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ABSTRACT

We consider integral area-minimizing 2-dimensional currents T in U⊂R2+n with ∂T=Q ���, where Q ∈N\{0}
and � is sufficiently smooth. We prove that, if q ∈ � is a point where the density of T is strictly below Q+1

2 , then the current
is regular at q. The regularity is understood in the following sense: there is a neighborhood of q in which T consists of
a finite number of regular minimal submanifolds meeting transversally at � (and counted with the appropriate integer
multiplicity). In view of well-known examples, our result is optimal, and it is the first nontrivial generalization of a classical
theorem of Allard for Q = 1. As a corollary, if � ⊂ R2+n is a bounded uniformly convex set and � ⊂ ∂� a smooth
1-dimensional closed submanifold, then any area-minimizing current T with ∂T = Q ��� is regular in a neighborhood
of �.
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0. Introduction

Consider an area-minimizing integral current T of dimension m ≥ 2 in Rm+n and
assume that ∂T is a smooth submanifold, namely ∂T =∑

i Qi ��i�, where Qi are (pos-
itive) integer multiplicites and �i finitely many pairwise disjoint oriented smooth and
connected submanifolds of dimension m − 1. The present paper is focused on under-
standing how regular T can be at points p ∈ ∪i�i and our primary interest is that the
integer multiplicities are allowed to be larger than 1 and the codimension n is at least 2.
Indeed, when the codimension is 1 the situation is completely understood (cf. [1, Problem
4.19]): first of all the coarea formula for functions of bounded variation allows to decom-
pose, locally, the current T into a sum of area minimizing integral currents which take
the boundary with multiplicity 1; hence we can apply to each piece of the decomposition
the celebrated theorem by Hardt and Simon [19], which guarantees full regularity at the
boundary, namely the absence of any singularity.

A quite general boundary regularity theory was developed by Allard in the pio-
neering fundamental work [4], which covers any dimension and codimension and is valid
for more general objects, namely stationary varifolds. In [4] Allard restricts his attention
to boundary points where the density, namely the limit of the mass ratio

�(T, q) := lim
r↓0

‖T‖(Bρ(q))

ρm
,

is sufficiently close to 1
2 . His Boundary Regularity Theorem guarantees then that, under

such assumption, q is always a regular point. Indeed this generalizes a similar statement in
his PhD thesis [2], which covered the case of area minimizing currents in codimension 1.

In the introduction to [2] Allard points out that when the multiplicity of the
boundary � is allowed to be an arbitrary natural number Q > 1, the assumption
�(T, q) < 1

2 + ε is empty and should be replaced by �(T, q) < Q
2 + ε. However he
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quotes a possible extension of his theorem as a very challenging problem. This basic ques-
tion was raised again by White in the collection of open problems [1], cf. Problem 4.19,
where he also explains that the nontrivial situation is in higher codimension, given the
decomposition through the coarea formula already explained a few paragraphs above.
Our paper gives the very first result in that direction and solves Allard’s “higher multi-
plicity” question for 2-dimensional integral currents. Before stating it we wish to discuss
what we mean by “regularity at the boundary”.

Definition 0.1. — Assume T is an area minimizing 2-dimensional integral current in U ⊂
R2+n such that ∂T U=Q ��� for some integer Q ≥ 1 and some C1 embedded arc �. p is called

a regular boundary point if T consists, in a neighborhood of p, of the union of finitely many

smooth submanifolds with boundary �, counted with appropriated integer multiplicities, which meet at �

transversally. More precisely, if there are:

(i) a neighborhood U of p;

(ii) a finite number of C1 oriented embedded 2-dimensional surfaces in U denoted by

�1, . . . ,�J;

(iii) and a finite number of positive integers k1, . . . , kJ

such that:

(a) ∂�j ∩U= � ∩U= � ∩U (in the sense of differential topology) for every j;

(b) �j ∩�l = � ∩U for every j 	= l;

(c) for all j 	= l and at each q ∈ � the tangent planes to �j and �l are distinct;

(d) T U=∑
j kj ��j� (hence

∑
j kj =Qi ).

The set Regb(T) of boundary regular points is a relatively open subset of � and its complement in �

will be denoted by Singb(T).

Our main Theorem reads as follows.

Theorem 0.2. — Let U ⊂ R2+n be an open set, � ⊂ U be a C3,α0 embedded arc for some

α0 > 0, and T be a 2-dimensional area-minimizing integral current such that ∂T=Q ���. If q ∈ �
and �(T, q) < Q+1

2 , then T is regular at q in the sense of Definition 0.1.

Remark 0.3. — Note that it is well known that there are smooth curves (counted
with multiplicity 1) in the Euclidean space, even in R3, which span more than one area-
minimizing current. In particular, if � ⊂R3 is such a curve and T1, T2 two area minimiz-
ing currents with ∂Ti = ���, i = 1,2, then T := T1 + T2 is an area minimizing current
with ∂T = 2 ��� (this follows because any area-minimizing current S with boundary
∂S= 2 ��� must have mass which doubles that of Ti , and hence equals that of T). Let us
analyze the above example more accurately. In view of the interior and boundary regu-
larity theory, both T1 and T2 are smooth submanifolds up to the boundary, i.e. a standard
argument using Allard’s boundary regularity theorem [4] (cf. [5, Section 5.23]) implies
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that Ti = ��i� for two connected smooth submanifolds such that ∂�i = � in the classical
sense of differential topology. Since any integral area-minimizing 2-dimensional current
in R3 is an embedded submanifold (with integer multiplicity) away from the boundary,
we also conclude that �1 and �2 do not intersect except at their common boundary �.
The Hopf boundary lemma then implies that at every point p ∈ � the two currents have
distinct tangents, i.e. �1 and �2 meet at their common boundary transversally.

In view of the above remark we cannot expect, in general, a “better” conclusion
than the one of Theorem 0.2 or, in other words, we cannot expect that the number J in
Definition 0.1 is 1. However, an obvious corollary of Theorem 0.2 is the following.

Theorem 0.4. — Let U, T, � and q be as in Theorem 0.2. Then there is a neighborhood U′

of q in which T=Q ��� for some smooth minimal surface � if and only if one tangent cone to T at q

is “flat”, i.e. contained in a 2-dimensional linear subspace of R2+n.

Even though the assumption that �(T, q) is sufficiently close to Q
2 seems, at a

first glance, very restrictive, we can either follow a lemma of Allard in [4] (valid in any
dimension and codimension) or a simple classificaton of the boundary tangent cones (cf.
[17]) to show that it holds when spt(∂T) is contained in the boundary of a bounded
C2 uniformly convex set �. For this reason, complete regularity can be achieved when
there is a “convex barrier”. Since this is an assumption which will be used often in some
sections of the work, we wish to isolate its statement.

Assumption 0.5. — � ⊂ R2+n is a bounded C3,α0 uniformly convex set for some α0 > 0,

� ⊂ ∂� is the disjoint union of finitely many C3,α0 simple closed curves {�i}i=1,...,N. T is a 2-

dimensional area-minimizing integral current in R2+n such that ∂T=∑
i Qi ��i�.

Theorem 0.6. — Let �, � and T be as in Assumption 0.5. Then Singb(T) is empty.

In fact we can give a suitable local version of the above statement from which
Theorem 0.6 can be easily concluded, cf. Theorem 2.5.

In the next section we will outline the arguments to prove Theorem 0.2, 0.4, and
0.6. Before coming to it we wish to point two things. We are confident that the methods
used in this work generalize to cover the same statement as in Theorem 0.2 in an arbitrary
smooth (i.e. C3,α0 ) complete Riemannian manifold, but in order to keep the technicali-
ties at bay we have decided to restrict our attention to Euclidean ambient spaces. Even
though the basic ideas behind this work are quite simple, the overall proof of the theorems
is quite lengthy. For instance before the recent paper [15] of the first author, joint with
De Philippis, Hirsch, and Massaccesi, not even the existence of a single boundary regular
point was known, without some convex barrier assumption and in a general Rieman-
nian manifold. Part of the challenge is that several crucial PDE ingredients are absent in
codimension higher than 1. Let us in particular mention three facts:
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(a) There is no “soft” decomposition theorem which allows to reduce the general
case to that of multiplicity 1 boundaries;

(b) Boundary singularities occur even in the case of multipliciy 1 smooth bound-
aries;

(c) There is no maximum principle (and in particular no Hopf boundary lemma)
available even if we knew a priori that the minimizing currents are completely
smooth.

1. Outline of the proof

In the first step (cf. Section 2), we use the classical convex hull property to reduce
the statement of Theorem 0.6 to a local version, cf. Theorem 2.5. The latter statement
will then focus only on a portion of the boundary, but under the assumption that the
support of the current is contained in a suitable convex region, cf. Assumption 2.4. The
crucial point is that this convex region forms a “wedge” at each point of the boundary, cf.
Definition 2.2.

In the second step (cf. Section 3) we recall the classical Allard’s monotonicity for-
mula and we appeal to a classification result for 2-dimensional area-minimizing integral
cones with a straight boundary (see [17]) to conclude that, in all the cases we are dealing
we can assume, without loss of generality, that all the tangent cones to T at every bound-
ary point p consist of a finite number of halfplanes with common boundary Tp�, counted
with a positive integer multiplicity, cf. Theorem 3.5.

At this point, taking advantage of pioneering ideas of White, cf. [23], and of a
recent paper by Hirsch and Marini, cf. [21], the tangent cone can be shown to be unique
at each point p ∈ �. We need, strictly speaking, a suitable generalization of [21], but the
simple technical details are given in the shorter paper [17]. This uniqueness result has
two important outcomes:

(a) At any point p ∈ � where the tangent cone is not flat (i.e. it is not contained
in a single half-plane) we can decompose the current into simpler pieces, cf.
Theorem 4.3;

(b) the convergence rate of the current to the cone is polynomial (cf. also Corollary
15.1.

Point (a) reduces all our regularity statement to Theorem 0.4 (in fact we will focus on a
slightly more technical version of it, cf. Theorem 4.6). To see this, we observe that the
proof of Theorem 2.5 given in Section 4.3 applies mutatis mutandis to prove Theorem
0.2. Point (b) gives one crucial piece of information which will allow us to conclude The-
orem 4.6. The remaining part of this work will in fact be spent to argue for Theorem 4.6
by contradiction: if a flat boundary point p is singular, then the convergence rate to the
flat tangent cone at p must be slower than polynomial, contradicting thus (b).
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We first address a suitable linearized version of Theorem 4.6: we introduce mul-
tivalued functions and define the counterpart of flat boundary points in that context,
which are called contact points. In Theorem 5.5, we then prove an analog of Theorem 4.6
in the case of multivalued functions minimizing the Dirichlet energy using a version of the
frequency function (see Definition 5.6) first introduced by Almgren. However, while the
proof of Theorem 5.5 might be instructive to the reader because it illustrates, in a very
simplified setting, the idea behind the “slow decay” at singular points, the crucial fact
which will be used to show Theorem 4.6 is contained in Theorem 5.3: the latter states
that, if a multi-function vanishes identically at a straight line and it is I-homogeneous,
either it is a multiple copy of a single classical harmonic function, or the homogeneity
I equals 1. The overall idea is that, if p is a singular flat point, then it can be efficiently
approximated at small scales by an homogeneous harmonic (i.e. Dirichlet minimizing)
multivalued function as above (not necessarily unique), which however cannot be a mul-
tiple copy of a single classical harmonic function. Since the homogeneity of the latter
will be forced to be 1, we will infer from it the slow decay of the “cylindrical excess” (cf.
Definition 6.1). However, the work to accomplish the latter approximation proves to be
quite laborious and it will pass through a series of more and more refined approximations.

We note in passing that there is a substantial difference to the linear theory de-
veloped in [15], due to the different class of competitors and hence the different type of
deformations which are allowed.

Next, in the Sections 6, 7, 8, and 9 we prove that the current can be efficiently
approximated by multivalued Lipschitz functions when sufficiently flat (cf. Theorem 9.1)
and that the latter approximation almost minimizes the Dirichlet energy (cf. Theorem
7.3). These sections take heavily advantage of the tools introduced in [8, 9] and of some
ideas in [15]. However these approximations are not sufficient to carry on our program.

A new refined approximation is then devised in Section 10. At every sufficiently
small scale we can construct a “center manifold” (i.e. a classical C3 surface with bound-
ary �) and a multivalued Lipschitz approximation over its normal bundle (called normal

approximation), which approximates the current as efficiently as the “straight” approxima-
tion in Theorem 9.1, cf. Theorem 10.16 and Theorem 10.21 for the relevant statements.
This new normal approximation has however two important features:

(i) It approximates the current well not only at the “starting scale” but also across
smaller scales as long as certain decay conditions are ensured.

(ii) At all such scales the normal approximation has average close to 0 (namely it
is never close to a multiple copy of a single harmonic function, compared to its
own Dirichlet energy).

The Sections 11, 12, and 13 provide a proof of Theorem 10.16 and Theorem 10.21.
While the first center manifold was introduced in the monograph [5] by Almgren, our
constructions borrows from the ideas and tools introduced in [10] and [15].

Our proof would be at this point much easier if the validity of (i) above would hold,
around the given singular flat point p, at all scales smaller than the one where we start
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the construction of the center manifold. This information would imply that we need to
construct a “single center manifold” which starts at a given scale and covers all smaller
ones. Unfortunately we do not know how to achieve this and here there is another cru-
cial difference with [15], where an improved (almost quadratic) decay allows the authors
to construct such single center manifold at some special points. We are instead forced to
construct a sequence of center manifolds which cover different sets of scales, cf. again Sec-
tion 15.1. At certain particular scales we need therefore to change approximating maps,
i.e. to pass from one center manifold to the next. Section 14 provides then important
information about the latter “exchange scales”. Both sections are heavily influenced by
similar considerations made in the papers [10, 11].

The remaining parts of the paper are thus focused to show that, at a sufficiently
small scale around the flat point p, all these normal approximations are close to some
homogeneous Dir-minimizing function (not necessarily the same across all scales), which
by Theorem 5.3 will then result to be 1-homogeneous. The key ingredient to show this
homogeneity is the almost monotonicity of the frequency function of the normal approx-
imation (a celebrated quantity introduced by Almgren in his pioneering work [5]). In
order to deal with the boundary we resort to an important variant introduced in [15].
The key point is to show that, as r ↓ 0, the frequency function I(r) of the approximation
at scale r converges to a limit. However, since our approximation might change at some

particular scales, the function I undergoes a possibly infinite number of jump discontinu-
ities, while it is almost monotone in the complement of these discontinuities. In order to
show that the limit exists we thus need:

(1) a suitable quantification of the monotonicity on each interval delimited by two
consecutive discontinuities;

(2) a suitable bound on the series of the absolute values of such jumps.

The relevant estimates, namely (15.13) and (15.14), are contained in Theorem 15.5.
While the proof of (15.13) takes advantage of similar cases handled in [11] and [15],
(15.14) is entirely new and we expect that the underlying ideas behind it will prove useful
in other contexts. The Sections 16 and 17 are dedicated to prove the respective estimates.

Finally, in Section 18 we carry on the (relatively simple) argument which, building
upon all the work of the previous sections, shows that the rate of convergence to the
tangent cone at a singular flat point must to be slower than any polynomial rate. As already
mentioned, since the convergence rate has to be polynomial at every point, this shows that
a singular flat point cannot exist.

2. Convex hull property and local statement

We start recalling the following well known fact:
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FIG. 1. — An illustration of the wedge where V is the tangent Tq� to � at some boundary point q, whereas ν the interior
unit normal ν(q) to the convex barrier � at q

Proposition 2.1. — Assume T is an area minimizing m-dimensional current in Rm+n with

spt(∂T) compact. Then spt(T) is contained in the convex hull of spt(∂T).

Proof. — The statement can be concluded from much stronger ones, for instance
we can use that ‖T‖ is an integral stationary varifold in Rm+n \ spt(T) and invoke [22,
Theorem 19.2]. �

We then take advantage of a simple and elementary fact which combines the reg-
ularity of � with the uniform convexity of the barrier �. We will state this fact in higher
generality than we actually need in this manuscript.

Definition 2.2. — First of all, given an (m− 1)-dimensional plane V⊂ Rm+n we denote by

pV the orthonogonal projection onto V. Given additionally a unit vector ν normal to V and an angle

ϑ ∈ (0, π2 ) we then define the wedge with spine V, axis ν and opening angle ϑ as the

set

W(V, ν,ϑ) := {
y : |y− pV(y)− (y · ν)ν| ≤ (tanϑ)y · ν} ,(2.1)

see Figure 1 for an illustration.

In particular we have the following lemma.

Lemma 2.3. — Let � ⊂ Rm+n be a C2 bounded open set with uniformly convex boundary

and � a C2 (m− 1)-dimensional submanifold of ∂� without boundary. Then there is a 0< ϑ < π

2
(which depends only on � and �) such that the convex hull of � (which we denote by ch (�)) satisfies

ch (�)⊂
⋂

q∈�
(q+W(Tq�,ν(q),ϑ)) ,

where ν(q) denotes the interior unit normal to the convex barrier � at q.

We postpone the proof of the lemma to the end of the section. Using Proposition
2.1 and Lemma 2.3 we can reduce Theorem 0.6 to a suitable local statement. In partic-
ular we will replace Assumption 0.5 with the following one:
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Assumption 2.4. — Q≥ 1 is an arbitrary integer and ϑ a given positive real number smaller

than π

2 . � is a C3,α arc in U= B1(0)⊂R2+n with endpoints lying in ∂B1(0).1 Moreover ν : �→
Sn+1 is a C2,α map such that ν(q)⊥ Tq�. T is a 2-dimensional area-minimizing integral current in

U such that:

(∂T) U=Q ��� ,(2.2)

spt(T)⊂
⋂

q∈�
(q+W(Tq�,ν(q),ϑ)) .(2.3)

Moreover,

A := ‖κ‖L∞ + ‖ν̇‖L∞ ≤ 1 ,(2.4)

where κ denotes the curvature of � and ν̇ is the derivative, in the arclength parametrization, of ν.

Theorem 2.5. — Let � and T be as in Assumption 2.4. Then Singb(T) is empty.

Proof of Lemma 2.3. — Since q+W(V, ν,ϑ) is a convex set, we just need to show
the existence of a 0 < ϑ < π

2 such that � ⊂ (q +W(Tq�,ν,ϑ)) for every q ∈ �. The
latter is equivalent to show the existence of a constant C> 0 such that

|(p− q)− ((p− q) · ν(q))ν(q)− pV(p− q)| ≤C((p− q) · ν(q))(2.5)

∀p, q ∈ � .
The strict convexity of ∂� ensures that for every ε > 0 there is a constant C such that
(2.5) holds if additionally |p − q| ≥ ε. Thus we just have to show the inequality for a
sufficiently small ε. In order to do that, fix q and assume w.l.o.g. that it is the origin, while
at the same time we assume that Tq� = T0� = {xm = · · · = xm+n = 0} and ν = ∂

∂xm+n
. We

will use accordingly the coordinates (y, z,w), with y ∈ Rm−1, z ∈ Rn, and w ∈ R. By the
C2 regularity of � and �, in a sufficiently small ball Bε(q)= Bε(0) the points p in � are
described by

p= (y, z,w)= (y, f (y), g(y, f (y)))(2.6)

for some f and g which are C2 functions. Observe that f (0) = 0, Df (0) = 0, g(0) = 0,
and Dg(0) = 0. Moreover ‖D2f ‖C0 ≤ C0 and D2g ≥ c0Id for constants c0 > 0 and C0,
which depend only on � and �. Similarly, the size of the radius ε in which the formula
(2.6) and the estimates are valid depends only on � and � and not on the choice of the
point q. Next, compute

(p− q) · ν(q)= g(y, f (y))≥ c0(|y|2 + |f (y)|2)≥ c0|y|2

1 I.e. � = γ̂ ([0,1]) where γ̂ : [0,1]→ B1(0) is a C3,α diffeomorphism onto its image.
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and

|(p− q)− ((p− q) · ν(q))ν(q)− pV(p− q)| = |f (y)| ≤C0|y|2 .

The desired inequality is then valid for C := C0
c0

. �

3. Tangent cones

We start recalling Allard’s boundary monotonicity formula. More specifically, we
first define

Definition 3.1. — For every point p ∈ B1, we define the density of T at the point p

�(T, p) := lim
r↓0

‖T‖(Br(p))

π r2
,

whenever the latter limit exists.

Next, we introduce the notation κ for the curvature of � and we consider the
functions �i(T, p, r) and �b(T, p, r) given by

�i(T, p, r) := ‖T‖(Br(p))

π r2
,(3.1)

�b(T, p, r) := exp (C0‖κ‖0r)
‖T‖(Br(p))

π r2
,(3.2)

where C0 =C0(n) is a suitably large constant.

Theorem 3.2. — Let T be as in Assumption 2.4.

(a) If p ∈ B1 \ �, then r �→�i(T, p, r) is monotone on (0,min{dist(p,�),1− |p|}),
(b) if p ∈ B1 ∩ �, then r �→�b(T, p, r) is monotone on (0,1− |p|).

Thus the density exists at every point of B1. Moreover, the restrictions of the map p �→ �(T, p) to

� ∩B1 and to B1 \ � are both upper semicontinuous.

If X ∈C1
c (B1,R2+n), then the first variation of T with respect to X satisfies

δT(X)=Q
∫

�

X · �n(x) dH1(x)(3.3)

where �n is a Borel vector field with |�n| ≤ 1.
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Moreover, if p ∈ � and 0 < s < r < 1− |p|, we then have the following precise monotonicity

identity

r−2‖T‖(Br(p))− s−2‖T‖(Bs(p))−
∫

Br(p)\Bs(p)

|(x− p)⊥|2
|x− p|4 d‖T‖(x)(3.4)

=Q
∫ r

s

∫

�∩Bρ(p)
(x− p) · �n(x) dH1(x) dρ ,

where Y⊥(x) denotes the component of the vector Y(x) orthogonal to the tangent plane of T at x (which

is oriented by �T(x)).
The assumptions of the theorem are actually more restrictive than what is really

needed, for instance in [15], when Q= 1, the monotonicity formula is derived in a dif-
ferent way without any convexity/density assumption. We expect that something along
those lines can be done in our case too, but we do not attempt to do it here, we rather
prefer to show how to quickly derive Theorem 3.2 from already existing references in the
literature.

Note first that δT(X) = 0 for X ∈ C1
c (B1 \ �) follows in a straightforward way

from the minimality property of T. In particular ‖T‖ is a stationary integral varifold in
B1 \� and (a) and (b) are consequences of the celebrated works of Allard, cf. [3] and [4].
Next note that (3.4) follows from (3.3) arguing, for instance, as in [6] for [6, Eq. (31)] (see
[3, 4] as well). Coming to (3.3), note first that the derivation of [15, (3.8)] is valid under
our assumptions, with the additional information δT = δTs (following the terminology
and notation of [15, Section 3]). We then just need to show that ‖δTs‖ ≤Q ·H1 �. The
latter follows easily arguing as in [15, Section 3.4] once we have shown that �(T, p)= Q

2
at every p ∈ �, see below.

As in [15, Section 3] we introduce the following notation and terminology.

Definition 3.3. — Fix a point p ∈ spt(T) and define for all r > 0

ιp,r(q) := q− p

r
.

We denote by Tp,r the currents

Tp,r := (ιp,r)�T .
We call the current Tp,r the blow up at the point p and scale r of T. Let T0 be a current

such that there exists a sequence rk → 0 of radii such that Tp,rk →T0, we say that T0 is a tangent
cone to T at p.

We recall the following consequence of the Allard’s monotonicity formula, cf. [4].
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Theorem 3.4. — Let T be as in Assumption 2.4 or as in Theorem 0.2. Fix p ∈ spt(T) and

take any sequence rk ↓ 0. Up to subsequences Tp,rk is converging locally in the sense of currents to an

area-minimizing integral current T0

(a) T0 is a cone with vertex 0 and ‖T0‖(B1(0))= π�(T, p);
(b) if p ∈ spt (T) \ �, then ∂T0 = 0;

(c) if p ∈ �, then ∂T0 =Q �Tp��.

Moreover ‖Tp,rk‖ converges, in the sense of measures, to ‖T0‖.
We next show the following elementary fact:

Theorem 3.5. — Let T be as in Assumption 2.4 and p ∈ �. Any tangent cone T0 at p ∈ �
has then the following properties:

(a) spt(T0) is contained in W(Tp�,ν(p),ϑ) (where ν(p) and ϑ are the vector and the

constant given in Assumption 2.4);

(b) There are k1, . . . kN ∈N\{0} and 2-dimensional distinct oriented half-planes V1, . . . ,VN

with ∂ �Vi�= �Tp�� such that

(3.5) T0 =
∑

i

ki �Vi� .

Note in particular that 2�(T, p)=Q=∑
i ki , and thus 1≤N≤Q.

Conclusion (b) holds under the assumptions of Theorem 0.2 provided we choose p sufficiently close

to q.

The first part of the theorem is in fact at the same time a particular case of a more
general theorem of Allard in higher dimensions (under Assumption 2.3) and of a general
classification of all 2-dimensional area-minimizing cones with ∂T0 = Q ���, where � is
a straight line, given [17]. In particular since point (a) is obvious, point (b) is a direct
corollary of [17, Proposition 4.1] and of (a). As for the second part of the statement,
observe that, by [17, Proposition 4.1], 2�(T, p) is always an integer no smaller than
Q. Recalling that � � p �→ �(T, p) is upper semicontinuous, under the assumptions of
Theorem 0.2 we must necessarily have �(T,P) = Q

2 for every p sufficiently close to q.
Then conclusion (b) follows again from [17, Proposition 4.1]. Since it will be useful later,
we introduce a notation for the cones as in (3.5).

Definition 3.6. — Let � ⊂ R2+n be a 1-dimensional line passing through the origin and let

Q ∈N \ {0}. We denote by BQ(�) the set of area minimizing cones of the form T=∑N
i=1 ki �Vi�,

for any finite collection of distinct half-planes Vi such that ∂ �Vi� = ��� and any finite collection of

positive integers {ki}Ni=1 such that
∑N

i=1 ki =Q. Moreover we will call such cones open books.
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4. Uniqueness of tangent cones and first decomposition

In this section we appeal to [17, Theorem 1.1], which follows the ideas of Hirsch
and Marini in [21], in order to claim that the tangent cone to T at p ∈ � is unique.

Theorem 4.1. — Let T and � be as in Assumption 2.4. Then the tangent cone at each p ∈ �
is unique and from now on will be denoted by Tp,0. The same conclusion holds under the assumptions of

Theorem 0.2 provided q is sufficiently close to p.

In fact such a uniqueness theorem comes with a power-law decay (cf. [17, Theorem
2.1]), which in turn allows us to decompose the current at any point p ∈ � where the
tangent cone is not contained in a single half-plane. Before coming to its statement, we
introduce the following terminology.

Definition 4.2. — Let T and � be as in Assumption 2.4. If the tangent cone Tp,0 to T at

p ∈ � is of the form Q �V� for some 2-dimensional half-plane V, then p is called a flat boundary point.

Theorem 4.3 (Decomposition). — Let T and � be:

– either as in Assumption 2.4,

– or as in Theorem 0.2.

Assume that p ∈ � is not a flat boundary point and in the second case assume further that p is sufficiently

close to q. Then there is ρ > 0 with the following property. There are two positive integers Q1 and Q2

and two area-minimizing currents T1 and T2 in Bρ(p) such that:

(a) T1 +T2 =T Bρ(p) (thus Q1 +Q2 =Q ),

(b) ∂Ti Bρ(p)=Qi �� ∩Bρ(p)�,

(c) spt(T1)∩ spt(T2)= � ∩Bρ(p),

(d) at each point q′ ∈ Bρ(p) ∩ � the tangent cones to T1 and T2 have only the line Tq′� in

common, i.e., (T1)q′,0, (T2)q′,0 both are area-minimizing cones with boundary ∂(Ti)q′,0 =
Qi �Tq′�� sharing only the line Tq′� = spt((T1)q′,0)∩ spt((T2)q′,0).

At flat points we are not able to decompose the current further and in fact the final
byproduct of the regularity theory of this paper is that in a neighborhood of each flat
point, the current is supported in a single smooth minimal sheet. For the moment the
uniqueness of the tangent cones (and the corresponding decay from which we derive it)
allows us to draw the following conclusion.

Theorem 4.4. — Let T and � be as in Assumption 2.4 or as in Theorem 0.2. Assume that

p ∈ � is a flat boundary point, that Q �V� is the unique tangent cone of T at p, and, in the case of

Theorem 0.2 that p is sufficiently close to q. Let n(p) ∈V be the unit normal to � at p and define in a
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neighborhood of p

n(q)= n(p)− n(p) · τ(q)τ (q)
|n(p)− n(p) · τ(q)τ (q)|(4.1)

where τ is the unit tangent vector to � orienting it.

Then, for every θ > 0 there is a ρ > 0 such that

spt(T)∩Bρ(p) ⊂
⋂

q∈Bρ(p)∩�
(q+W(Tq�, n(q), θ)) .(4.2)

The previous two theorems allow us to reduce both Theorem 2.5 and Theorem
0.2 to the following simpler statement. We postpone the proof to Section 4.3.

Assumption 4.5. — Q≥ 1 is an arbitrary integer and ϑ a given positive real number smaller

than π

2 . � is a C3,α arc in B1(0) ⊂ R2+n with endpoints lying in ∂B1(0). T is a 2-dimensional

area-minimizing integral current in U such that (∂T) U=Q ���. 0 ∈ � is a flat point, Q �V� is

the unique tangent cone to T at 0 and we let n be as in (4.1). Moreover

spt(T)⊂
⋂

q∈B1(0)∩�
(q+W(Tq�, n(q),ϑ)) ,(4.3)

where ϑ is a small constant.

Theorem 4.6. — Let T and � be as in Assumption 4.5. Then there is a neighborhood U of 0
and a smooth minimal surface � in U with boundary � such that T U=Q ���.

Obviously the latter theorem implies as well Theorem 0.4.

4.1. Decay towards the cone. — We first state a more precise version of Theorem 4.1.
To that end we recall the flat norm F and the definition of spherical excess. Given an
integral 2-dimensional current S we set

F(S) := inf{M(P)+M(R) : S= ∂P+R, R ∈ I2, P ∈ I3} .
Moreover, for T as in Assumption 2.4 and p ∈ � we define the spherical excess e(p, r) at
the point p and with radius r by

e(p, r) := ‖T‖(Br(p))

π r2
−�(T, p)= ‖T‖(Br(p))

π r2
− Q

2
.(4.4)

We are now ready to state the main decay theorem. Its proof follows the ideas of
[21], but it is in fact a consequence of a more general result, which is proved separately
in our work [17], cf. [17, Theorem 2.1].
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Theorem 4.7. — Let T and � be as in Theorem 4.1. Then there are positive constants ε0, C
and α with the following property. If p ∈ � and e(p, r)≤ ε2

0 for some r ≤ dist(p, ∂B1), then:

(a) |e(p, ρ)| ≤C|e(p, r)| (ρ
r

)2α +Cρ2α for every ρ ≤ r,

(b) There is a unique tangent cone Tp,0 to T at p,

(c) The following estimates hold for every ρ ≤ r

(4.5) F(Tp,ρ B1,Tp,0 B1)≤C(r)|e(p, r)| 1
2
(
ρ

r

)α +Cρα,

(4.6) distH(spt(Tp,ρ)∩B1, spt(Tp,0)∩B1)≤C
(
ρ

r

)α
.

4.2. From Theorem 4.7 to Theorem 4.3. — We fix a point p as in the statement of
Theorem 4.3, we choose a radius r0 so that B2r0(p)⊂ B1(0) if we are under case (a). If we
are under case (b), i.e. under the assumptions of Theorem 0.2 we assume that q= 0, that
in B1(0) T is sufficiently close to its tangent cone, and that p ∈ B1(0), all conditions that
we can reach after applying a translation and a suitable homothety.

We fix thus ε0, α and C given by Theorem 4.7. Moreover, in order to simplify the
notation, we write Tp rather than Tp,0 for the unique tangent cone to T and p.

First of all we observe that

e(q, r0)= ‖T‖(Br0(q))

π r2
0

− Q
2
≤ ‖T‖(Br0+|p−q|(p))

π r2
0

− Q
2

=
(

r0 + |p− q|
r0

)2

e(p, r0 + |p− q|)+
((

r0 + |p− q|
r0

)2

− 1

)
Q
2

In particular, if r0 is chosen sufficiently small, we can assume that e(q, r0)≤ 5ε2
0 for every

point q ∈ � ∩Br0(p). The rest of the proof is divided into three steps.
In a first step we compare tangent cones between different points and prove

F(Tq B1,Tp B1)≤C|q− p|α ∀q ∈ Br0(p) .(4.7)

Next, since Tp is not flat by assumption and because of the classification of tangent cones,
we can find half-planes V and V1, . . .VN all distinct, such that

Tp =Q1 �V�+
∑

i

Q̄i �Vi� ,(4.8)

where Q1 < Q and Q2 :=Q−Q1 =∑
i Q̄i > 0. Let n be the unit vector in V which is

orthogonal to Tp�. We then infer the existence of a positive ϑ0 with the property that
⋃

i

Vi ⊂R2+n \W(Tp�, n,8ϑ0)=:Wc(Tp�, n,8ϑ0) .(4.9)
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For every point q ∈ � sufficiently close to p we project n onto the orthogonal complement
of Tq� and normalize it to a unit vector n(q). (4.7) will then be used to show the existence
of r > 0 such that

spt(Tq)⊂W(Tq�, n(q),2ϑ0)∪Wc(Tq�, n(q),7ϑ0) ∀q ∈ � ∩Br(p) .(4.10)

Hence we use (4.5) to show the existence of r̄ > 0 such that

spt(T)∩Br̄(q)⊂ (q+W(Tq�, n(q),3ϑ0))∪ (q+Wc(Tq�, n(q),6ϑ0)) .(4.11)

(4.11) allows us to define

T1 :=T

⎛

⎝Br̄(p)∩
⋂

q

(q+W(Tq�, n(q),3ϑ0))

⎞

⎠ ,(4.12)

T2 :=T

⎛

⎝Br̄(p)∩
⋂

q

(q+Wc(Tq�, n(q),6ϑ0))

⎞

⎠ ,(4.13)

and to show that T1 + T2 = T Br̄(p) and that each of the Ti is area-minimizing. The
final step is then to prove that

∂T1 Br̄(p)=Q1 �� ∩Br̄(p)� .(4.14)

Step 1. Proof of (4.7) In order to prove (4.7) set ρ0 := |p− q| and observe that, it
suffices to show the estimate

F(Tp B1,Tq,ρ B1)≤Cρα

for some ρ ∈ [ρ0,2ρ0], whose choice will be specified later. For v ∈ R2+n, denote by
τv the translation by the vector v. If we choose v := (q − p)/ρ it is easy to see that
Tq,ρ B1 = (τ−v)�(Tp,ρ B1(v)) and since the flat norm is invariant under translations,
we get

F(Tp B1,Tq,ρ B1)=F((τv)�(Tp B1(0)),Tp,ρ B1(v)) .

On the other hand, observe that Tp is invariant by translation along Tp� and that, if we
write v =w+ pTp�(v)=:w+ z, then |w| ≤Cρ. Hence we have

F(Tp B1,Tq,ρ B1)=F((τw)�(Tp B1(z)),Tp,ρ B1(v))

≤F((τw)�(Tp B1(z)),Tp B1(z))

+F(Tp B1(z),Tp B1(v))

+F(Tp B1(v),Tp,ρ B1(v)) .
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The first two summands can be easily estimated with Cρ. Indeed for the first term we
write

(τw)�(Tp B1(z))−Tp B1(z)= ∂((Tp B1(z))× �[0,w]�)=: ∂Z

and we estimate M(Z) ≤ C|w| ≤ Cρ, whereas for the second term we can estimate di-
rectly

M(Tp B1(z)−Tp B1(v))≤C|w| .
It remains to bound the third summand. To that end we employ the fact that we are
free to choose ρ ∈ [ρ0,2ρ0] appropriately. Note that the point v depends on ρ: we will
therefore write v(ρ) from now on and use v0 for v(ρ0), while we define σ := ρ

ρ0
. By a

simple rescaling argument we observe that, for all σ ∈ [1,2],
F(Tp B1(v(ρ)),Tp,ρ B1(v(ρ))≤CF(Tp Bσ (v0),Tp,ρ0 Bσ (v0)) .

We complete the bound on the third summand by showing that, if σ is chosen appropri-
ately, then

F(Tp Bσ (v0),Tp,ρ0 Bσ (v0))≤CF(Tp B3(0),Tp,ρ0 B3(0)) .(4.15)

Indeed, after showing the above inequality, using a simple scaling argument, we can fur-
ther estimate

F(Tp B3(0),Tp,ρ0 B3(0))≤CF(Tp B1(0),Tp,3ρ0 B1(0))

and take advantage of (4.5) to conclude.
In order to show (4.15), fix currents R and S such that (Tp − Tp,ρ0) B3(0) =

R+ ∂S with

M(R)+M(S)≤ 2F(Tp B3(0),Tp,ρ0 B3(0)) .

Let now d(x) := |x − v0| and for every σ use the slicing formula [22, Lemma 28.5] to
write

(Tp −Tp,ρ0) Bσ (v0)=R Bσ (v)+ ∂(S Bσ (v0))− 〈S, d, σ 〉 .
Since

∫ 2

1
M(〈S, d, σ 〉) dσ ≤M(S B2(v0))≤M(S) ,

it suffices to choose a σ for which M(〈S, d, σ 〉)≤ 2M(S).
We now show (4.10). Call V0 :=V and parametrize every Vi by

Vi = {av + bwi : a, b ∈R, b≥ 0}
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where v ∈Tp�,wi ⊥ v, |v| = 1= |wi| .
Observe that Tq carries the same structure as Tp and hence, we can write Tq =∑

j kj

�
Ṽj

�

with

Ṽj = {aṽ+ bw̃j : a, b ∈R, b≥ 0}
where ṽ ∈Tq�, w̃i ⊥ ṽ, |ṽ| = 1= |w̃i| .

Using (4.7), we deduce for small enough r > 0 and q ∈ Br(p), we can relabel the indices j

and partition them as J0 ∪ J1 ∪ · · · ∪ JN in such a way that:

(i)
∑

j∈J0
kj =Q1 and

∑
j∈Ji

kj = Q̄i for i ∈ {1, . . . ,N};
(ii) For every j ∈ Ji and for every i ∈ {0, . . . ,N} we have

inf
i
|w̃j −wi| ≤ θ0 .

In particular, for r > 0 small enough, we have

w̃j ∈W(Tq�, n(q),2ϑ0)∪Wc(Tq�, n(q),7ϑ0) ∀q ∈ � ∩Br(p) and ∀j .

Step 2. Proof of (4.11) The latter is a simple consequence of the estimates proved
in the previous two steps and of (4.6) and is left to the reader.

Step 3. Proof of (4.14) Observe that ∂T1 Br̄(p) is supported in �∩Br̄(p) and is a
flat chain without boundary in Br̄(p). By the Constancy Lemma of Federer [18, 4.1.7], it
follows that ∂T1 Br̄(p)=� �� ∩Br̄(p)� for some constant �. In particular T1 is integral
and thus � is an integer. Since it is area minimizing, it follows from our analysis that T1

has a unique tangent cone (T1)p at p and that π� equals twice the mass of (T1)p in B1(0).
On the other hand the latter cone is the restricion of Tp to W(Tp�, n(p),3ϑ0), which by
assumption is Q1 �V� for a fixed half-plane V with boundary Tp�. Thus �=Q1, which
completes the proof.

4.3. From Theorem 4.6 to Theorem 2.5. — In this subsection we show how to con-
clude Theorem 2.5 from Theorem 4.6 and Theorem 4.3. We argue by induction on Q.
We start observing that for Q = 1 there are no boundary singular points, as it can be
concluded by [4]. Assume therefore that Theorem 2.5 holds for all Q strictly smaller
than some fixed positive integer Q̄: our aim is to show that it holds for Q = Q̄. First of
all observe that Theorem 4.4 implies that, if a point p is a flat boundary point, then the
assumptions of Theorem 4.6 are satisfied in a sufficiently small neighborhood of it, and
hence p is a regular boundary point. Let thus F := {p ∈ � : p is a flat boundary point}. It
then suffices to show that Singb(T) \ F is empty, namely we need to show that for every
p ∈ � \ F there is a radius ρ such that Singb(T) ∩ Bρ(p) = ∅. Fix ρ as in Theorem 4.3
and let T1 and T2 satisfy the conclusion of that theorem. We claim that

Singb(T)∩Bρ(p) ⊂ Singb(T1)∪ Singb(T2) .(4.16)
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Since by the induction hypothesis each Singb(Ti) is empty, the latter claim would con-
clude the proof. In order to show (4.16), consider a point q which is a boundary regular
point for both T1 and T2: we aim to prove that q is a regular point for T as well. By the
very definition of boundary regular point, for each i there is a neighborhood Ui ⊂ Bρ(p)

of p, minimal surfaces �i
j , and integer coefficients ki

j such that:

– Ti Ui =∑
j ki

j

�
�i

j

�
;

– �i
j ∩�i

k ⊂ � for every j 	= k;
– the tangents of �i

j at every point q̄ ∈ � ∩U are all distinct.

Now, in U :=U1 ∩U2 we clearly have

T U=
2∑

i=1

∑

j

ki
j

�
�i

j ∩U
�
.

Note that, by Theorem 4.3(c)�1
j ∩�2

k ⊂ spt(T1)∩ spt(T2)⊂ � for every j 	= k. Moreover,
if q̄ ∈ � ∩ U, then (T1)q̄,0 =∑

j k1
j

�
Tq̄�

1
j

�
and (T2)q̄,0 =∑

k k2
k

�
Tq̄�

2
k

�
. We conclude

from Theorem 4.3(d) that for every j and k the half planes Tq̄�
1
j and Tq̄�

2
k are distinct,

i.e. intersect only in Tq̄�. This shows that q is then a boundary regular point of T.
An antirely analogous argument holds, mutatis mutandis, if we are under the as-

sumption of Theorem 0.2.

5. Multi-valued functions

The next step of our proof is a detailed study of the boundary behaviour of Dir-
minimizing multi-valued functions. In this section we consider maps u : Bρ(x) ∩ D →
AQ(Rn) where D ⊂ R2 is a planar domain such that ∂D is C2. We will be interested
in maps which take a preassigned value Q �f � at ∂D ∩ Bρ(x). Since by subtracting the
average η ◦ u we still get a Dir-minimizer, we can without loss of generality, assume that
f vanishes identically. We summarize the relevant assumptions in the following

Assumption 5.1. — D⊂ R2 is a C2 open set, U is a bounded open set and u ∈W1,2(D ∩
U,AQ(Rn)) a multivalued function such that u|∂D∩U ≡Q �0� and η ◦ u≡ 0. u is Dir minimizing

in the sense that, for every K⊂U compact and for every v ∈W1,2(D∩U,AQ(Rn)) which coincides

with u on (U \K)∩D and vanishes on ∂D∩U, we have

Dir (u)≤Dir (v) .

Observe that under our assumptions, we can apply the regularity theory of [7] and
[20] to conclude that u is Hölder continuous in K ∩ D for every compact set K ⊂ U.
More precisely we have the following
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Theorem 5.2. — There is a geometric constant α(Q) > 0 and a constant C which depends

only on Q and D such that, if u and D are as in Assumption 5.1, then

[u]0,α,Bρ(x)∩D ≤Cρ−α
(
Dir(u,B2ρ(x)∩D)

) 1
2

for every B2ρ(x)⊂U.

In the final blow-up in Section 18, we will prove that the limit of a suitable ap-
proximating sequence is a homogeneous Dir-minimizer. The following theorem will then
exclude the existence of singular boundary points. It is a consequence of the classification
of tangent functions (Theorem 5.9).

Theorem 5.3. — Assume D= {x2 > 0}, U= B1(0) and u :D∩U→AQ(Rn) is a Dir-

minimizing I-homogeneous map such that u|∂D =Q �0�. Either u is a single harmonic function with

multiplicity Q (i.e. u=Q �η ◦ u� ) or I= 1.

Observe that under the additional information that η ◦ u≡ 0, the first alternative
would imply that u vanishes identically.

In case that the approximating sequence consisted of Dir-minimizers (which it does
not in our case), we mention for completeness here the analouge definition of singular
boundary points for Dir-minimizers (i.e. points at the boundary where the order of “van-
ishing” of the Dir-minimizer is larger than 1) and prove its absence. Even though we will
not need Definition 5.4 nor Theorem 5.5 for our analysis, it illustrates the ideas of our
argument.

Definition 5.4. — Let D, u and U be as in Assumption 5.1. x ∈ ∂D will be called a contact

point if there is a positive δ > 0 such that

lim inf
ρ↓0

1
ρ2+δ

∫

Bρ(x)∩D
|Du|2 = 0 .(5.1)

In Section 5.3 we will show the following multi-valued counterpart of Theorem
4.6.

Theorem 5.5. — Let D, u and U be as in Assumption 5.1. If x ∈ ∂D is a contact point, then

u vanishes identically on the connected component of D∩U whose boundary contains x.

5.1. Monotonicity of the frequency function. — We introduce here the basic tool of our
analysis, the frequency function, pioneered by Almgren. The version of the Almgren’s
frequency function used here is an extension introduced for the first time in the literature
in [15] to deal with boundary regularity. One of the outcomes of our analysis is that
the limit of the frequency function exists at every boundary point x unless u vanishes
identically in a neighborhood of it.

We recall the definition of the frequency function as in [15, Definition 4.13].
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Definition 5.6. — Consider u ∈ W1,2
loc

(
D,AQ(Rn)

)
and fix any cut-off φ : [0,∞[→

[0,∞] which equals 1 in a neighborhood of 0, it is non increasing and equals 0 on [1,∞[. We

next fix a function d :R2 →R+ which is C2 on the punctured space R2\{0} and satisfies the following

properties:

(i) d(x)= |x| +O
(|x|2),

(ii) ∇d(x)= x

|x| +O(|x|),
(iii) D2d(x)= |x|−1

(
Id − |x|−2x⊗ x

)+O(1).

By [15, Lemma 4.25], we deduce the existence of such a d satisfying also that ∇d is tangent to ∂D.

We define the following quantities:

Dφ,d(u, r) :=
∫

D
φ

(
d(x)

r

)

|Du|2(x)dx,

Hφ,d(u, r) := −
∫

D
φ′

(
d(x)

r

)

|∇d(x)|2 |u(x)|
2

d(x)
dx.

The frequency function is then the ratio

Iφ,d(u, r) := rDφ,d(u, r)

Hφ,d(u, r)
.

This quantity is essentially monotone.

Theorem 5.7. — Let D, U and u be as in Assumption 5.1. Then there is a function d satisfying

the requirements of Definition 5.6 such that the following holds for every φ as in the same definition. Either

u≡Q �0� in a neighborhood of 0, or Dφ,d(u, r) is positive for every r (hence Iφ,d(u, r) is well defined)

and the limit

0< lim
r↓0

Iφ,d(u, r) <+∞

exists and it is a positive finite number. In fact, there is an r0 > 0 and C such that r �→ eCrIφ,d(u, r) is

monotone for all 0< r < r0.

We first recall the following identities (compare [15, Proposition 4.18]).

Proposition 5.8. — Let φ and d be as in Definition 5.6 and assume in addition that φ is

Lipschitz. Let �, D, U and u be as in Assumption 5.1. Then, for every 0< r < 1, we have

D′(r)=−
∫

D
φ′

( |d(x)|
r

) |d(x)|
r2
|Du|2dx,(5.2)

H′(r)=
(

1
r
+O(1)

)

H(r)+ 2E(r),(5.3)
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where

E(r) := −1
r

∫

D
φ′

(
d(x)

r

)∑

i

ui(x) · (Dui(x) · ∇d(x)) dx,(5.4)

and the constant O(1) appearing in (5.3) depends on the function d but not on φ.

Theorem 5.7 follows as in [15], as soon as we can show the validity of the above
identities. In turn the latter can be proved following also the computations in [15], pro-
vided we prove that both the outer variations gε(x) :=∑

i

�
ui(x)+ εϕ

(
d(x)

r

)
ui(x)

�
and the

inner variations u ◦ψt , with ψt being the flow of Y(x) := ϕ (
d(x)

r

)
d(x)∇d(x)

|∇d(x)|2 , are competitors
to our problem. This is however obvious. Clearly the outer variations are well defined
and preserve the condition that u|∂D∩U ≡ Q �0�. As for the inner variations note that,
since ∇d is tangent to ∂D, so is Y and thus its flow maps ∂D onto itself and D into itself.
This shows that the inner variations are well defined and provide admissible competitors
too.

5.2. Classification of tangent functions. — Following a common path which started
with Almgren’s monumental work (see [15], but also [7–10, 12–14, 16]) we use the
monotonocity of the frequency function to define tangent functions to u. Let D, u, U
and f be as in Assumption 5.1. Let x ∈ ∂D and denote by n(x) the interior unit normal
to ∂D. If we denote by V+ the half space {y : n(x) · y > 0}, the tangent functions to u at
x are multivalued functions defined on V+, which turn out to be locally Dir-minimizing
and in fact satisfy Assumption 5.1 with D=V+ for any bounded open set U.

The central result is the following theorem of which Theorem 5.3 is a direct corol-
lary.

Theorem 5.9. — Let D, U and u be as in Assumption 5.1. Let x ∈ ∂D and assume that, for

some ρ > 0, D∩ Bρ(x) is connected and u does not vanish identically on Bρ(x)∩D. Define

ux,ρ(y) :=
∑

i

�
ui(x+ ρy)

Dir(u,Bρ(x))
1
2

�

.

Then I0(x) := limr→0 I(u(· − x), r) = 1 and, for every sequence ρk ↓ 0, there is a subsequence

(not relabeled) such that ux,ρk
converges locally uniformly on V+ to a Dir-minimizer ux,0 =∑

i �vi�
satisfying the following properties:

(a) each vi :V+ →Rn is a linear function that vanishes at ∂V+;

(b) for every i 	= j , either vi ≡ vj , or vi(y) 	= vj(y) for every y ∈V+;

(c) Dir(ux,0,B1)= 1 and η ◦ ux,0 = 0.

Proof. — First of all we let I := I0(x). It follows from the same arguments of [15,
Lemma 4.28] that a subsequence, not relabeled, of ux,ρk

converges to a Dir-minimizer
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ux,0 =∑
i �vi� which has the property (c) and which is I-homogeneous. Up to a rotation

of the system of coordinates we can assume that V+ = {x1 > 0} (and hence ∂V+ is the x2-
axis). From now on we use polar coordinates on V+ and in particular we identify ∂B1∩V+

with (−π

2 ,
π

2 ). Let g =∑
i �gi� be the restriction of ux,0 on ∂B1 ∩V+. We can then use [7,

Proposition 1.2] to conclude the existence of Hölder maps g1, . . . , gQ : (−π,π)→ Rn

such that

g(θ)=
∑

i

�gi(θ)� .

In particular

ux,0(θ, r)=
∑

i

�
rIgi(θ)

�
,

and each ui(θ, r)= rIgi(θ) is an harmonic polynomial. In particular I must be an integer.
Since however ux.0 ≡Q �0� on {x1 = 0} and Dir(ux,0,B1) > 0, it must be a positive integer.

Observe that, if i 	= j and θ0 ∈ (−π

2 ,
π

2 ) is a point where gi(θ0)= gj(θ0), then gi and
gj must coincide in a neighborhood of θ0, otherwise the whole halfline {(r cos θ0, r sin θ0)}
consists of singularities of ux,0, contradicting [7, Theorem 0.11]. In particular by the
unique continuation principle for harmonic functions we have

(Alt)’ either ui(r, θ) 	= uj(r, θ) for every (r, θ) ∈]0,+∞[×(π2 , π2 ), or ui(r, θ) =
uj(r, θ) for every (r, θ) ∈]0,+∞[×(π2 , π2 ),

so

(Alt) either gi(θ) 	= gj(θ) for every θ ∈ (−π

2 ,
π

2 ), or gi(θ) = gj(θ) for every θ ∈
(−π

2 ,
π

2 ).

Next, using the classification of 2-dimensional harmonic polynomials, we know that there
are coefficients ai, bi ∈Rn such that

gi(θ)= ai cos(Iθ)+ bi sin(Iθ) .

If I were even, since gi(
π

2 ) = gi(−π

2 ) = 0, we conclude that ai = 0. But then all the gi ’s
would vanish at θ = 0 and (Alt) would imply that they all coincide everywhere. This
would however contradict (c). Likewise, if I were odd and larger than 1, then we would
have bi = 0 and all the gi ’s would vanish at θ = π

2I . We thus conclude that I is necessarily
equal to 1. This proves then (a), while (Alt) shows (b). �

5.3. Proof of Theorem 5.5. — Fix a point x ∈ ∂D and assume that u does not vanish
in any neighborhood of x. Then Theorem 5.9 implies that the frequency function I0(x)

is 1. Arguing as in [15, Corollary 4.27] we conclude however that, for every δ > 0, there
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is a radius ρ > 0 such that

D(r)
r2+δ ≥ (1− δ)

D(ρ)
ρ2+δ > 0 ∀r < ρ .

This shows that x cannot be a contact point.

6. First Lipschitz approximation

In this section we consider a neighborhood of a flat point and we introduce the
cylindrical excess E(T,Cr(p,V)) as in [15, Definition 5.1]. Then, under the assumption
that E(T,Cr(p,V)) is sufficiently small, we produce an efficient approximation of the
current with a multivalued graph. One important point is that the graph of such ap-
proximation, considered as an integral current, will also have boundary Q ���. From
now on, given a point p and a plane V through the origin, Br(p,V) will denote the
disk Br(p) ∩ (p + V), V⊥ the orthogonal complement of V and Cr(p,V) the cylinder
Br(p,V)+V⊥. We then denote by pV and p⊥V the orthogonal projections respectively on
V and its orthogonal complement.

Definition 6.1. — For a current T in a cylinder Cr(p,V) we define the cylindrical excess
E(T,Cr(p,V)) and the excess measure eT of a set F⊂ B4r(pV(p),V) as

E(T,Cr(p,V)) := 1
2π r2

∫

Cr(p,V)
| �T− �V|2 d‖T‖,

eT(F) := 1
2

∫

F+V⊥
| �T− �V|2 d‖T‖ .

The height in a set G⊂R2+n with respect to a plane V is defined as

h(T,G,V) := sup{|p⊥V(q− p)| : q, p ∈ spt(T)∩G} .(6.1)

If p and V are omitted, then we understand that V=R2×{0} and Cr =Cr(0,R2×
{0}).

Assumption 6.2. — Let � and T be as in Assumption 4.5. q is a fixed point, which without

loss of generality we assume to be the origin, r an arbitrary radius such that (∂T) C4r =Q ��� C4r

and

(i) q= (0,0) ∈ � and Tq� =R× {0} ⊂V0 =R2 × {0};
(ii) γ = p(�) divides B4r in two disjoint open sets D and B4r \D;

(iii) p#T C4r =Q �D�.



AN ALLARD-TYPE BOUNDARY REGULARITY THEOREM

FIG. 2. — An illustration of the maps describing the boundary

Observe that we can assume (iii) thanks to (4.3) and that it implies the identities

E(T,C4r)= 1
2π(4r)2

(‖T‖(C4r)−Q|D|) ,(6.2)

eT(F)= ‖T‖(F×Rn)−Q|D∩ F| .(6.3)

Following a classical terminology we define noncentered maximal functions for
Radon measures μ and (Lebesgue) integrable functions f :U→R+ by setting

mf (z) := sup
z∈Bs(y)⊂U

1
π s2

∫

Bs(y)

f ,

mμ(z) := sup
z∈Bs(y)⊂U

μ(Bs(y))

π s2
.

Remark 6.3. — Observe that by our assumptions there is an interval I ⊂ R con-
taining (−5r,5r) and function ψ : I→Rn+1 with the property that C5r ∩� = {(t,ψ(t)) :
t ∈ I}. Moreover ψ(0)= 0, ψ̇(0)= 0 and ‖ψ̈‖C0 ≤CA for a geometric constant C(n). In
particular |ψ(t)| ≤CAt2 and |ψ̇(t)| ≤CAt. Finally observe that, if we write ψ = (ψ1, ψ̄),
then ∂D = {(t,ψ1(t)) : t ∈ I} and � can be written as the graph of a function g on ∂D
defined by g(t,ψ1(t))= ψ̄(t). See Figure 2.

Proposition 6.4 (First Lipschitz approximation). — There are positive constants C and c0

(depending only on Q and n) with the following properties. Assume T satisfies Assumption 6.2,
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E := E(T,C4r) ≤ c0. Then, for any δ∗ ∈ (0,1), there are a closed set K ⊂ D ∩ B3r and a Q-

valued function u on D̄∩ B3r with the following properties:

u|∂D∩B3r
= Q �g�(6.4)

Lip(u)≤ C(δ
1
2∗ + rA)(6.5)

osc(u)≤ Ch(T,C4r)+CrE
1
2 +Cr2A(6.6)

K⊂ B3r ∩ {meT ≤ δ∗}(6.7)

Gu [K×Rn] = T [K×Rn](6.8)

|(D∩ Bs) \K| ≤ C
δ∗

eT

({meT > 4−1δ∗} ∩ Bs+r1r

)

+C
A2

δ∗
s2 ∀s ≤ 3r + r1r

(6.9)

‖T−Gu‖(C2r)

r2
≤ C
δ∗
(E+ A2r2)(6.10)

where r1 = c

√
E+A2r2

δ∗ and c is a geometric constant.

Proof. — Since the statement is invariant under dilations we assume w.l.o.g. that
r = 1. Consider the extension ĝ of the function g defined in Remark 6.3 which is simply
given by ĝ(x1, x2)= ψ̄(x1). In order to simplify our notation, we drop the hat symbol and
denote the extension by g as well. Consider next the current T̂ ∈ I2(C4) which consists of
T̂= T C4+QGg ((B4 \D)×Rn), where we use notation Gg for the integer rectifiable
current naturally associated to the graph of a function g : B4 → Rn. More formally, if
ḡ(x)= (x, g(x)), then

Gg ((B4 \D)×Rn)= ḡ�(�B4 \D�).(6.11)

In particular from (6.11) and the classical theory of currents we see that

(∂T̂) C4 =Q ��� C4 −Qḡ�(�∂D∩ B4�)

=Q ��� C4 −Q ��� C4 = 0 ,

(6.12)

p�T̂=Q �D�+Q �B4 \D�=Q �B4� .(6.13)

Moreover, we can use [9, Corollary 3.3] to estimate

‖T̂‖(C4)−Qπ42 = E(T,C4)+Q(‖Gg‖((B4 \D)×Rn)− |D|)

≤ E(T,C4)+Q
∫

B4\D
|Dg|2 ≤ E+CA2 .(6.14)
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Similarly, we can define for F⊂ B4

eT̂(F)= ‖T̂‖(F×Rn)−Q|F|
and the same considerations give

eT̂(F)≤ eT(F∩D)+CA2|F \D| .
Moreover, we can apply [8, Proposition 3.2] to T̂ to obtain a closed set K̂ ⊂ B3 and
û ∈ Lip

(
B3,AQ (Rn)

)
which satisfy all the estimates (6.5)-(6.10), with the only relevant

differences in (6.9), which becomes

|Bs \ K̂| ≤ C
δ∗

eT

({meT > 4−1δ∗} ∩ Bs+r1r(x)
)+C

A2

δ∗
s2(6.15)

for every s ≤ 3r .

In order to show (6.4), we define an “almost reflection” h on the boundary ∂D in the
following way:

h(x1, x2)= (x1,2ψ1(x1)− x2)

and set K := h(K̂)∩ K̂. We now take the map û, restrict it to K and then extend it again
to a Lipschitz map u with the additional property that (6.4) holds. In fact we first define
u :K∪ (∂D∩ B2)→AQ(Rn) as

u(y)=
{

Q �g(y)� , if y ∈ ∂D
û(y), else.

Note that in principle a point y could belong to both K and ∂D: in that case we are
ignoring the value given by û and force such value to be the one given by Q �g�. However
a byproduct of the next elementary argument is that in fact û(y) = Q �g(y)� for every
y ∈ ∂D.

We now wish to show that the bound on Lip(u) and osc(u) becomes worse only by
a geometric factor. In fact, since the oscillation of Q �g� is controlled by A, we just need
to focus on the Lipschitz bound. Consider p ∈ ∂D, q ∈K. W.l.o.g. q ∈D. By construction
of h, let σ be the vertical segment joining q and h(q) and let q̃ be the only intersection of
σ with ∂D. Thus

G(u(p), u(q))≤ G(u(q), u(h(q)))+ G(u(h(q)), u(p))
≤ G(u(q), u(h(q)))+CG(u(q̃), u(p))
≤ G(u(q), u(h(q)))+CQ|g(p)− g(q̃)|
≤ 2|q− p|Lip(û)+CQA|p− q|.
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Observe that we have used that on (K \D)×Rn, Gg and thus, T̂ and thus, u is constant
in the direction e2.

Now we can use the Lipschitz Extension Theorem [7, Theorem 1.7] to extend u

to the whole domain B2, while enlarging the Lipschitz constant and the oscillation by a
geometric factor. We then restrict u to D̄∩ B3.

So far our map satisfies (6.4), (6.5), and (6.6). However, (6.7) and (6.8) are obvious
because K⊂ K̂.

Next we show (6.9) holds with a slightly larger constant. First of all notice that,
provided A is sufficiently small, h is a diffeomorphism and that h−1(Bs)⊂ Bs+CAs2 , because
h(0)= 0 and ‖Dh− Id‖C(Bs) = ‖Dh−Dh(0)‖C(Bs) ≤CAs. In particular we can estimate

|(Bs ∩D) \K| ≤ |Bs \ K̂| + |Bs \ h(K̂)|
≤ |Bs \ K̂| +C|h−1(Bs) \ K̂| ≤C|h(Bs+CAs2 \ K̂)| .

Finally we conclude

‖T−Gu‖(C2)≤ ‖T−Gû‖((B2 ∩D)×Rn)

+ ‖Gu −Gû‖((B2 ∩D)×Rn).

For the first summand, we already have the desired estimate from [8, Proposition 3.2].
For the second we observe

‖Gu −Gû‖((B2 ∩D)×Rn)= ‖Gu −Gû‖((B2 \K)×Rn)≤C|B2 \K| ,
and we then use (6.9). This shows (6.10).

The proof would be complete, except that our approximation and estimates hold
on slightly smaller balls than claimed. It can however easily be checked that in [8, Propo-
sition 3.2], we just need to reduce slightly the size of the radius from 4 to a fixed smaller
one, while the argument is literally the same: the price to pay are just worse constants in
the estimates. �

7. Harmonic approximation

Definition 7.1 (Eβ-Lipschitz approximation). — Let β ∈ (0,1) and T be as in Proposition

6.4. After setting δ∗ = (E+ A2)2β , the corresponding map u given by the proposition will be called the

Eβ -Lipschitz approximation of T in C3r and will be denoted by f .

In this section we use the minimimizing assumption on T to show that the Eβ -
Lipschitz approximation is close to a Dir-minimizing function w. We first introduce some
notation.
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Assumption 7.2. — D⊂ R2 is a C2 open set, U is a bounded open set and u ∈W1,2(D ∩
U,AQ(Rn)) a multivalued function such that u|∂D∩U ≡ Q �g�, where g is as in Remark 6.3. u is

Dir-minimizing in the sense that, for every K⊂U compact and for every v ∈W1,2(D∩U,AQ(Rn))

which coincides with u on (U \K)∩D and v|∂D∩U ≡Q �g� we have

Dir (u)≤Dir (v) .

Theorem 7.3 (First harmonic approximation). — For every η > 0 and every β ∈ (0,1), there

exist a constant ε = ε(η,β) > 0 with the following property. Let T and � be as in Assumption 6.2

in C4r (in particular T is area minimizing in C4r ). If E= E(T,C4r)≤ ε and rA≤ εE
1
2 , then the

Eβ-Lipschitz approximation f in C3r satisfies
∫

B2r∩D\K
|Df |2 ≤ ηEπ(4r)2 = η eT(B4r).(7.1)

Moreover, there exists a Dir-minimizing function w such that w|∂D∩B2r
=Q �g� and

r−2

∫

B2r∩D
G(f ,w)2 +

∫

B2r∩D
G(Df ,Dw)2 ≤ ηEπ (4 r)2 = η eT(B4r) ,(7.2)

∫

B2r∩D
|D(η ◦ f )−D(η ◦w)|2 ≤ ηEπ(4r)2 = ηeT (B4r) .(7.3)

The following proposition provides a Taylor expansion of the mass of the current
associated to the graph of a Q-valued function. It is proven in [9, Corollary 3.3] (al-
though the corollary is stated for V open, the proof works obviously when V is merely
measurable).

Proposition 7.4. — (Taylor expansion of the mass, see [9, Corollary 3.3]). There are dimen-

sional constants c,C> 0 such that the following holds. Let V⊂R2 be a bounded measurable set and

let u : V→ AQ (Rn) be a Lipschitz function with Lip(u) ≤ c. Denote by Gu the integer rectifiable

current associated to the graph of u as in [9, Definition 1.10]. Then, the following Taylor expansion of

the mass of Gu holds:

M (Gu)=Q|V| +
∫

V

|Du|2
2

+
∫

V

∑

i

R (Dui) ,

where R : Rn×2 → R is a C1 function satisfying |R(D)| = |D|3L(D) for some positive function L
such that L(0)= 0 and Lip(L)≤C.

Remark 7.5. — We write here the analog of ([8, Remark 5.5]). There exists a di-
mensional constant c> 0 such that, if E≤ c, then the Eβ -Lipschitz approximation satisfies
the following estimates:

Lip(f )≤C(E+CA2)β,(7.4)
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∫

B3s(x)∩D
|Df |2 (6.9)≤ C(E+ A2)s2.(7.5)

Indeed (7.4) follows from Proposition 6.4, by the choice of β and the scaling of A. While
(7.5) follows from Proposition 7.4 since for E sufficiently small

∫

B3s(x)∩D

∑

i

R
(
Dfi

)≤CE2β

∫

B3s(x)∩D
|Df |2 < 1

4

∫

B3s(x)∩D
|Df |2,

and therefore
∫

B3s(x)∩D
|Df |2 ≤C

(
M

(
Gf C3s(x)∩ (D×Rn

)−Q|D|)

≤C
(
M (T C3s(x))−Q|D|)

+CM
(
Gf (B3s(x)∩D \K)×Rn

)

≤CEs2 +C(E+ A2)2β |B3s(x)∩D \K| ≤C(E+ A2)s2.

Proof of Theorem 7.3. By rescaling, it is not restrictive to assume that r = 1. The
proof of (7.1) is by contradiction. Assume there exist a constant c1 > 0, a sequence of cur-
rents (Tk)k∈N satisfying Assumption 6.2 and corresponding Eβ

k -Lipschitz approximations(
fk
)

k∈N
which violate (7.1) for η = c1 > 0. At the same time ∂T C4(0)=Q ��k�, where

�k is a sequence of C2 curves. For the latter we have T0�k =R× {0} and a parametriza-
tion ψ k :R→Rn+1 of the form

ψ k(t)= (ψ k
1(t), ψ̄

k(t)) .

Moreover we assume ‖ψ k‖C2 ≤CAk ≤CεkE
1
2
k . The domain of definition of the map fk is

a set Dk which can be explicitly written as

Dk = {(x1, x2) ∈ B3 : x2 >ψ k
1(x1)} .

Summarizing, our currents satisfy the following:

E (Tk,C4)≤ εk → 0, Ak ≤ εkE
1
2
k and

∫

Dk\Kk

∣
∣Dfk

∣
∣2 ≥ c1Ek(7.6)

where Kk :=
{

x ∈ B3 :meTk
(x) < E2β

k

}
. Set �k :=

{
x ∈Dk :meTk

(x)≤ 2−2E2β
k

}
and ob-

serve that �k ∩ B3 ⊂Kk . From Proposition 6.4 it follows that

Lip
(
fk
)≤CEβ

k(7.7)

|Br ∩Dk \Kk| ≤CE−2β
k eTk

(
Br+r0(k) \�k

)+Cε2
k E2(1−β)

k for every r ≤ 3(7.8)
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where r0(k)= 16E(1−2β)/2
k < 1

2 . Then, (7.6), (7.7), and (7.8) give

c1Ek ≤
∫

B2∩Dk\Kk

∣
∣Dfk

∣
∣2 ≤CeTk

(Bs \�k)+Cε2
k E2

k for every s ∈
[

5
2
,3

]

.(7.9)

Setting c2 := c1/(2C), we have

2c2Ek ≤ eTk
(Bs ∩Dk \�k)= eTk

(Bs ∩Dk)− eTk
(Bs ∩�k) ,

implying

eTk
(�k ∩ Bs)≤ eTk

(Dk ∩ Bs)− 2c2Ek .(7.10)

Next observe that 2π42Ek = eTk
(B4 ∩Dk)≥ eTk

(Bs ∩Dk). Therefore, by the Taylor ex-
pansion in [8, Remark 5.4], (7.10) and the fact that Ek ↓ 0, it follows that for every
s ∈ [5/2,3] and k large enough so that CE2βk ≤ c2, we have

∫

�k∩Bs

∣
∣Dfk

∣
∣2

2

Taylor≤
(

1+CE2β
k

)
eTk

(�k ∩ Bs)(7.11)

(7.10)≤
(

1+CE2β
k

)(
eTk

(Bs ∩Dk)− 2c2Ek

)

≤ eTk
(Bs ∩Dk)− c2Ek .

Our aim is to show that (7.11) contradicts the minimality of Tk . To construct a
competitor, we write fk(x) =∑

i�f i
k (x)� ∈ AQ (Rn). We consider hk := E−1/2

k fk . Observe

that hk|∂Dk
=Q�E−1/2

k ψ̄ k� and that in turn ‖ψ̄ k‖C2 ≤ CεkE
1
2
k . In particular E−1/2

k ψ̄ k con-
verges strongly to 0 in C2. Extend ψ̄ k to B3 ∩Dk by keeping it constant in the variable x2.
Thus G(hk,Q�E−1/2

k ψ̄ k�) is a classical W1,2 function that vanishes on ∂Dk . Since by [8,
Remark 5.5(5.5)] we have supk Dir (hk,B3 ∩D) <∞, the Poincaré inequality gives

‖G(hk,Q�E−1/2
k ψ̄ k�)‖L2(Dk∩B3) ≤C ,

which in turn implies ‖G(hk,Q �0�)‖L2(Dk∩B3) ≤ C. Hence {hk} is bounded in W1,2. Even
though the domains of the hk depend on k, we can extend the maps identically equal to
Q{ψ̄ k} on their complement, and thus treat them as maps on B3. Up to a subsequence,
not relabeled, we can thus assume that the maps converge to some h ∈W1,2. Observe that
h vanishes identically on the lower half disk B−3 := {(x1, x2) ∈ B3 : x2 < 0} and thus we will
also consider it as a map defined on the upper half disk B+3 , taking the value Q �0� on the
x1-axis.

Since

‖G (hk, h)‖L2(B3)
→ 0(7.12)
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and the following inequalities hold for every open �′ ⊂ B3 and any sequence of measur-
able sets Jk with

∣
∣Jk

∣
∣→ 0,

lim inf
k→+∞

(∫

�′\Jk

|Dhk|2 −
∫

�′
|Dh|2

)

≥ 0,(7.13)

lim sup
k→+∞

∫

�

(|Dhk| − |Dh|)2 ≤ lim sup
k→+∞

∫

�

(|Dhk|2 − |Dh|2) .(7.14)

Applying the first inequality with Jk being the complement of �k we reach the following
inequality

1
2

∫

B+s
|Dh|2 ≤ lim inf

k→∞
E−1

k eTk
(Bs ∩Dk)− c2 for every s < 3.(7.15)

Now we wish to find a radius r ∈ [ 5
2 ,3] and a competitor function Hk such that

– Hk|(B3\Br)∩Dk
= hk|(B3\Br)∩Dk

;
– Hk|∂Dk∩B3

= hk|∂Dk∩B3
;

– The following estimates hold for a subsequence (not relabeled)

(7.16) lim
k→∞

Dir (Hk,Br)≤Dir (h,Br)+ c2

4
,

(7.17) Lip (Hk)≤C∗Eβ−1/2
k ,

(7.18) ‖G(Hk, hk)‖L2(B+r ) ≤CDir(hk,B+r )+CDir(Hk,B+r )≤M<+∞,

where C∗ is a constant independent of k.

After proving that such a function exists, we can then follow the proof of [8, Theorem
5.2] mutatis mutandis.

In order to show our claim we will use (7.12), the Lipschitz bound Lip(hk) ≤
CEβ−1/2

k , the bound supk Dir(hk,B3)≤C, and (7.15). Note next that, since ‖ψ̄ k/E1/2‖C2 ↓
0, all these facts remain true if we replace hk with the map

h̄k(x) :=
∑

i

�
(hk)i − ψ̄ k

�
.

The advantage of the latter is that h̄k|∂Dk
=Q �0�. Assuming that we find corresponding

maps H̄k satisfying all the properties above, we can then simply get Hk by adding back
ψ̄ k :

Hk(x)=
∑

i

�
(H̄k)i + ψ̄ k

�
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(because the difference in the Dirichlet energies of Hk and H̄k and the difference in the
Lipschitz constants are both infinitesimal).

The next issue is that the domains Dk ∩ Bs are curved compared to B+s . To re-
solve this, we invoke Lemma 7.6 below. For each k we apply the lemma to ψ k

1 and get a
corresponding diffeomorphism �k which maps each Bs ∩Dk diffeomorphically onto B+s .
Observe that

lim
k→∞

(‖�k − Id‖C1 + ‖�−1
k − Id‖C1

)= 0(7.19)

because ‖ψ k
1‖C1 → 0. For this reason the maps h̃k := h̄k ◦�−1

k satisfy the same assumptions
as h̄k (and hence as hk ). Indeed, after having built the corresponding competitors H̃k ,
we can then define H̄k := H̃k ◦ �k . Again the desired conclusion follows because the
difference of the Lipschitz constants and Dirichlet energies are infinitesimal.

Summarizing, we have reduced the proof of the proposition to showing that the
competitor Hk can be constructed, without loss of generality, under the additional as-
sumptions that all hk ’s are defined on the same domain B+3 and that they all vanish on
{(x1, x2) ∈ B+3 : x2 = 0}. This is accomplished in Proposition 7.7 below. Now that we have
illustrated how to construct suitable competitors we can proceed with the proof of the
theorem. We restart observing that, when k is large enough, (7.13) implies the following
inequalities

Dir (h,Br)≤Dir (hk,Br ∩ �k)+ c2

4

(5.11)≤ eTk
(Br)

Ek

− 3c2

4
Ek .(7.20)

Note that (7.17) follows from (7.27) as Eβ−1/2
k ↑ ∞. Thus C∗ depends on c2 and on the

choice of the two sequences, but not on k. From now on, although this and similar con-
stants are not dimensional, we will keep denoting them by C, with the understanding that
they do not depend on k. Note that, from (7.7) and (7.8), one gets

∥
∥Tk −Gfk

∥
∥ (C3)≤ ‖Tk‖ ((B3 \Kk)×Rn)+ ∥

∥Gfk

∥
∥ ((B3 \Kk)×Rn)

≤Q |B3 \Kk| + Ek +Q |B3 \Kk| +C |B3 \Kk|Lip
(
fk
)

≤ Ek +CE1−2β
k ≤CE1−2β

k .

Let (z, y) denote the coordinates on R2 ×Rn and consider the function ϕ(z, y)= |z| and
the slice

〈
Tk −Gfk , ϕ, r

〉
. Observe that, by the coarea formula and Fatou’s lemma,

∫ 3

r

lim inf
k

E2β−1
k M

(〈
Tk −Gfk , ϕ, s

〉)
ds ≤ lim inf

k
E2β−1

k

∥
∥Tk −Gfk

∥
∥ (C3)

≤C.

Therefore, for some r̄ ∈ (r,3), up to subsequences (not relabeled) M
(〈

Tk −Gfk , ϕ, r̄
〉) ≤

CE1−2β
k . Let now vk := E1/2

k Hk|Br̄
and consider the current Zk :=Gvk

Cr̄ . Since (vk)|∂Br̄
=
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fk
∣
∣
∂Br̄

, one gets ∂Zk =
〈
Gfk , ϕ, r̄

〉
and hence, M (∂ (Tk Cr̄ −Zk))≤CE1−2β

k . We define

Sk =Tk (C4 \Cr̄)+ Zk +Rk ,(7.21)

where (cp. [8, Remark 5.3]) Rk is an integral current such that

∂Rk = ∂ (Tk Cr̄ − Zk) and M (Rk)≤CE(1−2β)2
k .

In particular, we have ∂Sk = ∂ (Tk C4). We now show that, since β < 1
4 , for k large

enough, the mass of Sk is strictly smaller than the one of Tk . To this aim we write

Dir (vk,Br̄)−Dir
(
fk,Br̄ ∩�k

)=
∫

Br̄

|Dvk|2 −
∫

Br̄∩�k

∣
∣Dfk

∣
∣2 =: I1 .

The first term is estimated by (7.16) and (7.13). Indeed, recall that vk = E1/2
k Hk and fk =

E1/2
k hk (but also that the two functions coincide on Br̄ \Br ). We thus deduce that I1 ≤ c2

2 Ek

for k large enough. Hence,

M (Sk)−M (Tk)(7.22)

≤M (Zk)+CM (Rk)−M (Tk Cr̄)

≤Q |Br̄| +
∫

Br̄

|Dvk|2
2

+CE1+2β
k +CE(1−2β)2

k −Q |Br̄| − eTk
(Br̄)

≤
∫

Br̄∩�k

∣
∣Dfk

∣
∣2

2
+ 1

2
c2Ek +CE1+2β

k +CE(1−2β)2
k − eTk

(Br̄)

(7.11)≤ − c2Ek

2
+CE1+β

k +CE(1−2β)2
k < 0,

as soon as Ek is small enough, i.e., k large enough. This gives the desired contradiction
and proves (7.1).

Now, we come to the proof of (7.2) and (7.3). To this aim, we argue again by
contradiction using similar constructions of competitors. Without loss of generality, we
assume x= 0 and s= 1. Suppose (Tk)k is a sequence with Ek := E (Tk,C4) satisfying

E (Tk,C4)≤ εk → 0, Ak ≤ εkE
1
2
k ,(7.23)

but contradicting (7.2) or (7.3). Let us denote by fk the Eβ

k -Lipschitz approximation of Tk .
We know that, for any sequence of Dir-minimizing functions ūk which we might choose,
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we will have by the contradiction assumption that

lim inf
k

E−1
k

∫

B2

(
G
(
fk, ūk

)2 + (∣
∣Dfk

∣
∣− |Dūk|

)2 + ∣
∣D

(
η ◦ fk − η ◦ ūk

)∣
∣2
)

︸ ︷︷ ︸
=:I(k)

> 0.

(7.24)

As in the previous argument, we introduce the auxiliary normalized functions hk = E−1/2
k fk

and, after extraction of a subsequence, the function h satisfies (7.13) and (7.14). Moreover
‖G (hk, h)‖L2(B3)

→ 0. We next claim (and prove)

(i) limk

∫
B2
|Dhk|2 =

∫
B2
|Dh|2,

(ii) h is Dir-minimizing in B2.

Indeed, if (i) were false, then there is a positive constant c2 such that, for any
r ∈ [5/2,3],

∫

Br

|Dh|2
2

≤
∫

Br

|Dhk|2
2

− c2 ≤ eTk
(Br)

Ek

− c2

2
,(7.25)

provided k is large enough (where the last inequality is again an effect of the Taylor ex-
pansion of [8, Remark 5.4]). We next define the competitor currents Sk as in the argument
leading to (7.22). Replacing in the argument above (7.11) and (7.20) by (7.25), we deduce
again (7.22). On the other hand (7.22) contradicts the minimality of Tk . So we conclude
that (i) is true.

If (ii) were false, then h is not Dir-minimizing in B2. Thus, we can find a competitor
h̃ ∈ W1,2(B3,AQ(Rn)) with less energy in the ball B2 than h and such that h̃ = h on
B3 \ B5/2. So for any r ∈ [5/2,3], the function h̃ satisfies

∫

Br

∣
∣Dh̃

∣
∣2

2
≤

∫

Br

|Dh|2
2

− c2 = lim
k→∞

∫

Br

|Dhk|2
2

− c2 ≤ eT (Br)

Ek

− c2

2
,(7.26)

provided k is large enough (here c2 > 0 is some constant independent of r and k). On the

other hand, h̃= h on B3 \B5/2 and therefore
∥
∥
∥G

(
h̃, hk

)∥
∥
∥

L2
(
B3\B5/2

)→ 0. We then construct

the competitor current Sk of (7.21). This time however, we use the map h̃ in place of h

to construct Hk via Proposition 7.7 and we reach the contradiction (7.22) using (7.26)
in place of (7.11) and (7.20). We next set ūk := E1/2

k h and we will show that I(k)→ 0,
violating (7.24). Observe first that as ‖G (hk, h)‖L2 → 0, we have D (ξ ◦ hk)−D (ξ ◦ h)→
0 weakly in L2 (recall the definition of ξ = ξBW in [8, Section 2.5]). So, (i) and the identities
|D (ξ ◦ hk)| = |Dhk|, |D (ξ ◦ h)| = |Dh| imply that D (ξ ◦ hk)−D (ξ ◦ h) converges strongly
to 0 in L2. If we next set ĥ=∑

i�hi − η ◦ h� and ĥk =∑
i�hi

k − η ◦ hk�, we obviously have
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∥
∥
∥G

(
ĥ, ĥk

)∥
∥
∥

L2
+ ‖η ◦ h− η ◦ hk‖L2 → 0. Recall however that the Dirichlet energy enjoys

the splitting

Dir (hk)=Q
∫

|D (η ◦ hk)|2 +Dir(ĥk),

Dir (h)=Q
∫

|D (η ◦ h)|2 +Dir(ĥ).

So (i) implies that the Dirichlet energy of η◦ hk and ĥk converge, respectively, to the one of
η ◦ h and ĥ (which, we recall again, are independent of k because the hk ’s are translating
sheets). We thus infer that D (η ◦ h)−D (η ◦ hk) converges to 0 strongly in L2. Coming
back to ūk we observe that ūk is Dir-minimizing and

E−1
k

∫

B2

G
(
ūk, fk

)2 =
∫

B2

G (h, hk)
2 → 0.

So,

lim sup
k

I(k)≤ lim sup
k

∫

B2

(|Dhk| − |Dh|)2 + |D (η ◦ hk − η ◦ h)|2 .

Thus I(k)→ 0, which contradicts (7.24). �

7.1. Technical lemmas.

Lemma 7.6. — There is a positive geometric constant c > 0 with the following property. Con-

sider a C1 function ψ1 : [0,4]→R such that ψ1(0)= ψ ′1(0)= 0 and ‖ψ1‖C1 ≤ c. Then there is

a map � : B4 → B4 such that

– � maps Bs diffeomorphically onto itself for every s ∈ (0,4];
– if we set D := {(x1, x2) : |x1| ≤ 4, x2 > ψ1(x1)} then � maps D ∩ Bs diffeomorphically

onto B+s for every s ∈ (0,4];
– ‖�−1 − Id‖C1 + ‖�− Id‖C1 ≤C‖ψ1‖C1 .

Proof. — We use polar coordinates (θ, r) and let the angle θ vary from −π

2 (in-
cluded) to 3π

2 (excluded). It is in fact easier to define the map �−1. If c is sufficiently small,
each circle ∂Bs intersects the graph of ψ1 in exactly two points, given in polar coordinates
by (θr(s), s) and (θl(s), s), with θl(s) > θr(s). Furthermore, again assuming c is sufficiently
small, |θr(s)| ≤ π

4 and |θl(s)− π | ≤ π

4 . In polar coordinates the map �−1 is then defined
on B+4 by the formula

�−1(θ, s)=
(
θr(s)(π − θ)+ θl(s)θ

π
, s

)

.
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The verification that ‖�−1 − Id‖C1 ≤C‖ψ1‖C1 is left to the reader.
We then need to extend the map to the lower half disk keeping the same estimate.

This could be reached for instance by the formula

�−1(θ, s)=
(

2π − (θl − θr)

π
θ ea(θ−π)(θ−2π) + 2θl − θr, s

)

for π < θ < 2π ,

where a= a(s) := π−2(1− θl (s)−θr(s)

2π−(θl (s)−θr(s))
). �

In the next proposition we want to “patch” functions defined on the upper half disk
B+s which vanish on the x1-axis. For convenience we introduce the notation Hs horizontal
boundary for Hs = {(x1,0) : |x1|< s}.

Proposition 7.7. — Consider two radii 1 ≤ r0 < r1 < 4 and maps hk, h ∈ W1,2(B+r1 ,
AQ(Rn)) satisfying

sup
k

Dir(hk,B+r1) <+∞ and ‖G(hk, h)‖L2(B+r1\Br0 )
→ 0

and hk|Hr1
= h|Hr1

=Q �0�. Then for every η > 0, there exist r ∈]r0, r1[, a subsequence of {hk}k (not

relabeled) and functions Hk ∈W1,2(B+r1 ,AQ(Rn)) such that:

– Hk|B+r1\B+r = hk|B+r1\B+r ;

– Hk|Hs
=Q �0� and

– Dir(Hk,B+r1)≤Dir(h,B+r1)+ η.

Moreover, there is a dimensional constant C and a constant C∗ (depending on η and the two sequences,

but not on k) such that

(7.27) Lip(Hk)≤C∗ (Lip(hk)+ 1) ,

(7.28) ‖G(Hk, hk)‖L2(B+r ) ≤CDir(hk,B+r )+CDir(Hk,B+r ) ,

(7.29) ‖η ◦Hk‖L1(B+r1 ) ≤C∗ ‖η ◦ hk‖L1(B+r1 ) +C‖η ◦ h‖L1(B+r1 ) .

Before coming to the proof of the proposition we state the following variant of the
Lipschitz approximation in [8, Lemma 4.5]. Observe that the only difference is that our
functions are defined on the upper half disks and vanish on the horizontal boundary. We
need the Lipschitz approximation fε to satisfy the same requirement.

Lemma 7.8 (Lusin type Lipschitz approximation). — Let f ∈W1,2(B+r ,AQ) be such that

f |Hr
=Q �0�. Then for every ε > 0 there exists fε ∈ Lip(B+r ,AQ) satisfying fε|Hr

=Q �0� and

∫

B+r
G(f , fε)2 +

∫

B+r

(|Df | − |Dfε|
)2 +

∫

B+r

(|D(η ◦ f )| − |D(η ◦ fε)|
)2 ≤ ε .(7.30)
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If in addition f |∂B+r \Hr
∈W1,2(∂Br,AQ), then fε can be chosen to satisfy also

∫

∂B+r \Hr

G(f , fε)2 +
∫

∂B+r \Hr

(|Df | − |Dfε|
)2 ≤ ε.(7.31)

Now we need the following interpolation lemma.

Lemma 7.9 (Interpolation). — There exists a constant C0 = C0(n,Q) > 0 with the

following property. Assume r ∈]1,3 [
, f ∈W1,2

(
Br,AQ

)
satisfies f |Hr

= Q �0� and f
∣
∣
∂Br
∈

W1,2
(
∂Br,AQ

)
, and g ∈ W1,2

(
∂B+r ,AQ

)
is such that g|Hr∩∂B+r = Q �0�. Then, for every

ε ∈] 0, r[, there exists a function hε ∈W1,2
(
Br,AQ

)
such that hε|∂Br

= g, hε|Hr
=Q �0� and

(7.32)
∫

B+r
|Dhε|2 ≤

∫

B+r
|Df |2 + ε

∫

∂B+r

(∣
∣Dτ f

∣
∣2 + ∣

∣Dτ g
∣
∣2
)
+ C0

ε

∫

∂B+r
G(f , g)2 ,

(7.33) Lip(hε)≤C0

{

Lip(f )+ Lip(g)+ ε−1 sup
∂B+r

G(f , g)
}

,

(7.34)
∫

B+r
|η ◦ hε| ≤C0

∫

∂B+r
|η ◦ g| +C0

∫

B+r
|η ◦ f | ,

where Dτ denotes the tangential derivative.

Proof. — The proof is the same as in [8, Lemma 4.6], because the map constructed
there by the linear interpolation on the annulus and taking f in the interior disk vanishes
on Hr1 . �

Proof of Lemma 7.8. — We can apply directly [15, Lemma 5.5] to obtain a Lipschitz
function f̃ε satisfying (f̃ε)|Hr

=Q �0� and (7.30). �

Proof of Proposition 7.7. — The proof goes along the same lines as the proof of [8,
Proposition 4.4] using Lemmas 7.8 and 7.9 instead of [8, Lemma 4.5, Lemma 4.6],
taking into account that the situation here is simpler because we do not have translating
sheets. For the sake of completeness we report here the details. Set for simplicity Ak :=
‖G (hk, h)‖L2

(
B+r1\B+r0

) and Bk := ‖η ◦ hk‖L1
(
B+r1

). If for any k large enough Ak ≡ 0, then there
is nothing to prove and so we can assume that, for a subsequence (not relabeled) Ak > 0.
In case that for yet another subsequence (not relabeled) Bk > 0, we consider the function

ψk(r) :=
∫

∂Br

(|Dhk|2 + |Dh|2)+A−2
k

∫

∂Br

G (hk, h)
2 + B−1

k

∫

∂Br

|η ◦ hk| .(7.35)

By assumption lim infk

∫ r1

r0
ψk(r)dr <∞. Hence by Fatou’s Lemma, there is an r ∈] r0, r1[

and a subsequence (not relabeled) such that limk ψk(r) <∞. Thus, for some M > 0 we
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have
∫

∂B+r
G (hk, h)

2 → 0 ,(7.36)

Dir
(
h, ∂B+r

)+Dir
(
hk, ∂B+r

)≤M ,(7.37)
∫

∂B+r
|η ◦ hk| ≤M‖η ◦ hk‖L1

(
Br1

) .(7.38)

In case Bk = 0 for all k large enough, we define ψk by dropping the last summand in
(7.35) and reach the same conclusion. We apply Lemma 7.8 with f = h, r = r1 and find
a Lipschitz function hε̄1 satisfying the conclusion of the lemma with ε̄1 = ε̄1(η,M) > 0
(which will be chosen later). In particular we have

∥
∥G

(
hk, hε̄1

)∥
∥

L2(B+r1\B+r0 )
≤ ‖G (hk, h)‖L2(B+r1\B+r0 ) +

∥
∥G

(
h, hε̄1

)∥
∥

L2(B+r1\B+r0 )

≤ o(1)+ ε̄1 ,

Dir
(
hε̄1, ∂B+r

)≤Dir
(
h, ∂B+r

)≤M+ ε̄1 .

To obtain also the estimate (7.29), which will be required in the construction of the center
manifold, we argue along the same lines of [8, Proposition 4.4]. For hε̄1 =

∑Q
i=1 �(hε̄1)i�

we set h̄ε̄1 :=
∑Q

i=1 �(hε̄1)i − η ◦ hε̄1 + (η ◦ h) ∗ ϕρ�, where ϕρ(x) := 1
ρnϕ(

x

ρ
), and ϕ(x) =

ϕ̄(x− z0) with ϕ̄ being the standard bump function with support in B1(0), z0 := (0,−2)
and ρ will be chosen small enough later. Observe that spt(ϕρ)= Bρ(ρz0)⊆ B−r for every
ρ small enough and spt(ϕ)= B1(z0). The reason to introduce this convolution kernel ϕρ
with support contained in B−r is that we need to preserve the zero boundary condition on
Hr . Indeed, we claim that such an h̄ε̄1 satisfies (h̄ε̄1)|Hr

=Q �0� in addition to all the other
conclusion of the proposition. The fact that (h̄ε)|Hr

=Q �0� is a simple consequence of
the definitions and we leave it to the reader. Observe that the standard approximation
properties of mollifiers reinterpreted suitably extends to this new kind of kernel. In par-
ticular, we can choose ρ small enough to have

Q2‖η ◦ h− (η ◦ h) ∗ ϕρ‖2
L2 ≤ ε̄1 ,(7.39)

‖D(η ◦ h)−D((η ◦ h) ∗ ϕρ)‖2
L2 ≤ ε̄1 ,(7.40)

for some small ε̄1. These last two inequalities combined with (7.36), (7.37), (7.38) imply

–
∥
∥G

(
hk, h̄ε̄1

)∥
∥

L2

(7.39)≤ ‖G (hk, h)‖L2 + 2
∥
∥G

(
h, h̄ε̄1

)∥
∥

L2 + ε̄1 ≤ o(1)+ 3ε̄1 ,
– Dir

(
h̄ε̄1, ∂Br

)≤ 2M+ 2ε̄1 ,
– Dir

(
h̄ε̄1,Br

)

=
∑

i

∫

Br

∣
∣D

(
h̄ε̄1

)
i
−D

(
η ◦ h̄ε̄1

)+D
(
(η ◦ h) ∗ ϕρ̄

)∣
∣2
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=
∫

Br

(∣
∣Dh̄ε̄1

∣
∣2 −Q

∣
∣D

(
η ◦ h̄ε̄1

)∣
∣2 +Q

∣
∣D

(
(η ◦ h) ∗ ϕρ̄

)∣
∣2
)

=Q
∫

Br

(
|D (η ◦ h)|2 − ∣

∣D
(
η ◦ h̄ε̄1

)∣
∣2 + ∣

∣D
(
η ◦ h ∗ ϕρ̄

)∣
∣2 − |D (η ◦ h)|2

)

+Dir
(
h̄ε̄1,Br

)

≤Dir
(
hε̄1,Br

)+ 2Qε̄1 ,

where we used (7.30), (7.40) in the last inequality. We can then apply the interpolation
Lemma 7.9 with f = h̄ε̄1 and g = hk |∂B+r , and ε = ε̄2 = ε̄2(η,M) > 0 to get maps Hk

satisfying Hk|∂B+r = hk|∂B+r , Hk|B+r1\B+r = hk|B+r1\B+r . Now, we use (7.36), (7.37), (7.38) (7.30)
and (7.31) to deduce

Dir
(
Hk,B+r

)

(7.32)≤ Dir
(
h̄ε̄1,B

+
r

)+ ε̄2 Dir
(
h̄ε̄1, ∂B+r

)+ ε̄2 Dir
(
hk, ∂B+r

)

+ C0

ε̄2

∫

∂B+r
G
(
h̄ε̄1, hk

)2

(7.31)≤ Dir
(
h,B+r

)+ ε̄1 + 2Qε̄1 + 3ε̄2

[
Dir

(
h, ∂B+r

)+ ε̄1

]+ ε̄2M

+ C0

ε̄2

[∫

∂B+r
G (h, hk)

2 +
∫

∂B+r
G
(
hε̄1, h

)2
]

≤Dir
(
h,B+r

)+ ε̄1(1+ 2Q)+ ε̄2(4M+ 3ε̄1)+C0ε̄
−1
2 [o(1)+ ε̄1] .

An appropriate choice of the parameters ε̄1 and ε̄2 gives the desired bound Dir (Hk,Br)≤
Dir (h,Br)+ η for k large enough. Observe next that, by construction, Lip

(
h̄ε̄1

)
depends

on η and h, but not on k. Moreover, we have

∥
∥G

(
h̄ε̄1, hk

)∥
∥

L∞(∂Br)
≤C

∥
∥G

(
h̄ε̄1, hk

)∥
∥

L2(∂Br)
+C Lip (hk)+C Lip

(
h̄ε̄1

)
.

To prove the last inequality put F(x) := G
(
h̄ε̄1(x), hk(x)

)
and observe that F(x) ≤ F(y)+

Lip(F)|x− y|, then integrate in y and use the Cauchy-Schwarz inequality combined with
the fact that Lip(F) ≤ C(Lip(h̄ε̄1) + Lip(hk)). Thus (7.27) follows from (7.33). Finally,
(7.28) follows from the Poincaré inequality applied to G (Hk, hk) (which vanishes identi-
cally on ∂B+r

)
, in fact we have

‖G (Hk, hk)‖2
L2(B+r1 )

≤C‖∇G (Hk, hk)‖2
L2(B+r1 )

≤CDir(hk,B+r1)+CDir(Hk,B+r1).
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(7.29) follows from (7.34), because of (7.38) and
∥
∥η ◦ h̄ε̄1

∥
∥

L1(Br)
= ∥

∥(η ◦ h) ∗ ϕρ̄
∥
∥

L1(Br)
≤

‖η ◦ h‖L1
(
Br1

) if ρ̄ is also chosen small enough such that r + ρ̄ < r1. Indeed, observe that

‖η ◦Hk‖L1(B+r1 ) = ‖η ◦Hk‖L1(B+r ) + ‖η ◦ hk‖L1(B+r1\B+r )
(7.34)≤ C0

∫

∂B+r
|η ◦ hk| +C0

∫

B+r
|η ◦ h̄ε̄1 | + ‖η ◦ hk‖L1(B+r1\B+r )

(7.38)≤ C0‖η ◦ hk‖L1(B+r )

+C0

∫

B+r
|(η ◦ h) ∗ ϕρ| + ‖η ◦ hk‖L1(B+r1\B+r )

(7.39)≤ C0‖η ◦ hk‖L1(B+r ) +C‖η ◦ h‖L1(B+r ) + ‖η ◦ hk‖L1(B+r1\B+r )
≤ C‖η ◦ hk‖L1(B+r1 ) +C‖η ◦ h‖L1(B+r1 ),

provided ρ is chosen so small that r̄ + ρ < r. �

8. Higher integrability estimate

We consider the density dT of the measure eT with respect to the Lebesgue mea-
sure | · |, i.e.

dT(y)= lim sup
s→0

eT(Bs(y))

π s2
.

We will drop the subscript T when the current in question is clear from the context.
Clearly, under the assumptions of Proposition 6.4, ‖dT‖L1 ≤ CE. Now, following the ap-
proach of [8], we wish to prove an Lp estimate for a p > 1, which is just a geometric
constant.

Theorem 8.1. — There exist constants p > 1, C, and ε > 0 (depending on n and Q) such

that, if T is as in Proposition 6.4, then

∫

{d≤1}∩B2

dp ≤C
(
E+ A2

)p
.(8.1)

8.1. Higher integrability for Dir-minimizers. — We start with an analogous estimate
for the gradient of Dir-minimizers.

Proposition 8.2. — There are constants q > 1, δ > 0 and C (depending only on Q and n)

with the following property. Consider a connected domain D in R2 such that:

– the curvature κ of ∂D enjoys the bound ‖κ‖∞ ≤ δ;
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– ∂D∩ B16(x) is connected for every x.

Let 0< ρ ≤ 1 and u : B8ρ(x)∩D→AQ(Rn) be a Dir-minimizing function such that u|∂D∩Bρ(x) =
Q �g� for some C1 function g. Then

(

−
∫

Bρ(x)∩D
|Du|2q

) 1
q

≤C−
∫

B8ρ(x)∩D
|Du|2 +C‖Dg‖2

∞ .(8.2)

Proof. — First of all, the claim follows from [8, Theorem 6.1] when B2ρ(x) ⊂ D,
while it is trivial if B2ρ(x)⊂ int (Dc). We can thus assume, without loss of generality, that
B2ρ(x) intersects ∂D. Let y be a point in such intersection and observe that Bρ(x) ⊂
B4ρ(y). The claim thus follows if we can show

(

−
∫

Br(y)∩D
|Du|2q

) 1
q

≤C−
∫

B2r(y)∩D
|Du|2 +C‖Dg‖2

∞ ,(8.3)

for every y ∈ ∂D and every r ≤ 4. We now define

ū(z)=
∑

i

�ui(z)− η ◦ u(z)� ,

and observe that |Du| ≤ |Dū| +Q|Dη ◦ u|, while η ◦ u is a classical harmonic function
such that η ◦ u|∂D∩B2 = g, and ū is a Dir-minimizing function such that ū|∂D∩B2 =Q �0�.
Observe that

(

−
∫

Br(y)∩D
|Dη ◦ u|2q

) 1
q

≤C−
∫

B2r(y)∩D
|Dη ◦ u|2 +C‖Dg‖2

∞

is a classical estimate for (single-valued) harmonic functions and that |Dη ◦ u| ≤ |Du|.
Hence, it suffices to prove (8.3) when g =Q �0�. Moreover without loss of generality we
can assume that y= 0 and r = 1. Our goal is thus to show

‖|Du|‖L2q(B1∩D) ≤C‖|Du|‖L2(B2∩D) ,

under the assumption that u|∂D∩B2 =Q �0�. If we extend |Du| trivially to the complement
of D, by setting it identically equal to 0, the inequality is just an higher integrability
estimate for the function |Du| on B1. By Gehring’s lemma, it suffices to prove the existence
of a constant C such that

‖|Du|‖L2(Bρ(x)) ≤C‖|Du|‖L1(B8ρ(x))(8.4)

whenever B8ρ(x)⊂ B2. However, in the “interior case” B2ρ(x)⊂D, the stronger

‖|Du|‖L2(Bρ(x)) ≤C‖|Du|‖L1(B2ρ(x))
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is already proved in [8, Proposition 6.2]. Hence, arguing as above, it suffices to prove (8.4),
with the ball B4ρ(x) replacing Bρ(x) in the left hand side, under the additional assumption
x ∈ ∂D. Again by scaling, we are reduced to prove the following estimate

‖|Du|‖L2(B1∩D) ≤C‖|Du|‖L1(B2∩D) if 0 ∈ ∂D.(8.5)

First of all observe that, by our assumptions, if δ is sufficiently small, for every r ∈ (1,2)
the domain D ∩ Br is biLipschitz equivalent to the half disk Br ∩ {(x1, x2) : x2 > 0}, with
uniform bounds on the Lipschitz constants of the homeomorphism and its inverse. In
particular, we recall that, by classical Sobolev space theory, we have

min
c∈R
‖f − c‖H1/2(∂(Br∩D)) ≤C‖Df ‖L1(∂(Br∩D))

for every classical function f ∈ W1,1(∂Br,R). Moreover there is an extension F ∈
W1,2(Br ∩D) of f such that

‖DF‖L2(Br∩D) ≤C‖f − c‖H1/2(∂(Br∩D)) ≤C‖Df ‖L1(∂(Br∩D)) .(8.6)

Thus, using Fubini and (8.6), under our assumptions on u, we find a radius r ∈ (1,2) and
an extension v of the classical function ξ ◦ u|∂(Br∩D) to Br ∩D such that

‖Dξ ◦ u‖L2(Br∩D) ≤C‖Dξ ◦ u‖L1(∂(Br∩D)) ≤C‖Dξ ◦ u‖L1(B2∩D)

≤C|Du|‖L1(D∩B2) .

(8.7)

If we consider the multivalued function ξ−1 ◦ ρ ◦ v, the latter has trace w := ξ−1 ◦ ξ ◦ u

on ∂(Br ∩D). Therefore, by minimality of u,

‖|Du|‖L2(Br∩D) ≤ ‖Dw‖L2(Br∩D) ≤C‖Dv‖L2(Br∩D) .

Combining the latter inequality with (8.7) we achieve (8.5). �

8.2. Improved excess estimates.

Proposition 8.3 (Weak excess estimate). — For every η > 0, there exists ε > 0 with the

following property. Let T be area minimizing and assume it satisfies Assumption 6.2 in C4s(x). If

E= E (T,C4s(x))≤ ε, then

eT(A)≤ ηEs2 +CA2s4(8.8)

for every A⊂ Bs(x)∩D Borel with |A| ≤ ε |Bs(x)|.

Proof. — Without loss of generality, we can assume s= 1 and x= 0. We distinguish
the two regimes: E ≤ A2 and A2 ≤ E. In the former, clearly eT(A) ≤ CE ≤ CA2. In the
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latter, we let f be the E
1
8 -Lipschitz approximation of T in C3 and, arguing as for the proof

of [8, Theorem 5.2] we find a radius r ∈ (1,2) and a current R such that

∂R= 〈
T−Gf , ϕ, r

〉

and

M(R)≤
(

C
δ∗
(E+ A2r2)

)2

≤CE2− 1
2 .

Therefore, by the Taylor expansion in Remark 5.4, we have:

‖T‖ (Cr)
minimality≤ M

(
Gf Cr +R

) triangular≤ ∥
∥Gf

∥
∥ (Cr)+CE

3
2(8.9)

Taylor≤ Q |Br| +
∫

Br

|Df |2
2

+CE
5
4 .

On the other hand, using again the Taylor expansion for the part of the current which
coincides with the graph of f , we deduce as well that

‖T‖ ((Br ∩K)×Rn)≥Q |Br ∩K| +
∫

Br∩K

|Df |2
2

−CE
5
4 .(8.10)

Subtracting (8.10) from (8.9), we deduce

eT (Br ∩D \K)≤
∫

Br∩D\K

|Df |2
2

+CE
5
4 .(8.11)

If ε is chosen small enough, we infer from (8.11) and (7.1) in Theorem 7.3 that

eT (Br ∩D \K)≤ η̄E+CE1+γ ,

for a suitable η̄ > 0 to be chosen. Let now A ⊂ B1 be such that |A| ≤ επ . If ε is small
enough, we can again apply Theorem 7.3 and so by (8.2) there is a Dir-minimizing w
such that |Df | is close in L2 (with an error η̄E) to |Dw| and by [8, Remark 5.5] Dir(w)≤
CE. By Proposition 8.2 we have ‖|Dw|‖Lq(B1) ≤CE

1
2 . Therefore we can deduce

eT(A)
(7.1),(7.2)≤

∫

A
|Dw|2 + 3η̄E+CE1+γ(8.12)

≤ C‖Dg‖2
∞|A|1−2/q +C

(|A|1−2/q + η̄)E+CE1+γ

≤ C
(|A|1−2/q + η̄)E+CE

5
4 .

Hence, if ε and η are suitably chosen, (8.8) follows from (8.12). �
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8.3. Proof of Theorem 8.1. — The proof follows from Proposition 8.3 arguing ex-
actly as in [8, Section 6.3].

9. Strong Lipschitz approximation

In this section we show how Theorem 8.1 gives a simple proof of the following
approximation result analogous to [8, Theorem 2.4].

Theorem 9.1 (Boundary Almgren Strong Approximation). — There are geometric constants

γ1 > 0, εA > 0, and C > 0 with the following properties. Let T and � be as in Assumption 6.2

with ε = εA, let f be the Eγ1-Lipschitz approximation and K ⊂ B3r the corresponding set where Gf

and T coincide. Then:

Lip(f )≤C(E+ r2A2)γ1(9.1)

osc (f )≤Ch(T,C4r)+Cr(E+ r2A2)
1
2(9.2)

|(Br ∩D) \K| + eT(Br \K)≤Cr2(E+ r2A2)1+γ1(9.3)
∣
∣
∣
∣‖T‖(A×Rn)−Q|A∩D| − 1

2

∫

A∩D
|Df |2

∣
∣
∣
∣≤Cr2(E+ r2A2)1+γ1(9.4)

for every closed set A⊂ Br .

We postpone the proof till the end of this section however we anticipate that it goes
along the same line of [8, Theorem 2.4] using Theorems 9.2 and 9.4 below instead of
[8, Theorem 7.1] and [8, Theorem 7.3] respectively. The substantial changes necessary
to adapt the argument of the interior case, i.e., [8, Theorem 2.4] concerns mainly the
proof of Theorem 9.4 while the proof of Theorem 9.2 is essentially the same as that of
[8, Theorem 7.1]. So we start by stating the Almgren’s boundary strong excess estimate.

Theorem 9.2 (Almgren’s boundary strong excess estimate). — There are constants ε11, γ11,

C> 0 (depending on n, Q) with the following property. Assume T satisfies Assumption 6.2 in C4 and

is area minimizing. If E= E (T,C4) < ε11, then

eT(A)≤C
(
(E+ A2)γ11 + |A|γ11

) (
E+ A2

)
,(9.5)

for every Borel set A⊂ B 9
8
.

This estimate complements (8.1) enabling to control the excess also in the region
where d > 1. We call it boundary strong Almgren’s estimate because a similar formula
in the interior case can be found in the big regularity paper (cf. [5, Sections 3.24-3.26
and 3.30(8)]) and is a strengthened version of Proposition 8.3 that we called weak excess
estimate. To prove (9.5) we construct a suitable competitor to estimate the size of the set K̃
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where the graph of the Eβ Lipschitz approximation f differs from T. Following Almgren,
we embed AQ(Rn) in a large Euclidean space, via a bilipschitz embedding ξ. We then
regularize ξ ◦ f by convolution and project it back onto Q= ξ

(
AQ(Rn)

)
. To avoid loss

of energy we need a rather special “almost projection” ρ�δ that preserves zero boundary
data, i.e., ρ�δ(0)= 0.

Proposition 9.3. — ([8, Proposition 7.2]) For every n,Q ∈N \ {0} there are geometric con-

stants δ0, C > 0 with the following property. For every δ ∈]0, δ0 [ there is ρ�δ : RN(Q,n)→ Q =
ξ
(
AQ(Rn)

)
such that ρ�δ(0) = 0,

∣
∣ρ�δ(P)− P

∣
∣ ≤ Cδ8−nQ

for all P ∈ Q and, for every u ∈
W1,2

(
�,RN

)
, the following holds:

∫
∣
∣D

(
ρ�δ ◦ u

)∣
∣2 ≤

(
1+Cδ8−nQ−1

)∫

{
dist(u,Q)≤δnQ+1

}
|Du|2(9.6)

+C
∫

{
dist(u,Q)>δnQ+1

}
|Du|2.

Proof. — ρ�δ is the projection obtained in [8, Proposition 7.2]. �

Here we show the Strong Excess Approximation of Almgren in our version that
takes into account the non-homogeneous boundary value problem, concluding in this
way the proof of Theorem 9.1. Theorem 8.1 enters crucially in the argument when esti-
mating the second summand of (9.6) for the regularization of ξ ◦ f .

9.1. Regularization by convolution with a non centered kernel. — Here we construct the
competitor preserving the boundary conditions.

Proposition 9.4. — Let β1 ∈
(
0, 1

4

)
and T be an area minimizing current satisfying Assump-

tion 6.2 in C4. Let f be its Eβ1-Lipschitz approximation. Then, there exist constants ε̄12, γ12,C> 0
and a subset of radii B⊂ [9/8,2] with |B|> 1/2 with the following properties. If E (T,C4)≤ ε̄12,

for every σ ∈ B, there exists a Q-valued function h ∈ Lip
(
Bσ ∩D,AQ(Rn)

)
such that

h|Bσ∩∂D = g,

h|∂Bσ∩D = f |∂Bσ∩D,

Lip(h)≤C(E+ A2)β1,

and

∫

Bσ∩D
|Dh|2 ≤

∫

Bσ∩K∩D
|Df |2 +C

(
E+ A2

)1+γ12
.(9.7)
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Proof. — Since |Df |2 ≤ CdT ≤ CE2β1 ≤ 1 on K, by Theorem 8.1 there is q1 =
2p1 > 2 such that

‖|Df |‖2
Lq1 (K∩B2)

≤C
(
E+ A2

)
.(9.8)

Given two (vector-valued) functions h1 and h2 and two radii 0 < r̄ < r, we denote by
lin (h1, h2) the linear interpolation in Br \ B̄r̄ between h1|∂Br

and h2|∂Br̄
. More precisely, if

(θ, t) ∈ Sm−1
+ × [0,∞) are spherical coordinates, then

lin (h1, h2) (θ, t)= r − t

r − r̄
h2(θ, t)+ t − r̄

r − r̄
h1(θ, t).

Next, let δ > 0 and ε > 0 be two parameters and let 1< r1 < r2 < r3 < 2 be three radii,
all to be chosen suitably later. First of all extend the function g to the whole disk B3 by
making it coinstant in the direction x2, i.e. g(x1, x2)= g(x1,ψ1(x1)). We then extend the
Eβ1 -Lipschitz approximation to a function f ∗ defined on the entire B3 by setting

f ∗(x)=
{

f (x) if x ∈ B3 ∩D
Q �g(x)� if x ∈ B3 ∩D− .

From now to keep our notation simpler we denote f ∗ as well by f . Observe moreover that

(η ◦ f )
∣
∣
D− = g .

We next define a translation operator ⊕ : AQ

(
RN

)×RN →AQ

(
RN

)
setting

T⊕ t =
Q∑

i=1

�ti + t� for T=
Q∑

i=1

�ti� .

We then introduce f̃ := f ⊕ (−η ◦ f ), so that f̃ |D− =Q �0� and η ◦ f̃ = 0.
Next we define, as in the proof of Proposition 7.7, ϕε(x) := 1

εnϕ(
x

ε
), and ϕ(x) =

ϕ̄(x − z0) with ϕ̄ being the standard bump function with support in B1(0) and z0 :=
(0,−2). The choice of this particular convolution kernel is motivated by the fact that the
mollification of any function which vanishes “below the domain D” will retain the latter
vanishing property.

Recall the maps ρ�δ and ξ of [LS11 b, Theorem 2.1] and observe that ξ(Q �0�)= 0
and ρ�δ(0)= 0. We then set f̃ ′1 := ξ ◦ f̃

g̃′δ,ε,s :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

√
E+ A2ρ ◦ lin

(
f̃ ′1◦�−1
√

E+A2 ,ρ
�
δ

(
f̃ ′1◦�−1
√

E+A2

))
◦�,

in (Br3 \ Br2)∩D,√
E+ A2ρ ◦ lin

(
ρ�δ

(
f̃ ′1◦�−1
√

E+A2

)
,ρ�δ

(
(f̃ ′1∗ϕε)◦�−1
√

E+A2

))
◦�,

in (Br2 \ Br1)∩D,√
E+ A2ρ�δ

(
f̃ ′1∗ϕε√
E+A2

)
, in Br1 ∩D,
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where � is the diffeomorphism constructed in Proposition 7.6.
We further set

h̄ε := (η ◦ f ) ∗ ϕε − g ∗ ϕε + g .

We easily see that (h̄ε)|∂D∩Br3
= g|∂D∩Br3

, and

Lip(h̄ε)≤C(E+ A2)β1 .

To adjust the value of h̃ε at the boundary ∂Br3 ∩D we proceed as above and set

h̃ε :=
{

lin(h̄ε ◦�−1,η ◦ f ◦�−1) ◦� in (Br3 \ Br2)∩D,
h̄ε in Br2 ∩D.

Now, we define

ĥδ,ε,s :=
Q∑

i=1

�(
ξ−1 ◦ g̃′δ,ε,s

)
i
− η ◦ (ξ−1 ◦ g̃′δ,ε,s

)�
, in Br3 ∩D,(9.9)

and

hδ,ε,s :=
Q∑

i=1

�(
ξ−1 ◦ g̃′δ,ε,s

)
i
− η ◦ (ξ−1 ◦ g̃′δ,ε,s

)+ h̃ε

	
, in Br3 ∩D.(9.10)

Notice that the convolution of any function u satisfying u|B3\D ≡ 0 with ϕε for ε small
enough always produces smooth function u ∗ ϕε satisfying (u ∗ ϕε)|B3\D ≡ 0, because we
have assumed that ∂D is the graph of a Lipschitz function and so it stays inside a cone with
fixed angles. With this last fact in mind it is easy to see that (g̃′δ)|∂D = 0, and (hδ)|∂D = g,
η ◦ ĥδ,ε,s = 0. We will prove that, for σ := r3 in a suitable set B⊂ [9/8,2] with |B|> 1/2,
we can choose r2 = r3−s and r1 = r2−s so that h satisfies the conclusion of the proposition.
Our choice of the parameters will imply the following inequalities:

δ2·8−nQ ≤ s, ε ≤ s, and E1−2β1 ≤ ε2.(9.11)

We estimate the Lipschitz constant of g̃′δ . This can be easily done observing that

– in Br1 ∩D, we have

Lip
(
g̃′δ
)≤C Lip

(
f̃ ′1 ∗ ϕε

)
≤C Lip

(
f̃ ′1
)
≤C(E+ A2)β1,
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– in (Br2 \ Br1)∩D, we have

Lip
(
g̃′δ
)≤C Lip

(
f̃ ′1
)
+C

∥
∥
∥f̃ ′1 − f̃ ′1 ∗ ϕε

∥
∥
∥

L∞

s

≤C
(

1+ ε

s

)
Lip

(
f̃ ′1
)
≤C(E+ A2)β1,

– in (Br3 \ Br2)∩D, we have

Lip
(
g̃′δ
)≤C Lip

(
f̃ ′1
)
+C(E+ A2)

1
2
δ8−nQ

s
(9.12)

≤CEβ1 +C(E+ A2)
1
2 ≤ C(E+ A2)β1 .

In the first inequality of the last line we have used that, since Q is a cone, (E +
A2)−

1
2 f̃ ′1 (x) ∈ Q for every x, hence

∣
∣
∣
∣
∣
ρ�δ

(
f̃ ′1√

E+ A2

)

− f̃ ′1√
E+ A2

∣
∣
∣
∣
∣
≤Cδ8−nQ

.

From (9.12) and (9.11) we deduce easily that g̃′δ is continuous and piecewise Lipschitz and
so globally Lipschitz and furthermore that

Lip(hδ,ε,s)≤C(E+ A2)β1 .(9.13)

In the following Steps 1-3 we estimate the Dirichlet energy of hδ,ε,s and finally in
Step 4 we obtain the desired estimate (9.7) of Theorem 9.4 for a suitable choice of δ, ε,
s depending on some powers of the infinitesimal quantity E (see (9.39) below). Before we
realize this program, we recall that for every f ∈W1,2(�,AQ(Rn)) we have

0≤Dir(f ⊕ (−η ◦ f ))=Dir(f )−QDir(η ◦ f ).(9.14)

We write here the estimate of the Dirichlet energy of h̃ε which will be useful in combina-
tion with (9.14).

∫
∣
∣Dg ∗ ϕε −Dg

∣
∣2 ≤CA2ε2,

∥
∥Dg ∗ ϕε −Dg

∥
∥
∞ ≤C‖D2g‖∞ε ≤ CAε,

(9.15)

∣
∣
∣
∣

∫
(
Dg ∗ ϕε −Dg

) (
D(η ◦ f ) ∗ ϕε

)
∣
∣
∣
∣≤CAε

∫

|D(η ◦ f ) ∗ ϕε|
Rem.7.5≤ CAε(E+ A2)

1
2

Young≤ Cε(E+ A2) .

(9.16)
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Summing (9.16), (9.15), we obtain
∫

|Dh̃ε|2 =
∫

|D(η ◦ f ) ∗ ϕε|2 +
∫

∣
∣Dg ∗ ϕε −Dg

∣
∣2

− 2
∫

(
Dg ∗ ϕε −Dg

) (
D(η ◦ f ) ∗ ϕε

)

≤
∫

|D(η ◦ f )|2 +CA2ε2 +Cε(E+ A2)

≤C
∫

|Df |2 +Cε(E+ A2) .

Step 1. Energy in Br3 \ Br2 . By Proposition 9.3, we have
∣
∣ρ�δ(P)− P

∣
∣ ≤ Cδ8−nQ

for all P ∈Q := ξ(AQ(Rn)). Thus, elementary estimates on the linear interpolation give

∫

(Br3\Br2 )∩D

∣
∣Dg̃′δ

∣
∣2 ≤ C(E+ A2)

(r3 − r2)
2

∫

(Br3\Br2 )∩D

∣
∣
∣
∣
∣

f̃ ′1√
E+ A2

− ρ�δ

(
f̃ ′1√

E+ A2

)∣
∣
∣
∣
∣

2

(9.17)

+C
∫

(Br3\Br2 )∩D

∣
∣Df̃ ′1

∣
∣2 +C

∫

(Br3\Br2 )∩D

∣
∣
∣D

(
ρ�δ ◦ f̃ ′1

)∣
∣
∣

2

≤C
∫

(Br3\Br2 )∩D

∣
∣Df̃ ′1

∣
∣2 +C(E+ A2)s−1δ2·8−nQ

.

Hence, using that Lip(ξ)≤ 1 and (9.14), we estimate
∫

(Br3\Br2 )∩D

∣
∣Dhδ,ε,s

∣
∣2 =

∫

(Br3\Br2 )∩D

∣
∣
∣Dĥδ,ε,s

∣
∣
∣
2 +Q

∫

(Br3\Br2 )∩D

∣
∣
∣Dh̃ε

∣
∣
∣

2
(9.18)

≤
∫

(Br3\Br2 )∩D

∣
∣Dg̃′δ

∣
∣2 −Q

∫

η+C
∫

(Br3\Br2 )∩D

∣
∣
∣Dh̃ε

∣
∣
∣

2

≤C
∫

(Br3\Br2 )∩D

∣
∣Df

∣
∣2 +C(E+ A2)

(
ε+ s−1δ2·8−nQ

)
.

Step 2. Energy in Br2 \ Br1 . Here, using the same interpolation inequality and a
standard estimate on convolutions of W1,2 functions, we get

∫

(Br2\Br1 )∩D

∣
∣Dg̃′δ

∣
∣2

≤C
∫

(Br2+ε\Br1−ε)∩D

∣
∣
∣Df̃ ′1

∣
∣
∣
2 + CC�

(r2 − r1)
2

∫

Br2\Br1

∣
∣
∣f̃ ′1 − ϕε ∗ f̃ ′1

∣
∣
∣

2
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≤CC�

∫

(Br2+ε\Br1−ε)∩D

∣
∣Df̃ ′1

∣
∣2 +CC�ε

2s−2

∫

B3∩D

∣
∣Df̃ ′1

∣
∣2

≤C
∫

(Br2+ε\Br1−ε)∩D

∣
∣Df̃ ′1

∣
∣2 +Cε2(E+ A2)s−2

≤C
∫

(Br2+ε\Br1−ε)∩D

∣
∣Df

∣
∣2 +Cε2(E+ A2)s−2.

So coming back to the energy estimate on hδ,ε,s we get
∫

(Br2\Br1 )∩D

∣
∣Dhδ,ε,s

∣
∣2 =

∫

(Br2\Br1 )∩D

∣
∣
∣Dĥδ,ε,s

∣
∣
∣
2 +Q

∫

(Br2\Br1 )∩D

∣
∣
∣Dh̃ε

∣
∣
∣

2
(9.19)

≤
∫

(Br2\Br1 )∩D

∣
∣Dg̃′δ

∣
∣2 +C

∫

(Br2\Br1 )∩D

∣
∣
∣Dh̃ε

∣
∣
∣

2

≤C
∫

(Br2+ε\Br1−ε)∩D

∣
∣Df

∣
∣2 +Cε2(E+ A2)s−2

+Cε(E+ A2) .

Step 3. Energy in Br1 . Define Z :=
{

dist
(

f̃ ′1√
E
∗ ϕε,Q

)
> δnQ+1

}
⊆ D and use

(9.6) to get
∫

Br1∩D

∣
∣Dg̃′δ

∣
∣2 ≤

(
1+Cδ8−n̄Q−1

)∫

(Br1∩D)\Z

∣
∣
∣D

(
f̃ ′1 ∗ ϕε

)∣
∣
∣
2

(9.20)

+C
∫

Z

∣
∣
∣D

(
f̃ ′1 ∗ ϕε

)∣
∣
∣
2

=: I1 + I2.

We consider I1 and I2 separately. For I1 we first observe the elementary inequality
∥
∥
∥D

(
f̃ ′1 ∗ ϕε

)∥
∥
∥

2

L2
≤

∥
∥
∥(Df̃ ′1 ) ∗ ϕε

∥
∥
∥

2

L2
(9.21)

≤
∥
∥
∥
(∣
∣Df̃ ′1

∣
∣1K

)
∗ ϕε

∥
∥
∥

2

L2
+

∥
∥
∥
(∣
∣Df̃ ′1

∣
∣1Kc

)
∗ ϕε

∥
∥
∥

2

L2

+ 2
∥
∥
∥
(∣
∣Df̃ ′1

∣
∣1K

)
∗ ϕε

∥
∥
∥

L2

∥
∥
∥
(∣
∣Df̃ ′1

∣
∣1Kc

)
∗ ϕε

∥
∥
∥

L2
,

where Kc is the complement of K in D. Recalling r1+ ε ≤ r1+ s= r2 we estimate the first
summand in (9.21) as follows:

∥
∥
∥
(∣
∣Df̃ ′1

∣
∣1K

)
∗ ϕε

∥
∥
∥

2

L2
(
Br1∩D

) ≤
∫

Br1+ε∩D

(∣
∣Df̃ ′1

∣
∣1K

)2 ≤
∫

Br2∩K

∣
∣Df̃ ′1

∣
∣2
.(9.22)



CAMILLO DE LELLIS, STEFANO NARDULLI, SIMONE STEINBRÜCHEL

In order to treat the other terms, recall that Lip
(

f̃ ′1
)
≤ C(E+ A2)β1 and |Kc| ≤ C(E+

A2)1−2β1 . Thus, we have
∥
∥
∥
(∣
∣Df̃ ′1

∣
∣1Kc

)
∗ ϕε

∥
∥
∥

2

L2
(
Br1∩D

) ≤C(E+ A2)2β1 ‖1Kc ∗ ϕε‖2
L2(9.23)

≤C(E+ A2)2β1 ‖1Kc‖2
L1 ‖ϕε‖2

L2

≤ C(E+ A2)2−2β1

ε2
.

Putting (9.22) and (9.23) in (9.21) and recalling (E+A2)1−2β1 ≤ ε2 and
∫ ∣
∣Df̃ ′1

∣
∣2 ≤C(E+

A2), we get

I1 ≤
∫

Br2∩K

∣
∣Df̃ ′1

∣
∣2 +Cδ8−n̄Q−1

(E+ A2)+Cε−1(E+ A2)3/2−β1 .(9.24)

For what concerns I2, first we argue as for I1, splitting in K and Kc, to deduce that

I2 ≤C
∫

Z

((∣
∣Df̃ ′1

∣
∣1K

)
∗ ϕε

)2 +Cε−1(E+ A2)3/2−β1 .(9.25)

Then, regarding the first summand in (9.25), we note that

|Z|δ2nQ+2 ≤
∫

Br1∩D

∣
∣
∣
∣
∣

f̃ ′1√
E+ A2

∗ ϕε − f̃ ′1√
E+ A2

∣
∣
∣
∣
∣

2

≤Cε2.(9.26)

Next, we recall that q1 = 2p1 > 2 and use (9.8) to obtain
∫

Z

((∣
∣Df̃ ′1

∣
∣1K

)
∗ ϕε

)2 ≤ |Z| p1−1
p1

∥
∥
∥
(∣
∣Df̃ ′1

∣
∣1K

)
∗ ϕε

∥
∥
∥

2

L4
(9.27)

≤C
( ε

δnQ+1

) 2
(
p1−1

)

p1
∥
∥
∥
∣
∣Df̃ ′1

∣
∣
∥
∥
∥

2

Lq1 (K)

≤C
( ε

δnQ+1

) 2
(
p1−1

)

p1 (
E+ A2

)
.

Gathering all the estimates together (9.20), (9.24), (9.25) and (9.27) gives
∫

Br1∩D

∣
∣Dg̃′δ

∣
∣2 ≤

∫

Br1∩K

∣
∣Df̃ ′1

∣
∣2 +C(E+ A2)δ8−nQ−1 +C

(E+ A2)3/2−β1

ε
(9.28)

+C(E+ A2)
( ε

δnQ+1

) 2
(
p1−1

)

p1



AN ALLARD-TYPE BOUNDARY REGULARITY THEOREM

=
∫

Br1∩K

∣
∣Df

∣
∣2 −Q

∫

Br1∩K

∣
∣D(η ◦ f )

∣
∣2 +C(E+ A2)δ8−nQ−1

+C
(E+ A2)3/2−β1

ε
+C(E+ A2)

( ε

δnQ+1

) 2
(
p1−1

)

p1
.

Define Z := {
dist

(
(η ◦ f ) ∗ ϕε,Q

)
> δnQ+1

}
to get

∫

Br1∩D

∣
∣D(η ◦ f ) ∗ ϕε

∣
∣2 ≤

∫

Br1∩D\Z

∣
∣D

(
(η ◦ f ) ∗ ϕε

)∣
∣2

(9.29)

+
∫

Z

∣
∣D

(
(η ◦ f ) ∗ ϕε

)∣
∣2

=: Î1 + Î2.

We consider Î1 and Î2 separately. For Î1 we first observe the elementary inequality

∥
∥D

(
(η ◦ f ) ∗ ϕε

)∥
∥2

L2(9.30)

≤ ∥
∥(D(η ◦ f )) ∗ ϕε

∥
∥2

L2

≤ ∥
∥
(∣
∣D(η ◦ f )

∣
∣1K

) ∗ ϕε
∥
∥2

L2 +
∥
∥
(∣
∣D(η ◦ f )

∣
∣1Kc

) ∗ ϕε
∥
∥2

L2

+ 2
∥
∥
(∣
∣D(η ◦ f )

∣
∣1K

) ∗ ϕε
∥
∥

L2

∥
∥
(∣
∣D(η ◦ f )

∣
∣1Kc

) ∗ ϕε
∥
∥

L2 .

Recalling r1 + ε ≤ r1 + s= r2, we estimate the first summand in (9.30) as follows

∥
∥
(∣
∣D(η ◦ f )

∣
∣1K

) ∗ ϕε
∥
∥2

L2
(
Br1∩D

) ≤
∫

Br1+ε∩D

(∣
∣D(η ◦ f )

∣
∣1K

)2
(9.31)

≤
∫

Br2∩K

∣
∣D(η ◦ f )

∣
∣2
.

In order to treat the other terms, recall that Lip
(
η ◦ f

)≤C(E+A2)β1 and |Kc| ≤C(E+
A2)1−2β1 . We thus have

∥
∥
(∣
∣D(η ◦ f )

∣
∣1Kc

) ∗ ϕε
∥
∥2

L2
(
Br1∩D

) ≤C(E+ A2)2β1 ‖1Kc ∗ ϕε‖2
L2(9.32)

≤C(E+ A2)2β1 ‖1Kc‖2
L1 ‖ϕε‖2

L2

≤ C(E+ A2)2−2β1

ε
.
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Putting (9.31) and (9.32) in (9.30), and recalling E1−2β1 ≤ ε2 and
∫ ∣
∣D(η ◦ f )

∣
∣2 ≤ CE we

get

Î1 ≤
∫

Br2∩D∩K

∣
∣D(η ◦ f )

∣
∣2 +Cε−1(E+ A2)3/2−β1 .(9.33)

For what concerns Î2, first we argue as for Î1 (splitting in K and Kc) to deduce that

Î2 ≤C
∫

Z

((∣
∣D(η ◦ f )

∣
∣1K

) ∗ ϕε
)2 +Cε−1(E+ A2)3/2−β1 .(9.34)

Then, regarding the first summand in (9.34), we note that

|Z|δ2nQ+2 ≤
∫

Br1∩D

∣
∣
∣
∣
(η ◦ f )√
E+ A2

∗ ϕε − (η ◦ f )√
E+ A2

∣
∣
∣
∣

2

≤Cε2.(9.35)

Recalling that q1 = 2p1 > 2, we use (9.8) to obtain
∫

Z

((∣
∣D(η ◦ f )

∣
∣1K

) ∗ ϕε
)2 ≤ |Z| p1−1

p1
∥
∥
(∣
∣D(η ◦ f )

∣
∣1K

) ∗ ϕε
∥
∥2

L4(9.36)

≤C
(

ε

δn̄Q+ 1

) 2
(
p1−1

)

p1 ∥
∥
∣
∣D(η ◦ f )

∣
∣
∥
∥2

Lq1 (K)

≤C
(

ε

δnQ+ 1

) 2
(
p1−1

)

p1 (
E+ A2

)
.

Gathering all the estimates together, (9.29), (9.33), (9.34) and (9.36) gives
∫

Br1∩D

∣
∣D(η ◦ f ) ∗ ϕε

∣
∣2 ≤

∫

Br1∩K

∣
∣D(η ◦ f )

∣
∣2 +C

(E+ A2)3/2−β1

ε
(9.37)

+C(E+ A2)
( ε

δnQ+1

)2− 1
p1
.

So combining (9.28) and (9.37) yields
∫

Br1∩D

∣
∣Dhδ,ε,s

∣
∣2

(9.38)

=
∫

Br1∩D

∣
∣
∣Dĥδ,ε,s

∣
∣
∣

2 +Q
∫

Br1∩D

∣
∣
∣Dh̃ε

∣
∣
∣
2

≤
∫

Br1∩D

∣
∣Dg̃′δ

∣
∣2 +Q

∫

Br1∩D

∣
∣
∣Dh̃ε

∣
∣
∣

2
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≤
∫

Br1∩K

∣
∣Df

∣
∣2 −Q

∫

Br1∩K

∣
∣D(η ◦ f )

∣
∣2

+Q
∫

Br1∩K

∣
∣Dη ◦ f

∣
∣2 +Cε(E+ A2)

+C

(

(E+ A2)δ8−nQ−1 + (E+ A2)3/2−β1

ε
+ (E+ A2)

( ε

δnQ+1

) 2
(
p1−1

)

p1

)

≤
∫

Br1∩K

∣
∣Df

∣
∣2 +C(E+ A2)δ8−nQ−1 +C

(E+ A2)3/2−β1

ε

+C(E+ A2)
( ε

δnQ+1

) 2
(
p1−1

)

p1 +Cε(E+ A2).

Step 4. Final estimate. This part is analogue to [8, Step 4 of Proposition 7.3].
Summing (9.18), (9.19), (9.38), and recalling that ε < s, we conclude

∫

Br3∩D
|Dhδ,ε,s|2

≤
∫

Br1∩K
|Df |2 +C

∫

(Br1+3s\Br1−s)∩D

∣
∣Df ′

∣
∣2 +C(E+ A2)

(
ε+ δ8−nQ−1

)

+C(E+ A2)

(
ε2

s2
+ δ2·8−nQ

s
+ (E+ A2)1/2−β1

ε
+

( ε

δnQ+1

) 2
(
p1−1

)

p1

)

.

We set ε = (E+ A2)a, δ = (E+ A2)b and s= (E+ A2)c, where

a= 1− 2β1

4
, b= 1− 2β1

8(nQ+ 1)
, and c= 1− 2β1

8nQ8(nQ+ 1)
(9.39)

and we finally let h be the corresponding function hδ,ε,s. This choice respects (9.11). As-
sume (E+A2) is small enough so that s ≤ 1

16 . Now, if C> 0 is a sufficiently large constant,
there is a set B′ ⊂ [

9
8 ,

29
16

]
with |B′|> 1/2 such that,

∫

(Br1+3s\Br1−s)∩D

∣
∣Df ′

∣
∣2 ≤Cs

∫

B2∩D

∣
∣Df ′

∣
∣2 ≤C(E+ A2)1+c

for every r1 ∈ B′.

For σ = r3 ∈ B= 2s+ B′ we then conclude the existence of a γ̄
(
β1, n,Q

)
> 0 such that

∫

Bσ∩D
|Dh|2 ≤

∫

Bσ∩K
|Df |2 +C

(
E+ A2

)1+γ̄
. �
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Proof of Theorem 9.2. Here we proceed as in the proof of [8, Theorem 7.1]. Choose
β1 = 1

8 and consider the set B ⊂ [9/8,2] given in Proposition 9.4. Using the coarea
formula and the isoperimetric inequality (the argument and the map ϕ are the same
in the proof of Theorem 7.3 and that of Proposition 8.3), we find s ∈ B and an integer
rectifiable current R such that

∂R= 〈
T−Gf , ϕ, s

〉
and M(R)≤CE

3
2 .

Since h|∂(D∩Bs) = f |∂(D∩Bs) we can use h in place of f in the estimates and, arguing as before
(see e.g. the proof of Proposition 8.3), we get, for a suitable γ > 0

‖T‖ (Cs) ≤ Q |Bs ∩D| +
∫

Bs∩D

|Dg|2
2
+C(E+ A2)1+γ̄(9.40)

(9.7)≤ Q |Bs ∩D| +
∫

Bs∩K

|Df |2
2

+C
(
E+ A2

)1+γ̄
.

On the other hand, by Taylor’s expansion in [8, Remark 5.4],

‖T‖ (Cs)= ‖T‖ ((Bs ∩D \K)×Rn)+ ∥
∥Gf

∥
∥ ((Bs ∩K)×Rn)(9.41)

≥ ‖T‖ ((Bs ∩D \K)×Rn)+Q |K∩ Bs|

+
∫

K∩Bs

|Df |2
2

−C(E+ A2)1+γ̄ .

Hence, from (9.40) and (9.41), we get eT (Bs ∩D \K)≤C
(
E+ A2

)1+γ̄
. This is enough to

conclude the proof. Indeed, let A⊂ B9/8∩D be a Borel set. Using the higher integrability
of |Df | in K (see (9.8)) and possibly selecting a smaller γ̄ > 0, we get

eT(A)≤ eT(A∩K)+ eT(A \K)

≤
∫

A∩K

|Df |2
2

+C
(
E+ A2

)1+γ̄

≤C|A∩K| p1−1
p1

(∫

A∩K
|Df |q1

)2/q1

+C
(
E+ A2

)1+γ̄

≤C|A| p1−1
p1

(
E+ A2

)+C
(
E+ A2

)1+γ̄
. �

Proof of Theorem 9.1. Here we proceed exactly as in the proof of [8, Theorem 2.4].

Assume r = 1 and x = 0. Choose β11 < min
{

1
4 ,

γ11
2(1+γ11)

}
, where γ11 is the constant in

Theorem 9.2. Let f be the Eβ11 -Lipschitz approximation of T. Clearly (9.1) and (9.2) fol-
low directly from Proposition 6.4, if γ < β11. Set next A := {

meT > 1/4(E+ A2)2β11
} ∩
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B9/8. By Proposition 6.4 we have |A| ≤ C(E + A2)1−2β11 . If εA > 0 is sufficiently small,
apply (6.9) and the estimate (9.5) to A in order to conclude

|B1 ∩D \K| ≤C(E+ A2)−2β11eT(A)

≤C(E+ A2)γ11−2β11(1+γ11)
(
E+ A2

)
.

By our choice of γ11 and β11, this last inequality gives (9.3) for some positive γ1. Finally,
set S=Gf . Recalling the strong Almgren estimate (9.5) and the Taylor expansion in [8,
Remark 5.4] we conclude for every 0< σ ≤ 1

∣
∣
∣
∣‖T‖ (Cσ )−Q|D| −

∫

Bσ∩D

|Df |2
2

∣
∣
∣
∣(9.42)

≤ eT (Bσ ∩D \K)+ eS (Bσ ∩D \K)+
∣
∣
∣
∣eS (Bσ ∩D)−

∫

Bσ∩D

|Df |2
2

∣
∣
∣
∣(9.43)

≤C
(
E+ A2

)1+γ11 +C |Bσ ∩D \K| +C Lip(f )2

∫

Bσ∩D
|Df |2(9.44)

≤C
(
E+ A2

)1+γ11
.(9.45)

The L∞ bound follows from Proposition 6.4 and we finish the proof. �

10. Center manifold and normal approximation

This section is devoted to prove an analog of [15, Theorem 8.13], namely to con-
struct, in a neighborhood of a flat point p, a smooth C3,α submanifold with boundary �
and a normal multivalued map N on it. The first is, roughly, an approximation of the
average of the sheets lying over the unique tangent plane V to T at p. The second is a
more accurate approximation of the current T, which compared to the one in Section 6
has the additional property of having (almost) zero average.

We start by introducing the spherical excess and the cylindrical excess with respect
to a general plane.

Definition 10.1. — Given a current T as in Assumption 4.5 and 2-dimensional planes V, V′,
we define the excess of T in balls and cylinders with respect to planes V, V′ as

E(T,Br(x),V) :=
(
2π r2

)−1
∫

Br(x)

| �T− �V|2 d‖T‖,

E(T,Cr(x,V),V′) := (
2π r2

)−1
∫

Cr(x,V)
| �T− �V′|2 d‖T‖ .
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Definition 10.2 (Optimal planes). — For the case of balls we define the spherical excess as

follows. The optimal spherical excess at some x ∈ spt(T) \ � is given by

E(T,Br(x)) :=min
V

E(T,Br(x),V),(10.1)

but in the case of x ∈ � we define the optimal boundary spherical excess as

E�(T,Br(x)) :=min{E(T,Br(x),V) :V⊃Tx�}.
The plane V which minimizes E, resp. E�, is not unique but since for notational purposes it is convenient

to define a unique “height” h(T,Br(x)) we set

h(T,Br(x)) :=min
{
h(T,Br(x),V) : V optimizes E (resp. E�)

}
.(10.2)

In the case of cylinders we denote by E(T,Cr(x,V))= E(T,Cr(x,V),V) and h(T,Cr(x,V))=
h(T,Cr(x,V),V).

We recall that under the above assumptions C5R0 =C5R0(0,V0) and p�T C5R0 =
Q �D�, where D ⊂ B5R0 is one of the two connected components in which B5R0 is sub-
divided by the curve γ = p(�). Moreover T0� =R× {0} and in particular � ∩C5R0 =
{(t,ψ(t))} = {(t,ψ1(t), ψ̄(t))}, where ψ1 : (−5R0,5R0)→ R and ψ̄ : (−5R0,5R0)→
Rn. In particular γ is the graph of ψ1 and without loss of generality we assume that
D= {(x1, x2) ∈ B5R0 : x2 >ψ1(x1)}, namely it is the upper half of B5R0 \ γ .

In this section we will then work under the following assumptions.

Assumption 10.3. — p = q = (0,0), V = V0 = R2 × {0}, Q, T, and � are as in As-

sumption 6.2 in the cylinder C5R0 , where R0 ≥ 1+√2 is a sufficiently large geometric constant which

will be specified later. Moreover Q �V0� is the (unique) tangent cone to T at 0.

We moreover assume in the sequel that

E(T,C5R0(0,V0))+ A2 ≤ εCM,(10.3)

for some small positive parameter εCM = εCM(n,Q,R0).

Under the above assumptions we show now that the height of T in C4R0 is also
under control.

Lemma 10.4. — There are constants εCM, C depending on Q, n and R0 such that, if As-

sumption 10.3 holds, then for all p ∈ � and r > 0 such that C5r(p,V0)⊂C5R0 , we have

h(T,C4r(p,V0))≤Cr(E(T,C5r(p,V0))+ rA)
1
2 .(10.4)

Proof. — We divide the proof into two steps.
Step 1: supz∈spt(T)∩C4r(p,V0)

|p⊥V0
(z − p)|2 ≤ Cr−2

∫
C9r/2(p,V0)

|p⊥V0
(z − p)|2d‖T‖(z) +

C0A2r4.
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This is shown in [15, Lemma 6.6] and carries over word by word to our setting as
the only part where the stationarity of the associated integral varifold is needed, is for the
harmonicity of the coordinate functions. This however is true, as we test with functions
which are supported away from the boundary of T. We use this to apply a Moser iteration
scheme and estimate the L∞ norm by the limsup of the Lp norms as p→∞.

Step 2: r−2
∫

C9r/2(p,V0)
|p⊥V0

(z− p)|2d‖T‖(z)≤C E(T,C5r(p,V0))r
2 +CAr3.

Also for this, the proof of [15, Lemma 6.7] carries over as the difference to our sit-
uation is a factor Q in the monotonicity formula (Theorem 3.2). From there, we estimate
the remainder term by r2(E(T,C5r(0,V0))+ A). �

10.1. Whitney decomposition. — We specify next some notation which will be recur-
rent when dealing with squares inside V0. For each j ∈N, Cj denotes the family of closed
squares L of V0 of the form

[a1, a1 + 2�] × [a2, a2 + 2�] × {0} ⊂V0(10.5)

which intersect D, where 2�= 21−j =: 2�(L) is the side-length of the square, ai ∈ 21−jZ
∀i and we require in addition −4 ≤ ai ≤ ai + 2� ≤ 4. To avoid cumbersome notation,
we will usually drop the factor {0} in (10.5) and treat each squares, its subsets and its
points as subsets and elements of R2. Thus, for the center xL of L we will use the notation
xL = (a1 + �, a2 + �), although the precise one is (a1 + �, a2 + �,0, . . . ,0). Next we set
C :=⋃

j∈N Cj . If H and L are two squares in C with H ⊂ L, then we call L an ancestor

of H and H a descendant of L. When in addition �(L) = 2�(H), H is a child of L and L
the parent of H. Moreover, if H ∩ L 	= ∅ but they are not contained in each other, we call
them neighbours.

Definition 10.5. — A Whitney decomposition of D∩ [−4,4]2 ⊂V0 consists of a

closed set �⊂ [−4,4]2 ∩D and a family W ⊂ C satisfying the following properties:

(w1) �∪⋃
L∈W L∩D= [−4,4]2 ∩D and � does not intersect any element of W ;

(w2) the interiors of any pair of distinct squares L1,L2 ∈W are disjoint;

(w3) if L1,L2 ∈W have nonempty intersection, then 1
2�(L1)≤ �(L2)≤ 2�(L1).

Remark 10.6. — Because of (w1) we will assume that any L ∈W intersects D.

Observe that (w1)–(w3) imply

sep (�,L) := inf{|x− y| : x ∈ L, y ∈�} ≥ 2�(L) for every L ∈W ,(10.6)

since there is an infinite chain of neighbouring squares {Li}i∈N with L0 = L, dist(�,Li)→
0 and �(Li) ≥ 2�(Li+1) for all i. However, we do not require any inequality of the form
sep (�,L) ≤ C�(L), although this would be customary for what is commonly called a
Whitney decomposition in the literature.
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Assumption 10.7. — In the rest of this section we will use several different parameters:

(a) δ1 and β1 are two small geometric constants which depends only on Q, n, the constant γ1 of

Theorem 9.1, in fact they will be chosen smaller than
γ1
8 and δ1 ≤ β1

2 ;

(b) M0 is a large geometric constant which depends only on δ1, while N0 ≥ ln(132
√

2)
ln(2) is a large

natural number which will be chosen depending on β1, δ1, and M0;

(c) C�
e is a large constant C�

e (β1, δ1,M0,N0), while C�
e is larger and depends also on C�

e ;

(d) Ch is large and depends on β1, δ1, M0, N0, C�
e and C�

e ;

(e) the small threshold εCM is the last to be chosen, it depends on all the previous parameters and

also on the constant εA of Theorem 9.1.

Definition 10.8. — For each square L ∈ C we set rL :=
√

2M0�(L) and we say that L is

an interior square if dist(xL, γ ) ≥ 64rL, otherwise we say that L is a boundary square and we use,

respectively, the notation C � for the interior squares contained in D and C � for the boundary squares.

Next, we define a corresponding (n+ 2)-dimensional balls BL, resp. B�

L, for such L’s:

(a) If L ∈ C �, we pick a point pL = (xL, yL) ∈ spt(T) ∩ ({xL} × Rn) and we set BL :=
B64rL(pL);

(b) If L ∈ C �, we pick x
�

L = (t,ψ1(t)) ∈ γ such that dist(xL, γ )= |x�L − xL|, define p
�

L =
(t,ψ(t)) ∈ � ∩ ({x�L} ×Rn) and set B�

L = B2764rL(p
�

L).

We refer to Figure 3 for an illustration of the position of the various points above.
We are now ready to prescribe N0: we require the inequality

2764rL ≤ 2764
√

2M02−N0 ≤ 1 ,(10.7)

so that, in particular, all the balls BL and B�

L considered above are contained in the
cylinder C4R0 .

The following remark will be useful in the sequel.

Remark 10.9. — If L ∈ C � and J is the parent of L, then J ∈ C �, while if L ∈ C �,
then every child of L is an element of C �. In fact, if H and L are two squares with
nonempty intersection, �(H) < �(L) and H is a boundary cube, then necessarily L is a
boundary cube too.

Remark 10.10. — Fix L ∈ C � and subdivide it into the canonical four squares
M with half the sidelength. For M any of the following three cases can occur: M might
be a boundary square, an interior square, or might simply not belong to C � ∪ C � (i.e.
M∩D= ∅). However, because of the enlarged radius for boundary squares, it still holds
that the ball of a child is contained in the ball of its parent (compare to Proposition
11.1(i)). Moreover, B�

L ⊃ L for any boundary square L.

We are now ready to define the refining procedure leading to the desired Whitney
decomposition.
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Definition 10.11. — First of all we set m0 := E(T,C5R0)+‖ψ‖2
C3,α(]−5R0,5R0[). We start

with all L ∈ C � ∪ C � with �(L) = 2−N0 and we assign all of them to S . Next, inductively, for

each j > N0 and each L ∈ C �

j ∪ C �

j such that its parent belongs to S we assign to S or to W =
W e ∪W h ∪W n in the following way:

(EX) L ∈W e if E(T,BL) >C�
e m0�(L)2−2δ1 , resp. if E�(T,B�

L) >C�
e m0�(L)2−2δ1 ;

(HT) L ∈W h if L /∈W e and h(T,BL)≥Chm
1
4
0 �(L)

1+β1 , resp. h(T,B�

L)≥Chm
1
4
0 ×

�(L)1+β1 ;

(NN) L ∈W n if L /∈W h ∪W e but there is a J ∈W such that �(J)= 2�(L) and L∩ J 	=
∅;

(S) L ∈S if none of three conditions above are satisfied.

We denote by C �

j := C �∩Cj , C
�

j := C �∩Cj , Sj :=S ∩Cj , Wj :=W ∩Cj , W e
j :=W e∩Cj ,

W h
j :=W h ∩Cj and W n

j :=W n ∩Cj . Finally, we set

� := ([−4,4]2 ∩D) \
⋃

L∈W
L=

⋂

j≥N0

⋃

L∈Sj

L .(10.8)

A simple consequence of our refining procedure is the following proposition which
we will prove in the next section.

Proposition 10.12. — Let V0, Q, T, and � be as in Assumption 10.3 and assume the

parameter N0 satisfies (10.7). Then (�,W ) is a Whitney decomposition of D∩ [−4,4]2. Moreover,

for any choice of M0 and N0, there is C�(M0,N0) such that, if C�
e , and C�

e/C
�
e , Ch/C�

e , are larger

than C�, then

(a) WN0 = ∅;

(b) if L ∈ C � ∩W e then the parent of L belongs to C �.

Moreover, the following estimates hold for some geometric constant C depending on β1 and δ1, provided

εCM is sufficiently small (depending on all the previous parameters as detailed in Assumption 10.7):

E�(T,B�

L)≤CC�
e m0�(L)2−2δ1, and

h(T,B�

L)≤CChm
1
4
0 �(L)

1+β1, ∀L ∈W ∩C � ,
(10.9)

E(T,BL)≤CC�
e m0�(L)2−2δ1 and

h(T,BL)≤CChm
1
4
0 �(L)

1+β1, ∀L ∈W ∩C � .
(10.10)

10.2. Construction of the center manifold. — First of all for each BL and B�

L, we let VL

be the choice of optimal plane for the excess and the height in the sense of Definition
10.2: note that for boundary squares, namely in B�

L, the plane VL optimizes the excess
E�, and thus it is constrained to contain the line T

p
�
L
�. The following key lemma allows
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us to apply Theorem 9.1 (and its interior version [8, Theorem 2.4]) to corresponding
cylinders.

Lemma 10.13. — For any choice of the other parameters, if εCM is sufficiently small, the

following holds for every L ∈S ∪W .

(a) If L ∈ C �, then T satisfies the assumptions of [8, Theorem 2.4] in C32rL(pL,VL).

(b) If L ∈ C �, then T satisfies the assumptions of Theorem 9.1 in C2732rL(p
�

L,VL).

The corresponding Q-valued strong Lipschitz approximations will be denoted by fL and will be called

VL-approximations.

Given a square L ∈ C � which belongs to S ∪W , we denote by DL ⊂ B2724rL(p
�

L,V
�

L)

the domain of the function fL, which coincides with the orthogonal projection on p
�

L+V�

L

of spt(T)∩C2724rL(p
�

L,V
�

L). Note in particular that ∂DL ∩B2724rL(p
�

L,V
�

L) is the projection
of � ∩C2724rL(p

�

L,V
�

L) onto p
�

L +V�

L, which we will denote by γL. Likewise, we denote by
gL the function over γL whose graph gives �∩C2724rL(p

�

L,V
�

L). In particular, Theorem 9.1
implies that fL|γL =Q �gL�. We now regularize the averages η ◦ fL to suitable harmonic
functions hL in the following fashion.

Definition 10.14. — We denote by hL the harmonic function on B16rL(pL,VL), resp. DL ∩
B2716rL(p

�

L,VL), for L ∈ C �, resp. L ∈ C �, such that the boundary value of hL on the respective domain

is given by η◦ fL (in particular it coincides with gL on γL). hL will be called tilted harmonic interpolating

function.

In order to complete the description of our algorithm we need a second important
technical lemma.

Lemma 10.15. — Consider L ∈S ∪W . For every L ∈ C �, resp. L ∈ C �, there is a smooth

function uL :D∩ B278rL(p0(p
�

L),V0)→V⊥
0 , resp. uL : B8rL(p0(pL),V0)→V⊥

0 , such that

GuL C8rL(p
�

L,V0)=GhL C8rL(p
�

L,V0), resp.(10.11)

GuL C8rL(pL,V0)=GhL C8rL(pL,V0).(10.12)

The function uL will be called interpolating function.

The center manifold is the result of gluing the interpolating functions appropri-
ately. To that we fix a bump function ϑ ∈C∞

c ((− 3
2 ,

3
2)

2) which is identically 1 on [−1,1]2
and define

ϑL(x) := ϑ
(

x− xL

�(L)

)

.
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Hence, for any fixed j ≥N0 we define

P j :=Sj ∪
⋃

i≤j

Wi(10.13)

and the following function ϕj , defined over D∩ [−4,4]2 ⊂V0 and taking values in V⊥
0

ϕj(x) :=
∑

L∈P j ϑL(x)uL(x)
∑

H∈P j ϑH(x)
.(10.14)

The center manifold is the graph of the function ϕ which is the limit of ϕj as explained
in the statement of the next theorem.

Theorem 10.16 (Center manifold). — Let T be as in Assumption 10.3 and assume that the

parameters satisfy the conditions of Assumption 10.7. Then there is a positive ω (depending only on δ1

and β1), with the following properties:

(a) ϕj|γ = g for every j;

(b) ‖ϕj‖C3,ω ≤ Cm
1
2
0 for some constant C which depends on β1, δ1, M0, N0, C�

e , C�
e , and

Ch, but not on εCM;

(c) For every k, k′ ≥ j + 2, ϕk = ϕk′ on every cube L ∈Wj ;

(d) ϕj converges uniformly to a C3,ω function ϕ.

Definition 10.17. — The graph of the function ϕ will be called center manifold and denoted by

M. We will define �(x) := (x,ϕ(x)) as the graphical parametrization of M over [−4,4]2 ∩ D̄.

The set �(�) will be called the contact set, while for every L ∈W the corresponding L :=�(L∩D)
will be called Whitney region.

10.3. The M-normal approximation and related estimates. — In what follows we as-
sume that the conclusions of Theorem 10.16 apply. For any Borel set V ⊂M we will
denote by |V| its H2-measure and will write

∫
V f for the integral of f with respect to H2.

Br(q) denotes the geodesic balls in M. Moreover, we refer to [9] for all the relevant no-
tation pertaining to the differentiation of (multiple valued) maps defined on M, induced
currents, differential geometric tensors and so on.

Assumption 10.18. — We fix the following notation and assumptions.

(U) U := {
x+ y : x ∈M, |y|< 1, and y⊥M

}
.

(P) p :U→M is the map defined by (x+ y) �→ x.

(R) For any choice of the other parameters, we assume εCM to be so small that p extends to

C2,κ(Ū) and p−1(y)= y+ B1(0, (TyM)⊥) for every y ∈M.

(L) We denote by ∂lU := p−1(∂M) the lateral boundary of U.

The following is then a corollary of Theorem 10.16 and the construction algo-
rithm.
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Corollary 10.19. — Under the hypotheses of Theorem 10.16 and of Assumption 10.18 we

have:

(i) spt(∂(T U))⊂ ∂lU, spt(T [− 7
2 ,

7
2]2 ×Rn)⊂U and p�(T U)=Q �M�;

(ii) spt(〈T,p,�(q)〉)⊂ {
y : |�(q)− y| ≤Cm

1
4
0 �(L)

1+β1
}

for every q ∈ L ∈W , where

C depends on all the parameters except εCM;

(iii) 〈T,p, p〉 =Q �p� for every p ∈�(�)∪ (� ∩ ∂M).

The main reason for introducing the center manifold of Theorem 10.16 is that we
are able to pair it with a good approximating map defined on it.

Definition 10.20 (M-normal approximation). — An M-normal approximation of T is given

by a pair (K,F) such that

(A1) F :M→AQ(U) is Lipschitz (with respect to the geodesic distance on M) and takes

the special form F(x)=∑
i �x+Ni(x)�, with Ni(x)⊥TxM.

(A2) K⊂M is closed and TF p−1(K)=T p−1(K).
(A3) K contains �

(
� ∩ [− 7

2 ,
7
2]2

)
and � ∩�(D̄ ∩ [− 7

2 ,
7
2 ]2), and on the latter two sets

the map N equals Q �0�.

The map N=∑
i �Ni� :M→AQ(R2+n) is the normal part of F.

Theorem 10.21 (Existence and local estimates for the M-normal approximation). — Let

γ2 := γ1
4 , with γ1 the constant of Theorem 9.1. Under the hypotheses of Theorem 10.16 and Assump-

tion 10.18, if εCM is suitably small (depending upon all other parameters but not the current T), then

there is an M-normal approximation (K,F) such that the following estimates hold on every Whitney

region L associated to a cube L ∈W , with constants C=C(β1, δ1,M0,N0,C�
e ,C

�
e ,Ch) > 0:

Lip(N|L)≤Cmγ2
0 �(L)

γ2 and ‖N|L‖C0 ≤Cm
1
4
0 �(L)

1+β1,(10.15)

|L \K| + ‖TF −T‖(p−1(L))≤Cm1+γ2
0 �(L)4+γ2,(10.16)

∫

L
|DN|2 ≤Cm0 �(L)4−2δ1 .(10.17)

Moreover, for any a> 0 and any Borel V ⊂L, we have (for C=C(β1, δ1,M0,N0,C�
e ,C

�
e ,Ch))

∫

V
|η ◦N| ≤Cm0

(
�(L)5+ β1

3 + a �(L)2+ γ2
2 |V|

)
(10.18)

+ C
a

∫

V
G
(
N,Q �η ◦N�

)2+γ2
.

From (10.15)–(10.17) it is not difficult to infer analogous “global versions” of the
estimates.
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Corollary 10.22 (Global estimates for the M-normal approximation). — Let M′ be

the domain �
(
D ∩ [− 7

2 ,
7
2 ]2

)
and N the map of Theorem 10.21. Then, (again with C =

C(β1, δ1,M0,N0,C�
e ,C

�
e ,Ch))

Lip(N|M′)≤Cmγ2
0 and ‖N|M′‖C0 ≤Cm

1
4
0 ,(10.19)

|M′ \K| + ‖TF −T‖(p−1(M′))≤Cm1+γ2
0 ,(10.20)

∫

M′
|DN|2 ≤Cm0 .(10.21)

In addition, since N=Q �0� on � ∩M′, we also get

∫

M′
|N|2 ≤Cm0 .(10.22)

10.4. Additional L1 estimate. — While the estimates claimed so far have all appro-
priate counterparts in the papers [10] and [15], we will need an additional important
estimate which is noticed here for the first time, even though it is still a consequence of
the same arguments leading to Theorem 10.16 and Theorem 10.21.

Proposition 10.23. — Consider the function f : B3 →AQ(Rn) with the property that Gf =
TF C3. For every L ∈W e we then have the estimate

‖ϕ− η ◦ f ‖L1(L) ≤Cm3/4
0 �(L)4(10.23)

and in particular, as long as r ≤ 3 is a radius such that �(L)≤ r for every L ∈W with L∩ Br 	= ∅,

we have the estimate

‖ϕ− η ◦ f ‖L1(Br) ≤Cm3/4
0 r4 .(10.24)

11. Tilting of optimal planes

We estimate the changes of excess and height when tilting the reference planes of
nearby squares.

Proposition 11.1 (Tilting of optimal planes). — Let Q, T and � be as in Assumption 10.3 and

recall the parameters of Assumption 10.7. There are constants C= C(β1, δ1,M0,N0, C�
e ,C

�
e ) > 0

and C = C(β1, δ1,M0,N0,C�
e ,C

�
e ,Ch) > 0 such that, if εCM = εCM(Q, n,R0,Ch) > 0 is

small enough, for any H,L ∈S ∪W with H being equal or a descendant of L we have

(i) B�
H ⊂ B�

L ⊂ B4R0 ,

(ii) |VH −VL| ≤Cm
1
2
0 �(L)

1−δ1 ,

(iii) |VH −V0| ≤Cm
1
2
0 ,
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(iv)� if H ∈ C �, then h(T,C36rH(pH,V0)) ≤ Cm1/4
0 �(H) and spt(T) ∩ C36rH(pH,

V0)⊂ BH,

(iv)� if H ∈ C �, then h(T,C2736rH(p
�

H,V0))≤Cm1/4
0 �(H) and spt(T)∩C2736rH(p

�

H,

V0)⊂ BH,

(v)� if H,L ∈ C �, then h(T,C36rL(pL,VH)) ≤ Cm1/4
0 �(L)1+β1 and spt(T) ∩

C36rL(p,VH)⊂ BL,

(v)� if L ∈ C �, then h(T,C2736rL(p
�

L,VH)) ≤ Cm1/4
0 �(L)1+β1 and spt(T) ∩

C2736rL(p
�

L,VH)⊂ BL.

where �= or �= � depending on whether the square is a boundary square or not. Moreover, (ii)–(v)

also hold if H and L are neighbours with 1
2�(L)≤ �(H)≤ �(L).

Proof. — In this proof we will use mainly the following two estimates.

E(T,Br(p),V)= (2π r2)−1

∫

Br(p)

|→T(x)−→
V|2d‖T‖(x)

≤ 2(2π r2)−1

∫

Br(p)

|→T(x)− →
W|2d‖T‖(x)+C|V−W|2

= 2E(T,Br(p),W)+C|V−W|2,

h(T,Cr(p,V),V′)
(10.4)≤ h(T,Cr(p,V),W)+Cr|V′ −W|,

where in the first one we used the monotonicity formula of Theorem 3.2 to see that the
mass of a ball is comparable to r2 and in the second one we used the height estimate
(10.4) of Lemma 10.4.

We argue by induction on i = − log2(�(H)). The base step is when i = N0 and
H= L while we pass to children squares in the induction step. By the choice of M0 and
N0, we notice that there are no squares with side length 2−N0 in W .

The second inclusion of (i), we already observed in (10.7) while the first inclusion
of (i) and the inequality in (ii) is redundant for H= L. Thus, we show now (iii). We use
(i), the optimality of VH, the monotonicity formula of Theorem 3.2 and the definition of
m0 to deduce

|VH −V0|2 ≤Cr−2
H

∫

B�
H

| �T− �VH|2d‖T‖(x)+Cr−2
H

∫

B�
H

| �T− �V0|2d‖T‖(x)(11.1)

≤ 2CE(T,B�
H ,V0)≤CE(T,B5R0,V0)≤Cm0.

For (iv) we use the height estimate (10.4) of Lemma 10.4. Notice that C36rH(p
�
H ,V0) ⊂

C4R0(0,V0) and hence,

h(T,C36rH(p
�
H ,V0))≤ h(T,C4R0(0,V0))≤Cm1/4

0 =Cm1/4
0 �(H).
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FIG. 3. — An illustration of the various relevant points in the Whitney square

Then also the inclusion spt(T) ∩ C36rH(p
�
H ,V0) ⊂ B�

H holds, as long as εCM is small
enough. For (v) we observe that as B�

H ⊂C4R0(0,V0) we can estimate

|p�H |2 ≤ 9R2
0 + h(T,C(4R0,V0))

2 ≤ 9R2
0 +Cm0.

Thus if εCM (and thus m0) is small enough, then C36rH(p
�
H ,VH) ∩ B4R0 ⊂ C4R0(0,V0).

Hence, also spt(T)∩C36rH(p
�
H ,VH)⊂C4R0(0,V0) and we can estimate

h(T,C36rH(p
�
H ,VH))≤ h(T,C4R0(0,V0))+C|VH −V0|

≤Cm1/4
0 =Cm1/4

0 �(H)1+β1,

where we used (iii) and (iv).
We now describe the induction step. Figure 3 serves as reference for the various

position of the relevant points when H is a Whitney square and L its parent. We fix
H ∈Si+1 ∪Wi+1 for some i ≥ N0. Thus there is a chain of squares such that Hi+1 :=
H ⊂ Hi ⊂ · · · ⊂ HN0 with Hj ∈Sj for each j ≤ i. Assume the validity of (i) − (v) for
Hl and Hk with N0 ≤ l ≤ k ≤ i. We want to show (i) − (v) for H = Hi+1 and L = Hj

with N0 ≤ j ≤ i. For (i), we notice that it is enough to show the inclusion for j = i. Then
we have |xHi

− xH| ≤
√

2�(Hi) and hence, if εCM is small enough, we use the induction
hypothesis for (iv) to estimate

|p�Hi
− p�H |2 ≤ (

√
2�(Hi)+ 96rHi

)2 + h(T,C2rHi
(p�Hi

,V0))
2

≤ �(Hi)
2(
√

2(1+ 96M0))
2 +Cm1/2

0 �(Hi)
2 ≤ 216M2

0�(Hi)
2.
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Now we check that B�
H ⊂ B�

Hi
. Indeed, we have

2764rH + |p�Hi
− p�H | ≤ 2732

√
2M0�(Hi)+ 28M0�(Hi)

≤ 2732
√

2M0�(Hi)+ 2732
√

2M0�(Hi)= 2764rHi
.

For (ii), we first show the special case where j = i. We notice that by (i), the fact that
2rH = rHi

and Hi ∈Si , we have

|VH −VHi
|2 ≤C

r2
H

‖T‖(B�
H)
(E�(T,B�

H)+E�(T,B�
Hi
))

(monotonicity formula)

≤C(E(T,B�
H ,VHi

)+E�(T,B�
Hi
))≤ 2CE�(T,B�

Hi
)

≤CC�
e m0�(H)2−2δ1 .

Now for a general j ∈ {N0, . . . , i}, we use the geometric series to conclude

|VH −VHj
| ≤

i∑

l=j

|VHl+1 −VHl
| ≤CC�

e m0

i∑

l=j

�(Hl)
1−δ1

≤CC�
e m0

∞∑

l=j

(2−l+j�(Hj))
1−δ1 ≤CC�

e m0�(Hj)
1−δ1 .

(iii) follows by (ii) and (11.1). To prove (iv)�, we observe that by the induction hy-
pothesis, we already know spt(T) ∩ C36rHi

(p�Hi
,VHi

) ⊂ B�
Hi

. Now we want to see that
C36rH(p

�
H ,V0)⊂ C36rHi

(p�Hi
,V0). In case where Hi ∈ C �, we have |xH − xHi

| ≤ √2�(Hi),
hence

36rH + |xH − xHi
| ≤ 36rHi

.

On the other hand, if Hi ∈ C �, then we recall |pH − p
�

Hi
| ≤ 28M0�(Hi) which implies

36rH + |xH − x
�

Hi
| ≤ 36rH + |pH − p

�

Hi
| ≤ 2736rHi

.

Thus the desired inclusion of the cylinders holds. We deduce

h(T,C36rH(pH,V0))≤ h(T,B�
Hi
,V0)≤ h(T,B�

Hi
)+CrHi

|VHi
−V0|

≤Chm
1/4
0 �(Hi)

1+β1 +C�(Hi)m
1/2
0 ≤CCh�(Hi)m

1
4
0 ,

where we used the induction hypothesis and that Hi ∈Si . The previous estimate shows
also that spt(T) ∩C36rH(pH,V0)⊂ BH assuming that εCM is small enough. The proof of
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(iv)� is analogous because if H ∈ C �, then also Hi ∈ C � and so as before

2736rH + |x�H − x
�

Hi
| ≤ 2736rH + |p�H − p

�

Hi
| ≤ 2736rHi

.

Now we show (v)�, (v)� for H=Hi+1 and L=Hj for some j ∈ {N0, . . . , i} by induction
on j. For j =N0, we use the estimate on |VH −VHN0

| to deduce

(
C2736rHN0

(p�HN0
,VH)∩B4R0

)
⊂

(
C2736rHN0

(p�HN0
,VHN0

)∩B5R0

)

⊂C4R0(0,V0)

provided that εCM is small enough. Therefore, we have

h(T,C2736rHN0
(p�HN0

,VH))≤ h(T,C4R0(0,V0))+C|VH −V0| ≤Cm
1
2
0 .

Again if εCM is small, this also implies that spt(T) ∩ C2736rHN0
(p�HN0

,VH)) ⊂ B�
HN0

. Now
assume that (v)�, (v)� hold for some j ≥ N0 and denote L = Hj+1. We first consider
the case where L ∈ C �. Then its parent Hj is still unknown, but in any case, BL ⊂ B�

Hj

and thus, C36rL(pL,VH) ⊂ C36rHj
(pHj

,VH) or C36rL(pL,VH) ⊂ C2736rHj
(p
�

Hj
,VH) respec-

tively. Using the induction hypothesis, we find h(T,C36rHj
(pHj

,VH))≤ h(T,BHj
,VH) or

h(T,C2736rHj
(p
�

Hj
,VH))≤ h(T,B�

Hj
,VH) respectively. Moreover, using (ii), we deduce

h(T,B�
Hj
,VH)≤ h(T,B�

Hj
)+CrHj

|VH −VHj
|

≤CChm
1
4
0 �(Hj)

1+β1 +Cm
1
2
0 �(Hj)

2−δ1 ≤CChm
1
4
0 �(Hj).

Thus, we have also spt(T)∩C36rL(pL,VH))⊂ BL and finally

h(T,C36rL(p,VH))≤ h(T,BL)+CrL|VH −VL| ≤CChm
1
4
0 �(L)

1+β1 .

On the other hand, if L ∈ C �, then also Hj ∈ C � and we can perform the same argument
since B�

L ⊂ B�

Hj
and C2736rL(p

�

L,VH)⊂C2736rHj
(p
�

Hj
,VH). This shows both (v)� and (v)�.

For neighbor squares, the argument works exactly the same as everything follows
from the smallness of |p�L − p�H | and the fact that B�

L ∪B�
H ⊂ B�

J , where J is the parent of
L. �

Very similarly we now prove the excess estimates using the fact, that the parent of
any square belongs to S .
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Proof of Proposition 10.12. — For squares L of side length 2−N0 , we know by Propo-
sition 11.1 (i) that B�

L ⊂ B4R0 and so we can choose C�
e and C�

e large enough such that

E�(T,BL)≤C(R0,N0)E(T,B4R0,V0)≤C(R0,N0)m0

≤C�
e m0�(L)2−2δ1 .

Hence, L /∈W e. Similarly we see that L /∈W h. Indeed, we use Proposition 11.1 (ii) and
the height estimate of Lemma 10.4

h(T,B�
L )≤ h(T,B4R0,V0)+C(R0, n,Q)|V�

L −V0|
≤C(R0, n,Q)m

1/4
0 .

Thus, we can choose Ch large enough such that h(T,B�
L )≤Chm

1/4
0 �(L)1+β1 . This shows

(a).
We claim that (b) holds as long as C�

e ≥ 16C�
e . Let L ∈ C � and assume its parent

H ∈ C �. We want to show that L /∈ W e. Recall that |pL − p
�

H| ≤ 28M0�(L) and thus
BL ⊂ B�

H. Moreover, as H is a parent, it belongs to S , thus

E�(T,B�

H)≤C�
e m0�(H)2−2δ1 .

This then implies

E(T,BL)≤ E(T,BL,VH)≤ 4E�(T,B�

H)≤ 16C�
e m0�(L)2−2δ1 .

Now let L ∈W ∩C � and denote by H ∈S the parent of L. As L is a boundary square,
so is H. By Proposition 11.1 (i) and (ii), we know that B�

L ⊂ B�

H and

E�(T,B�

L)≤ 4E�(T,B�

H)≤CC�
e m0�(L)2−2δ1,

h(T,B�

L)≤ h(T,B�

H)+CrL|VL −VH| ≤CChm
1/4
0 �(L)1+β1 .

On the other hand, for L ∈W ∩C �, the parent H of L could be either a boundary square
or an interior square. So we estimate

E(T,BL)≤ 4E�(T,B�
H)≤C(C�

e +C�
e )m0�(L)2−2δ1,

h(T,BL)≤ h(T,B�
H)+CrL|VL −V�

H | ≤CChm
1/4
0 �(L)1+β1 . �

12. Estimates on the interpolating functions

We notice that our construction fulfills the estimates needed for the strong Lipschitz
approximation.



AN ALLARD-TYPE BOUNDARY REGULARITY THEOREM

Proposition 12.1. — Suppose that Assumption 10.3 holds true, recall the constants from As-

sumption 10.7 and assume that εCM is small enough. Let either H,L ∈S ∪W be neighbors with
1
2�(L)≤ �(H)≤ �(L) or let H be a descendant of L. Then we have

spt(T)∩C32rL(pL,VH)⊂ BL, if L ∈ C �,

spt(T)∩C2732rL(p
�

L,VH)⊂ B�

L, if L ∈ C �,

and [8, Theorem 2.4] can be applied to T in the cylinder C32rL(pL,VH) and Theorem 9.1 in

C2732rL(p
�

L,VH) respectively. The resulting strong Lipschitz approximation we call fHL.

Proof. — The proof of Proposition 12.1 is completely analogous to [10, Proposition
4.2] for interior squares and to [15, Proposition 8.25] for boundary squares. �

Remark 12.2. — Observe that if �(H) < �(L) and H is a boundary square, then
L is necessarily also a boundary square, since either H and L are neighbors or H ⊂ L.
When �(H)= �(L), in case H is a boundary square and L is an interior square, we can
simply swap their roles. In particular, without loss of generality, we will in the sequel
ignore the case in which H is a boundary square and L is an interior square.

Definition 12.3. — We denote by fHL the strong Lipschitz approximation produced by Propo-

sition 12.1. We will however consider the domain of the function fHL a subset of pH + VH, resp.

p
�

H + VH. More precisely, for interior squares the domain is C24rL(pL,VH) ∩ (pH + VH), while for

boundary squares it is DHL := DH ∩C2724rL(p
�

L,VH), where we recall that DH is the projection on

p
�

H+VH of spt(T). Observe that C24rL(pL,VH)∩ (pH+VH) and C2724rL(p
�

L,VH)∩ (p�H +VH)

are discs, whose centers are given by

pHL := pH + pVH(pL), resp.(12.1)

p
�

HL := p�H + pVH(p
�

L).(12.2)

(Note that, when L is a boundary square, H might be a boundary square but it might also be an interior

square).

Definition 12.4. — We then let hHL be the harmonic function on B16rL(pHL,VH), resp. DH ∩
C2716rL(p

�

HL,VH), such that the boundary value of hHL on the respective domain is given by η ◦ fHL,

in particular it coincides with gH on γH. hHL will be called the (H,L)-tilted harmonic interpolating

function.

Lemma 10.15 will then be a particular case of the following more general lemma.

Lemma 12.5. — Consider H and L as in Proposition 12.1. Then there is a smooth function

uHL :D∩ B278rL(p0(p
�

L),V0)→V⊥
0 , resp. uHL : B8rL(p0(pL),V0)→V⊥

0 , such that

GuHL C8rL(pL,V0)=GhHL C8rL(pL,V0),(12.3)
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GuHL C278rL(p
�

L,V0)=GhHL C278rL(p
�

L,V0), respectively.(12.4)

The function uHL will be called interpolating function.

12.1. Linearization and first estimates on hHL.

Proposition 12.6. — Under the Assumptions of Proposition 12.1 the following estimates hold

for every pair of squares H and L as in Proposition 12.1. First of all

∫

D(η ◦ fHL) :Dζ ≤Cm0r
4+β1
L ‖Dζ‖0,(12.5)

for every function ζ in C∞
c (B8rL(pHL,VH),V⊥

H), resp. C∞
c (DH∩B278rL(p

�

HL,VH),V⊥
H), depending

on whether L ∈ C � or L ∈ C �. Moreover,

‖hHL − η ◦ fHL‖L1(B8rL (pHL,VH)) ≤Cm0r
5+β1
L , if L ∈ C �;(12.6)

‖hHL − η ◦ fHL‖L1(DH∩B278rL
(p
�
HL,VH))

≤Cm0r
5+β1
L , if L ∈ C �;(12.7)

‖DhHL‖L∞(B7rL (pHL,VH)) ≤Cm
1
2
0 r

1−δ1
L , if L ∈ C �;(12.8)

‖DhHL‖L∞(DH∩B277rL
(p
�
HL,VH))

≤Cm
1
2
0 r

1−δ1
L , if L ∈ C �.(12.9)

Proof. — Proof of (12.5). Without loss of generality consider a system of coordi-
nates (x, y) with the property that p�HL is the origin, (x,0) ∈VH and (0, y) ∈V⊥

H. Fix ζ as
in the statement of the proposition and in the cylinder C ∈ {C32rL(pHL,VH),C2732rL(p

�

HL,

VH)} we consider the vector field χ(x, y) = (0, ζ(x)). Observe that, by assumption, the
vector field vanishes on �. Observe that, though χ is not compactly supported, since the
height of the current in the cylinder C is bounded, we can multiply χ by a cut-off func-
tion in the variable y but keeping its values the same on spt(T). The latter vector field
is a valid first variation for the area-minimizing current T and thus we have δT(χ)= 0.
Thus we can use Theorem 9.1 and Proposition 11.1 to estimate

|δGfHL(χ)| = |δ(T−GfHL)(χ)| ≤ ‖Dζ‖0‖T−GfHL‖(C)
≤C‖Dζ‖0r2

L(E
�(T,C,VH)+ A2r2

L)
1+γ1

≤C‖Dζ‖0r2
L(E

�(T,B�
L )+ |VH −VL|2 + A2r2

L)
1+γ1

≤C‖Dζ‖0r2
L(m0r

2−2δ1
L )1+γ1 ≤C‖Dζ‖0m0r

4+β1
L ,

provided δ1 and β1 are chosen small enough to satisfy (2− 2δ1)(1+ γ1)≥ 2+ β1.
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Next we use the Taylor expansion [9, Theorem 4.1] to estimate
∣
∣
∣
∣δGfHL(χ)−Q

∫

η ◦DfHL :Dζ
∣
∣
∣
∣

≤C‖Dζ‖0

∫

|DfHL|3

≤C‖Dζ‖0Lip(fHL)

∫

|DfHL|2

≤C‖Dζ‖0(E�(T,C,VH)+ A2r2
L)
γ1r2

L(E
�(T,C,VH)+ A2r2

L)

≤C‖Dζ‖0r2
L(m0r

2−2δ1
L )1+γ1 .

Proof of (12.6)-(12.7). Consider v := hHL − η ◦ fHL on its respective domain �

which equals either B8rL(pHL,VH) or DH ∩ B278rL(p
�

HL,VH). Observe that v vanishes on
the boundary of �. For every w ∈ L2 we denote by ζ = P(w) the unique solution of
#ζ = w in � with ζ |∂� = 0, which is an element of the Sobolev space W1,2

0 (�). Next
notice that by a simple density argument, the estimate (12.5) remains valid for any test
function ζ ∈W1,2

0 and recall also the standard estimate

‖D(P(w))‖0 ≤Cr‖w‖0 .

Therefore we can write

‖v‖L1 = sup
w:‖w‖0≤1

∫

�

v ·w = sup
w:‖w‖0≤1

∫

�

v ·#(P(w))

= sup
w:‖w‖0≤1

(

−
∫

�

Dv :D(P(w))
)

= sup
w:‖w‖0≤1

∫

�

Dη ◦ fHL :D(P(w))

≤C sup
w:‖w‖0≤1

m0r
4+β1
L ‖DP(w)‖0 ≤Cm0r

5+β1
L .

Proof of (12.8). Using the mean-value inequality for harmonic functions we sim-
ply get

‖DhHL‖L∞(B7rL (pHL,VH)) ≤
C
r2
L

∫

B8rL (pHL,VH)

|DhHL|

≤ C
rL

(∫

B8rL (pHL,VH)

|DhHL|2
) 1

2

≤ C
rL

(∫

B8rL (pHL,VH)

|Dη ◦ fHL|2
) 1

2
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≤ C
rL

(
r2
L(E(T,C,VH)+ A2r2

L)
) 1

2 ≤Cm
1
2
0 r

1−δ1
L .

Proof of (12.9). Using standard Schauder estimates for harmonic functions, we
get

‖DhHL‖L∞(DH∩B277rL
(p
�
HL,VH))

≤ C
r2
L

∫

DH∩B278rL
(p
�
HL,VH)

|DhHL| +C(‖DgH‖0 + r−αL [gH]α) ,

where we recall that gH on ∂DH ∩ B278rL(p
�

HL,VH) is the graphical parametrization of
our boundary curve � and α is a positive number smaller than 1, to be chosen later.
The first summand on the right hand side is estimated as in the proof above of (12.8).
As for the second summand, recall that T

p
�
L
� is contained in the plane VL and that

|VL −VH| ≤Cm
1
2
0 r

1−δ1
L . This implies that

|DgH(p
�

HL)| ≤Cm
1
2
0 r

1−δ1
L .

In particular we have

‖DgH‖L∞(∂DH∩B278rL
(p
�
HL,VH))

≤ |DgH(p
�

HL)| +CArL ≤Cm
1
2
0 r

1−δ1
L .

On the other hand,

r−αL [gH]α ≤Cr1−2α
L A≤Cm

1
2
0 r1−2α

L ,

and thus it suffices to choose 2α < δ1. �

12.2. Tilted estimate. — We follow here [15, Section 8.5] almost verbatim to es-
tablish a suitable comparison between tilted interpolating functions which are defined in
different system of coordinates.

Definition 12.7. — Four cubes H, J,L,M ∈ C make a distant relation between H and

L if J, M are neighbors (possibly the same cube) with same side length and H and L are descendants

respectively of J and M.

Lemma 12.8 (Tilted L1 estimate). — Under the Assumptions of Theorem 10.16 the following

holds for every quadruple H, J, L and M in S ∪W which makes a distant relation between H and

L.

– If J ∈ C �, then there is a map ĥLM : B4rJ(pHJ,VH)→V⊥
H such that

GĥLM
=GhLM C4rJ(pHJ,VH)
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and

‖hHJ − ĥLM‖L1(B2rJ (pHJ,VH)) ≤Cm0�(J)5+β1/2 .(12.10)

– If both J and M belong to C �, then there is a map ĥLM : DHJ ∩ B274rJ(p
�

HJ,VH)→ V⊥
H

such that

GĥLM
=GhLM C274rJ(p

�

HJ,VH)

and

‖hHJ − ĥLM‖L1(DHJ∩B272rJ
(p
�
HJ,VH))

≤Cm0�(J)5+β1/2 .(12.11)

The proof follows verbatim the arguments given in [15, Section 8.5]. The only
difference is the absence of the “ambient Riemannian” manifold which in [15, Lemma
8.31] is the graph of a function $ . The case needed for our arguments is the clearly
simpler situation in which the linear subspaces % and %̄ in [15, Lemma 8.31] are given
by the trivial subspace {0}. The proof of this version of the lemma (which is in fact [10,
Lemma 5.6]) is even less complicated. However there is a direct way to conclude it di-
rectly from the more general statement of [15, Lemma 8.31]: we can consider R2+n as a
subspace of R2+n+1 and apply [15, Lemma 8.31] to a generic choice of & , &̄ , π , π̄ and
the specific choice of % = %̄ = {0} ×R and $ = $̄ : π × & = π̄ × &̄→% = %̄ given
by the trivial map $ ≡ 0.

13. Final estimates and proof of Theorem 10.16

Proposition 13.1. — There is a constant ω depending upon δ1 and β1 such that, under the

assumptions of Theorem 10.16, the following holds for every pair of squares H,L ∈P j (cf. (10.13)).

(a) ‖uH‖C3,ω(B4rH (xH) ≤ Cm1/2
0 , resp. ‖uH‖C3,ω(D∩B274rH

(x
�
H))
≤ Cm1/2

0 , for H ∈ C �, resp.

H ∈ C �;

(b) If H and L are neighbors then for any i ∈ {0,1,2,3}, we have

(13.1) ‖uH − uL‖Ci(BrH (xH)) ≤Cm1/2
0 �(H)3+ω−i when H ∈ C �,

(13.2) ‖uH − uL‖Ci(D∩B27rH
(x
�
H))
≤Cm1/2

0 �(H)3+ω−i when H,L ∈ C �;

(c) |D3uH(x
�
H )−D3uL(x

�
L )| ≤Cm1/2

0 |x�H−x�L |ω, where �= if the corresponding square

is a non-boundary square and �= � if it is a boundary square;

(d) if H ∈ C �, then ‖uH − p⊥V0
(pH)‖C0(B4rH (xH)) ≤ Cm1/2

0 �(H) and if H ∈ C �, then

uH|∂D∩B274rH
(x
�
H))
= g;
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(e) |VH − T(x,uH(x))GuH| ≤ Cm1/2
0 �(H)1−δ1 for every x ∈ B4rH(xH), resp. x ∈ D ∩

B274rH(x
�

H);

(f) If H′ is the square concentric to H ∈Wj with �(H′)= 9
8�(H), then

(13.3) ‖ϕi − uH‖L1(H′) ≤Cm0�(H)5+β1/2 ∀i ≥ j + 1 .

13.1. Proof of Proposition 13.1.

Proof. — We follow the proof of [15, Proposition 8.32] and often we drop here for
simplicity the domains where we estimate the norm in.

(a) By [8, Lemma B.1], it is enough to make the estimates on hH instead of uH.
Fix any square H ∈P j and consider the family tree H = Hi ⊂ Hi−1 ⊂ · · · ⊂ HN0 . We
estimate

‖hH‖C3,ω ≤
i∑

j=N0+1

‖hHHj
− hHHj−1‖C3,ω + ‖hHHN0

‖C3,ω .

As these are all harmonic functions, by the mean value property, it is enough to estimate
the L1 norms. Again using the harmonicity we see that

‖hHHj
− hHHj−1‖L1(�j ) ≤ ‖η ◦ fHHj

− η ◦ fHHj−1‖L1(�j ) +Cm0r
5+β1
Hj−1

,

where �j either is B7rHj
(pHj

,VH) if Hj ∈ C � or DH ∩ B277rHj
(p
�

Hj
,VH) if Hj ∈ C �. Using

Theorem 9.1, we see that both fHHj
and fHHj−1 describe spt(T) on a large set K, thus their

average agree on K. Together with the oscillation estimate we then deduce

‖η ◦ fHHj
− η ◦ fHHj−1‖L1(�j )

≤C�(Hj−1)
2
(
m0�(Hj−1)

2−2δ1
)1+γ1 m

1
4
0 �(Hj−1)

1+β1

≤Cm0�(Hj−1)
5+β1 .

For ‖hHHN0
‖C3,ω we argue similarly and use Proposition 12.6.

(b) By [8, Lemma C.2], we have

‖Dj(uH − uL)‖C0 ≤CCr
−2−j

L ‖uH − uL‖L1 +Cr
3+ω−j

L ‖D3(uH − uL)‖Cω .

The second term is already bounded in (a), thus we are left with showing the L1 estimate.
To do so, we again use [8, Lemma B.1] to replace uL and uH with functions which have
the same graph. It is enough to notice that, by Lemma 12.8

‖hH − ĥL‖L1 ≤Cm
1
2
0 �(H)

5+δ1/2.
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(c) Let H,L ∈P j . In case that |xH − xL| ≥ 2−N0 , the statement follows from (a).
Otherwise, we can find ancestors J, M such that H, L are in a distant relation where
�(J)= �(M) is comparable to |x�H − x�L |. Then we estimate

|D3uH(x
�
H )−D3uL(x

�
L )|

≤ |D3uH(x
�
H )−D3uHJ(x

�
J )| + |D3uLM(x

�
M)−D3uL(x

�
L )|

+ |D3uHJ(x
�
J )−D3uLM(x

�
M)|.

The bound on the last term is already shown in (b), while for the first two we argue simi-
larly as before. Consider the family tree H⊂Hi−1 ⊂ · · · ⊂ J. By the previous arguments,
we deduce

‖uHHi
− uHHi−1‖C3 ≤Cm

1
2
0 �(Hi−1)

ω.

(d) The claim is obvious by construction for boundary cubes. For non-boundary
cubes, consider that the height bound for T and the Lipschitz regularity for fH give that

∥
∥p⊥VH

(
pH

)− η ◦ fH
∥
∥
∞ ≤Cm1/4

0 �(H).

We also get
∥
∥p⊥VH

(
pH

)− η ◦ fH
∥
∥
∞ ≤Cm1/4

0 �(H). On the other hand the Lipschitz regu-
larity of the tilted H-interpolating function hH and the L1 estimate on hH − η ◦ fH easily
gives

∥
∥p⊥VH

(
pH

)− hH

∥
∥
∞ ≤ Cm1/4

0 �(H). The estimate claimed in (d) follows then from
[10, Lemma B.1].

(e) follows from the estimates on DhHL of Lemma 12.8.
(f) By definition of ϕj , it is enough to estimate that for L a neighbour square of H,

we have

‖uH − uL‖L1 ≤Cm0�(H)5+δ1/2. �

13.2. Proof of Theorem 10.16.

Proof. — (a) is an immediate consequence of the definition of ϕj and the fact that
uL satisfies the correct boundary condition (for L ∈ C �). (b) follows exactly as in the proof
of [8, Theorem 1.17] and from Proposition 13.1. In fact, we are in the simpler situation
where our “ambient manifold” is just Rn+2 and thus, we can choose $ ≡ 0. (c) and (d)
are consequences of (b). �

13.3. Proof of Corollary 10.19 and Theorem 10.21.

Proof. — We extend ϕ to all of [−4,4]2 changing the C3,ω-norm only by geometric
constant and call this extension ϕ̃. Then consider

T̃ := T+Q ·Gϕ̃|[−4,4]2\D .
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Then as ∂M= �, so ∂T̃= 0. We cannot directly apply the corresponding interior paper,
[10, Corollary 2.2], to T̃ because the latter is not area-minimizing. However, the argu-
ment given in [10, Proof of Corollary 2.2] does not use the area-minimizing assumption.
It uses only the height estimates of Proposition 11.1 (which can be trivially extended to T̃
since the portion added to T is regular) and the constancy theorem (which is valid in our
case, since T̃ has no boundary).

As for the existence and estimates on the normal approximation, we also can follow
the same argument as in [10, Section 6.2] substituting the current T̃ to the current T in
there and the map ϕ̃ to the map ϕ in there. First of all notice that the extension is done
locally on each square and the ones surrounding it, and thus, even though the union of
the squares in our W and the set # does not cover [−4,4]2, this does not prevent us
from applying the same procedure. Next, the construction algorithm and the estimates
performed in [10, Section 6.2] depend only on the following two facts:

(a) The map ϕ in [10, Section 6.2] has, on every L ∈W , the same control on the
C3,ω norm that we have for the map ϕ̃ (up to a constant).

(b) For each square L ∈W (which in the case of [10, Section 6.2] corresponds to
an interior square for us) we have a Lipschitz approximation fL of the current
T C8rL(pL,VL), which in turn coincides with the current T on a set KL×V⊥

L ,
where |B8rL \KL| is small and the Lipschitz constant and the height of fL are
both suitably small too. This is literally the case with the very same estimates for
our interior squares, because T̃ C8rL(pL,VL)=T C8rL(pL,VL). In the case of
boundary squares, we apply Theorem 9.1 and we extend the corresponding fL
to a map F̃L on the whole disk B278rL(p

�

L,VL) by setting it equal to Q copies
of the graph of ϕ̃ outside of the domain DL ∩ B278rL(p

�

L,VL). We then notice
that such extension satisfies the same estimates on the Lipschitz constant and
the height. Moreover, over the new region, by construction the extension co-
incides with the current T. Hence, if we denote by K̃L the complement of the
projection on VL of the difference set spt(T̃)#spt(GL(fL)), then

B278rL(p
�

L,VL) \ K̃L = (B278rL(p
�

L,VL)∩DL) \KL .

In particular |B278rL(p
�

L,VL) \ K̃L| has the desired estimate.

Finally, observe the following. By the construction of [10, Section 6.2] we have a specific
description of the set K consistsing of those points p in the center manifold for which we
know that the slice 〈T,p, p〉 coincides with the slice of the multivalued approximation,
namely

∑
i �Fi(p)�. First of all, K contains �(#). Secondly, for every Whitney region L

corresponding to some square L ∈W , K ∩L is defined in the following fashion. First of
all, we denote by D(L) the family of squares M ∈W which have nonempty intersection
with L (i.e. its neighbors), hence we consider in each CM := C8rM(pM,VM), resp. CM :=
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C278rM(pM,VM), the corresponding Lipschitz approximation fL and define

K ∩L :=
⋂

M∈D(L)

p(spt(T)∩ gr (fM)) .

Since for boundary cubes � ∩CM ⊂ spt(T) ∩ gr (fM), we conclude that � ∩L⊂K. On
the other hand every point of � ∩M which does not belong to some Whitney region is
necessarily contained in the contact set �(#). Thus we conclude that � ⊂K. Observe,
moreover, that by construction the map N vanishes identically on the contact set, while
we also know that for each fM as above fM coincides with the function gM on pVM(�).
In particular this implies that N vanishes identically on the intersection of � with any
Whitney region. �

13.4. Proof of Proposition 10.23. — (10.24) is an ovious consequence of (10.23) since
on the complement of the squares L ∈W e the two functions ϕ and f coincide.

We now turn to (10.23). Observe next that, by Proposition 13.1(f), it suffices to
show the claim for the function uH in place of ϕ. Observe also that we already know
from the above argument that, if we replace uH with the tilted interpolating function hH

and f with the Lipschitz approximation fH = fHH, the estimate holds, as it is in fact just a
special case of (12.7) and (12.6). Fix now a point x ∈H and the corresponding point let
y(x) := pVH(uH(x)) be the corresponding projection on the plane VH. We can use [10,
(5.4)] (where we identify the manifold M in there with the affine plane VH + ϕ(p)) to
compute

|η ◦ f (x)− uH(x)| ≤C|η ◦ fH(y)− hH(y)| +C|VH −V0|Lip(f )h(T,BH) .

In particular we conclude

|η ◦ f (x)− uH(x)| ≤C|η ◦ fH(y)− hH(y)|
+Cm1/2

0 �(H)1−δ1mγ2
0 �(L)

γ2m1/4
0 �(L)1+β1 .

Observing that x �→ y(x) is a Lipschitz function with Lipschitz constant bounded by |Dϕ|,
i.e. by Cm1/2

0 and integrating in x, we easily conclude the claimed estimate.

14. Local lower bounds for the Dirichlet energy and the L2 norm of N

As in [10, Section 3] the aim of this section is to conclude suitable lower bounds for∫ |DN|2 and |N| over regions of the center manifold which are close (and sizable) enough
to some Whitney region L. Depending on the reason why the refinement was stopped,
we will either bound |N| from below in terms of �(L)1+β1 or we will bound

∫ |DN|2 from
below in terms of the excess of the current in BL.
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14.1. Lower bound on |N|. — We start with the following conclusion.

Proposition 14.1 (Separation because of the height). — If L ∈ W h then L is necessarily an

interior square. Moreover, there is constant C̃> 0 depending on M0 such that whenever (Ch)
4 ≥ C̃C�

e

and εCM > 0 is small enough, then every L ∈W h fulfills

(S1) �(T, p)≤Q− 1
2 for all p ∈ B16rL(pL),

(S2) L∩H= ∅ for all H ∈W n with �(H)≤ 1
2�(L),

(S3) G(N(x),Q �η ◦N(x)�)≥ 1
4Chm

1
4
0 �(L)

1+β1 for all x ∈�(B2
√

2�(L)(xL)).

Proof. — We only have to prove that L ∈ C � as the rest follows from the interior
theory in [10, Section 3]. We show that any boundary square H which did not stop
because of the excess, also did not stop because of the height. Fix such an H ∈ C � \W e.
Then we know that its parent M ∈ C � ∩S satisfies

E(T,B�

M)≤C�
e m0�(H)2−2δ1

and we want to show that

h(T,B�

H)≤Chm
1
4
0 �(H)

1+β1 .

To do so, we apply the height bound of Lemma 10.4 to a suitable rotated current T̃ :=
O�T, where O is a rotation which maps V0 onto VH. Notice that the proof of this lemma
is based on the first variation and thus on the minimality of T. As T̃ is area minimizing
(with respect to the tilted boundary O(�)), we can directly deduce

h(T,B�

H)≤ h(T,C2764rH(p
�

H,VH))

≤CrH

(
E(T,C2780rH(p

�

H,VH)+ ArH

) 1
2

≤CrH

(
E(T,B�

M)+C|VM −VH|2 + ArH

) 1
2

≤Cm
1
2
0 r

3
2
H

≤Chm
1
4
0 �(H)

1+β1,

where we also used Proposition 11.1 and the sufficient small choice of εCM. �

A simple corollary of the above proposition is that if a square stopped because of
the neighbor condition, then this originated from a larger nearby square which stopped
because of the excess.

Corollary 14.2. — For every H ∈W n, there is a chain of squares L0,L1, . . . ,Lj =H such

that
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(a) Li ∈W n for all i > 0 and L0 ∈W e,

(b) they are all neighbors, i.e. Li ∩ Li−1 	= ∅ and �(Li)= 1
2�(Li−1).

In particular, H⊂ B3
√

2�(L0)
(xL0,V0).

Accordingly, we can collect all the squares H which have such a chain relating H
to a specific square L ∈ W e. The latter square is not necessarily unique, but it will be
convenient to fix a consistent choice of L.

Definition 14.3 (Domains of influence). — First, let us fix an ordering {Ji}i∈N of W e such that

the side length is non-increasing. For J0, we define its domain of influence by

W n(J0) := {H ∈W n : there is a chain as in Corollary 14.2

with L0 = J0 and Lj =H}.
Inductively, we define for k > 0 the domain of influence W n(Jk) of Jk by all H ∈W n \⋃i<k W

n(Ji)

which have a chain as in Corollary 14.2 with L0 = Jk and Lj =H. As it is easy to check using Corollary

14.2 we have W n = ⋃̊
k∈NW n(Jk).

14.2. Lower bound on the Dirichlet energy. — Having handled the case of “height
stopped” squares we turn to squares which were stopped because they exceed the ex-
cess bound.

Proposition 14.4. — (Splitting) There are constants C1(δ1), C2(M0, δ1), C3(M0, δ1) such

that, if M0 ≥ C1(δ1), C�
e ≥ C2(M0, δ1), C�

e ≥ C3(M0, δ1), if the hypotheses of Theorem 10.21

hold and if εCM is chosen sufficiently small, then the following holds. If L ∈ W e, q ∈ V0 with

dist(L, q) ≤ 4
√

2�(L), B�(L)/4(q,V0) ⊂ D and � = �(B�(L)/4(q,V0)), then (with C,C4 =
C(β1, δ1,M0,N0,C�

e ,C
�
e ,Ch)):

C�
e m0�(L)4−2δ1 ≤ �(L)2E(T,B�

L )≤C
∫

�

|DN|2 ,(14.1)

∫

L
|DN|2 ≤C�(L)2E(T,B�

L )≤C4�(L)−2

∫

�

|N|2 .(14.2)

Before coming to the proof of the Proposition, let us first observe an important
point. Fix L as in the statement of the Proposition and consider its parent H and its an-
cestor J 6 generations before. If L is a boundary square, then H and J are both boundary
squares. On the other hand, if L is an interior square, since C�

e is chosen much larger than
C�

e , we can ensure that both L and J are also interior squares. Indeed, when BL ⊂ B�

J and
J /∈W e, we have the obvious estimate

E(T,BL)≤ 226E(T,B�

J)≤ 226C�
e m0�(J)2−2δ1 ≤ 238C�

e m0�(L)2−2δ1 ,
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which therefore, by choosing C�
e ≥ 238C�

e implies that L does not satisfy the excess stop-
ping condition.

Hence we can invoke [10, Proposition 3.4] to cover the case in which L ∈W e∩C �,
since the proof given in [10, Section 7.3] just uses the fact that all squares L, H and J are
interior squares (i.e. the repsective balls BL, BH, and BJ do not intersect the boundary �).
We are thus left to handle the case in which L (and therefore also H and J) are boundary
squares.

To do so, we need analogues of three lemmas from [10].

Lemma 14.5. — Let B+ ⊂ R2 be a half ball centered at the origin and w ∈ W1,2(B+,
AQ(Rn)) be Dir-minimizing with w =Q �0� on B+ ∩ (R× {0}). Denoting w̄ := w ⊕ (−η ◦
w)=∑

i �wi − η ◦w� and u := η ◦w, we have

Q
∫

B+
|Du−Du(0)|2 =

∫

B+
G(Dw,Q �Du(0)�)2 −Dir(w̄,B+).

Proof. — We extend w in an odd way to all of the ball B. Notice that then also the
extension of u is harmonic in all of B. Now the proof is the same as in [10, Lemma 7.3],
but we repeat it here anyway. First notice, that u is a classical harmonic function and in
particular, fulfills the mean value property. We use it to deduce

Q
∫

B
|Du−Du(0)|2 =Q

∫

B

(|Du|2 + |Du(0)|2 − 2Du ·Du(0)
)

=Q
∫

B
|Du|2 +Q|B||Du(0)|2 − 2Q

(∫

B
Du

)

·Du(0)

=Q
∫

B
|Du|2 −Q|B||Du(0)|2.

(14.3)

Similarly we compute

Q
∫

B
|Dw|2 =

∑

i

∫

B
|Dwi|2(14.4)

=
∑

i

∫

B

(|Dwi −Du(0)|2 − |Du(0)|2 + 2Dwi ·Du(0)
)

=
∫

B
G(Dw,Q �Du(0)�)2 −Q|B||Du(0)|2

+ 2Q

(∫

B

1
Q

∑

i

Dwi

)

·Du(0)

=
∫

B
G(Dw,Q �Du(0)�)2 +Q|B||Du(0)|2.



AN ALLARD-TYPE BOUNDARY REGULARITY THEOREM

Last we split the Dirichlet energy of w into the average and the average-free part (as
already observed in (9.14)).

∫

B
|Dw̄|2 =

∑

i

∫

B
|Dwi −Du|2(14.5)

=
∑

i

∫

B

(|Dwi|2 + |Du|2 − 2Dwi ·Du
)

=
∫

B
|Dw|2 +Q

∫

B
|Du|2 − 2Q

∫

B

(
1
Q

Dwi

)

·Du

=
∫

B
|Dw|2 −Q

∫

B
|Du|2.

The three identities (14.3), (14.4), (14.5) and dividing everything by 2 conclude the
lemma. �

An other important ingredient is the unique continuation for Dir-minimizers (com-
pare to [10, Lemma 7.1]).

Lemma 14.6 (Unique Continuation for Dir-minimizers). — For every 0< η < 1 and c > 0,

there is a δ > 0 such that whenever B+2r ⊂ V0 is the half ball and w : B+2r → AQ(Rn) is Dir-

minimizing with w =Q �0� on B+2r ∩ (R× {0}), Dir(w,B+2r)= 1, and Dir(w,B+r )≥ c, then

Dir(w,Bs(q))≥ δ for every Bs(q)⊂ B+2r with s ≥ ηr.

Proof. — The qualitative statement (UC) of the proof of [10, Lemma 7.1] applies
directly to our situation while the quantitative statement follows from a blow-up argument
that goes analogously for us as Bs(q)⊂ B+2r . �

The previous two lemmas imply the following energy decay for Dir-minimizers
(compare to [10, Proposition 7.2]) which itself implies the Proposition 14.4. First fix a
number λ > 0 such that

(1+ λ)4 < 2δ1 .

Proposition 14.7 (Decay estimate for Dir-minimizers). — For any η > 0 there is a δ > 0 such

that whenever B+2r ⊂V0 is the half ball and w : B+2r →AQ(Rn) is Dir-minimizing with w =Q �0�
on B+2r ∩ (R× {0}) and satisfies

∫

B+
(1+λ)r

G(Dw,Q �D(η ◦w)(0)�)2 ≥ 2δ1−4Dir(w,B+2r),
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then we have for any Bs(q)⊂ B+2r with s ≥ ηr

δ Dir
(
w,B+(1+λ)r

)≤Dir
(
w̄,B+(1+λ)r

)≤ 1
δr2

∫

Bs(q)

|w̄|2.

Here we used again the notation w̄ :=w⊕ (−η ◦w)=∑
i �wi − η ◦w�.

Proof. — We follow word by word the proof of [10, Proposition 7.2] using Lemma
14.6 and Lemma 14.5 instead of [10, Lemma 7.1] and [10, Lemma 7.3]. We reach the
contradicting inequality

∫

B+1+λ
|Du−Du(0)|2 ≥ 2δ1−4

∫

B+2
|Du|2

which is false as one can see by reflecting such that u stays harmonic and then using the
classical decay for harmonic functions. �

15. Frequency function and monotonicity

In this section we take a further crucial step towards the proof of Theorem 4.6. We
recall our key Assumption 4.5 and we add a further one on the smallness of the excess.
Before doing that, we observe a corollary of the decay estimate in Theorem 4.7.

Corollary 15.1. — Let T and � be as in Assumption 2.4 and assume that 0 ∈ � is a flat

point and that Q �V� is the unique tangent cone to T at 0. Then there is a geometric constant κ > 0
and constants C and r0 > 0 (depending on � and T) such that

E(T,Cr)≤Cr4κ ∀r ≤ r0 .(15.1)

Thus, upon rescaling the current appropriately, if 0 is a flat point we can assume,
without loss of generality, the following.

Assumption 15.2. — Let T and � be as in Assumption 2.4. 0 ∈ � is a flat point, Q �V� is

the unique tangent cone to T at 0, we let n be as in (4.1) and assume that (4.3) holds. In addition we

assume to have fixed a choice of the parameters so that Theorem 10.16 and Theorem 10.21 hold and

that

E(T,C4R0ρ)+ A2ρ2 ≤ εCMρ
2κ ∀ρ ≤ 1 .(15.2)

Observe that, by (15.2), we conclude that both Theorem 10.16 and Theorem 10.21
can be applied to the current T0,ρ whenever ρ ≤ 1.
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15.1. Intervals of flattening. — We start defining a decreasing set of radii {t1 > t2 >

· · · } ⊂ (0,2], which at the moment can be both finite and infinite: in the first case one tN
will be equal to 0, while in the second case all tk ’s are positive and tk ↓ 0.

t1 is defined to be equal to 2. We then let M̄1 =M1 be the center manifold and
N̄1 =N1 the corresponding normal approximation which results after we apply Theorem
10.16 and Theorem 10.21 to the current T. Moreover we let W (1) be the squares of the
Whitney decomposition described in Definition 10.11. We then distinguish two cases:

(Stop) There is a square H ∈W (1) such that

(15.3) dist(0,H)≤ 64
√

2�(H) .

(Go) There is no such square.

Notice that every such square H satisfying (15.3) is a boundary square. In the first case
we select an H as in (Stop) which has maximal sidelength and we define t̄2 := 66

√
2�(H)

and t2 := t1 t̄2 = 132
√

2�(H). Otherwise we define t2 = 0. Observe that

t2

t1
≤ 66

√
22−N0 .(15.4)

Before proceeding further, we record an important consequence of the Whitney
decomposition:

Corollary 15.3. — If (Stop) holds, then the square H of maximal sidelength that satisfies (15.3)
must be an element of W e, i.e. it violates the excess condition.

Proof. — Observe that if H is an (NN) square, then there is a neighboring square
H′ of double sidelength which also belongs to W and it is easy to see that the latter
satisfies (15.3) too, violating the maximilaity of H. Note next that (15.3) implies that H is
a boundary square, and as such it cannot belong to W h. �

In case t2 > 0 we then apply Theorem 10.16 and Theorem 10.21 to T0,t2 and let
M̄2 and N̄2 be the corresponding objects. The pair (M2,N2) will be derived by scaling
back the objects at scale t2, namely

M2 =
{
t2q : q ∈ M̄2

}
,(15.5)

N2(q)= t2N̄2

(
q

t2

)

.(15.6)

We then apply the procedure above to M̄2 in place of M̄1 and determine t̄3 analogously,
while we set t3 := t2 t̄3.

We proceed inductively and define M̄k , Mk , N̄k , Nk , t̄k , and tk := tk−1 t̄k : the proce-
dure stops when one tk equals 0, otherwise goes indefinitely. Observe that for every k we
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have the estimate
tk

tk−1
≤ 66

√
22−N0 .(15.7)

15.2. Frequency function. — Observe that the conclusion of Theorem 4.6 is equiva-
lent to T coinciding with Q �Mk� for some k in a neighborhood of the origin. A simple
corollary of the interior regularity is in fact the following

Corollary 15.4. — If Nk ≡Q �0� on some nontrivial open subset of Mk , then T=Q �Mk�
in a neighborhood of 0 and in particular Theorem 4.6 holds.

We next consider a function d which is C2 in the punctured ball B1(0), whose
gradient ∇d is tangent to � and such that (i)-(ii)-(iii) of Definition 5.6 hold. Likewise we
fix the function φ : [0,∞)→[0,∞) given by

φ(t) :=
⎧
⎨

⎩

1, if t ∈ [0, 1
2 ],

(1− 2t), if t ∈ [ 1
2 ,1],

0, if t ≥ 1 .

From now on we denote by D the classical Euclidean differentiation of functions, ten-
sors, and vector fields, which for objects defined on the manifold Mk will mean that we
compute derivatives along the tangents to the manifold. On the other hand we use the
notation ∇Mk

, DMk , and divMk
, respectively for the gradient, Levi-Civita connection,

and divergence of (respectively), functions, tensors, and vector fields on Mk understood
as a Riemannian submanifold of the Euclidean space R2+n.

We then define

D(r) :=
∫

Mk

φ

(
d(x)

r

)

|DNk|2(x) dH2(x), if r ∈ (tk+1, tk],(15.8)

H(r) := −
∫

Mk

φ′
(

d(x)

r

)

|∇Mk
d(x)|2 |Nk(x)|2

d(x)
dH2(x), if r ∈ (tk+1, tk].(15.9)

S(r) :=
∫

Mk

φ

(
d(x)

r

)

|Nk(x)|2 dH2(x), if r ∈ (tk+1, tk].(15.10)

We are then ready to state our main estimate.

Theorem 15.5. — Let T be as in Assumption 15.2. Either T=Q �Mk� in a neighborhood

of the origin for some k (and in that case note that tk+1 = 0), or else H(r) > 0 and D(r) > 0 for every

r. In the latter case the function I(r) := rD(r)
H(r) satisfies the following properties for some constants C and

τ > 0:

(a) For all r > 0, we have

(15.11) I(r)≥C−1,
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and

(15.12) D(r)≤Cr2+τ .

(b) I is continuous and differentiable on each open interval (tk+1, tk) and moreover

(15.13)
d

dr

(

log I(r)+CD(r)τ −Ct2τ−2
k

S(r)
D(r)

)

≥−Crτ−1 for a.e. r ∈]tk+1, tk[.

(c) At each tk the function I has one-sided limits

I(t+k )= lim
t↓tk

I(t),

I(t−k )= lim
t↑tk

I(t),

and moreover

(15.14)
∑

k

|I(t+k )− I(t−k )|<∞.

We will prove (a) and (b) in Section 16 while we devote Section 17 to show (c). An
obvious corollary of Theorem 15.5 is the following

Corollary 15.6. — Let T be as in Assumption 15.2. Either 0 is a regular point, or else I(r) is

well defined for every r and the limit

I0 := lim
r↓0

I(r)

exists, is finite and positive.

Proof. — First of all observe that, since I(r)≥C−1,

f (r) := log I(r)−Ct2τ−2
k

S(r)
D(r)

+CD(r)τ +Crτ ≥− log C .

We will also see below in Lemma 16.1 that S(r) ≤ Cr2D(r). Hence, since the Lipschitz
constant of log is bounded on [C−1,∞[, we infer

|f (t+j )− f (t−j )| ≤C|I(t+j )− I(t−j )| +C(t+j )
τ .(15.15)

Next we show that the two bounds (15.14) and (15.13) imply that f is bounded from
above: considering ρ ∈]0,1[, we let k the largest number such that ρ < tk and we can
estimate

f (1)− f (ρ)=
∫ tk

ρ

f ′ +
k−1∑

j=1

∫ tj

tj+1

f ′ +
k∑

j=2

(f (t+j )− f (t−j ))
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which turns into

f (ρ)≤ f (1)−
∫ tk

ρ

f ′ −
k−1∑

j=1

∫ tj

tj+1

f ′ +
∑

j

|f (t+j )− f (t−j )|

≤ f (1)+C
∫ 1

0
rτ−1 dr +C

∑

j

|I(t+j )− I(t−j )|<∞

(note that in the last line we have used (15.15)).
Next observe that the distributional derivative of f consists of a nonnegative mea-

sure (on the union of the open intervals (tk+1, tk) and a purely atomic Radon measure
which has finite mass by (15.14). We thus conclude that the distributional derivative of f

is a Radon measure. Next fix any ρ ≤ 1 and let tk be such that 2tk+1 < ρ < 2tk . We then
have the bound

|Df |(]ρ,1[)≤Df (ρ, t−k )+
∑

1≤j≤k−1

Df (]t+j+1, t
−
j [)+

∑

2≤j≤k

|f (t+j )− f (t−j )|

≤ 2
∞∑

j=1

|f (t+j )− f (t−j )| + ‖f ‖∞ <∞ .

Hence, letting ρ go to 0 we discover that |Df |(]0,1[) <∞, that is f ∈ BV(]0,1[). This
in turn implies that f is a function of bounded variation and hence that limr↓0 f (r) exists
and is finite. Observe, moreover that by (16.11) we infer that f (r)− log(I(r)) converges
to 0 as r ↓ 0. We thus conclude that limr↓0 ef (r) = limr↓0 I(r) exists, it is finite, and it is
positive. �

16. Proof of Theorem 15.5: Part I

16.1. Proof of (15.11). — The claim is simply equivalent to the existence of a con-
stant C such that H(r)≤CrD(r). The latter is a consequence of a Poincaré-type inequal-
ity which uses the fact that Nk vanishes identically on the boundary curve �. The proof
will be reduced to [15, Proposition 9.4]. However, in order to make the latter reduction,
we employ a device which will be used in several subsequent computations. Having fixed
a positive r different from any tj we let k be such that tk+1 < r < tk and we define the cor-
responding rescaled quantities D̄k(t

−1
k r), H̄k(t

−1
k r), S̄k(t

−1
k r), and Īk(t

−1
k r). More precisely

we define the function dk(x) := t−1
k d(tkx) and set

D̄k(ρ) :=
∫

M̄k

φ

(
dk(x)

ρ

)

|DN̄k|2(x) dH2(x) ,(16.1)

H̄k(ρ) := −
∫

M̄k

φ′
(

dk(x)

ρ

)

|∇M̄k
dk(x)|2 |N̄k(x)|2

dk(x)
dH2(x) ,(16.2)
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S̄k(ρ) :=
∫

M̄k

φ

(
dk(x)

ρ

)

|N̄k(x)|2 dH2(x).(16.3)

We then can immediately check the relations

D̄k(t
−1
k r)= t−2

k D(r) ,(16.4)

H̄k(t
−1
k r)= t−3

k H(r) ,(16.5)

S̄k(t
−1
k r)= t−4

k S(r) ,(16.6)

S̄′k(t
−1
k r)= t−3

k S′(r) ,(16.7)

D̄′
k(t
−1
k r)= t−1

k D′(r) .(16.8)

Lemma 16.1. — There is a constant C such that

H(r)≤CrD(r) ,(16.9)

S′(r)≤CrD(r) ,(16.10)

S(r)≤Cr2D(r) .(16.11)

Proof. — We observe that the corresponding inequalities for D̄k , H̄k , S̄k , and S̄′k
follow from [15, Proposition 9.4], since the center manifold M̄k , the functions dk , and Nk

satisfy the assumptions of the proposition. �

16.2. Derivatives of H and D. — In order to prove (15.13) the first step consists in
computing the derivatives of H and D. In what follows we will use the usual convention
of denoting by O(g) any function f of the real variable r > 0 with the property that
|f (r)| ≤Cg(r). Moreover, in order to avoid cumbersome notation, for r ∈ (tk+1, tk] we will
drop the subscript Mk from the gradient ∇Mk

on the manifold.

Proposition 16.2. — Under the assumptions of Theorem 15.5 we have, for every r ∈ (tk+1, tk],

D′(r)=−
∫

φ′
(

d(x)

r

)
d(x)

r2
|DN|2,(16.12)

H′(r)=
(

1
r
+O(1)

)

H(r)+ 2E(r),(16.13)

and

E(r)=−1
r

∫

φ′
(

d(x)

r

)∑

i

Ni(x) · (DNi(x)∇d(x)) .(16.14)
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Proof. — The first derivative is a straightforward computation. For the second, we
can follow the computations of [15, Proof of Proposition 9.5] to conclude that

H′(r)= 2E(r)− 1
r

∫

φ′
(

d(x)

r

)

#Mk
d(x)|N|2(x) ,

where #Mk
is the Laplace-Beltrami operator on the manifold Mk . Noticing that φ′

(
d(x)

r

)

vanishes unless C−1r ≤ |x| ≤Cr, our claim will follow once we show that

#Mk
d(x)= 1

d(x)
+O(1)= 1

d(x)
(1+O(d(x))) .

In order to show the latter estimate, we fix a point x ∈Mk and observe first that the
second fundamental form of the center manifold M̄k is bounded by C(E(T0,tk ,4R0)

1/2+
Atk), which in turn is bounded by Ctκk for some positive κ . By rescaling, the second fun-
damental form AMk

of Mk enjoys the bound ‖AMk
‖∞ ≤ Ctκ−1

k . On the other hand,
recalling that |x|−1|Dd −D|x|| + |D2d −D2|x|| ≤C it is easy to see that

∣
∣
∣
∣#Mk

d(x)− 1
d(x)

∣
∣
∣
∣≤

∣
∣
∣
∣#Mk

|x| − 1
|x|

∣
∣
∣
∣+C+C|x|‖AMk

‖∞
≤C+C‖AMk

‖∞ ≤Ctκk +C≤C . �

16.3. First variations and approximate identities. — We start by recalling that, since
T0,tk is area-minimizing and ∂T0,2tk C4R0 =Q ��k� C4R0 , then δT0,tk(X)= 0 for every
X which is tangent to �. In what follows we fix a C3 extension ϕ̃k of the function ϕ̄k to
[−4,4]2 ⊂V (by increasing the C3,ω estimate on ϕk by a constant factor) whose graph is
the center manifold M̄k and we denote by pk the orthogonal projection onto the graph
of ϕ̃k (which is of course defined only in a suitable normal neighborhood of it). We then
fix the two relevant vector fields with which we will test the stationarity condition:

Xo(p) := φ
(

dk(pk(p))

r

)

(p− pk(p)),

Xi(p) := −Y(pk(p)) := −1
2
φ

(
dk(pk(p)))

r

) ∇d2
k

|∇dk|2 (pk(p))

(note that ∇ means the gradient ∇M̄k
here).

Note that Xi is tangent to both M̄k and �k . Moreover, in [15, Sections 9.4 and
9.5], the estimates are done separately on both sides of �k . Thus, it applies to our sit-
uation directly with M+ = M̄k . Note also that the fifth error terms vanish for us as
our “ambient manifold” is Rn+2. We summarize the statements here and first define the
following function

ϕk(p) := φ
(

dk(pk(p))

r

)

.
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We also introduce the rescaled quantity

Ēk(ρ) := − 1
ρ

∫

M̄k

φ′
(

dk(x)

ρ

)∑

i

(N̄k)i(x) · (D(N̄k)i(x)∇dk(x))

and record the corresponding relation with E, namely

Ēk(t
−1
k r)= t−2

k E(r) .(16.15)

Proposition 16.3 (Outer variations). — Let Ak and HM̄k
denote the second fundamental form

and the man curvature of M̄k respectively. Assume
tk+1

tk
< r < 1. Then we have

|D̄k(r)− Ēk(r)| =
∣
∣
∣
∣
∣

∫

M̄k

(

ϕk|DN̄k|2 +
∑

i

((N̄k)i ⊗Dϕk) :D(N̄k)i

)∣
∣
∣
∣
∣

(16.16)

≤
4∑

j=1

|Erro
j |,

with

Erro
1 := −Q

∫

M̄k

ϕ〈HM̄k
,η ◦ N̄k〉,

|Erro
2| ≤C

∫

M̄k

|ϕk||Ak|2|N̄k|2,

|Erro
3| ≤C

∫

M

(|ϕk|(|DN̄k|2|N̄k||Ak| + |DN̄k|4)

+ |Dϕk|(|DN̄k|3|N̄k| + |DN̄k||N̄k|2|Ak|)
)
,

Erro
4 := δTF̄k

(Xo)− δT0,tk(Xo)= δTF̄k
(Xo).

For the inner variation, we introduce first a bit more of notation. First of all, we
see D(N̄k)j as a map from TM̄k to Rn+2. Denoting the components of (N̄k)j by (N̄k)j =
((N̄k)

1
j , . . . , (N̄k)

n+2
j ) and choosing a vector field Z tangent to M̄k , we write

D(N̄k)j(Z)= (DZ(N̄k)
1
j , . . . ,DZ(N̄k)

n+2
j ).

Similarly, we have

D(N̄k)jDM̄k Y(Z)=D(N̄k)j(DM̄k Y(Z))

= (DDM̄k Y(Z)(N̄k)
1
j , . . . ,DDM̄k Y(Z)(N̄k)

n+2
j ).
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Thus, for the scalar product D(N̄k)j :D(N̄k)jDM̄k Y, we choose an orthonormal frame e1,
e2 of TM̄k and express

D(N̄k)j :D(N̄k)jDM̄k Y=
∑

�

〈De�(N̄k)j,DDM̄k Y(e�)
(N̄k)j〉

=
∑

�,i

De�(N̄k)
i
jDDM̄k Y(e�)

(N̄k)
i
j .

We further introduce the quantity

G(r) := −r−2

∫

Mk

φ

(
d

r

)
d

|∇d|2
∑

j

|D(Nk)j · ∇d|2

and its correspoding rescaled version

Ḡk(ρ)=−ρ−2

∫

M̄k

φ

(
dk

ρ

)
dk

|∇dk|2
∑

j

|D(N̄k)j · ∇dk|2 ,

while we record the corresponding relation as in (16.4)-(16.8):

Ḡk(t
−1
k r)= t−1

k G(r) .(16.17)

Proposition 16.4 (Inner variations). — Under the above assumptions we have

∣
∣D̄′

k(r)−O(tκk )D̄k(r)− 2Ḡk(r)
∣
∣(16.18)

= 2
r

∣
∣
∣
∣
∣
∣

∫

M̄k

⎛

⎝
∑

j

D(N̄k)j :D(N̄k)jDM̄k Y− 1
2
|DN̄k|2divM̄k

Y

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ 2
r

4∑

j=1

|Erri
j |,

with

Erri
1 :=Q

∫

M̄k

(〈HM̄k
,η ◦ N̄k〉divM̄k

Y+ 〈DYHM̄k
,η ◦ N̄k〉

)
,

|Erri
2| ≤C

∫

M̄k

|Ak|2
(|DY||N̄k|2 + |Y||N̄k||DN̄k|

)
,

|Erri
3| ≤C

∫

M̄k

(|DN̄k|2|Y||Ak|(|N̄k| + |DN̄k|)

+ |DY|(|A||N̄k|2|DN̄k| + |DN̄k|4)
)
,
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Erri
4 := δTF̄k

(Xi)− δT0,tk(Xi)= δTF̄k
(Xi).

Proof. — The arguments for the proposition are the same as in [15, Proposition
9.10] and indeed they are based on the Taylor expansions of [9, Theorems 4.2 & 4.3].
However some more care is required because the term O(tκk )D(r) appears in the corre-
sponding inequality (namely [15, (9.28)] as O(1)D(r). The reason for the improvement
is based on the computations [15, (9.29)] and [15, Lemma 9.2]: the improvement follows
easily from the fact that:

– The curvature of the rescaled boundary �k is bounded by tk ;
– The C3 norm of the function ϕ̄k (whose graph is the center manifold M̄k )

is bounded by (E(T0,tk ,C4R0) + ‖ψk‖C3,α0 )
1/2, where ψk is the function whose

graph describes �k ; we thus have ‖ϕ̄k‖C3 ≤Ctτk . �

16.4. Families of subregions for estimating the error terms. — We want to estimate the
error terms over the Whitney regions in order to use the separation estimate (Proposition
14.1) and the splitting before tilting estimates (Proposition 14.4). To achieve this goal we
goes along the same lines of [15, Section 9.6] and apply the arguments of [15, Section 9.6]
to the current T0,tk that gives rise to the center manifold M̄k . Notice that in each error
term, there is the cut-off φ(dk/r), thus it is enough to consider squares which intersect
B+

r := {x ∈ V0 ∩D : dk(ϕ̄k(x)) < r}. However, to sum the estimates over all squares, we
prefer the regions over which we integrate to be disjoint. For this purpose, we define a
Besicovitch-type covering.

From now on we fix all the constants from Assumption 10.7 and treat them as
geometric constants. We are going to consider the Whitney decomposition and the cor-
responding family W e, W h, W n of squares whose definition is detailed in Section 10. Note
that the construction is not applied to the current T and the boundary �, but rather to
the rescaled current T0,tk and the rescaled boundary �k . Note that the assumptions for
the construction apply for each k. For our notation to be more precise we should add the
dependence on k of the various families W , however, since k is fixed at this stage, in order
to make our formulas simpler we drop such dependence.

First we consider all squares which stopped for the excess or the height and which
influence some square intersecting B+

r .

Definition 16.5. — We define the family T to be

T := {
L ∈W e ∪W h : L∩B+

r 	= ∅
}

∪ {
L ∈W e : there is an L′ ∈W n(L) such that L′ ∩B+

r 	= ∅
}
.

Notice that because in a chain of squares in W n, the sidelengths always double, we
have for each L ∈ T

sep(L,B+
r ) := inf{|x− y| : x ∈ L, y ∈B+

r } ≤ 3
√

2�(L).
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To each such square L ∈ T , we associate a ball B(L) which we call satellite ball.
Preferably this ball is contained in the square and with radius comparable to the side-
length. However, as not every square in T is contained in D, we choose instead a nearby
ball. Moreover we want that the concentric ball with twice the radius to be contained
in B+

r . Notice that because of the intervals of flattening (15.3), the largest square L con-
tributing to the center manifold and intersecting B+

r satisfies �(L)≤ 1
64
√

2
r.

– If B�(L)/2(xL)⊂B+
r , we define B(L) := B�(L)/4(xL).

– If B�(L)/2(xL) � B+
r , we choose a point y ∈ ∂B+

r minimizing the distance to L.
We then move along the direction of the interior normal to y by a distance �(L)
to select the new point qL. Notice that if εCM is small enough,

B(L) := B�(L)/4(qL)⊂B+
r .

By construction and the estimates on dk , we have if εCM is small enough,

|qL − xL| ≤ 5
√

2�(L) and thus dist(qL,L)≤ 4
√

2�(L).

From this family T , we now choose a maximal subfamily T for which the satellite
balls are disjoint. Denote by S := sup{�(L) : L ∈ T }. We define T1 ⊂ {L ∈ T : 1

2S ≤
�(L)≤ S} to be a maximal subfamily for which the associated satellite balls are pairwise
disjoint. We inductively define Tk+1 ⊂ {L ∈ T : 2−k−1S≤ �(L)≤ 2−kS} to be a maximal
subfamily such that all the satellite balls B(L′) with L′ ∈T1∪· · ·∪Tk are pairwise disjoint.
Finally we define T to be the union of all the Tk . As we want to cover all of B+

r , we
associate to each square in L ∈T the nearby squares of T whose satellite balls intersect
B(L) and the domain of influence W n(L). Indeed, by a standard covering argument,
notice that if H ∈ T , then there is at least one square L ∈ T such that dist(H,L) ≤
20
√

2�(L). We fix an arbitrary choice to partition T into families T (L) such that L ∈T ,
for any H ∈ T (L) we have �(H)≤ 2�(L) and dist(H,L)≤ 20

√
2�(L). Now we add the

rest of B+
r and define

W (L) :=
⋃

H∈T (L)
W n(H)∪ {H}.

The associated Whitney regions will be called U(L)⊂M,

U(L) :=
⋃

H∈W (L)

�̄k(H) ,

where the map �̄k is the parametrization of the center manifold induced by ϕ̄k , namely
�̄k(x)= (x, ϕ̄k(x)).

For simplicity of notation, we enumerate T = {Li}i and denote

B+r := �̄k(B
+
r )= M̄k ∩ {dk < r},
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Ui := U(Li)∩B+r ,

Bi := �̄k(B(Li)),

�i := �(Li).

Notice that by construction, every satellite ball B(Li) has distance at least �i/4 to
∂B+

r . In particular, there is a geometric constant c> 0 such that

c
�i

r
≤ inf

p−1
k (Bi)

ϕk = inf
Bi
ϕk.

As in [15, Section 9.6.2], we conclude that there is a geometric constant C> 0 such that

sup
p−1

k (Ui)

ϕk = sup
Ui

ϕk ≤C inf
p−1

k (Ui)

ϕk =C inf
Ui

ϕk,(16.19)

∑

H∈W (Li)

�(H)2 ≤C�2
i .(16.20)

We next define

m0(k) := E(T0,tk ,C5R0)+ ‖ψk‖C3,α0 .

Applying the estimates of Theorem 10.21 and Corollary 10.19(ii) in each square of W (Li)

and summing over them yields

Lip(N̄k|Ui
)≤Cm0(k)

γ2�
γ2
i ,(16.21)

‖N̄k‖C0(Ui) + sup
spt(T)∩p−1(Ui)

|p⊥| ≤Cm0(k)
1
4 �

1+β1
i ,(16.22)

‖TF̄k
−T0,tk‖(p−1

k (Ui))≤Cm0(k)
1+γ2�

4+γ2
i ,(16.23)

∫

Ui

|DN̄k|2 ≤Cm0(k) �
4−2δ1
i ,(16.24)

∫

Ui

|η ◦ N̄k| ≤Cm0(k)�
4+ γ2

2
i +C

∫

Ui

|N̄k|2+γ2 .(16.25)

On the other hand, we can use the Separation Proposition 14.1, the Splitting
Proposition 14.4 and the estimates (16.19), (16.20) to deduce estimates on the normal
approximation as stated in the next lemma.
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Lemma 16.6. — Assume the assumption 10.18 holds. Then there is a geometric constant C0
2

such that

m0(k)
∑

i

(

�
4+2β1
i inf

Bi
ϕk

)

≤C0D̄k(r),(16.26)

m0(k)
∑

i

�
4+β1
i ≤C0

∫

B+r
|DN̄k|2 ≤C0(D̄k(r)+ rD̄′

k(r)).(16.27)

Moreover, we have

m0(k) sup
i

�i ≤C0(rD̄k(r))
1/(5+β1) and

m0(k) sup
i

(

�i inf
Bi
ϕk

)

≤C0D̄k(r)
1/(4+β1),

(16.28)

and

D̄k(r)≤C0m0(k)r
4−2δ1 ≤C0t2κ

k r4−2δ1 .(16.29)

Proof. — The proof goes completely analogous to the one of [15, Lemma 9.13]
and we summarize it here. Fix an Li ∈T . If Li ∈W h, it is an interior square and we can
use Proposition 14.1 to deduce

∫

Bi

|N̄k|2 ≥ c0m0(k)
1
2 �

4+2β1
i .(16.30)

On the other hand, if Li ∈W e, then Li can be either a boundary square or an interior
square. However the satellite ball does not intersect the boundary and also we can apply
Proposition 14.4 in both situations. Thus, we have

∫

Bi

|DN̄k|2 ≥ c0m0(k)�
4−2δ1
i ,(16.31)

∫

Bi

ϕ|DN̄k|2 ≥ c0m0(k)�
4−2δ1
i inf

Bi
ϕk.(16.32)

Summing over all squares and using (16.30), (16.31) and (16.32), we conclude

m0(k)
∑

i

�
4+2β1
i inf

Bi
ϕk ≤C0

∫

B+r

(|N̄k|2 + ϕk|DN̄k|2
)
,

m0(k)
∑

i

�
4+2β1
i ≤C0

∫

B+r

(|N̄k|2 + |DN̄k|2
)≤C0

∫

B+r
|DN̄k|2,

2 Here and in the sequel we call a constant geometric if it depends only on n, Q, N0, M0, C�
e , C�

e , Ch which we
fixed.
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where we used the Poincaré inequality and the fact that N̄k vanishes on �k . We conclude
by noticing that, as φ′ = −2 in [ 1

2 ,1], we have
∫

{r/2<dk<r}∩M̄k

|DN̄k|2 ≤ rD̄′
k(r) ,

∫

{dk<r/2}∩M̄k

|DN̄k|2 ≤ D̄k(r) .

(16.29) is a consequence of (16.24). �

We end this section with estimating the error terms (compare with [15, Proposition
9.14]).

Proposition 16.7. — There are constants C, τ > 0 such that

|Erro
1| + |Erro

3| + |Erro
4| ≤CD̄k(r)

1+τ ,(16.33)

|Erro
2| ≤Ct2κ

k S̄k(r)≤Ct2κ
k r2D̄k(r)(16.34)

and

|Erri
1| + |Erri

3| + |Erri
4| ≤CD̄k(r)

τ
(
D̄k(r)+ rD̄′

k(r)
)
,(16.35)

|Erri
2| ≤Ct2κ

k rD̄k(r).(16.36)

Proof. — The detailed estimates can be found in the proof of [15, Proposition
9.14]. Notice that as there it is done for either side of the boundary separately, and as
we have the same estimates on N, it applies directly to our situation. The idea is as fol-
lows. First we notice that

|Y(p)| ≤ ϕ(p)dk(pk(p)) and |DY(p)| ≤C1B+r (pk(p)).

Then because of the Theorem 10.16, both the second fundamental form and the mean
curvature of M̄k are bounded (and their derivatives) are bouned by Ctκk . The remaining
terms in the errors can be split into the regions Uj and then be estimated by powers of
m0(k) and �j using (16.21)–(16.25). Choosing τ # δ1 and recalling that δ1 ≤ β1 ≤ γ1/8,
we see that the powers are higher than what we need for (16.26) and (16.27). Thus with
(16.28) we gain the additional D̄k(r)

τ .
The only relevant difference in the estimates of [15, Proposition 9.14] is in the

terms Erri
2 and Eo

2, where our estimates have an improved factor Ct2κ
k in the right hand

side. But this follows easily from the fact that in our case we take advantage of ‖Ak‖∞ ≤
Ctκk , while in [15, Proposition 9.14] the second fundamental form of the center manifold
is only known to be bounded by a constant. �
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16.5. Proof (15.12) and (15.13). — In order to prove (15.12) we exploit (16.4) and
(16.29): we assume tk+1 < r < tk and estimate

D(r)= t2
k D̄k(t

−1
k r)≤Ct2+2κ

k (t−1
k r)4−2δ1 ≤Cr2+2κ .

In order to prove (15.13) we follow the computations of [15, Section 9.1], but in our
setting some additional complications are created by the fact that we need to scale back
our estimates for the rescaled quantities D̄k , H̄k , S̄k , Ḡk , and S̄k . First of all we recall
(16.13):

H′(r)= r−1H(r)+ 2E(r)+O(1)H(r) .(16.37)

Next we combine (16.16), (16.33), and (16.34) to get

|D̄k(t
−1
k r)− Ēk(t

−1
k r)| ≤CD̄k(t

−1
k r)1+τ +Ct2τ

k S̄k(t
−1
k r).(16.38)

We next can use (16.4), (16.6), and (16.15) to conclude

|D(r)− E(r)| ≤CD(r)(t−2
k D(r))τ +Ct2τ−2

k S(r) .(16.39)

Next recall that D(r)≤Cr2+2κ . Since r ≤ tk we can write

t−2
k D(r)≤Ct−2

k r2D(r)1− 2
(2+2κ) ≤CD(r)1− 1

(1+κ) .

Thus, at the prize of choosing τ smaller, we can translate (16.39) into

|D(r)− E(r)| ≤CD(r)1+τ +Ct2τ−2
k S(r) .(16.40)

The final ingredient is derived by first combining (16.18), (16.35), and (16.36) to get

|D̄′
k(t
−1
k r)+O(t2κ

k )D̄k(t
−1
k r)− Ḡk(t

−1
k r)|(16.41)

≤ C

t−1
k r

D̄k(t
−1
k r)τ

(
D̄k(t

−1
k r)+ t−1

k rD̄′
k(t
−1
k r)

)+Ct2κ
k D̄k(t

−1
k r) ,

which in turn, using (16.4), (16.17), and (16.15) becomes

|D′(r)+O(t2κ−1
k )D(r)− 2G(r)|(16.42)

≤C(t−2
k D(r))τ (r−1D(r)+D′(r))+Ct2κ−1

k D(r) .

But then, arguing as for (16.40) we can achieve

|D′(r)− 2G(r)| ≤Ct2κ−1
k D(r)+CD(r)τ (r−1D(r)+D′(r)) .(16.43)

We are now ready to estimate d

dr
log I(r). We start by writing

d

dr
log I(r)= 1

r
+ D′(r)

D(r)
− H′(r)

H(r)
.(16.44)
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Hence, using (16.37) we write

d

dr
log I(r)≥−C+ D′(r)

D(r)
− 2E(r)

H(r)
.(16.45)

Next recall (15.12) while Lemma 16.1 implies that for σ ∈]0,1[ we have

t2σ−2
k S(r)≤Cr2t2σ−2

k D(r)≤Cr2σD(r) .(16.46)

In combination with the last two bounds, (16.40) becomes (after possibly choosing a new
positive τ )

|D(r)− E(r)| ≤CrτD(r) ,(16.47)

which in turn implies

D(r)
2
≤ E(r)≤ 2D(r) ,(16.48)

provided r ≤ r0 is sufficiently small with r0 > 0 depending only on C and τ .
By (16.48) we can turn (16.40) into

|E(r)−1 −D(r)−1| ≤CD(r)τ−1 +Ct2τ−2
k

S(r)
D(r)2

.(16.49)

Inserting the latter into (16.45) (and considering that D′(r)≥ 0) we then get

d

dr
log(I(r))≥ D′(r)

E(r)
− 2E(r)

H(r)
−C

D′(r)
D(r)1−τ −Ct2κ−2

k

S(r)D′(r)
D(r)2

−C .(16.50)

We can finally insert (16.43) to achieve

d

dr
log(I(r))≥2G(r)

E(r)
− 2E(r)

H(r)
−C

D(r)
E(r)

(
D(r)τ

r
+ D′(r)

D(r)1−τ + t2τ−2
k

)

(16.51)

−C
D′(r)

D(r)1−τ −Ct2κ−2
k

S(r)D′(r)
D(r)2

−C .

Next note that:

– G(r)H(r)≥ E(r)2, by Cauchy-Schwarz;
– D(r)

E(r) ≤C;
– D(r)≤Cr2+2κ .
– We can rewrite −S(r)D′(r)

D(r)2 = d

dr

S(r)
D(r) − S′(r)

D(r) , and it is easy to see that S′ is positive.

So, after possibly choosing τ smaller, yet positive, we achieve

d

dr

(

log I(r)+CD(r)τ −Ct2τ−2
k

S(r)
D(r)

)

≥−Crτ−1 .(16.52)
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17. Proof of Theorem 15.5: Part II

This section is devoted to prove (15.14). We observe that the functions

t �→H(t) and t �→D(t)

are continuous on each interval (tk, tk+1] and have a right and left limit at each tk . We can
thus set

I(t+k )= lim
t↓tk

tD(t)
H(t)

= tkD(t+k )
H(t+k )

and I(t−k )= lim
t↑tk

tD(t)
H(t)

= tkD(t−k )
H(t−k )

.

In order to simplify our notation we use the shortcut E(T, r) for E(T,Br). We will
show the following two propositions

Proposition 17.1. — There is a constant C independent of k such that, if εCM is small enough

then

C−1t2
k E(T,6tk)≤D(t+k )≤Ct2

k E(T,6tk) ,(17.1)

C−1t2
k E(T,6tk)≤D(t−k )≤Ct2

k E(T,6tk) ,(17.2)

C−1t3
k E(T,6tk)≤H(t+k )≤Ct3

k E(T,6tk) ,(17.3)

C−1t3
k E(T,6tk)≤H(t−k )≤Ct3

k E(T,6tk) .(17.4)

Proposition 17.2. — There is a positive exponent τ1 independent of k such that, if εCM is small

enough then

|D(t+k )−D(t−k )| ≤Ct2
k E(T,6tk)

1+τ1,(17.5)

|H(t+k )−H(t−k )| ≤Ct3
k E(T,6tk)

1+τ1 .(17.6)

Observe that the estimates (17.2) (the second one), (17.3) (the first one), (17.4) (the
first one), (17.5), and (17.6) imply

|I(t+k )− I(t−k )| ≤CE(T,6tk)
τ1 ≤Ct

2κτ1
k .(17.7)

On the other hand, by the choice of N0 in Assumption 10.7, by (15.7), we get
tk

tk−1
≤ 1

2 , which iterated implies tk ≤ 2−k . We therefore get

|I(t+k )− I(t−k )| ≤C2−2κτ1k ,(17.8)

which clearly implies (15.14).

Proof of Proposition 17.1. — As the center manifold M̄k−1 stopped, and we are close
to the boundary, it must have stopped for the excess and thus, there is a square L ∈W e
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such that c tk
tk−1
≤ �(L)≤ C tk

tk−1
(recall Section 15.1). Looking at its ancestors (as we did in

Proposition 10.12), we notice

E(T, ρtk)= E(T0,tk−1, ρtk/tk−1)≤Cm0(k− 1)
(

ρ
tk

tk−1

)2−2δ1

,(17.9)

for every 1≤ ρ ≤ 5R0
tk−1

tk
and some geometric constant C. Here we denote by m0(k− 1)

and m0(k) the two quantities

m0(k− 1)= E(T0,tk−1,C5R0)+ ‖ψk−1‖2
C3,α(]−5R0,5R0[),

m0(k)= E(T0,tk ,C5R0)+ ‖ψk‖2
C3,α(]−5R0,5R0[) ,

where we recall that the functions ψk and ψk−1 are the ones describing the rescaled
boundaries �k and �k−1, introduced in the previous section. Observe that, since ψk(0)=
ψk−1(0)= 0 and ψ ′k(0)=ψ ′k−1(0)= 0, it can be readily checked that

‖ψk‖2
C3,α(]−5R0,5R0[) ≤

t2
k

t2
k−1

‖ψk−1‖2
C3,α(]−5R0,5R0[) ,

so that we have

m0(k)≤ E(T,C5R0tk)+
t2
k

t2
k−1

m0(k − 1)≤Cm0(k− 1)
(

tk

tk−1

)2−2δ1

,(17.10)

where we also used (17.9). On the other hand, because of the stopping condition we also
know that

E(T,6tk)= E(T0,tk−1,6tk/tk−1)≥C−1m0(k− 1)
(

tk

tk−1

)2−2δ1

.(17.11)

In particular, we infer by (17.10) that

E(T,6tk)≥C−1m0(k) .(17.12)

From now on, since we will need to compute the “regularized” Dirichlet energies
and the “regularized” height functions D and H for different normal approximations on
different center manifolds, we introduce the notation D(N, s) and H(N, s), highlighting
which function enters in the respective expression (while the center manifold should be
clear from the context).

In particular we observe that, following this convention, D(t+k )= D(Nk−1, tk) and
H(t+k )=H(Nk−1, tk), while D(t−k )=D(Nk, tk) and H(t−k )=H(Nk, tk).

Observe now that for D(N̄k,1) we have the inequality

D(N̄k,1)≤Cm0(k)
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by construction of the center manifold (i.e. (10.21)). In turn, by rescaling, we can conclude

D(Nk, tk)= t2
k D(N̄k,1)≤Ct2

k m0(k)≤Ct2
k E(T,6tk) ,

namely the second of the two inequalities in (17.2). Then we observe that (17.1) and
(17.3) follow from the Splitting Proposition 14.4 applied to the current T0,tk−1 which in
turn produces the center manifold M̄k−1 and the normal approximation N̄k−1 as we
are in the situation where the center manifold stopped. Moreover, we recall that by the
Poincaré inequality (as already observed in (15.11) and proved in Section 16), we have for
any r > 0

H(Nk, r)≤CrD(Nk, r) .

Thus (17.4) and (17.2) follow once we have shown the following inequalities

D(Nk, tk)≤Ct2
k E(T,6tk)≤Ct−1

k H(Nk,6tk) .(17.13)

For the second inequality in (17.13) we adapt the proof of [10, Proposition 3.7] as
the only difference to our situation is the cut-off function. We describe here the idea of
the argument, the details can be read in [10, Section 9]. Again recall the square L ∈W e

which stopped in the construction of M̄k−1 according to the argument above. By the
splitting Proposition 14.4, we then have a nearby ball B�/4(z) not intersecting �0,tk−1 such
that

m0(k− 1)
(

tk

tk−1

)6−2δ1

≤C
∫

�̄k−1(B�/4(z))
|N̄k−1|2 .

The argument of [10, Section 9] provides now a similar bound for the ball B′ =
2 tk−1

tk
B�/4(z), which has radius comparable to 1, in the center manifold M̄k . More pre-

cisely, since
(

tk−1
tk

)4
is exactly the scaling relating the L2 norm on B′ and B�/4(z), while

(
tk−1

tk

)2−2δ1

is the scaling factor which makes m0(k) and m0(k − 1) comparable, the cor-
responding estimate is given by

m0(k)≤C
∫

�̄k(B′)
|N̄k|2 .

Applying the rescaling which relates M̄k and Mk , we find a corresponding rescaled ball
B′′ (of radius comparable to tk )

m0(k)t
4
k ≤C

∫

B′′∩Mk

|Nk|2 .
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Using that the center z of the ball can be chosen arbitrarily as long as it is at a distance
from L compared to its diameter, we can ensure that −d(p)−1φ′(t−1

k d(p)) ≥ ct−1
k on B′′

(for some positive geometric constant c). We thus get

m0(k)t
3
k ≤−

∫

B′′∩Mk

|Nk|2φ
′(t−1

k d(p))

d(p)
≤CH(Nk, tk) .

However Ek(T,6tk) ≤ Cm0(k), and we have thus completed the proof of the second
inequality in (17.13). �

Proof of Proposition 17.2. — Define for p ∈Mk the map Fk(p) =∑
i �p+ (Nk)i(p)�

and for q ∈Mk−1 the map Fk−1(q) =∑
i �q+ (Nk−1)i(q)�. Moreover denote by Ek :=

E(T,6tk) and Ck := C2tk(0,V0). In order to compare Nk and Nk−1, we first apply The-
orem 10.21 to the rescaled currents T0,tk and T0,tk−1 to derive corresponding estimates
for the normal approximations N̄k and N̄k−1 of the currents on M̄k and M̄k−1. We then
scale them back to find corresponding estimates for Nk and Nk−1. During this process we
also observe that, by (17.9) and (17.10), we have

m0(k)+m0(k − 1)
(

tk

tk−1

)2−2δ1

≤CEk .(17.14)

Moreover, we will prove later

‖ϕk−1‖C0(B2tk
) ≤CtkE

1
2
k ,(17.15)

‖Dϕk−1‖C0(B2tk
) ≤CE

1
2
k ,(17.16)

‖D2ϕk−1‖C0(B4tk
) ≤Ct−1

k−1m0(k− 1)
1
2 ≤Ct−1

k E
1
2
k ,(17.17)

‖ϕk‖C0(B2tk
) ≤CtkE

1
2
k ,(17.18)

‖Dϕk‖C0(B5tk
) ≤Cm0(k)

1
2 ≤CE

1
2
k ,(17.19)

‖D2ϕk‖C0(B5tk
) ≤Ct−1

k m0(k)
1
2 ≤Ct−1

k E
1
2
k ,(17.20)

‖D(ϕk −ϕk−1)‖2
L2(B2tk

)
≤Ct2

k E1+2γ2 .(17.21)

In particular we get by (17.14), (10.19), and (10.21) after rescaling back

Lip(Nk)+ Lip(Nk−1)≤CEγ2
k ,(17.22)

M(TFk
Ck −TFk−1 Ck)

≤M(TFk
Ck −T Ck)+M(T Ck −TFk−1 Ck)≤Ct2

k E1+γ2
k .

(17.23)



CAMILLO DE LELLIS, STEFANO NARDULLI, SIMONE STEINBRÜCHEL

Thus, we set N̂k to be the Q-valued function defined on Mk−1 satisfying

GN̂k
Ck =TFk

Ck =GNk
Ck =: S ,

where with GN̂k
we mean the current associated to the function p �→ p+ N̂k(p). By com-

paring D(Nk, tk) with D(N̂k, tk) and H(Nk, tk) with H(N̂k, tk) we make an additional er-
ror of size t2

k E1+γ2
k and size t3

k E1+γ2
k respectively. We will prove this later. With this aim

in mind we change coordinates in the integrals of D and H to flat ones. Denote by
�k(x) := (x,ϕk(x)) and �k−1(x) := (x,ϕk−1(x)). We then estimate

∣
∣
∣D(Nk, tk)−

∫

|DNk|2(�k(x))φ
(
t−1
k d(�k(x))

)
dx

∣
∣
∣

≤C
∫

B2tk

|DNk|2(�k(x))φ
(
t−1
k d(�k(x))

) |D�k(x)− (Id ,0)| dx

≤C‖Dϕk‖C0(B2tk
)

∫

|DNk|2(�k(x))φ
(
t−1
k d(�k(x))

)
J�k(x)dx

≤Ct2
k E

3
2
k ,

where we used (17.2) and (17.19) for the last inequality. Analogous estimates can be em-
ployed for D(N̂k, tk), H(Nk, tk), and H(N̂k, tk).

Therefore, it is enough to prove
∣
∣
∣
∣

∫

|DNk|2φ
(
t−1
k d(�k(x))

)
dx−

∫

|DN̂k|2φ(t−1
k d(�k−1(x)))dx

∣
∣
∣
∣(17.24)

≤Ct2
k E1+γ2

k ,
∣
∣
∣
∣

∫

|Nk|2φ
′(t−1

k d(�k(x)))

d(�k(x))
dx−

∫

|N̂k|2φ
′(t−1

k d(�k−1(x)))

d(�k−1(x))
dx

∣
∣
∣
∣(17.25)

≤Ct3
k E1+γ2

k .

For (17.24), notice that Nk(p)=∑
i �(Fk)i(p)− p�. Hence, each component of Nk satisfies

|D(Nk)i(�k(x))| ≤C |T(Fk)i(x)TFk
−T�k(x)Mk| ,

where TqTFk
denotes the unit m-vector orienting TFk

at the point q.
By the Lipschitz bound of ϕk (17.19) and of Fk , we then use the area formula to

estimate
∫

|DNk|2φ
(
t−1
k d(�k(x))

)

≤C
∫

C
|�S(p)− �Tpk(p)Mk|2φ(t−1

k d(pk(p)))d‖S‖(p)+O(t2
k E1+γ2

k ) ,
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∫

|DN̂k|2φ(t−1
k d(�k−1(x)))

≤C
∫

C
|�S(p)− �Tpk−1(p)Mk−1|2φ(t−1

k d(pk−1(p)))d‖S‖(p)

+O(t2
k E1+γ2

k ) ,

where we denoted by pk and pk−1 the nearest point projection on Mk and Mk−1 respec-
tively, while C is the vertical cylinder with base B2tk . In fact for the first estimate we can
appeal to Corollary 10.22 (more specifically to (10.20)), but for the second estimate we
need to use the local versions of Theorem 10.21 and sum over all the relevant Whitney
cubes L: the validity of the second estimate is thus due to the fact that the Whitney cubes
do not overlap and that their diameters are bounded above by Ctk .

As we have from Theorem 10.16 that ‖ϕk − ϕk−1‖C2 ≤ Ct−1
k E

1
2
k , by the Lipschitz

bound of φ, we deduce for any p ∈ spt(S) and q, q′ ∈Mk ,

|φ(t−1
k d(pk(p)))− φ(t−1

k d(pk−1(p)))| ≤CE1/2
k ,

|TqMk −Tq′Mk| ≤Ct−1
k E

1
2
k |q− q′| .

Hence, we have
∫

C
|�S(p)− �Tpk(p)Mk|2|φ(t−1

k d(pk(p)))− φ(t−1
k d(pk−1(p))|d‖S‖(p)

≤Ct2
k E

3
2
k ,

|Tpk(p)Mk −Tpk−1(p)Mk−1|
≤C|Dϕk(pV0(pk(p)))−Dϕk−1(pV0(pk−1(p)))|
≤CEk + |D(ϕk −ϕk−1)|(pV0(p))

where we used (10.19) in the last inequality. We therefore can conclude
∣
∣
∣
∣
∣

∫

|DNk|2φ
(
t−1
k d(�k(x))

)
dx−

∫

B2tk

|DN̂k|2φ(t−1
k d(�k−1(x)))dx

∣
∣
∣
∣
∣

≤Ct2
k E1+γ2

k

+C
∫

C
|�S(p)− �Tpk(p)Mk|2

× |φ(t−1
k d(pk(p)))− φ(t−1

k d(pk−1(p)))| d‖S‖

+C
∫

C

∣
∣
∣|�S(p)− �Tpk(p)Mk|2 − |�S(p)− �Tpk−1(p)Mk−1|2

∣
∣
∣
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× φ(t−1
k d(pk−1(p))) d‖S‖

≤Ct2
k E1+γ2

k

+C
∫

C
|�S(p)− �Tpk(p)Mk|

× |�Tpk(p)Mk − �Tpk−1(p)Mk−1|φ(t−1
k d(pk(p))) d‖S‖

+C
∫

C
|�S(p)− �Tpk−1(p)Mk−1|

× |�Tpk(p)Mk − �Tpk−1(p)Mk−1|φ(t−1
k d(pk(p))) d‖S‖

≤Ct2
k E1+γ2

k

+CtkE
1
2
k

(∫

C
| �Tpk(p)Mk − �Tpk−1(p)Mk−1|2φ(t−1

k d(pk(p))) d‖S‖
) 1

2

≤Ct2
k E1+γ2

k +CtkE
1/2
k

(∫

B2tk

|Dϕk −Dϕk−1|2
) 1

2

≤Ct2
k E1+γ2

k ,

where we used (17.21) for the last inequality.
We finally turn to (17.25). For x ∈ V0, denote by zk := (x,ϕk(x)) and ẑk :=

(x,ϕk−1(x)). Then we estimate

∣
∣
∣|Nk|2(zk)− |N̂k|2(ẑk)

∣
∣
∣≤ |Nk|(zk)

∣
∣
∣|Nk|(zk)− |N̂k|(ẑk)

∣
∣
∣

+ |N̂k|(ẑ)
∣
∣
∣|Nk|(zk)− |N̂k|(ẑk)

∣
∣
∣ .

Moreover, using Cauchy-Schwarz and the fact that the L2 norm of Nk and N̂k is bounded
by t2

k E1/2
k , we have

∣
∣
∣
∣

∫

|Nk|2φ
′(t−1

k d(zk))

d(zk)
dx−

∫

|N̂k|2φ
′(d((ẑk))

d(ẑk)
dx

∣
∣
∣
∣(17.26)

≤CtkE
1
2
k

(∫

B2tk

∣
∣
∣|Nk|(zk)− |N̂k|(ẑk)

∣
∣
∣
2

dx

) 1
2

.
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FIG. 4. — An illustration of how Lemma 17.3 is used

If we now define pi := (Fk)i(x) and qi := (F̂k)i(x) := ẑk + (N̂k)i(ẑk), we have (up to re-
ordering the indices)

|Nk|(zk)=
(
∑

i

|pi − zk|2
) 1

2

, |N̂k|(ẑk)=
(
∑

i

|qi − ẑk|2
) 1

2

.

Now we use the triangle inequality to see

∣
∣
∣|Nk|(zk)− |N̂k|(ẑk)

∣
∣
∣
2 =

∣
∣
∣
∣
∣

(∑

i

|pi − zk|2
) 1

2 −
(∑

i

|qi − ẑk|2
) 1

2

∣
∣
∣
∣
∣

2

≤C
∑

i

|pi − qσ(i)|2 +C|zk − ẑk|2

=CG
(∑

i

�pi� ,
∑

i

�qi�
)2 +C|ϕk(x)−ϕk−1(x)|2 ,

for σ the permutation realizing the distance G
(∑

i �pi� ,
∑

i �qi�
)

.
Note that, since ϕk and ϕk−1 agree on the boundary pV0(�), we can use (17.21)

and the Poincaré inequality to conclude

‖ϕk −ϕk−1‖L2(B2tk
) ≤Ctk‖Dϕk −Dϕk−1‖L2(B2tk

) ≤Ct2
k E1/2+γ2

k .(17.27)

To estimate further we split the distance G
(∑

i �pi� ,
∑

i �qi�
)

into a horizontal

and vertical part in the following sense. We define V := ẑk+Tẑk
Mk−1, Ṽ := zk+Tzk

Mk ,
V′ := ẑk +Tzk

Mk and
∑

i �q′i� := 〈S,pV′,0〉. Observe that V and V′ differ by a rotation,
while V′ and Ṽ are parallel. We then apply the Lemma 17.3 (see Figure 4) to the shifted
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situation where ẑk = 0 and deduce

G
(∑

i

�qi� ,
∑

i

�q′i�
)
≤CLip(Fk)‖Nk‖C0(|V−V0| + |V′ −V0|)

≤CLip(Fk)‖Nk‖C0(|Dϕk| + |Dϕk−1|)
≤CtkE

3
4+γ2

k ,

where in the last inequality we used (17.16) and (17.19). In order to estimate G
(∑

i �pi� ,
∑

i �q′i�
)

, we call fṼ : Tzk
Mk → AQ(Rn) the function having the same graph as Fk in

C2tk . Observe that

∣
∣Tzk

Mk −V0

∣
∣≤Ctk‖D2ϕk‖C0 ≤CE

1
2
k

and by [9, Proposition 5.2]

Lip(fṼ)≤CEγ2
k .

Then we observe that
∑

i �pi� =∑
i �fṼi(zk)� and

∑
i �q′i� =

∑
i

�
fṼi(pTpMk

(ẑk))
�

. Thus
we have

G
(∑

i

�pi� ,
∑

i

�q′i�
)
≤ Lip(fṼ)|zk − pTzk

Mk
(ẑk)|

≤ Lip(fṼ)(||ϕk||C0 + ||ϕk−1||C0)

≤CtkE
1
2+γ2

k .

Squaring and integrating (and using (17.27)), we deduce
∫

B2tk

∣
∣
∣|Nk|(zk)− |N̂k|(ẑk)

∣
∣
∣
2 ≤Ct4

k E1+2γ2
k .

Inserting in (17.26) we conclude
∣
∣
∣
∣

∫

|Nk|2φ
′(t−1

k d(zk)

d(zk)
dx−

∫

|N̂k|2φ
′(t−1

k d((ẑ))

d(ẑ)
dx

∣
∣
∣
∣≤Ct3

k E1+γ2 .

It remains to prove (17.15)-(17.21).
(17.19) and (17.20) follow from Theorem 10.16 using a simple rescaling and

(17.14). Next, for ϕk−1 the estimate on the second derivative derived from Theorem 10.16
and (17.14) is favourable, as it gives directly (17.17). However the estimate on the first
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derivative is not, as it would give

‖Dϕk−1‖C0(B5tk
) ≤Cm0(k− 1)

1
2 ≤C

(
tk−1

tk

)1−δ1

E
1
2
k ,(17.28)

which is not good enough for our purposes.
Proof of (17.15), (17.16), and (17.18) In order to gain a more favorable estimate for

the first derivative (and the C0 norm of ϕk−1) we first observe that by Lemma 10.4

h(T,C10tk(0,V0))≤CE
1
2
k tk .

Arguing as in the proof of (17.3) it is not difficult to see that
∫

C5tk
(0,V0)∩Mk−1

|Nk−1|2 ≤CEkt
4
k .(17.29)

Since TFk−1 coincides with spt(T) on a large set we can also infer
∫

B5tk

|ϕk−1|2 ≤CEkt
4
k .(17.30)

In order to see the latter estimate, consider first a point p ∈Mk−1 with the property that
the support of Fk−1(p) is a subset of the support of T. By the height bound we know
that h(T,C10tk(0,V0)) ≤ CE1/2

k tk . In particular, if we let p⊥0 be the projection on the
orthogonal complement V0, we conclude

|p⊥0 ◦ Fk−1|(p)≤CE1/2
k tk .

Consider now that, if x is such that p = (x,ϕk−1(x)), since Fk(p) = ∑
i �Fi

k(p)� =∑
i �Ni

k(p)+ p�, we get

|ϕk−1(x)| ≤ |p⊥0 ◦ Fk−1|(x,ϕk−1(x))+ |p⊥0 ◦Nk−1|(x,ϕk−1(x))(17.31)

≤CE1/2
k tk + |Nk−1|(x,ϕk−1(x)) .

Let now K be the set of such points p (i.e. for which the support of Fk(p) is contained in
the support of T) and define K := p0(K)∩B5tk . Using the bounds (17.29) and (17.31) we
easily obtain

∫

K
|ϕk−1(x)|2 ≤CEkt

4
k .(17.32)

In order to estimate the integral on the remaining portion (i.e. on B5tk \ K), we apply
(10.16) to M̄k−1, sum over all the stopped squares in B5tk \ K (which by the stopping
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condition have side length comparable to tk/tk−1), scale it back to Mk−1 and deduce

|B5tk \K| ≤H2(B6tk ∩Mk−1 \K)≤C(m0(k− 1))1+γ2

(
tk

tk−1

)4+γ2

t2
k−1(17.33)

≤C
(

tk

tk−1

)2+γ2

t2
k .

Then we observe that, by (17.32) and the classical Chebyshev inequality, there is at least
one point x ∈ B5tk where |ϕk−1(x)| ≤ CE1/2

k tk , and we use (17.28) to conclude that for all
y ∈ B5tk we have

|ϕk−1(y)| ≤CE
1
2
k tk +CE

1
2
k

(
tk−1

tk

)1−δ1

|x− y| ≤CE
1
2
k

(
tk−1

tk

)1−δ1

tk .(17.34)

Putting together (17.32), (17.33), and (17.34), we achieve

∫

B5tk

|ϕk−1|2 ≤CEkt
4
k +CEk

(
tk

tk−1

)2+γ2−2(1−δ1)

t4
k .

Since 2+ γ2 ≥ 2− 2δ1 and tk ≤ tk−1, the latter clearly implies (17.30).
We next use Gagliardo-Nirenberg interpolation inequality and from (17.29) and

(17.17) we get (17.15) and (17.16), namely

‖ϕk−1‖C0(B2tk
) ≤CtkE

1
2
k , ‖Dϕk−1‖C0(B2tk

) ≤CE
1
2
k .

We analogously conclude (17.18).
Proof of (17.21) We wish to show that

‖D(ϕk −ϕk−1)‖2
L2(B2tk

)
≤Ct2

k E1+2γ2
k .

We choose a suitable cut-off function ψ which equals 1 on B2tk and is compactly sup-
ported in B3tk and write

∫

B2tk

|D(ϕk −ϕk−1)|2 ≤
∫

B3tk

|D(ϕk −ϕk−1)|2ψ.

Integrating by parts, we can estimate
∫

|D(ϕk −ϕk−1)|2ψ =
∫

(ϕk −ϕk−1)#(ϕk −ϕk−1)ψ

+
∫

(ϕk −ϕk−1)∇(ϕk −ϕk−1) · ∇ψ .



AN ALLARD-TYPE BOUNDARY REGULARITY THEOREM

We next use that ‖∇ψ‖ ≤Ct−1
k , (17.16), (17.17), (17.19), and (17.20) to estimate

∫

B2tk

|D(ϕk −ϕk−1)|2 ≤CE1/2
k t−1

k

∫

B3tk

|ϕk −ϕk−1| .(17.35)

We next consider the multivalued functions fk and fk−1 on B3tk and taking values into
AQ(Rn) with the properties that

Gfk =TFk
C0,3tk , Gfk−1 =TFk−1 C0,3tk .

Note that the values of fk and fk−1 coincide except for a set of measure at most t2
k E1+γ2

k

(again we use Theorem 10.21 and sum over the stopped squares). Moreover, because
Lip(fk),Lip(fk−1)≤CEγ2

k , we immediately draw the conclusion
∫

B3tk

|η ◦ fk − η ◦ fk−1| ≤ E1+2γ2
k t3

k .

On the other hand, appealing to Proposition 10.23 (and rescaling appropriately) we get
∫

B3tk

|η ◦ fk −ϕk| ≤CE3/4
k t3

k ,

∫

B3tk

|η ◦ fk−1 −ϕk−1| ≤C

((
tk−1

tk

)2−2δ1

Ek

)3/4 (
tk

tk−1

)4

t3
k−1 .

While the first estimate is already suitable for our purposes, the second require some more
care. We recall (17.10) to the effect that

(
tk−1

tk

)2−2δ1

Ek ≤
(

tk−1

tk

)2−2δ1

m0(k)≤C

for a geometric constant C. Since 1
2−2δ1

≥ 3
4 , we can then estimate

∫

B3tk

|η ◦ fk−1 −ϕk−1| ≤CE
3
4
k t3

k .

By possible choosing γ2 sufficiently small we get
∫

B3tk

|ϕk −ϕk−1| ≤CE1/2+2γ2
k t3

k ,

which, by (17.35), gives (17.21). �
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17.1. Lipschitz estimate using 2d-rotations.

Lemma 17.3. — There is a constant c > 0 such that the following holds. Let F : V0 →
AQ(Rn) be a Lipschitz map with Lip(F) < c, let V and V′ be 2-dimensional subspaces with |V−
V0| + |V′ −V0|< c and denote by p and p′ the orthogonal projection on V and V′ respectively. Then

for P := 〈TF,p,0〉 and P′ := 〈TF,p′,0〉 it holds

G(P,P′)≤C Lip(F)‖F‖C0(|V−V0| + |V′ −V0|) .(17.36)

Proof. — We use an argument already observed in more generality in [10, Lemma
D.1]. However, we repeat here the parts needed for the previous lemma. First of all, we
construct finitely many planes by using 2d-rotations that will allow us to reduce (17.36)
to a one-dimensional situation. Recall the terminology: we say that R ∈ SO(n+ 2) is a
2d-rotation if there are two orthonormal vectors e1, e2 and an angle θ such that

⎧
⎪⎨

⎪⎩

R(e1)= cos(θ)e1 + sin(θ)e2 ,

R(e2)= cos(θ)e1 − sin(θ)e2 ,

R(v)= v , for any v ∈ 〈e1, e2〉⊥.
Now let us denote by W1 =V∩V′. If dim(W1)= 2, then V=V′ and there is nothing to
prove. Otherwise dim(W1) < 2= dim(V)= dim(V′) and we can write

V=W1⊕ V̂, V′ =W1⊕ V̂′,

for some subspaces V̂ and V̂′. Choose any unit vector e1 ∈ V̂=V∩W⊥
1 and define

e′1 :=
p′(e1)

|p′(e1)| ∈V′ ∩W⊥
1 .

Moreover, define R1 to be the 2d-rotation mapping e1 onto e′1 and

V2 :=R1(V) ,

W2 :=V2 ∩V′ .

Notice that W1 ⊂V1 is invariant under R1, so clearly W1 = (W1∩V′)⊂ (V2∩V′)=W2.
Moreover, e′1 ∈V2 ∩V′, and hence

W2 ⊃ 〈W1, e
′
1〉 .

As e′1 ⊥ W1, we have dim(W2) ≥ dim(W1) + 1. Now, if dim(W2) = 2, then V2 =
R1(V1) = V′ and we define R2 to be the identity. Otherwise dim(W2) = 1 and we can
again find a unit vector e2 ∈V2 ∩W⊥

2 , define

e′2 :=
p′(e2)

|p′(e2)| ∈V′ ∩W⊥
1 ,
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and define R2 to be the 2d-rotation mapping e2 onto e′2. As before, we denote by V3 :=
R2(V2) and observe that W3 :=V3 ∩V′ has at least one dimension more than W2. Thus,
in both cases we have

V′ =R2 ◦R1(V) .

Next, denote by V1 := V and for j ∈ {1,2,3} the orthogonal projection onto Vj by pj

and Pj := 〈TF,pj,0〉. Notice that for c> 0 small enough, spt(Pj) is a Q-valued point. We
claim

G(Pj,Pj+1)≤CLip(F)‖F‖C0(|Vj −V0| + |Vj+1 −V0|)
concluding the lemma as |Vj −V0| ≤ |V−V′| + |V−V0| ≤ 2(|V−V0| + |V′ −V0|) for
every j. Indeed, for each j, fix a unit vector vj ∈V0 such that

〈ej, e
′
j〉 ∩V0 = {t · vj : t ∈R} .

Then we can apply the selection principle [7, Proposition 1.2] to the map Fj(t) := F(tvj)

to get a selection

Fj =
∑

i

�
Fj

i

	

for some Lipschitz functions Fj

i : [−1,1]→Rn satisfying

|DFj

i| ≤ |DF| ≤ Lip(F) a.e.(17.37)

We therefore conclude the existence of points s
j

1, . . . , s
j

Q, s
j+1
1 , . . . , s

j+1
Q ∈ [−1,1] such that

G(Pj,Pj+1)≤
∑

i

∣
∣
∣Fj

i(s
j

i)− Fj

i(s
j+1
i )

∣
∣
∣

≤ Lip(F)
∑

i

∣
∣
∣s

j

i − s
j+1
i

∣
∣
∣

≤ Lip(F)
∑

i

(
|sj

i| + |sj+1
i |

)

≤QC Lip(F)‖F‖C0

(|Vj −V0| + |Vj+1 −V0|
)
,

where we also have used (17.37). �

18. Blow-up analysis and conclusion

In this section we complete the proof of Theorem 4.6, which in turn completes
the proof of Theorem 0.6. We recall the I0 from Corollary 15.6. The main point is the
following conclusion.
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Theorem 18.1. — Let T be as in Assumption 15.2 and assume that 0 is not a regular point.

Then I0 = 1 and for every ς > 0

lim
r↓0

D(r)
r2+ς =∞ .(18.1)

The latter is in contradiction with the estimate (15.12) (i.e. D(r)≤Cr2+τ ) for some
positive constant τ which depends on the exponent α of Theorem 4.7.

18.1. Blow-up analysis. — As already mentioned, Theorem 18.1 is reached
through a suitable “blow-up” analysis. First of all, having fixed a sequence of sj ↓ 0 we
define a suitable family of rescalings of the maps N′

ks. First of all we choose any k(j) with
the property that

tk(j)+1 < sj ≤ tk(j) .(18.2)

Next we define the exponential map exk : T0Mk →Mk and we identify each tangent
T0Mk to R2 through a suitable rotation of the ambient Euclidean space which maps it
onto R2 × {0}. We then consider the rescaled maps

Ñj(x) := Nk(j)(exk(j)(sjx))

D(sj)
1
2

.(18.3)

The main conclusion of our blow-up analysis is the following

Theorem 18.2. — Let T be as in Assumption 15.2 and assume that 0 is not a regular point.

Let sj ↓ 0 be an arbitrary vanishing sequence of positive radii, let k(j) be an arbitrary choice of inte-

gers satisfying (18.2) and let Ñj : B+1 →AQ(R2+n), where B+1 = B1 ∩ {(x1, x2) : x2 ≥ 0}. Then

a subsequence, not relabeled, converges strongly in W1,2(B+1 ) to a map Ñ∞ satisfying the following

conditions:

(i) Ñ∞(x1,0)=Q �0� for all x1 and Ñ∞ takes values in {0}×Rn (the orthogonal comple-

ment to the tangent plane to T at 0);

(ii) Ñ∞ is Dir-minimizing;

(iii) Ñ∞ is I0-homogeneous, where I0 is the positive number in Corollary 15.6;

(iv) η ◦ Ñ∞ ≡ 0;

(v)
∫

B+1
|DÑ∞|2 = 1.

In particular I0 = 1.

We underline here a subtle notational point that might create confusions: the nor-
mal approximations only take values in AQ(R2+n) and thus the same happens to their
limit Ñ∞. However the latter is defined on the horizontal plane R2 × {0} and its values
are Q-points supported in its orthogonal complement {0} ×Rn, hence for our purposes
we can consider it as a map on R2 taking values on AQ(Rn).
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Proof of Theorem 18.2. — Observe first that, following the computations of [15, Sec-
tion 10.1] we conclude that

e−Csj 81+I0 ≤ H(4sj)

H(sj/2)
≤ eCsj 81+4I0

as long as sj ≤ tk(j). Since I0 exists and is finite, there is a constant C (depending only on
I0) such that

D(4sj)≤CD(sj/2) .

On the other hand, arguing as in the proof of Proposition 17.1, we easily see that

D(tk(j))≥C−1t2
k(j)E(T,24tk(j))

(we just need to choose the constant M0 appropriately large to compensate for the larger
radius in the right hand side) while D(4tk(j))≤Ct2

k(j)E(T,24tk(j)). Now, since the geodesic
ball Btk(j) in Mk(j) contains {d < tk(j)/2} while the geodesic ball B2tk(j) ⊂ {d < 4tk(j)}, using
the fact that the rescaling of the manifolds converge smoothly to the flat plane V0, we
easily conclude that

∫

B+2
|DÑj|2 ≤C

∫

B+1
|DÑj|2 .

We can then follow the argument of [15, Section 10.3] to conclude that, up to subse-
quences, Ñj converges strongly in the W1,2(B+1 ) topology to a Dir-minimizing map Ñ∞.
Likewise we can follow the argument of [15, Section 10.2] to conclude that η ◦ Ñ∞ van-
ishes identically. Recall that the maps Nk(j) vanish identically on �, while the rescalings
of the latter converge smoothly to T0� = {x2 = 0}. The strong convergence then implies
that Ñ∞ = Q �0� on {x2 = 0} ∩ B1. We have thus proved (i), (ii), (iv), and (v). We can
however also see that

r
∫
φ(r−1|x|)|DÑ∞(x)|2 dx

− ∫
φ′(r−1|x|)|x|−1|Ñ∞(x)|2 dx

= lim
j→∞

rsjD(rsj)

H(rsj)
= I0 ,

which means that the frequency function of Ñ∞ is constant. This however happens if and
only if Ñ∞ is I0-homogeneous.

As for the final statement, we invoke Theorem 5.3. �

Now that we know that I0 = 1, we can then conclude that by the strong conver-
gence of {Ñj}j in W1,2(B+1 ), we have

Corollary 18.3. — If T is as in Theorem 18.2, then

lim
r↓0

D(2r)

D(r)
= 4 .
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18.2. Proof of (18.1) and conclusion. — Fix ς > 0 and consider the sequence of radii
rk := 2−k . We know from Corollary 18.3 that, for k sufficiently large

D(rk)≥ 2−2−ς/2D(rk−1) .

In particular we conclude the existence of a k0 such that for every k ≥ k0, we have

D(2−k)≥ 2−(2+ς/2)(k−k0)D(2−k0) .

In particular for every r ≤ 2−k0 we can write

D(r)≥ D(2−k0)

22+ς/2 r2+ς/2

and since D(2−k0) > 0, (18.1) readily follows.
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