Here z∞,i , xi , and x′i are for the basis b.)

Postcomposing with q (for the basis b) and writing H= q ◦H′ and �0 = q ◦�′
0, we obtain the chain

homotopy

(3.3.2) � ◦˜�−�0 = ∂H+H˜∂,

where �0 induces an isomorphism on homology.

To go from Equation (3.3.1) to Equation (3.3.2), we observe that q ◦˜∂1 = 0 and
q ◦ ∂ ′ = ∂ ◦ q.

Since �0 is an isomorphism on the level of homology, so is � ◦ ˜�. In view of
Corollary I.6.6.7, � ◦� is also an isomorphism on the level of homology.

Proof. — We prove Theorem 3.3.1, assuming the results of Sections 3.4–3.9. In
Steps 1–3 we consider the situation where the holomorphic curves u in Wτ are asymptotic
to some y ∈ Sa,h(a) at the positive end. In Step 4 we describe the modifications needed
for the situation where u is asymptotic to some z= {z∞,i}i∈I ∪ y at the positive end and
I is a subset of {1, . . . ,2g} with |I| > 0. Steps 1–4 prove Equation (3.3.1) and hence
Equation (3.3.2). In Step 5 we prove that �0 induces an isomorphism on homology by
further degenerating W−∞,1.

Suppose m� 0. Choose p(τ ) and {Jτ } ∈ I reg
. For sufficiently small ε, δ > 0 (which

depend on the choices of m and {Jτ }), there exists {J♦τ (ε, δ,p(τ ))} so that Lemma 3.2.22
holds.
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Fix y ∈ Sa,h(a), y′ ∈ Sb,h(b) and abbreviate

M=MI=2,n∗=m

{J♦τ (ε,δ,p(τ ))}
(y,y′;m), M{Kp(τ ),δ} =MI=2,n∗=m,{Kp(τ ),δ}

{J♦τ (ε,δ,p(τ ))}
(y,y′;m).

Let M be the SFT compactification of M. The limit SFT buildings can be de-
scribed in a manner analogous to Definition I.7.3.1 and the proof of existence follows the
same steps as that of Proposition I.7.3.2. This is because:

– the ends of Wτ and W−∞,i are basically the same as the strip-like ends of W+
and W− and

– the Lagrangian boundaries of Wτ and W−∞,i are locally identical to those of
W+ and W−.

The main point is that for each component of the limit SFT building the boundary punc-
tures either map to points on the singular Lagrangian or to Reeb chords, including chords
over z∞.

Let ∂M =M −M be the boundary of M. If U ⊂ [−∞,+∞], then we write
∂UM for the set of u∞ ∈ ∂M where u∞ is a building which corresponds to some τ ∈U.
By Lemma 3.2.21, we may take M{Kp(τ ),δ} to be regular.

Step 1 (Breaking at+∞). Recall the definition of a bad radial ray Rφ from Definition I.7.7.10.
We now enlarge the class of bad radial rays as follows: Let (J+)∞ be the limit of (J+)m as
m→∞. Let

∐

y,δ
li
0 γ′

MI=0,(li)
(J+)∞

(y, δli
0γ

′)= {C1, . . . ,Cr},

where the disjoint union is over all y and δ
li
0γ

′ with li > 0 and (li) is the “trivial” partition
of li .7 Let fi : R/2liZ→ C be the asymptotic eigenfunction corresponding to the end δ

li
0

of Ci . (We remark that C1, . . . ,Cr and fi also appear in Section I.7.7.2, but denote similar
but different things.) We then add the radial rays which pass through

{fi(t) | i = 1, . . . , r;0 < t < 2li; t ≡ 3/2 mod 2}
to the class of bad radial rays. We can still assume that Rπ is a good radial ray.

Recall the set ̂Ok of orbit sets constructed from ̂P (the set of simple Reeb orbits in
int(N), together with h and e) which intersect S× {0} exactly k times. We then have the
following:

7 Note that the orbit δ0 is degenerate when m=∞ and the moduli spaces with δ
li
0 at the negative end are treated

in the same way as in Section I.7.7.4.
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Lemma 3.3.2. — ∂{+∞}M⊂ A1 �A2,8 where

A1 =
∐

γ∈̂O2g

(

MI=0
J♦+(ε,δ,p(+∞))

(y,γ)×MI=2,n∗=m

J
♦
−(ε,δ,p(+∞))

(γ,y′;m(+∞))

)

;

A2 =
∐

δ0γ,{z∞}∪y′′

(

MI=1,n∗=m−1,fδ0
J
♦
+(ε,δ,p(+∞))

(y, δ0γ)×MI=0,n∗=0

J
♦
−(ε,δ,p(+∞))

(δ0γ, {z∞} ∪ y′′)

× MI=1,n∗=1
J

({z∞} ∪ y′′,y′)
)

,

if y′ = {xj

i}×y′′ for some x
j

i and A2 =∅ otherwise. The disjoint union for A2 ranges over all δ0γ such

that γ ∈ ̂O2g−1 and all {z∞} ∪ y′′ such that y′ can be written as {xj

i} ∪ y′′ for some x
j

i . Here we have

omitted the potential contributions of connector components and we are writing x0
i := xi and x1

i := x′i .

We will explain the moduli spaces that are involved in A2: fδ0 is a nonzero normal-
ized asymptotic eigenfunction of δ0 at the negative end such that fδ0(

3
2) lies on the good

radial ray Rπ . Used as a modifier, fδ0 stands for “the normalized asymptotic eigenfunction
at the negative end δ0 is fδ0”. If

u= u′ ∪ u′′ ∈MI=0,n∗=0

J
♦
−(ε,δ,p(+∞))

(δ0γ, {z∞} ∪ y′′),

then u consists of u′ = σ−∞ and a curve u′′ from γ to y′′ which is arbitrarily close to a curve
with image in W−. If

u ∈MI=1,n∗=1
J

({z∞} ∪ y′′,y′),

then y′ = {xj

i} ∪ y′′ for some i, j and u consists of one thin strip from z∞ to x
j

i and 2g − 1
trivial strips.

Remark 3.3.3. — As in the proof of the chain map property for � from Sec-
tion I.7.2, the point constraint of passing through m(+∞) is converted to an asymptotic
constraint of the normalized asymptotic eigenfunction being fδ0 when a section at infinity
σ−∞ is present.

Lemma 3.3.2 will be proved in Section 3.4. Gluing the pairs in A1 using the
Hutchings-Taubes gluing theorem [HT1, HT2] (see Section I.6.5) accounts for the term
� ′ ◦˜� in Equation (3.3.1).

Gluing the triples in A2 accounts for the term ∂1 ◦ ˜V. This is similar to Sec-
tion I.7.12, and the details will be omitted. For each triple (v+, v−, v−1,1) ∈ A2, where

8 Lemma 3.3.2 and its later analogs are compactness statements, which is why we write “⊂” even when equality
holds. The equality will follow from the discusson of gluing, which appears later in this step.
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the nontrivial component of v−1,1 is a thin strip from z∞,i,0 to xi , there is another triple
(v+, v−, v∗−1,1) ∈ A2, where the nontrivial component of v∗−1,1 is a thin strip from z∞,i,1 to
x′i .

Since M{Kp(τ ),δ} is regular but M−M{Kp(τ ),δ} is not a priori regular, it remains to
verify the following:

Claim 3.3.4. — For ε, δ > 0 sufficiently small, then there exists a truncation M′ of M
containing M{Kp(τ ),δ} and whose boundary, when restricted to a neighborhood of τ =+∞, is A1 ∪˜A2,

where #A2 ≡ #˜A2 mod 2.

Note that there are two types of boundary points: (i) points of the SFT compact-
ification and (ii) boundary points of a manifold with boundary. (i) gives A1 and (ii) gives
˜A2.

Proof. — There exist ε, δ > 0 sufficiently small such that v− passes through Kp(τ ),δ

whenever (v+, v−) ∈ A1. Hence if u ∈M is close to a curve in A1, then u ∈M{Kp(τ ),δ}.
This accounts for the term A1 in the claim.

Next suppose that u ∈ M − M{Kp(τ ),δ} for τ near +∞. By the argument of
Lemma I.7.2.3, u is arbitrarily close to a building of type A2 and M′ is obtained from M
by truncating ends that are close to A2. Then, by the adaptation of Theorem I.7.2.2 to
our case, ˜A2 := ∂M′ −A1 satisfies #A2 ≡ #˜A2 mod 2. �

Step 2 (Breaking at −∞).

Lemma 3.3.5. — ∂{−∞}M⊂ A3, where

A3 =
∐

y2,y4

(

MI=0,n∗=0

J
♦
−∞,1(ε,δ,p(−∞))

(y,y2,y′, h(y4))

×MI=2,n∗=m

J
♦
−∞,2(ε,δ,p(−∞))

(y4,y2;m(−∞))

)

.

Here the union is over all y2, y4 such that y4 = {x#
ij(i)}2g

i=1 and y2 = {x#
ik(i)}2g

i=1, where j(i) is odd and

k(i) is even.

Lemma 3.3.5 will be proved in Section 3.5. Gluing the pairs (v1, v2) in A3 accounts
for the term �′

0 in Equation (3.3.1). The map �′
0 is given by:

〈�′
0(y),y′〉 =

∑

y2,y4

#MI=0,n∗=0

J
♦
−∞,1(ε,δ,p(−∞))

(y,y2,y′, h(y4)),

where y2, y4 are as in A3. Write �b,a for the sum of all y2 from Lemma 3.3.5 and write
�h(a),h(b) for the sum of all h(y4) from Lemma 3.3.5. Theorem 2.4.2 can be rephrased as
(verification left to the reader):
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Theorem 3.3.6. — Suppose y4 = {x#
ij(i)}2g

i=1 and y2 = {x#
ik(i)}2g

i=1, where j(i) is odd and k(i)

is even. Then

#MI=2,n∗=m

J
♦
−∞,2(ε,δ,p(−∞))

(y4,y2;m(−∞))≡ 1 mod 2.

The argument of Claim 3.3.4 gives:

Claim 3.3.7. — For ε, δ > 0 sufficiently small, the restriction of ∂M′ to a neighborhood of

−∞ is A3.

Step 3 (Breaking in the middle).

Lemma 3.3.8. — ∂(−∞,+∞)M⊂ A4 �A5, where:

A4 =
∐

y′′∈Sa,h(a)

(

MI=1
J (y,y′′)×MI=1,n∗=m

{J♦τ (ε,δ,p(τ ))}
(y′′,y′;m)

)

;

A5 =
∐

y′′′∈Sb,h(b)

(

MI=1,n∗=m

{J♦τ (ε,δ,p(τ ))}
(y,y′′′;m)×MI=1

J (y′′′,y′)
)

.

Lemma 3.3.8 will be proved in Section 3.6. Using the technique of [Li, Prop. A.1
and A.2], we can glue each of the pairs in A4 and A5. This gluing accounts for the term
∂ ′H′ +H′̃∂ in Equation (3.3.1), where the map H′ is given by:

〈H′(y),y′〉 =
∑

τ∈T1∪T2

#MI=1,n∗=m

{J♦τ (ε,δ,p(τ ))}
(y,y′;m).

Claim 3.3.9. — For ε, δ > 0 sufficiently small,

∂M′ = A1 ∪˜A2 ∪A3 ∪A4 ∪A5.

Step 4 (Additional degenerations). In this step we give the necessary modifications for

M=MI=2,n∗=m+|I|
{J♦τ (ε,δ,p(τ ))}

(z,y′;m),

where z= {z∞,i}i∈I ∪ y, y and y′ are tuples in S, and I ⊂ {1, . . . ,2g} with |I|> 0.
The following is proved in Section 3.7:

Lemma 3.3.10. — ∂{+∞}M⊂ A′
2, where

A′
2 =

∐

δ0γ,{z∞}∪y′′

(

MI=1,n∗=m+|I|−1,fδ0 ,†

J
♦
+(ε,δ,p(+∞))

(z, δ0γ)

×MI=0,n∗=0

J
♦
−(ε,δ,p(+∞))

(δ0γ, {z∞} ∪ y′′)
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×MI=1,n∗=1
J

({z∞} ∪ y′′,y′)
)

,

if y′ = {xj

i}×y′′ for some x
j

i and A′
2 =∅ otherwise. The disjoint union for A′

2 ranges over all δ0γ such

that γ ∈ ̂O2g−1 and all {z∞} ∪ y′′ such that y′ can be written as {xj

i} ∪ y′′ for some x
j

i . Here we have

omitted the potential contributions of connector components and we are writing x0
i := xi and x1

i := x′i .

If I �=∅ (i.e., |I| ≥ 1), then ˜�(z)= 0 by Lemma I.6.6.5 and we have � ◦˜�(z)=
0; this is consistent with the analog of A1 being empty. On the other hand, gluing the
triples in A′

2 accounts for the term ˜∂1 ◦˜V.
Next, the following is proved in Section 3.8:

Lemma 3.3.11. — ∂{−∞}M⊂ A′
3, where:

A′
3 =

∐

y2,y4

(

MI=0,n∗=|I|
J
♦
−∞,1(ε,δ,p(−∞))

(z,y2,y′, h(y4))

×MI=2,n∗=m

J
♦
−∞,2(ε,δ,p(−∞))

(y4,y2;m(−∞))
)

and the summation is over y2 and y4 as in Lemma 3.3.5.

We define:

〈�′
0(z),y′〉 =

∑

y2,y4

#MI=0,n∗=|I|
J
♦
−∞,1(ε,δ,p(−∞))

(z,y2,y′, h(y4)),

where y2, y4 are summands of �b,a and �h(a),h(b).
The following is proved in Section 3.9. The corresponding gluing accounts for the

term ∂ ′H′ +H′̃∂ in Equation (3.3.1) when |I| ≥ 1. Here the map H′ is given by:

〈H′(z),y′〉 =
∑

τ∈T1∪T2

#MI=1,n∗=m+|I|
{J♦τ (ε,δ,p(τ ))}

(z,y′;m).

Lemma 3.3.12. — ∂(−∞,+∞)M⊂ A′
4 �A′

5, where:

A′
4 =

∐

z′

(

MI=1,n∗≤|I|
J

(z,z′)×MI=1,n∗≤m+|I|
{J♦τ (ε,δ,p(τ ))}

(z′,y′;m)
)

;

A′
5 =

∐

y′′′∈Sb,h(b)

(

MI=1,n∗=m+|I|
{J♦τ (ε,δ,p(τ ))}

(z,y′′′;m)×MI=1
J (y′′′,y′)

)

.

Moreover, if v1,1 ∈MI=1,n∗≤|I|
J

(z,z′), then either (i) v
�

1,1 is a thin strip and v
�

1,1 is a union of trivial

strips, or (ii) v
�

1,1 =∅ and v
�

1,1 has image in W.

As before, the analog of Claim 3.3.9 holds.
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FIG. 7. — Degeneration of the base B−∞,1

Step 5 (The map �0). The map �0 is defined as follows:

�0 : ˜CF(a, h(a))→ ̂CF(b, h(b)),

〈�0(z), [y′]〉 =
∑

y2,y4,y′∈[y′]
#MI=0,n∗=|I|

J−∞,1
(z,y2,y′, h(y4)).

where y2, y4 are summands of �b,a and �h(a),h(b). It is clear that �0 = q ◦�′
0.

Lemma 3.3.13. — The map �0 induces an isomorphism on the level of homology.

Proof of Lemma 3.3.13. We degenerate the base B−∞,1 as given in Figure 7. Slightly
more precisely, we take B−∞,1,τ ′ , τ ′ ∈ [0,+∞), which is obtained from

{−2≤ s ≤ 2} ∪ {0≤ t ≤ 1, s ≤ 2} ∪ {τ ′ ≤ t ≤ τ ′ + 1, s ≥−2} ⊂R2 =C

by smoothing the corners and use the complex structure j−∞,1,τ ′ induced from the
standard complex structure on C; then B−∞,1,τ ′=0 = B−∞,1 and j−∞,1,τ ′=0 = j−∞,1. Let
W−∞,1,τ ′ = B−∞,1,τ ′ × S and define the almost complex structures J−∞,1,τ ′ on W−∞,1,τ ′ in
the same way as on W−∞,1 with j−∞,1 replaced by j−∞,1,τ ′ .

The 1-parameter family (W−∞,1,τ ′, J−∞,1,τ ′) induces a chain homotopy between
�0 and the composition �B ◦�T, where:

�T : ˜CF(a, h(a))→ ̂CF(b, h(a)),

�B : ̂CF(b, h(a))→ ̂CF(b, h(b))

are defined by by counting holomorphic multisections of �×S, where � is a triangle (i.e.,
a disk with three boundary punctures), which are asymptotic to the top generators �b,a ∈
̂CF(b,a) and �h(a),h(b) ∈ ̂CF(h(a), h(b)), respectively, at one of the vertices. Usually in
the definitions of chain maps such as �T and �B we require �b,a and �h(a),h(b) to be
cycles. In our case they are not, but we have workarounds. In the �T case we must
consider one undesirable type of breaking which can a priori occur as we vary τ ′: a two-
level building u1 ∪ u2, where

– u1 is an index I=−1, n∗ = |I| curve in W−∞,1,τ ′ with ends z,y′2,y′, h(y4);
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– u2 ∈MI=1,n∗=0
J−∞,2

(y2,y′2); and

– y2 and y′2 differ by replacing one x#
ik(i) by x#

ij(i) where j(i) is odd and k(i) is even.

One can verify that the only possible component of u1 which has left end x#
i1 and which

satisfies n∗ ≤ |I|, projects to the quadrilateral Q with edges ai, bi, h(bi), h(ai) in Figure 6.
However, the component corresponding to Q has ECH index I= 0, which is a contradic-
tion. The index calculation basically follows from the fact that Q has three angles smaller
than π and one larger. This implies that undesirable breakings do not exist and that all
the breakings contribute toward the chain homotopy.

Both �T and �B — and hence �0 — induce isomorphisms on the level of homol-
ogy. �

This completes the proof of Theorem 3.3.1, assuming the results from Sec-
tions 3.4–3.9. �

3.4. Degeneration at +∞. — In this subsection we study the limits of holomorphic
maps to Wτ as τ →∞, i.e., when Wτ degenerates into the concatenation of W+ with
W− along the ECH-type end, in order to prove Lemma 3.3.2.

We assume that m � 0; ε, δ > 0 are sufficiently small; and {Jτ } ∈ I reg
and

{J♦τ (ε, δ,p(τ ))} satisfies Lemma 3.2.22. Fix y ∈ Sa,h(a), y′ ∈ Sb,h(b) and let

M=MI=2,n∗=m

{J♦τ (ε,δ,p(τ ))}
(y,y′;m), Mτ =MI=2,n∗=m

J
♦
τ (ε,δ,p(τ ))

(y,y′;m(τ )).

We will analyze ∂{+∞}M.
Let ui , i ∈N, be a sequence of curves in M such that ui ∈Mτi

and lim
i→∞

τi =+∞,

and let

(3.4.1) u∞ = (v−1,1 ∪ · · · ∪ v−1,c)∪ v− ∪ (v0,1 ∪ · · · ∪ v0,b)∪ v+ ∪ (v1,1 ∪ · · · ∪ v1,a)

be the limit holomorphic building, where each v∗ is an SFT level (recall Notation 1.0.3
regarding the use of subscripts ∗), the levels are ordered from bottom to top as we go from
left to right, v−1,j , j = 1, . . . , c, maps to W; v− maps to W−; v0,j , j = 1, . . . , b, maps to W′;
v+ maps to W+; and v1,j , j = 1, . . . , a, maps to W. Here we are allowing the possibility
that a, b, or c= 0. For notational convenience, sometimes we will refer to v+ as v0,b+1 or
v1,0 and v− as v−1,c+1 or v0,0.

Notation 3.4.1. — We will be using the conventions established in Section 3.2.3
(and in particular Notation 3.2.10).

– We write Ḟ∗, Ḟ′∗, Ḟ′′∗ for the domains of v∗, v′∗, v
′′
∗.

– We write p∗ for the covering degree of v′∗.
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– If ṽ∗1 is a union of components of a level v∗1 and ṽ∗2 is a union of components of
a possibly different level v∗2 , then we write ṽ∗1  ṽ∗2 (resp. ṽ∗1 ! ṽ∗2 ) to indicate
that the level v∗1 is above (resp. equal to or above) the level v∗2 .

Since ghost components can be eliminated by the discussion in Lemma I.6.1.8 they
will not be explicitly mentioned in the rest of the paper.

We have the following two constraints:

n∗(ui)=
∑

v∗

n∗(v∗)= m;(3.4.2)

I(ui)=
∑

v∗

I(v∗)= 2,(3.4.3)

where the summations are over all the levels v∗ of u∞.

Outline of proof of Lemma 3.3.2. The proof of Lemma 3.3.2 follows the same general outline
of Sections I.7.4–I.7.11: First we calculate the contributions to n∗ of the ends that limit to
multiples of z∞ or δ0 in Section 3.4.1 and obtain lower bounds on the ECH indices of the
levels v∗ in Section 3.4.2, under the assumption that there are no boundary points at z∞.
Boundary points at z∞ are treated in Sections 3.4.3 and 3.4.4. The main new difficulty is
to show that I(v∗)≥ I(v′∗)+ I(v′′∗) for v∗ ! v+; this uses the more complicated version of
the ECH index inequality given in Lemma I.5.7.21. We then use Equations (3.4.2) and
(3.4.3) to obtain Lemma 3.4.21, which describes the case when v′∗ ∪ v�

∗ =∅ for all levels
v∗, and Lemma 3.4.25, which gives a preliminary list when v′∗ ∪v�

∗ �=∅ for some v∗. The
renormalization argument from Sections I.7.8–7.10, given in Lemma 3.4.28, eliminates
all the possibilities with the exception of Case (21) of Lemma 3.4.25 when v′∗ ∪ v�

∗ �= ∅

for some v∗.

At this point the reader is strongly encouraged to review Section I.5.7 on holomorphic curves with

ends at z∞.

3.4.1. Intersection numbers. — In this subsection we give the analogs of Lemmas
I.7.4.1–I.7.4.5 for u∞ ∈ ∂{+∞}M:

Lemma 3.4.2.

(1) If v′′∗ has a negative end E− that converges to δ
p

0, then n∗(E−)≥ m− p.

(2) If v′′∗ has a positive end E+ that converges to δ
p

0, then n∗(E+)≥ p.

Proof. — This is analogous to Lemma I.7.4.1 and is proved in the same way. �

Definition 3.4.3. — An end E is nontrivial if it is not an end of a trivial cylinder or trivial

strip.
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Convention. In this paper we assume that an end of a holomorphic curve is connected,
unless stated otherwise.

Recall the sequence ui ∈Mτi
with τi →+∞ and its limit SFT building u∞ given

by Equation (3.4.1). Let Ġi be the domain of ui . Fix k ∈ {1, . . . ,2g}. The following
Lemma 3.4.4 describes the breaking/“SFT limit” of the component of ui|∂Ġi

which maps
to Lτi,+

ak
, into a sequence of paths g1

a , . . . , g1
1, g0, g0

1, . . . , g0
a , g∗j ⊂ Im(v1,j), j ≥ 0, ∗ = 0,1,∅,

as τi →∞.
Let ∂+Bτ (resp. ∂+Wτ ) be the s > 0 boundary of Bτ (resp. Wτ ) and let C1,j , j ≥ 0, be

the data for v′1,j ; see Section I.5.7.2 for the definition of the data C1,j . Then we have the
following, whose proof is immediate.

Lemma 3.4.4. — Given a sequence ui and a choice of k ∈ {1, . . . ,2g}, the components of

ui|∂Ġi
which map to Lτi,+

ak
converge uniquely (in the “SFT sense”) to a sequence of paths

(3.4.4) g1
a , . . . , g1

1, g0, g0
1, . . . , g0

a

which satisfies the following:

(1) g∗j = v1,j(f
∗

j ) where j ≥ 0, ∗ = 0,1,∅, and f ∗j is a (connected) component of ∂Ḟ1,j ,

where Ḟ∗ is as given in Notation 3.4.1.

(2) If f ∗j is a component of ∂Ḟ′′1,j , then g1
j ⊂ R× {1} × ak and g0

j ⊂ R× {0} × h(ak) if

j > 0 and g0 ⊂ L+ak
if j = 0.

(3) If f ∗j is a component of ∂Ḟ′1,j , then f ∗j and also g∗j come with extra data C1,j which assigns:

f 1
j , g1

j �→ Lak,l
=R× {1} × ak,l,

f 0
j , g0

j �→ Lh(ak,l′ ) =R× {0} × h(ak,l′),

f0, g0 �→ L+ak,l′′ ,

for some l, l ′, l ′′ = 0 or 1.

For convenience we write g0 = g1
0 = g0

0 . We say an element g∗j is trivial if the corre-
sponding f ∗j satisfies (3).

Definition 3.4.5 (Continuations). — If g∗j is any element of Sequence (3.4.4), then Sequence

(3.4.4) is the continuation of g∗j along ∂+Bτ and the terms to the right of g∗j in Sequence (3.4.4)
form the continuation of g∗j in the direction of ∂+Bτ .

Lemma 3.4.4 and Definition 3.4.5 play an important role in the proof of
Lemma 3.4.7, which is a refined version of Lemma I.7.4.2, where the ends are con-
sidered collectively as well as individually. The proof strategy will usually be referred to
as the continuation argument.
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Let ρ0 > 0 be small and let πD2
ρ0

be the projection of

(3.4.5) D1 := {ρ ≤ ρ0} ⊂W− int(W) or D2 := {ρ ≤ ρ0, |s| ≥ l(τ )+1} ⊂Wτ− int(Wτ )

to D2
ρ0
= {(ρ,φ) | ρ ≤ ρ0} ⊂ S along the stable Hamiltonian vector field Rτ which was

defined in Section 3.1.5.

Remark 3.4.6. — πD2
ρ0

maps the intersection of R× δρ0,φ
+
0

(which appears in the
definition of n∗ in Equation (3.2.3)) and one of D1 or D2 to m equally spaced points on
∂D2

ρ0
.

Lemma 3.4.7. — Suppose v′1,j ∪ v
�

1,j �= ∅ for some j > 0. Let E−,i , i = 1, . . . , q, be the

negative ends of ∪a
j=1v

�

1,j that converge to z∞ and let E+,i , i = 1, . . . , r, be the positive ends of ∪a−1
j=0 v

�

1,j

that converge to z∞.

(1) For each i,

(3.4.6) n∗(E−,i)≥ k0 − 1� 2g,

where the constant k0 is as given in Section I.5.2.2.

(2) If there are no boundary points at z∞, then

(3.4.7) n∗((∪q

i=1E−,i)∪ (∪r
i=1E+,i))≥ m− p+,

where p+ = deg(v′+), and

D2
ρ0
− (∪q

i=1πD2
ρ0
(E−,i))∪ (∪r

i=1πD2
ρ0
(E+,i))

consists of at most p+ thin sectors.

Recall that a sector S of D2
ρ0

from φ0 to φ1 is the map

[0, ρ0] × [φ0, φ1]→D2
ρ0
, (ρ,φ) �→ ρeiφ,

or its image (by abuse of notation). A thin sector (also referred to as a thin wedge in [I]) is the
smallest counterclockwise sector from ai,j ∩D2

ρ0
to h(ai,j)∩D2

ρ0
for some i, j and has angle

2π
m

.
Following Definition I.7.4.4, a point p ∈ ∂Ḟ′′∗ is a boundary point at z∞ if v′′∗(p) ∈

(Lh(a)−Lh (̂a))∪ (La−Lâ)=R×{0,1}× {z∞} for ∗ = (1, j), j > 0, and v′′∗(p) ∈ L+a −L+â
for ∗ =+.

Proof. — We consider the πD2
ρ0

-projections of the positive and negative ends of v1,j ,
j > 0, and the positive ends of v1,0 that limit to z∞.
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(1) Given a nontrivial negative end E−,i limiting to z∞, its projection can be written
as:

πD2
ρ0
(E−,i)=S(h(ak,l), ak′,l′),

where S(A,B) denotes the smallest counterclockwise sector from the radial ray A to the
radial ray B. Then Equation (3.4.6) follows from Remark 3.4.6 and the fact that the angle
between h(ak,l) and ak′,l′ is at least 2π(k0−1)

m
as defined in Section I.5.2.2. (This is more or

less the same as Lemma I.7.4.2(2); in fact “> 2g” in the statement can be replaced by
“≥ k0 − 1� 2g”.)

(2) We start at a nontrivial negative end of some v1,j1 limiting to z∞, which we call
E−,1 without loss of generality. Then

πD2
ρ0
(E−,1)=S(h(ak1,l1), ak2,l2).

We analyze the continuation

(3.4.8) g1
j1−1,1, . . . , g1

1,1, g0,1, g0
1,1, . . . , g0

a,1

of g1
j1,1 ⊃ ∂1E−,1 in the direction of ∂+Bτ . Here ∂kE−,i , k = 0,1, is the t = k boundary of

E−,i , and f ∗1∗2
corresponds to g∗1∗2

as in Definition 3.4.5.

(i) Suppose there is some 0≤ j < j1 such that g1
j,1 is nontrivial. Let j2 ≥ 0 be the first such

occurrence in the continuation. Then v
�

1,j2 has some nontrivial end which we call E+,1,
such that

πD2
ρ0
(E+,1)=S(ak2,l2, h(ak3,l3)).

This is because all the terms of Equation (3.4.8) are assigned Lak2
or L+ak2

and all the terms
between g1

j1,1 and g1
j2,1 correspond to the same Lak2,l2

.

(ii) On the other hand, if g1
j,1 is trivial for all 0≤ j ≤ j1, then we set j2 = 0 and h(ak2,l2)=

h(ak3,l3) and skip S(ak2,l2, h(ak3,l3)), which is a thin sector.

Next we consider the continuation

g0
j2+1,2, . . . , g0

a,2

of g0
j2,2 in the direction of ∂+Bτ . Here g0

j2,2 ⊃ ∂0E+,1 if (i) holds; and j2 = 0, g0,2 = g0,1, and
f0,2 = f0,1 if (ii) holds. There must exist some nontrivial g0

j,2, j > j2, and we write j3 for the
first such occurrence in the continuation. Then v

�

1,j3 has some nontrivial end which we
call E−,2, such that

πD2
ρ0
(E−,2)=S(h(ak3,l3), ak4,l4).
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Continuing in the same manner, we eventually return to E−,1, and the sectors

(3.4.9) S(h(ak1,l1), ak2,l2),S(ak2,l2, h(ak3,l3)),S(h(ak3,l3), ak4,l4), . . . ,

with some thin sectors of type S(ak2i,l2i
, h(ak2i+1,l2i+1)) omitted if they correspond to (ii),

sweep out a neighborhood of z∞ in D2
ρ0

, possibly more than once and with the possible
exception of p+ thin sectors. This proves (2). �

We remark that, a posteriori, the sectors from Equation (3.4.9) sweep out a neigh-
borhood of z∞ only once in view of Equation (3.4.7).

Lemma 3.4.8. — If p ∈ ∂F′′∗ is a boundary point of v′′∗ at z∞, then n∗(v′′∗(N(p)))≥ k0 −
1� 2g, where N(p)⊂ F′′∗ is a sufficiently small neighborhood of p.

Proof. — The proof is the same as that of Lemma I.7.4.5. �

3.4.2. Bounds on ECH indices. — The goal of this subsection is to show the nonneg-
ativity of I(v∗) except when v∗ = v+, under the assumption that there are no boundary points at

z∞; see Lemma 3.4.14. The main new difficulty is to show that I(v∗)≥ 0 for v∗  v+. If
v∗  v+ and v′∗ ∪ v�

∗ �=∅, then we need to apply the version of the ECH index inequality
in the presence of ends that limit to z∞ (Lemma I.5.7.21). To apply Lemma I.5.7.21, we
need to verify a certain “alternating property” for the ends of v∗ that limit to z∞; this is
the content of Lemma 3.4.13.

Remark 3.4.9. — The ECH index in the presence of ends that limit to z∞ was
given in Definition I.5.7.3. Although the definition of the ECH index involves a groomed
multivalued trivialization τ (Definition I.5.7.5), by Lemma I.5.7.20 it is independent of
the choice of groomed multivalued trivialization and we may write Iτ (v∗) or I(v∗).

Let Aε = ∂D2
ε × [0,1] for 0 < ε < ρ0 small and let π[0,1]×S be the projection of

W or the positive end of Wτ to [0,1] × S. The following is a corollary of the proof of
Lemma 3.4.7:

Corollary 3.4.10. — The intersection c := π[0,1]×S(∪iE−,i)∩Aε is groomed and the sets P0

and P1 of initial and terminal points of c alternate along (0,2π).

Note that we will often view P0 and P1 (and analogous defined points on Aε) as subsets of ∂D2
ε .

Definition 3.4.11. — A cycle Z = (z1 → z2 → ·· ·→ zk → z1) on ∂D2
ε =R/2πZ is

a sequence of points zi ∈R/2πZ, together with chords in R/2πZ from zi to zi+1,9 where the indices

are taken modulo k.

9 By “chord” we mean a path with positive derivative in the R-direction.



HF=ECH VIA OPEN BOOK DECOMPOSITIONS II

The continuation method from Lemma 3.4.7 gives a cycle

Z = (z10 → z11 → ·· ·→ zk0 → zk1 → z10),

satisfying the following:

(1) the cycle winds around R/2πZ once;
(2) Pi = {z1i, . . . , zki} for i = 0,1 and each point of Pi appears only once in Z ; and
(3) the chords correspond to the sectors listed in (3.4.9) as well as thin sectors of

type S(ak′,l′, h(ak′,l′)) that are skipped in Step (ii) of Lemma 3.4.7.

Next let
−→D ±,j be the data at z∞ for the ± end of v1,j and let P±,j,0 and P±,j,1 be the

initial and terminal points on Aε determined by
−→D ±,j . Then we write

(3.4.10) P±,j,i = P′±,j,i � P′′±,j,i,

where P′±,j,i corresponds to v′1,j and P′′±,j,i corresponds to v′′1,j . Note that

(3.4.11) P+,j−1,i = P−,j,i and P′+,j−1,i = P′−,j−1,i.

Definition 3.4.12. — Let P be a finite subset of S1 =R/2πZ. Denoting an element of S1 by

an equivalence class [c], where c ∈R, if [a] �= [b] ∈ P, then we write [a]�P [b] if there exist a′ ∈ [a],
b′ ∈ [b] such that a′ < b′ < a′ + 2π and there are no representatives of P in the open interval (a′, b′).

Observe that the relation �P is not symmetric, i.e., [a]�P [b] does not necessarily
imply that [b]�P [a].

Lemma 3.4.13. — For each ∗ = (±, j), P∗,0 ⊂ P0 and P∗,1 ⊂ P1 and the points of P∗,0
and P∗,1 alternate along (0,2π).

Proof. — The proof is by induction on the level; see Figure 8 for an example. We
will inductively define P(0)

i ⊃ P(1)
i ⊃ P(2)

i ⊃ . . . , i = 0,1, and the corresponding cycles
Z (0),Z (1), . . . and show that the following hold for each j = 0,1, . . . :

(j0) the points of P(j)

0 and P(j)

1 alternate along (0,2π);
(j1) P−,j0−j,i = P+,j0−j−1,i ⊂ P(j)

i , i = 0,1;
(j2) there is a partition of P−,j0−j,0∪P−,j0−j,1 into pairs of type {p0,p1}, pi ∈ P−,j0−j,i ,

such that p0 �P(j)

0 ∪P(j)

1
p1; in particular, the points of P−,j0−j,0 and P−,j0−j,1 alter-

nate along (0,2π);
(j3) P′+,j0−j−1,i = P′−,j0−j−1,i ⊂ P(j+1)

i , i = 0,1;
(j4) there is a partition of P′+,j0−j−1,0 ∪ P′+,j0−j−1,1 into pairs of type {p0,p1}, pi ∈

P′+,j0−j−1,i , such that p0 �P(j+1)
0 ∪P(j+1)

1
p1; in particular, the points of P′+,j0−j−1,0 and

P′+,j0−j−1,1 alternate along (0,2π).
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FIG. 8. — Each rectangular box, with the sides identified, is Aε ; the top is ∂D2
ε ×{1} and the bottom is ∂D2

ε ×{0}. For each
figure, P�

∗,0 and P�
∗,1 are the sets of initial and terminal points of the arcs drawn, where the arcs are always oriented from

bottom to top. The extra dots are drawn only for reference. The kth row corresponds to Step k. The solid and dashed arcs
in the left column together indicate Z (0) and Z (1). The dashed arcs are potential arcs whose endpoints give pairs of points
in P′′+,j,0 and P′′+,j,1

Note that P−,j0−j,i = P+,j0−j−1,i in (j1) and P′+,j0−j−1,i = P′−,j0−j−1,i in (j3) by Equa-
tion (3.4.11).

Step 1. Let v1,j0 be the highest level which has a negative end at z∞, let P(0)
i = Pi , i =

0,1, and let Z (0) = Z . The construction of Z (0) (following the proof of Lemma 3.4.7)
immediately implies (00)–(02).

Step 2. We consider the positive ends of v1,j0−1 that limit to z∞. There is a partition of
P′′+,j0−1,0 ∪ P′′+,j0−1,1 into pairs of type {p0,p1}, pi ∈ P′′+,j0−1,i , such that p1 �P(0)

0 ∪P(0)
1
p0, i.e.,

there is a chord p1 → p0 in Z (0). Let P(1)
i = P(0)

i − P′′+,j0−1,i and let Z (1) be obtained from
Z (0) by inductively replacing q→ p1 → p0 → q′ by q→ q′, given by concatenation. This
makes sense since each point of P(0)

i appears only once in Z (0). Then P(1)
0 ∪ P(1)

1 is the
set of (alternating) points of Z (1), each point of P(1)

i appears only once in Z (1), and Z (1)

winds around R/2πZ once. Hence (10) follows from the description of Z (1). Similarly,
since P′+,j0−1,i = P+,j0−1,i − P′′+,j0−1,i and (02) holds, (03) and (04) follow immediately.

Step 3. We consider the negative ends of v1,j0−1 that limit to z∞. There is a partition of
P′′−,j0−1,0 ∪ P′′−,j0−1,1 into pairs of type {p0,p1}, pi ∈ P′′−,j0−1,i , such that p0 �P(1)

0 ∪P(1)
1
p1, i.e.,

there is a chord p0 → p1 in Z (1). Since P−,j0−1,i = P′−,j0−1,i ∪ P′′−,j0−1,i and (04) holds, (11)
and (12) follow immediately.

Repeated application of the above then implies the lemma. �

Lemma 3.4.14. — If fiber components are removed from u∞ and there are no boundary points

at z∞, then:
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(1) the only components of v′∗ with negative ECH index are the branched covers of σ+∞;

(2) the ECH index of each level v∗ �= v+ is nonnegative; and

(3) I(v1,j)≥ I(v′1,j)+ I(v′′1,j) for 0≤ j ≤ a, with equality for j > 0.

Proof. — The proof is analogous to that of Lemma I.7.5.5.
(1) If a component ṽ of u∞ is a branched cover of some σ ∗∞ with possibly empty

branch locus, then, by Lemmas I.5.7.15 and I.5.7.16, I(̃v) = 0 with the exception of
I(̃v)=−deg(̃v) if ṽ covers σ+∞. For all other components ṽ (i.e., those that do not branch
cover any σ ∗∞), the regularity of {Jτ } and the ECH-type index inequalities imply that
I(̃v)≥ 0.

(2) for v0,j , 1≤ j ≤ b. By [HT1, Proposition 7.15(a)] and the regularity of {Jτ }, we
have I(v0,j)≥ 0 for 1≤ j ≤ b, where equality holds if and only if v0,j is a connector.

(2) and (3) for v1,j . We claim that I(v1,j) ≥ 0 for 0 < j ≤ a and I(v1,j) ≥ I(v′1,j) +
I(v′′1,j) for 0≤ j ≤ a, with equality for j > 0.

Suppose z∞ does not appear at an end of v1,j . With the possible exception of
fiber components, v1,j is simply-covered and regular since there is at least one HF end.
Hence the claim follows from the regularity of {Jτ } and the usual index inequality (Lem-
mas I.4.5.13 and I.5.6.9).

Suppose z∞ appears at an end of v1,j . Let c±,j (resp. c′±,j , c
′′
±,j ) be the groomings

corresponding to the ± ends of v1,j (resp. v′1,j , v
′′
1,j ) at z∞, such that:

(α1) c±,j = c′±,j ∪ c′′±,j ;
(α2) c−,j has winding w(c−,j)≥ 0 and c+,j has winding w(c+,j)≤ 0;
(α3) c′′−,j = π[0,1]×S(E

j
−)∩Aε and c′′+,j = π[0,1]×S(E

j
+)∩Aε, where E j

+ (resp. E j
−) is the

set of positive (resp. negative) ends of v�

1,j converging to z∞.

Recall that the matchings defined by c±,j do not need to coincide with the matchings in

the data
−→D ±,j at z∞ for the ± ends of v1,j ; only their endpoints do. What (α3) says is that

we are requiring c′′±,j to coincide with the data at z∞ for v′′1,j . On the other hand, in view
of (α1) the data at z∞ for v′1,j does not necessarily coincide with c′±,j .

By Lemma 3.4.13, the sets P±,j,0 and P±,j,1 of initial and terminal points of c±,j
alternate along (0,2π). Hence, by the version of the ECH index inequality given by
Lemma I.5.7.21,

(3.4.12) I(v′′1,j)≥ ind(v′′1,j)≥ 0.

Also, by (α1) and an easy unwinding of the definition of I(v1,j),

(3.4.13) I(v1,j)≥ I(v′1,j)+ I(v′′1,j) for j ≥ 0;
moreover, equality holds for j > 0 since v′1,j and v′′1,j do not intersect (if they did, then
∑

v∗ n∗(v∗) > m). Finally, I(v′1,j) = 0 for j > 0 by Lemma I.5.7.15; together with Equa-
tions (3.4.12) and (3.4.13), this gives I(v1,j)≥ 0 for j > 0. This proves the claim.
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(2) and (3) for v−1,j and v−. The case of v−1,j , 1 ≤ j ≤ c + 1, (this includes v−) is
similar, and the lemma follows. �

3.4.3. Boundary points at z∞. — In this subsection we describe the necessary mod-
ifications when u∞ has boundary points at z∞.

Let us suppose the following:

(S) There is only one boundary point r ∈ F′′∗0
at z∞ and v′′∗0

(r) ∈ {(0,1)} × a ⊂
W=R× [0,1] × S.

We are assuming (S) for notational simplicity; the general case of multiple boundary
points at z∞ is treated in exactly the same way (except for more complicated notation).

For the purposes of computing the Fredholm and ECH indices, we make the fol-
lowing modifications which allow us to use the considerations from Sections 3.4.1, 3.4.2,
and I.5.7. We view the base B = R × [0,1] with the preferred point (0,1) as a two-
level building consisting of a disk B◦1 with three boundary punctures and a disk B◦2 with
one boundary puncture. (What we are doing here is bubbling off a neighborhood of the
point (0,1) ∈ B when taking the limit ui → u∞.) All the punctures are viewed as strip-like
ends: the punctures of B◦1 are called the positive, left negative, and right negative ends,
corresponding to the positive end, (0,1), and the negative end of B, and the puncture
of B◦2 is called the positive end and is identified with the left negative end of B◦1. See
Figure 9. We write ∂B◦1 = �3

i=1∂iB◦1, arranged in counterclockwise order, such that ∂1B◦1,
∂2B◦1, and ∂B◦2 correspond to R× {1} and ∂3B◦1 corresponds to R× {0}. The cobordism
W= B× S decomposes into W

◦
1 = B◦1 × S and W

◦
2 = B◦2 × S, the Lagrangian submani-

fold R× {1} × a decomposes into ∂1B◦1× a, ∂B◦2× a, and ∂2B◦1× a, and the Lagrangian
submanifold R× {0} × h(a) corresponds to ∂3B◦1 × h(a). We identify the positive end of
W
◦
1 with [0,∞)× [0,1] × S, the left negative end with (−∞,0] × [ 1

2 ,1] × S, and the
right negative end with (−∞,0] × [0, 1

2] × S.
Denote the sections at infinity of W

◦
i , i = 1,2, by σ ◦,i∞ = B◦i × {z∞}. A curve v∗0 in

W decomposes into v◦,1∗0
∪ v◦,2∗0

, where v◦,i∗0
= v◦,i,

′
∗0
∪ v◦,i,

′′
∗0

, i = 1,2, is a curve in W
◦
i , v◦,i,

′
∗0

is a possibly branched cover of σ ◦,i∞ , and v◦,2,
′′

∗0
is a union of constant sections B◦1 × {pt},

pt ∈ â.

(R) We view the chords at the positive ends of v◦,2∗0
and the left negative ends of

v◦,1∗0
, including z∞, as Reeb chords in a Morse-Bott family and, for the purposes

of calculating Maslov indices, we pretend that the Morse-Bott family has been
perturbed so that z∞ is the bottom generator of each ai . In particular, at z∞ we
assume that, when we go around the boundary of W

◦
2 in the counterclockwise

direction, each ai is rotated slightly in the negative φ-direction by a Hamilto-
nian isotopy.

We emphasize that v◦,1∗0
∪ v◦,2∗0

is essentially the same thing as v∗0 , described in a slightly different way.
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FIG. 9. — The dot in the left-hand picture is the preferred point (0,1)

The reader can verify that, with our convention (R),

ind(σ ◦,i∞ )= 0, i = 1,2, I(v◦,2,
′

∗0
)= 0,

I(v◦,2,
′′

∗0
)= ind(v◦,2,

′′
∗0

)= 0, ind(v′′∗0
)= ind(v◦,1,

′′
∗0

).
(3.4.14)

We apply the continuation method to v1,j , 0 ≤ j ≤ a, (1, j) �= ∗0 = (1, j0), and
v◦,i∗0

, i = 1,2: We adapt the definition of a continuation along ∂+Bτ in a natural way
by replacing g1

j0
by g1

j0,1, gj0,2, g
1/2
j0,1, which correspond to ∂1B◦1, ∂B◦2, ∂2B◦1, respectively, in

Equation (3.4.4). As in Lemma 3.4.7, start with a nontrivial negative end E1 of some v1,j1

or v◦,1∗0
limiting to z∞ and continue the corresponding g1

j1
, g1

j0,1, or g
1/2
j0,1 in the direction of

∂+Bτ , until some g�1
�2
�⊂ σ ∗∞ is reached. Suppose E2 is the end of some component of u∞

which “lies between” g�1
�2

and some g
�′1
�′2

. We then switch from g�1
�2

to g
�′1
�′2

and continue. This
gives a sequence of sectors of type S(ak,l, ak′,l′) (corresponding to the left negative end of
W
◦
1; here if (k, l)= (k′, l ′), then we view the sector as the full 2π sector), S(h(ak,l), ak′,l′),

or S(ak′,l′, h(ak,l)), and hence a unique cycle

Z = (z1 → z2 → ·· ·→ zk → z1)

that winds around R/2πZ once. Note that if there is a boundary point at z∞, then there
is at least one sector of type S(ak,l, ak′,l′).

We leave it to the reader to make the proper generalizations of Z when we do not
assume (S); ∗0 =+ or (−1, j0), 1 ≤ j0 ≤ c+ 1; and/or the boundary point at z∞ lies on
Lh(a), L+a , Lb, Lh(b), or L−

b
.

Let A[a,b]
ε be the annulus {ρ = ε} ⊂ [a, b] × D2

ρ0
. Writing ∗0 = (1, j0), let

−→D +,j0 ,−→D L−,j0 ,
−→D R−,j0 be the data at z∞ of the positive, left negative, and right negative ends,

and let PL−,j0,1/2 and PL−,j0,1 (resp. PR−,j0,0 and PR−,j0,1/2) be the initial and terminal points

of A[1/2,1]
ε (resp. A[0,1/2]

ε ) determined by
−→D L−,j0 (resp.

−→D R−,j0 ). We also decompose P∗,i =
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P′∗,i ∪P′′∗,i , ∗ = (L−, j0), (R−, j0), or (+, j0), as before so that P′∗,i corresponds to v◦,1,
′

∗ and
P′′∗,i corresponds to v◦,1,

′′
∗ .

The following definition does not assume (S).

Definition 3.4.15. — A boundary point r ∈ ∂F∗0 , ∗0 = (1, j0), 0≤ j0 ≤ a, at z∞ falls into

one of three (mutually exclusive) types:

(P1) v′∗0
=∅;

(P2) v′∗0
�=∅ and all the vertices of Z lie on arcs of type ak,l or all the vertices of Z lie on arcs

of type h(ak,l);

(P3) v′∗0
�=∅ and Z has vertices that lie on arcs of both types ak,l and h(ak,l).

The boundary points r ∈ ∂F∗0 , ∗0 = (−1, j0), 1≤ j0 ≤ c+ 1, at z∞ are classified similarly.

The following is a strengthening of Lemma 3.4.7 when v′1,j ∪ v
�

1,j �= ∅ for some
j > 0 and there are boundary points of type (P3) at z∞:

Lemma 3.4.16. — Suppose v′1,j ∪ v
�

1,j �=∅ for some j > 0. Let E−,i , i = 1, . . . , q, be the

negative ends of ∪a
j=1v

�

1,j that converge to z∞, let E+,i , i = 1, . . . , r, be the positive ends of ∪a−1
j=0 v

�

1,j
that converge to z∞, and let E ′i , i = 1, . . . , s, be the neighborhoods of the boundary points of type (P3).

Then

(3.4.15) n∗((∪q

i=1E−,i)∪ (∪r
i=1E+,i)∪ (∪s

i=1E ′i ))≥ m− p+.

Proof. — Similar to that of Lemma 3.4.7. �

Lemma 3.4.17. — If p1, . . . ,ps are the boundary points of type (P1) and (P2) and N(pi)⊂
F∗ is a small neighborhood of pi , then

∑s

i=1 n∗(v∗(N(pi)))≥ m.

Proof. — (P2) follows immediately from the description of Z ; (P1) is similar. �

3.4.4. Bounds on ECH indices, part II. — In this subsection we give bounds on ECH
indices in the presence of boundary points at z∞.

For simplicity we are still assuming (S). The ECH indices of v◦,i∗0
are defined in a

manner similar to that of Definition I.5.7.3.

Lemma 3.4.18. — If v′∗0
, v′′∗0

�=∅, (S) holds, and the boundary point at z∞ is of type (P3),

then there exist contributions I+ ≥ 0, IL− = 2, and IR− ≥ 0 from the ends that limit to z∞ at the

positive, left negative, and right negative ends, such that

(3.4.16) I(v∗0)≥ I(v◦,1,
′

∗0
)+ I(v◦,1,

′′
∗0

)+ I+ + IL− + IR−.

Proof. — The calculation of IL− is similar to the ECH index calculations of Sec-
tion I.5.7 and in particular that of Lemma I.5.7.22.
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FIG. 10. — c′L− ∪ c′′L− for r of type (P3). Here c′′L− is the strand in the front

First observe that PL−,j0,1/2 = PL−,j0,1. For simplicity suppose that the only chord
of Z corresponding to a sector of type S(ak,l, ak′,l′) is z′1 → z′2. Observe that there are
no points of Z between z′1 and z′2, since otherwise Z winds more than once around
R/2πZ. Hence P′′L−,j0,1/2 = {z′1}, P′L−,j0,1/2 = {z′2, z′′1, . . . , z′′s }, P′′L−,j0,1 = {z′2}, and P′L−,j0,1 ={z′1, z′′1, . . . , z′′s }, where PL−,j0,1/2 = PL−,j0,1 is written as {z′1, z′2, z′′1, . . . , z′′s } in cyclic order
around R/2πZ, and the projection of the left negative end of v◦,1,

′′
∗0

that limits to z∞
intersects A[1/2,1]

ε along an arc c′′L− with winding number w(c′′L−)= 0 or 1, depending on
whether S(ak,l, ak′,l′) is a large sector; see Figure 10. The left negative ends of v◦,1,

′
∗0

that
limit to z∞ give a grooming c′L− on A[1/2,1]

ε/2 such that the winding number w(c′L−)= 0 or
−1 and c′L− connects z′′i to z′′i , i = 1, . . . , s, by vertical arcs. Then the writhe of c′L− ∪ c′′L−
is +1 and resolving the positive crossing of c′L− ∪ c′′L− yields a grooming c̃L,− by vertical
arcs from PL−,j0,1/2 to PL−,j0,1.

We now consider the disk Ď corresponding to resolving the positive crossing that
we “append” to the left negative end of v◦,1∗0

as in the proof of Lemma I.5.7.22. The disk
Ď contributes 1,0,1, and 0 to Q, c1,μ, and the discrepancy: Q is equal to the writhe
+1. The calculations for μ assume convention (R). Suppose w(c′L−) = w(c′′L−) = 0 (the
case w(c′L−) = −1 and w(c′′L−) = 1 is similar and is left to the reader). Then μ of the
positive ends of Ď are 1,0, . . . ,0 and μ of the negative ends are all 0. The discrepancy
contribution at the negative end of Ď is zero since c̃L,− is a grooming by (almost) vertical
arcs. Hence IL− = 2.

Finally, since I(v∗0)= I(v◦,1∗0
)+ I(v◦,2∗0

) and I(v◦,2∗0
)= 0, we have I(v∗0)= I(v◦,1∗0

)=
I(v◦,1,

′
∗0

)+ I(v◦,1,
′′

∗0
)+ I+ + IL− + IR−. Lemma 3.4.14 implies that I+ ≥ 0 and IR− ≥ 0. �

Remark 3.4.19. — In general, each collection of boundary points of type (P3) that
map to the same point on the base contributes at least +2 towards I. The proof is similar
to but slightly more complicated than that of Lemma 3.4.18, and is left to the reader.

The following is a strengthening of Lemma 3.4.14 in the presence of boundary
points at z∞:

Lemma 3.4.20. — If fiber components are removed from u∞ and the only boundary points are

of type (P3), then
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(1) the only components of v′∗ with negative ECH index are the branched covers of σ+∞;

(2) the ECH index of each level v∗ �= v+ is nonnegative; and

(3) For 0≤ j ≤ a,

I(v1,j)≥
{

I(v′1,j)+ I(v′′1,j) if bp1,j = 0;
I(v′1,j)+ I(v′′1,j)+ 2 if bp1,j > 0.

Here bp∗ is the number of boundary points of type (P3) on v∗.

Proof. — We explain the modifications that need to be made when there are
boundary points at z∞ in view of Lemma 3.4.18 and Remark 3.4.19. We assume (S)
for simplicity. The cycles Z (a−j) are defined as in the proof of Lemma 3.4.13, for j ≥ j0.
We define Z (a−j0,+) =Z (a−j0) and Z (a−j0,−) as Z (a−j0,+) with z′1 → z′2 replaced by z′2. Then
Z (a−(j0−1)) is obtained using Z (a−j0,−) instead of Z (a−j0). Also, P�

R−,j0,i , � = ∅,′ ,′′, is ob-
tained from P�

+,j0,i by replacing z′1 by z′2. The rest of the argument of Lemma 3.4.14
carries over. �

3.4.5. Case of v′∗ ∪ v�
∗ =∅ for all v∗.

Lemma 3.4.21. — If u∞ ∈ ∂{+∞}M and v′∗ ∪ v�
∗ = ∅ for all levels v∗ of u∞, then a =

c = 0; I(v+)= 0; I(v−) = 2; v+ is a W+-curve; v− is a W−-curve; and there may be connectors

v0,j in between.

Proof. — Suppose that u∞ ∈ ∂{+∞}M and v′∗ ∪ v�
∗ =∅ for all levels v∗ of u∞. Then

there is a point q ∈ int(F−) and a sufficiently small neighborhood N(q)⊂ Ḟ− of q such that
v−(q)=m(∞) and n∗(v−(N(q)))≥ m. By Equation (3.4.2) and Lemma 3.4.8, there are
no boundary points at z∞ and the only possible fiber component passes through m(∞).
Hence every level v∗, ∗ �= −, has image inside W′, W, or W+ and v− is a W−-curve or a
degenerate W−-curve by the analog of Lemma I.7.5.2.

The ECH index of each level �= v+ and which has no fiber component is non-
negative by Lemma 3.4.14. Since v+ is a W+-curve, I(v+) ≥ 0. On other hand, by the
previous paragraph, if there is a fiber component, then it is a component of v−. We claim
that I(v−)≥ 2, with equality if and only if v− is not a degenerate W−-curve. Indeed, if v−
is not degenerate, then I(v−)≥ 2 by the point constraint (this is the only place where we
use the fact that u∞ ∈ ∂{+∞}M) and the ECH index inequality, and if v− is degenerate,
then I(v−)≥ 4, as computed in the proof of Lemma I.7.5.5.

The lemma then follows from Equation (3.4.3). In particular, degenerate W−-
curves are not allowed. �

3.4.6. Preliminary restrictions when v′∗ ∪ v�
∗ �=∅ for some v∗. — We now consider the

case where v′∗ ∪ v�
∗ �=∅ for some level v∗.
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Lemma 3.4.22. — If v′∗ ∪ v�
∗ �=∅ for some level v∗ of u∞, then:

(1) p− = deg(v′−) > 0;

(2) u∞ has no boundary point of type (P1) or (P2);

(3) u∞ has no fiber components and no components of v′′∗ that intersect the interior of a section at

infinity;

(4) each component of v
�

−1,j , j = 1, . . . , c, is a thin strip from z∞ to some xi or x′i with I= 1;

(5) each component of v�
− is a section of W− −W− from δ0 to some xi or x′i with I= 1;

(6) each component of v
�

0,j , j = 1, . . . , b, which has a positive end at a multiple of δ0 is a

cylinder from δ0 to h or e with I= 1 or 2;

(7) the only boundary points at z∞ are type (P3) points of v′′1,j , j = 0, . . . , a.

Proof. — The lemma is a consequence of Equation (3.4.2). Suppose v′∗∪v�
∗ �=∅ for

some level v∗. Then v�
∗ �=∅ for some v∗ and each end of v�

∗ that limits to some multiple
of z∞ or δ0 contributes positively to n∗ by Lemma 3.4.2 and the proof of Lemma I.7.4.2
(also see Lemma 3.4.7(1)).

(1) If v′− =∅, then the restriction of v′′− to a neighborhood of m(+∞) contributes
m towards n∗(v−). This contradicts the discussion from the previous paragraph, proving
(1).

Since v′− �=∅, some v
�

0,j , j = 1, . . . , b+ 1, or v�

1,j , j = 1, . . . , a, has a negative end
at z∞ or a multiple of δ0. By Lemmas 3.4.2(1) and 3.4.16, it follows that:

(3.4.17)
∑

v∗ v−
n∗(v∗)≥ m− 2g,

where we are counting contributions from the ends and the boundary points of type (P3).
(2)–(7) are consequences of Equation (3.4.17). We explain (2) and (3), leaving the

rest to the reader. By Lemma 3.4.17, the neighborhoods of the boundary points of type
(P1) or (P2) contribute at least m towards n∗(v′′∗) in total. Also, a non-ghost fiber component
or a component of v′′∗ that intersects the interior of a section at infinity contributes m

towards n∗. They both contradict Equation (3.4.17). �

Lemma 3.4.23. — If v′∗ ∪ v�
∗ �=∅ for some level v∗, then the following alternative holds:

(a) either some v
�

0,j0 , j0 = 1, . . . , b+ 1, has a negative end at a multiple of δ0, in which case

v′0,j0 =∅, v′∗ = v�
∗ =∅ for all levels v∗  v0,j0 , and v′0,j �=∅ for all levels v′− # v0,j ≺

v′0,j0 ; or

(b) no v
�

0,j , j = 1, . . . , b+ 1, has a negative end at a multiple of δ0, in which case v′∗ �=∅

for all levels v′− # v′∗ # v′+ and v′1,j ∪ v
�

1,j �=∅ for some j > 0.

Proof. — This follows from Lemmas 3.4.2(1) and 3.4.16 by observing that either
case contributes at least m− 2g towards n∗ and that it is not possible to have both since
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m� 2g. It is also not possible to have multiple occurrences of negative ends of v�

0,j , j > 0,
that converge to some multiple of δ0. �

3.4.7. List of possibilities when v′∗ ∪ v�
∗ �=∅ for some v∗. — We first start with a useful

definition.

Definition 3.4.24.

(1) Let X1∪· · ·∪Xr be an r-level split almost complex manifold with cylindrical ends, ordered

from bottom to top, and let

v = v1 ∪ · · · ∪ vr, Im(vi)⊂Xi,

be a corresponding r-level holomorphic building, where each level has finite energy. If E is

some collection of positive ends of vr , then the holomorphic building hanging from E
is the union of irreducible components ṽi0 for which there exist irreducible components ṽi ,

i = i0 + 1, . . . , r, where the limit of a positive end of ṽi agrees with the limit of a negative

end of ṽi+1 for all i = i0, . . . , r − 1 and a positive end of ṽr is contained in E .

(2) If X1∪· · ·∪Xr+1 is an (r+1)-level split almost complex manifold, v = v1∪· · ·∪vr+1

is a corresponding (r + 1)-level holomorphic building and E is some collection of negative

ends of vr+1, then the holomorphic building hanging from E is defined similarly.

(3) If X1 ∪ · · · ∪ Xr is an r-level split almost complex manifold, v = v1 ∪ · · · ∪ vr is a

corresponding r-level holomorphic building and E is some collection of negative ends of v1,

then the holomorphic building sitting above E is the union of irreducible components

ṽi0 for which there exist irreducible components ṽi , i = 1, . . . , i0 − 1, where the limit of a

negative end of ṽi agrees with the limit of a positive end of ṽi−1 for all i = 2, . . . , i0 and a

negative end of ṽ1 is contained in E .

(4) If X0 ∪ · · · ∪Xr is an (r + 1)-level split almost complex manifold, v = v0 ∪ · · · ∪ vr is

a corresponding (r + 1)-level holomorphic building and E is some collection of positive ends

of v0, then the holomorphic building sitting above E is defined similarly.

Lemma 3.4.25. — If v′∗ ∪ v�
∗ �=∅ for some level v∗, then v′− �=∅, there are no boundary

points at z∞, and u∞ contains one of the following subbuildings:

(1) A 3-level building consisting of a component of v
�

0,1 with I= 1 from γ to δ0γ
′; v′− = σ−∞;

and a thin strip.

(2i ) A 3-level building consisting of a component of v�
+ with I= i, i = 0,1, from y or y′′ to

δ0γ
′; v′− = σ−∞; and a thin strip.

(3) A 4-level building consisting of a component of v�
+ with I= 0 from y to δ2

0γ
′; v′0,1 = σ ′∞;

a component of v
�

0,1 which is an I= 1 cylinder from δ0 to h; v′− = σ−∞; and a thin strip.

(4) A 4-level building consisting of a component of v�
+ with I= 0 from y to δ2

0γ
′; v′0,1 with

I= 0 and deg= 2; v′− = σ−∞; a component of v�
− which is an I= 1 curve from δ0 to

some xi or x′i ; and a thin strip.
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FIG. 11. — Schematic diagrams for the possible types of degenerations. Here • represents δ0, ◦ represents z∞, � represents
a possible location of a branch point and × represents some xi or x′i . A vertical line indicates the restriction of a trivial
cylinder, a dotted vertical line indicates a trivial cylinder, a double vertical line indicates a degree 2 branched cover of a
trivial cylinder or a restriction of a trivial cylinder, and a triple vertical line indicates a degree p ≥ 2 branched cover of a
trivial cylinder or a restriction of a trivial cylinder. The labels on the graphs are ECH indices of each component. All the
thin strips of v�

−1,j are drawn on the same level for convenience

(5) A ≥ 3-level building consisting of a component of v�
+ with I= 0 from y to δ2

0γ
′; v′0,1 and

v′− with I= 0 and deg= 2, where v′0,1 =∅ is possible; and two thin strips.

(6i ) A ≥ 4-level building consisting of a component of v
�

1,1 with I = i, i = 1,2, from y
to {zr

∞} ∪ y′; 0 < p0,0 ≤ p0,1 ≤ · · · ≤ p0,b+1 ≤ r; I(v′+) = −p0,b+1; I(v′0,j) = 0
for j = 1, . . . , b; v�

+ with I = 2 − i which has no negative ends at a multiple of δ0;

p0,b+1 − p0,1 cylinders of v
�

0,j , j ∈ {1, . . . , b}, with I= 1 each from δ0 to h; p0,1 − p0,0

components of v�
− with I= 1 each from δ0 to some xi or x′i ; and p0,0 thin strips. The total

ECH index of the building hanging from the negative end of v′+ is p0,b+1.

Here we are omitting levels which are connectors. If there is more than one thin strip, then the thin strips

could be on the same level or on different levels.

See Figure 11.

Proof. — The lemma is a consequence of Equations (3.4.2) and (3.4.3). By Lemmas
3.4.20 and 3.4.22(2), (3), all the levels v∗ besides v+ have nonzero ECH index, the only
components of u∞ which have negative ECH index are the branched covers of σ+∞, and
I(v1,j)≥ I(v′1,j)+I(v′′1,j) or I(v′1,j)+I(v′′1,j)+2 for 0≤ j ≤ a, depending on whether bp1,j =
0 or > 0. In particular, all the components of u∞ which are left out of the subbuildings in
(1)–(6i ) and are not drawn in Figure 11 have I≥ 0.

By Lemma 3.4.22(1), v′− �= ∅. By Lemma 3.4.22(2), (7), there are no boundary
points of types (P1) and (P2) and no boundary points of type (P3) except for v′′1,j , j =
0, . . . , a. Cases (1)–(5) have no boundary points at z∞ (since the ECH index would add
up to more than 2) and Case (6i ) may have boundary points of type (P3).

First suppose that some v
�

0,j0 , j0 ∈ {1, . . . , b}, has a negative end at δ
p

0 for some
p > 0. This is the situation of Lemma 3.4.23(a) with j0 ∈ {1, . . . , b}. In this case, all the
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components and levels have nonnegative ECH index. Each component of v�
∗ ≺ v0,j0 de-

scribed in Lemma 3.4.22(4)–(6) satisfies I≥ 1 and there must be p > 0 such components
since v0,j0 has multiplicity p at δ0. We then have the following contributions towards I:

(a)
∑

v
�∗≺v0,j0

I(v�
∗)≥ p and there is at least one thin strip.

(b) I(v�

0,j0)≥ 1 since v0,j0 is nontrivial.

Then p = 1 and all the components and levels besides those of (a) and (b) satisfy I = 0.
We are in Case (1).

Next suppose that v�

0,b+1 = v�
+ has a negative end at δp

0. This is the situation of
Lemma 3.4.23(a) with j = b + 1. Since v′+ = ∅, all the components and levels satisfy
I ≥ 0. Here v�

+ cannot have any multiple of z∞ at the positive end, since otherwise we
contradict Equation (3.4.2). Since I(v�

+) ≥ 0 and
∑

v
�∗≺v+ I(v�

∗) ≥ p, either p= 1 and we
are in Case (2i ) or p= 2 and we are in Cases (3)–(5).

Finally suppose that no v
�

0,j , j = 1, . . . , b+ 1, has a negative end at a multiple of δ0.
This is the situation of Lemma 3.4.23(b). We have the following contributions:

(α) degv′+ = p0,b+1 and I(v′+)=−p0,b+1.
(β ) By Lemma 3.4.22(4)–(6), the holomorphic building hanging from the negative

end of v′+ satisfies
∑

v∗≺v+ I(v′∗ ∪ v�
∗)≥ p0,b+1, and equality holds if and only if

there is no cylinder from δ0 to e.
(γ ) I = 2 components of v�

0,j from δ0 to e can be eliminated by observing that it
is followed by an I=−1 component of v�

− from e to some xi or x′i , which is a
contradiction.10

(δ) Some v
�

1,j0 , j0 ≥ 0, must have an end at z∞ (or some boundary point of type
(P3) must have a neighborhood) which projects to a large sector of D2

ρ0
. Since

v
�

1,j0 generically lies on a codimension 1 stratum of some ind(v�

1,j0)-dimensional
moduli space, the large sector contributes an additional +1 to the Fredholm
and ECH indices, cf. Lemma I.5.7.21.

(ε) If bp is the number of boundary points of type (P3) and bp> 0, then the con-
tribution to I is at least 2.

(α), (β ), and (γ ) together give:

I(v′+)+
∑

v∗≺v+
I(v′∗ ∪ v�

∗)= 0.

Now, I(v′′1,j)≥ 1 for each j > 0,11 (δ) contributes at least 1 to I, and (ε) contributes at least
2 to I if bp> 0. Hence bp= 0, a= 1, and we are in Case (6i ), i = 1,2. �

10 Strictly speaking, J− is the restriction of a Morse-Bott J′. To give a proper treatment of regularity, we must perturb
J′ using an arbitrarily small Morse function to obtain (J′)♦ and then restrict (J′)♦ to W−.

11 Recall that we are ignoring connectors.



HF=ECH VIA OPEN BOOK DECOMPOSITIONS II

3.4.8. Elimination of some cases when v′∗ ∪ v�
∗ �= ∅ for some v∗. — The goal of this

subsection is to eliminate all but one of the possibilities (namely Case (21)) given in
Lemma 3.4.25 and to prove Lemma 3.3.2.

Definition 3.4.26. — If π :�→�′ is a branched cover and B(π) is the branch locus of π ,

then we define

b(π)=
∑

x∈B(π)

(deg(x)− 1),

where deg(x) is the degree of the branch point x. We also write b(u) = b(π∗ ◦ u), where π∗ is the

projection to the base B, B′, etc., and refer to it informally as “the number of branch points of u.”

Let E−,i , i = 1, . . . , q, be the negative ends of ∪a
j=1v

�

1,j that converge to z∞ and let
E+,i , i = 1, . . . , r, be the positive ends of ∪a−1

j=0 v
�

1,j that converge to z∞ as in Lemma 3.4.7.

Lemma 3.4.27. — Suppose we are in Case (6i ) of Lemma 3.4.25. Then
∑

v′∗ b(v
′
∗), includ-

ing branched points of connector components, is equal to the number of negative ends E−,i . Moreover, if F is

the surface obtained by gluing all the domains of v′∗, then F is a connected planar surface whose compact-

ification (after filling in the interior and boundary punctures) has a single positive boundary component,

i.e., coming from levels v1,j , j = 0, . . . , a, together with some number of negative boundary components,

i.e., coming from levels v−1,j , j = 1, . . . , c+ 1.

Proof. — Suppose we are in Case (6i ) of Lemma 3.4.25. We claim that we may
make the following simplifying assumptions after rearranging some levels:

(1) v1,1 is a connector;
(2) all the ends E−,i are negative ends of v�

1,2;
(3) all the ends E+,i are positive ends of v�

+;
(4) all the branch points of v′∗ lie on v′1,1.

Note that in Lemma 3.4.25 we omitted connectors, but in the present analysis we need
to keep track of connectors which are branched covers. Since the lemma is of topological
nature, we may assume that all the connectors between v+ and v1,1 have been merged
and, after renaming, the connector level is v1,1 and the old v1,1 becomes v1,2. This gives
(1). (2) is immediate and (3) can be arranged by topologically moving up/down the ends
E+,i if necessary. (4) can be obtained by pushing all the branched points of v′∗ from the
lower levels to v′1,1; this operation is possible because v�

∗ # v+ does not have a negative
end that limits to z∞ in Case (6i ). Note that this operation does not affect:

– the total Fredholm index
∑

v′∗ ind(v′∗); and
– the topological type of F.

As a consequence of (1)–(4), each component of v′∗ # v′+ is an unbranched cover of the
appropriate σ ∗∞.
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We now compute the Fredholm index of v′1,1 : Ḟ1,1 →W using the Fredholm index
formula

ind(v′1,1)=−χ(Ḟ1,1)+ p1,1 +μτ(v
′
1,1)+ 2c1((v

′
1,1)

∗TS, τ );
see Equation (I.5.7.2). Recall we are writing p∗ = deg(v′∗). The groomed multivalued
trivialization τ is defined as follows: Let S±,i be the sector of D2

ρ0
given by πD2

ρ0
(E±,i). If (ii)

and its analogs occur in the proof of Lemma 3.4.7, then we add the thin counterclockwise
sectors S(ak2,l2, h(ak2,l2)), etc. to the set {S+,i}. The sets {S+,i} and {S−,i} correspond to

the data
−→D − and

−→D + at the negative and positive ends of v′1,1
12 and we let τ be the

induced groomed multivalued trivialization.
By a calculation similar to that of Lemma I.5.7.15, c1((v

′
1,1)

∗TS, τ ) = 1 and the
ends of v′1,1 contribute the following to μτ(v

′
1,1):

– 0 if S−,i is a small sector;
– −1 if S−,i is a large sector;
– −1 if S+,i is a small sector; and
– −2 if S+,i is a large sector.

Hence μτ(v
′
1,1)=−p1,1 − 1. Since χ(Ḟ1,1)= p1,1 − b(v′1,1), we obtain:

ind(v′1,1)= (b(v′1,1)− p1,1)+ p1,1 + (−p1,1 − 1)+ 2(3.4.18)

= b(v′1,1)− (p1,1 − 1).

Next we claim that ∂F1,1 is connected. Indeed, if ∂F1,1 is disconnected, then the
method of Lemma 3.4.7 implies that the union of all the S±,i covers D2

ρ0
more than once;

this contradicts Equation (3.4.2). The claim in turn implies that b(v′1,1)≥ p1,1 − 1, since
otherwise F1,1 is disconnected and ∂F1,1 will have more than one component. Hence
ind(v′1,1)≥ 0; moreover, if ind(v′1,1) > 0, then ind(v′1,1)≥ 2.

We claim that ind(v′1,1)≥ 2 is not possible. Indeed, we add up the Fredholm indices
of all the remaining components as in the proof of Lemma 3.4.25:

(a) ind(v�

1,2)≥ 1 and ind(v′+)=−p+;
(b)

∑

ṽ ind(̃v)≥ p+, where the summation is over all components ṽ of u∞ that are
hanging from the negative end of v′+;

(c) a large sector of D2 contributes an additional +1 to the Fredholm index; and
(d) all the other components of u∞ have nonnegative Fredholm index.

(a), (b), (d) are clear, and (c) was explained in Lemma 3.4.25. The total of (a)–(d) is ≥
2, which is an index excess of +2, and the claim follows. The claim then implies that
ind(v′1,1)= 0, b(v′1,1)= p1,1 − 1, and F1,1 is a disk.

12 Note that the plus and minus signs are switched. This is due to the fact that, for example, {S−,i} gives the data for
the negative ends of v1,2 that limit to z∞, which agrees with the data for the positive ends of v1,1 that limit to z∞.
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Finally, since F is diffeomorphic to a surface obtained by gluing Ḟ1,1 and p1,1 sur-
faces which are diffeomorphic to Bτ or B+, it must be connected and planar, and its
compactification is as described in the lemma. �

Lemma 3.4.28. — Suppose m� 0. If v′∗ ∪ v�
∗ �=∅ for some level v∗, then Cases (1), (20),

(3)–(6i) of Lemma 3.4.25 are not possible. This leaves us with Case (21).

Proof. — Arguing by contradiction, suppose there exist sequences mi → ∞,
εi, δi → 0, and uij → ui∞, where uij ∈M(mi), ui∞ ∈ ∂{+∞}M(mi), M(mi) is M with re-

spect to the family {J♦τ (εi, δi,p(τ );mi)}, and ui∞ falls into one of Cases (1), (20), (3)–(6i ).
We consider a diagonal subsequence ui := uij(i).

Cases (1) and (20) are eliminated by an argument similar to that of Case (2) of
Theorem I.7.10.1 and Cases (3)–(5) are eliminated by an argument similar to that of
Cases (3)–(6) of Theorem I.7.10.1.

Case (6i ). Suppose for simplicity that b= 1, including connectors.
As in the proof of Theorem I.7.10.1, for i� 0, we consider a truncation ũi :�i →

Wτi
of ui (i.e., a restriction of ui to a neighborhood of σ τi∞) such that there exist real num-

bers

R0,i < R1,i < R2,i < R3,i, R0,i �−l(τi), R3,i � l(τi)

and a map

πi :�i → Bτi
∩ {R0,i ≤ s ≤R3,i},

such that the restriction of πi to π−1
i ({Rj,i ≤ s ≤ Rj+1,i}), j = 0,1,2, is a degree p0,j

branched cover. Here p0,0 ≤ p0,1 ≤ p0,2. We project ũi to D2
ρ0
⊂ S for ρ0 > 0 small us-

ing balanced coordinates and then apply the ansatz from Equation (I.7.8.1) to obtain
wi :�i →C.

Applying the method of Section I.7.8, we rescale wi by a positive real constant and
take the limit mi →∞ to obtain a 3-level holomorphic building

w∞ =w− ∪w0,1 ∪w+.

We write w∗ : �∗ → CP1 for the components of the building w∞ and π∗ : �∗ → cl(B∗)
for the corresponding branched covers, where ∗ = +, −, or (0,1), and B0,1 = R× S1.
We may also use subscripts (0,0) and (0,2) to mean − and +. Note that degπ0,j = p0,j .
By Lemma 3.4.27, the surface �∞, obtained by gluing the �∗, is connected and planar.
The next few paragraphs are devoted to the description of w∗ and π∗.

Suppose for simplicity that �−, �0,1, and �+ are connected. Starting from the
bottom, w− and π− satisfy the following:

(i−) w−(∂�−)⊂ {φ = 0, ρ > 0};
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(ii−) π−1
− (+∞) is a single point and w−(π−1

− (+∞))=∞;
(iii−) w−(z0)= 0 for one of the points z0 ∈ π−1

− (m
b
(∞)); and

(iv−) w−|int(�−) is a biholomorphism onto its image.

(i−) and (iii−) are clear, (ii−) follows from the fact that �∞ (and hence �−) is connected and
planar, and (iv−) is a consequence of Equation (3.4.2). Let us write f∗ = π∗ ◦w−1

∗ , where
defined. Then f− maps the asymptotic marker Ṙπ(∞) for ∞∈ CP1, corresponding to
the radial ray Rπ , to the asymptotic marker L̇3/2(+∞) for +∞∈ cl(B−), corresponding
to the half-line L3/2, by the Involution Lemma I.7.9.3.

We then move up to w0,1, which satisfies the following:

(i0,1) w0,1(π
−1
0,1(−∞))= {d1 = 0, d2, . . . , dk}, where di ∈R≥0 and di < di+1;

(ii0,1) π−1
0,1(+∞) is a single point and w0,1(π

−1
0,1(+∞))=∞;

(iii0,1) w0,1 is a biholomorphism; and
(iv0,1) f0,1 :CP1 → cl(B0,1) maps Ṙπ(0) to L̇3/2(−∞).

The placement of the points d2, . . . , dk in (i0,1) follows from observing that v�
− consists of

I= 1 components from δ0 to xi or x′i . In particular, the asymptotic eigenfunctions of v�
− at

the positive end are close to constant functions with values on R+ ⊂C. (ii0,1) follows from
the fact that �∞ is connected and planar and (iii0,1) follows from Equation (3.4.2). (iv0,1)
is a consequence of the fact that f− maps Ṙπ(∞) to L̇3/2(+∞). Then f0,1 maps Ṙπ(∞)

to L̇3/2(+∞) by the Involution Lemma I.7.9.4.
We now describe the construction of w+ in some detail. By translating

π−1
i (Bτi

∩ {R2,i ≤ s ≤R3,i})
down by Ti , we obtain the branched cover

π+i :�+
i → B+ ∩ {R2,i −Ti ≤ s ≤R3,i −Ti}

and the holomorphic map w+
i : �+

i → C. We may assume that R2,i − Ti →−∞ and
R3,i − Ti →+∞ have been chosen so that there is no sequence of branch points of π+i
that limits to s = ±∞ as i →∞. Indeed, the branch points that “escape to s = ±∞”
properly belong to a different level. Then w+ is the limit of w+

i , after suitably rescaling
by positive real constants.

Let
−→D = {(i′k, j ′k)→ (ik, jk)}pk=1 be the data at the positive end of w+. For i� 0, the

component of w+
i |(π+i )−1({s=R3,i−Ti}) corresponding to (i′k, j ′k)→ (ik, jk) is arbitrarily close to

a normalized asymptotic eigenfunction φk from h(ai′k,j′k) to aik,jk , after multiplying by some
positive real constant. (Here φk is an eigenfunction of an asymptotic operator and we are
not making any a priori assumptions on the corresponding eigenvalues.) Now we claim
that some φk0 must sweep out a large sector of D2, since otherwise Im(w+

i ) cannot pass
through the origin, contradicting the “continuity” to w0,1. In the limit i →∞, φk0 will
sweep out an angle of 2π .

The top level w+ satisfies the following:
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(i+) w+(π−1
+ (−∞))= {d+1 = 0, d+2 , . . . , d+k+}, where d+i ∈R≥0 and d+i < d+i+1;

(ii+) w+(∂�+)⊂ {φ = 0,0 < ρ ≤∞};
(iii+) w+ maps some point of π−1

+ (+∞) to ∞;
(iv+) f+ maps Ṙπ(0) to L̇3/2(−∞); and
(v+) w+ is a biholomorphism onto its image.

The placement of the points d+2 , . . . , d+k+ in (i+) follows from observing that v�

0,1 consists
of I = 1 components from δ0 to h and that Rφh

→ R0 as m →∞ by our choice of h

from Section 3.2.3. (ii+) and (iii+) are immediate consequences of the construction of w+
from the previous paragraphs. (iv+) is a consequence of the fact that f0,1 maps Ṙπ(∞)

to L̇3/2(+∞). We now apply the Involution Lemma I.7.9.5 to conclude that f+(∞) =
L3/2 ∩ ∂B+. Note that the Lemma I.7.9.5 applies because the compactification of �+ is
a closed disk by Lemma 3.4.27. This contradicts (ii+). We have eliminated Case (6i ). �

We are now in a position to prove Lemma 3.3.2.

Proof of Lemma 3.3.2. — Suppose u∞ ∈ ∂{+∞}M. By Lemma 3.4.21, if v′∗ ∪ v�
∗ =∅

for all levels v∗ of u∞, then u∞ ∈ A1. If v′∗ ∪ v�
∗ �=∅ for some level v∗, then u∞ is as given

in Lemma 3.4.25. Now, by Lemma 3.4.28, the only possibility left is Case (21), which
implies that u∞ ∈ A2. �

3.5. Degeneration at −∞. — In this subsection we study the limit of holomorphic
maps to Wτ as τ →−∞, i.e., when Wτ degenerates into W−∞,1∪W−∞,2. This will prove
Lemma 3.3.5.

We assume that m � 0; ε, δ > 0 are sufficiently small; and {Jτ } ∈ I reg
and

{J♦τ (ε, δ,p(τ ))} satisfy Lemma 3.2.22. Fix y ∈ Sa,h(a), y′ ∈ Sb,h(b) and let

M=MI=2,n∗=m

{J♦τ (ε,δ,p(τ ))}
(y,y′;m), Mτ =MI=2,n∗=m

J
♦
τ (ε,δ,p(τ ))

(y,y′;m(τ )).

We will analyze ∂{−∞}M.
Let ui , i ∈N, be a sequence of curves in M such that ui ∈Mτi

and lim
i→∞

τi =−∞,

and let

u∞ = v2 ∪ (vL,1 ∪ · · · ∪ vL,a)∪ v1 ∪ (vR,1 ∪ · · · ∪ vR,b)(3.5.1)

∪ (vB,1 ∪ · · · ∪ vB,c)∪ (vT,1 ∪ · · · ∪ vT,d),

be the limit holomorphic building, where each v∗ is an SFT-type level, vj maps to W−∞,j ,
j = 1,2; vL,j and vR,j map to [−2,2] ×R× S; vB,j and vT,j map to R× [0,1] × S. The
levels in the first row, called the horizontal levels, are arranged in cyclic order from left to
right, the levels in the second row, called the vertical levels, are arranged in order from bot-
tom to top, and v1 is between vB,c and vT,1. The terms “horizontal” and “vertical” refer
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to the positions of the levels in Figure 5, and do not imply a difference in the geome-
try. Both refer to fairly standard SFT degenerations and the existence of the limit u∞ is a
consequence of the SFT compactness discussion from Section I.7.3 with minimal change.
For notational convenience we refer to v1 as vL,a+1, vR,0, vB,c+1, or vT,0, and v2 as vL,0 or
vR,b+1. As usual, we write p∗ = degv′∗.

Terminology. Thin counterclockwise sectors in C from bi,j to ai,j and from h(bi,j) to h(ai,j)

will also be referred to as thin sectors.

Outline of proof of Lemma 3.3.5. The initial steps of the proof are similar to those of Sec-
tion I.7.4–I.7.11 and Section 3.4. However, the authors were unable to prove that I(vL,j)

and I(vR,j) were nonnegative when v′1 �= ∅, since we could not sufficiently control the
groomings in order to apply the ECH index inequality (Lemma I.5.7.21). Note that
Lemma 3.5.2(4) specifically excludes the case v′1 �=∅. Sections 3.5.3–3.5.6 are intended
as a substitute, and involve ideas from tropical geometry (see for example Parker [Pa]).

3.5.1. Continuation argument. — We discuss the continuation argument in the cur-
rent case; this is similar to but more complicated than those of Sections 3.4.1 and 3.4.3.
Suppose that v′∗ ∪ v�

∗ �=∅ for some level v∗ of u∞. For simplicity we assume that there are
no boundary points at z∞; we leave it to reader to make the appropriate modifications
when there are boundary points at z∞.

Case 1. Suppose that v′T,j ∪ v
�

T,j �=∅ for some j > 0. We start at a nontrivial negative end
E1 of some vT,j1 , j1 > 0, limiting to z∞. We consider the continuation

g1
j1−1,1, . . . , g1

1,1, g−a−1,1, . . . , gb+1,1, g0
1,1, . . . , g0

d,1

of the t = 1 boundary of E1 in the direction of ∂+Bτ . Here Definition 3.4.5 needs to
be adapted in the obvious way to the breaking of a component of ui|∂Ġi

as τi →−∞,
where Ġi is the domain of ui . The components g−a−1,1 and gb+1,1 correspond to v1 and
the components gj,1, j = −a, . . . , b, correspond to vL,j , j = a, a − 1, . . . ,0, and vR,j , j =
b, b− 1, . . . ,1, in that order. There are three possibilities:

(i) there is some g1
j,1, 0≤ j ≤ j1 − 1, which is nontrivial;

(ii) all the g1
j,1 are trivial but some gj,1 is nontrivial;

(iii) all the g1
j,1 and gj,1 are trivial.

Cases (i) and (iii) have already been treated in the proof of Lemma 3.4.7. If we are in
Case (ii), then the nontrivial component gj,1 contains the s= 2 boundary of a right end E2

that limits to z∞. We then consider the continuation of the s=−2 boundary of E2 in the
direction of ∂−Bτ . The details of the continuation are left to the reader, but in the end the
sectors πD2

ρ0
(Ei) will sweep out a neighborhood of z∞ with the exception of thin sectors.
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Case 2. Suppose that v′T,j ∪ v
�

T,j =∅ for all j > 0. Then v′1 =∅. Consider the horizontal
levels:

(3.5.2) v1 = vR,0, . . . , vR,b, v2, vL,1 . . . , vL,a+1 = v1.

Suppose that v′∗ ∪ v�
∗ �= ∅ for some horizontal level v∗. Let v∗ be the leftmost level in

Equation (3.5.2) such that v�
∗ has a right end E1 at z∞. The sector πD2

ρ0
(E1) is not a thin

sector and we apply the usual continuation argument to the levels of Equations (3.5.2).

Case 3. The case where v′T,j ∪ v
�

T,j =∅ for all j > 0, v′∗ ∪ v�
∗ =∅ for all horizontal levels

v∗, and v′B,j ∪ v
�

B,j �=∅ for some j ≤ c is treated similarly.

Let Z = (z1 → ·· ·→ zk → z1) be the cycle constructed using the above continua-
tion argument. Boundary points of type (P1), (P2), and (P3) are defined in the same way:
for (P2) all the vertices of Z lie on arcs of the same type (Type a, Type b, Type h(a), or
Type h(b)), and for (P3) the vertices of Z must lie on arcs of more than one type.

3.5.2. Some restrictions on u∞. — The following are analogs of Lemmas 3.4.16,
3.4.20, 3.4.21 and 3.4.22.

Lemma 3.5.1. — Suppose that v′∗ ∪ v�
∗ �=∅ for some level v∗ of u∞. If Ei , i = 1, . . . , q,

are the ends of all the v�
∗ that converge to z∞ and E ′i , i = 1, . . . , r are the neighborhoods of the boundary

points of type (P3), then

q
∑

i=1

n∗(Ei)+
r

∑

i=1

n∗(E ′i )≥ m− 2g.

Lemma 3.5.2. — If fiber components are removed from u∞ and the only boundary points at z∞
are of type (P3), then the following hold:

(1) the ECH index of each v′′∗ is nonnegative;

(2) the only components of u∞ which have negative ECH index are those of v′1, i.e., the branched

covers of σ−∞,1
∞ ;

(3) the ECH index of each level vT,j, vB,j �= v1 is nonnegative;

(4) if v′1 =∅, then the ECH index of each vL,j, vR,j �= v1, v2 is nonnegative;

(5) there is an additional contribution of bp∗ + 1 towards I, where bp∗ is the number of

boundary points of type (P3) on v∗.

Proof. — (1) and (2) are consequences of the index inequality. (3) and (4) follow
from the proof of Lemma 3.4.14. In the proof of (4), the vertical levels v1,a, . . . , v1,0 and
the arcs a, h(a) are replaced by the horizontal levels given by Equation (3.5.2) and the
arcs b, a. (5) is argued in the same way as Lemma 3.4.20. �
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Lemma 3.5.3. — If u∞ ∈ ∂{−∞}M and v′∗ ∪ v�
∗ = ∅ for all levels v∗ of u∞, then u∞

satisfies the following: a = b = c = d = 0; I(v1) = ind(v1) = 0 and I(v2) = ind(v2) = 2; and

v1 is a W−∞,1-curve and v2 is a W−∞,2-curve.

Proof. — Similar to that of Lemma 3.4.21 and is omitted. �

Lemma 3.5.4. — If v′∗ ∪ v�
∗ �=∅ for some level v∗ of u∞, then:

(1) p2 = deg(v′2) > 0;

(2) there is no boundary point of type (P1) or (P2), i.e., the only boundary points at z∞ are of

type (P3);

(3) u∞ has no fiber components and no components v′′∗ that intersect the interior of a section at

infinity;

(4) each of vL,j , j = 1, . . . , a, and vR,j , j = 1, . . . , b+ 1, consists of thin strips and trivial

strips; in particular, vL,j , j = 1, . . . , a, and vR,j , j = 1, . . . , b + 1 have no boundary

points at z∞.

Proof. — (1), (2), (3) We have the following contributions towards n∗: (1) the restric-
tion of v′′2 to a neighborhood of m(−∞) contributes m if v′2 = ∅; (2) boundary points
of type (P1) or (P2) contribute at least m in total; and (3) a fiber component or a compo-
nent of v′′∗ that intersects a section at infinity contributes at least m. All cases contradict
Lemma 3.5.1.

(4) Arguing by contradiction, suppose that some level vR,j0 , 1≤ j0 ≤ b, has a com-
ponent which is not a thin strip or a trivial strip. (The case of vL,j0 , 0≤ j0 ≤ a, only differs
in notation.) Here vR,j0 may have a boundary point of type (P3).

We claim that the following hold:

(a) n∗(vR,j0)= m and n∗,alt(vR,j0)≥ m− 2g;
(b) v

�

R,j0
�=∅ and some end of v�

R,j0
corresponds to a large sector;

(c) v′1 =∅ and v
�

T,j =∅ for all j > 0;
(d) no left end of vR,j0 limits to a multiple of z∞; in particular v′R,j0

=∅;
(e) there are no boundary points of type (P3);
(f) the ECH index of each vL,j , 1 ≤ j ≤ a, and vR,j , 1 ≤ j ≤ b+ 1 is nonnegative

and I(vR,j0)≥ 2.

Recall the definition of n∗,alt from Section 3.2.3.
We first prove (a). Consider the projection

πS : [−2,2] ×R× S→ S.

Since we are only dealing with compactness issues, we may assume without loss of gen-
erality that J

♦
−∞,2(ε, δ,p(−∞)) is a product complex structure and the projection πS is

holomorphic. Since vR,j0 has a component which is not a thin strip or a trivial strip,
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Im(πS ◦ vR,j0) must contain the complement of all the thin strips between the bi and the
ai . This proves (a).

We now prove (b)–(f). If (c) does not hold, then there is some negative end E of
∪a

j=1v
�

T,j that limits to z∞ and n∗(E)≥ k0−1� 2g. This is a contradiction of (a). If (d) does
not hold, i.e., a left end of vR,j0 limits to a multiple of z∞, then in view of (c) there is some
right end E of v�

∗ to the left of vR,j0 that limits to z∞ and satisfies n∗(E) ≥ k0 − 1� 2g.
This is a contradiction of (a). (e) is a consequence of (d). (b) follows from (a) and (e) by
excluding some possibilities using (2), (3). Finally we prove (f). By Lemma 3.5.2(4) and
(c), the ECH indices of vL,j , j = 1, . . . , a, and vR,j , j = 1, . . . , b + 1, are nonnegative.
Since v

�

R,j0
has a large sector by (b), its ECH index is increased by one. Hence I(vR,j0)≥

2.
We now return to the proof of (4). By (d), the right end of vR,j0 limits to a mul-

tiple of z∞. By (a), each component of v�
∗ �= v

�

1 to the right of vR,j0 must be a thin
strip and the projection to S of the union of all the ends of v

�

1 limiting to z∞ is a
union of thin wedges of type S(bi,j, ai,j). Using Figure 6 one can verify that such a
curve v

�

1 does not exist. This implies that v
�

1 = ∅ and that the ECH index of v1

is ≥ 0. Finally, since the ECH index of each thin strip is 1, the analog of Equa-
tion (3.4.3) for our case, Lemma 3.5.2, and (f) together imply that no component of
v∗ �= v1 to the right of vR,j0 can be a thin strip. This is a contradiction and (4) fol-
lows. �

3.5.3. Truncations. — In the rest of Section 3.5 until the proof of Lemma 3.5.13,
we consider the case where v′∗ ∪ v�

∗ �= ∅ for some v∗. We have v′2 �= ∅ in view of
Lemma 3.5.4(1).

In Sections 3.5.3–3.5.5 we consider the case v′1 =∅. By Lemma 3.5.4(4), u∞ has
no boundary points at z∞.

Definition 3.5.5. — Let X be set and ε > 0 be a positive real number. Then two functions

f , g :X→C× are ε-approximate if

|f (x)− g(x)|< ε · |g(x)| and |f (x)− g(x)|< ε · |f (x)|
for all x ∈X.

We now define the following sequence of truncations, analogous to those which
appear in the proof of Theorem I.7.10.1.

Definition 3.5.6. — With respect to the above assumptions on ui : Ġi → Wτi
, an εi-

truncation of ui with 0 < εi <
ρ0
2 is the restriction of ui to a subsurface �i ⊂ Ġi which satisfies

the following: First write

∂v�i = ∂�i − (πBτi
◦ ui)

−1(∂Bτi
)
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∂h�i = ∂�i ∩ (πBτi
◦ ui)

−1(∂Bτi
).

Then

(T1) ui(�i) is contained in a 2εi -neighborhood of σ τi∞;

(T2) if ui(x) is contained in an εi

2 -neighborhood of σ τi∞, then x ∈�i ;

(T3) πBτi
◦ ui maps each component c of ∂v�i to some t = const and ∂h�i to {s=±2};

(T4) there exist constants r(τi)− 2 > R(1)
i > · · ·> R(ι+1)

i > 2 and a decomposition �i =
�

(1)
i ∪ · · · ∪�

(ι)

i such that

�
(j)

i = (πBτi
◦ ui)

−1([−2,2] × [R(j+1)
i ,R(j)

i ])∩�i

and each

πBτi
◦ ui :�(j)

i →[−2,2] × [R(j+1)
i ,R(j)

i ]
is a branched cover with possibly empty branch locus;

(T5) for each component c of ∂v�i , πD2
ρ0
◦ ui|c is εi

10 -approximate to a positive multiple εi of a

normalized eigenfunction of v
�

L,j , j = 0, . . . , a, or v
�

R,j , j = 0, . . . , b; moreover, for all

c, maxc |πD2
ρ0
◦ ui| = εi .

Here

πD2
ρ0
: π−1

Bτi
([−2,2] × [R(ι+1)

i ,R(1)
i ])∩ {ρ ≤ ρ0}→D2

ρ0

is obtained by projecting out the ∂s- and Rτi
-directions.

From now on we assume that ui|�i
is a sequence of εi -truncations, where εi → 0 and R(1)

i −
R(ι+1)

i →∞ as i→∞.

Let π̃i be the map obtained by postcomposing

πBτi
◦ ui :�i →[−2,2] × [R(ι+1)

i ,R(1)
i ]

with a − r(τi)+1
2 -translation in the t-direction, and let w̃i = πD2

ρ0
◦ ui|�i

. Also let

R+
i =R(1)

i − r(τi)+ 1
2

, R−
i =R(ι+1)

i − r(τi)+ 1
2

.

Notation. When we want to distinguish the t-coordinates for B−∞,1 and B−∞,2, we write
ti for the t-coordinate for B−∞,i . Note that π̃i can be viewed as a map to B−∞,2 with
(s, t2)-coordinates.

Lemma 3.5.7. — If i� 0, then �i is a disk with ≥ 2p2 boundary punctures.

Proof. — This is a consequence of (T5) and the following:



HF=ECH VIA OPEN BOOK DECOMPOSITIONS II

(i) n∗(ui|�i
)= m;

(ii) w̃i(z0)= 0 for some z0 ∈ (πBτi
◦ ui)

−1(m
b
(τi));

(iii) w̃i maps each component of π̃−1
i ({s= 2}) to a different Rφ(a∗) and each com-

ponent of π̃−1
i ({s=−2}) to a different component of Rφ(b∗);

(iv) w̃i|int(�i) is a biholomorphism onto its image.

Here φ(a∗) is the φ-coordinate for a∗, etc. �

3.5.4. Large-scale behavior of �i . — When taking the limits of π̃i and w̃i , we are
simultaneously stretching in two directions t2 and logρ. In this subsection we study the
large-scale behavior of the map

�i = (t2 ◦ π̃i, logρ ◦ w̃i) :�i →[R−
i ,R+

i ] × [−∞,∞)

as i →∞. We use coordinates (x′ = t2, y′) on [R−
i ,R+

i ] × [−∞,∞). The goal is to con-
struct a “tropical curve”

�i : �i →[−1,1] × [0, di],
with some di ≥ 1 which approximates �i when viewed from “far away”; see Figure 12.
Here �i is a finite graph whose topological type is independent of i � 0. The analysis is
of the same type as that of Parker [Pa].

Step 1. We start with the following lemma, which is a consequence of Gromov compact-
ness and which describes the behavior of w̃i and π̃i for large i.

Lemma 3.5.8. — Given ε > 0 small, after passing to a subsequence and possibly shrinking

εi > 0 subject to the condition R(1)
i −R(ι+1)

i →∞, there exist constants L > 0, κ, κ ′ ∈ Z+ such that

for each i there exist:

– disjoint compact subsurfaces Ki1, . . . ,Kiκ ⊂�i and

– components Ci1, . . . ,Ciκ ′ of �i −∪jKij which are strips

such that:

(1) π̃i|Kij
is a branched cover over [−2,2] × [τij, τij + L] for some τij and π̃i has no branch

points outside Ki1, . . . ,Kiκ ;

(2) Kij is disjoint from ∂v�i ;

(3) there is a component Kij0 such that (0,−∞) ∈�i(Kij0);

(4) for each j, the sequence {w̃i|Kij
}∞i=1, after rescaling by positive constants, limits to some w̃∞j :

K∞j →C;

(5) w̃i|Cij
is ε-approximate to a multiple of eλij(t−is), where λij ∈R−{0} is± 1

4 times the angle

of a sector of type S(bk,l, ak′,l′) (here ± 1
4 comes from the fact that s ∈ [−2,2]);

(6) �i(Cij) is ε-close to a line segment {y′ = λijx
′ + βij | x′ ∈ t2 ◦ π̃i(Cij)}, where βij is a

constant;



VINCENT COLIN, PAOLO GHIGGINI, KO HONDA

(7) there exists d ′i ∈R such that, for each component c of ∂v�i , y′ ◦�i(c) is ε-close to d ′i and

maxc y′ ◦�i(c)= d ′i .

Proof. — (1)–(5) follow from Gromov compactness, once we observe using the ECH
compactness theorem (cf. Section I.3.4) that there is an upper bound on the number of
branch points of π̃i which is independent of i and m � 0. (6) follows from (5). (7) is a
consequence of (6) and (T5) in Definition 3.5.6. �

Step 2. We now construct the “tropical curve” �i : �i →[−1,1]× [0, di], where (x, y) are
coordinates on [−1,1] × [0, di]. We first define the map

�′
i : �i →[R−

i ,R+
i ] × [−∞,∞),

where �i = (V�i
,E�i

), V�i
=V�i,i �V�i,e is the set of vertices, E�i

is the set of edges, and
the following hold:

(1) V�i,i is in one-to-one correspondence with the set {Ki1, . . . ,Kiκ} and V�i,e is in
one-to-one correspondence with the components of ∂v�i ;

(2) the set E�i
is in one-to-one correspondence with the set {Ci1, . . . ,Ciκ ′ };

(3) �′
i maps the vertices corresponding to Kij and the component c of ∂v�i to

(x′, y′)= (τij,max(logρ ◦ w̃i|Kij
)) and (t2 ◦ π̃i(c),max(logρ ◦ w̃i|c));

and each e ∈ E�i
to a straight line segment.

Note that �′
i has image in {y′ij0 ≤ y′ ≤ d ′i }, where y′ij0 =max(logρ ◦ w̃i|Kij0

). The map �i is
obtained by postcomposing �′

i : �i →[R−
i ,R+

i ] × [y′ij0, d ′i ] by an affine transformation

[R−
i ,R+

i ] × [y′ij0, d ′i ] ∼→ [−1,1] × [0, di],
where di > 0 is chosen so that maxe∈E�i

|λ′i(e)| = 1, where λ′i : E�i
→R maps e to the slope

of �i(e).

Lemma 3.5.9. — Fix ε, δ > 0 small. Then, after passing to a subsequence, the map �i

satisfies the following:

(1) maxe∈E�i
|λ′i(e)| = 1;

(2) if λi : E�i
→R maps e �→ λij , where e corresponds to Cij and λij is as in Lemma 3.5.8(5),

then λ′i and a constant multiple of λi are ε-approximate;

(3) if E′�i
⊂ E�i

is the set of edges e such that |λ′i(e)|< 1− δ, then |λ′i(e)| ≤K/m for some

constant K > 0 which is independent of m� 0 and i;

(4) each vertex of V�i,i , has the same number ≥ 1 of adjacent edges whose interiors have larger

x-coordinate and whose interiors have smaller x-coordinate;
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FIG. 12. — The top figure represents [−2,2] × [R−
i ,R+

i ], where × indicates the location of mb
(τi) after translation and

the shaded regions are Kij . The bottom is a schematic diagram for the image of �i which becomes the image of �i “when
seen from far away”. The dots along the line y′ = d ′i correspond to the endpoints of V�i ,e

and the shaded regions are
t2(Kij)× logρ(w̃i ◦ π̃−1

i (Kij)). When viewed in [−1,1] × [0, di], the edges with the largest slope (in absolute value) satisfy
|λ′i| ≈ 1 and the remaining edges have much smaller slope when m� 0. (Color figure online)

(5) y ◦�i(p)= di for all p ∈V�i,e;

(6) there is a vertex q0 ∈ V�i,i corresponding to Kij0 (cf. Lemma 3.5.8(3)) such that

y ◦�i(q0)= 0;

(7) there is a path e0e1 . . . el−1 consisting of edges such that λ′i(ej)≥ 1−δ for j = 0, . . . , l−1,

e0 starts at q0, and el−1 ends near (1, di) or (−1, di), and di > 1− δ.

Proof. — (1), (4), (5), and (6) follow from the construction. (2) is a consequence
of Lemma 3.5.8(5) and (3) follows from (2). (7) follows from the construction, Lem-
ma 3.5.8(5), and the fact that v�

1 must have a large sector by Lemma 3.5.4. �

See Figure 12 for an example. The following lemma is immediate from the con-
struction.

Lemma 3.5.10. — After passing to a subsequence, we may assume that the following do not

depend on the choice of i:

– the graph �i , the function λi , and the set E′�i
;

– given an edge E�i
with endpoints p, q, whether x ◦ �i(p) ≥ x ◦ �i(q) and whether y ◦

�i(p)≥ y ◦�i(q).

In view of Lemma 3.5.10, we may write � = (V�,E�) for �i = (V�i
,E�i

).
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FIG. 13. — Schematic diagrams for the possible types of degenerations corresponding to Lemmas 3.5.12 and 3.5.13. Here
◦ represents z∞ or z#

∞, � represents a branch point, and & represents an end with a large sector. Double dotted lines
indicate multiple covers of σ ∗∞. The labels on the graphs indicate the components and their ECH indices. If there is more
than one � or & in a diagram, then we interpret it as one of the possible locations for � or &

Finally, we orient the edges p
e→ q ∈ E� so that y ◦�i(q)− y ◦�i(p) > 0; we denote

the corresponding orientation by o. Given p, q ∈V� , we write p! q (resp. p� q) to mean
y ◦�i(p)− y ◦�i(q)≥ 0 (resp. = 0) for all i.

3.5.5. The case v′1 =∅, v′2 �=∅. — We continue to assume that v′1 =∅, v′2 �=∅.
See Figure 13(1). We write ≈ to mean “is close to”.

We start with the following useful lemma:

Lemma 3.5.11 (Comparison Lemma). — Suppose m� 0, i = i(m)� 0, and ε = ε(m) >

0 is small. Let q
e→ q′ be an edge of � such that |λ′i(e)| ≈ 1 and let

δ′ = (p1
f1→ ·· · fk→ pk+1)

be an oriented path of � from p1 to pk+1 such that p1 # q # q′ # pk+1 and 0 < |λ′i(fj)| ≤K/m for

j = 1, . . . , k. Then

|x ◦�i(q
′)− x ◦�i(q)| ≤K′/m,

where K′ is independent of m and i.

Note that, by Lemma 3.5.9(3), 0 < |λ′i(fj)| ≤K/m if and only if |λ′i(fj)| is not close
to 1.

Proof. — The horizontal variation
∑k

j=1 |x◦�i(pj+1)− x◦�i(pj)| is bounded above
by 2 times the maximal covering degree of v′L,j , j = 1, . . . , a, and v′R,j , j = 1, . . . , b+ 1,
which we denote by K. (Here the 2 comes from the width of the interval [−1,1].) On the
other hand, since p1 # q# q′ # pk+1, we have:

|x ◦�i(q
′)− x ◦�i(q)| ≈ |y ◦�i(q

′)− y ◦�i(q)|
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≤
k

∑

j=1

|λ′i(fj)| · |x ◦�i(pj+1)− x ◦�i(pj)|

≤
(

max
j=1,...,k

|λ′i(fj)|
)

(2K)≤K′/m,

where K′ = 2KK. �

Given (x0, y0) ∈ [−1,1] × [0, di], let

l(x0,y0) = {x= x0,0≤ y≤ y0}
be a line segment oriented in the positive y-direction. Next choose an orientation õ of
� so that the oriented edges of �i(�) are pointing in the positive x-direction and write
˜� = (�, õ). (This is different from the orientation o used previously.)

Consider the weight function

Wi : ([−1,1] × [0, di])−�i(�)→ Z≥0,

which is defined as follows:

(1) Wi is locally constant;
(2) Wi(x, y) is the signed intersection number 〈�i(˜�), l(x,y)〉 for generic (x, y), with

respect to the orientations (∂x, ∂y) for [−1,1] × [0, di] and õ.

The function Wi is well-defined by Lemma 3.5.9(4).

Lemma 3.5.12. — If m� 0, then there is no u∞ ∈ ∂{−∞}M such that v′1 =∅ and v′2 �=
∅.

Proof. — The proof we give is not the most efficient, but carries over more easily
to other situations. We choose m� 0 so that 0 < K′/m� 1.

Let δ = (q0
e0→ ·· · el−1→ ql) be the oriented path from q0 to ql ∈ V�,e given by

Lemma 3.5.9(7), i.e., such that |λ′i(ej)| ≈ 1 for each i and each edge ej , j = 0, . . . , l − 1.
We may assume that x ◦ �i(ql) = ±1 in view of Lemma 3.5.4(4), since the only end E
of v�

L,j , j = 1, . . . , a+ 1, or v�

R,j , j = 1, . . . , b+ 1, whose πD2
ρ0

-projection is a sector with

angle > π is an end of v�

1 = v
�

L,a+1.
We claim that, for each l0 = 0, . . . , l − 1, there is an oriented path

δ′ = (p1
f1→ ·· · fk→ pk+1)

such that p1 # ql0 # ql0+1 # pk+1 and 0 < |λ′i(fj)| < K′/m for j = 1, . . . , k. Arguing by
contradiction, if the claim does not hold, then �i(�)∩ {y= y0} consists of only one point
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(x0, y0) ∈�i(el0)∩{y= y0} for any constant y0 in the interval (y◦�i(ql0), y◦�i(ql0+1)). This
means that there is an integer κ such that Wi(x, y0)= κ for −1≤ x < x0 and Wi(x, y0)=
κ ± 1 for 1 ≥ x > x0. This contradicts Wi(−1, y0) =Wi(1, y0) = 0, which is due to the
fact that all the exterior vertices p ∈V�i,e satisfy y ◦�i(p)= di by Lemma 3.5.9(5).

The claim, together with the Comparison Lemma, implies that

|x ◦�i(qk+1)− x ◦�i(qk)| ≤K′/m

for each k = 0, . . . , l − 1. Hence,

l−1
∑

k=0

|x ◦�i(qk+1)− x ◦�i(qk)| ≤ lK′/m� 1

for m� 0. This contradicts Lemma 3.5.9(5) with di ≥ 1. �

3.5.6. The case v′1 �=∅, v′2 �=∅. — In this subsection we consider the case v′1 �=∅,
v′2 �=∅. For simplicity assume that there are no boundary points of type (P3). Some of the
possibilities are given by Figure 13(2) and (3).

We outline the necessary modifications in the current case:
(1) We consider the truncation ui :�i →Wτi

of ui so that (T1) and (T2) in Defini-
tion 3.5.6 hold. (T4) becomes:

(T4′) there exists a decomposition �i =�
(1)
i ∪· · ·∪�

(ι)

i such that each πBτi
◦ ui|�(j)

i

is a branched cover with possible empty branch locus over a component of
Bτi

which is cut up by (possibly multiple) arcs of type t = R with 2 < R <

r(τi)− 2 and s=R′ with R′ <−3 or R′ > 3.

(T5) is slightly modified so that the normalized eigenfunction is that of v�
∗ for any ∗.

(2) Given ε > 0 small, there exists L > 0 so that the analog of Lemma 3.5.8 holds;
here we restrict �i to |s| ≤ L, while keeping the same notation. To the list of compact
subsets Kij of Lemma 3.5.8 (viewed as subsets of Bτi

instead of [−2,2] × [R−
i ,R+

i ]), we
add the compact subset Kij of the following type, which we call “type v1”:

Kij = Bτi
∩ {|s| ≤ L, |t − 1/2| ≤ L}.

(3) After suitable translations, contractions of components of π−1
Bτi
(Kij) to points,

and rescalings, we obtain the “tropical curves”

�i : �→[−1,1]/(−1∼ 1)× [0, di],
where the equivalence relation ∼ is consistent with contracting each component of
π−1

Bτi
(Kij) of type v1 to a point and the graph � = (V�,E�) is independent of i.

(4) The set V� of vertices admits the decomposition V�,i � V�,e, where V�,i is in
one-to-one correspondence with the set of components of π−1

Bτi
(Kij) and V�,e is in one-to-

one correspondence with the set of left and right ends of v�

L,j , j = 1, . . . , a+ 1, and v
�

R,j ,
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j = 1, . . . , b+1, that limit to z∞. There is a subset V′
�,i ⊂V�,i consisting of vertices which

are not initial points of any oriented edge; V′
�,i is obtained by contracting components of

π−1
Bτi
(Kij) of type v1 to points.

(5) In Lemma 3.5.9, (1)–(3) and (5) still hold, in (4) we replace V�,i by V�i
−V′

�,i ,
and (6) becomes: there is a vertex q0 ∈V�,i corresponding to Kij0 which satisfies �i(q0)=
(0,0).

(6) The weight function Wi is now a function

Wi : (([−1,1]/∼)× [0, di])−�i(�)→ Z≥0,

i.e., it is periodic in the x-direction.

Lemma 3.5.13. — If m� 0, then there is no u∞ ∈ ∂{−∞}M such that v′1 �=∅ and v′2 �=
∅.

Proof. — The proof is similar to that of Lemma 3.5.12 and uses the Comparison
Lemma.

Suppose that there are no boundary points of type (P3). Let δ = (q0
e0→ ·· · el−1→ ql)

be a maximal oriented path which starts from q0, has |λi(e)| ≈ 1 for each edge, and ends
at some ql with x ◦ �i(ql) = ±1. We claim that, for each l0 = 0, . . . , l − 1, there is an
oriented path

δ′ = (p1
f1→ ·· · fk→ pk+1)

such that p1 # ql0 # ql0+1 # pk+1 and 0 < |λ′i(fj)| ≤K′/m for j = 1, . . . , k. Indeed, using the
same notation as that of Lemma 3.5.12, there is a point (x0, y0) and an integer κ such that
Wi(x, y0)= κ for −1≤ x < x0 and Wi(x, y0)= κ ± 1 for x0 ≤ x ≤ 1, which is impossible
by the x-periodicity. The claim gives a contradiction as in the proof of Lemma 3.5.12.

Suppose there are boundary points of type (P3). Then, by Lemma 3.5.4(4), there
are no boundary points of type (P3) on vL,j , j = 1, . . . , a, and vR,j , j = 1, . . . , b+ 1. The
maximal oriented path δ from the previous paragraph has y◦�i(ql) which is much larger
than y ◦�i of the endpoint of another path. This is a contradiction. �

Proof of Lemma 3.3.5. — Suppose u∞ ∈ ∂{−∞}M. If v′∗ ∪ v�
∗ = ∅ for all levels v∗

of u∞, then, by Lemma 3.5.3, u∞ is a 2-level building v1 ∪ v2, where v1 is a W−∞,1-
curve with I= 0 and v2 is a W−∞,2-curve with I= 2 which passes through m(−∞). By
Lemma 3.2.15, y2 and y4 satisfy the conditions of A3.

On the other hand, it is not possible that v′∗ ∪ v�
∗ �= ∅ for some level v∗ by Lem-

mas 3.5.12 and 3.5.13. �

3.6. Breaking in the middle. — In this subsection we study the limit of holomorphic
maps to Wτ as τ →T′ for some T′ ∈ (−∞,∞). This will prove Lemma 3.3.8.
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We assume that m � 0; ε, δ > 0 are sufficiently small; and {Jτ } ∈ I reg
and

{J♦τ (ε, δ,p(τ ))} satisfy Lemma 3.2.22. Fix y ∈ Sa,h(a), y′ ∈ Sb,h(b) and let

M=MI=2,n∗=m

{J♦τ (ε,δ,p(τ ))}
(y,y′;m), Mτ =MI=2,n∗=m

J
♦
τ (ε,δ,p(τ ))

(y,y′;m(τ )).

We will analyze ∂(−∞,∞)M.
Let ui , i ∈ N, be a sequence of curves in M such that ui ∈Mτi

and lim
i→∞

τi = T′,
and such that its limit

u∞ = (v−1,1 ∪ · · · ∪ v−1,c)∪ v0 ∪ (v1,1 ∪ · · · ∪ v1,a)

is a holomorphic building in ∂{T′}M, ordered from bottom to top, where each v∗ is an
SFT level, v−1,j , j = 1, . . . , c, and v1,j , j = 1, . . . , a, map to W and v0 maps to WT′ .
Sometimes we will refer to v0 as v−1,c+1 or v1,0.

The following are analogs of Lemmas 3.4.20–3.4.22, stated without proof.

Lemma 3.6.1. — If fiber components are removed from u∞ and the only boundary points at z∞
are of type (P3), then the ECH index of each level v∗ �= v0 is nonnegative,

I(v1,j)≥
{

I(v′1,j)+ I(v′′1,j) if bp1,j = 0;
I(v′1,j)+ I(v′′1,j)+ 2 if bp1,j > 0,

for 0≤ j ≤ a, and the only components of u∞ which have negative ECH index are the following:

(1) branched covers of σT′
∞ ; and

(2) at most one component ṽ of v′′0 with I(̃v)=−1.

Here (2) occurs when T′ ∈ T1 and ṽ ∈M†,s,irr,ind=−1

J
♦
T′ (ε,δ,p(T′))

(z,z′), as described in Lemma 3.2.22(1).

Lemma 3.6.2. — If u∞ ∈ ∂(−∞,∞)M and v′∗ ∪ v�
∗ =∅ for all levels v∗ of u∞, then u∞ is

one of the following:

(1) a= 0, c= 1; v0 is a WT′-curve with I= 1 which passes through m(T′); and v−1,1 is a

W-curve with I= 1; or

(2) a = 1, c = 0; v1,1 is a W-curve with I= 1; and v0 is a WT′-curve with I= 1 which

passes through m(T′).

Here either T′ ∈ T2 and there is a component of v0 which is in

M†,s,irr,ind=1,n∗=m

J
♦
T′ (ε,δ,p(T′))

(z,z′,m(T′))

from Lemma 3.2.22(2), for some z, z′; or T′ ∈ T1 and there is a component of v0 which does not pass

through m(T′) but is in

M†,s,irr,ind=−1,n∗=0

J
♦
T′ (ε,δ,p(T′))

(z,z′)

from Lemma 3.2.22(1).
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Lemma 3.6.3. — If v′∗ ∪ v�
∗ �=∅ for some level v∗ of u∞, then:

(1) p0 = deg(v′0) > 0;

(2) u∞ has no boundary point of type (P1) or (P2);

(3) u∞ has no fiber components and no components of v′′∗ that intersect the interior of a section at

infinity;

(4) each component of v
�

−1,j , j = 1, . . . , c, is a thin strip from z∞ to some xi or x′i with I= 1;

(5) the only boundary points at z∞ are type (P3) points of v′′1,j , j = 0, . . . , a.

The following is the analog of Lemma 3.4.25:

Lemma 3.6.4. — If v′∗ ∪ v�
∗ �=∅ for some level v∗, then there are no boundary points at z∞

and u∞ contains a subbuilding consisting of v
�

1,a with I≥ 1; v′1,j , 1≤ j < a, which branch cover σ∞;

v′0 with I=−p which is a degree p branched cover of σT′
∞ ; ∪c

j=1v
�

−1,j which is a union of p thin strips;

and possibly the following:

– v
�

0 with positive ends at multiples of z∞ and no negative ends at multiples of z∞; and

– v
�

1,j , 1≤ j < a, with I(v�

1,j)≥ 1 and (positive or negative) ends at multiples of z∞.

Here at most one component of v′′0 satisfies I=−1 and the remaining components of v′′∗ satisfy I≥ 0.

Proof. — We explain why there are no boundary points of type (P3); the rest of the
proof is similar to that of Lemma 3.4.25. A boundary point of type (P3) contributes +2
towards I by Lemma 3.4.20, there is a large sector which contributes +1, and some v1,j ,
j > 0, contributes +1, for a total of I = 4. Since there is at most one component which
contributes negatively to I, namely a component of v′′0 with I = −1, we have a total of
I≥ 3, a contradiction. �

See Figure 14 for some possibilities. Observe that in the current case there is at
most one component of v′′0 with I=−1 whereas there are none in Lemma 3.4.25.

Lemma 3.6.5. — For each interval [−T,T], there exists m� 0 such that there is no sequence

of curves ui ∈Mτi
, τi →T′ ∈ [−T,T], that limits to u∞ for which v′∗ ∪ v�

∗ �=∅ for some level v∗.

Proof. — This is similar to Case (6i ) of Lemma 3.4.28. We apply the usual rescaling
argument with m →∞ and obtain w0 : �0 → CP1 and a branched cover π0 : �0 →
cl(BT′) such that:

(i) w0(∂�0)⊂ {φ = 0, ρ > 0} ∪ {∞};
(ii) w0(z0)=∞ for some point z0 ∈ π−1

0 (+∞);
(iii) w0(z1)= 0 for some point z1 ∈ π−1

0 (m
b
(T′));

(iv) w0|int(�0) is a biholomorphism onto its image.

Let us write f0 = π0 ◦w−1
0 where defined. We now apply the Involution Lemma I.7.9.6.

Using the notation of Lemma I.7.9.6, let �1 be the compact Riemann surface with
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FIG. 14. — Schematic diagrams for some possible types of degenerations. Here ◦ represents z∞, � represents one or more
branch points and × represents some xi or x′i . A vertical line indicates a trivial cylinder or a restriction of a trivial cylinder,
and a triple vertical line indicates a degree p branched cover of a trivial cylinder or a restriction of a trivial cylinder. The
labels on the graphs are ECH indices of each component

boundary whose interior is biholomorphic to w0(int(�0)) and let �2 = cl(BT′). We then
extend f0 to a holomorphic map �1 →�2. By the Involution Lemma I.7.9.6 and (i), (iii)
and (iv), f0 maps the point on �1 which corresponds to∞∈CP1 to L(r(T′)+1)/2∩ ∂cl(BT′).
This contradicts (ii). �

We are now in a position to prove Lemma 3.3.8.

Proof of Lemma 3.3.8. — Suppose u∞ ∈ ∂(−∞,+∞)M. By Lemma 3.6.2, if v′∗ ∪ v�
∗ =

∅ for all levels v∗ of u∞, then u∞ ∈ A4 or A5. By Lemma 3.6.5, for any T > 0, there exists
m� 0 such that if u∞ ∈ ∂[−T,T]M, then v′∗ ∪ v�

∗ =∅ for all v∗.
It remains to consider the case where there exist sequences mi →∞, εi, δi → 0,

Ti →∞, and uij → ui∞, where uij ∈M(mi), ui∞ ∈ ∂{±Ti}M(mi), M(mi) is M with respect to

the family {J♦τ (εi, δi,p(τ );mi)}, and ui∞ satisfies v′∗ ∪ v�
∗ �=∅ for some ∗. We then take a

diagonal subsequence uij(i). The proofs of Lemmas 3.4.28 and 3.5.13 carry over to give a
contradiction. �

3.7. Degeneration at +∞, part II. — In Sections 3.7–3.9 we study the limit of holo-
morphic maps to Wτ whose positive end is of the form z= {z∞,i}i∈I ∪ y, i.e., we are in
Step 4 of the proof of Theorem 3.3.1.

Let us write

M :=MI=2,n∗≤m+|I|
{J♦τ (ε,δ,p(τ ))}

(z,y′;m), and

Mτ :=MI=2,n∗≤m+|I|
J
♦
τ (ε,δ,p(τ ))

(z,y′;m),

where |I| ≥ 1.
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Let u∞ ∈ ∂+∞M be the limit of ui ∈Mτi
, where τi →+∞. We use the notation

from Section 3.4 for the levels and components of u∞ and write p∗ = deg(v′∗) as before.
We now have two constraints

n∗(ui)=
∑

v∗

n∗(v∗)= m+ |I|;(3.7.1)

I(ui)=
∑

v∗

I(v∗)= 2,(3.7.2)

where the summations are over all the levels v∗ of u∞.

Outline of proof of Lemma 3.3.10. The proof is similar to that of Lemma 3.3.2, with the
following differences: The proof of Lemma 3.7.10, which is the analog of Lemma 3.4.22,
is more involved and the proof of Lemma 3.7.4, which is the analog of Lemma 3.4.14,
uses a slightly more complicated notion of an “almost alternating” pair (P∗,0,P∗,1).

3.7.1. Continuation argument. — First observe that Lemma 3.4.2 carries over ver-
batim. The analog of Lemmas 3.4.7 and 3.4.16 hinge on the continuation argument:
Let E−,i , i = 1, . . . , q, be the negative ends of ∪a

j=1v
�

1,j that converge to z∞ and let E+,i ,
i = 1, . . . , r, be the positive ends of ∪a−1

j=0 v
�

1,j that converge to z∞. Suppose that q �= 0 (i.e.,
some E−,i exists) or not all E+,i project to thin sectors. Also for simplicity we assume that
there are no boundary points of type (P3). By assumption, we may start with an end E−,i
or E+,i that projects to a non-thin sector. The continuation argument (i.e., the proof of
Lemma 3.4.7) carries over with one modification: When we are considering the continu-
ation

g0
j2+1,2, . . . , g0

a,2

of g0
j2,2, it is possible that g0

j,2 is trivial for all j2 + 1 ≤ j ≤ a. In other words, there is no
nontrivial negative end E−,2 such that

πD2
ρ0
(E−,2)=S(h(ak3,l3), ak4,l4)

for some (k4, l4). This happens when (k3, l3)→ (k3, l3) belongs to the data
−→D at the

positive end of v′1,a. In this case we set j3 = a and ak3,l3 = ak4,l4 and skip S(h(ak3,l3), ak3,l3).
The rest of the argument is the same.

3.7.2. Bounds on ECH indices. — The goal of this subsection is to show the non-
negativity of I(v∗) except when v∗ = v+, under the assumption that there are no boundary points

at z∞.
Let Aε = ∂D2

ε × [0,1] for 0 < ε < ρ0 small and let π[0,1]×S be the projection of
W or the positive end of Wτ to [0,1] × S. Let c′ be the grooming on Aε corresponding
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FIG. 15. — The rectangular box, with the sides identified, is Aε . The grooming c′ connects Q0 to Q1 and the grooming
c′′ connects R0 to R1. The vertical lines corresponding to Q1 (resp. Q0) are the intersections (ai,j ∩ ∂D2

ε)× [0,1] (resp.
(h(ai,j) ∩ ∂D2

ε)× [0,1]). The dotted lines, together with some solid lines, give the main cycle Zmain. There are also two
auxiliary cycles of Zaux corresponding to the middle and right arcs of c′

to the data
−→D ′

+,a at z∞ for the positive end of v′1,a, such that the winding number w(c′)

is zero. Here the data
−→D ′

+,a satisfies (D′
+,a)

to = (D′
+,a)

from. Let c′′ = π[0,1]×S(∪iE−,i) ∩ Aε.
By Section 3.7.1, c′′ is groomed and the sets of initial and terminal points of c′′ alternate
along (0,2π). We then define P0 and P1 as the initial and terminal points of c′ ∪ c′′.

Remark 3.7.1. — It is possible for initial/terminal points of c′ to also appear as
initial/terminal points of c′′.

Definition 3.7.2. — A pair of points (q0,q1)⊂ ∂D2
ε is a thin pair if q0 = h(ai,j) ∩ ∂D2

ε

and q1 = ai,j ∩ ∂D2
ε for the same i, j . A pair (P∗,0,P∗,1) consisting of disjoint finite subsets of (0,2π)

with the same cardinality is almost alternating along (0,2π) if each P∗,i , i = 0,1, admits a

splitting P∗,i =Q∗,i �R∗,i such that the pair (R∗,0,R∗,1) is alternating along (0,2π) and there is a

partition of Q∗,0 ∪Q∗,1 into thin pairs (q0,q1), qi ∈Q∗,i .

By definition, (P0,P1) is almost alternating along (0,2π). See Figure 15 for an
example.

Section 3.7.1 gives the main cycle

Zmain = (z0 → z1 → ·· ·→ zk−1 → z0),

where {z1, . . . , zk} can be decomposed into an almost alternating pair and the cycle winds
around R/2πZ once. If we apply the continuation method to the positive ends of v′1,a,
then we also obtain a union Zaux of auxiliary cycles of the form (z0 → z1 → z0), where
(z0, z1) is a thin pair and the chords are short chords from zi to z1−i , i = 0,1. The sets of
initial and terminal points of Zmain ∪Zaux are P0 and P1.

Let
−→D ±,j be the data at z∞ for the ± end of v1,j and let P±,j,0 and P±,j,1 be the

initial and terminal points on Aε determined by
−→D ±,j . Then we write

P±,j,i = P′±,j,i ∪ P′′±,j,i,
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where P′±,j,i corresponds to v′1,j and P′′±,j,i corresponds to v′′1,j . For convenience we write
P−,a+1,i = P′−,a+1,i , i = 0,1, for the endpoints of c′. Also let Q�

∗ and R�
∗ be the thin and

alternating parts of P�
∗ as given in Definition 3.7.2.

The following lemmas are analogs of Lemma 3.4.13 and 3.4.14:

Lemma 3.7.3. — If u∞ has no boundary point at z∞, then, for each ∗ = (±, j), P∗,0 ⊂ P0

and P∗,1 ⊂ P1 and the pair (P∗,0,P∗,1) is almost alternating along (0,2π).

Proof. — Similar to but slightly more complicated than that of Lemma 3.4.13. We
set P(0)

i = Pi and Z (0)
∗ =Z∗, where ∗ =main or aux. Then P−,a+1,i = P′−,a+1,i ⊂ P(0)

i and
the pair (P−,a+1,0,P−,a+1,1) is almost alternating. In (j0)–(j4) we replace “alternating” by
“almost alternating”, j0 by a+ 1, and (j2) and (j4) by:

(j2) there is a partition of P−,a−j+1,0 ∪ P−,a−j+1,1 into pairs of type {p0,p1}, pi ∈
P−,a−j+1,i , such that p0 �R(j)

0 ∪R(j)

1
p1 or {p0,p1} is a thin pair of Q(j)

0 ∪Q(j)

1 ; in
particular, the points of P−,a−j+1,0 and P−,a−j+1,1 almost alternate along (0,2π);

(j4) there is a partition of P′+,a−j,0 ∪ P′+,a−j,1 into pairs of type {p0,p1}, pi ∈ P′+,a−j,i ,

such that p0 �R(j+1)
0 ∪R(j+1)

1
p1 or {p0,p1} is a thin pair of Q(j+1)

0 ∪Q(j+1)
1 ; in par-

ticular, the points of P′+,a−j,0 and P′+,a−j,1 almost alternate along (0,2π).

We inductively define P(j)

i and Z (j)
∗ as follows: For each pair {p0,p1} of P′′+,a−j,0 ∪

P′′+,a−j,1, if (p1 → p0) is a chord of Z (j−1)
aux , then we remove (p1 → p0 → p1) from Z (j−1)

aux ;

otherwise, in Z (j−1)
main , we replace q→ p1 → p0 → q′ by q→ q′, given by concatenation.

Then P(j)

0 and P(j)

1 are the sets of endpoints of Z (j)

main ∪Z (j)
aux.

The verification of (j0)–(j4) is left to the reader. �

Lemma 3.7.4. — If u∞ has no fiber components and there are no boundary points at z∞, then

the ECH index of each level v∗ �= v+ is nonnegative, the only components of u∞ which have negative

ECH index are branched covers of σ+∞, and I(v1,j)≥ I(v′1,j)+ I(v′′1,j) for 0≤ j ≤ a.

Before embarking on the proof of Lemma 3.7.4 we encourage the reader to review
Section I.5.7.10 and in particular Lemmas I.5.7.22 and I.5.7.23.

Proof. — Similar to the proof of Lemma 3.4.14. The levels v0,j , 1 ≤ j ≤ b, satisfy
I(v0,j)≥ 0 by [HT1, Proposition 7.15(a)].

In order to treat the case of v1,j , 0 ≤ j ≤ a, we use Lemma 3.7.3 and Lem-
mas I.5.7.22 and I.5.7.23 to compute I(v1,j). Let

π[0,1]×S : W̌= [−1,1] × [0,1] × S→[0,1] × S

be the projection along [−1,1].
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We claim that there exist representatives Č1, Č2, Č3 ⊂ W̌ such that the following
hold:

(0) Č1 ∪ Č2 is a representative of v′1,j , Č3 is a representative of v′′1,j , Č1 ⊂ [−1,1]×
[0,1] ×D2

ε/2, and Č2 ⊂ [−1,1] × [0,1] ×D2
ε ;

(1) c
±
1 := π[0,1]×S(Č1|s=±1)⊂ Aε/2, c+1 = c

−
1 is groomed, and the endpoints of each

component of c±1 forms a thin pair;
(2) the components of π[0,1]×S(Či|s=±1), i = 2,3, corresponding to z∞ are con-

tained in Aε; let us write c
±
i for their unions;

(3) c
+
2 ∪ c

+
3 and c

−
2 ∪ c

−
3 are groomed;

(4) w(c+2 ∪ c
+
3 )= 0 or −1, and w(c−2 ∪ c

−
3 )= 0 or 1;

(5) c
+
2 ∪ c

+
3 satisfies the first condition of (G′

3) from Section I.5.7.10 and c
−
2 ∪ c

−
3

satisfies (G3) from Section I.5.7.10.

We first choose a representative Č3 of v′′1,j such that (2) holds for i = 3 and

c
±
3 = π[0,1]×S(∪kE±,k)∩Aε,

where E±,k are the ± ends of v′′1,j that limit to z∞. We then choose the representative

Č1 ∪ Č2 of v′1,j as follows: Let Č1 = [−1,1] × c
+
1 so that (1) holds and the endpoints of

c
+
1 = c

−
1 are partitioned into thin pairs of (P′+,j,0,P′+,j,1). Let Č2 ⊂ [−1,1] × [0,1] ×D2

ε

be a disk of the type used in the proof of Lemma I.5.7.15, such that (2) holds for i = 2,
Č2|s=±1 = c

±
2 , c±2 are groomed, w(c+2 )= 0 or−1, w(c−2 )= 0 or 1, and the endpoints of c±2

are alternating along (0,2π). This is possible by (j4) in the proof of Lemma 3.7.3. (3)–(5),
in particular the fact that adding c

+
3 to c

+
2 — and similarly adding c

−
3 to c

−
2 — leaves the

grooming property invariant, follow from the proof of Lemma 3.7.3.
We now prove that I(v1,j)≥ 0 for j > 0; the verification of I(v1,j)≥ I(v′1,j)+ I(v′′1,j)

for 0≤ j ≤ a is similar and is left to the reader. First observe that I(Č1)= 0 and I(Č2)= 0,
where the latter follows from the proof of Lemma I.5.7.15. Also I(Č3) ≥ 0 by the ECH
index inequality. Next observe that 〈Č1, Č2〉 = −l, where l is the degree of Č1. Hence the
contribution of Č1 ∩ Č2 to I(v1,j) is −2l. We now apply Lemmas I.5.7.22 and I.5.7.23,
where we split into Č1 and Č2∪ Č3 instead of v′1,j and v′′1,j . Observe that q2 = 0 (resp. q2 =
1) in Lemma I.5.7.22 corresponds to q2 =−1 (resp. q2 = 0) in Lemma I.5.7.23. One can
verify that the extra contributions to I from the rightmost terms of Equations (I.5.7.10)
and (I.5.7.11) add up to at least 2l. Hence I(v1,j)≥ 0 for j > 0.

The case of v−1,j , 1≤ j ≤ c+ 1, is easier and will be omitted. �

3.7.3. Boundary points at z∞. — In this subsection we describe the necessary mod-
ifications when u∞ has boundary points at z∞. We use the notation from Section 3.4.3,
with some modifications: The continuation method gives rise to a main cycle Zmain which
winds around R/2πZ once and a union Zaux of auxiliary cycles. Also, in Definition 3.4.15
we replace Z by Zmain.
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FIG. 16. — c′L− ∪ c′′L− for r of (i) type (P3) and (ii) type (P2). Here c′′L− is the strand in the front

Lemma 3.7.5. — If u∞ has no fiber components, then the ECH index of each level v∗ �= v+ is

nonnegative, the only components of u∞ which have negative ECH index are branched covers of σ+∞, and

there exist constants δ1,j such that

(3.7.3) I(v1,j)= I(v′1,j)+ I(v′′1,j)+ δ1,j

for 0≤ j ≤ a, where:

(i) if there is a boundary point of type (P3) on v1,j , then δ1,j ≥ 2;

(ii) if there is a boundary point of type (P2) on v1,j , then δ1,j ≥ 2p1,j , where p∗ = deg(v′∗);
(iii) otherwise, δ1,j = 0.

We remark that we have not tried to obtain the best lower bound, just one that
suffices for our purposes of eliminating boundary points at z∞.

Proof. — Let r be a boundary point at z∞ on v∗0 with ∗0 = (1, j0). We compute
the extra contribution IL− to I(v◦,1∗0

) that comes from the left negative end at z∞ as in
Lemma 3.4.18.

(i) Suppose r is of type (P3). We assume (S) from Section 3.4.3 for simplicity. First
observe that PL−,j0,1/2 = PL−,j0,1. By (S), Zmain has only one chord z′1 → z′s corresponding
to a sector of type S(ak,l, ak′,l′). Hence we have:

P′′L−,j0,1/2 = {z′1}, P′L−,j0,1/2 = {z′2, . . . , z′s, z′′1, . . . , z′′t },
P′′L−,j0,1 = {z′s}, P′L−,j0,1 = {z′1, . . . , z′s−1, z

′′
1, . . . , z

′′
t },

where PL−,j0,1/2 = PL−,j0,1 is written as {z′1, . . . , z′s, z′′1, . . . , z′′t } in cyclic order around
R/2πZ; see Figure 16(i). Note that z′2, . . . , z

′
s−1 are points of Zaux but not Zmain; oth-

erwise Zmain winds more than once around R/2πZ. The projection of the left negative
end of v◦,1,

′′
∗0

that limits to z∞ intersects A[1/2,1]
ε along an arc c′′L− with winding number
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w(c′′L−) = 0 or 1, depending on whether S(ak,l, ak′,l′) is a large sector. The left negative
ends of v◦,1,

′
∗0

that limit to z∞ can modified to give a grooming c′L− on A[1/2,1]
ε/2 such that

the winding number w(c′L−)= 0 or −1 and c′L− connects z′′i to z′′i , i = 1, . . . , t, by vertical
arcs.

We now consider the disk Ď that we “append” to the left negative end of v◦,1∗0
as

in the proof of Lemma I.5.7.22. The writhe of c′L− ∪ c′′L− is equal to s − 1. Resolving
the (positive) crossings of c′L− ∪ c′′L− yields a grooming with vertical arcs from z′i to z′i ;
this corresponds to a disk Ď whose contributions to Q, c1,μ are s − 1,0, s − 1. [The
calculations for μ assume (R) from Section 3.4.3. For example, if w(c′L−)= w(c′′L−)= 0,
then μ of the positive ends are 1 for s − 1 arcs and 0 for the rest and μ of the negative
ends are all 0.] The discrepancy contribution to I is ≥ 0. Hence IL− = 2(s− 1)≥ 2.

In general, each collection of boundary points of type (P3) that map to the same
point on the base contributes at least +2 towards I; this is analogous to Remark 3.4.19.

The cycles Z (a−j)

main and Z (a−j)
aux are defined as before, for j ≥ j0. We define Z (a−j0,+)∗ =

Z (a−j0)∗ , Z (a−j0,−)
aux = Z (a−j0,+)

aux , and Z (a−j0,−)
main as Z (a−j0,+)

main with z′1 → z′s replaced by z′s. Also,
P�

R−,j0,i , �=∅,′ ,′′, is obtained from P�
+,j0,i by replacing z′1 by z′s. The rest of the arguments

of Lemmas 3.7.3 and 3.7.4 carry over.
(ii) Suppose r is the only boundary point of type (P2). In this case z′1 = z′s and

Zmain = (z′1 → z′1). Then:

P′′L−,j0,1/2 = {z′1}, P′L−,j0,1/2 = {z′′1, . . . , z′′p∗0
},

P′′L−,j0,1 = {z′1}, P′L−,j0,1 = {z′′1, . . . , z′′p∗0
}.

Also c′′L− is an arc from z′1 to itself with w(c′′L−) = 1 and c′L− consists of p∗0 vertical arcs
from z′′i to itself; see Figure 16(ii).

In order to groom c′L− ∪ c′′L− so that the result c satisfies w(c) = 0, we switch the
(positive) crossings of c′L− ∪ c′′L− while keeping the same endpoints. This gives rise to Ď
which is a union of p∗0 + 1 disks. The total contributions to Q, c1,μ, and the discrepancy,
are 2p∗0 + 1,1,−2,0. [Again recall (R) from Section 3.4.3. The writhe of c′L− ∪ c′′L− is
2p∗0 which contributes 2p∗0 towards Q. The writhe of c′′L− and its pushoff is 1, which con-
tributes an additional 1 towards Q. μ of the positive (resp. negative) ends are 0, . . . ,0,−2
(resp. all 0).] Hence IL− = 2p∗0 .

We also obtain a lower bound of 2p∗0 in the general case of more boundary points
of type (P2); the details are left to the reader. �

The following analog of Lemma 3.4.16 is a consequence of Section 3.7.1:

Lemma 3.7.6. — Suppose v′1,j ∪ v
�

1,j �= ∅ for some j > 0. Let E−,i , i = 1, . . . , q, be the

negative ends of ∪a
j=1v

�

1,j that converge to z∞, let E+,i , i = 1, . . . , r, be the positive ends of ∪a−1
j=0 v

�

1,j
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that converge to z∞, and let E ′i , i = 1, . . . , s, be the neighborhoods of the points of type (P3). Then

(3.7.4) n+(E−,i)≥ k0 − 1� 2g

for each i, where the constant k0 is as given in Section I.5.2.2. If q �= 0 (i.e., some E−,i exists) or not all

E+,i project to thin sectors, then

(3.7.5) n+((∪q

i=1E−,i)∪ (∪r
i=1E+,i)∪ (∪s

i=1E ′i ))≥ m− p+,

where p+ = deg(v′+). Moreover,

D2
ρ0
− (∪q

i=1πD2
ρ0
(E−,i))∪ (∪r

i=1πD2
ρ0
(E+,i))∪ (∪s

i=1πD2
ρ0
(E ′i ))

consists of at most p+ thin sectors.

The following is the analog of Lemma 3.4.17:

Lemma 3.7.7. — If p1, . . . ,ps are the boundary points of type (P1) and (P2) and N(pi)⊂ F∗
is a small neighborhood of pi , then

∑s

i=1 n∗(v∗(N(pi)))≥ m.

3.7.4. Asymptotic eigenfunctions. — Fix m� 0 and let ui → u∞ ∈ ∂{+∞}M.

Lemma 3.7.8. — There is no u∞ ∈ ∂{+∞}M such that:

(a) for all v∗ ! v+, deg(v′∗)= p+ ≥ 1, v�
∗ =∅, and v′∗ ∩ v′′∗ =∅; and

(b) v
�

0,b is a union of p+ cylinders from δ0 to h.

Proof. — Arguing by contradiction, we restrict ui to a neighborhood of σ τi∞ and
further restrict it to the components that are close to v′+. After projecting to D2

ρ0
using

balanced coordinates, applying the ansatz given by Equation (I.7.8.1), rescaling, and taking
the SFT limit with m� 0 fixed, we obtain a holomorphic map w+ :�+ →CP1 together
with the branched cover π+ :�+ → cl(B+). By (a), w+ maps each component of ∂�+ to a
distinct thin sector S({φ = φ(ai,j)+ π

m
}, h(ai,j)).13 By (a) and (b), the image of w+ cannot

contain ∞∈CP1. Hence, by the open mapping property, w+ maps each component of
�+ to a distinct S({φ = φ(ai,j)+ π

m
}, h(ai,j)).

From now on assume without loss of generality that p+ = 1 and �+ = B+. We
identify cl(B+) with the closed unit disk D= {|z| ≤ 1} by sending +∞ to 1 and −∞ to
0.

The Lagrangian boundary condition for ui , when projected to D2
ρ0

using balanced
coordinates, descends to the boundary condition w+(eiθ ) ∈ Rϕ(eiθ ), where the map ϕ :
∂D− {1}→ S1 =R/2πZ satisfies the following:

13 This complicated expression is the result of using balanced coordinates instead of πD2
ρ0

.
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– lim
θ→0+

ϕ(eiθ )= φ(ai0,j0)+ π

m
and lim

θ→0−
ϕ(eiθ )= φ(h(ai0,j0))= φ(ai0,j0)+ 2π

m
for some

(i0, j0);
– ϕ(eiθ ) ∈ (0,2π) is a nondecreasing function of θ ∈ (0,2π); and
– ϕ ◦ i0 = i1 ◦ϕ, where i0 : ∂D−{1} ∼→ ∂D−{1} is the reflection across the x-axis

and i1 : S1 ∼→ S1 is the reflection across Rφ0 where φ0 = φ(ai0,j0)+ 3π
2m

.

Lemma 3.7.9. — The holomorphic map w+ :D→CP1 satisfies the following:

(i) w+(1)= 0 and w+(eiθ ) ∈Rϕ(eiθ ) for eiθ �= 1;

(ii) w+(0) ∈Rφ0 and w+ maps R0 ∪Rπ to Rφ0 ;

(iii) Im(w+)⊂S({φ = φ(ai0,j0)+ π

m
}, h(ai0,j0));

(iv) w+ is a biholomorphism onto its image.

Moreover, w+ is the unique holomorphic map D → CP1 which satisfies (i), (iii) and (iv), up to

multiplication by a positive real constant.

Proof. — (i), (iii), and (iv) are immediate from the construction. To prove the
uniqueness statement, suppose there exists w̃+ satisfying (i), (iii) and (iv). Then we con-
sider w̃+

w+ as in Section I.7.9. It is easy to see that w̃+
w+ is a positive real constant on ∂D and

has no zeros or poles on D, hence is a constant map. (ii) then follows from the uniqueness,
Observation I.7.9.1, and the fact that i0 and i1 extend to involutions of D and CP1. Here
we are viewing S1 as the unit circle in CP1. �

The proof of Lemma 3.7.8 now follows from the first part of Lemma 3.7.9(ii):
Suppose v

�

0,b is a cylinder from δ0 to h. Then by the choice of h from Section 3.2.3 we
have a contradiction, since the asymptotic eigenfunction of v�

0,b at the positive end δ0 is a
constant c ∈Rφ=−2π/m. �

3.7.5. Preliminary restrictions.

Lemma 3.7.10. — If m� 0 and u∞ ∈ ∂{+∞}M, then the following hold:

(1) u∞ has no fiber components;

(2) there is no level v∗ such that v′∗ ∩ v′′∗ �=∅ and v′∗ ∩ v′′∗ ⊂ int(v′∗); and

(3) u∞ has no boundary point at z∞.

Proof. — First observe that “not (1)”, “not (2)”, and “not (3)” are mutually exclusive
by considerations of n∗.

(1) Arguing by contradiction, suppose that u∞ has a fiber component ṽ : Ḟ→W∗.
The fiber component ṽ satisfies n∗(̃v)≥ m.

We first claim the following:

(a) The only ends of v�
∗ that limit to multiples of z∞ or δ0 are positive ends.
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(b) All the positive ends E+ of v�

0,j , j = 0, . . . , b, that limit to δr
0 satisfy n∗(E+)= r.

(c) All the positive ends of v�

1,j , j = 0, . . . , a, and v
�

−1,j , j = 1, . . . , c, that limit to z∞
project to thin sectors under πD2

ρ0
.

(d) p∗1 ≤ p∗2 if v∗1 # v∗2 .

(a) Arguing by contradiction, let E− be a negative end of some v�
∗ that limits to a multiple

of z∞ or δ0. Then n∗(E−)� 2g by Lemmas 3.4.2(1) and 3.7.6. Since n∗(̃v) ≥ m, such
a negative end E− cannot exist by Equation (3.7.1). The arguments for (b) and (c) are
similar and (d) is a consequence of (a)–(c).

Next we have the following contributions towards I:

(β1) I(v′+)=−p0,b+1.
(β2) ∪b

j=1v
�

0,j is a union of p0,b+1 − p0,1 cylinders from δ0 to h or e and

b
∑

j=1

I(v�

0,j)≥ p0,b+1 − p0,1.

(β3) v�
− is a union of p0,1 − p0,0 sections from δ0 to xi or x′i and

I(v�
−)= p0,1 − p0,0.

(β4) ∪c
j=1v

�

−1,j is a union of p0,0 trivial strips and

c
∑

j=1

I(v�

−1,j)= p0,0.

(β5) If the fiber ṽ is a component of v∗, then ṽ and the intersection ṽ ∩ (v∗ − ṽ)

contribute 2g + 2≥ 4 towards I.
(β6) After removing any fiber components, all the levels �= v+ have nonnegative

ECH index, I(v′′+)≥ 0, and I(v+)≥ I(v′+)+ I(v′′+).

(β1)–(β4) are clear.
We now prove (β5). Suppose that ṽ is a component of v∗0 . If v′′∗0

has a bound-
ary point at z∞, then a neighborhood of the boundary point contributes n∗ � 2g. Since
n∗(̃v)≥ m, we have a contradiction of Equation (3.7.1). Hence v′′∗0

does not have a bound-
ary point at z∞.

When ṽ is an interior fiber, (β5) follows from Equation (I.7.5.6).
Next suppose that ṽ is a boundary fiber, i.e., ṽ(˜F)⊂ {p}×S, where˜F is the domain

of ṽ and p ∈ ∂B∗0 . If (p, z∞) /∈ ṽ(∂˜F), i.e., ṽ(∂˜F) consists of 2g slits along â, for example,
then the Fredholm index of ṽ is:

ind(̃v)=−χ(˜F)+μτ(∂˜F)+ 2c1(̃v
∗TS, τ )
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=−(2− 4g)+ 0+ 2(2− 2g)= 2,

where τ is a partially defined trivialization of TS along â which directs Tâ. Since there
are 2g arcs of ui that are pinched to points when taking the limit, ṽ and the “pinched
points” contribute a total of 2g + 2 towards I.

Now suppose that (p, z∞) ∈ ṽ(∂˜F). Suppose that v′′∗0
=∅ and that ∗0 = (1, j) with

j ≥ 1. By considerations of n∗,

(*) all the components of the data
−→D ± of the positive and negative ends of v∗0 are

of the form (i, j)→ (i, j).

Let τ0 be a groomed multivalued trivialization which is compatible with
−→D ± and let c+ =

c− ⊂ Aε = [0,1]× ∂D2
ε be the corresponding groomings. Then a τ0-trivial representative

Č of ṽ ∪ v′∗0
satisfies

[Č] = [[−1,1] × c] + [S] ∈ π2(z+,z−, τ0),

where z± = {z2g
∞(
−→D ±)}. (β5) then follows from the calculation for a closed interior fiber

ṽ when v′′∗0
= ∅ and ∗0 = (1, j) with j ≥ 1. The general case follows by incorporating

considerations of the previous paragraph and is left to the reader.
(β6) follows from Lemma 3.7.4 by observing that the proof carries over when

fibered components are removed from u∞: Removing interior fibers and boundary
fibers with (p, z∞) /∈ ṽ(∂˜F) do not affect groomings. If u∞ has a boundary fiber with
(p, z∞) ∈ ṽ(∂˜F), then (*) holds, which also is sufficient.

Summing (β1)–(β6), the total ECH index is≥ 4, which contradicts Equation (3.7.2).
Hence (1) follows.

(2) Arguing by contradiction, suppose there exist sequences ml →∞ and uli → ul∞,
where uli ∈M(ml ), ul∞ ∈ ∂{+∞}M(ml ), and M(ml ) is M with respect to ml , such that each
ul∞ has some vl,∗0 such that v′l,∗0

∩ v′′l,∗0
�= ∅. Unless indicated otherwise, we fix l � 0

and suppress l from the notation.
The same argument as in (1) implies that (a)–(d) hold. Since n∗(ui)= m+|I| ≤ m+

2g, there is only one intersection point of v′∗0
and v′′∗0

, which we denote by r= (rb, z∞).

(2A) Suppose that ∗0 =+. As in the proof of (1), the holomorphic building hanging
from the positive end of v′+ has total ECH index ≥ 0 — this is obtained by adding all the
ECH index contributions from (β1)–(β4). We also have (β ′5) instead of (β5):

(β ′5) v′∗0
∩ v′′∗0

contributes 2 ·m(r) towards I, where m(r)≥ 1 is the multiplicity of r.

Hence
∑

v∗ I(v∗) ≥ 2 · m(r). This implies that m(r) = 1 and p+ = degv′+ = 1. The sum
of the ECH indices from (β1)–(β4), (β ′5), (β6), and I(v′′+)≥ 0 is at least +2.

We claim that p− ≥ 1 by considerations of n∗. Indeed, if v′− =∅, then there exist a
point q ∈ int(F−) and a sufficiently small neighborhood N(q)⊂ Ḟ− of q such that v−(q)=
m(+∞) and n∗(v−(N(q)))≥ m. This is a contradiction.
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Since p+ = 1 and p− ≥ 1, it follows that p0,j = 1 for all j = 0, . . . , b + 1 by (d).
For the purposes of applying the rescaling argument, we may assume that b = 0. By
restricting uli to a neighborhood of σ τli∞ , taking the limit of a diagonal subsequence uli(l),
and applying the rescaling argument, we obtain a 2-level holomorphic building w+∪w−,
where w± : cl(B±)→CP1 satisfy the following:

(i) w−(∂B−)⊂ {φ = 0, ρ > 0};
(ii) w−(m

b
(+∞))= 0 and w−(+∞)=∞;

(iii) w+(∂B+)⊂ {φ = 0, ρ > 0};
(iv) w+(−∞)= 0 and w+(rb)=∞;
(v) w±|int(B±) is a biholomorphism onto its image.

Then, by the Involution Lemma I.7.9.3, w− maps the marker L̇3/2(+∞) to Ṙπ(∞)

and w+ maps the ray L3/2 to the ray Rπ . This gives rise to two constraints for v′′+: rb

is restricted on L3/2 and the derivative of v′′+ at r in the D2
ρ0

-direction is also restricted.
Hence I(v′′+)≥ 2 and the total ECH index is at least 4, a contradiction.

(2B) Suppose that ∗0 = (1, j0) for some 1≤ j0 ≤ a. Summing the ECH indices using
(β1)–(β4), (β ′5), (β6), and I(v′′∗0

) ≥ 1, the total ECH index is at least 3, a contradiction.
However, we want to do slightly better so that the argument carries over in the case of
Lemma 3.9.2: The rescaling argument with ml →∞ gives w+ : cl(B+)→CP1 satisfying
the following:

(i) w+(∂B+)⊂ {φ = 0, ρ > 0};
(ii) w+(−∞)= 0 and w+(+∞)=∞;

(iii) w+ maps the marker L̇3/2(−∞) to Ṙπ(0);
(iv) w+|int(B+) is a biholomorphism onto its image.

By the Involution Lemmas, w−1
+ maps Ṙ0(0) to L̇3/2(−∞). This contradicts (iii).

(2C) Suppose that ∗0 = (0, j0) for some 1≤ j0 ≤ b. We replace (β2) by:

(β ′2) If j ≥ j0, then each positive end of v�

0,j that limits to δ0 contributes an additional
+1 towards I.

(β ′′2 ) All the other components of v�

0,j , 1 ≤ j < j0, are cylinders from δ0 to h or e

with I= 1 or 2.

(β ′2) is a consequence of the argument of Lemma 3.7.8: there is an independent condition
imposed on the asymptotic expansion of each positive end of v�

0,j with j ≥ j0 that limits to
δ0. (β ′′2 ) is clear. Summing the ECH indices using (β1), (β ′2), (β ′′2 ) (β3), (β4), (β ′5), (β6), and
I(v′′∗0

)≥ 1, the total ECH index is at least 3, a contradiction.

(2D) Suppose that ∗0 =−. In a manner similar to (2C) we replace (β3) by:

(β ′3) Each positive end of v�
− that limits to δ0 and is not the end of a section from

δ0 to xi or x′i contributes an additional +1 towards I.
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(β ′′3 ) All the other components of v�
− are sections from δ0 to xi or x′i with I= 1.

Summing the ECH indices using (β1), (β2), (β ′3), (β ′′3 ), (β4), (β ′5), (β6), and I(v′′−) ≥ 0, the
total ECH index is at least 2.

Suppose that rb �= m
b
(+∞). Then the rescaling argument gives w− : cl(B−)→

CP1 which satisfies the following:

(i) w−(∂B−)⊂ {φ = 0, ρ > 0};
(ii) w−(m

b
(+∞))= 0 and w−(rb)=∞;

(iii) w−(+∞)⊂ {φ = 0, ρ > 0}; and
(iv) w−|int(B−) is a biholomorphism onto its image.

Here (iii) follows from considering the continuation of w−,ml
to upper levels w∗,ml

and
π∗,ml

(here w∗,ml
is the limit of uli for ml � 0, without taking ml →∞) and the fact that

w+,ml
:�+ →CP1 must map ∂�+ to a thin sector near {φ = 0, ρ > 0}.
By the Involution Lemma I.7.9.3 and (i)–(iv), rb must lie on L1/2 ∪ L3/2 and the

map w−1
− maps the marker Ṙπ(∞) to the marker L̇1/2 or L̇3/2 at rb, as appropriate. This

gives rise to two constraints for v′′−. Hence I(v′′−) ≥ 2 and the total ECH index is ≥ 4, a
contradiction.

Now suppose that rb =m
b
(+∞). Since passing through m

b
(+∞) is a codimension

2 condition, we have I(v′′−)≥ 2. The total ECH index is ≥ 4, a contradiction.

(2E) Suppose that ∗0 = (−1, j0) for some 1 ≤ j0 ≤ c. Then (β1)–(β3) hold and the
rescaling argument with ml →∞ gives w− : �− → CP1 and π− : �− → cl(B−) such
that:

(i) w−(∂�−)⊂ {φ = 0, ρ > 0};
(ii) w−(z0)= 0 for some z0 ∈ π−1

− (m
b
(+∞));

(iii) w−(z1)=∞ for some z1 ∈ π−1
− (−∞);

(iv) w−(π−1
− (+∞))⊂ {φ = 0, ρ > 0};

(v) w−|int(�−) is a biholomorphism onto its image.

Here (iv) follows from the considerations similar to those of Lemma 3.7.8, together with
(a)–(d). By the Involution Lemmas, π− ◦ w−1

− , where defined, maps the component of
{Im(z)= 0} passing through 0 to L3/2. This contradicts (iii).

(3) Suppose there is a boundary point r ∈ ∂F∗0 at z∞. Then the neighborhood of
v′′∗0

(r) contributes at least k0 − 1 � 2g towards n∗ by Lemma 3.4.8. We remark that a
priori there could be more than one boundary point at z∞.

(3A) Suppose that v′− = ∅. Then there is a point q ∈ int(F−) and a sufficiently
small neighborhood N(q)⊂ Ḟ− of q such that v−(q)=m(+∞) and n∗(v−(N(q)))≥ m.
This is a contradiction.

(3B) Suppose that v′− �= ∅ and v′∗0
= ∅, i.e., r is of type (P1). Then there exist

restrictions ũi,− and ũi,∗0 of ui such that ũi,− is close to v′− after translation and passes
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through m(τi), ũi,∗0 is close to v′′∗0
after translation and nontrivially intersects σ τi∞, and the

images of ũi,− and ũi,∗0 are disjoint. This is a contradiction since we have an excess of n∗.

(3C) Suppose that v′− �=∅, v′∗0
�=∅, and ∗0 = (1, j), j = 0, . . . , a.

We claim that (a)–(d) from the proof of (1) hold, where we are only considering
levels v∗ ≺ v+. Indeed, if (a)–(c) do not hold, then the sum of n∗ of the ends is ≥ m−2g by
Lemmas 3.4.2 and 3.7.6, a contradiction. (The situation of v�

−1,j is not explicitly covered
by Lemma 3.7.6, but the same proof works.) (d) is a consequence of (a)–(c). The claim
implies that (β1)–(β4) hold.

Next we claim that there must be a boundary point at z∞ on v+. Arguing by
contradiction, if there is no boundary point at z∞ on v+, then a rescaling argument
similar to (2B) gives w+ :�+ →CP1 and π+ :�+ → cl(B+) such that:

(i) w+(∂�+)⊂ {φ = 0, ρ > 0};
(ii) w+(z0)= 0 for some z0 ∈ π−1

+ (−∞);
(iii) w+(π−1

+ (−∞))⊂ {φ = 0, ρ ≥ 0};
(iv) w+(z1)=∞ for some z1 ∈ π−1

+ (+∞);
(v) w+|int(�+) is a biholomorphism onto its image.

Here (iii) follows from observing that:

(β ′′′2 ) There is no component of v�

0,j which is a cylinder from δ0 to e.

Indeed, r contributes at least 2 towards I by Lemma 3.7.5, I(v′′∗0
) ≥ 1 if ∗0 �= +, and

a component of v�

0,j which is a cylinder from δ0 to e contributes I = 2. Together with
(β1)–(β4), the total ECH index is at least 4, if there is a cylinder from δ0 to e, a contradic-
tion.

By the Involution Lemmas, π+ ◦w−1
+ , where defined, maps Ṙ0(0) to L̇3/2(−∞),

a contradiction. Hence there must be a boundary point at z∞ on v+. A similar argument
implies that a boundary point at z∞ must lie on L3/2 and project to a large sector.

By Lemma 3.7.5, the boundary points at z∞ contribute at least 2 towards I. In
addition, the constraint of lying in L3/2 contributes 1 towards I and the large sector
condition contributes 1 towards I. These add up to at least I= 4, a contradiction.

(3D) Suppose that v′− �=∅, v′∗0
�=∅, and ∗0 = (−1, j), j = 1, . . . , c+ 1.

We would like apply the argument from (3C) and (2E). The slight complication is
that we may have ends of v�

−1,j that limit to z∞ but map to non-thin sectors. In particular,
there may be components of v�

−1,j have at least two ends that limit to z∞ but has ind= 1
and it is not a priori clear that (β4) holds.

We claim that:

(β ′4) Each positive end of v�

−1,j , j = 1, . . . , c, that limits to z∞ contributes +1 to-
wards I.



VINCENT COLIN, PAOLO GHIGGINI, KO HONDA

For ease of notation assume that c = 1 and p0,0 = 2 during the proof of the claim. Ap-
plying the rescaling argument without taking m→∞, we obtain w− : �− → CP1 and
π− :�− → cl(B−) such that:

(i) w−(z0)= 0 for some z0 ∈ π−1
− (m

b
(+∞));

(ii) w− maps the negative ends of �− to sectors S(bk,l, h(bk′,l′)).

We now make crucial use of the fact that the sectors S(bk,l, h(bk′,l′)) corresponding to
the negative ends of �− have different angles, provided the sectors are not both thin
sectors; this follows from the definition of a from Section I.5.2.2. Since each thin sector
corresponds to a thin strip of v�

−1,1 which contributes I= 1, let us assume that there are no
thin sectors in (ii). We use coordinates (s, t) ∈ (−∞, c] × [0,1] for the two negative ends
E−,1, E−,2 of �− which agree with the coordinates (s, t) on B− and write wi

− := w−|E−,i .
Then wi

−(s, t)≈ cie
λi(s+it), where λ1 > λ2 > 0 without loss of generality; c1, c2 �= 0; and the

approximation gets better as s→−∞. On the other hand, suppose that ind(v�

−1,1)= 1
and v

�

−1,1 is connected and has two positive ends E+,i , i = 1,2, that limit to z∞. Here
E+,i is to be paired with E−,i . We use coordinates (s′, t′) ∈ [c′,∞)× [0,1] for the positive
ends E+,i which agree with the coordinates on B=R× [0,1]. Then E+,1 approaches z∞
much faster than E+,2 does, as s′ →+∞. This is inconsistent with our description of w−,
when we change coordinates s′ = s+ c̃ for some c̃. Hence each end E+,i should be allowed
to move independently and each positive end of v�

−1,1 that limits to z∞ contributes +1
towards I.

(β ′4) replaces (β4). We now take the limit m →∞ and argue as in (3C), which
implies that the boundary point at z∞ must be on v− and gives a total ECH contribution
of at least 4. �

3.7.6. The case v′− �=∅.

Lemma 3.7.11. — If m� 0, u∞ ∈ ∂{+∞}M, and v′− �= ∅, then no negative end of v
�

0,j ,

1≤ j ≤ b, is asymptotic to a multiple of δ0.

Proof. — Arguing by contradiction, suppose there exists some v
�

0,j0 , 1 ≤ j0 ≤ b,
which has a negative end asymptotic to a multiple of δ0, say δ

q0,j0
0 . Since the negative

end of v�

0,j0 contributes at least m− q0,j0 towards n∗, the following hold:

(i) at most one v
�

0,j , j > 0, has a negative end asymptotic to a multiple of δ0;
(ii) only one negative end of v�

0,j0 limits to a multiple of δ0;
(iii) p0,0 ≤ p0,1 ≤ · · · ≤ p0,j0−1 ≤ p0,j0 + q0,j0 and p0,j0 ≤ p0,j0+1 ≤ · · · ≤ p0,b+1;
(iv) if E is a positive end of v�

0,j , j ≥ 0, that limits to δr
0, then n∗(E)= r; and

(v) ∪c
j=1v

�

−1,j is a union of p0,0 > 0 thin strips.
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By Lemma 3.7.5, all the components besides v′+ have nonnegative ECH index. We
have contributions (β1), (β3), (β4), (β6) as in Lemma 3.7.10, as well as the following variant
of (β2):

(˜β ′2) For 1≤ j < j0, v�

0,j is a union of cylinders from δ0 to h or e and

j0−1
∑

j=1

I(v�

0,j)≥ p0,j0 + q0,j0 − p0,1.

(˜β ′′2 ) For j0 + 1≤ j ≤ b, v�

0,j is a union of cylinders from δ0 to h or e and

b
∑

j=j0+1

I(v�

0,j)≥ p0,b+1 − p0,j0+1.

(˜β ′′′2 ) I(v�

0,j0)≥ p0,j0+1 − p0,j0 + 1.

(˜β ′2) and (˜β ′′2 ) are immediate from n∗(v�

0,j0) ≥ m − q0,j0 . (˜β ′′′2 ) follows from the proof of
Lemma 3.7.8, which implies that each positive end of v�

0,j0 that limits to δ0 additionally
contributes one constraint.

Since v0,j0 does not satisfy the partition condition at δ
p0,j0+q0,j0
0 , a straightforward

calculation which takes into account the braiding near δ
p0,j0+q0,j0
0 gives:

(3.7.6) I(v0,j0)≥ I(v′0,j0)+ I(v′′0,j0)+ 2p0,j0 .

Summing the contributions of (β1), (˜β ′2)–(˜β ′′′2 ), (β3), (β4), and Equation (3.7.6), we
obtain:

(3.7.7)
∑

v∗

I(v∗)≥ q0,j0 + 2p0,j0 + 1.

Here q0,j0 ≥ 1 by assumption. If p0,j0 > 0 or p0,j0+1 > 0, then
∑

v∗ I(v∗) ≥ 4, a contradic-
tion. On the other hand, if p0,j0 = · · · = p0,b+1 = 0, then I(v�

0,j0)≥ 2 by the usual rescaling
argument (cf. Cases (3)–(6) of Theorem I.7.10.1). In this case the right-hand side of Equa-
tion (3.7.7) can be increased by one and

∑

v∗ I(v∗)≥ 3, a contradiction. �

Lemma 3.7.12. — If m� 0, u∞ ∈ ∂{+∞}M, v′− �=∅, and v�
+ has a negative end asymp-

totic to a multiple of δ0, then u∞ ∈ A′
2.

Here A′
2 is as given in Step 4 of the proof of Theorem 3.3.1.

Proof. — This is similar to Lemma 3.7.11. The contributions of (β1), (˜β ′2), (β3), (β4),
and Equation (3.7.6) with j0 = b+ 1 add up to q+ + 2p+.
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If p+ > 0, then
∑

v∗ I(v∗)≥ q+ + 2p+ ≥ 3, a contradiction.
If p+ = 0, then q+ + 2p+ ≥ 1. By the usual rescaling argument, the negative end of

v�
+ that limits to δ0 additionally contributes +1 to I. Hence if

∑

v∗ I(v∗)= 2, then q+ = 1.
This implies that u∞ ∈ A′

2. �

Lemma 3.7.13. — If m� 0, u∞ ∈ ∂{+∞}M, and v′− �=∅, then u∞ ∈ A′
2.

Proof. — Consider u∞ ∈ ∂{+∞}M such that v′− �= ∅. By Lemma 3.7.10, there is
no boundary point at z∞, no fiber component and no v′′∗ such that v′∗ ∩ v′′∗ �= ∅. By
Lemmas 3.7.11 and 3.7.12, if v�

0,j0 , 1 ≤ j0 ≤ b + 1, has a negative end asymptotic to a
multiple of δ0, then u∞ ∈ A′

2.
It remains to consider three possibilities, all of which satisfy p0,0 ≤ · · · ≤ p0,b+1:

(1) Some v
�

−1,j0 , j0 = 1, . . . , c+ 1, has a positive or negative end E at z∞ such that
n∗(E) > m/2.

(2) Some v
�

1,j0 , j0 = 0, . . . , a, has a positive or negative end E at z∞ such that
n∗(E) > m/2.

(3) Some v
�

0,j0 , j0 = 0, . . . , b, has a positive end E at a multiple of δ0 such that
n∗(E) > m/2.

It is clear that (1), (2), and (3) are mutually exclusive.

(1) is eliminated in a manner similar to (2E) of Lemma 3.7.10 and (2) in a manner
similar to Case (6i ) of Lemma 3.4.28.

(3) In this case, (a)–(c) in the proof of Lemma 3.7.10 hold, with the exception of the
level v0,j0 . Observe that v′0,j0 �=∅ and v

�

0,j0 consists of:

– cylinders from δ0 to e or h which contribute I= 1 or 2 each; and
– a curve v

�1
0,j0 with one positive end E �

1 which is asymptotic to δ
c1
0 and satisfies

n∗(E �

1)= m+ c1 and other positive ends which in total are asymptotic to δ
c2
0 and

satisfy n∗ = c2.

We compute the contributions to the ECH index from the ends of v′0,j0 ∪ v
�

0,j0 that
limit to multiples of δ0 at the positive end. Here is the list of such ends:

– the union E ′ of positive ends of v′0,j0 ;
– E �

1 satisfying n∗(E �

1)= m+ c1;
– the union E �

2 of positive ends of v�

0,j0 that correspond to punctures of w0,j0+1;
– the union E �

3 of all other positive ends.

We use the formula:

(3.7.8) ind(u)+ (μ̃τ (u)−μτ(u)−wτ(u))≤ I(u),
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where the notation is as in Section I.3.4 and the equation follows from the adjunction
inequality and [Hu2, Lemma 4.20]. The end E �

1 has contributions μ̃τ = c1, μτ = 1, and
wτ = 1− c1. Moreover, since the vanishing of the leading asymptotic eigenfunction cor-
responding to the end E �

1 is a codimension two condition which contributes 2 to the Fred-
holm index, the extra contribution to I from E �

1 is c1− 1− (1− c1)+ 2= 2c1. The contri-
butions to I from E ′ and E �

2 , arising from a writhe computation, is 2(degE ′ + degE �

2)=
2(p0,j0 + degE �

2). Finally, the contributions to I from E �

3 is degE �

3 by the argument of
Lemma 3.7.8.

The total ECH index of all the levels is ≥ 2c1 + 2p0,j0 ≥ 4, a contradiction. �

3.7.7. The case v′− =∅.

Lemma 3.7.14. — If m� 0, then there is no u∞ ∈ ∂{+∞}M such that v′− =∅.

Proof. — Arguing by contradiction, suppose there exists u∞ ∈ ∂{+∞}M such that
v′− =∅. By Lemma 3.7.10, there is no boundary point at z∞, no fiber component, and
no v′′∗ such that v′∗ ∩ v′′∗ �=∅.

The point constraint gives n∗(v′′−) ≥ m and I(v′′−) ≥ 2. This immediately implies
that (a)–(d) in the proof of Lemma 3.7.10 hold. In particular, (β2) from Lemma 3.7.10
holds.

If p0,b+1 > 0, then the proof of Lemma 3.7.8 gives us a contradiction. Hence
p0,b+1 = 0. If a positive end of v′′+ limits to z∞, then a component ṽ of v′′+ must be a
section of W+ from z∞ to h or e. However, by the choice of h from Section 3.2.3 and
the proof of Lemma I.6.6.5, sections of W+ from z∞ to h cannot exist, leaving us with
the possibility that ṽ is a section from z∞ to e. Hence I(̃v)≥ 1 and the total ECH index
is ≥ 3, a contradiction. On the other hand, if v′′+ = v�

+, then I(v1,j) ≥ 1 for some j > 0,
which is again a contradiction. �

Proof of Lemma 3.3.10. — Lemma 3.3.10 follows from Lemmas 3.7.13 and 3.7.14.
�

3.8. Degeneration at −∞, part II. — Let u∞ ∈ ∂{−∞}M be the limit of ui ∈Mτi
,

where τi →−∞.

Lemma 3.8.1. — If u∞ has no fiber components and v′1 = ∅, then the ECH index of each

level is nonnegative.

Proof. — The proof is similar to that of Lemma 3.5.2 and uses the considerations
of Lemma 3.7.5. �

3.8.1. The case v′2 =∅.
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Lemma 3.8.2. — If u∞ ∈ ∂{−∞}M and v′2 =∅, then:

(1) u∞ is a 2-level building consisting of v1 with I(v1)= 0, v2 with I(v2)= 2, and v′j =∅

for j = 1,2;

(2) the left and right ends of v1 (= left and right ends of v2) do not limit to z∞;

(3) u∞ has no fiber component;

(4) u∞ has no boundary point at z∞.

Proof. — Suppose that v′2 =∅. First observe that

(3.8.1) n∗(v2(N(q)))≥ m,

where q ∈ Ḟ2 is the point such that v2(q)=m(−∞).
We also have I(v2)≥ 2: If u∞ has a fiber component ṽ, then ṽ must pass through

m(−∞) and I(v2)≥ 2g+2≥ 4 by an argument similar to that of Lemma I.7.5.5. On the
other hand, if u∞ does not have a fiber component, then I(v2)≥ 2, since passing through
m(−∞) is a generic codimension two condition.

(1) We claim that v′1 = ∅. Arguing by contradiction, if v′1 �= ∅, then at least one
of v�

L,j , j = 0, . . . , a, has a right end ER that limits to z∞. On the other hand, the end ER

satisfies

(3.8.2) n∗(ER)≥ k0 − 1� 2g,

which contradicts Equation (3.8.1). This proves the claim.
The claim and Lemma 3.8.1 imply that each level of u∞ has nonnegative ECH

index. Hence I(v2)= 2, I(v1)= 0, and a = b= c = d = 0 since a level vL,j , j = 1, . . . , a,
is not a connector if and only if I(vL,j) > 0 (and the same holds for vR,j , j = 1, . . . , b, vB,j ,
j = 1, . . . , c, and vT,j , j = 1, . . . , d ).

(2) If v2 has a right end ER that limits to z∞, then ER satisfies Equation (3.8.2), and
we have a contradiction of Equation (3.8.1). If v2 has a left end that limits to z∞, then v1

has a right end ER that limits to z∞ and satisfies Equation (3.8.2) (since v′1 =∅), which is
again a contradiction.

(3) Since I(v2)= 2, we cannot have a fiber component.
(4) A boundary point at z∞ contradicts Equation (3.8.1). �

3.8.2. The case v′1 =∅, v′2 �=∅.

Lemma 3.8.3. — If m� 0, then there is no u∞ ∈ ∂{−∞}M such that v′1 =∅ and v′2 �=∅.

Proof. — Arguing by contradiction, suppose there exists u∞ ∈ ∂{−∞}M such that
v′1 =∅ and v′2 �=∅. The analog of Lemma 3.5.1 holds, i.e.,

q
∑

i=1

n∗(Ei)+
r

∑

i=1

n∗(E ′i )= m,

q
∑

i=1

n∗,alt(Ei)+
r

∑

i=1

n∗,alt(E ′i )≥ m− 2g,
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where Ei , i = 1, . . . , q, are the ends that limit to z∞ and E ′i , i = 1, . . . , r, are the neighbor-
hoods of boundary points of type (P3) of all the v

�

L,j , j = 0, . . . , a, and v
�

R,j , j = 0, . . . , b.
The conclusion of Lemma 3.5.4 then holds by an almost identical argument. The proof
of Lemma 3.5.12 then carries over without modification. �

3.8.3. The case v′1 �=∅, v′2 �=∅.

Lemma 3.8.4. — Suppose v′1 �=∅ and v′2 �=∅. Let Ei , i = 1, . . . , q, be the ends of all the

v�
∗ that limit to z∞ and let E ′i , i = 1, . . . , r, be the neighborhoods of the boundary points of type (P3).

Then one of the following holds:

(a)
∑q

i=1 n∗(Ei)+∑r

i=1 n∗(E ′i )≥ m− 2g.

(b) Each end Ei is an end of v
�

B,j , j = 1, . . . , c, or v
�

T,j , j = 0, . . . , d, that projects to a thin

sector of type S(ai′,j′, h(ai′,j′)) or S(bi′,j′, h(bi′,j′)). In particular, Ei is not a left or right

end of v�
∗, where ∗ = (L, j), j = 0, . . . , a, or (R, j), j = 0, . . . , b.

Proof. — We apply the continuation argument. If some Ei , i = 1, . . . , q, does not
project to a thin sector (of type S(ai′,j′, h(ai′,j′)), S(bi′,j′, h(bi′,j′)), or S(bi′,j′, ai′,j′)), then the
sectors πD2

ρ0
(Ei), i = 1, . . . , q, and πD2

ρ0
(E ′i ), i = 1, . . . , r, will sweep out a neighborhood

of z∞ with the exception of some thin sectors, implying (a).
On the other hand, suppose that all the ends Ei, i = 1, . . . , r, project to thin sectors.

We claim that there are no thin sectors of type S(bi′,j′, ai′,j′). Indeed, the number of left
and right ends of all the v�

∗ that limit to z∞ must be equal and the right ends cannot map
to thin sectors. This gives (b). �

Lemma 3.8.5. — If u∞ ∈ ∂{−∞}M, v′1 �=∅, and v′2 �=∅, then:

(1) u∞ has no fiber components;

(2) if v′′∗ satisfies v′∗ ∩ v′′∗ �=∅ and v′∗ ∩ v′′∗ ⊂ int(v′∗), then ∗ = 1 and p∗ = 1;

(3) u∞ has no boundary point of type (P1) or (P2).

Proof. — This is similar to the proof of Lemma 3.7.10 and uses Equations (3.7.1)
and (3.7.2).

First observe that if u∞ has a fiber component, a boundary point of type (P1)
or (P2), or some v′∗ ∩ v′′∗ �= ∅ with v′∗ ∩ v′′∗ ⊂ int(v′∗), then we are in the situation of
Lemma 3.8.4(b). It is not hard to verify that I(v∗)≥ 0 for all ∗ with the exception of v1.

(1) Suppose u∞ has a fiber component ṽ. Then we have the following contributions
towards I:

(β1) I(v′1)=−p1 =−deg(v′1).
(β2)

∑c

j=1 I(v�

B,j)= p1.
(β3) If the fiber ṽ is a component of v∗, then ṽ and the intersection ṽ ∩ (v∗ − ṽ)

contribute 2g + 2≥ 4 towards I.
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The argument is similar to that of Lemma 3.7.10(1). This gives a total of I > 2, which is
a contradiction.

(2) Suppose v′∗0
∩ v′′∗0

�=∅ and v′∗0
∩ v′′∗0

⊂ int(v′∗0
). If ∗0 �= 1, then I(v′′∗0

)≥ 1 and
the intersection points contribute at least 2p∗0 ≥ 2. If ∗0 = 1 and p∗0 > 1, then I(v′′∗0

)≥ 0
and the intersection points contribute at least 2p∗0 ≥ 4. Combined with the ECH contri-
butions from (β1) and (β2), we have a contradiction.

(3) If u∞ has a boundary point of type (P1), then the argument from (3B) of
Lemma 3.7.10 implies an excess of n∗. If u∞ has a boundary point of type (P2), then
the analog of Lemma 3.7.5 implies that the boundary points at z∞ contribute 2p∗0 ≥ 2;
there is also a large sector which contributes an additional +1. Combined with (β1) and
(β2) we obtain a total of I > 2, a contradiction. �

Lemma 3.8.6. — If m� 0, u∞ ∈ ∂{−∞}M, v′1 �= ∅, and v′2 �= ∅, then there is no level

v∗ such that v′∗ ∩ v′′∗ �=∅ and v′∗ ∩ v′′∗ ⊂ int(v′∗).

Proof. — Arguing by contradiction, suppose that v′∗0
∩ v′′∗0

�= ∅ and v′∗0
∩ v′′∗0

⊂
int(v′∗0

) for some v∗0 . Then ∗0 = 1 and p1 = 1 by Lemma 3.8.5(2). By Lemma 3.8.4(b), we
have pL,j = 1 and pR,j = 1 for all j. Hence we may assume that a= b= 0. Equation (3.7.2)
then implies that c= 1 and d = 0.

By the rescaling argument with m →∞, we obtain a 2-level building w1 ∪ w2,
where

w2 : cl(B−∞,2)→CP1, w1 : cl(B−∞,1)→CP1,

and (i)–(viii), given below, hold. Here cl(B−∞,2) is obtained from B−∞,2 by adding the left
and right points at infinity, denoted t =±∞; similarly cl(B−∞,1) is obtained from B−∞,1

by adding s=±∞ and t =±∞. The map w2 satisfies the following:

(i) w2(m
b
(−∞))= 0;

(ii) w2(∂cl(B−∞,2))⊂ {φ = 0, ρ > 0} ∪ {∞};
(iii) w2(t =+∞)=∞ and w2(t =−∞)⊂ {φ = 0, ρ > 0} (or vice versa);
(iv) w2|int(B−∞,2) is a biholomorphism onto its image.

The map w1 satisfies the following:

(v) w1(t =−∞)= 0 (or w1(t =+∞)= 0; for simplicity assume the former);
(vi) w1(∂cl(B−∞,1))⊂ {φ = 0, ρ > 0} ∪ {∞};

(vii) w1(r)=∞, where r ∈ v′1 ∩ v′′1;
(viii) w1|int(B−∞,1) is a biholomorphism onto its image.

In view of the above, we consider the “tropical curves”

�i : �→[−1,1]/(−1∼ 1)× [0, di]
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as in Section 3.5.6. The proof strategy of Lemmas 3.5.12 and 3.5.13 carry over to give us
a contradiction; this is due to the disparity in the growth rates of the left and right ends
of ui when restricted to [−2,2] × [1+ L, r(τi)− L]. �

The combination of Lemmas 3.8.5 and 3.8.6 give the following, which is the analog
of Lemma 3.5.4(2),(3):

Corollary 3.8.7. — If m� 0, u∞ ∈ ∂{−∞}M, v′1 �=∅, and v′2 �=∅, then there is no fiber

component, no boundary point of type (P1) or (P2), and no intersection point r ∈ v′∗ ∩ v′′∗ such that

r ∈ v′∗ ∩ v′′∗ ⊂ int(v′∗).

Before embarking on the proof of Lemma 3.8.11, we prove Lemma 3.8.8, which is
the analog of Lemma 3.5.4(4) and is a bit involved.

First we recall and modify some notation from Section I.5.7. We use the convention
that �= (L, j), j = 1, . . . , a, or (R, j), j = 1, . . . , b+1. The data

−→D �,± at z∞ for v� is given
by a p= p�,±-tuple of matchings

(3.8.3) {(i′1, j ′1)→ (i1, j1), . . . , (i
′
p, j ′p)→ (ip, jp)},

where ik, i′k ∈ {1, . . . ,2g}, jk, j ′k ∈ {0,1} for k = 1, . . . , p and ik �= il , i′k �= i′l for k �= l. Here

the subscript + (resp. −) in
−→D �,± refers to the left (resp. right) end, (i′k, j ′k) corresponds to

bi′k,j′k , and (ik, jk) corresponds to aik,jk . We write

−→D �,± =−→D ′
�,± ∪

−→D ′′
�,±,

where
−→D ′

�,± and
−→D ′′

�,± correspond to the ends of v′�, v
′′
� , respectively.

Lemma 3.8.8. — If u∞ ∈ ∂{−∞}M, v′1 �= ∅ and v′2 �= ∅, then every component of v�
�,

�= (L, j), j = 1, . . . , a, or (R, j), j = 1, . . . , b+ 1, is a thin strip.

Proof. — Arguing by contradiction, suppose there exists v�
�0

which is not a union
of thin strips; we take �0 = (R,1) without loss of generality. Then the following hold:

(a) n∗(v�
�0
)= m and n∗,alt(v�

�0
)≥ m− 2g;

(b) each component ṽ of v�

T,j , j = 1, . . . , d , or v�

B,j , j = 1, . . . , c, is a thin strip with
z∞ at the positive end and I(̃v)= 1;

(c) each component ṽ of v�
�, � �= �0, is a thin strip with z∞ at the left end and

I(̃v)= 1;
(d) each component ṽ of v�

1 limits to z∞ only at the left end and the top end, the
left and top ends project to thin sectors, deg(̃v)= 1, and I(̃v)= 1.

(a) follows from the argument of Lemma 3.5.4(4)(a) and (b) and (c) follow immediately
from (a). (d) The assertions about the ends of ṽ follow from (a). This then implies that ṽ
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projects to the domain bounded by bi , h(bi), and h(ai) in S, in view of the positions of the
arcs bi,j , ai,j , h(bi,j), and h(ai,j) from Figure 6.

We now analyze the ends of v�
�0

at z∞ in more detail. Let l+ and l− be the number
of left and right ends of v�

�0
at z∞ and let bp be the number of boundary points of type (P3)

on v�0 . In view of (c) and (d), the total number of left ends of v∗ that limit to z∞ besides
those of v�

�0
is l− − l+. By (a slight modification of) the continuation method, we obtain

a cycle Z consisting of 2l− + bp chords, where l− of the chords are of type S(ak,l, bk′,l′),
l+ of the chords are of type S(bk,l, ak′,l′), bp of the chords are of type S(ak,l, ak′,l′) or
S(bk,l, bk′,l′), and we are eliding the chords from h(ak,l) to ak,l and chords from bk,l to
h(bk,l).

Let us write p∗ = degv′∗, q∗ = degv�
∗, and r∗ = degv�

∗. We have ind(v�
�0
)≥ 2 since

there is an end that limits to z∞ or a boundary point of type (P3) that projects to a large
sector. Then I(v�

�0
)≥ 2 by the ECH index inequality (cf. Lemma I.5.7.21) and consider-

ations of Z .

(1) Suppose that v′�0
�=∅. We claim the following:

Claim 3.8.9. — I(v�0)≥ I(v′�0
)+ I(v′′�0

)+ δ�0 , where δ�0 ≥ 2 if bp> 0 and δ�0 = 2p�0

if bp= 0.

Proof of Claim 3.8.9. — Each collection of boundary points of type (P3) that map
to the same point on the base contributes at least +2 towards I by the argument from
Lemma 3.7.5. The inequality for bp> 0 then follows.

Next assume that bp= 0. Also assume that l+ = l−, since otherwise there exist thin
strips of v∗ from (c) or components from (d), all of which contribute > 0 to I, yielding a
total of I≥ 3, a contradiction. Let (s, t2) be coordinates on [−2,2] × [−1,1]. Let

Č′
[−1,1], Č′′

[−1,1] ⊂ [−2,2] × [−1,1] × S

be representatives of v′�0
and v′′�0

and let c′±1, c′′±1 be groomings on Aε/2 = ∂D2
ε/2×[−2,2]

and Aε = ∂D2
ε × [−2,2] corresponding to Č′

[−1,1]|t2=±1 and Č′′
[−1,1]|t2=±1, such that the

following hold:

– c′+1 = c′−1 and w(c′±1)= 0;
– c′′±1 is obtained by intersecting π[−2,2]×S-projections of the ends of v′′�0

with Aε.

Here π[−2,2]×S is the projection [−2,2] ×R× S→[−2,2] × S. We also remark that, for
sign consistency with the computations in Section I.5.7, we use the standard orientations
on Aε/2 and Aε but view c′+1 and c′′+1 to be at the negative end and c′−1 and c′′−1 to be at the
positive end during the proof of this claim. By the above description of Z :

– w(c′′+1)= 0 or −1 and w(c′′−1)= 0 or 1;
– the endpoints of c′′+1 and c′′−1 agree and are alternating.
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We now extend Č′
[−1,1], Č′′

[−1,1] by concatenating with

Č′
[1,2], Č′′

[1,2] ⊂ [−2,2] × [1,2] × S,

Č′
[−2,−1], Č′′

[−2,−1] ⊂ [−2,2] × [−2,−1] × S

such that the ends of Č′
[−2,2] ∪ Č′′

[−2,2] are groomed and have zero winding number. Writ-
ing w for the writhe, Lemmas I.5.7.22 and I.5.7.23 imply that we have an additional
contribution of at least

2p�0 = 2(w(c′+1 ∪ c
′′
+1)−w(c′−1 ∪ c

′′
−1))

towards I. �

By Claim 3.8.9, I(v�0)≥ 4. Since the ECH indices of the other levels add up to at
least 0 in view of (b), (c), and (d), we have a contradiction.

(2) Suppose that v′�0
=∅. Then there are no boundary points of type (P3) by def-

inition. Since I(v�0) = I(v′′�0
) ≥ 2, the only nontrivial levels besides v�0 and v1 are vB,j ,

j = 1, . . . , c, which consist of thin strips and trivial strips. Again we have l+ = l−, since
otherwise there exist thin strips of v∗ from (c) or components from (d), all of which con-
tribute > 0 to I, yielding a total of I≥ 3, a contradiction. Let us write l�0 := l+ = l−. We
claim the following:

Claim 3.8.10. — I(v′′�0
)≥ 2+ l�0 .

Proof of Claim 3.8.10. — Let us first consider the case where:

(1) πS ◦ v�
�0
|Ḟ�

�0
is a diffeomorphism onto its image, which contains S− a− b;

(2) v�
�0

limits to z
l�0∞ ∪ y′ to the left and to z

l�0∞ ∪ y′′ to the right, where y′ = y′′.

If we choose a multivalued trivialization τ to be compatible with
−→D ′′

�0,± (cf. Sec-
tion I.5.7.3), then

ind(v�
�0
)=−χ(F�

�0
)+ degv�

�0
+μτ(v

�
�0
)+ 2c1((v

�
�0
)∗TS, τ )

=−(1− 2g − (degv�
�0
− l�0))+ degv�

�0
+ (l�0 + 1)+ 2(1− 2g)

= 2− 2g + 2 degv�
�0
.

Hence I(v�
�0
)≥ 2−2g+2 degv�

�0
. We also have I(v�

�0
)≥ 0 and 〈v�

�0
, v�

�0
〉 = degv�

�0
, where

〈, 〉 is the algebraic intersection number. Summing the contributions, we obtain:

I(v�0)= I(v�
�0
)+ I(v�

�0
)+ 2〈v�

�0
, v�

�0
〉(3.8.4)

≥ 2− 2g + 2 degv�
�0
+ 2 degv�

�0
≥ 2+ degv�

�0
.
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In general, the cases with smallest ECH indices occur when elements of y′ are of
type x#

i1 or x#
i3 and elements of y′′ are of type x#

i2. This has the effect of decreasing the
lower bound in Equation (3.8.4) by the cardinality of y′. Hence I(v�0)≥ 2+ l�0 . �

Since l�0 ≥ 1, we have I(v�0)≥ 3, which is a contradiction. �

Lemma 3.8.11. — If m� 0, then there is no u∞ ∈ ∂{−∞}M such that v′1 �=∅ and v′2 �=
∅.

Proof. — Corollary 3.8.7 and Lemma 3.8.8 imply the analog of Lemma 3.5.4. The
proof of Lemma 3.5.13 then carries over with no change. �

Proof of Lemma 3.3.11. — Suppose u∞ ∈ ∂{−∞}M. If v′2 = ∅, then we are in the
situation of Lemma 3.3.11 by Lemma 3.8.2. On the other hand, Lemmas 3.8.3 and
3.8.11 imply that v′2 =∅. �

3.9. Breaking in the middle, part II. — Let u∞ ∈ ∂(−∞,+∞)M be the limit of ui ∈Mτi
,

where τi →T′.

Lemma 3.9.1. — If u∞ has no fiber components, then the ECH index of each level v∗ �= v0 is

nonnegative and the only components of u∞ which have negative ECH index are the following:

– branched covers of σT′
∞ ; and

– at most one component ṽ of v′′0 with I(̃v)=−1.

Proof. — Similar to the proofs of Lemmas 3.7.4 and 3.7.5. �

The following lemma is analogous to Lemma 3.7.10.

Lemma 3.9.2. — If m� 0 and u∞ ∈ ∂(−∞,+∞)M, then the following hold:

(1) u∞ has no fiber components;

(2) there is no level v∗ such that v′∗ ∩ v′′∗ �=∅ and v′∗ ∩ v′′∗ ⊂ int(v′∗); and

(3) u∞ has no boundary point at z∞.

Proof. — (1) Arguing by contradiction, suppose that u∞ has a fiber component ṽ.
Then n∗(̃v) ≥ m and ṽ can be eliminated by arguing as in Lemma 3.7.10(1), in view of
the following contributions towards I:

(γ1) I(v′0)=−p0.
(γ2) ∪c

j=1v
�

−1,j is a union of p0 trivial strips and
∑c

j=1 I(v�

−1,j)= p0.
(γ3) If ṽ is a component of v∗, then ṽ and the intersection ṽ ∩ (v∗ − ṽ) contribute

2g + 2≥ 4 towards I.
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(γ4) After removing any fiber components ṽ, all the levels �= v0 have nonnegative
ECH index and I(v′′0)≥−1 by Lemma 3.9.1.

The sum of the above ECH indices is at least 3, a contradiction.
(2), (3) Similar to (2) and (3) of Lemma 3.7.10. Observe that the sum of ECH

indices of the levels was at least 4 in all the cases of Lemma 3.7.10 that were not ruled out
by other means; in the present case the sum will be at least 3. (Note that the ECH indices
added up to only 3 in (2C) of Lemma 3.7.10, but we do not have levels v0,j , j = 1, . . . , b,
in the current situation.) �

Lemma 3.9.3. — If u∞ ∈ ∂(−∞,+∞)M and v′0 =∅, then u∞ is one of the following 2-level

buildings:

(1) v1,1 with I= 1 from z to some z′ consisting of

(i) one thin strip and trivial strips or

(ii) one nontrivial component of v′′1,1 with image in W and trivial strips;

and v0 = v′′0 with I= 1 and n∗ ≤ m+ |I| from z′ to y′.
(2) v0 = v′′0 with I= 1 and n∗ ≤ m+ |I| from z to some y′′; and v−1,1 with I= 1 from y′′

to y′.

Proof. — Suppose that v′0 =∅. Since passing through m(T′) is a codimension two
condition, we have I(v0)≥ 1. Hence there can be only one other nontrivial level — either
v1,1 or v−1,1 — and I(v±1,1)≥ 1. By Lemma 3.9.1, I(v0)= 1 and I(v±1,1)= 1. Moreover,
n∗(v±1,1)≤ |I| since n∗(v0)≥ m. This means that there are no components v�

∗ that limit
to z∞ at the negative end and all the positive ends E+ that limit to z∞ satisfy n∗(E+)= 1.
The lemma follows. �

Lemma 3.9.4. — For each interval [−T,T], there exists m� 0 such that there is no sequence

of curves ui ∈Mτi
, τi →T′ ∈ [−T,T], that limits to u∞ for which v′0 �=∅.

Proof. — This is similar to Lemma 3.6.5 and will be omitted. �

Proof of Lemma 3.3.12. — This is argued in the same way as Lemma 3.3.8. Sup-
pose u∞ ∈ ∂(−∞,+∞)M. If v′0 = ∅, then Lemma 3.9.3 implies that u∞ is as described
in Lemma 3.3.12. On the other hand, by Lemma 3.9.4, for any T > 0 there exists
m� 0 such that v′0 =∅ in u∞ ∈ ∂[−T,+T]M. The possibilities where mi →∞, Ti →∞,
uij → ui∞ ∈ ∂{±Ti}M are treated in the same way as in Lemmas 3.7.14, 3.8.3, and
3.8.11. �

4. Homotopy of cobordisms II

In this section we consider the homotopy of cobordisms corresponding to � ◦� .
Many of the constructions for W

∓
τ are similar to those of W

±
τ with minor modifications.
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We first give a brief description of Wτ =W
∓
τ . (If ∓ is understood, as it will be in

the rest of this section, then it will be omitted.) The base Bτ of Wτ is biholomorphic to
an infinite cylinder with a disk removed. As τ →+∞, Wτ degenerates to the stacking of
W− “on top of ” W+. On the other hand, as τ →−∞, Wτ degenerates to W−∞, whose
base B−∞ is given by:

(4.0.1) B−∞ = ((R× (R/2Z)) � E) /∼,
where E= {|z| ≤ 1} ⊂C and ∼ identifies (0, 3

2) ∈R× (R/2Z) with 0 ∈ E.
The degeneration for τ →−∞ can be described in an equivalent way as a neck-

stretching along a stable Hamiltonian hypersurface which is the preimage of a boundary-
parallel loop in the base.

4.1. Construction of the homotopy of cobordisms for � ◦� .

4.1.1. Definition of the family Wτ . — Let l ∈ (0,∞) and r ∈ (0,1]. Consider the
fibration

π :R×N→R× (R/2Z),

where N is viewed as (S × [0,2])/(x,2) ∼ (h(x),0) and (s, t) are coordinates on R ×
(R/2Z). We define Wl,r = π−1(Bl,r), where the base Bl,r is obtained by smoothing the
corners of

(R× (R/2Z))− ((−l/2, l/2)× ((3− r)/2, (3+ r)/2)).

Next choose a function

(4.1.1) η= (l, r) :R→ (0,∞)× (0,1],
which is obtained by smoothing

η0(τ )=
{

(τ + 1,1), for τ ≥ 0;
(eτ , eτ ), for τ ≤ 0;

near τ = 0.
We then define Wτ =Wη(τ) and Bτ = Bη(τ). Let πBτ

:Wτ → Bτ be the projection
along {(s, t)} × S.

As τ →+∞, the cobordism Wτ approaches the concatenation of W− and W+.
See Figure 17. On the other hand, as τ →−∞, the cobordism Wτ can be viewed as
degenerating to W−∞ = (W−∞,1�W−∞,2)/∼, which we describe now: Consider the base
B−∞ = (B−∞,1 � B−∞,2)/∼, where B−∞,1 =R× (R/2Z), B−∞,2 = E= {|z| ≤ 1}, and ∼
identifies (0, 3

2) ∈ B−∞,1 with 0 ∈ B−∞,2. We also identify the asymptotic markers ∂s at
(0, 3

2) and {x= 0, y > 0} at 0. We then set W−∞,1 = π−1(B−∞,1) and W−∞,2 = B−∞,2×S,
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FIG. 17. — The bases of the family W
∓
τ . The leftmost diagram represents B−∞, i.e., τ = −∞, and the parameter τ

increases as we go to the right. The location of mb
(τ ) is indicated by ×

and identify (0, 3
2 , x) ∼ (0, x), where (0, 3

2 , x) ∈ W−∞,1 and (0, x) ∈ W−∞,2. We write
πB−∞,i

:W−∞,i → B−∞,i for the projection along S.
The alternate description of the degeneration as τ →−∞mentioned at the begin-

ning of the section relies on the conformal equivalence between annuli {eτ ≤ |z| ≤ 1} ⊂C
and finite cylinders [τ,0] × S1 for τ < 0. The details are left to the reader.

4.1.2. Marked points. — We choose a 1-parameter family of marked points

m(τ )= (m
b
(τ ),m

f
(τ ))= (m

b
(τ ), z∞) ∈Wτ

for τ ∈R, such that the following hold:

(i) m
b
(τ ) is on the segment {s > l(τ )

2 , t = 3
2};

(ii) as τ → +∞, m(τ ) limits to m(+∞) = (m
b
(+∞),m

f
(+∞)), where

m
b
(+∞)= (0, 3

2) ∈ B− and m
f
(+∞)= z∞;

(iii) as τ → −∞, m(τ ) limits to m(−∞) = (m
b
(−∞),m

f
(−∞)), where

m
b
(−∞)= i

2 ∈ B−∞,2 and m
f
(−∞)= z∞.

Remark 4.1.1. — Here is a slightly more detailed description of the convergence
of the marked points: For τ � 0 we take m

b
(τ ) = (

τ+5
2 ,0

)

. For τ � 0 we define sets
Qτ = Bτ − B−√|τ | and maps

rτ :Qτ →R2, rτ (s, t)= 2e−τ
(

s, t − 3
2

)

.

The images rτ (Qτ ) form an exhaustion of a set Q−∞ obtained by smoothing the bound-
ary of R2 − ((−1,1)× (−1,1)). Let u : D2 − {0} →Q−∞ be a diffeomorphism which
is holomorphic in the interior. By smoothing the boundary of R2 − ((−1,1)× (−1,1))
symmetrically, we choose u so that the imaginary axis is mapped to the axis {t = 0}. Let
u
(

i

2

)= (s−∞,0). Then for τ � 0 we take m
b
(τ )= r−1

τ (s−∞,0)= (

eτ

2 s−∞, 3
2

)

.
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4.1.3. Stable Hamiltonian structures and symplectic forms. — We first consider Wτ . The
stable Hamiltonian structure on N= (S×[0,2])/∼ is obtained from (dt,ω) on S×[0,2]
by passing to the quotient. The 2-plane field is ξτ =TS and the Hamiltonian vector field
is Rτ = ∂t . The symplectic form �τ is the restriction to Wτ of ds ∧ dt + ω, defined on
R× S× [0,2] and sent to the quotient R×N.

Next we consider W−∞. For W−∞,1 = N the Hamiltonian structure is (dt,ω) and
the symplectic form is �−∞,1 = ds∧ dt+ω. The symplectic form on W−∞,2 = B−∞,2× S
is a product symplectic form �−∞,2 = ω−∞,2⊕ω, where ω−∞,2 is the standard area form
on the unit disk.

4.2. Holomorphic curves and moduli spaces.

4.2.1. Lagrangian boundary conditions. — Consider the cobordism (Wτ ,�τ ). We
place a copy of a on π−1

Bτ
( l(τ )

2 , 3
2) and parallel transport along the vertical boundary

∂vWτ := π−1(∂Bτ ) using the symplectic connection �τ to obtain Lτ
a. Similarly, we place

a copy of a over 1 ∈ B−∞,2 and parallel transport along ∂B−∞,2 to obtain L−∞,2
a =

∂B−∞,2×a. The Lagrangian submanifolds Lτ
â, Lτ

âi
, Lτ

ai
are defined similarly. Note that the

Lagrangians close up because the monodromy of the fibration πBτ
:Wτ → Bτ is trivial

along ∂Bτ .

4.2.2. Almost complex structures.

Definition 4.2.1.

(1) An almost complex structure Jτ on Wτ is admissible if Jτ is the restriction of some J′ ∈
JW′ . In this case Jτ is said to be compatible with J′.

(2) An almost complex structure J−∞,1 on R×N is admissible if J−∞,1 ∈JW′ .

(3) An almost complex structure J−∞,2 on B−∞,2 × S is admissible if it is a product complex

structure.

The space of admissible Jτ , J−∞,1 and J−∞,2 will be denoted by JWτ
, JW−∞,1

and JW−∞,2
, respectively.

Definition 4.2.2. — A family {Jτ ∈ J τ }τ∈R of almost complex structures is admissible if

there exist J′ ∈ JW′ , J ∈ JW, J+ ∈ JW+ , J− ∈ JW− , J−∞,1 ∈ JW−∞,1
and J−∞,2 ∈ JW−∞,2

such

that the following hold:

(1) Jτ converges to (J−∞,1, J−∞,2) as τ →−∞;

(2) Jτ converges to (J+, J−) as τ →+∞;

(3) J+ and J− are compatible with J′ and J; and

(4) Jτ is compatible with J′ = J−∞,1.

For τ →+∞ the convergence of almost complex structures is to be understood in the sense of neck-

stretching as in [BEHWZ, Section 3.4]. For τ →−∞ we gave two equivalent descriptions of the
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limit: one as nodal degeneration and one as a neck-stretching. If the limit is viewed as a neck-stretching,

then the convergence of the almost complex structures is again as in [BEHWZ, Section 3.4]. If the limit

is viewed as a nodal degeneration, then J−∞,1 is the C∞
loc limit of Jτ and J−∞,1 is the pullback by the

uniformization map u of the C∞
loc limit of the restriction of Jτ to Qτ after applying the rescaling map

rτ ; see Remark 4.1.1 for the definitions of u and rτ . Strictly speaking, the limit produces almost complex

structures on W−∞,1 − π−1((0, 3
2)) and W−∞,2 − ({0} × S), but they can be extended over the

missing points. The space of all admissible {Jτ ∈J τ }τ∈R will be denoted by I .

4.2.3. Notation and conventions. — We will be using the notation and conventions
from Section 3.2.3, with the exception of intersection numbers n∗(u).

Intersection numbers. Let δρ0,φ0 be a closed orbit of the Hamiltonian vector field ∂t which
lies on the torus {ρ = ρ0} ⊂ S× [0,2]/∼ for ρ0 > 0 sufficiently small and which passes
through the point (t, ρ,φ)= (0, ρ0, φ0). We assume additionally that δρ0,φ0 does not in-
tersect the projections of the Lagrangians of Wτ , W+ and W− to N.

We then write (σ ∗∞)
† for the restriction of R× δρ0,φ0 to W∗, where ∗ =∅,′ , τ,+,

− or (−∞,1). For W−∞,2 we write

(σ−∞,2
∞ )† = B−∞,2 × {ρ = ρ0, φ = φ0 + 3π/2m+ 2πk/m, k ∈ Z}.

Finally we define n∗(u)= 〈u, (σ ∗∞)†〉, where ∗ =∅,′ , τ,+, − or (−∞,1).

4.2.4. Holomorphic maps to Wτ . — Let (F, j) be a compact Riemann surface, pos-
sibly disconnected, with 2g boundary components and two sets of interior punctures
p+ = {p+1 , . . . , p+k+} and p− = {p−1 , . . . , p−k−} such that each component of F has nonempty
boundary, at least one puncture from p+, and at least one puncture from p−. We write
Ḟ= F− p+ − p−.14

Definition 4.2.3. — Let Jτ ∈JWτ
and let γ =∏

γ
mi

i ,γ′ =∏

(γ ′i )
m′i ∈ ̂Ok .

A degree k multisection of (Wτ , Jτ ) from γ to γ′ is a holomorphic map

u : (Ḟ, j)→ (Wτ , Jτ )

which is a degree k multisection of πBτ
:Wτ → Bτ and which additionally satisfies the following:

(1) u(∂F)⊂ Lτ
â;

(2) u maps each connected component of ∂F to a different Lτ
âi

;

(3) lim
w→p+i

πR ◦ u(w)=+∞ and lim
w→p−i

πR ◦ u(w)=−∞;

(4) u converges to a cylinder over a multiple of some γj near each puncture p+i so that the total

multiplicity of γj over all the p+i ’s is mj (and similarly for p−i ).

Here πR :Wτ →R is the projection to the s-coordinate.

14 Observe that Ḟ has no boundary punctures.
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A (Wτ , Jτ )-curve from γ to γ′ is a degree 2g multisection of (Wτ , Jτ ) satisfying n∗(u)= m.

Let MJτ
(γ,γ′) be the moduli space of degree k multisections of (Wτ , Jτ ) from γ

to γ′ and let MJτ
(γ,γ′;m(τ )) be the moduli space of curves with a point constraint

m(τ ); as usual, they are called moduli spaces of curves passing through m(τ ). Topological
considerations based on the intersection numbers n∗ imply that the forgetful map

Mn∗=m

Jτ
(γ,γ′;m(τ ))→Mn∗=m

Jτ
(γ,γ′)

is injective.
We write

M{Jτ }(γ,γ
′)= {(τ, u) | τ ∈R, u ∈MJτ

(γ,γ′)},
M{Jτ }(γ,γ

′;m)= {(τ, u) | τ ∈R, u ∈MJτ
(γ,γ′;m(τ ))}.

4.2.5. Holomorphic maps to W−∞. — We now describe the curves in W−∞,i .

Definition 4.2.4. — Let J−∞,1 ∈ JW−∞,1
and let γ =∏

γ
mi

i ,γ′ =∏

(γ ′i )
m′i ∈ ̂Ok . A de-

gree k multisection of (W−∞,1, J−∞,1) from γ to γ′ is a holomorphic map

u : (Ḟ, j)→ (W−∞,1, J−∞,1)

which is a degree k multisection of πB−∞,1 :W−∞,1 → B−∞,1 and which is asymptotic to γ and γ′ at

the positive and negative ends. Here (Ḟ, j) is a punctured Riemann surface. A (W−∞,1, J−∞,1)-curve
from γ to γ′ is a degree 2g multisection of (W−∞,1, J−∞,1) satisfying n∗(u)= 0.

Definition 4.2.5. — Let J−∞,2 ∈JW−∞,2
. A degree k multisection of (W−∞,2, J−∞,2) is

holomorphic map

u : (F, j)→ (W−∞,2, J−∞,2)

which is a degree k multisection of πB−∞,2 : W−∞,2 → B−∞,2 and which additionally satisfies the

following:

(1) (F, j) is a compact Riemann surface with k boundary components;

(2) u maps each component of ∂F to a different L−∞,2
âi

.

A (W−∞,2, J−∞,2)-curve is a degree 2g multisection of (W−∞,2, J−∞,2) satisfying n∗(u) = m. A

degenerate (W−∞,2, J−∞,2)-curve consists of 2g copies of B−∞,2×{pt} and a singular fiber {0}×
S.

Let MJ−∞,1
(γ,γ′) be the moduli space of degree 2g multisections of (W−∞,1, J−∞,1)

from γ to γ′, let MJ−∞,2
be the moduli space of degree 2g multisections of (W−∞,2, J−∞,2),
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and let MJ−∞,2
(m(−∞))⊂MJ−∞,2

be the subset consisting of multisections satisfying a
point constraint at m(−∞).

We define the evaluation maps

evS,1 :MJ−∞,1
(γ,γ′)→ Sym2g(S), evS,2 :MJ−∞,2

→ Sym2g(S)

as in Definition 2.1.1, by intersecting the holomorphic curves in MJ−∞,1
(γ,γ′) (resp. in

MJ−∞,2
) with the fiber of the fibration W−∞,1 →R×R/2Z over (0, 3

2) which we identify
with S (resp. with the fiber {0} × S). Given z ∈ Sym2g(S), we define

MJ−∞,1
(γ,γ′, z)= ev−1

S,1
(z)⊂MJ−∞,1

(γ,γ′),

MJ−∞,2
(z)= ev−1

S,2
(z)⊂MJ−∞,2

,

MJ−∞,2
(z,m(−∞))=MJ−∞,2

(m(−∞))∩MJ−∞,2
(z).

In order to highlight the special role of the point z∞ we will write

z= ζ
r0
0 ζ

r1
1 . . . ζ

rl
l ,

where r0 ∈ Z≥0, r1 . . . , rl ∈ Z>0, r0 + · · · + rl = 2g, ζ0 = z∞, and ζ1, . . . , ζl ∈ S − {z∞}.
Also, for sake of brevity, we will denote Z= Sym2g(S).

4.2.6. Indices. — We now briefly discuss the Fredholm index ind(u) and the ECH
index I(u) of a Wτ -curve u : Ḟ→Wτ from γ to γ′. This is similar to Section 3.2.6.

Let W̌τ = Wτ − {s > l(τ )

2 + 1} − {s < − l(τ )

2 − 1}, where l(τ ) is given in Equa-

tion (4.1.1). Let ǔ : F̌ → W̌τ be the compactification of u, where F̌ is obtained by per-
forming a real blow-up of F at its boundary punctures.

The trivialization τ � of TS along Lτ
â is defined as in Section I.4.4.2: We pick a

point p ∈ ∂Bτ , define τ � of TS|π−1
Bτ (p)

along â by choosing a nonsingular tangent vector

field along â, and then parallel transport τ � along ∂Wτ . We also choose τ � along γ and
γ′.

Let Qτ�(ǔ) be the relative intersection form given by normalizing ǔ near s =
±( l(τ )

2 + 1) as in [Hu1, Definition 2.4] and intersecting ǔ and a pushoff of ǔ. Here the

pushoff along ∂W̌τ is in the direction of Jτ �. Then

I(u)= c1(ǔ
∗
TS, τ ∗)+Qτ�(ǔ)+ μ̃τ�(γ)− μ̃τ�(γ

′)− 2g,(4.2.1)

ind(u)=−χ(Ḟ)+ 2c1(ǔ
∗
TS, τ �)+μτ�(γ)−μτ�(γ

′)− 4g,(4.2.2)

These index formulas are obtained by adding the index formulas for holomorphic curves
in W± of [I]. In deriving Equation (4.2.2) from Propositions I.5.5.2 and I.5.5.5 we should
observe that every term in the Fredholm index formula is additive except for the Euler
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characteristic: if a surface Ḟ is obtained by gluing surfaces Ḟ+ and Ḟ− along 2g strip-like
ends, then χ(Ḟ+)+ χ(Ḟ−)= χ(Ḟ)+ 2g. The index inequality holds as usual:

(4.2.3) ind(u)+ 2δ(u)≤ I(u),

where δ(u)≥ 0 and equals zero if and only if u is an embedding. We also have

(4.2.4) I(σ τ
∞)= ind(σ τ

∞)=−1.

The Fredholm and ECH indices for W−∞,i-curves can be defined and computed
similarly.

Remark 4.2.6. — The Fredholm and ECH indices for Wτ and W−∞,i do not take
into account the point constraint m(τ ) and the condition “passing through m(τ )” is a
codimension 2 condition. Moreover, the indices for W−∞,i , i = 1,2, do not take into
account the constraints z.

We now have the following:

Lemma 4.2.7. — Let u be a W−∞,2-curve. Then

[u] = 2g[B−∞,2 × {pt}] + [{pt} × S] ∈H2(W−∞,2, ∂B−∞,2 × S),

u consists of 0 ≤ k < 2g copies of B−∞,2 × {pt} together with an irreducible component in the class

(2g − k)[B−∞,2 × {pt}] + [{pt} × S], and I(u)= 4g + 2.

Proof. — Let πS :W−∞,2 → S be the projection along B−∞,2. Since J−∞,2 is a split
complex structure, πS is a holomorphic map. Hence if u is a W−∞,2-curve, then πS ◦ u

either maps to a point on some âi or to all of S. The lemma follows by listing all the
possibilities. �

We also have the following, which is stated without proof.

Lemma 4.2.8. — Let u be a degree 2g multisection of (W−∞,2, J−∞,2) satisfying n∗(u)= 0.

Then u= u′ ∪ u′′ consists of u′ which is a degree k cover of σ−∞,2
∞ and u′′ which is the union of 2g− k

copies of B−∞,2 × {pt}, and I(u)= 2g.

4.2.7. Regularity.

Definition 4.2.9. — The family {Jτ }τ∈R ∈ I is regular if:

(1) M†
{Jτ }(δ

p

0γ, δ
q

0γ
′) is transversely cut out for all δ

p

0γ, δ
q

0γ
′ ∈ ̂Ok , k ≤ 2g;

(2) the restriction J′ of Jτ to the positive and negative ends (the restriction is independent of τ ) is

regular; and
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(3) J− and J+ in the limit τ →+∞ are regular.

Let I reg
be the space of regular {Jτ } ∈ I . As usual we have:

Lemma 4.2.10. — The generic {Jτ } ∈ I is regular.

We also introduce the perturbations of {Jτ } to ensure that passing through m(τ ) is
a generic condition. Let p(τ ) ∈ Bτ be a family of points such that:

lim
τ→+∞p(τ )= p(+∞) ∈ B−, lim

τ→−∞p(τ )= p(−∞) ∈ B−∞,1

and p(τ ) �= m
b
(τ ) for all τ ∈ [−∞,∞]. We then define the families {Uτ = Uε,δ,p(τ )},

{Kτ = Kp(τ ),δ}, and {J♦τ = J
♦
τ (ε, δ,p(τ ))} as in Section 3.2.7. Also, the modifier {Kτ }

means “passing through Kτ for an appropriate τ .”

Definition 4.2.11. — The family {J♦τ } is {Kτ }-regular with respect to m if the moduli

spaces M†,{Kτ }
{Jτ } (δ

p

0γ, δ
q

0γ
′;m) are transversely cut out.

The following lemmas are analogous to Lemmas 3.2.21 and 3.2.22:

Lemma 4.2.12. — A generic {J♦τ }τ∈R is {Kτ }-regular with respect to m.

Lemma 4.2.13. — If {Jτ } is a generic family, then for ε, δ > 0 sufficiently small, there exist a

generic family {J♦τ (ε, δ,p(τ ))} which is {Kp(τ ),δ}-regular with respect to m and disjoint finite subsets

T1,T2 ⊂R with the following properties:

(1) τ ∈ T1 if and only if there exists vτ ∈M†,s,irr,ind=−1
Jτ

(δ
p

0γ, δ
q

0γ
′) for some δ

p

0γ and δqγ′.

(2) τ ∈ T2 if and only if there exists vτ ∈M†,s,irr,{Kτ },ind=1

J
♦
τ (ε,δ,p(τ ))

(δ
p

0γ, δ
q

0γ
′;m) for some δ

p

0γ and

δqγ′.

Moreover, for each τ ∈ Ti there is a unique such irreducible curve vτ .

4.3. Proof of the other half of Theorem 1.0.1. — In this subsection we prove the “other
half ” of Theorem 1.0.1, i.e., � ◦� = id on the level of homology, assuming the results of
Sections 4.4–4.5.

We make the following simplifying assumption, which is possible by Theo-
rem I.2.5.2.

(††)2g All the elliptic orbits of the stable Hamiltonian vector field corresponding
to h : S

∼→ S that intersect S × {0} at most 2g times have linearized first
return maps which are ε-rotations with 0 < |ε| < π

g
with respect to some

trivialization.
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The partition conditions for k-fold iterates of such elliptic orbits with k ≤ 2g are particu-
larly simple and have the form (1, . . . ,1) or (k).

Theorem 4.3.1. — Suppose (††)2g holds. If m� 0, then there exists a chain homotopy

K : PFC2g(N)→ PFC2g(N),

such that the following holds:

(4.3.1) ∂ECH ◦K+K ◦ ∂ECH =� ◦� + id.

Proof. — Suppose m � 0. Fix p(τ ) and choose {Jτ } ∈ I reg
. For sufficiently small

ε, δ > 0 (which depend on the choices of m and {Jτ }), there exists {J♦τ (ε, δ,p(τ ))} such
that Lemma 4.2.13 holds.

Fix γ,γ′ ∈ ̂O2g and abbreviate

M=MI=2,n∗=m

{J♦τ (ε,δ,p(τ ))}
(γ,γ′;m), M{Kp(τ ),δ} =MI=2,n∗=m,{Kp(τ ),δ}

{J♦τ (ε,δ,p(τ ))}
(γ,γ′;m).

Let M be the SFT compactification of M and let ∂M=M−M be the bound-
ary of M. As in the W

±
τ case, the limit SFT buildings can be described in a manner

analogous to Definition I.7.3.1 and the proof of existence follows the same steps as that
of Proposition I.7.3.2. The main point is that for each component of the limit SFT build-
ing the boundary punctures either map to points on the singular Lagrangian or to Reeb
chords, including chords over z∞.

If U ⊂ [−∞,+∞], then we write ∂UM for the set of u∞ ∈ ∂M where u∞ is a
building which corresponds to some τ ∈U. By Lemma 4.2.12, we may take M{Kp(τ ),δ} to
be regular.

In view of the considerations from Claim 3.3.4, we assume that all of M is regular.

Step 1 (Breaking at +∞). The following is proved in Section 4.4.

Lemma 4.3.2. — ∂{+∞}M⊂ A1, where

A1 =
∐

y∈Sa,h(a)

(

MI=2,n∗=m

J
♦
−(ε,δ,p(+∞))

(γ,y;m(+∞))×MI=0
J+ (y,γ′)

)

.

Gluing the pairs in A1 accounts for the term � ◦� in Equation (4.3.1).

Step 2 (Breaking at −∞). The following lemmas are proved in Section 4.5.

Lemma 4.3.3. — ∂{−∞}M⊂ A2 �A3, where

A2 =
∐

γ∈̂O2g ,z∈Z,r0=0

(

MI=0,n∗=0

J
♦
−∞,1(ε,δ,p(−∞))

(γ,γ, z)
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×MI=4g+2,n∗=m

J−∞,2
(z;m(−∞))

)

;

A3 =
∐

γ,γ′∈̂O2g ,z∈Z,r0=1

(

MI=2g+2,n∗=m

J
♦
−∞,1(ε,δ,p(−∞))

(γ,γ′, z)MI=2g,n∗=0
J−∞,2

(z)

)

.

Note that if v2 ∈MI=2g,n∗=0
J−∞,2

(z), then v2 = B−∞,2 × z.

Lemma 4.3.4. — Gluing the pairs in A2 accounts for the term id in Equation (4.3.1).

Lemma 4.3.5. — Gluing the pairs in A3 gives a total of 0 mod 2.

Step 3 (Breaking in the middle). The following is proved in Section 4.6.

Lemma 4.3.6. — ∂(−∞,+∞)M⊂ A4 �A5�A6 �A7, where

A4 =
∐

γ′′∈̂O2g

(

MI=1,n∗=m

{J♦τ (ε,δ,p(τ ))}
(γ,γ′′;m)×MI=1

J′ (γ′′,γ′)
)

;

A5 =
∐

γ′′∈̂O2g

(

MI=1
J′ (γ,γ′′)×MI=1,n∗=m

{J♦τ (ε,δ,p(τ ))}
(γ′′,γ′;m)

)

;

A6 =
∐

γ′′,γ′′′∈̂O2g−1

(

MI=2,n∗=m−1,fδ0
J′ (γ, δ0γ

′′)×MI=−2,n∗=0

{J♦τ (ε,δ,p(τ ))}
(δ0γ

′′, δ0γ
′′′)

×MI=2,n∗=1
J′ (δ0γ

′′′, eγ′′′)
)

;

A7 =
∐

γ′′,γ′′′∈̂O2g−2

(

MI=2,n∗=m−2,fδ0
J′ (γ, δ2

0γ
′′)×MI=−3,n∗=0

{J♦τ (ε,δ,p(τ ))}
(δ2

0γ
′′, δ2

0γ
′′′)

×MI=3,n∗=2
J′ (δ2

0γ
′′′, ehγ′′′)

)

.

Gluing the pairs in A4 and A5 accounts for the terms ∂ECH ◦K and K ◦ ∂ECH in
Equation (4.3.1).

Lemma 4.3.7. — Gluing the triples in A6 and A7 gives a total of 0 mod 2.

This completes the proof of Theorem 4.3.1, modulo the results that will be proved
in Sections 4.4–4.6. �

4.4. Degeneration at +∞. — In this subsection we study the limit of holomorphic
maps to Wτ as τ →+∞, i.e., when Wτ degenerates into a concatenation of W− with
W+ along the HF-type end. This will prove Lemma 4.3.2.
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We assume that m � 0; ε, δ > 0 are sufficiently small; and {Jτ } ∈ I reg
and

{J♦τ (ε, δ,p(τ ))} satisfy Lemma 4.2.13. Fix γ,γ′ ∈ ̂O2g and let

M=MI=2,n∗=m

{J♦τ (ε,δ,p(τ ))}
(γ,γ′;m), Mτ =MI=2,n∗=m

J
♦
τ (ε,δ,p(τ ))

(γ,γ′;m).

We will analyze ∂{+∞}M.
Let ui , i ∈N, be a sequence of curves in M such that ui ∈Mτi

and lim
i→∞

τi =+∞,

and let

u∞ = (v−1,1∪ · · ·∪ v−1,c)∪ v+ ∪ (v0,1∪ · · ·∪ v0,b)∪ v− ∪ (v1,1∪ · · ·∪ v1,a)

be the limit holomorphic building in order from bottom to top, where each v∗ is an SFT
level, v−1,j , j = 1, . . . , c, maps to W′; v+ maps to W+; v0,j , j = 1, . . . , b, maps to W; v−
maps to W−; and v1,j , j = 1, . . . , a maps to W′. Here we are allowing the possibility that
a, b, or c= 0. For notational convenience, sometimes we refer to v+ as v−1,c+1 or v0,0 and
v− as v0,b+1 or v1,0.

As before, we have the following constraints:

n∗(ui)=
∑

v∗

n∗(v∗)= m;(4.4.1)

I(ui)=
∑

v∗

I(v∗)= 2,(4.4.2)

where the summations are over all the levels v∗ of u∞.
The following is the analog of Lemma 3.4.21, with a similar proof (omitted):

Lemma 4.4.1. — If v′∗ ∪ v�
∗ =∅ for all levels v∗ of u∞, then a= b= c= 0; I(v+)= 0;

I(v−)= 2; v+ is a W+-curve; and v− is a W−-curve.

Lemma 4.4.2. — If v′∗ ∪ v�
∗ �=∅ for some level v∗ of u∞, then:

(1) p− = deg(v′−) > 0;

(2) some v1,j0 , j0 > 0, has a negative end E− that limits to δ
p

0 for some p > 0 and satisfies

n∗(E−)≥ m− p;

(3) u∞ has no boundary point at z∞;

(4) u∞ has no fiber components and no components of v′′∗ that intersect the interior of a section at

infinity;

(5) each component of v
�

0,j , 1≤ j ≤ b, is a thin strip;

(6) each component of v�
+ is an n∗ = 1, I= 0 or 1 section from z∞ to h or e which is contained

in W+ −W+;

(7) each component of v
�

−1,j , 0 ≤ j ≤ c, is an n∗ = 1, I = 1 or 2 cylinder from δ0 to h or e

which is contained in R× (N−N);
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(8) h appears at most once at the negative end of v
�

−1,1.

Proof. — The proof is based on Equation (4.4.1). First observe that:

(*) either there is a negative end E− that limits to δ
p

0 for some p > 0 and satisfies
n∗(E−)≥ m− p by Lemma 3.4.2; or

(**) there is a negative end E− that limits to z∞ and the sum of n∗(Ei) over all
the ends Ei that limit to z∞ and n∗(E ′i ) over all the neighborhoods E ′i of the
boundary points at z∞ is ≥ m− 2g.

(1) If (*) or (**) holds, then v′− �=∅, since otherwise the neighborhood of m(+∞)

contributes m towards n∗(v−).
(2) is a consequence of (1) and is a subcase of (*). In particular (**) does not hold.

(3)–(7) follow from (2). (8) follows from the definition of the ECH differential. �

Lemma 4.4.3. — If v′∗ ∪ v�
∗ �= ∅ for some level v∗, then u∞ cannot have the following

subbuildings:

(1) a degree one component of v�
+ from z∞ to h; and

(2) v′+ which has degree p+ and v
�

−1,1 which is a union of p+ cylinders from δ0 to h.

Proof. — This is due to the positioning of h, given in Section 3.2.3. (1) was proved
in Lemma I.6.6.5. (2) is due to Lemma 3.7.8: the usual rescaling procedure with fixed
m � 0, together with Lemma 4.4.2, gives rise to an SFT limit w+ : �+ → CP1, π+ :
�+ → cl(B+), where �+ consists of p+ copies of cl(B+) (and hence π+ is a trivial branched
cover) and the restriction of w+ to each component of �+ satisfies the conditions of
Lemma 3.7.9. �

Lemma 4.4.4. — If v′∗ ∪ v�
∗ �= ∅ for some level v∗, then v′− �= ∅ and u∞ contains one of

the following subbuildings:

(1) A 3-level building consisting of v
�

1,1 with I= 1 and a negative end δ0γ
′; v′− = σ−∞; and a

thin strip of v
�

0,1.

(2) A 3-level building consisting of v
�

1,1 with I= 1 and a negative end δ0γ
′; v′− = σ−∞; and a

component of v�
+ with I= 1 from z∞ to e.

(3) A 4-level building consisting of v
�

1,1 with I = 1 and a negative end δ0γ
′; v′− = σ−∞;

v′+ = σ+∞; and a cylinder component of v
�

−1,1 from δ0 to e.

Here we are omitting levels which are connectors.

Proof. — The lemma is a consequence of Lemmas 4.4.2 and 4.4.3, the positivity
of the ECH indices of all the components with the exception of v′+, and the conditions
given by Equations (4.4.1) and (4.4.2). �



VINCENT COLIN, PAOLO GHIGGINI, KO HONDA

Lemma 4.4.5. — If m� 0, then there is no u∞ ∈ ∂{+∞}M such that v′∗ ∪ v�
∗ �=∅ for some

level v∗.

Proof. — The proofs to eliminate Cases (1)–(3) of Lemma 4.4.4 are similar to those
of Theorem I.7.10.1 and will be omitted. �

Proof of Lemma 4.3.2. — This is a combination of Lemmas 4.4.1 and 4.4.5. �

4.5. Degeneration at −∞. — In this subsection we study the limit of holomorphic
maps to Wτ as τ →−∞. This will prove Lemma 4.3.3.

We assume that m � 0; ε, δ > 0 are sufficiently small; and {Jτ } ∈ I reg
and

{J♦τ (ε, δ,p(τ ))} satisfy Lemma 4.2.13. Fix γ,γ′ ∈ ̂O2g and let

M=MI=2,n∗=m

{J♦τ (ε,δ,p(τ ))}
(γ,γ′;m), Mτ =MI=2,n∗=m

J
♦
τ (ε,δ,p(τ ))

(γ,γ′;m).

We will analyze ∂{−∞}M.
Let ui , i ∈N, be a sequence of curves in M such that ui ∈Mτi

and lim
i→∞

τi =−∞,

and let

u∞ = (v−1,1 ∪ · · · ∪ v−1,c)∪ v1 ∪ v2 ∪ (v1,1 ∪ · · · ∪ v1,a)

be the limit holomorphic building in order from bottom to top, where each v∗ is an SFT
level, v−1,j , j = 1, . . . , c, maps to W′; vj maps to W−∞,j ; and v1,j , j = 1, . . . , a maps to W′.
Sometimes we refer to v1 as v−1,c+1 or v1,0.

We write v∗ = v′∗ ∪ v′′∗, v
′′
∗ = v�

∗ ∪ v�
∗, where:

– v′∗ is the union of branched covers of a section at infinity;
– v�

∗ is the union of components that are not in v′∗ and are asymptotic to some
multiple of δ0 or pass through z= zr0∞ζ

r1
1 · · · ζ rl

l with r0 > 0; and
– v�

∗ is the union of the remaining components of v∗.

Remark 4.5.1. — The best way to prove the existence of the limit for τ →−∞ is
probably by regarding the degeneration of Wτ as a neck stretching as mentioned at the
beginning of Section 4. Strictly speaking, in the limit τ →−∞, there exist levels between
v1 and v2, i.e., levels that map to R × S1 × S. By considerations of n∗, these levels are
connectors (i.e., map to R×S1×{pt}) and will be ignored until we consider gluing. From
the point of view of nodal degenerations, these intermediate levels correspond to curves
mapped to the fiber over the node of B−∞, equipped with meromorphic functions à la

Ionel and Parker [IP2, Section 5].

The following are the analogs of Lemmas 4.4.1 and 4.4.2:
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Lemma 4.5.2. — If v′∗ ∪ v�
∗ = ∅ for all levels v∗ of u∞, then a = c = 0; I(v1) = 0;

I(v2)= 4g + 2; and v2 is a W−∞,2-curve.

Proof. — Suppose v′∗ ∪ v�
∗ =∅ for all levels v∗ of u∞. The following are immediate

from considerations of n∗:

(1) v2 is a W−∞,2-curve or a degenerate W−∞,2-curve; and
(2) v∗ = v′′∗ and n∗(v∗)= 0 for ∗ = (−1, j), 1, and (1, j).

(1) implies that I(v2)= 4g + 2 by Lemma 4.2.7. Note that:

(3) a degenerate W−∞,2-curve consists of a fiber component with ind= 2−2g and
2g components of the type B−∞,2× {ql} for some ql ∈ âl , each with ind= 1, for
a total of I(v2)= 4g + 2.

Since there are 2g codimension two gluing conditions between v1 and v2, it follows that

(4.5.1)
∑

∗
I(v∗)= 4g + 2,

where the summation is over all the levels ∗. Hence a= c= 0, I(v1)= 0, and each com-
ponent ṽ of v1 is a branched cover of a trivial cylinder with possibly empty branch locus.
(Here we are assuming without loss of generality that the almost complex structure on
W−∞,1 is J−∞,1.)

We eliminate degenerate W−∞,2-curves as follows: Since we may assume that ̂O2g

is disjoint from a× {1} ⊂ S× {1} by genericity, the gluing condition for v1 and v2 is not
satisfied in view of (3). �

Lemma 4.5.3. — If v′∗ ∪ v�
∗ �=∅ for some level v∗ of u∞, then:

(1) p2 = deg(v′2) > 0;

(2) u∞ has no boundary point at z∞;

(3) u∞ has no fiber components and no components of v′′∗ that intersect the interior of a section at

infinity; and

(4) v′′2 is the union of 2g − p2 copies of B−∞,2 × {pt}, and I(v2)= 2g.

Proof. — (1)–(3) are analogs of Lemma 4.4.2 and (4) is a consequence of Lem-
ma 4.2.8. �

The following is the analog of Lemma 4.4.4.

Lemma 4.5.4. — If v′∗ ∪ v�
∗ �= ∅ for some level v∗, then v′2 �= ∅ and v′′2 is a union of

components B−∞,2 × {pt}, and u∞ contains one of the following subbuildings:

(1i ) A 2-level building consisting of v
�

1 with I= i + (deg(v�

1)− 1), i = 2,3, which passes

through z with multiplicity r0 = 1; and v′2 = σ−∞,2
∞ with I= 1.
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FIG. 18. — Schematic diagrams for the possible types of degenerations. The dotted lines indicate the section at infinity.
The quantities −2 and −4 along the intersections of v1 and v2 indicate the reduction of I due to the gluing conditions.
For simplicity we are assuming that degv�

1 = 1 in (1i ) and degv�

1 = 2 in (2)

(2) A 2-level building consisting of v
�

1 with I= 4+ (deg(v�

1)− 2) which passes through z

with multiplicity r0 = 2; and v′2 with I= 2 which is a branched double cover of σ−∞,2
∞ .

(3i ) A 4-level building consisting of v
�

1,1 with I= 1 or 2 and a negative end at δ0; v′1 = σ−∞,1
∞ ;

v′2 = σ−∞,2
∞ ; and a cylinder of v

�

−1,1 from δ0 to h or e with I= 1 or 2.

(4) A 4-level building consisting of v
�

1,1 with I= 1 and a negative end at δ2
0 ; v′1 = σ−∞,1

∞ ; a

cylinder of v
�

1 from δ0 to h or e with I= 1,2; v′2 = σ−∞,2
∞ ; a cylinder of v

�

−1,1 from δ0

to h with I= 1; and a cylinder of v′′−1,1 from h or e to e with I= 1,0.

(5) A 4-level building consisting of v
�

1,1 with I= 1 and a negative end at δ2
0 ; v′1 with I= 0

which is a branched double cover of σ−∞,1
∞ ; v′2 with I= 2 which is a branched double cover

of σ−∞,2
∞ ; and two cylinder components of ∪c

j=1v
�

−1,j from δ0 to h or e, each with I= 1 or

2.

(6) A 5-level building consisting of v
�

1,2 with I= 1 and a negative end at δ2
0 ; v′1,1 =R×δ0; a

component of v
�

1,1 with I= 1 which is a cylinder from δ0 to h; v′1 = σ−∞,1
∞ ; v′2 = σ−∞,2

∞ ;

and a cylinder of v
�

−1,1 from δ0 to h with I= 1.

We are omitting levels which are branched covers of trivial cylinders. Moreover, each gluing condition

reduces the sum of ECH indices by 2.

See Figure 18.

Proof. — The proof is similar to that of Lemma 4.4.4 and we only provide a sketch.
We have v′2 �=∅ by Lemma 4.5.3(1). By Lemma 4.5.3(4), v′′2 is a union of compo-

nents B−∞,2 × {ql}, ql ∈ âl , and I(v2)= 2g.
First suppose that v′1 = ∅. Then v

�

1 passes through ((0, 3
2), z∞) exactly once and

πB−∞,1 ◦ v�

1 has a k-fold branch point (here a “1-fold branch point” is a regular point) at
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(0, 3
2) for some k > 0, where πB−∞,1 :W−∞,1 → B−∞,1 is the projection along S. The k-fold

branch point at ((0, 3
2), z∞) contributes 2k towards ind(v�

1) and each of the remaining
2g − k intersection points with {(0, 3

2)} × S passes through some âl and contributes +1
towards ind(v�

1).
We restate the ind calculation from the previous paragraph in terms of ECH in-

dices I′(v1) and I′(v2) when:

(I1) v1, v2 are viewed as curves in the fibrations

W−∞,1 − ({(0,3/2)} × S)→ B−∞,1 − {(0,3/2)},
W−∞,2 − ({0} × S)→ B−∞,2 − {0};

(I2) {(0, 3
2)} × S is in one-to-one correspondence with a Morse-Bott family of or-

bits, viewed as orbits at the positive end of v1;

(I3) the orbit corresponding to z∞ is viewed as a negative elliptic orbit, i.e., an el-
liptic orbit with Conley-Zehnder index−1 with respect to the framing coming
from the Morse-Bott fibration, and the orbits corresponding to ql are viewed
as hyperbolic orbits.

Then I′(v1)≥ 0, I′(v′2)= k, and I′(v′′2)= 0, and the ECH index of the curve ṽ obtained
by (pre-)gluing v1 and v2 is given by:

I(ṽ)≥ I′(v1)+ I′(v2)≥ 0+ (k+ 0)= k.

This implies that k ≤ 2, giving us (1i ), i = 2,3, or (2).
Next suppose that v′1 �= ∅. Then the ECH index I(ṽ) of the curve ṽ obtained

by (pre-)gluing v′1 and v′2 is −k, where k = deg(v′1) = deg(v′2). Hence (3i ), i = 1,2, and
(4)–(6) follow from enumerating all the possibilities, subject to the condition that h appear
only once at the negative end of v−1,1. �

Lemma 4.5.5. — If m� 0, u∞ ∈ ∂{−∞}M, and v′∗ ∪ v�
∗ �=∅ for some level v∗, then the

only possibility is Case (13).

Proof. — Cases (12) and (2). We will eliminate Case (12); Case (2) is similar. We apply
the usual rescaling argument with m� 0 fixed to obtain a function w2 : B−∞,2 → CP1

satisfying the following:

(i2) w2(0)=∞;
(ii2) w2(

i

2)= 0;
(iii2) w2(∂B−∞,2)⊂R+ · eiφ(ak,l ) for some (k, l);
(iv2) w2 is a biholomorphism away from ∂B−∞,2.

We now observe that w2 is uniquely determined by (i2)–(iv2), up to multiplication by a
positive real constant. This implies that:
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(v2) w2 maps the asymptotic marker ∂y at 0 ∈ B−∞,2 to the asymptotic marker
Ṙπ+φ(ak,l )(∞).

Here z = x + iy is the complex coordinate on B−∞,2. (v2) translates into an asymptotic
condition for v�

1 at ((0, 3
2), z∞). Hence I(v�

1) is at least 3.

Cases (3i), (4)–(6). We will eliminate Case (3i ); the remaining cases are similar. The
rescaling argument gives w2 ∪ w1, where w2 is as in the previous paragraph and
w1 : cl(B−∞,1)→CP1 satisfies the following:

(i1) w1(0, 3
2)= 0 and w1(+∞)=+∞;

(ii1) w1 is a biholomorphism.

(v2) implies the following asymptotic condition for w1:

(iii1) w1 maps the marker ∂s at (0, 3
2) to the marker Ṙπ+φ(ak,l )(0).

Hence w1 is uniquely determined by (i1)–(iii1) up to multiplication by a positive real con-
stant.

As a consequence of the uniqueness of w1 up to multiplication by a positive real
constant, the following are uniquely determined:

(a) the asymptotic eigenfunction of v�

1,1 at the negative end δ0;
(b) the asymptotic eigenfunction of v�

−1,1 at the positive end δ0;

(a) is determined by the image of the asymptotic marker L̇3/2(+∞) at +∞ ∈ cl(B−∞,1)

and (b) by the radial ray that contains w1(−∞). (a) and (b) give rise to one constraint
each on v

�

1,1 and v
�

−1,1. Hence I(v�

1,1)≥ 2 and I(v�

−1,1)≥ 2, which is a contradiction. �

Proof of Lemma 4.3.3. — This is a combination of Lemmas 4.5.2 and 4.5.5. �

Proof of Lemma 4.3.4. — We first claim that the mod 2 cardinality of

MI=4g+2,n∗=m

J−∞,2
(z;m(−∞))

is 1 when r0 = 0 (i.e., z does not contain z∞) and the arcs a are chosen generically. This
is proved by reducing to the calculation of Theorem 2.3.3 as follows: Degenerate B−∞,2

into a sphere B−∞,21 and a disk B−∞,22 which are identified at one point and degenerate
W−∞,2 = B−∞,2× S into (B−∞,21× S)∪ (B−∞,22× S). We assume that the marked point
is in B−∞,21 × S. Then a curve

v2 ∈MI=4g+2,n∗=m

J−∞,2
(z;m(−∞))

degenerates into a pair (v21, v22), where v2i , i = 1,2, maps to B−∞,2i × S and v22 is a
union of constant sections B−∞,22×{ql}, where ql ∈ âl . Hence v21 is a curve in B−∞,21×S
with exactly the same type of constraints as in Theorem 2.3.3. This implies the claim.
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In the rest of the proof we discuss how to glue pairs (v1, v2) ∈ A2. For simplicity
we work with J−∞,1 instead of J

♦
−∞,1(ε, δ,p(−∞))). Since I(v1) = 0, each component

ṽ of v1 is a branched cover of a trivial cylinder with possibly empty branch locus. If ṽ
is simple, then it glues to v2 in the usual manner. On the other hand, if ṽ is multiply
covered, then by (††)2g it is a branched cover of degree k ≤ 2g of the cylinder over an
elliptic orbit γ with μτ�(γ

l)=±1 for all l = 1, . . . , k (here γ l denotes the lth cover of the
orbit γ ) and partitions (k) and (1, . . . ,1); this is the same partition condition as that of
ui for i � 0 where ui → u∞. If μτ�(γ

i)= 1 the partition (1, . . . ,1) is at the positive end,
and if μτ�(γ

i)=−1 it is at the negative end. The partition (k) is at the other end. The
component ṽ intersects ζ1 at (0, 3

2) with total multiplicity r1 = k.
Suppose the elliptic orbit γ has partition (k) at the positive end and (1, . . . ,1) at

the negative end; the other case is analogous. Then ṽ has 1 positive end, k negative ends,
and b≥ k − 1 branch points (in the sense of Definition 3.4.26). Since the image of v2 in
W−∞,2 = B−∞,2 × S is graphical over S, there are local holomorphic coordinates (w, z)

about (0, ζ1) ∈W−∞,2 with respect to which Im(v2) has the form w = zk . Hence ṽ must
have a branch point at (0, 3

2) which contributes k − 1 towards b.
Next we define ind′(v1) and ind′(v2) as the Fredholm indices when (I1) and (I2)

from the proof of Lemma 4.5.4 and (I′3) hold, where:

(I′3) the ends of v1 corresponding to ζ ∈ {(0, 3
2)} × S are viewed as limiting to

positive elliptic orbits, i.e., elliptic orbits with Conley-Zehnder index 1 with
respect to the framing coming from the Morse-Bott fibration.

By the usual Fredholm index calculation, we obtain ind′(̃v)≥ 0, with equality if and only
if b= k − 1. We also compute ind′(v2)= 2. When we use ind′ instead of ind, the gluing
conditions between v1 and v2 are 0-dimensional instead of 2g-dimensional. This implies
that ind′(̃v)= 0. Since the index calculation is topological, this also implies that u∞ has
no ghost bubble at (ζ1, (0, 3

2)).
Finally we discuss the automatic transversality of ṽ. Recall from [We2, Theorem 1]

that automatic transversality holds if

(4.5.2) ind′(̃v)≥ 2g +#�0 − 1,

where g is the genus of ṽ and #�0 is the number of punctures (of ṽ with (0, 3
2) removed)

with even Conley-Zehnder index. Observe that the Conley-Zehnder index of the Morse-
Bott ends is odd by [We2, Section 3.2] because they are constrained. Since the right-hand
side of Equation (4.5.2) is equal to −1, automatic transversality holds and ṽ glues in the
usual manner (without any concerns of inserting branch-covered cylinders) to v2. This
implies the lemma. �

Sketch of proof of Lemma 4.3.5. — We use some considerations of Section I.7.12. For
simplicity we assume we are gluing degree one curves and the curve in W−∞,2 is σ−∞,2

∞ ,
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the section at ∞; this is justified by noting that the gluing of σ−∞,2
∞ to v1 can be done

essentially independently of the gluings of the remaining components of W−∞,2 to v1.
Fix γ,γ′ ∈ ̂O1, k ∈ {1, . . . ,2g}, and l ∈ {0,1}. We consider the gluing parameter

space

Pk,l :=
∐

z0∈uk,l

((−∞,−r] ×M1(z0)×M2(z0)) ,

where uk,l ⊂ )ak,l is a small open interval containing z∞, z0 is a formal product consisting
of a single point on uk,l ,

M1(z0) :=MI=3,n∗=m

J
♦
−∞,1(ε,δ,p(−∞))

(γ,γ′, z0),

M2(z0) :=MI=1,n∗=0,ext

J−∞,2
(z0),

ext means the boundary of the holomorphic curve is mapped to L−∞,2
ak∪)ak,l

, and (−∞,−r] is
viewed as a subset of (−∞,∞) with parameter τ . Note that M2(z0) consists of a single
point B−∞,2 × {z0}. For each z0 ∈ uk,l there is a covering map

πz0 :M1(z0)→ S1 =R/2πZ�Tz0S/R+,

such that at ((0, 3
2), z0), v1 ∈M1(z0) is tangent to ∂

∂s
+πz0(v1) (where the second term is

defined up to a positive real constant). The maps πz0 are continuous in z0.
Let

Gk,l :Pk,l →
∐

τ∈(−∞,r]
MI=2,n∗=m,ext

{J♦τ (ε,δ,p(τ ))}
(γ,γ′), d= (τ, v1, v2) �→ u(d)

be the gluing map, defined as usual. Also let P′
k,l ⊂Pk,l be the subset of gluing parameters

d such that Gk,l(d) ∈
∐

τ∈(−∞,r]
MI=2,n∗=m

{J♦τ (ε,δ,p(τ ))}
(γ,γ′).

We now apply the rescaling argument from Section I.7.2.2: if a pair in A3 is the
limit of a sequence u1, u2, . . . of curves in M, ui ∈Mτi

(in particular ui passes through
the marked point m(τi)), and τi →−∞, then there is a unique transverse limit profile, which
is encoded by an element of ˜N /R+ that we describe now.

Let ˜N be the space of holomorphic maps w2 : B−∞,2 = D→ CP1 satisfying (i2)
and (iv2) of Lemma 4.5.5 and

(iii′2) w2(∂B−∞,2)⊂R · eiφ(ak,l ) for some (k, l).

For simplicity we assume that φ(ak,l)= 0. We leave it to the reader to verify the following:

Claim 4.5.6. — ˜N = {w2(z)= az+ b+ a

z
| a ∈ C×, b ∈ R}. Hence dim ˜N = 3 and

˜N admits an R×-action which is multiplication by c ∈R×.
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Let D(m
b
(−∞))⊂ B−∞,2 be a small disk about i

2 and let ˜Nx := {w2 ∈ ˜N |w2(x)=
0}, where x ∈D(m

b
(−∞)). The total space of the bundle

˜ND(mb(−∞)) := �x∈D(mb(−∞))
˜Nx →D(m

b
(−∞))

smoothly embeds into ˜N . We will call this the “transversality of the constraint mb
(−∞)”.

Also, the transverse limit profile is an element of ˜Nmb(−∞)/R+.
For τ̃ � 0, the restrictions of u(d) to a neighborhood of the section at infinity are

approximated by elements of ˜N . More precisely, for τ̃ � 0 we define:

gτ̃ ,k,l :Pk,l ∩ {τ = τ̃ }→ ˜N /R+,

as follows: Given d ∈Pk,l ∩ {τ = τ̃ }, restrict Gk,l(d) to a neighborhood of the section at
infinity so that the domain of Gk,l(d) is

D
ε(̃τ ) := {ε(̃τ )≤ |z| ≤ 1} ⊂D, ε(̃τ ) > 0 small.

Let us write πS ◦Gk,l(d)|Dε(̃τ ) as a Laurent series
∑∞

i=−∞ ci(d)z
i. Then we set

gτ̃ ,k,l(d)=
[

c−1(d) · z+Re(c0(d))+ c−1(d)

z

]

.

The definition makes sense in view of the following consequence of Gromov-Hofer com-
pactness:

Claim 4.5.7.

(1) lim
τ̃→−∞

ci(d)

c−1(d)
= 0 if i > 1 or i <−1 and lim

τ̃→−∞
c1(d)

c−1(d)
= 1, where the convergence is

uniform in
∐

z0∈uk,l

(M1(z0)×M2(z0)).

(2) If v2 = B−∞,2 × {z0}, where z0 is a fixed point �= z∞, then

lim
τ̃→−∞

c−1(d)

c0(d)
= 0 and lim

τ̃→−∞
Im(c0(d))

Re(c0(d))
= 0,

where the convergence is uniform in M1(z0).

What Claim 4.5.7(2) is saying is that when z0 �= z∞ and τ̃ = τ̃ (z0)� 0, then πS ◦
Gk,l(d) maps ∂B−∞,2 to a small slit on R which is disjoint from 0 but close to z0.

Now define the evaluation map:

evτ̃,k,l :Pk,l ∩ {τ = τ̃ }→C,

which sends d to gτ̃ ,k,l(d)(
i

2). By Gromov-Hofer compactness c−1(d)

|c−1(d)| and πz0(v2) are close,
up to an overall rotation and possibly a reflection. Together with Claim 4.5.7(2) and the
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transversality of the constraint mb
(−∞), the local degree of (evτ̃,k,l)|P′

k,l∩{τ=τ̃ } near 0 ∈C
is degπz0 . We will informally say that “M has degπz0 ends near P′

k,l”.
Finally observe that an element of M2(z0) can be viewed as a map to ai,0 or to ai,1.

Hence M has degπz0 ends near P′
k,l and degπz0 ends near P′

k,1−l for a total of 2 ·degπz0

ends mod 2. This proves Lemma 4.3.5. �

4.6. Breaking in the middle. — In this subsection we study the limit of holomorphic
maps to Wτ as τ →T′ for some T′ ∈ (−∞,∞). This will prove Lemma 4.3.6.

We assume that m � 0; ε, δ > 0 are sufficiently small; and {Jτ } ∈ I reg
and

{J♦τ (ε, δ,p(τ ))} satisfy Lemma 4.2.13. Fix γ,γ′ ∈ ̂O2g and let

M=MI=2,n∗=m

{J♦τ (ε,δ,p(τ ))}
(γ,γ′;m), Mτ =MI=2,n∗=m

J
♦
τ (ε,δ,p(τ ))

(γ,γ′;m).

We will analyze ∂(−∞,∞)M.
Let ui , i ∈ N, be a sequence of curves in M such that ui ∈Mτi

and lim
i→∞

τi = T′,
and let

u∞ = (v−1,1 ∪ · · · ∪ v−1,c)∪ v0 ∪ (v1,1 ∪ · · · ∪ v1,a)

be the limit holomorphic building in order from bottom to top, where each v∗ is an SFT-
type level, v−1,j and v1,j map to W′ and v0 maps to WT′ . Sometimes we refer to v0 as
v−1,c+1 or v1,0.

The following is the analog of Lemma 4.4.1, and is stated without proof.

Lemma 4.6.1. — If v′∗ ∪ v�
∗ =∅ for all levels v∗ of u∞, then u∞ is one of the following:

(1) a= 0, c= 1; v0 is a WT′-curve with I= 1 which passes through m(T′); and v−1,1 is a

W′-curve with I= 1; or

(2) a = 1, c = 0; v1,1 is a W′-curve with I= 1; and v0 is a WT′-curve with I= 1 which

passes through m(T′).

Here either T′ ∈ T2 and a component of v0 is in

M†,s,irr,ind=1,n∗=m

J
♦
T′ (ε,δ,p(T′))

(γ1,γ2;m(T′))

from Lemma 4.2.13(2), for some γ1, γ2; or T′ ∈ T1 and a component of v0 does not pass through

m(T′) but is in

M†,s,irr,ind=−1,n∗=0

J
♦
T′ (ε,δ,p(T′))

(γ1,γ2)

from Lemma 4.2.13(1).

The following is the analog of Lemma 4.4.2 and is stated without proof.
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Lemma 4.6.2. — If v′∗ ∪ v�
∗ �=∅ for some level v∗ of u∞, then:

(1) p0 = deg(v′0) > 0;

(2) some v1,j0 , j0 > 0, has a negative end E− that limits to δ
p

0 for some p > 0 and satisfies

n∗(E−)≥ m− p;

(3) u∞ has no boundary point at z∞;

(4) u∞ has no fiber components and no components of v′′∗ that intersect the interior of a section at

infinity;

(5) each component of v
�

−1,j , 0 ≤ j ≤ c, is an n∗ = 1, I = 1 or 2 cylinder from δ0 to h or e

which is contained in R× (N−N);

(6) h appears at most once at the negative end of v
�

−1,1.

The following is the analog of Lemma 4.4.4 and is stated without proof.

Lemma 4.6.3. — If v′∗ ∪ v�
∗ �=∅ for some level v∗, then v′0 �=∅ and u∞ contains one of the

following subbuildings, subject to two conditions:

– the sum of the ECH indices of the components of the subbuildings is at most 3;

– the total multiplicity of h at the negative end of v
�

−1,1 is at most 1.

(1i ) A 3-level building consisting of v
�

1,1 with I= i, i = 1,2, and a negative end δ0γ
′; v′0 =

σT′
∞ ; and a cylinder component of v

�

−1,1 with I= 1 or 2 from δ0 to h or e.

(2i ) A 4-level building consisting of v
�

1,2 with I= i, i = 1,2, and a negative end δ2
0γ

′; v′1,1 =
R× δ0; a cylinder component of v

�

1,1 with I= 1 or 2 from δ0 to h or e; v′0 = σT′
∞ ; and a

cylinder component of v
�

−1,1 with I= 1 or 2 from δ0 to h or e.

(3i ) A 3-level building consisting of v
�

1,1 with I= i, i = 1,2, and a negative end δ2
0γ

′; v′0 =
σT′
∞ ; a component of v

�

0 with I = 0 or 1 from δ0 to h or e; and a cylinder component of

v
�

−1,1 with I= 1 or 2 from δ0 to h or e.

(4i ) A 3-level building consisting of v
�

1,1 with I = i, i = 1,2, and a negative end δ2
0γ

′; v′0
with I = −2 which is a degree 2 branched cover of σT′

∞ ; and two cylinder components of

∪c
j=1v

�

−1,j from δ0 to h or e, each with I= 1 or 2.

(5) A 5-level building consisting of v
�

1,3 with I= 1 and a negative end δ3
0γ

′; v′1,2 which is a

degree 2 branched cover of R× δ0; a cylinder component of v
�

1,2 with I= 1 from δ0 to h;

v′1,1 = R× δ0; a cylinder component of v
�

1,1 with I= 1 from δ0 to h; v′0 = σT′
∞ ; and a

cylinder component of v
�

−1,1 with I= 1 from δ0 to h.

(6) A 4-level building consisting of v
�

1,2 with I= 1 and a negative end δ3
0γ

′; v′1,1 =R× δ0;

two cylinder components of v
�

1,1 from δ0 to h, each with I= 1; v′0 = σT′
∞ ; and a cylinder

component of v
�

−1,1 with I= 1 from δ0 to h.

(7) A 4-level building consisting of v
�

1,2 with I= 1 and a negative end δ3
0γ

′; v′1,1 which is a

degree 2 branched cover of R× δ0; a cylinder component of v
�

1,1 with I= 1 or 2 from δ0
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to h or e; v′0 = σT′
∞ ; a component of v

�

0 with I= 0 or 1 from δ0 to h or e; and a cylinder

component of v
�

−1,1 with I= 1 or 2 from δ0 to h or e.

(8) A 4-level building consisting of v
�

1,2 with I= 1 and a negative end δ3
0γ

′; v′1,1 which is a

degree 2 branched cover of R× δ0; a cylinder component of v
�

1,1 with I= 1 from δ0 to h;

v′0 with I=−2 which is a degree 2 branched cover of σT′
∞ ; and two cylinder components

of ∪c
j=1v

�

−1,j from δ0 to h or e, each with I= 1 or 2.

(9) A 3-level building consisting of v
�

1,1 with I= 1 and a negative end δ3
0γ

′; v′0 = σT′
∞ ; two

components of v
�

0 from δ0 to h or e, each with I = 0 or 1; and a cylinder component of

v
�

−1,1 with I= 1 or 2 from δ0 to h or e.

(10) A 3-level building consisting of v
�

1,1 with I= 1 and a negative end δ3
0γ

′; v′0 with I=−2
which is a degree 2 branched cover of σT′

∞ ; a component of v
�

0 with I= 0 or 1 from δ0 to h

or e; and two cylinder components of ∪c
j=1v

�

−1,j from δ0 to h or e, each with I= 1 or 2.

(11) A 3-level building consisting of v
�

1,1 with I= 1 and a negative end δ3
0γ

′; v′0 with I=−3
which is a degree 3 branched cover of σT′

∞ ; and three cylinder components of ∪c
j=1v

�

−1,j from

δ0 to h or e, each with I= 1 or 2.

We are omitting levels which are connectors.

See Figure 19. We will write (1i,e), (1i,h), etc. to indicate that we are in Case (1i ) and
the negative ends of the lowest level are e, h, etc.

Lemma 4.6.4. — If m� 0, u∞ ∈ ∂(−∞,+∞)M, and v′∗ ∪ v�
∗ �=∅ for some level v∗, then

the only possibilities are (12) with a cylinder component of v
�

−1,1 from δ0 to e and (42) with two cylinder

components of v
�

−1,1, one from δ0 to h and another from δ0 to e.

Proof. — Cases (1i), (2i), (3i), (5), (6), (7) and (9). We will treat Case (1i ); the rest of
the cases are similar and can be eliminated. The key observation here is that deg(v′0)= 1
and v

�

−1,1 is a cylinder from δ0 to h or e. Applying the usual rescaling argument with m� 0
fixed, we obtain a holomorphic map w0 : cl(BT′)→CP1 which satisfies the following:

(i) w0(+∞)=∞ and w0(m
b
(T′))= 0;

(ii) w0(s, t) ∈ int(Rη(t)) for all (s, t) ∈ ∂BT′ ;
(iii) deg(w0)= 1 away from S(ai1,j1, h(ai1,j1)) for some (i1, j1).

Here η(t) = φ0 + π

m
(t − 1), where φ0 is the φ-coordinate of ai1,j1 . (Recall that we are

projecting to πD2
ρ0

using balanced coordinates.)
We now observe that w0 : cl(BT′)→ CP1 is uniquely determined by (i)–(iii), up

to multiplication by a positive real constant; this is argued in the same way as in
Lemma 3.7.9. Using the same method as in Case (3i ) of Lemma 4.5.5, we obtain that
I(v�

1,1)≥ 2 and I(v�

−1,1)≥ 2. Hence the only possibility is Case (12) with a cylinder com-
ponent of v�

−1,1 from δ0 to e.
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FIG. 19. — Schematic diagrams for the possible types of degenerations. For simplicity we have drawn only one level v−1,1

to indicate the cylindrical components of ∪c
j=1v

�

−1,j from δ0 to h or e

Cases (4i), (8), (10), and (11). We will treat Case (4i ). In this case we first apply the rescaling
argument with m→∞ to obtain a holomorphic map w0 : �0 → CP1 and a branched
double cover π0 :�0 → cl(BT′) such that:

(i) w0(z0)=∞, where π−1
0 (+∞)= {z0};

(ii) w0(z1)= 0 for some z1 ∈ π−1
0 (m

b
(T′));

(iii) w0(π
−1
0 (∂BT′))⊂ {φ = 0, ρ > 0};

(iv) w0|int(�0) is a biholomorphism onto its image CP1 − ([a1, a2] ∪ [a3, a4]) with
0 < a1 < a2 ≤ a3 < a4.

Here an interval [a, b] stands for {φ = 0, a≤ ρ ≤ b}.
By the Involution Lemma I.7.9.3,

(v) π0 ◦w−1
0 maps both (−∞, a1] and [a4,∞) to L3/2 ∩ {s ≥ l(T′)

2 } and [a2, a3] to
L1/2 ∪ (L3/2 ∩ {s ≤ −l(T′)

2 }).
In particular this constrains the asymptotic behavior of v�

1,1 and hence I(v�

1,1)≥ 2. Hence
the only possibility is Case (42) with two cylinder components of v�

−1,1, one from δ0 to h

and another from δ0 to e. �
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Proof of Lemma 4.3.6. — This is a combination of Lemmas 4.6.1 and 4.6.4. �

Proof of Lemma 4.3.7.

Case (12). We glue triples in A6, i.e., we are in Case (12). Note that the middle level has
I = −2: there is a component σT′

∞ (the section at infinity) which has I = ind = −1 and
another I=−1 component corresponding to T′ ∈ T1.

We make the following simplification:

– the top level is M+ =MI=2,n∗=m−1,fδ0
J′ (γ, δ0) consisting of v1,1 = v

�

1,1 and such
that ∂M+ =∅;

– the middle level is σT′
∞ ; and

– the bottom level is M− =MI=2,n∗=1
J′ (δ0, e) consisting of cylinders v−1,1 = v

�

−1,1,

and the gluing is for any fixed τ = T′. This simplification is justified by noting that the
gluing of the I = −1 component �= σT′

∞ can be done essentially independently of the
above gluing.

The gluing argument is similar to that of Theorem I.7.2.2 but has an additional
twist since I(σT′

∞ )= ind(σT′
∞ )=−1 and we need to do an obstruction bundle gluing. The

key observation is that the gluing of triples in A6 come in pairs (i1,0) and (i1,1), where
σT′
∞ is viewed as having boundary mapping to LT′

ai1,0
or LT′

ai1,1
. Since we can identify the

obstruction bundles of each pair in such a way that the obstructions sections are close,
the count corresponding to A6 will be 0 mod 2.

As in Section I.7.7.1, the normal linearized ∂-operator for σT′
∞ acts on the appro-

priate Banach space of maps BT′ →C and has the form D= ∂s−A, where A=−i∂t − ε

and the coordinates are s, t. Without loss of generality we may assume that the boundary
condition for ∂BT′ is R ⊂ C, since the actual boundary condition is very close to R. Its
adjoint is D∗ = ∂s + A with boundary condition R〈dx− idy〉 if a collar neighborhood of
∂BT′ is given by R× [0,1] with holomorphic coordinates x+ iy and ∂BT′ = {y= 0}.

Claim 4.6.5. — ker D∗ is 1-dimensional and if we write a nonzero element ξ ∈ ker D∗ as

f (ds− idt) where f is a map BT′ →C, then, for R� 0, f |s=R has winding wind(f |s=R,0)= 1
about 0 and likewise wind(f |s=−R,0)= 0.

Proof of Claim 4.6.5. — ker D∗ is 1-dimensional since ker D = 0, where D is the
normal linearized ∂-operator. This is because the normal bundle to σT′

∞ is trivial.
The asymptotic decay conditions for f imply that wind(f |s=R,0) ≥ 1 and

wind(f |s=−R,0)≤ 0. On the other hand, the considerations of Wendl [We2] (the methods
of Lemma 1.6 and Theorem 4.1 of [BH] using the negativity of zeros of ξ are more di-
rectly applicable here) imply that wind(f |s=R,0)≤ 1 and wind(f |s=−R,0)≥ 0. The claim
then follows. �

We choose smooth slices ˜M+ and ˜M− of M+ and M− transverse to the R-
translation as in Section I.7.12.3 so that if u+ ∈ ˜M+ (resp. u− ∈ ˜M−), then for s ≤ 0
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(resp. s ≥ 0) the negative end of u+ (resp. the positive end of u−) has image in a small
neighborhood of the section at∞ and is dominated by the term of the form c(u+)eλ+sf+(t)
(resp. c(u−)eλ−sf−(t)) when projected to the C-direction. Here f+(t) (resp. f−(t)) is a fixed
L2-normalized leading asymptotic eigenfunction of A=−i∂t − ε for the negative end of
u+ (resp. positive end of u−) with eigenvalue λ+ > 0 (resp. λ− < 0) and c(u±) ∈ C satisfy
|c(u±)| = ε0 for ε0 > 0 small.

For R� 0, ξ is dominated by d+e−λ+Rf+(t)(ds− idt) for s=R and is dominated by
d−eλ−Rf−(t)(ds− idt) for s=−R, where d+ and d− are both nonzero.

As in [HT2], there exist an obstruction section s and a linearized obstruction sec-
tion s0 which are both maps

(5r,∞)2 × ˜M+ × ˜M− →O :=Hom(ker D∗,R),

such that the set of gluable (T+,T−, u+, u−) — by this we mean we are gluing u+, σT′
∞ ,

and u− with gluing parameters T± that indicate how much u± is translated up/down
when pregluing — is given by s−1(0). Following [HT2, Definition 8.1], s0 has the form:

s0(T+,T−, u+, u−)(ξ)= 〈c(u+)eλ+(R−T+)f+(t), d+e−λ+Rf+(t)〉(4.6.1)

+ 〈c(u−)eλ−(−R+T−)f−(t), d−eλ−Rf−(t)〉
= e−λ+T+〈c(u+)f+(t), d+f+(t)〉
+ e−|λ−|T−〈c(u−)f−(t), d−f−(t)〉,

where the brackets are R-linear inner products in L2(R/2Z,C). The specific form of s0

is not that important; what matters here is that s0 is transverse to the zero section since
d± �= 0 and c(u±) �= 0.

On the other hand, the rescaling argument from Section I.7.2.2 implies that, if a
triple in A6 is the limit of a sequence u1, u2, . . . of curves in M and ui ∈Mτi

(in particular
ui passes through the marked point m(τi)), then there is a unique transverse limit profile

w0 : BT′ →C modulo multiplication by R+ such that:

(i) w0(+∞)=∞;
(ii) w0(m

b
(T′))= 0; and

(iii) w0(∂BT′)⊂R+.

This in turn implies that there exist:

(1) a finite subset Zmb(T′) ⊂ ˜M+ × ˜M−; and
(2) a 1-dimensional subset

Zmb(T′) = {(T+,T−(T+, u+, u−), u+, u−) | T+ ≥T′
+,(4.6.2)

(u+, u−) ∈ Zmb(T′)}
⊂ (5r,∞)2 × ˜M+ × ˜M− for some T′

+ � 0,
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such that if (T+,T−, u+, u−) ∈Zmb(T′), then there exists a constant c̃ > 0 such that:

– the negative end of the T+-translate of u+ projected to the C-direction and the
positive end of c̃e−εsw0 — recall the factor e−εs in the ansatz given by Equa-
tion (I.7.8.1) — agree up to first order (i.e., on the level of leading asymptotic
eigenfunctions) on their overlap; and

– the same holds for the positive end of the T−-translate of u− projected to the
C-direction and the negative end of c̃e−εsw0.

In particular, all the ui , i� 0, are close to the pregluing of elements in Zmb(T′).
We can analogously define Zx for x in a small disk D(m

b
(T′)) about mb

(T′) ∈ σT′
∞ ,

form the bundle

(4.6.3) ZD(mb(T′)) := �x∈D(mb(T′))Zx →D(m
b
(T′))

with 3-dimensional total space, and show that the natural map

(4.6.4) ZD(mb(T′))→ (5r,∞)2 × ˜M+ × ˜M−

is an embedding. The details are left to the reader.
Note that, for c≥ 0 and sufficiently large T′

+, the simultaneous translation

Trc : (5r,∞)2 × ˜M+ × ˜M− → (5r,∞)2 × ˜M+ × ˜M−,

(T+,T−, u+, u−) �→ (T+ + c|λ−|,T− + cλ+, u+, u−)

takes Zx to Zx ∩ {T+ ≥ T′
+ + c|λ−|}, i.e., is Trc-invariant.

Let N be a small Trc-invariant neighborhood of a connected component of Zmb(T′)
in (5r,∞)2 × ˜M+ × ˜M− which nontrivially intersects s

−1
0 (0). By the form of Equa-

tion (4.6.1), s0 is transverse to the zero section and, by the estimate [HT2, Lemma 8.7],
there exists a Trc-invariant tubular neighborhood (s−1

0 (0)∩N )× (−δ, δ) of s−1
0 (0)∩N

(after slightly enlarging N if necessary) such that on (s−1
0 (0)∩N )× {±δ}:

(1) |s− s0| � |s0| and
(2) as T′

+ →∞, the ratio |s− s0|/|s0| goes to zero.

Hence s−1(0) ∩N is arbitrarily close to and limits to s
−1
0 (0) ∩N as T′

+ → +∞, and
there is a degree 1 map

s
−1(0)∩N ∩ {T+ =T′

+}→ s
−1
0 (0)∩N ∩ {T+ =T′

+}.
By the construction of the transverse limit profile, ZD(mb(T′))∩N ∩{T+ =T′

+} approaches
s−1(0)∩N ∩{T+ =T′

+} as T′
+ →∞ and hence must agree with s

−1
0 (0)∩N ∩{T+ =T′

+}
by the Trc-invariance. Hence there is a degree 1 map

s
−1(0)∩N ∩ {T+ =T′

+}→D(m
b
(T′))
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and the condition of passing through m
b
(T′) is a transverse condition. The gluings in A6

therefore occur in pairs.

Case (42). Next we treat A7, i.e., Case (42) with two cylinder components of v�

−1,1, one
from δ0 to h and another from δ0 to e.

As in Case (42), there is an obstruction bundle

O :=Hom(ker D∗,R)→ (5r,∞)3 × ˜M+ ×M0 × ˜M−,h × ˜M−,e,

where M0 is the moduli space of branched covers of σT′
∞ with one branch point, ˜M−,h

is a one-point set consisting of a bottom level cylinder from δ0 to h, and ˜M−,e is a 1-
dimensional set consisting of bottom level cylinders from δ0 to e, O has rank 4, and the
base has dimension 7. There are also obstruction sections s and s0, where s0 is defined
as in Equation (4.6.1) and is the sum of three terms, each given by pairing the cokernel
elements with the first term (possibly nonzero) of the Fourier expansions of the ends. A
winding condition for any nonzero cokernel element ξ analogous to that of Claim 4.6.5
implies that s0 is transverse to the zero section. The verification of the claims in this
paragraph are left to the reader.

Next we consider the moduli space M∞ of pairs (w0,π0) consisting of a holo-
morphic map w0 :�0 →CP1 and a branched double cover π0 :�0 → cl(BT′) satisfying
(i)–(iv) in the proof of Case (42) of Lemma 4.6.4 for some a1, . . . , a4. There is an action of
R+ on M∞ given by (c, (w0,π0)) �→ (cw0,π0).

Claim 4.6.6. — The mod 2 count of transverse limit profiles [(w0,π0)] ∈M∞/R+, i.e.,

those that arise when taking the limit of a sequence u1, u2, . . . of curves in M such that ui passes through

the marked point m(τi), is 1.

Proof of Claim 4.6.6. — One can verify that:

(a) dimM∞/R+ = 1 and is parametrized by moving a branched point of w0 along
L1/2 ∪ (L3/2 ∩ {s ≤ −l(T′)

2 });
(b) either w0(π

−1
0 (−∞)) ⊂ [a2, a3] or is on a line orthogonal to [a2, a3] at a∗ ∈

[a2, a3], which maps to a branch point of π0.

Let ˜M∞ be the set of (w0,π0) ∈M∞ together with an ordering of the points of
π−1(−∞); if π−1(−∞) is a single point, we view it as a duplicate pair of points. The
forgetful map ˜M∞ →M∞ is generically a double cover. Then consider the following
evaluation map:

ev∞ : ˜M∞/R+ → S1 × S1,

(w0,π0) �→ arg(w0(π
−1(−∞))).

Here arg refers to the projection to the φ-coordinate, and we are using coordinates
(φ1, φ2) on S1 × S1.
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Let Z = {φ1 = c} ⊂ S1 × S1, where c is a small negative constant. (b) implies that
ev∞ has intersection number 1 (mod 2) with Z. The claim then follows from noting that
specifying c corresponds to choosing a radial direction corresponding to the hyperbolic
orbit h. �

The same conclusion also holds if we take m� 0 fixed and if replace (ii) in the proof
of Case (42) of Lemma 4.6.4 by “w0(z1)= 0 for some z1 ∈ π−1

0 (x)”, where x ∈D(m
b
(T′)).

We can define the 3-dimensional manifold ZD(mb(T′)) as in Equation (4.6.3) such that
the analog of Equation (4.6.4) is an embedding; the embedding condition implies the
transversality of the point condition for mb

(T′).
Once we have the obstruction bundle, the obstruction sections s0 and s, and the

embedding property of ZD(mb(T′)), the rest of the argument proceeds as in Case (42). Again
we note that the branched double cover of σT′

∞ can be viewed as having boundary map-
ping to LT′

aik ,0
or LT′

aik ,1
for k = 1,2. Hence the count corresponding to A7 is 0 mod 2. �

5. Stabilization

The goal of this section is to prove Theorem 1.0.2. Let N=N(S,h) be the mapping
torus of (S, h), where S is a bordered surface of genus g with connected boundary and h :
(S,ω)

∼→ (S,ω) is a symplectomorphism which has zero flux and restricts to the identity
on ∂S.

The strategy of the proof is to apply two positive stabilizations to (S, h) — cor-
responding to the connected sum with a trefoil knot — to obtain (S′, h ′), where S′ has
connected boundary and genus g + 1. We then compare �(S,h) and �(S′,h ′), which both
induce isomorphisms on the level of homology. Here �(S,h) is the � map for (S, h).

5.1. The setup. — Let T be a genus one surface with connected boundary and let
η0, η1 be two essential simple closed curves on T which intersect transversely in one point.
A positive Dehn twist along a closed curve η will be denoted by τη. Let hT : T

∼→ T be
the first return map of a Reeb vector field on the mapping torus

NT =N(T,hT) = (T× [0,1])/((x,1)∼ (hT(x),0))

so that the following hold:

(1) hT is isotopic to τη0 ◦ τη1 relative to the boundary;
(2) all the Reeb orbits in the interior of NT which intersect T× {0} at most 2g + 2

times are nondegenerate;
(3) hT|∂T = id and ∂NT is foliated by a negative Morse-Bott family of slope ∞.

In view of the discussion in Section I.3, hT will be viewed interchangeably as (i) the first
return map of a Reeb vector field or (ii) the time-1 map of a stable Hamiltonian vector
field with zero flux.
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FIG. 20. — The page S′. The gradient trajectories of the Morse function f are given

Now let S′ be the boundary connected sum of S and T. More precisely, if P is a
pair-of-pants with boundary ∂P = ∂1P � ∂2P � ∂3P, then S′ is obtained from S � T � P
by identifying ∂S � −∂1P and ∂T � −∂2P. Observe that ∂S′ = ∂3P is connected and
g(S′)= g + 1. See Figure 20.

We now define a symplectomorphism h ′ : (S′,ω′) ∼→ (S′,ω′) with zero flux (with
respect to some ω′) as follows: First set h ′|S = h and h ′|T = hT. Then define h ′|P as the
first return map of a Reeb flow Rα on

NP =N(P,id) = (P× [0,1])/((x,1)∼ (x,0)).

The contact form α is given by f0dt+β , where f0 is a function and β is a 1-form on P, and
both f0 and β do not depend on t. We choose a Morse-Bott function f0 : P→ R which
satisfies the following:

(1) f0 is Ck-close to 1 for k� 0;
(2) f0 attains its minimum along the Morse-Bott family ∂P;
(3) the critical points of f0 in int(P) are isolated and consist of the maximum eP and

two saddles h1P, h2P.

The Reeb orbits corresponding to eP, h1P, h2P will also be denoted by eP, h1P, h2P.
Let Ni , i = 1,2,3, be the negative Morse-Bott family of Reeb orbits corresponding

to ∂iP. If f0 is Ck-close to 1 for k � 0, then the only orbits that intersect P× {0} at most
2g + 2 times are: eP, hiP and the orbits of Ni. We pick two orbits in each Ni and label
them ei , hi ; they will become elliptic and hyperbolic when the Morse-Bott function f0 is
perturbed into a Morse function, which we call f . For convenience we write NS for the
mapping torus of (S, h), NS′ for the mapping torus of (S′, h ′), etc.

Since (S′, h ′) is obtained from (S, h) by applying two positive stabilizations, the
corresponding contact structures ξ(S,h) and ξ(S′,h ′) are isomorphic. As a special case, ob-
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serve that if (S, h)= (D2, id), then (S′, h ′)= (T, hT) and (T, hT) is an open book decom-
position for the standard tight contact structure on S3.

5.2. Morse-Bott theory. — Let J be an adapted almost complex structure on R×NS′

and let π :R×NS′ →NS′ be the projection onto the second factor. Also let u be a finite
energy Morse-Bott building in R × NS′ from γ to γ′, where both orbit sets intersect
S′ × {0} in 2g + 2 points.

The following lemma partitions the irreducible components of u into three regions.
When u is a Morse-Bott building, then we say that u is “irreducible” if the holomorphic
curve, obtained by perturbing the Morse-Bott contact form to a nondegenerate one and
correspondingly gluing up the levels of the Morse-Bott building, is irreducible.

Lemma 5.2.1. — Every irreducible component of the Morse-Bott building u in R×NS′ has

image in one of R×NS, R×NT, or R×NP.

Proof. — The lemma is an application of the winding number windπ of [HWZ1]
and the positivity of intersections. (For example, see [0, Lemma 5.5.1].)

Suppose without loss of generality that u : Ḟ→R×NS′ is a single-level Morse-Bott
building and that u(Ḟ) nontrivially intersects R×NP; the case of a multiple-level Morse-
Bott building only differs in notation. If u corresponds to a gradient trajectory from hi

to ei , then the lemma holds. Otherwise let Pε ⊂ P be a slight retraction of P so that
∂Pε = ∂ε

1 P � ∂ε
2 P � ∂3P. Let $ :NP = P× S1 → P be the projection onto the first factor,

let Tε
i =$−1(∂ε

i P), i = 1,2, and let NPε
=$−1(Pε). We may assume that Tε

i is foliated
by (not necessarily closed) Reeb orbits. We consider the intersection δi = π(u(Ḟ)) ∩ Tε

i ,
where δi is given the boundary orientation of π(u(Ḟ)) ∩NPε

. The curve δi is transverse
to the Reeb vector field away from a finite number of points by [0, Lemma 5.5.1]. If δi

is not homologous to a multiple of {pt} × S1 in H1(Tε
i ), then $(δi) is in the homology

class k[∂iPε] ∈ H1(Pε), k > 0, by the positivity of intersections in dimension four. This
implies that $(π(u(Ḟ)) ∩ ∂NS′) is in the class k[∂3P] ∈ H1(P) for k > 0. Since this is a
contradiction, we must have [δi] = l[{pt} × S1] ∈ H1(Tε

i ), for some l ≥ 0. This implies
that u has negative ends along Ni , i = 1,2. Hence u has image in R×NP. �

We now use Morse-Bott theory (cf. Bourgeois [Bo1, Bo2]) to analyze holomorphic
curves on R×NP. In particular, we consider a perturbation of the Morse-Bott family of
orbits on NP, perturbed by the Morse function f : P→R as described above.

Lemma 5.2.2. — Let f : P → R be Ck-close to 1 for k � 0. Then there is an adapted

almost complex structure J on R× NP such that every IECH = 1 finite energy J-holomorphic curve u

whose image is in R×NP, is a simply-covered cylinder which corresponds to a gradient flow line between

critical points of f of adjacent index. The complete list is as follows:

(1) one cylinder from eP to hi , i = 1,2,3, and two cylinders from eP to hiP, i = 1,2;
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(2) two cylinders from hi to ei , i = 1,2,3;

(3) one cylinder from h1P to e1 and one cylinder from h1P to e3;

(4) one cylinder from h2P to e2 and one cylinder from h2P to e3.

Moreover, all the IECH = 1 curves above are regular.

See Figure 20 for the gradient trajectories of f which correspond to the above
holomorphic cylinders.

Proof. — The proof is very similar to that of [0, Lemma 9.2.2]. We use the follow-
ing fact, which can be proved using Morse-Bott theory or by a direct computation:

Fact. There is an adapted almost complex structure J on R × NP such that there is a
one-to-one correspondence between (parametrized) gradient trajectories δ : R→ P of f

and finite energy J-holomorphic cylinders Zδ in R×NP which intersect each {(s, t)} × P
exactly once and project to Im(δ) under the projection $◦π :R×NP → P, (s, x, t) �→ x.
Moreover, the cylinders Zδ , together with the trivial cylinders over the orbits correspond-
ing to the Morse critical points, give a finite energy foliation of R×NP.

Fix f and J as above. We will use the notation sδ : R → P for the translation
(sδ)(τ )= δ(τ + s).

Let u : Ḟ → R × NP be a finite energy J-holomorphic curve. Let Dε ⊂ P be an
arbitrarily small disk centered at the point eP and let N(eP) =$−1(Dε) be a solid torus
neighborhood of the orbit eP. We assume that ∂N(eP) is foliated by (not necessarily closed)
orbits of the Reeb vector field. We identify ∂N(eP) � R2/Z2 so that the meridian has
slope zero and a fiber {pt} × S1 has slope ∞. Consider η = π(u(Ḟ)) ∩ ∂N(eP), where
η is given the boundary orientation of π(u(Ḟ)) ∩ $−1(P − int(Dε)). If the projection
[$(η)] ∈ H1(P − int(Dε)) is nonzero, then [$(η)] = −k[∂Dε], k > 0, by the positivity
of intersections. This is a contradiction as in the proof of Lemma 5.2.1. Hence [η] =
l[{pt} × S1] ∈ H1(∂N(eP)) for some l ≥ 0, i.e., has slope ∞. In other words, u cannot
intersect R× eP and can only have eP at the positive end. Similar considerations hold for
N(ei), i = 1,2,3, where Di,ε ⊂ P is a half-disk centered at ei and N(ei)=$−1(Di,ε).

We now claim that u is some multiple cover of some Zδ with multiplicity ≥ 1.
Arguing by contradiction, suppose u does not multiply cover any Zδ . Let us first consider
the case where $ ◦ π(u(Ḟ)) does not equal Im(δ) for any δ. Then there is some Zδ from
eP to some ei such that the intersection u(Ḟ) ∩ Zδ is nonempty; moreover, in view of the
asymptotics on N(eP) and N(ei), we may assume that K= π(u(Ḟ)∩Zδ) is compact. This
implies that u(Ḟ) and Zsδ do not intersect for sufficiently large s. On the other hand, since
the intersection pairing 〈u(Ḟ),Zsδ〉 is a homological quantity and does not depend on s

due to the asymptotics, it follows that K=∅, which is a contradiction. This implies that
$ ◦ π(u(Ḟ))= Im(δ) for some δ. Now R×$−1(δ) is a 3-manifold which is foliated by
Zsδ , s ∈ R, and if u does not multiply cover any Zsδ , then u intersects some Zsδ along a
1-manifold, a contradiction. We conclude that u is a multiple cover of some Zδ .
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Now Fredholm index one cylinders Zδ — i.e., those that correspond to δ connect-
ing two Morse critical points of adjacent index — are regular by the automatic transver-
sality results of Wendl [We1, We2]. Moreover, u cannot multiply cover Zδ with multiplicity
> 1 by [HT1, Proposition 7.15], since otherwise I(u) > 1. This implies that u is equal to
some Zδ , thereby completing the proof of the lemma. �

5.3. Computation of PFH(NS′). — In this section we compute PFH(NS′) in terms
of PFH(NS) and PFH(NT). From now on we will write PFC(S, h) for PFC(NS), with the
understanding that the periodic Floer homology group is defined using a stable Hamil-
tonian structure induced by the fibration, and whose stable Hamiltonian vector field has
first return map h . Similar notation will be used for PFC(NT) and PFC(NS′). Sometimes
we will even drop the monodromy from the notation for the periodic Floer homology
groups.

5.3.1. Description of the differential of PFH(S′, h ′). — Given two orbit sets γ′ =∏

γ
m′i
i

and γ =∏

γ
mi

i , we set γ/γ′ =∏

γ
mi−m′i
i if m′i ≤ mi for all i; otherwise we set γ/γ′ = 0.

The chain group PFCk(S′) can be written as:

PFCk(S′)=
⊕

m+i+j=k

F[h1P, h2P, h3, eP, e3]m ⊗ PFCi(S)⊗ PFCj(T).

F[h1P, h2P, h3, eP, e3] is a polynomial ring where h1P, h2P, h3 (resp. eP, e3) are considered as
Grassmann variables of odd degree (resp. even degree) and the subscript m indicates the
subspace spanned by monomials with total exponent m.

Let us write a generator of PFCk(S′) as γ ⊗ �1 ⊗ �2, where �1 ∈ PFCi(S),
�2 ∈ PFCj(T), and γ is constructed from orbits passing through S′ − S − T. Using
Lemma 5.2.1 and the description of ECH index one curves in R×NP from Lemma 5.2.2,
we write the differential ∂ of PFCk(S′) as follows:

∂(γ⊗�1 ⊗�2)

= γ⊗ (∂S�1)⊗�2 + γ⊗�1 ⊗ (∂T�2)

+ (γ/eP)(h3 ⊗�1 ⊗�2 + 1⊗ h1�1 ⊗�2 + 1⊗�1 ⊗ h2�2)

+ (γ/h1P)(e3 ⊗�1 ⊗�2 + 1⊗ e1�1 ⊗�2)

+ (γ/h2P)(e3 ⊗�1 ⊗�2 + 1⊗�1 ⊗ e2�2).

Here ∂S and ∂T are the differentials on PFC(S) and PFC(T).

5.3.2. Spectral sequence calculation. — In this subsection we use spectral sequences
to prove the following:



HF=ECH VIA OPEN BOOK DECOMPOSITIONS II

Lemma 5.3.1. — The inclusion
⊕

i+j=k

PFCi(S)⊗ PFHj(T)→ PFCk(S′)

induces an isomorphism between the quotient
(

⊕

i+j=k PFHi(S)⊗ PFHj(T)
)

/∼ and PFHk(S′),
where the equivalence relation ∼ is given by e1�1 ⊗�2 ∼ �1 ⊗ e2�2.

Proof. — Let F be a filtration on (PFCk(S′), ∂) which, on the generators, counts
the multiplicity of h1P. This means that F takes values in {0,1}. We write (Er(F), ∂r) for
the Er-term and the Er-differential of the spectral sequence for F . Each page Er(F) has
a grading coming from F and Er

�(F) is the degree � component of Er(F) with respect
to this grading. We remark that the spectral sequence associated to F is nothing but a
long exact sequence in homology, and its use is motivated by our wish to give a parallel
treatment of the cases where we filter by the multiplicity of a hyperbolic orbit or by the
multiplicity of an elliptic orbit.

Next let G be a filtration on (E0(F), ∂0) which counts the multiplicity of h2P. Again,
G takes values in {0,1}. We write (Er(G), ∂0r) for the Er-term and the Er-differential of
the spectral sequence for G. Finally, let H be the filtration on (E0(G), ∂00) which counts
the multiplicity of eP, and let (Er(H), ∂00r) be the Er-term and the Er-differential of the
spectral sequence for H.

We first consider (E0(H), ∂000), where:

∂000(γ⊗�1 ⊗�2)= γ⊗ (∂S�1)⊗�2 + γ⊗�1 ⊗ (∂T�2).

By the Künneth formula, we have:

E1(H)=
⊕

m+i+j=k

F[h1P, h2P, h3, eP, e3]m ⊗ PFHi(S)⊗ PFH(T)j.

Next consider (E1(H), ∂001), where:

∂001(e
n
Pγ⊗�1 ⊗�2)= en−1

P h3γ⊗�1 ⊗�2 + en−1
P γ⊗ (h1�1)⊗�2

+ en−1
P γ⊗�1 ⊗ (h2�2),

Here �1 ∈ PFHi(S), �2 ∈ PFHj(T), and γ has no eP term. Note that any en−1
P h3γ ⊗

�1 ⊗ �2 is homologous (with respect to the differential ∂001) to a linear combination of
en−1
P γ′ ⊗ �′1 ⊗ �′2, where γ′ does not have any eP and h3 terms, �′1 is in some PFHi(S),

and �′2 is in some PFH(T)j . Hence every element of E1(H)/ Im(∂001) can be represented
by w =∑

i≥0 ei
Pwi , where wi has no eP and h3 terms, and we can write

∂001(w)=
∑

i>0

ei−1
P h3wi +w′,
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where w′ has no terms which contain h3. If ∂001(w)= 0, then all the wi , i > 0, must be
zero. We therefore obtain:

E2(H)=
⊕

m+i+j=k

F[h1P, h2P, e3]m ⊗ PFHi(S)⊗ PFHj(T).

Since E2(H) is supported in degree 0, the spectral sequence for H converges at the E2-
term and we have E1(G)� E2(H). Moreover, E2(H)= E2

0(H) is naturally isomorphic to
E1(G) since 0 is the lowest filtration level.

Now consider (E1(G), ∂01), where

∂01(γ⊗�1 ⊗�2)= e3(γ/h2P)⊗�1 ⊗�2 + (γ/h2P)⊗�1 ⊗ e2�2.

The calculation of E2(G) is similar to the calculation of E2(H) in the previous paragraph.
Any en+1

3 γ ⊗ �1 ⊗ �2 is homologous to a linear combination of en
3γ
′ ⊗ �′1 ⊗ �′2, where

γ, γ′ do not have any h2P and e3 terms. Hence every element of E1(G)/ Im(∂01) can be
represented by w =w′ +∑k

i=0 h2Pei
3wi , where w′ and wi have no h2P or e3 terms, and we

can write

∂01w =
k

∑

i=0

ei+1
3 wi +

k
∑

i=1

ei
3e2wi.

If ∂01w = 0, then all the wi must be zero. Only the w′ term remains, and we have:

E2(G)=
⊕

m+i+j=k

F[h1P]m ⊗ PFHi(S)⊗ PFHj(T),

which we can write as a direct sum L0 ⊕L1, where:

L0 =
⊕

i+j=k

PFHi(S)⊗ PFHj(T),

L1 =
⊕

i+j=k−1

F{h1P} ⊗ PFHi(S)⊗ PFHj(T).

Since E2(G) is supported in the lowest degree 0, the spectral sequence for G converges at
the E2-term and E2(G)= E2

0(G) is naturally isomorphic to E1(F).
Finally, E1(F)� L0 ⊕L1 has differential ∂1 given by:

∂1(�1 ⊗�2)= 0,(5.3.1)

∂1(h1P ⊗�1 ⊗�2)= e1�1 ⊗�2 +�1 ⊗ e2�2,(5.3.2)

since ∂(h1P⊗�1⊗�2)= e1�1⊗�2+ e3⊗�1⊗�2 and ∂(h2P⊗�1⊗�2)= ∂0(h2P⊗�1⊗
�2)= e3⊗�1⊗�2+�1⊗ e2�2. Viewing the spectral sequence as a long exact sequence
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with connecting homomorphism L1
δ→ L0, where δ is given by Equation (5.3.2), we see

that E2(F) is isomorphic to L0/ Im(δ)= L0/∼, where the equivalence relation is given
by e1�1 ⊗ �2 ∼ �1 ⊗ e2�2. As argued previously, the spectral sequence converges at the
E2-term and E2(F) is naturally isomorphic to PFHk(S′). �

5.4. Stabilization maps. — For every integer k ≥ g we define

ik : PFC2k(S, h)→ PFC2k(S′, h ′)

as the map induced by the inclusion, and

jk : PFC2k(S, h)→ PFC2k+2(S, h)

as jk(γ) = e2
1γ for every orbit set γ ∈ PFC2k(S, h). We also define the stabilization map

Sk = ik+1 ◦ jk .
The maps jk are chain maps by [0, Lemma 5.3.2] and the maps ik are chain maps

by Lemma 5.2.1; therefore the maps Sk are also chain maps.

Lemma 5.4.1. — If (Sk)∗ is an isomorphism, then (jk)∗ is an isomorphism.

Proof. — If (Sk)∗ is an isomorphism, then (jk)∗ : PFH2g(S)→ PFH2g+2(S) is injec-
tive. It remains to show that it is surjective.

First note that PFH0(T)= F{1}. We also have PFH2(T)= F{e2
2}, since ̂HF(S3)�

F, generated by the contact class c(ξstd) of the standard tight contact structure ξstd on S3,
and e2

2 is the image of c(ξstd) under the isomorphism

(�(T,hT))∗ : ̂HF(S3)= ̂HF(T, hT)
∼→ PFH2(T).

Now, since the isomorphism PFH0(T)
∼→ PFH2(T), 1 �→ e2

2, factors as

PFH0(T)→ PFH1(T)→ PFH2(T), 1 �→ e2 �→ e2
2,

it follows that PFH1(T)= F{e2} ⊕W for some F-vector space W.
By Lemma 5.3.1,

PFH2k+2(S′)�
⎛

⎝

⊕

i+j=2k+2

PFHi(S)⊗ PFHj(T)

⎞

⎠/∼ .

Moreover, PFH2k(S) ⊗ PFH2(T) = PFH2k(S) ⊗ F{e2
2} is the image of PFH2k(S) under

the map (Sk)∗. Since this map is an isomorphism, every element of PFH2k+2(S) ⊗
PFH0(T)= PFH2k+2(S)⊗ F{1} is equivalent to some element of PFH2k(S)⊗ PFH2(T),
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i.e., if v2k+2 ∈ PFH2k+2(S), then v2k+2 ⊗ 1∼ v2k ⊗ e2
2 for some v2k ∈ PFH2k(S). More ex-

plicitly,

v2k+2 ⊗ 1+ v2k ⊗ e2
2 = (e1v

′
2k+1 ⊗ 1+ v′2k+1 ⊗ e2)+ (e1v

′
2k ⊗ e2 + v′2k ⊗ e2

2)

+
∑

i

(e1v
′′
2k,i ⊗wi + v′′2k,i ⊗ e2wi)+ · · · ,

where v′2k+1 ∈ PFH2g+1(S); v′2k, v
′′
2k,i ∈ PFH2g(S); {wi} is a basis for W; and . . . is a lin-

ear combination of terms which are not in PFH2k+2(S)⊗ PFH0(T) and PFH2k+1(S)⊗
PFH1(T). A term-by-term comparison gives v2k+2 = e1v

′
2k+1 and v′2k+1 = e1v

′
2k . Hence

v2+2 = e2
1v
′
2k and v2k+2 is in the image of (jk)∗. �

Corollary 5.4.2. — If (Sk)∗ is an isomorphism, then (ik+1)∗ is an isomorphism.

5.5. Isomorphisms from stabilisation. — In this section we prove the following:

Proposition 5.5.1. — If k ≥ g and h satisfies Condition (††)2k+2, then the map

(Sk)∗ : PFH2k(S, h)→ PFH2k+2(S′, h ′)

is an isomorphism.

The proof will be by induction on k−g. First we consider the base step g = k, which
proved by comparing the stabilization maps in Heegaard Floer homology and periodic
Floer homology.

Let a= {a1, . . . , a2g} be a basis of S. We extend a to a= {a1, . . . , a2g} so that ai is a
properly embedded arc with boundary on ∂S′ and then complete a to a basis a′ of S′ by
adding the extensions a2g+1 and a2g+2 of the basis arcs a2g+1 and a2g+2 of T, subject to the
following conditions:

– ai − ai and h ′(aj − aj) are disjoint for 1≤ i �= j ≤ 2g + 2;
– ai and h ′(ai) have two extra pairs of canceling intersections xi, θi and x′i, θ

′
i in

S′ − (S∪T) for i = 1, . . . ,2g + 2;
– x1, x′1, . . . x2g+2, x′2g+2 lie on ∂S′.

We then define

S
′
HF : ̂CF

′
(S,a, h(a))→ ̂CF

′
(S′,a′, h ′(a′))

as SHF(y)= y ∪ {x2g+1, x2g+2}. It is easy to see that SHF is a chain map. (Compare with
the gluing map from [HKM].)

Lemma 5.5.2. — The map S′
HF induces a map

(SHF)∗ : ̂HF(S,a, h(a))→ ̂HF(S′,a′, h ′(a′))
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which is an isomorphism.

Proof. — Let Se and Te be extensions of S and T such that:

– a′S = {a1, . . . , a2g} and h ′(a′S)= h ′({h ′(a1), . . . , h ′(a2g)} are bases of arcs of Se,
– a′T = {a2g+1, a2g+2} and h ′(a′T)= {h ′(a1), h ′(a2g+2)} are bases of arcs of Te,
– S′ can be seen as a boundary connected sum of Se and Te.

It is easy to see that

̂CF(S′a′, h ′(a′))∼= ̂CF(Sea′S, h ′(a′S))⊗ ̂CF(Te,a′T, h ′(a′T))

and ̂HF(Te,a′T, h ′(a′T)) ∼= F and is generated by the class of {x2g+1, x2g+2} because
(Te,a′T, h ′(a′T)) represents S3. Hence the map

̂CF(Se,a′S, h ′(a′S))→ ̂CF(S′a′, h ′(a′)), y �→ y∪ {x2g+1, x2g+2}
induces an isomorphism in homology. In view of the discussion above, it remains to prove
that the inclusion ̂CF

′
(S,a, h(a))→ ̂CF(Se,a′S, h ′(a′S)) induces a map ̂HF(S,a, h(a))→

̂HF(Se,a′S, h ′(a′S)) which is an isomorphism. Note that the inclusion does not factor
through a map ̂CF(S,a, h(a))→ ̂CF(Se,a′S, h ′(a′S)); we will need a slightly more com-
plicated argument.

Let Q ⊂ ̂CF
′
(S,a, h(a)) be the subspace generated by elements of the form y ∪

{xi}+y∪{x′i} for some i = 1, . . .2g, where y is a (2g−1)-uple of intersection points none
of which is in ai or h(ai). Then ̂CF(S,a, h(a))= ̂CF

′
(S,a, h(a))/Q. Similarly, we define

Q⊂ ̂CF
′
(Se,a′S, h(a′S)) as the subspace generated by elements of the form y∪ {xi} + y∪

{x′i}. Then, as before, ̂CF(Se,a′S, h(a′S))= ̂CF
′
(Se,a′S, h(a′S))/Q.

We also define R⊂ ̂CF
′
(Se,a′S, h(a′S)) as the subspace generated by elements of the

form y∪ {xi} + y∪ {x′i}, y∪ {xi} + y∪ {x′i} and y∪ {θi} + y∪ {θ ′i } for some i = 1, . . . ,2g.
Since both Q and Q are subcomplexes of R, we have chain maps

̂CF(S,a, h(a))→ ̂CF
′
(Se,a′S, h(a′S))/R,(5.5.1)

̂CF(Se,a′S, h ′(a′S))→ ̂CF
′
(Se,a′S, h(a′S))/R.(5.5.2)

The map (5.5.2) induces an isomorphism in homology because H(R/Q)∼= 0. This can be
proved in a similar manner to Theorem I.4.9.4. The map (SHF)∗ is then the composition
of map induced by (5.5.1) with the inverse of the map induced by (5.5.2).

It remains to show that the map induced by (5.5.1) is an isomorphism. We define
˜R⊂ ̂CF

′
(Se,a′S, h(a′S)) as the subspace generated by intersection points of the form y ∪

{xi} y∪{x′i}, y∪{θi} and y∪{θ ′i } for i = 1, . . . ,2g. If we apply the identity of vector spaces

X/(A+ B)∼= X/A
B/(B∩A)
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to X= ̂CF
′
(Se,a′S, h ′(a′S)), A= ̂CF

′
(S,a, h(a)), B= R and observe that X/A∼= ˜R and

A∩ B∼=Q, we obtain the short exact sequence

0→ ̂CF(S,a, h(a))→ ̂CF
′
(Se,a′S, h ′(a′S))/R→˜R/(R/Q)→ 0.

Since both ˜R and R/Q are acyclic (by an argument similar to the proof of Theo-
rem I.4.9.4), it follows that the map (5.5.1) induces an isomorphism in homology. �

Lemma 5.5.3. — The diagram of chain complexes

(5.5.3) ̂CF
′
(S,a, h(a))

S′
HF

�′
(S,h)

̂CF
′
(S′,a′, h ′(a′))

�′
(S′,h ′)

PFC2g(S, h)
S2g

PFC2g+2(S′, h ′)

commutes up to homotopy.

Proof. — Since x2g+1 and x2g+2 are components of the contact class, there are no
holomorphic curves in W+, besides restrictions of trivial cylinders, which have a positive
limit to x2g+1 or x2g . The argument is the same as that of Lemma I.6.2.3.

The restriction of the trivial cylinder over xi , i = 2g + 1,2g + 2 has its negative
end to a generic point pi of the Morse-Bott family N3 and is concatenated with a cylin-
der corresponding to a gradient trajectory from pi to e3 to give a Morse-Bott building.
Moreover, by automatic transversality [We1, Theorem 4.5.36] and the discussion from
Lemma I.5.8.9, the above Morse-Bott building is Morse-Bott regular. Hence the pair
{x2g+1, x2g+2} is “mapped” to e2

3.
By arguments similar to the proof of Lemma 5.2.1, every W+-curve for (S′, h ′)

which is positively asymptotic to y∪ {x2g+1, x2g+2} is the disjoint union of a W+-curve for
(S, h) which is positively asymptotic to y with the Morse-Bott buildings from x2g+1 and
x2g+2 described above. This implies that

�′
(S′,h ′)(y∪ {x2g+1, x2g+2})= e2

3 ·�′
(S,h)(y).

Then the map y �→ h1P(e1 + e3)�
′
(S,h)(y) is a chain homotopy between �′

(S′,h ′) ◦SHF and
Sg ◦�′

(S,h). �
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Corollary 5.5.4. — The diagram

(5.5.4) ̂HF(S,a, h(a))
(SHF)∗

(�(S,h))∗

̂HF(S′,a′, h ′(a′))

(�(S′,h ′))∗

PFH2g(S, h)
(Sg)∗

PFH2g+2(S′, h ′)

commutes.

Proof. — Since we are working over a field, the map (5.5.2) has an inverse up to
homotopy. �

The following lemma provides the base step of the induction.

Lemma 5.5.5. — If h satisfies Condition (††)2g+2, then the map

(Sg)∗ : PFH2g(S, h)→ PFH2g+2(S′, h ′)

is an isomorphism.

Proof. — Since h satisfies Condition (††)2g+2, we can arrange the construction of
h ′ so that it also satisfies Condition (††)2g+2. Then by Theorem 1.0.1 the vertical arrows
of Diagram (5.5.4) are isomorphisms. The map (SHF)∗ is also an isomorphism since
̂HF(S′,a′, h ′(a′)) can be computed as the tensor product of the S and T sides and the T
side gives ̂HF(S3), which is generated by {x2g+1, x2g+2}. Then (Sg)∗ is an isomorphism.

�

The next lemma provides the inductive step of the induction, which in turn com-
pletes the proof of Proposition 5.5.1.

Lemma 5.5.6. — If there exists k0 ≥ 1 such that, for all g > 0, surfaces S of genus g, and

monodromies h : S→ S satisfying Condition (††)2g+2k0 , the map

(Sg+k0−1)∗ : PFH2g+2k0−2(S, h)→ PFH2g+2k0(S
′, h ′)

is an isomorphism, then for all g > 0 and monodromies h : S→ S satisfying Condition (††)2g+2k0+2

the map

(Sg+k0)∗ : PFH2g+2k0(S, h)→ PFH2g+2k0+2(S′, h ′)

is an isomorphism.
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Proof. — Let (S′′, h ′′) be a stabilization of (S′, h ′), i.e., a double stabilization of
(S, h). If h satisfies Condition (††)2g+2k0+2, then we can arrange h ′ and h ′′ so that they
also satisfy Condition (††)2g+2k0+2. It is easy to see that the diagram

(5.5.5) PFH2g+2k0(S, h)
(Sg+k0 )∗

(ig+k0 )∗

PFH2g+2k0+2(S′, h ′)

(i′g+k0
)∗

PFH2g+2k0(S
′, h ′)

(S′
g+k0

)∗
PFH2g+2k0+2(S′′, h ′′)

commutes. Here S′
g+k0

and i′g+k0
are the obvious analogues of Sg+k0 and ig+k0 . The proof

that the corresponding chain level diagram commutes up to homotopy is similar to the
proof that Diagram (5.5.3) commutes up to homotopy.

Since g + k0 = g(S′)+ k0 − 1, the map (S′
g+k0

)∗ is an isomorphism by hypothesis.
The map (Sg+k0−1)∗ is also an isomorphism because h satisfies Condition (††)2g+2k0 a

fortiori. Then, by Corollary 5.4.2, the maps (ig+k0)∗ and (i′g+k0
)∗ are isomorphisms. There-

fore, the commutativity of Diagram (5.5.5) implies that (Sg+k0)∗ is an isomorphism. �

5.6. Proof of Theorem 1.0.2. — The following is similar to Theorem I.2.5.2 with a
slightly simpler proof which is left to the reader:

Lemma 5.6.1. — Let (α0 = dt,ω= dβ) be a stable Hamiltonian structure on N with stable

Hamiltonian vector field R such that all closed orbits of R that intersect int(S) at most k times are

hyperbolic. Then, for every δ > 0 sufficiently small, there is a stable Hamiltonian structure (α0,ωδ =
dβδ) with stable Hamiltonian vector field Rδ such that:

(1) β and βδ (and hence also R and Rδ) coincide outside of a δ-neighborhood Vδ of the orbits

of R which intersect int(S) exactly k+ 1 times,

(2) βδ → β in the C1-topology, and hence Rδ →R in the C0 topology, as δ→ 0, and

(3) all orbits of Rδ that intersect int(S) at most k+ 1 times are hyperbolic.

We perturb the stable Hamiltonian structures (α0,ω) and (α0,ωδ) to contact struc-
tures

ας = dt + ςβ, αδ,ς = dt + ςβδ

for ς > 0 sufficiently small as in Equation (I.3.1.1). The C1-convergence βδ → β ensures
that ς can be chosen independently of δ. Note that, in the notation of Section I.3.1,
β = βt + ftdt. The Reeb vector fields Rς of ας and Rδ,ς of αδ,ς are parallel to R and
Rδ respectively. By Theorem I.3.6.1, for every δ > 0 sufficiently small there exists ς ′δ > 0
such that for all 0 < ςδ < ς ′δ , αδ,ςδ is a contact form and there is an isomorphism of chain
complexes

(5.6.1) PFCj(N, α0,ωδ)∼= ECCj(N, αδ,ςδ )
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for all j ≤ k + 1. Moreover, there is ς ′0 > 0 such that for all 0 < ς0 < ς ′0, ας0 is a contact
form and there is an isomorphism of chain complexes

(5.6.2) PFCj(N, α0,ω)∼= ECCj(N, ας0)

for all j ≤ k.
In the next two lemmas we study the continuation maps between the various con-

tact forms appearing in Lemma 5.6.1.

Lemma 5.6.2. — There exists ε > 0 such that for every 0 < ς,ς ′ < ε the forms ας and ας ′

are contact forms, the identifications from Equation (5.6.2) hold, and the continuation map

(K′j)∗ : ECHj(N, ας)→ ECHj(N, ας ′)

given by Equation (I.2.5.6) with αi and αj replaced by ας and ας ′ , coincides with the map induced by

the identifications from Equation (5.6.2) for j ≤ k.

Proof. — By the Holomorphic Curves Property in [HT3, Theorem 2.4], the con-
tinuation map (Kj)

′
∗ is induced by a noncanonical chain map K′j which is supported

on Jς,ς ′ -holomorphic buildings of ECH index I = 0 in an exact symplectic cobordism
(R×N,�ς,ς ′) between ας and ας ′ for a generic almost complex structure Jς,ς ′ which is
compatible with �ς,ς ′ . This means that, if 〈K′j(γ),γ′〉 �= 0, then there is an I = 0 Jς,ς ′ -
holomorphic building in R× N from γ to γ′. Strictly speaking, the continuation maps
are defined by passing to a closure M of N, but the positivity of intersections implies
that the holomorphic buildings in R×M from γ to γ′ are contained in R×N; see [0,
Lemma 5.2.3].

Now we choose sequences ς�, ς
′
� → 0 as �→+∞ and generic almost complex

structures J� = Jς�,ς ′� such that J� → J as �→+∞, where J is a generic almost complex
structure on R×N which is adapted to the stable Hamiltonian structure (α0,ω). Then
I = 0 J�-holomorphic buildings converge to I = 0 J-holomorphic buildings. Since J is
generic and cylindrical, the only I= 0 J-holomorphic buildings are trivial cylinders. This
implies that, for ς and ς ′ small enough, there is no I = 0 Jς,ς ′ -holomorphic building
between γ and γ′ unless γ = γ′. Then the Holomorphic Curves Property implies that
K′j(γ)= ε(γ)γ.

Since we are working over Z/2Z, this implies that (after identifying ECCj(N, ας)

with ECCj(N, ας ′) via Equation (5.6.2)), (K′j)
2 = K′j . Since (K′j)∗ is an isomorphism, we

obtain that (K′j)∗ coincides with the map induced by the identification from Equation
(5.6.2). �

Remark 5.6.3. — A similar results holds for the continuation maps

(K′j)∗ : ECHj(N, αδ,ς )→ ECHj(N, αδ,ς ′)

for j ≤ k + 1, where ε is allowed to depend on δ.
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Lemma 5.6.4. — For j ≤ k and δ, ς > 0 sufficiently small, the continuation map

(K′′j )∗ : ECHj(N, ας)→ ECHj(N, αδ,ς )

given by Equation (I.2.5.6) with K′j , αi , and αj replaced by K′′j , ας , and αδ,ς , is induced by the chain

map K′′j satisfying K′′j (γ)= γ, and is therefore a quasi-isomorphism.

Proof. — Let δ� and ς� be sequences converging to 0 as �→+∞. We choose the
following generic almost complex structures on R×N:

– an almost complex structure J adapted to the stable Hamiltonian structure
(α0,ω);

– almost complex structures J� adapted to the contact forms ας� such that J�→ J
in the C∞-topology on R×N as �→+∞;

– almost complex structures J′� adapted to the contact forms αδ�,ς� which coincide
with J� on R× (N− Vδ�) and converge to J0 in the C0-topology on R×N as
�→+∞;

– almost complex structures J̃� which are compatible with an exact symplectic
cobordism (R × N,��) between ας� and αδ�,ς� , interpolate between J� at the
positive end and J′� at the negative end, coincides with J� and J′� on R×(N\Vδ�),
and converge to J in the C0-topology on R×N as �→+∞.

If u� is a sequence of J̃�-holomorphic curves in R×N from an orbit set γ′ to γ where both
γ and γ′ consist of orbits which intersect a fiber of N at most k times, then, up to pass-
ing to a subsequence, u� converges to a J-holomorphic building. This follows from Gro-
mov compactness for C0-convergence of almost complex structures, due to Ivashkovich-
Shevchishin [IS].

Alternatively, we can argue as follows, using the usual Gromov compactness for
C∞-convergence of almost complex structures. By the compactness argument from Sec-
tion I.3.4, we may assume that [u�] ∈ H2(N,γ′,γ) and the topological type of the do-
mains F� of u� are fixed. We then restrict u� to the preimage G� of R× (N− Vδ�). We
may assume that G� is obtained from a compact Riemann surface with boundary by
removing interior punctures. (This is possible by taking δ� to be generic.)

We claim that |χ(G�)| is bounded above. This is equivalent to an upper bound
on the number of disk components of F� − G�. Let γ′′ be the union of core orbits of
Vδ� , which is independent of �. The number of disk components is bounded above by
the intersection number with R× γ′′, which in turn is controlled by the homology class
[u�] ∈H2(N,γ′,γ).

Since˜J�→ J in C∞
loc on R× (N−Vδ�), and the ends γ,γ′ are contained in N−Vδ�

for all �, we can take the limit of u�|G�
to obtain u|G. For simplicity assume that u has only

one level. Then G is a punctured surface and the punctures which are not mapped to γ

or γ′ are removable.



HF=ECH VIA OPEN BOOK DECOMPOSITIONS II

Next we use the Holomorphic Curves Property in [HT3, Theorem 2.4], which
states that 〈K′′j (γ′),γ〉 is supported on J̃�-holomorphic buildings of ECH index I= 0. The
convergence discussed above implies that, for � large enough, the only J̃�-holomorphic
buildings of index I= 0 between orbit sets γ′ and γ, when both orbit sets consist of Reeb
orbits intersecting a fiber of N at most k times, are covers of trivial cylinders contained in
a product region. Then [HT3, Theorem 2.4] implies that K′′j (γ)= γ when j ≤ k. �

Lemma 5.6.5. — There are sequences of stable Hamiltonian structures (α0,ω
k) and real

numbers ςk (both indexed by k) satisfying the following:

(1) The stable Hamiltonian vector field Rk of (α0,ω
k) has no elliptic Reeb orbit in int(N) that

intersects a fiber at most k times.

(2) Rk and Rk+1 coincide outside of a neighborhood of the orbits of Rk which intersect a fiber of

N exactly k + 1 times.

(3) αk
ς is a contact form for every 0 < ς ≤ ςk .

(4) For every j ≤ k and 0 < ς ≤ ςk there are canonical identifications

PFCj(N, α0,ω
k)∼= ECCj(N, αk

ς ).

(5) For every j ≤ k and 0 < ς,ς ′ ≤ ςk the continuation maps

(K′j)∗ : ECCj(N, αk
ς )→ ECCj(N, αk

ς ′)

are induced by the identifications of (4).
(6) For every j ≤ k the continuation maps

(Kj)∗ : ECHj(N, αk
ςk
)→ ECHj(N, αk+1

ςk+1
)

are induced by chain maps Kj such that Kj(γ)= γ for every orbit set γ of Rk that intersects

a fiber of N j times.

Proof. — The proof is by induction on k. For k = 0 we choose a stable Hamiltonian
structure (α0,ω) and define (α0,ω

0)= (α0,ω) and α0 = ας for ς > 0 sufficiently small
such that the identification of Equation (5.6.2) holds. Suppose we have constructed the
sequences up to some k0. By Lemma 5.6.1, Equation (5.6.2), and Lemma 5.6.2 there exist
a stable Hamiltonian structure (α0,ω

k0+1) and a real number ςk0+1 such that (1)–(5) hold
for k ≤ k0 + 1, and moreover

K
′′
j : ECC(N, αk0+1

ςk0+2
)→ ECC(N, αk0+2

ςk0+2
)

satisfies K′′j (γ) = γ as in Lemma 5.6.4. Without loss of generality we can assume that
ςk0+2 < ςk0+1. Since (Kj)∗ = (K′′j )∗ ◦ (K′j)∗ by [HT3, Theorem 2.4], (6) is satisfied up to
k0 + 1. �
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Let us write αk = αk
ςk

. In view of Theorem I.2.5.6, we can write

̂ECH(M)� lim
k→∞

ECH2k(N, α2k),

where the limit is taken with respect to the maps

ECH2k(N, α2k)→ ECH2k+2(N, α2k+2)

induced by the chain map γ �→ e2K2k(γ). The diagram

(5.6.3) ECH2k(N, α2k)
(K2k)∗

ECH2k(N, α2k+2)

�

(jk)∗
ECH2k+2(N, α2k+2)

PFH2k(N, α0,ω
2k+2)

(jk)∗
PFH2k+2(N, α0,ω

2k+2)

�

commutes. Therefore, Proposition 5.5.1 and Lemma 5.4.1 imply that (jk)∗ is an isomor-
phism. This proves Theorem 1.0.2.
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