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ABSTRACT

We prove a rigidity result for foliations on surfaces of genus two, which can be seen as a generalization to higher
genus of Herman’s theorem on circle diffeomorphisms and, correspondingly, flows on the torus. We prove in particular
that, if a smooth, orientable foliation with non-degenerate (Morse) singularities on a closed surface of genus two is minimal,
then, under a full measure condition for the rotation number, it is differentiably conjugate to a linear foliation.

The corresponding result at the level of Poincaré sections is that, for a full measure set of (standard) interval
exchange transformations (IETs for short) with d = 4 or d = 5 continuity intervals and irreducible combinatorics, any
generalized interval exchange transformation (GIET for short) which is topologically conjugate to a standard IET from
this set and satisfies an obstruction expressed in terms of boundary operator (which is automatically satisfied when the
GIET arises as a Poincaré map of a smooth foliation) is C'-conjugate to it. This in particular settles a conjecture by Marmi,
Moussa and Yoccoz in genus two. Our results also show that this conjecture on the rigidity of GIETs can be reduced to
the study of affine IETs, or more precisely of Birkhoff sums of piecewise constant observables over standard IETS, in genus
g>3.

Our approach is via renormalization, namely we exploit a suitable acceleration of the Rauzy-Veech induction (an
acceleration which makes Oseledets generic ¢ffective) on the space of GIETs. For in ly renormalizable, irrational GIETs of
any number of intervals d > 2 we prove a dynamical dichotomy on the behaviour of the orbits under renormalization, by
proving that either an orbit is recurrent to certain bounded sets in the space of GIETS, or it diverges and it is approximated
(up to lower order terms) by the orbit of an affine IET (a case that we refer to as affine shadowing). This result can in particular
be used, in conjunction with previous work by Marmi-Moussa and Yoccoz on the existence of wandering intervals for affine
IETS, to prove, a priori bounds in genus two and is therefore at the base of the rigidity result.
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1. Introduction and main results

In this article we extend some aspects of the theory of circle diffeomorphisms and of
Sflows on the torus to the context of generalized interval exchange transformations and of foliations
on higher genus surfaces. Exploiting a renormalization approach, we are able in particular
to prove a ngidity result in genus two which can be seen as a generalization of a cele-
brated theorem by Herman in genus one and proves a conjecture by Marmi, Moussa
and Yoccoz in [47] in the case of generalized interval exchange transformations which
correspond to minimal surface flows in genus two. We start by giving an introduction to
geometric rigidity problems in dynamics and some key results on circle diffeomorphisms
and (generalized) interval exchange transformations.

1.1. Geometric nigidity in dynamics. — A natural problem in the theory of smooth
dynamical systems is to establish which classes of dynamical systems are geometrically
rigid in the following sense. We say that a class of dynamical systems (whether it be an
endomorphism of a manifold, a foliation or a flow) is geometrically rigid (or just rgid) if a
topological conjugacy (namely a homeomorphism which intertwines the dynamics on the
two systems, see below for the definition) between two elements in this class is necessarily
differentiable. A natural problem in the theory of smooth dynamical systems is to establish
which classes of dynamical systems are geometrically rigid.

It is well-known that periodic orbits provide obstructions to geometric rigidity for
hyperbolic dynamical systems: for a diffeomorphism, the product of the derivatives along a
period orbit is a C'-conjugacy invariant. In particular, Anosov diffeomorphisms or flows
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can easily be deformed to modify this conjugacy invariant, without changing the topo-
logical structure (by structural stability). The absence of periodic orbits is on the other
hand possible (and actually prevalent) in entropy zero dynamics, which is therefore a natural
setting to investigate geometric rigidity.

A fundamental class of (entropy zero) systems in which geometric rigidity has been
shown to be prevalent are (minimal) cirele diffeomorphisms, a class of dynamical systems that
have played a central role in the development of the theory since the work of Poincaré
onwards. In addition to asking that there are no-periodic orbits (which in the setting
of circle diffeomorphisms is equivalent to the assumption that the rotation number is
urrational), to prove that a diffeomorphism T : M — M is rigid one often needs to impose
a quantitative version of the absence of periodic orbits, for example asking that there exists
¢ > 0 and a > 0 such that

(1) A6, T"()) > —, forallue N, xe M
nﬁ(

(where d is a distance function on M). When M is the circle S' = R/Z, it is well known that
a diffeomorphism T : 8! — 8! satisfies (1) for a_full measure set of rotation numbers (actually
with & > 1). In this setting, indeed, (1) is equivalent to assuming that the rotation number
o = p(T) of T is Diophantine' or, as equivalent terminology, satisfies a Diophantine Condition.
(For this reason, an assumption like (1) is sometimes called a Diophantine-type condition).

A celebrated result by Michael Herman [29], combined with later work by Jean-
Christophe Yoccoz [73], then shows that circle diffeomorphisms which satisfy a Diophan-
tine Condition are geometrically rigid.

Let us briefly summarize some of the works and settings in which geometric rigidity
has been verified, that are perhaps surprinsigly few:

(1) In the above mentioned setting of circle diffeomorphisms, the first (local) result
in this direction of rigidity was obtained by Arnol’d in [1] by applying meth-
ods from KAM theory. The global theory was brought about by the work of
Herman [29] and completed by Yoccoz [73]. It was later revisited in terms of
renormalization theory, see [36, 37].

(2) If one allows to replace the ambient Riemannian manifold by a minimal in-
variant closed set, certain smooth unimodal maps of the interval [0, 1] are known
to be geometrically rigid. These were first numerically discovered by physicists
Feigenbaum [19] and Coullet-Tresser [59] in the late 1970s. A deep and rigor-
ous theory, nowadays sometimes referred to as Sullivan-McMullen-Lyubich theory
was established only later, in the Nineties, through the introduction of complex
methods into the picture, see for instance Sullivan [58], McMullen [53, 54],
Lyubich [55] and Avila-Lyubich [5].

! We recall that one says that p € R is Digphantine with Diophantine exponent 7 > 0 iff there exists ¢ > 0 such that
forallp,qeZ, ¢#0, p—f—]’

> qu_T . Since rotations are homogencous, multiplying by ¢ one gets (1) with e =1 + 7.
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(8) In one-dimensional dynamucs, several other classes of rigid dynamical systems were
discovered and much studied, such as circle maps with a cnitical point (see e.g.
the works by de Faria and de Melo [16, 17] or by Yampolsky [71, 72]), circle
homeomorphisms which are differentiable away from a point, known as circle
maps with breaks (see for example the works [35, 38, 39] by Khanin, Khmelev,
Teplinsky, Kocic, Mazzeo, or Cunha and Smania [14, 15] for more breaks) or
Lorenz maps (see Martens and Winckler, [51, 70]).

(4) KAM theory establishes the local rigidity of Diophantine translations on the
torus T = R?/Z¢ (see for instance [32] and references therein). However, no
global rigidity result is known in this context when > 2.

In the setting (4), geometric rigidity was proposed as a conjecture by Raphaél Kriko-
rian (see [34]), who asked, when M = T?, with d > 2, is a higher dimensional torus,
whether given any C* diffeomorphism T : M — M which is topologically conjugate to a
translation of T¢ and whose rotation vector satisfies a Diophantine Condition,” then the
conjugacy is C' and actually C*. A bold generalization of this conjecture was suggested
by Konstantin Khanin in his ICM address [34], namely that any minimal T € Diff> (M)
where M is a smooth, closed Riemannian manifold which satisfies a Diophantine-type
condition as in (1) is geometrically rigid. Little evidence is available towards this con-
jecture and further obstructions other than periodic orbits (related for example to the
presence of invariant distributions) may play a role in this greater generality. The reader
will find Michael Herman’s address to the 1978 ICM [30] of great historical interest.
Therein are put forward a certain number of rigidity problems at a time when we knew
very little past the case of circle diffeomorphisms.

1.2. Geometric ngidity in genus two. — In this article we provide a new class of geometri-
cally rigid dynamical systems, by proving a global rigidity theorem for foliations on surfaces
of genus 2 (Theorem A here below), or, more in general, for a broader class of mterval
exchange maps (see Theorem B and the remarks afterwards). The result for foliations is the
following. We explain the meaning of some key words just below (and refer the reader to
Section 6 for precise definitions of notions involved in the statement).

Theorem A. — Let S be a closed orientable surface of genus 2 and F a minimal orientable folia-
tion on S of class C*, with non-degenerate (Morse type) singularities. Under a full-measure® Diophantine-
ype condition, F is geometrically rigid.

2 A translation of TY = R?/Z¢ with rotation vector p = (01, ..., pg) is the map which sends x = (x1, ..., %) € T!
tox+p= +p1,....,% +p) €T We say that the vector p satisfies a Diophantine condition with exponent T > 0 if
there exists ¢ > 0 such that for every non-zero integer vector k= (ki ..., k;) € Z%, |{k, p)| = |k o1 + - - - kspal = ¢/ |1 KII7.

% The space of topological conjugacy classes of such foliations can be parametrised by finitely many parameters,
and here full-measure means “for almost every parameter’ with respect to the Lebesgue measure. This notion of full measure
on minimal foliations is also related to the Katok fundamental class, see Section 6.2.3 for details. Furthermore, it corresponds
to a full measure set of (combinatorial) rotation numbers (see Definition 2.3.1) in the sense of Definition 3.3.1.
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This result can be seen as a generalisation of Herman’s global rigidity theorem
for circle diffeomorphisms, reformulated in the language of minimal foliations on the
torus (as we explain at the end of the next section of this introduction). We recall that in
higher genus, foliations are necessarily singular. Minimality in this context means that all b:-
infinite leaves are dense (see Definition 6.1.3). By Morse-type singularities we mean that the
leaves of the foliation in a neighborhood of a singularity are level-sets of a Morse function
(i.e. a function with non-degenerate zeros). This is a generic (open and dense) condition.
These assumptions imply in particular that singular points of the foliation are saddles*
and that the Aolonomy of the foliation around each saddle points is zero (see Section 6 for
details). Finally, we define the measure class on minimal foliations with respect of which
the Diophantine-type condition (which is given by Definition 6.2.2) has full measure in
Section 6.2.3.

We also remark that we prove a more general result on foliations on genus two sur-
faces, which include also the case of degenerate or multi-saddles (1.e. saddles with 2k pronges,
k > 2, which in genus two reduces to the case of one saddle with 6 separatrices). In the
case of degenerate saddles, though, the local conjugacy problem is non trivial, i.e. there
are C'-conjugacy obstructions at the local level. In general, one can take as linear models
the linear foliations given by the straight line flow on a translation surface. We prove that
for a full measure set H, of translation surfaces in genus two (i.e. for a set of Abelian
differentials in the strata H (1, 1) or H(2) with respect to the Lebesgue -or Masur-Veech-
measure), any foliation F which is topologically conjugated to a linear model (i.e. to a sin-
gular foliation F; given by trajectories of the vertical linear flow on a translation surface
in Ho) Fo from Hy and C'-conjugated to F; in a neighbourhood of each (saddle-type)
singularity, is indeed globally C'-conjugate to it.

Note that all the examples of geometrically rigid dynamical systems that we listed
above, with the exception of the /local rigidity results given by KAM theory, are one-
dimensional and combinatorially equivalent to either a translation on a torus (in the
case of circle diffeomorphisms, critical circle maps, or circle maps with breaks), or an
odometer (in the case of unimodal maps and Lorenz maps). Our result is, to the best of
our knowledge, the first (global) rigidity result on surfaces of higher genus, which have a
much richer’ combinatorial structure.

* Morse type singularities are simple saddles (with 4-separatrices or prongs) and centers: centers are excluded since if
there is a center, the foliation has closed orbits in the neighbourhood of the center and thefore is not minimal. A minimal
foliation in genus is two can have either 2 simple saddles (with 4 prongs each), or one (degenerate) saddle with 6 prongs.
The assumption of Morse singularities implies that we are in the first case, but is included in Theorem A only to have a
simpler statement: the case of one saddle with 6-prongs is also covered by Theorem B stated below, see also Section 6.

% This richness can be formalized in various ways: flows on surfaces are described by more frequencies; the combi-
natorial information in this setting can be described higher dimensional continued fraction algorithms, which produce cocycles
in SL(d, Z) with d > 2; an important feature of these cocycles is that they preserve a (degenerate) sympectic form. This
combinatorial information can also be encoded in a Bratteli-Vershik diagram with d > 2 vertices, while odometers and
rotations both correspond to Bratteli-Vershik diagrams with ¢ = 2. Finally, in virtue of this higher dimensional nature, one
lacks in general Denjoy-Koksma inequality and a priori bounds, see a later subsection of this introduction.
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Before we state the other main results of this article (in Section 1.5 and Section 1.6),
we summarise the main results on diffeomorphisms of the circle and (generalized) interval
exchange transformations that motivated our work.

1.3. Diffeomorphisms of the circle and foliations on the torus. — Flows and foliations on
surfaces have been a topic of interest since the work of Poincaré, who singled out the anal-
ysis of flows on the torus as the simplest toy-model to investigate the stability of the solar
system. Poincaré introduced the rotation number, which is an invariant which fully accounts
for the combinatorial structure of orbits of circle diffeomorphisms (and equivalently flows
on the torus).

The rigidity theory of circle diffeomorphisms was started by Denjoy in [18]. Recall
that two homeomorphisms f, g: S' — S' of the circle S are topologically conjugate if there
exists a homeomorphism /: S' — S' (the conjugacy map) such that f o & =g o f. Denjoy
in [18] proved that a sufficiently regular circle diffeomorphism f with irrational rotation
number must be topologically conjugate to the rigid rotation R, with the same rotation number
p, given by x = R,(x) := x + p. The existence of a topological conjugacy implies in
particular that / cannot have wandering intervals, namely there does not exist intervals
I C S! such that the iterates f"(I), n € Z are all disjoint.

A landmark result is the local ngidity theorem of Arnol’d [1], who successfully ap-
plied KAM theory to show that under a suitable Diophantine-type condition on the
rotation number p, sufficiently small analytic deformations of x — x + p, whose rotation
number is equal to p, must be analytically conjugate to x = x4+ p. Arnol’d went on to con-
jecture that such a statement should hold true without any assumption on the closeness
to rotations.

This global rigidity conjecture was proved to be true in the (more general) C* setting®
by Michael Herman [29] in a spectacular treaty, whose legacy still lives on. A few years
later, Jean-Christophe Yoccoz [73] succeeded in showing that Herman’s result indeed
extends to all Dwphantine numbers, thus providing the optimal arithmetic condition in the
smooth setting (and later on also the optimal condition in the analytic setting, see [75]).
Combining Herman’s [29] and Yoccoz’ [73] results, we have the following theorem:

Theorem (Herman [29], Yoccoz [73]). — If p s a Diophantine number, then any T €
Diff**(S") of rotation number p is C*°-conjugate to x v+ x + p. In particular, smooth circle dif-
Seomorphisms of Diophantine rotation number are (geometrically) rigid.

An equivalent geometric reformulation of the above theorem in the language of fo-
liations on surfaces is the following. Let S be a torus, namely a genus one closed orientable
surface. Then, given any minimal (orientable) foliation on S which is topologically conju-

% Herman in his thesis [29] considers not just the not just C* regularity, but also C', for r > 3 as well as the analytic
settings.
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gate to a linear flow on the torus with Diophantine rotation number’ is smoothly con-
jugated (in the sense of foliations®) to the linear flow foliation. In particular, the theorem
implies that minimal foliations on genus one surfaces under a full measure Diophantine-
type condition are geometrically rigid. It is this latter statement that is generalized by
Theorem A to genus two.

1.4. Flows in hugher genus and interval exchange transformations. — The extent to which
the theory of diffeomorphisms of surfaces and flows on the torus generalises to flows on
higher genus surfaces and their Poincaré maps is a natural question. The objects which
play the role of rigid rotations in this context are standard interval exchange transformations
(IETs for short), orientation-preserving bijections of [0, 1] which are piecewise transla-
tions (see Definition 2.1.2). These transformations naturally arise as Poincaré maps of
linear flows on higher genus surfaces (namely #ranslation flows on translation surfaces, or,
correspondingly, measured foliations”), see Section 2.1.6. Linear flows on (translation) surfaces
in turn play the role of linear flows on (flat) tori. The non-linear counterparts are gener-
alized interval exchange transformations (or GIETs), which arise as Poincaré maps of minimal
flows on higher genus surfaces. Notice that in higher genus the presence of singularities is
unavoidable and the corresponding (orientable) foliations have singularities (correspond-
ing to fixed points for the flow).

1.4.1. Renormalization and combinatorics. — To generalize Poincaré and Denjoy
work, one needs first of all a combinatorial invariant which extends the notion of ro-
tation number. Such an invariant can be produced by recording the combinatorial data
of a renormalization process. Renormalization operators in this context, similarly to the
case of circle difftomorphisms, are obtained associating to a given GIET T : I — I on
I =10, 1], another GIET which is obtained by suitably choosing an subinterval I' C I
and considering the mnduced map of T. The interval I' is chosen so that the induced map is
well defined and is again a GIET 'T” of the same number of intervals. Correspondingly, at
the level of (minimal) flows (or foliations) on surfaces, this process corresponds to taking
a smaller Poincaré section. The image R(T) of T under the renormalization operator is
then by definition the GIET acting on I = [0, 1] obtained by normalising, 1. .e. conjugating
by the affine transformation which maps I’ to I, so that the image is again a GIET on L.

A classical algorithm to renormalize standard IET is the Rauzy-Veech algorithm, also
called Rauzy-Veech induction (whose definition we recall in Section 2.5), first introduced by
Rauzy [57] and used starting from the seminal papers by Veech [64, 65] to study fine
ergodic properties of standard IETSs, see e.g. [4, 12, 81]. The ergodic properties of this

7 Let us recall that a lnear flow on the torus T? = R?/Z? is the flow (¢,),cr : T? — T? given by x > x + &, where
x, @ € T2. This flow has rotation number p = ay/a;.

% We recall that the regularity of conjugacy of foliations is expressed in terms of the transverse structure; thus, this
is equivalent to the conjugacy of / and R,,.

9 A translation surface determines indeed a vertical (and a horizontal) measure foliation. The leaves of the vertical
linear flow are leaves of the measured foliation and the other foliation determines a transverse invariant measure.
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renormalization dynamics in parameter space is by now well understood (see e.g. [3, 7,
9, 80], or [78] for a brief survey).

Rauzy-Veech induction is well defined also on GIETs with no connections (as de-
fined in Section 2.1.3) and can be used (as shown e.g. in [44, 45], see also the notes [79])
to define a notion of rotation number (see Definition 2.3.1) and wrationality for IE'Ts and for
GIETs (see Definition 2.3.2). One can then show that two #rrational GIETs with the same
rotation number are semi-conjugated, a result that we call Poincaré-Yoccoz theorem (see
Theorem 2.1).

1.4.2. Absence of a Denjoy theorem and wandering intervals. — One of the crucial dif-
ferences between GIETs and circle diffeomorphisms, though, is the absence of a Denjoy
Koksma inequality’ and a priori bounds. This has far-reaching consequences, the most spec-
tacular of which being the absence of Denjoy theorem: there are smooth GIETs that
are semi-conjugate to a minimal IET for which the semi-conjugacy is nof a conjugacy, in
other words they have wandering intervals. This phenomenon, first discovered by Levitt
[42] but for a non-uniquely ergodic example, (see Proposition I1.9, page 113 in [42]) was
later explored by Camelier Gutierrez [11], Cobo [13] and Bressaud, Hubert and Maass
[8] for special (families of) uniquely ergodic examples with periodic-type combinatorics.
It is important to stress that this is is not a low-regularity phenomena, nor it is related to
special arithmetic assumptions, as these examples exist for AIETs with almost every rotation
number, as shown later in the work [46] by Marmi, Moussa and Yoccoz, which actually
indicates that the existence of wandering interval is in some sense typical.'!

1.4.3. Cohomological equations and obstructions to linearisation. — A crucial step in the
KAM approach developed by Arnol’d for circle diffeomorphisms is to solve a lnearised
version of the conjugacy equation 2o R, =T o &, which amounts to finding a (smooth) /
which satisfy the functional equation f o R, — f = g for a given (smooth) g. This equation,
known as cohomological equation, is easily solved in the smooth setting using Fourier analysis
in the case where R, := x + x + p is a rotation satisfying a full measure arithmetic
condition, under the necessary (and in this setting the only) obstruction that g has to have
zero-mean.

For a long time it has been unknown whether the cohomological equation could
be solved under suitable assumptions for IETs (or flows on surfaces such as translation
flows), until the pioneering work of Forni [22] (see also [24]), who brought to light the

10'We recall that the Denjoy-Koksma inequality is an ergodic-theoretic statement which gives boundedness of Birkhoff
sums of bounded variation observables at special times: given f : I — I is a function of bounded variation on I = [0, 1]
and R, a rotation by p, if p, /¢, are the convergents of p (given by p,/q, = lao, ..., @] where [ay, ..., a,, ...]is the continued
fraction expansion of p), the Birkhoff sums Y " f(x) at times ¢, are uniformely bounded, independently on n € N and
xel

11 See for example the statement of Proposition 5.3.1, which is taken from [45]: wandering intervals are shown to
exist for a full measure set of rotation numbers as long as the log-slope vector of the AIET has a typical projection on the
Oseledets filtration (and, conjecturally, as long as it projects on any positive Oseledets exponent).
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existence of a finite number of obstructions to solving it. The existence of obstructions to
solve the cohomological equation has been since then discovered to be a characteristic
phenomenon in parabolic dynamics, see for example the works by Flaminio and Forni on
the cohomological equation for horocycle flows [20] and [21] for nilflows on nilman-
folds (which are other key examples of parabolic flows, in the sense that they present a
subexponential form of sensitive dependence of initial conditions, see for example the
surveys [23, 62]). Forni’s work 1s a breakthrough that paved the way for the development
of a linearisation theory in higher genus.

Another breakthrough was achieved by Marmi-Moussa-Yoccoz in their work [47]
(and related works [44, 45]). In [45], in particular, they reproved Forni’s result on the co-
homological equation using a renormalization approach based on Rauzy-Veech induc-
tion, thus describing explicitely a full measure Diophantine-type condition on the IET (a
condition that, in analogy with rotations, they called Roth type, see [45] and also [44] for
a variation of this condition). Furthermore, the improved regularity in their result could
then be exploited in [47], combined with a generalization of Herman’s Schwarzian deriva-
tive trick, to prove a linearisation result, showing that the high regularity (C” for » > 2)-local
conjugacy classes of smooth IETs form a submanifold of the expected finite codimension
(the codimension being related to the number of obstructions to solve the cohomological
equation, see [47]). An analogous result for the C'-local conjugacy classes was suggested
as a conjecture in [47]. Recently, in [28], the first author has proved it in a special case,
namely for the (measure zero) set of IETs which have (hyperbolic) periodic-type rota-
tion number (in the sense of Definition 2.3.3 below), which hence correspond to periodic
points of the renormalization operator.

1.4.4. Rigidity conjecture. — In [47], Marmi, Moussa and Yoccoz formulate a num-
ber of fundamental open questions and conjectures left open in the theory of linearisation
of GIETs (see the Open Problems Section 1.2 in [47]). One of them, stated as Problem 2
in [47], is a geometric rigidity question/conjecture.'” They ask whether it is true that,
for a full measure set of standard IETs T, any GIET T of class C* to Ty and such that

the value of a conjugacy invariant that they call boundary (see below and, for a definition,

3

Section 2.7.4) is zero,'? is actually also C'-conjugate to T.

We prove in this paper that this conjecture is true in genus two (see Theorem B
below). We also show that the result in any genus can be reduced to a statement on dy-
namical partitions of affine IE'Ts, or equivalently, to problem concerning Birkhoft sums of

12 Immediately before formulating it as a question, Marmi, Moussa and Yoccoz provide an heuristic rationale which
explains why it should be true and, just after, formulate a slight extension of what they now call ‘one of the previous two
conjectures’.

13 More precisely, Problem 2 in [47] is first stated for GIETs which are a simple deformation of T (i.e. a deformation
which does not perturb T in a neighbourhood of the discontinuities and endpoints, see [47]). Being a simple deformation
implies in particular that the boundary is the same than the boundary of Ty and the latter is indeed zero. Immediately after,
they say that the conjecture can be formulated in a slightly more general setting (not restricted to simple deformations)
using the boundary conjugacy invariant that they introduce later.
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piecewise constant observables over standard IETs (see the comments below, or Section 5
and in particular Proposition 5.2.1).

1.5. Rugdity result for GIETs. — We have already anticipated one of our rigidity
results in the language of foliations (Theorem A stated above). We will now formulate our
main result in the language of GIETs (Theorem B below).

We denote by Z, the space of standard irreducible interval exchange transforma-
tions with & branches (see Section 2.1.3 for the definition of irreducible). This space is a
finite union of d—1 simplexes (see Section 2.2) and thus carry a natural Lebesgue mea-
sure. Full-measure sets and full-measure Diophantine-type conditions are defined using
this measure. Associated to a GIET T, there is an important C'-conjugacy invariant,
called the boundary of T and here denoted by B(T) (for the definition of B, which is
based on Marmi-Moussa-Yoccoz boundary operator from [44, 47], see Definition 2.7.1
and Section A.1). Our main rigidity result in the language of interval exchange maps is
the following,

Theorem B (Rigidity of GIETs with d = 4 or d = 5). — There is a_full measure'* subset
F C Iy UZs such that the following holds. If To € F and a C*-generalized interval exchange map T,
whose boundary B('T) vanishes, is topologically conjugate to Ly, then the conjugacy between T and T
is actually a diffeomorphism of [0, 1] of class C'. In other words, almost every standard irreducible IET
with 4 or 5 continuaty intervals 1s geometrically rigid.

Thus, Theorem B proves the rigidity conjecture by Marmi-Moussa-Yoccoz [47]
for irreducible IE'Ts with d = 4 or d = 5 intervals (which correspond to Poincaré sections
of flows in genus two). The d =5 case implies Theorem A (see Section 6) and, more in
general, for d = 4, the analogous statement for minimal orientable foliations in genus
two with a degenerate saddle. The set F of standard IE'Ts, which has full measure with
respect to the Lebesgue measure on Z, or Zs ((see footnote 14 and Section 2.5.1 for details)
1s described by a Diophantine-type condition that we call (RDC). We comment on its nature
below (see Section 1 and Definition 3.3.4 for the precise condition).

We remark that a great part of the intermediate results which are proved to deduce
Theorem B (see e.g. Theorem C and Theorem E stated below), are proved in greater
generality, namely for any 4 > 2 (and hence for any genus in the language of foliations
in Theorem A). The result which 1s exploited in the proof and reduces the validity of the
rigidity conclusion to d =4, 5 (and respectively genus two foliations) is a result on exis-
tence of wandering intervals for affine IEls (and equivalently on the control of Birkhoff
sums of piecewise constant observables), which was proved by Marmi, Moussa and Yoc-
coz in [46] and known only under a technical condition on Lyapunov exponents (which
1s automatically satisfied for d = 4, 5).

!4 Here the measure is the Lebesgue measure on the parameter standard IETs Z,, i.e. a result holds for a full measure
set of IETs in Z,, if it holds for all irreducible combinatorial data and Lebesgue-almost every choice of lengths of the continuity
intervals. See Section 2.5.1 for details.
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1.5.1. Regularity of the comjugacy. — The reader familiar with the theory of circle
diffeomorphisms will have noticed that Theorem B only gives that the conjugating map
is of class C'. We believe that it should be possible to prove that the regularity is indeed
C'* (i.c. that the derivative is a-Hoélder) for some 0 < & < 1 but that indeed the conju-
gacy is not typically C*. We stress that this is not due to a shortcoming in our approach,
rather this loss of regularity is an essential feature of the problem, which corresponds to
Forni’s and Marmi-Moussa-Yoccoz non-trivial obstructions to solving the cohomological
equation: Marmi-Moussa-Yoccoz have indeed shown that asking for more regular con-
jugacy forces GIETS to live in positive codimension submanifolds of the C'-conjugacy
class; the codimension is an exact reflection of the aforementioned obstruction. In this
a sense, GIETs are closer to essentially non-linear rigid dynamical systems, such as uni-
modal maps and circle map with breaks or critical points, for which the conjugacy is
typically no more regular than C! and actually C!'** for some 0 < a < 1 in general).

1.5.2. The boundary assumption. — We remark that the boundary condition (1.e. the as-
sumption that B(T) vanishes) is an essential assumption: two GIET that are topologically
conjugate but have different boundaries cannot be differentiably conjugated, simply be-
cause the boundary is C'-conjugacy invariant. We note, for the reader who is familiar
with the one-dimensional dynamics literature, that the assumption that B(T) is zero, in
the special case where T is a circle maps with breaks, reduces to the classical assump-
tion that the non-lnearity ny (see Section 2.4.1) has integral zero and that the special pair
(T, Ty), where T, Ty are the two branches of T, corresponds to a diffeomorphism with-
out break points."” The case where B(T) does not vanish is equally interesting, and some
comments are made in a subsequent paragraph.

Geometrically, when T is the Poincaré map of a minimal foliation on a surface, the
boundary B(T) encodes the holonomy around the saddles of the foliation (see Section 6).
Thus, the assumption that B(T) is zero is equivalent to the asking that the corresponding
foliation has trivial holomony around singularities (a condition that is automatic when
the singularities are level sets of Morse functions). It is using this remark that Theorem A
can be deduced from Theorem B (see Section 6).

1.5.3. The C°-conjugacy class in parameter space. — The main result of this article
does not yet give a description of the C’-conjugacy class of IETs in parameter space. It
shows on the other hand that the C"-conjugacy class of almost every IET agrees with the
C'-conjugacy class. Marmi, Moussa and Yoccoz conjectured that, for almost every IET,
the C'-conjugacy class is a codimension (¢ — 1) + (¢ — 1) submanifold of class C' (see

15 The boundary B(T) = 0 is indeed a vector in R* (see Definition 2.7.1 and Section A.1), where k :=d — 2g and

g 1s the genus of any (minimal) surface flow which has T' as Poincaré section, see Section 2.1.6. Asking that the sum of the

entries of B(T) is zero is equivalent to asking that fol nr(x)dx =0 (see Lemma 4.2.3); when T is a circle diffecomorphisms
with break points (i.e. when the combinatorics of the GIET is of rotational type, the value of the entries of B(T) are related
to the values of the break points, and therefore asking that B(T) is the zero-vector means asking that there are no breaks, see

Remark 4.2.3.
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[47], Problem 1). As already mentioned earlier, a step towards this conjecture has been
taken in [28], which shows that it is locally true for (hyperbolic) periodic type IETs (see
Definition 2.3.3). The main result of the present article, combined with a complete proof
of the conjecture, would therefore automatically yield also a complete description of the
C"-conjugacy class of almost every genus two IET in parameter space.

1.6. A dynamical renormalization dichotomy and the strategy of the proof. — The proof of
the rigidity results (Theorem B and its geometric reformulation in Theorem A) are based
upon renormalization methods. We prove in particular some results on the dynamics of
renormalization and its consequences, which we now state, which are valid for infinitely
renormalizable GIETs with any number ¢ > 2 of intervals and we believe are of inde-
pendent importance.

Let X denote the space of all GIETs of class C" on d > 2 intervals with an irre-
ducible combinatorics (see Section 2.1.3 and Section 2.2 for definitions). We consider,
as renormalization operator R : X7 — X, an acceleration of Rauzy-Veech induction
(which is in turn given by suitable, linearly growing iterates of Zorich acceleration of
Rauzy-Veech induction). The general statement that we prove on the dynamics of this
renormalization, which is valid for any ¢ > 2 (and hence, correspondingly, for Poincaré
sections of flows on surfaces of any genus) is, informally, the following dynamical dichotomy
(we refer to Theorem 3.2 for a precise statement):

Theorem G (A priori bounds or affine shadowing dichotomy). — Let'T be a GIET in X}, d >
2, whose rotation number satisfies a_full-measure'® Diophantine-type condition which we call (RDC).
T hen there exists a bounded set K such that one of the two possibility holds.

(1) The iterated renormalizations (R"(1)),en are recurrent to the bounded set K.
(2) The iterated renormalizations (R"(T)).en go lo infinily at an exponentially rate, and the
orbit (R"(T)) is well-approximated by that of an affine interval exchange map.

The notion of full measure is defined Section 3.3.1 (see in particular Definition 3.3.1).
We comment below (in Section 1.6.3) on the nature of the Diophantine-type condition.
Let us say here though that this full measure condition includes in particular as a (measure
zero) special case all periodic-type combinatorics (also known as Fibonacci-type combinatorics
in the one-dimensional literature, see Section 2.3.4 for definitions). A proof of Theorem
C in this special case is much easier and is included both for didactical purposes and for
the reader not interested in the technical subtlety of Rauzy-Veech induction (see section
Section 3.2); the periodic-type case (see Definition 2.3.3) also yields a stronger conclusion,
namely the approximation in (2) is up to a bounded error (see Proposition 3.2.1).

In the first case, Case (1), which we call the recurrent case, one can show that a priori
bounds on iterates of renormalization hold (see Proposition 4.2.1). The heart of the work

'8 The measure on (combinatorial) rotation numbers is induced here by the Lebesgue measure on standard IETS,
see Definition 3.3.1 and Section 3.3.1 for details.
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in Case (2) is to construct a vector v = (vy, ..., v,) € R, that we call the affine shadow.
This vector is such that ¢, for | <7 <d, are the slopes of an affine IE'T whose orbit un-
der renormalization gives the leading dwergent behaviour of the orbit of T (see Theorem 3.2
for a precise statement). Thus, the quantities v;, | <: < d play the role of geometrical scaling
invariants associated'’ to T. Theorem C is an instance of study of an infinitely renormaliz-
able dynamics, whose orbit diverges in parameter space. Even in this context, describing
the way in which divergence occurs, proves to be helpful to control the dynamical be-
haviour of the system. An interesting occurrence of this phenomenon in one-dimensional
dynamics, similar at least in spirit, has been recently analysed for certain Cherry flows, in
the work of Martens and Palmisano [50].

1.6.1. Wandering intervals and a priori bounds. — Another key step of the proof is to
show that, if one can prove that the affine IET that shadows T given by (2) has wandering
intervals by showing that the dynamical partitions associated to the AIET are exponentially
distorted (a geometric notion that we define in Section 5.2, see Definition 5.2.2), then also
the GIET T has wandering intervals (see Proposition 5.2.1). Thus, the problem of exis-
tence of wandering intervals for GIET is reduced by our work to a question'® concern-
ing affine interval exchange transformations, or more precisely Birkhoff sums of piecewise
constant functions over standard IETs.

Since Marmi, Moussa and Yoccoz have shown that a large class of AIETs have ex-
ponentially distorted towers and hence wandering intervals (see Section 5.3.2 and in par-
ticular Proposition 5.3.1), it follows that all GIE'Ts which are shadowed by AIETS in this
class (which includes typical AIETs for any d > 2, see Proposition 5.3.1) have wandering
intervals. When the number of exchanged intervals is d = 4 or d = 5 (i.e. when the GIET
is a Poincaré section of a minimal flow on a genus two surface), the result by Marmi,
Moussa and Yoccoz [46] include in particular all AIETs with divergent shadow.'” Thus,
in this case, assuming that T is minimal (an assumption which rules out the presence of
wandering intervals) forces T to be recurrent, i.e. Case 1 of the dynamical dichotomy
given by Theorem C to hold. Thus, we can deduce in this case a result on a prior: bounds:

Theorem D (A prior bounds in genus two). — If T is @ minimal GIET in X} with d = 4
or d = 5 whose rotation number satisfies the full-measure condition (RDQC), then the acceleration R of
the Rauzy-Veech renormalization satisfies a priori bounds, namely there exists a constant K > 0 such

17 We remark though that the shadow v € R? is not uniquely defined, but its unstable component (which leaves in a
space of dimension g) is: two shadows vy, vy of the same GIET T differ by an element of the central stable space E(T)
of the Oseledets filtration of the standard IET T, semi-conjugated to T, see Section 3.3.2.

18 We remark though that it is not sufficient for us to simply show that the affine shadow has wandering intervals,
but we need to show that this happens in a special way, namely one needs to show the Birkhoff sums estimates proved by
Marmi-Moussa and Yoccoz in [46], as stated in Proposition 5.3.1, or, equivalently, that dynamical partitions are exponentially
distorted in the sense of Definition 5.2.2. It is possible that this is indeed the only way in which a wandering interval can
appear in an affine interval exchange transformation, but this may be difficult to prove.

19 More precisely, the condition v € Ey(T)\E3(T) in Proposition 5.3.1 is automatically satisfied, see the proof of
Theorem 5.4.
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that the iterates R (T) of T under renormalization satisfy
K< |IDR"(T)|lo <K, forallmeN,
where || - || oo denotes the sup norm on I =10, 1].

We refer to Section 4.2.5 (in particular Propostion 4.2.1) for a more precise formu-
lation.

Generalizing the aforementioned result by Marmi, Moussa and Yoccoz [46] (in
particular Proposition 5.3.1) to cover all divergent shadows® for a full measure set of
AIETs with any d > 2 will remove the restriction that d = 4,5 from the statement of
Theorem D. Notice on the other hand that no boundary condition appears in Theorem
D, nor in Theorem C. The assumption that the boundary B(T) is zero is indeed only
required when we proceed to prove a conjugacy regularity result.

1.6.2. Boundary obstructions and convergence of renormalization. — The next conceptual
step of our proof is to show that, when one is in Case (1), namely the recurrent case
of the dynamical dichotomy Theorem C (for example because one has ruled out case
(2) by showing that it would imply the presence of wandering intervals and hence non-
minimality), one can prove results on exponential convergence of renormalization. More
precisely, we show the following result, which holds for any 4 > 2:

Theorem E (Exponential convergence of renormalization). — Let T be a GIET in X} whose
rotation number satisfies the full-measure condition (RDC). Assume that 'T' satisfy the conclusion (1) of
Theorem C and that the boundary B(T) is zero. Then the orbit (R™(T))nen of T under renormaliza-
tion converges exponentially fast, in the C' distance, to the subspace T of (standard) IETS.

The precise formulation of the theorem and the definition of C' distance are given
in Section 4 (see in particular Theorem 4.1 and Section 4.2.1). In this case, we can then
conclude, using classical arguments, that T is C'-conjugated to a standard IET with the
same rotation number (as shown in Section 5.1).

We consider the proof of Theorem E to be a streamlined presentation and general-
ization to GIETs of the now classical theory of Herman [29] for circle diffeomorphisms.
Some of these steps are well known in the literature on circle diffeomorphisms with singu-
larities or are folklore, other require some variations of the arguments which are specially
required to deal with the increased complexity of GIETs.

We first show that, under the assumptions of Theorem E, the dynamical partitions
associated to the GIET (whose definition is given in Section 2.3.7) converge exponentially
fast to the trivial partition into points (i.e. their mesh, or the size of the largest interval, de-
cay exponentially). This can be seen also as a generalization of the arguments by Cunha

2 More precisely, one needs to show that Proposition 5.3.1 holds for any shadow which has a projection on a positive
Lyapunov exponent, which is not necessarily the second as in the case when one assumes that v € Eo(T)\E;(T).
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and Smania in [14] for a measure zero class of circle diffeomorphisms with break points
(those which correspond to bounded-type, rotational GIETS) to almost every rotation num-
ber and, more in general, to almost every GIET which satisfies a priori bounds thanks to
the recurrence given by the conclusion of Case (1) of Theorem C.

Exponential decay of the mesh can be used, as in the classical theory of circle
diffeomorphisms and its extensions to diffeos with singularities, to show that iterates of
renormalization converge to the space of Moebius IETs (GIETs whose branches are Moe-
bius functions, see 2.1.4). These first two steps do not require the assumption that B(T)
1s zero.

The boundary assumption becomes essential to proceed further. Indeed, requiring
that B(T) is zero restricts us to a positive codimension, renormalization invariant subset
of the total space of GIETs which contains standard IETs. We call this the &near regime,
in contrast to the non-linear regime (see Section 4 for the precise definitions). In the linear
regime we show indeed that one is attracted to the space of affine IE'Ts first, and actually,
in a second step, to the space of standard IETs Z,,.

The distinction between lnear (boundary zero) and non-lnear (boundary non-zero)
regime is a generalisation of the difference between standard circle diffeormorphisms and
crele maps with breaks, whose renormalization theory extends in a non-trivial way that of
circle diffeomorphisms. We believe that the study of GIETs and renormalization in the
non-linear regime 1s also very interesting and, to the best of the authors knowledge, very little
is known in this regime. The renormalization dynamics has in this case a natural attractor
which is the set of Moebiwus IE'Ts, but the dynamics of the renormalization operator in that
case 1s much more intricate to analyse.

1.6.3. The Dwphantine-type condition. — Finally, we comment on the Diophantine-
type condition appearing in Theorem C (which is also the full measure condition im-
plicitely underlying Theorem A and Theorem B). The full measure condition, that we
call Regular Diophantine Condition, or (RDC) for short, is formulated in terms of the Zorich
(also known as Zorich-Kontsevich) cocyle over the induction. At each step of renormal-
ization one can associate a matrix Z(n) € SL(d, Z). These matrices can be considered as
a multi-dimensional generalisations of the coefficients a, appearing in the continued frac-
tion expansion of a rotation number. The Diophantine-type condition has two aspects (as
many Diophantine-type conditions introduced for IETs and GIETs, see e.g. [44, 45]):

(1) A growth condition, which straightforwardly generalises arithmetic, Diophan-
tine-type conditions in the genus 1; one asks that the matrices Z(n) do not
grow too fast (subexponentially with 7 in our case).

(2) A Oseledets aspect, which is specific to the higher genus case: we demand that the
product of the matrices Z(n) - - - Z(2)Z(1) 1s generic with respect to Oseledets
theorem 1n a quantitative way.
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(3) A quantitative recurrence aspect, where certain series depending on whole history
of the Zorich-Kontsevich cocycle are required to be uniformely bounded along
a subsequence of renormalization iterates.

Our condition is in part reminiscent of the Roth type condition and restricted Roth
type conditions introduced by Marmi-Moussa-Yoccoz (see [45] and [44] respectively)
and fairly similar in spirit (Roth type conditions also have a growth condition, usually de-
noted condition (a), as well as further conditions, like condition (b) and (c) in the standard
Roth type condition, which can be inferred from Oseledets genericity), but it is signifi-
cantly more restrictive. Furthermore, as in the dual Roth type condition introduced in
[48], our condition depends not only on the forward, but also on the backward growth of
the rotation number entries.

First of all, we require a quantitative version of the conclusion of Oseledets theorem,
in which the convergence is made ¢ffective (see Section 7.2). For technical reasons, we work
with the natural extension (by choosing an arbitrary past for the rotation number) and
require the existence of an effective Oseledets generic extension. When the (extended)
rotation number is generic with respect to this effective version of Oseledets, one can
show that certain series, which depend on the whole matrices of the cocycle (explicitely
given by the forward series backward series (I) and (B) in the Definition 3.3.4 of the (RDC)
condition), are finite. The above mentioned recurrence amounts to the request that infinitely
often, along a linearly growing subsequnce of times of the Zorich acceleration, these series
are uniformely bounded. Conditions of similar (albeit simpler) nature on standard IETs were
used by the second author in her work [61] on absence of mixing for special flows over
IETs and appear as well in recent results in her joint work with K. Fraczek [25] on
deviations of Birkhofl averages for locally Hamiltonian flows.

Examples of arithmetic conditions on classical rotation numbers which do not de-
pend only on the asymptotic behaviour of the continued fraction entries (as Diophantine
or Roth-type conditions) but instead depend on the whole record of the continued fraction
entries are for example the Brjuno-condition (see e.g. [75]) or the Perez-Marco condition
[56], which were shown to provide optimal conditions for analytic renormalization prob-
lems in one frequency (see for example [74], where the first optimal result in the analytic
category was proved). In the theory of circle diffeos, conditions which require recurrence
to a set of rotation numbers with this type of control on the whole history seem to appear
in global rigidity results, see for example the Condition (H) defined by Yoccoz (see [75]).

While our condition is full measure (in the sense of Definition 3.3.1), it is likely
not optimal. It would be interesting, but probably very difficult, to describe the optimal
Diophantine-type condition for a GIET to satisfy the dynamical dichotomy in Theorem
C. We refer the interested reader to the ICM Proceedings [63] by the second author for
further discussion on the nature and role played by different Diophantine-like conditions
on IETs in the literature and some open questions.
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1.7. Organization of the paper and reading guide. — In the background Section 2 we give
basic definitions, in particular defining GIETSs (as well as IETs, affine IETs and Moebius
IETs), Rauzy-Veech induction for GIETS, infinitely renormalizable GIETs, irrationality
and rotation numbers. We also summarize a number of classical tools and results which
are used in the rest of the paper. These include both tools from the classical theory of
circle diffeos and one dimensional dynamics (such as distortion, distortion bounds, non-
linearity and Schwarzian derivative) as well as renormalization tools for IETs and GIETs
related to Rauzy-Veech induction, such as Zorich acceleration, invariant measures for
the dynamics on parameter spaces, dynamical partitions and Rohlin towers produced
by Rauzy-Veech induction, special Birkhoff sums and decomposition of special Birkhoff
sums. This section does not contain any new result. The reader familiar with one or both
these backgrounds can skip this section or read it only quickly as a notational reference.

Section 2 contains the precise formulation and the proof of the dynamical dichotomy
stated informally in this introduction as Theorem C. In Section 3.2 we first state and
prove a (stronger) dynamical dichotomy in the special case of bounded type rotation num-
bers (or Fibonacci combinatorics), defined in Section 2.3.4. This proof can be skipped
by the reader interested in the full measure result. We decided to present it first, even
though it lengthen the paper, since it can be accessible to the reader that is not famil-
iar with Rauzy-Veech induction and already present all the key difficulties and ideas of
the general proof. The general case requires the definition of full measure set of GIETs
and rotation numbers and the definition of the Regular Diophantine Condition (RDC),
which are given in Section 3.4 In Section 3.5.1 we can then give the precise formula-
tion of Theorem C in the general case, which is Theorem 3.2. The rest of the section is
devoted to the proof. An outline of the main steps of the proof are given in Section 4.1.

The main result of Section 3 is Theorem E on exponential convergence of renormalization
in the recurrent case. The proof takes the whole section and is split in several steps, such
as a priori bounds (Section 4.2.5) exponential decay of the dynamical partitions mesh in
Section 4.3 and convergence first to Moebius IETs in Section 4.4.1, then to AIETs (see
Section 4.5.1) and finally to IETs in Section 4.6.

In Section 4, we prove the rigidity result for GIE'Ts, namely Theorem B of this intro-
duction. On one hand we prove that, when one has exponential convergence of renor-
malization and the (RDC) Diophantine-type condition, one can deduce that the conju-
gacy is C'. This is done in Section 5.1. On the other hand, in Section 5.2, we deduce
the existence of wandering intervals for a GIET from exponential distortion of the dynam-
ical partitions of the affine shadow, see Proposition 5.2.1, stated in in Section 5.2.3 and
proved in Section 5.3.3. Combined with the results on wandering intervals proved by
Marmi-Moussa and Yoccoz (recalled in Section 5.3.1), this allows us to finish the proof
of the rigidity result for GIETs as well as Theorem D on a priori bounds in genus two (in
Section 5.5).
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In Section 5 we prove Theorem A on foliations on surfaces of genus two. We first
define foliations, their regularity and their holomomies. We then deduce Theorem A for
foliations in genus two from Theorem B on GIETs with d =4, 5.

In the Appendix, we include for convenience of the reader the proof of the (exten-
sion of) some classical results, such as the distortion bounds for GIETS, the comparision
between some of the distances used in Section 4, as well as some results from [28], in
particular on Lipschitz regularity of the renormalization operator, which are used in Sec-
tion 4.

2. Background material

2.1. Interval exchange transformations. — The piecewise differentiable maps which
arise as Poincaré maps of a smooth, orientable foliation on a transversal interval are
know as generalized interval exchange transformations.”!

2.1.1. Generalized interval exchange transformations. — Let us start by recalling the def-
inition of generalized interval exchange transformations, or, for short, GIETs.

Defimition 2.1.1 (GIETs). — Let d > 2 be an integer and r a positive real number. A C’-
generalized interval exchange transformation (GIET) of d intervals, or for short a d-GIET of class r, is
amap 'l from the interval [0, 1] to utself such that:

(1) there are two partitions (up to finitely many points) of [0, 1] = Ule L= Ule I’ of10, 1]
into d open disjoint subintervals, called the top and bottom partition; the subintervals are
denoted respectively 1, for | <1 <d, and If, Jorl <i1<d;

(i) for each 1 <i<d, T restricted to 1\ is an orientation preserving diffeomorphism onto 10 of
class C';

(iti) T extends to the closure of 1! to a C"-diffeomorphism onto the closure of 1! = T(L%).

See Figure 1 (left) for an example of a graph of a GIET with d = 4. We will call the
restriction T; :=T|I! of T onto I, for 1 <7 <d, a branch of T. We think ofj € {1, ..., d} as
the label of the intervals I and I]b = T(I)) and denote by A:={1, ..., d} be the alphabet
consisting of labels. Notice that T is by construction invertible and that the inverse T~ is
also a C’-GIET, for which the top and bottom partition are reversed.

2.1.2. Standard, affine and Moebius IETs. — Special cases of generalized interval ex-
change transformations include standard interval exchange transformations (IE'Ts), affine
interval exchange transformations (AIETs) and Moebius interval exchange transforma-
tions (MIETs):

2l The name generalized interval exchange maps is used since they generalize inlerval exchange transformations (see Def-
inition 2.1.2 below), which appear as Poincaré sections of measured foliations on transverse intervals, in suitably chosen
coordinates.
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Fic. 1. — A generalized IET (GIET), a (standard) IET and an affine IET (AIET) with d = 4

Definition 2.1.2 (IETs). — A GIET T 15 an (standard) interval exchange transforma-
tion or a IET #f |I| = |I’| for every 1 < i < d and the branches 'T; of the map T, for every 1 <i < d,
are assumed to be translations, t.e. of the form x — x + 6, for some §; € R.

See Figure 1 (middle) for an example of a graph of an IET with d = 4.

Definition 2.1.3 (AIETs). — A GIET'T s an affine interval exchange transformation
or an AIE'T the branches 'T; of the map ‘T, for | <1 < d, affine map, 1.e. of the form x — a;x + b; for
some a;, b; € R.

See Figure 1 (right) for an example of a graph of an AIET with d = 4.

Definition 2.1.4 (MIETs). — A Moebius IET T s a generalized interval exchange trans-
Jormation T such that the branches 'T;, for 1 <1 < d, are restrictions of Moebius maps, i.e. maps of
the form

ax—+ b
ex+d

where ad — be > 0.

x> m(x) .=

Interval exchange transformations appear naturally as Poincaré first return maps
of orientable foliations on a surface on transversal segments. The discontinuities arise in-
deed from points on the interval which hit a singularity of the foliation (or an endpoint
of the transversal interval) and therefore do not return to the transversal, while the in-
tervals I]t- are continuity intervals of the Poincaré map. The smoothness 7 of the branches
depends on the regularity of the foliation. When the foliation is a measured foliation, one
can choose coordinates so that the Poincaré map is a standard IET, while affine IETs are
Poincaré maps of dilation surfaces (see for example the survey [27]).

2.1.3. Combinatorial data. — To encode the order of the intervals (from left to right)
at the top and bottom partition of a GIET, we adopt the convention (which became
standard after its introduction in [45]) of using two permutations, 7w, and 7, of {1,...,d}):
7, (resp. ) describes the order of the intervals in the top (resp. bottom) partition, so that,
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in order from left to right, they are

Lo ol (esp 1L V10 o 10 ).

We call the datum 7 := (7, ;) of these pairs of permutation the combinatorial datum of T,
or simply the permutation of T (by abusing the terminology, even though it is a actually a
pair of permutations). The composition 7z, ' o ,, also called monodromy, is a permutation
(in the classical sense) which encodes how T rearranges the partition intervals. The choice
of keeping track of a pair of permutations (instead than only the monodromy, which was
used classically for IETs (see [64] or [57]), allows to keep track of labels of intervals and
plays a crucial role in the definition of irrationality of rotation numbers of GIETs (see
Definition 2.3.2).

We will assume that the combinatorial datum is urreducible, i.e. for every 1 <k < d
we have

afl, ...,k £ mfl, ..., k}

(this guarantees in particular that the GIETs cannot be reduced to a GIET of a smaller
number of exchanged intervals). We will denote by &Y the set of irreducible combinatorial
data w = (7, ;) with d symbols.

2.1.4. Singularities. — We denote by «, for 0 < i < d the endpoints of the top
partition intervals and, respectively by «?, 0 < i < d, the endpoints of the bottom partition,
in their natural order, so that

ot ¢ ¢ te__ 1.
Oi=uy<uy <---<uy  <u,;:=1;
et a1 t to.__

Oi=uy<u' <---<u,_, <u,:=1.

Then, with the chosen conventions, we have

4 — () t b ot i .
L= w_, w), o=@, w), forl<j=<d.
We will denote by |J| the length (with respect to the Lebesgue measure) of an interval
b b b : :
JcLso |I§w-)| = uj‘ — uj’f_l and |I; | =w — u_,. The points Uy, ..., u,_, separating the
top intervals are called the singularities of T. The points u’f, e, uz_l are the singularities
of T7L.
2.1.5. Connections. — A connection is a triple (ul‘-, uf, m) where m is a positive inte-

ger such that T'”(uf) = v!. Thus, a connection encodes a finite orbit whose starting point
and end point belong to the set of endpoints points {«), u}, ..., «;}. We say that T has no
connections 1f no such triple exists. This condition is also called wmfinite distinct orbit condition
or Keane condition for standard IETs. Keane indeed proved that a standard IET with irre-
ducible 7w and no connections is minimal. When T is the Poincaré map of a transveral
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a flow along the leaves of a foliation on S, connections correspond to saddle connections on
S, 1.e. trajectories of the flow which connect two singularities. Thus, if the flow along the
leaves of the foliation has no saddle connections, any GIET obtained as Poincaré map
has no connections.

2.1.6. GIE'T, surfaces and foliations. — A generalized interval exchange map T can
be suspended [52, 79] (see also Appendix A.1) to an orientable (singular) foliation F = F(T)
on a closed oriented surface S = S(T) such that the singular points of F are (possibly
degenerate) saddles (with an even number of prongs); we can make this construction
so that all the discontinuity points of T belong to singular leaves of the foliation (see
Appendix A.1). Furthermore, if the permutation is urreducible, both endpoints also belong
to a singular leaf. If T is minimal, the associated foliation is munimal in the sense that
all regular leaves are dense (see Definition 6.1.3 in Section 6). We denote by Sing =
Sing(T) C S or Sing(S) C S the set of saddle points of F. If g is the genus of S and
k = |Sing(S)| we have the following equality

d=2g+«k — 1.

Notice that both the genus g and the number « of singularities can be recovered purely
combinatorially from the knowledege of the combinatorial datum m, see [44, 79] or [67]
or Appendix A.l for details. Conversely, T can be recovered from F by considering
a first-return map on a suitably chosen transverse arc J in S joining two singularities in
Sing(S), which we can identify with the interval [0, 1] (see also Lemma 6.1.1). We develop
this foliation point of view further in Section 6. Notice that choosing J with endpoints at
singularities, or on singular leaves, guarantees that the number of exchanged intervals of
T is as small as possible and equal to d.

Let F be a foliation on S which suspends T. We can associate to each discontinuity
of T a singularity as follows. Let us say that F is a standard suspension if both endpoints*
suspension of I are singular points of F. In this case, all the singularities of T are obtained
by pulling-back a singular leaf.” Then we can define a map s from the set {«}, ..., «}
of singularities and endpoints of T to the singularity set Sing(S) simply associating to the
endpoints «, and «, the corresponding singularity (i.e. the endpoint of the section in S)
and to all other «, 1 < ¢ < d, the singularity, that we will denote s(«), that is reached
when following the oriented leaf emanating from «!.

22 Usually, in the IETs and translation surfaces literature, one often uses as suspensions the zippered rectangles intro-
duced by Veech [64] (see e.g. [79] or [67]) or the polygonal suspensions by Masur [52]. In zippered rectangles, one endpoint
is always at a singularity, while the other is usually not and belong to a separatrix, i.e. a singular leave, that is either ingoing
or outgoing. From the foliation point of view, all suspensions whose end points are on singular leaves are equivalent and one
can simply slide the singularity and assume that it is at an endpoint. This is convenient since it makes it easier to identify
singularities of the foliation with endpoints and discontinuities of the GIETs. Standard (translation surfaces) suspensions
are for example explicitely defined in [44]; the construction is included in Appendix A.1.

% If F is not standard, there can be singularities which are created by an endpoint of the section, namely which
belong to the leave passing through an endpoint.
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2.2. Parameter (sub)spaces. — We define, for a given differentiability class » € Ry
and number of intervals d > 2 the space X" of generalized interval exchange transforma-
tions of class C” with ¢ intervals, namely

x=J A

0
req,

where X7 :={T, T d-GIET of class C" with associated permation 7 }.

When there is no ambiguity on the differentiability class 7, we denote X and X" simply
X, and X respectively.

The space of (standard) interval exchange transformations (respectively, affine inter-
val exchange transformations or Moebius interval exchange transformations) with combi-
natorics 7 will be denoted by Z, (respectively, A, or M) and are subspaces of X" for
every r > (. Similarly, for any d > 2, let us set

Li=JZ.. A=l M= M.

eSSy, eSSy, eSSy

Clearly, for every » > 0, we have the inclusions

Z,Cc A, Cc M, C i

2.2.1. Parameter spaces of IETs. —If T € Z; 1s a (standard) IET, T is completely
determined from the combinatorial datum 7 and the lengths of the top intervals I}, 1 <
J < d. Denote by A, ..., A, the lengths of its continuity intervals, so that A; := |I]t.| =
v/ — vi_,. Because the top intervals form a partition of [0, 1], the lengths must satisfy the
following equation:

We will denote by A,_; (for d — 1 dimensional simplex) the set of vectors in R? which
satisty (2). We denote by A(T) and call lengths vector the vector whose components are
lengths of top intervals, namely

)"(T) = ()\'I,H'a)\'d):(ut]la"-, |I£1|) € Adfl-

Thus, the subspace Z, of d-IETs is parametrized by A,_; x &, and Z, is a (finite union
of) submanifold(s) of R? of dimension d — 1.

2.2.2. Parameters of AIETs. — Let T be an AIET with combinatorial datum 7. Let
A € Ay be as before the vector of lengths of top intervals. If we denote by py, ..., p;
the derivatives of T on intervals of respective lengths A4, ..., A;, we have that for each
1 <j <d, the length |If| of the bottom interval If = T(IJ‘-) is p;A;. Therefore, since also
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the bottom intervals form a partition, the lengths must also satisfy
PiAl+ -+ pihg=1.

This equation, together with (2) and the further restrictions that Vi, A; > 0 identify A, to a
submanifold of R* of dimension 24 — 2. For any affine interval exchange transformation
T, we denote by A(T) and p(T) respectively

AMT) =y k) = (4L TD,

p(T):=(p1, ..., p0)) = DT (x1),...,DT(xp)),
yi€liforall ]l <j<d,

where DT;(xj) := Tj’- (v) is the value of the derivative of the branch T; of T at any point x;
in the interval I; and is independent on the choice of ¥; since in an affine IET T" is locally
constant on I;. We call A('T) the length vector and p(T') the slope vector of T

2.2.3. Shape-profile coordinates for GIETs. — We introduce now a set of coordinates
on X7 which allow us to endow A&7 and consequently X" with the structure of a Banach
manifold. These coordinates, that we will call shape-profile coordinates, where first intro-
duced and used by the first author in [28] and will play a central role also in the present
paper.

Let T be a C’-GIET, with associated permutation 7 and let (I!), <<, and (If’)lgifd
be the top and bottom partitions of [0, 1] associated to it. We make the two following
observations.

(1) There is a unique affine interval exchange transformation A mapping I' to 1.
(2) Furthermore, for all 1 < < d, there is a unique element <p% of Diff ([0, 1])
such that the restriction of T to I is equal to

@t i=N(T):=aq0T;0b

where b; is the unique orientation preserving affine map mapping I’ onto [0, 1]
and ¢; 1s the unique orientation preserving affine map mapping [0, 1] onto Ifm-).

Notice that, using these coordinates, if p = p(At) = (p1, ..., ps) 1s the slope vector of
the shape A, one has**
3) DT(x) =DT;(x) = p; D(pff(bi(x)), forallxel!, 1 <i<d,

(where b; is as above the affine map which maps I! to [0, 1]).

2! This follows from the explicit expression of the GIET in terms of the profiles which is given by
T =, + U1 (5i(),
where b;(x) = (x — uf”(l)fl)/llfl, forallxeli= (uf”(i)fl, ufmi)), 1<i<d.

noticing that DA (x) = |I¢|/|I!] for every x € I! and therefore p; = |12]/|1{].
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The operation of associated to a GIET a shape and a profile can be inverted and
therefore the map:

TrH— (ATv (PT)’ T = (go”},a(p%)

gives an identification between X and A, x (Diff ([0, 11))? where A, the space of Al-
E'Ts with permutation 7. The AIET which appears as projection onto the first coordi-
nate, namely Ar, will be called the shape of T} the vector g1 := (@1, ..., ¢t) will be called
profile of T

We denote by P; (or simply P, or P when the regularity r or the number of
intervals d are not relevant or clear from the context) the space (Diﬁ’ (0, 1]))d and so we
have a canonical identification

Xi=A, x P, Xj=AxPi=|] A x P,

reGY

Using this parametrisation, we can endow Xj with the structure of a Banach manifold
directly inherited from that of Diff’ ([0, 1]). Again, where there is no possible ambiguity,
we will drop the indexes 7 and r and simply write X = A x P.

In the sequel we use the following notation for f : [0, 1] —> R of class C’,

Iflle: = max | lf(‘)ll

where f@ is the i-th derivative of f and || - ||« denotes the sup norm. We extend this
norm to (C’([0, 1], R))? simply by taking the sum of the norms on each coordinate.

2.3. Renormalization of GIETs. — We introduce now the renormalization operator
V on the space X" of GIET defined (on the subspace of GIETs with no connections)
by Rauzy-Veech induction. Rauzy-induction as a tool to study standard IETs and their
ergodic properties appears for the first time in the seminal works by Rauzy [57] and
Veech [64, 65] and has been a standard tool in the theory since then (see e.g. [4, 12,
31, 60, 61, 81], ...). Rauzy-Veech induction as a tool to study GIETs and the notion of
rotation number of a GIET appear e.g. in the works [44, 47], see also [79]. This section
follows partly [45].

2.3.1. Elementary step of Rauzy-Veech induction. — Let T be a GIET on d intervals
(as in Definition 2.1.1). Consider the partition endpoints « and u , see Section 2.1.4. Let
Ay i=max{u,_|, ud 1} Thus [0, A, ] is the interval [0, 1]\In @ 1fthe last interval before the
exchange In @ is shorter than the last interval after the exchange I (d)> while [0, A;] =
[0, l]\Inb(d) otherwise, i.e. lfllm,(d)l < |IL (@l

We define T, to be the first-return of T on the interval [0, A,]. One can verify that
T, is well defined and is also a GIET on d intervals provided «,_, # uz_l. Define V(1)
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to be T} normalised to be a map whose range is [0, 1]: formally V(T) := N (T}) where
N(T)) is obtained conjugating T by the unique affine map mapping [0, /] to [0, 1],
namely

4) V(T) :=N(T)), where N (T))(x) ::%Tl()\lx), for all x € [0, 1].
1

The operation consisting in passing from T to V(T) is called the elementary step of the
Rauzy-Veech induction.

When one performs the elementary step of the induction, the associated permu-
tation 7w changes. Note that the new permutation only depends on the initial one and
on whether ”271 > ”271 or not. If u271 < ”271 we say that the bottom terval wins and we
say that the top wnterval wins otherwise. Furthemore, we can record the label of the interval
which wins: if the interval which wins is I} (i.e. the top interval wins and I ,, = It we
say thatj is the winner). Similarly we say that j is the winner also if If wins, i.e. the bottom
interval wins and If”( H= If.

One can show that if T has no connections, also T} has no connections and there-
fore it 1s possible to apply again an elementary step of the Rauzy-Veech induction to T}.
Thus, if a GIET T has no connections, Rauzy-Veech induction can be iterated infinitely
many times.

2.3.2. Paths on Rauzy diagrams and rotation numbers. — We define now the notion
of rotation number associated to a GIET, see e.g. [77, 79]. The rotation number will be
an infinite path on a combinatorial graph describing the moves of the renormalization
algorithm (see Defiintion 2.3.1).

We can form an oriented graph whose set of vertices is G, and there is an oriented
edge from one permutation m; to o if and only if there is a GIET with permutation
7, whose image by the elementary step of the Rauzy-Veech induction is a GIET with
permutation 9. This oriented graph is called the Rauzy diagram. It has a certain number
of connected components (which were classified by Zorich in [40]) and are classically
called Rauzy classes.

If a GIET has no connections, so then it is possible to iterate Rauzy-Veech induction
infinitely many times and get an infinite sequence T, V(T), V*(T), ..., V"(T),.... For
every n € N let m, be the combinatorial datum of V"(T) and let y, be the arrow from
7, to 7,41 which corresponds to the elementary step to pass from V'(T) to V"7'(T).
To the infinite orbit {V?(T), n € N} we can associate a path ¥ (T) := ypy; -+ ¥,-++ in
the associated Rauzy diagram passing through the vertices my, 7, ..., 7,, ... obtained
concatenating the arrows y, describing the moves of the algorithm.

Defination 2.3.1 (Combinatorial rotation number). — Guwen a GIET n'l with no connections,
its combinatorial rotation number (or sumply rotation number) is the datum of the Rauzy path
y(T) =91y, associated to the orbit {V"(T), n € N}.
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The terminology rotation number™ (which was used in the works by Marmi-Moussa
and Yoccoz and advertised in the lecture notes by Yoccoz, see [77, 79]) has been chosen
because for d = 2, 1. e. for GIETs with d = 2 intervals, which correspond to circle home-
omorphisms, this piece of data is equivalent to the datum of the usual rotation number.
Furthermore, if T} and Ty are (semi)conjugate, then y (1)) = y(Ty), 1.e. the rotation
number is an invariant of the (semi)conjugacy class. The converse (see Theorem 2.1 be-
low) 1s also true for wrrational rotation numbers (to be defined below, see Definition 2.3.2),
a perhaps more important reason which further supports that it is a good analogue of the
classical rotation number.

2.3.3. Irrational combinatorial rotation numbers and semi-conjugacy with a standard IET. —
If Ty 1s a standard IET with no connection, its combinatorial rotation number y (Tj) has
an additional property: all indexes j in the alphabet A = {1, ..., d} of labels of intervals
are winners infinitely many times. This property characterizes paths on the Rauzy diagram
which come from standard IETs (or GIETs which are semi-conjugated to standard IET5,
see above). In particular, if a path y on a Rauzy-diagram has this property that every j
appears infinitely many times as a winner of an arrow of y (a path on the Rauzy-diagram
with this property is called co-complete, see [45, 76, 79]), then there exists®® a standard
IET T such that y (Ty) = y.

Following [45, 47], we give the following definition. Let T be a GIET with no
connection and y (T) its rotation number.

Defination 2.3.2 (irrational or (00-complete) rotation numbers). — The (combinatorial) rotation
number y (T) is said to be irrational (or co-complete) iff every j € A= {1, ..., d} is the winner
of infinitely many arrows of y ('T).

The following result, which is proved in the notes [79] by Yoccoz, extends Poincaré
theorem for circle diffeomorphisms and further supports the terminology ‘rotation num-
ber’. We will refer to it as Poincaré theorem for GIETs.

Theorem 2.1 (Poincaré theorem for GIETs, see [77, 79]). — Let T be a GIET with oo-
complete rotation number and let Ty be an IET with same rotation number. Then T s semi-conjugate to
T.

In the rest of the paper, since we are interested in GIETs which are semi-conjugated
to a standard IET, we will always work GIETs with #7ational rotation number in the sense
of Definition 2.3.2.

% We added the adjective combinatorial since it gives a conjugacy invariant which describes the combinatorial struc-
ture of orbits (as in other examples from one-dimensional dynamics, like for example the kneading sequences for unimodal
maps) as well as to distinguish it from other possible generalizations of the notion of rotation number, such as rotation vectors
for higher dimensional tori or the Katok fundamental class which generalizes the asymplotic ¢ycle role also played by the rotation
number.

% The IET is not necessarily unique, but any two standard IETs T, and T; with y (T,) = y(T;) are topologically

conjugated, see [76].
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2.3.4. Periodic-type (or Fibonacci-type) combinatorics. — We can now define also GIET
of periodic type (which are analogous to maps with Fibonacci type combinatorics in the one-
dimensional dynamics literature):

Defination 2.3.3 (Periodic type). — A GIET T s called of periodic type if it has no connec-
tions and its combinatorial rotation number y (T') s irrational and periodic, t.e. there exists a p > 0
such that y,., =y, for every n € N. The minimal p with such property will be called the period of

y (D).

2.3.5. Definition of the renormalisation operator. — The elementary step of the Rauzy-
Veech induction can be used to define an operator acting on an open subset of X" defined
the following way. Set

V={TeX | _(T)=d_ (D).

Note that )’ is a codimension 1 smooth submanifold of X”. In other words, )’ is the
subset of those GIETs for which the rightmost top and bottom intervals have same length.
It 1s exactly the set for which the elementary step of the Rauzy-Veech induction is not
defined. Thus the elementary step of the Rauzy-Veech induction defines an operator
V:X'\ Y+ X" given by T +— V(T).

A GIET T is said to be wnfinitely renormalizable iff V" (T) if well-defined for all n € N.
Note that in particular a GIET with irrational (i.e. co-complete, see Definition 2.3.2)
rotation number is infinitely renormalizable. However, not all infinitely renormalizable
GIETs have irrational (0o-complete) rotation number (actually in parameter space, the
“generic case” 1s expected not to have irrational combinatorial rotation number).

2.3.6. Accelerations. — We will consider as renormalization operators R operators
that are obtained accelerating V), i.e. such that R*(T) := V" (T) where is a suitably chosen
sequence of iterates of V' (which depends on T). For example, when T is of periodic type
with period p (see Definition 2.3.3), the natural renormalization operator to use is sim-
ply R :=V*, so that R*(T) := V¥(T) for every k € N. A classical acceleration of V is
the Lorich acceleration, which we will denote by Z and corresponds to grouping together
all successive elementary steps of Rauzy-Veech induction which are equal of type top,
or bottom, respectively: given T" with irrational y (T), one can show that top and bot-
tom both win infinitely often; therefore, one can define the sequence (7;).en such that
ZH(T) := V"™(T) by setting ny := 0 and, recursively, if 7; is such the top (resp. bottom)
interval of V" (T) wins, setting 74 to be the first n > n; such that bottom (resp. top)
interval of V"(T) wins.

Accelerations can also be obtained considering nducing (ie. first return maps): if
E C X7 is a subset, we can obtain an acceleration of V, denoted by Vg, defined on the
set of T € X7 which visit E infinitely often: if (n;)en 1s the sequence of successive visits
of the orbit (V"(T)),en to T (i.e. we set n; to be the first z > 0 such that V*(T) € E



256 SELIM GHAZOUANI, CORINNA ULCIGRAI

and, given n;, we set n.41 to be the smallest n > n; such that V"(T) € E), we can defined

VE(T) == V' (T).

2.3.7. Dynamical partitions. — We introduce the notion of dynamical partitions. Let T
be an infinitely renormalizable T and let R be a renormalization operator obtained by
accelerating Rauzy-Veech induction, as described above. Then the orbit (R"(T)),en is
well defined and, by definition, for every n € N the GIET R"(T) is obtained by rescaling
the first return map of T on an interval of the form [0, A,]. We will denote by 1™ :=10, A,]
and by T, the Poincaré map of T to I*”, so that R"(T)(x) = T,(A,x)/A, or, explicitely, if
I;- (n) denote the continuity intervals for R"(T),

T,000) T ()
Moo A,

1
(5) R'(T)(x) = . forall xeIi(n) = A—Ij”).
Notice that {I”, n € N} are nested intervals with 0 as a common left endpoint. By con-
struction T, 1s a d-GIET. We denote by IJ(”), for j=1,...,d its continuity intervals, so

that the interval I*” = [0, A,] is partitioned into [ = Uf:lI;") and foreach 1 <j<d, T,
(n)

. . ® . .
restricted to I is equal to T% where g;") is the first return time of I/(-") to 1™ under T,

j / «
i.e. the minimum ¢ > 1 such that T?(x) € I for some (hence all) x € Ij(-").

Let us define

d
P, = U'P{;, where P/ := {I(’l), T(IJ(-”)), T (I;"’)), e qu('”_”(ljn))}_
J=1

One can verify that P, is a partition of [0, 1] into subintervals and that, for each 1 <j < d,
the collection P/ is a Rohlin tower by intervals, i.e. a collection of disjoint intervals which
are mapped one into the next by the action of T

We will say that {P,, n € N} is the sequence of dynamical partitions associated to the
orbit (R"),en of T under the renormalization operator R and, when the renormalization
operator is clear, that P, is the dynamical partition of level n. We say that the number
g;") of intervals in a tower is the height of the (Rohlin) tower P’. Thus, P, also gives a
representation of [0, 1] as a skyscraper, 1.e. a collection of Rohlin towers, for T'. Notice that
if n > m, then the partition P, is a refinement of P,,.

2.4. One dimensional dynamucs toolkit. — We recall here classical and crucial tools in
the theory of circle diffetomorphisms and more in general in one-dimensional dynamics,
such as non-linearity and Schwarzian derivative.

2.4.1. Non-linearity. — For any C* map f : 1 —> J where [ and J are open intervals
such that Df does not vanish, one can define the non-linearity function 7, to be the function
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ny - I— R given by

DY (x)
Df (%)

The function 7y is called non-linearity since it measures how far f is from being affine and

nr(x) := (DlogDf)(x) =

has the property that n, = 0 if and only if / is an affine map. Some easy but important
consequence for the non-linearity are the following.

Lemma 2.4.1 (properties of non-linearity). — Let f : 1 — ], g : ] —> K be diffeomor-
phisms of class C*. Then the following properties hold:

(1) Chain rule for non-linearity: 1, =1y +Dg(n,0f);
(i1) Distribution property: fI Neof = fI N+ fJ Ngs
(i11) Triangular inequality: fI IMgor| < fI Il + f] 7.
The second and third points are consequence of the first, which itself is an applica-

tion of the chain-rule for differentiable functions. We refer the reader for example to the
Appendix of [49] for more details.

Definition 2.4.1 (mean and total non-linearity of @ GIET). — Given a C* interval exchange
map T : [0, 1] — [0, 1], defined on the continuity intervals 1; C [0, 1] we define the non-linearity nr
to be the (bounded) precewise continuous map from [0, 1] to R given by

nr(x) :=ng(x), ifxel,1<)<d,

where 'T; : I; — [0, 1] are the branches of T obtained restricting ‘T to its continuity intervals. We
subsequently define

1 1
N(T) := / nr(x)dx, INI(T) := f 1 (x)|dx.
0 0

We call N(T) the mean non-linearity of T and |N|(T) the total non-linearity ¢f T

Mean non-linearity and total non-linearity play an important role in the theory of
renormalization, in particular since, seen as functions N(-) and |N|(-) on the space x’ of
GIET (with r > 2) they satisfies the properties listed in the following proposition.

Proposition 2.4.1 (properties of mean and lotal non-linearity). — For any r = 2, w € &, the
mean non-linearity N(-) and the total non-lnearity |N|(-) have the following properties:

i) IN(T)| < INI(T) for every T € X7;

(11) N(-) is invariant under renormalization, i.e. N(V(T)) = N(T) Jor every T € X7;
(1) |IN|(-) zs decreasing under renormalization, i.e. IN|(V (1)) < |N|(T) for every T € X”;
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(iv) N(T) is invariant under rescaling by (restrictions) of affine maps, so that in particular if a,
b are (restrictions of) linear maps, N(a o T o b) = N(T).

Proof — Note that the branches of V(T) are compositions of restrictions of
branches of T'. These properties are thus easy consequences of Properties (i) and (z22) of
Lemma 2.4.1 applied to branches of V(T). 0J

In light of (uz), the total non-linearity |N|(T) captures how close T is to the set
of affine interval maps (see in particular Remark 4.2.1). This will play a central role in
proofs of convergence of renormalization.

2.4.2. Dustortion bounds. — We now recall standard distortion bounds in one-
dimensional dynamics and derive from it an important consequence for the renormaliza-
tion operator R.

Lemma 2.4.2 (Distortion bound). — Let T be a GIET of class C*. Let ] C [0, 1] be an
anterval such that J, T()), T2(]), ..., T"(J) are pairwise disjoint and do not contain any singularities
of T. Then we have

D < cxpINCT) (f1| k). Jiraltry e
———| <ex ‘= ex nr(x)|dx ), forall x, .
Do) | =P AL !

The proof is an adaptation to GIETSs of the classical proof. We included it in Ap-
pendix A.2 for complenetess.

2.4.3. The Schwarzian derivative. — We conclude this Section by introducing the
Schwarzian derivative which is a most classical tool in one-dimensional dynamics. If
f:1—>Jis a C? diffemorphism between two connected intervals I and J, define its
Schwarzian derivative to be

D3 3 /D% \’
33

~Df 2
Non-linearity and Schwarzian derivative are related by the following equivalent expres-

sion for S(f):

1
(6) S(f) =Dny — 5’7?-

The Schwarzian derivative enjoys the two following important properties:

(S1) S (f ) identically vanishes if and only if / is the restriction of a Moebius map
to its domain.
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(S2) if f: I}, = Iy and g : Iy = I3, the composition g o f : I, — I satisfies the
following chain rule for the Schwarzian derivative:

S(gof) =S of M) +S().

For f/ : 1 — ], where I and J are intervals, we denote by N (f) the normalisation of f given
by N'(f) := bof o a, where a and b are respectively the only orientation-preserving affine
map mapping [0, 1] onto I and J onto [0, 1]. Then, from (S1) and (S2) we can deduce?®’
that

(S3) SIN(N) =S (bofoa)=*S()oa.

2.5. The Zorich cocycle. — In this section we restrict the Rauzy-Veech renormaliza-
tion V (which was defined in Section 2.3 for GIETs in X"\ )) to the subset Z, C X" of
standard IETs. This is the classical setup in which the induction was introduced by Rauzy
and Veech [57, 64] and studied from the ergodic theory point of view. We introduce
the Rauzy-Veech and Zorich cocycle and recall the integrability property and Oseledets
theorem for the latter.

2.5.1. Invariant measures. — Let us recall that Z, is isomorphic to A,_; x &Y (refer
to Section 2.2.1). A natural measure on Z,;, which we will call Lebesgue measure, is the
product measure obtained taking the product of the Lebesgue measure on R restricted
to the simplex A,_; and the counting measure ** the measure defined, for any 7, 75 €
62, by §(my, m9) = 1 iff m; = 7y and O otherwise. Thus, for any 0 < € < 1, asking that
der (T, Ty) < €, where, for : = 1,2, T; is a GIET with combinatorial datum m; and
shape-profile coordinates (Ar;, ¢1,), 13 equivalent to asking that 7, = my, da(T}, Ty) <
€ and dg,jl (¢1,, ¢1,) < €. on combinatorial data 62. We refer to its measure class®’ as
Lebesgue measure class.

The domain of definition of an elementary step of Rauzy-Veech induction V (act-
ing on standard IETs) is hence

T, :=TZ\Y ={T=(m, 1) €Ly, suchthatu, , #u, |}
= {T = (7'[, M) € .,Z:d, such that )‘m(d) ?é )\.ﬂb(d)}

and therefore it is a full measure subset of Z,; with respect to the Lebesgue measure class

(defined above).

27 Property (S3) follows since by (S1) we have that S(a) = S(4) = 0 and thus, by (S2), S (b ofo a) =S (fo a) =
(S(f) o a) (d)?, which gives the desired conclusion since @ (x) = |I| for all x € [0, 1].

% The counting measure § on &Y is simply the measure defined by setting §(S) to be the cardinality of S for any
subset S C &Y. It is here simply used to put a copy of Lebesgue measure on each copy of the simplex A, x {n} indexed by
7 € 6.

%9 Recall that a measure class is an equivalence class of measures which have the same sets of measure zero.



260 SELIM GHAZOUANI, CORINNA ULCIGRAI

Le us fix an irreducible 7 € &Y (see Section 2.1.3) and consider the action of V
restricted to the space Z, := A, X R(), where R(r) is the Rauzy class® of 7 (see
Section 2.3.1). Veech proved in [64] is that the restriction of V :Z, — Z, admits an
mvariant measure which is absolutely continuous with respect to the Lebesgue measure
on Z, (see above), but which is infinite. Dropping the dependence on 7 (or more precisely
on the Rauzy class R (7)) we will denote this natural measure by @y, when 7 is fixed. This
seminal result started the study of V from the ergodic theoretical point of view. Veech also
showed already in [64] that V : Z, — Z, is conservative and ergodic with respect to @y .

The acceleration Z defined by Zorich was introduced to have a finite invariant
measure: in [80] Zorich showed indeed that Z is defined on a full measure set of Z,, and
admits a finite iInvariant measure that we will denote p z. It follows from the definition and
[64] that also Z is ergodic with respect to tz.

Remark 2.5.1. — Since both pz and wy are absolutely continuous with respect to the
Lebesgue measure and Z,; = UneGQIﬂ, to show that a property holds for a full measure
set of IETs for the Lebesgue measure on Z, it is sufficient to prove that, for any fixed

irreducible combinatorial datum 7 € &Y, then it holds for 1z (or i z) almost every T in
Z,.

2.5.2. Natural extension. — Notice that Rauzy-Veech induction V is not injective (V
is actually two-to-one) and therefore neither V nor its Zorich acceleration Z are wnvertible
on the space Z,. One can consider, though its natural extension Z defined on the measure
space (I,,, M 2): this is a map such that Z is defined and invertible on a full measure subset
of Iﬂ with respect to the measure p 2, and is an extension of Z in the sense of ergodic
theory, 1.e. there exists a projection p : 7, — T, such that 152,; = Z o p (i.e. p intertwines
the dynamics of Z and 2) and the measure m3 is the pull-back of ms via p, i.e. for
every measurable set E C Z,, my (p~'(E)) = mz(E). Notice that the invariant measure
m s preserved by the map Z is also finite.

One can describe explicitely a geometric realization of these natural extensions
and the space 7, can be identified with the the space of zippered rectangles introduced by
Veech in [64] (consisting of triples T = (r, A, ) where T = (;r, A) is a standard IET
and T is a suspension datum which contains the information required to define a translation
surface which has T as Poincaré map, as in Section 2.1.6). We will not make explicit use
of this interpretation, so we will simply denote by Ta point of 7, such that p(T) =T
(here 1f T= (m, A, 1), p(T) =T 1s the IET T = (7, 1) obtained forgetting the suspension
datum 7).

30 et us recall that the Rauzy class of 7 is the subset of all permutations 7 of ¢ symbols which appear as permuta-
tions of an IET T’ = (), ) in the orbit under R of some IET (), 7r) with initial permutation 7.
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2.5.3. Basics on cocycles. — We recall now basic definitions concerning cocycles
and their accelerations. We refer the reader for example to [68] for a comprehensive
introduction to cocycles and Lyapunov exponents. Let (X, u, F) be a discrete dynamical
system, where (X, ) is a probability space and F is a p-measure preserving map on X.
A a measurable map A : X — SL(d, C) (d x d invertible matrices) determines a cocycle
Aon (X, u, F). If we denote by A,(x) = A(F"x) and by Af(x) = A,—1(x) - - - A (x) Ap(x),
the following cocycle identity

(7) AP (x) = AR (F"x) A (x)

holds for all m, n € N and for all x € X. If F is invertible, let us set A_,(x) = A(F"x).
The map A~'(x) = A(x) ™! gives a cocycle over F~! which we call nverse cocycle. Let us set
A_,(x) = A(F ™). for n < 0 we can set A" (x) = A" (F~'x)--- A~ (F"x), so that (7)
holds for all n, m € Z. Remark that AT (x) = (A™(T~"x))~". The inverse transpose cocycle
(A™HT" is defined by (A~ (x) = (A™")T(x) where M denotes the transpose of M.

2.5.4. Induced cocycles and accelerations. — If 'Y C X 1s a measurable subset, the
induced map (or first return map, or Poincaré map) of I on Y, which is defined u-
almost everywhere by Poincaré recurrence, is the map given by F¥Y% () where 7/ (y) :=
min{r | 'y € Y}. The induced cocycle Ay on'Y 1s a cocycle over (Y, py, Fy) where Fy is the
induced map of Fon Y and uy = /(YY) and Ay (p) is defined for all y € Y which return
to Y and is given by

Av() =AFEY ) A(B)A(),

where 7y(y) is again the first return time.

The induced cocycle is an acceleration of the original cocycle, i.e. if {n;};en 1s the
infinite sequence of return times of some y € Yto Y (i.e. T"y € Y ift n = for some £ € N
and 74 > n;) then

8) AV)0) = Ay 10D - - Ay A, O).

We say that x € X is recurrent to Y under T if there exists an infinite increasing
sequence {n;};en such that T%x € Y. Let us extend the definition of the induced cocycle
Ay to all x € X recurrent to Y. If the sequence {n;};en 1s increasing and contains all
n € NT such that T"x € Y, let us say that x recurs to Y along {n;}1en- In this case, let us set

Ay(x) ;= A(AP (x), where y:=F"x€Y;
(Ay),(x) :== (Ay),(»), forneN*.

If I 1s ergodic, p-a.e. x € X is recurrent to Y and hence Ay is defined on a full measure
set of X.
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2.5.5. Integrability. — Here and in the rest of the paper, we will use the norm
Al = Zy |A;| on matrices (more generally), the same results on cocycles hold for any
norm on SL(d, Z)). Remark that with this choice ||A| = ||A"]].

A cocycle over (X, F, w) 1s called wntegrable if fX In [|A(x)||d(x) < oo. Integrability
1s the assumption which allows to apply Oseledets Theorem, also known as multiplicative ergodic
theorem (the conclusion of Oseledets theorem in the setting of the Zorich cocycle 1s recalled
in Section 2.5.10; for a more general reference, see e.g. Section 4 in [68]). If A i1s an
integrable cocycle over (X, F, i) assuming values in SL(d, Z), then one can show that
the dual cocycle (A™")T and, if F is invertible, the inverse cocycle A~ over (X, F~', )
are integrable. Furthermore, any induced cocycle Ay of A on a measurable subset Y C X
is integrable (see for example [68], Section 4.4.1).

2.5.6. The Zorich cocycle. — Consider the Zorich map Z on Z,;. Given T =
(A, ) € Z, with no connections and irreducible 7, denote by {I¥, £ € N} the sequence
of inducing intervals corresponding to Zorich acceleration Z of the Rauzy-Veech algo-
rithm V. Write Z5(T) := (#®, A®) and let T, be the (non normalised) induced IET,
given by first returns of T to I? | so that

d
ZNT) =@ W, 29/119),  where T9] =) 4" = 2.9,

j=1

Recall from Section 2.3.7 that T can be represented as skyscraper over I® and let
-
k K
¢ = ¢ (T) = (qg L sz)) ’

be the column vector whose entries qj(k) are the heights of the Rohlin towers, the vector
of heights or, equivalently, the vector of first return times, since q;k) is also the first return
time of I!” to I.

For each T = T© for which Z(T) = (7, AV /|1D]) is defined, let us associate to
T the matrix Z = Z(T) in SL(d, Z) such that ¢’ = Z ¢”. The map Z: X — SL(d,Z) is a
cocycle over (X, iz, Z), which we call the Zorich cocyele®® (also sometimes called Kontsevich-
Lorich cocycle). Explicitely, if T has combinatorial datum 7 = (7r;, ;) and lengths vector
A, the cocycle Z = Z(T) is given by

7= 7(T) = L +Er,ym@y Az > Ar, (€. top is winner),
I, + Em(d)nb(d) if)xm(d) < )\‘be(d) (i.e. bottom 1is winner),

31 Notice that there is also another cocycle, also sometimes called Zorich cocycle, which transforms lengths and is
actually the transpose inverse of the cocycle here defined.
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where 1, denotes the d x d identity matrix, while E; denotes the matrix which has all
entries equal to zero, but the entry  which is equal to 1.
Zorich proved in [80] that Z is wntegrable. Defining:

2,=7,(T):=72(Z"(T)), 20 =",y AVA)
and iterating the above relation, we then get the following matrix product relation:

9) ¢ =700 where ¢O(T) :=(1,...,1)7,

which gives the heights (i.e. return times) of the representation of T as a skyscraper over
the firt return map T, to I™. For more general products with m < n we use the notation

(10> Q(m’ ﬂ) = anlzn72 s Zm+lZm-
The following cocycle relation then holds for any triple of integers n, m, p:

(11) Q(n, p) = Q(m, p) Q(n,m), foralln<m< p.

Notice that by choice of the norm |¢| = Zj l¢;| on vectors and [|Al| =), . |A;| on matri-
ces and since return times are positive numbers,

(12) mjaxqf”) <1¢”1 < 1Qm, »)[ 1¢"|l,  for any m < n.

2.5.7. Dynamical interpretation of the entries. — The entries of the Zorich cocycle ma-
trices have the following crucial dynamical interpretation: if T is the sequence of IETs
obtained inducing on the sequence I, n € N of intervals given by the Zorich acceler-
ation (so that Z"(T) is obtained normalising T to an interval exchange acting on the
unit interval), then the entry (Z,); of the nth Zorich matrix Z, gives the number of visits
of the orbit of x € Ij(-nﬂ) under T® to IE") up to its first return to 11,

Correspondingly, the Zorich cocycle has also an interpretation in terms of incidence
matrices of Rohlin towers (defined in Section 2.3.7). The Rohlin towers at step n+ 1 can
be obtained by a cutting and stacking®* construction from the Rohlin towers at step 7: more

precisely, for any n € N and 1 <, < d, the Rohlin tower over I;") is obtained by stacking
subtowers of the Rohlin towers over I (namely sets of the form {T*],0 < k < g;")} for
some subinterval ] C I;")). Then (Z,); is the number of subtowers of the Rohlin tower
over I inside the Rohlin tower over I}"H). It follows that the Rohlin tower over I}"H)
is made by stacking exactly Zle (Z,);; subtowers of Rohlin towers of step n. Notice that

Zlil (Z,) 1s the norm of the jth column of the matrix Z,.

2 We do not give here a precise definition of cutting and stacking, which is a standard construction in the study of
ergodic theory and in particular of rank one and, more in general, finite rank dynamical systems.
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2.5.8. Length cocycle. — One can check that the length (column) vectors (A®),cn
that give the lengths A<k) |I(k)| of the exchanged intervals of the induced map T on the
sequence of inducing mtervals {I®, k € N} given by the Zorich acceleration also trans-
form via a cocycle and that the cocycle is exactly the transpose inverse (Z")~! of the
Zorich cocyle Z. Thus, we have that

A =Z(m, n)"A"
=7Z(m)'Zm— 1" Z(n— 1A, forevery 0 <m < n.

Let us also recall that, for every cocycle product B := Z(0, n) = Z™(T), if we define the
sub-simplex

B\ +
<13> A )\._ﬁ )\.GAdl CAdCR,
(where B is as above the transpose of B), then (because of the relation between lengths

and Zorich cocycle), for any A" € A, if T' is the IET with length data A" and same
combinatorics 7 than T, we have that Z® (1) =Z®(T) =B

2.5.9. Cocycle action on log-slopes of AIETs. — Let us now consider affine interval
exchange T € A, that it is infinitely renormalizable, and assume that its rotation number
y (T) 1s wrrational. Then, Zorich acceleration is well-defined for T (see 2.3.6). An important
fact is that the action of Z on the slopes column vector p(T) = (py, ..., p,)" satisfies the
following: if w(T) :=logp(T) = (log P1s-..,log ,0(;,)T denotes what we call the log-slope
vector of T (whose entries are the logarithms of the slopes of T on continuity intervals), we
have

w(RT) = Z(T) o(T),
o(R'T) = QW (T), forallTe A, neN.

Thus, the way log-slope vector @ ('T) transform under ) does not depend on the value of
A(T) and 1s linear and given by the Zorich cocycle.

2.5.10. Lyapunov exponents and Oseledets splittings. — Zorich showed in [80] that for
every irreducible 7 € &Y the Zorich cocycle Z : Z, — SL(d, Z), as well as its traspose
dual (Z7)™!, are integrable (see Section 2.5.5) with respect to the Zorich measure @z (in-
troduced in Section 2.5.1). Let us consider the natural extension Z: Id — Id (see Sec-
tion 2.5.2) with its invariant measure @ 4. The cocycle Z over Z can be extended to a
cocycle which we still denote by Z, over Z, by defining 7 : 7, — SL(d, Z) to be given
by Z(T) = Z(p(T)) for every Te Id Then, Z 1s now a cocycle over Z which 1is still
integrable (by definition of 7 and by construction of y, see in particular property (i) of
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the natural extension, see Section 2.5.2). Notice also that, by definition of the extension,
if T € p~1(T) (since then Z(T) = Z(T)), then Z,(T) = Z(Z"T) = Z(Z"T) = Z,(T) for
every n € N.

As a consequence of Oseledets theorem for cocycles over nvertible transformations
and of the celebrated works® [6, 22, 66, 81] it hence follows that there exists s ¢ (positive)
Lyapunov exponents Ay > --- > A, > 0 (where g is the genus of the suspension T) such that

for p z-almost every Te I,,, there exists a splitting, namely, denoting by « the number of
singularities of the suspension T (see Section 2.5.2 and Section 2.1.6), a decomposition

. - 1 ifi#0
14 R’ = E;(T), where dimE,(T) = ’
14 D E(D, where dimE(D =) 0T

(called Oseledets splitting) such that:

| A ifveE(Dandi>0
(15) lim —log 122 (Tl = —r;  ifveE(T) andi <0,
n—=+o00 1 A
0 ifv e E(T).

We define the stable, unstable and central space for any n € N to be respectively

EX (D) =E2"D) = P EED),
—g=<i<0

EO(T) =E,2'T) = P EET). E”:=E@27D.

0<i<g
Then invariance of the splitting means that for any m < n we have that
Z(m,mE"(Z2) =E"(Z), where v in any index in {, s, c}.

Furthermore, Oseledets theorem also guarantees a control of the angle Z (see e.g. Sec-
tion 4 in [68]) between stable, unstable and central spaces (where the angle Z(V, W) be-
tween two linear subspaces V, W C R? is defined as the minimum angle / (v, w) among
all non-zero vectors v € V, w € W), namely for every € > 0 there exists ¢ = ¢(€, >0
such that

sin [Z(E) (1), E@ (1))
(16) lim d -
n— =400 n
for all distinct pair of indexes vy, vy € {u, s, ¢}.
3% The symmetry of the Lyapunov exponents (i.e. the property that for every exponent A; also —2; is an exponent),

is a consequence of the symplectic nature of the Zorich cocycle (proved in [80, 81]), the Ayperbolicity, namely the inequality
Ag > 0, was proved by Forni [22] and simplicity, namely A; < Ay, for every 1 <i < g was proved by Avila and Viana [6].
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We say that a IE'T is Oseledets generic if it satisfies all the conclusions of Oseledets theorem
listed above. An application of the Oseledets theorem (or simply ergodicity combined
with integrability) also shows that if T is Oseledets generic, then

| N
(17) lim —log||Z,(T)|| = 0.
n—=+o00 n

[Notice that here we consider the elementary matrix Z,Z(T) = Z(Z,A’"T) and not Z® (T)
which is a product of cocycle matrices. |

2.6. Bukhoff sums and special Burkhoff sums. — The Zorich cocycle plays a crucial
role also in the study of Birkhoff sums of functions over an IET, through the study of
special Burkhoff sums, which were introduced in the work by Marmi-Moussa-Yoccoz [45] as
fundamental blocks to decompose and study Birkhoff sums over an IET. We recall here
both the definition of Birkhoff sums and special Birkhoff sums, as well as the connec-
tion between special Birkhoff sums and the (extended) Zorich cocycle, while in the next
subsection Section 2.6.2 we recall how special Birkhoft sums can be used to decompose
Birkhoff sums.

2.6.1. Piecewise continuous functions and Burkhoff sums. — Given a GIET T, let us
denote (using a notation inspired by [45]) C(T) :=C (u”-iZII;) (or for short C (I.II}), the

J
space of puecewsse continuous functions f : [0, 1] — R which are continuous on each continuity
mnterval Ij‘-, for I <5 <d of T and extend to continuous functions on the closure of each

I} (so that right and left limit as x tend to the endpoints of each I, exist). Notice that as
subspace, it contains the space ' =T'® :=T (uf:llj) of functions which are piecewise
constant on each interval Ij‘-, 1 <j<d.

Given C (I_IJ”': 1Ij’f), the Birkhoff sum S,f (x) of f over T denotes the sum of / along the

orbit up of x under T to time 7, 1.e. S,f(x) := Zj:_ll f(T¥x). We stress that in this paper we
consider in general Birkhoff sums over a generalized IET, while in [45] and the consequent
works one usually restricts the attention to Birkhoff sums over standard IETs.

2.6.2. Special Burkhoff sums. — Assume that T 1s infinitely renormalizable and let
{I™, n € N}, where I®” = [0, ,], be a sequence of intervals obtained by the Zorich (or
more in general by a further) acceleration of Rauzy-Veech induction and let {'I',, n € N}
be the corresponding induced GIETs, T, being the first return of T on [0, ,]. Let ¢" =
(qi"), ey q;"))T be the corresponding vector of first return times, or equivalently, of heights

of the Rohlin towers in the representation of T as a skyscraper over T, (see Section 2.3.7).
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The (sequence of) special Birkhoff sums f™, n € N, is the sequence of functions /™ :
C(T®) = C(I_II;")) — R obtained inducing f over T,, namely given by

q;n) 1

f(”)(x) = Sq]gn)(x) = Zf(Tﬁ(x)), ifxe I;"), forany 1 <j<d, neN.
=0

One can think of £ as an induced function, obtained inducing the function  on the interval
I™ via the dynamics of the first return map. One can check that by construction, for each
n €N, f® is continous on each I;"), 1 <j < nand belongs to C(T™). If x € I](-”), one can

think of /" (x) as the Birkhoff sum of f along the Rohlin tower of height q;") over I;").

2.6.3. The extended Zorich cocycle. — In the special case when f € T := T'(T), one
then has that f® € T® := ['(T™), i.e. f™ is piecewise constant on each I}"). If we identify
each piecewise constant function £ in I'™ with the column vector, which by abusing the
notation we will still denote by /™, whose jth entry is the value on (any) point of I/(-"), Le.

f(n) — (f(n)(xl)7 ... ,f(")(xd))T, where x; € IJ(”), l<j=d,

then one can see that f transforms according to the Zorich cocycle defined in 2.5.6 (or
the corresponding acceleration if {I™, n € N} where obtained by an acceleration), i.e.

f(”) = Z(”)f(o), W= Z(n, m)f(’”), for every n>m, n, m € N.

where Z® and Q(m, n) are the Zorich cocycle matrices defined in Section 2.5.6 (compare
in particular the above relation with the height relation (9)).

More in general, given a function f* € C(T™) for some n € N, we can recover
£ from £ and T, by writing

(ZIL)Z/_I

(18) S =Y fO((T) ), forany xe T,

k=0

where (Z,); 1s the (z,7) entry of the nth Zorich matrix Z,, which, as recalled in Sec-
tion 2.3.7, gives the number of visits of the orbit of x € Ij("H) under T, to I up to its
first return to [#*1). This relation, which can be proved simply recalling the definition of
special Birkhoff sums and Birkhoff sums, can be understood in terms of cutting and stacking
of Rohlin towers: the relation indeed mimics at the level of special Birkhoff sums the fact
(recall in Section 2.5.7) that the Rohlin tower over I;"H) is obtained by stacking (Z,);
subtowers of the Rohlin tower over I and hence, correspondingly, the special Birkhoff
sum "+ (x) is obtained as sum of (Z,); values of the special Birkhoff sum f ™ at points
of IE").
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2.6.4. Decomposition of Burkhoff sums. — Special Birkhoff sums can be used as follows
as fudamental building blocks to study Birkhoff sums, see e.g. [44, 45, 48, 60, 61, 81]. Given
an infinitely renormalizable T and f € C(T), let {I™, k£ € N} be the sequence of inducing
intervals given by Zorich induction. Consider first the special case in which x, € [?0*+D
for some ng € N. Then, if follows from (18) that, if 1 <j < d is such that x, € I""*", the

Birkhoff sum S,/ (x) for any 0 <r < q;"(’“) can be decomposed as

bn() —1

S = 0/ (57) + 8./ (),
£=0

with " = (T,,)" (x0). 11 = (T,,)"™ (x0)

where b,, = b,,(x) is such that 0 < b,, < Zle(z,,o)y- and S, f(x;) 1s a reminder which is
not a special Birkhoff sum of lever ny, i.e. if jy is such that x; € I;:“) then 0 <7 < q}(}"‘)).
Repeating this decomposition for S, f(x;), we then obtain by recursion the following

geometric decomposition of the Birkhoff sum S,(x,) into special Birkhoff sum:

ny bp—1
19) SS =D 37" ().
n=0 £=0
where 0 < b, < | Z,l, " €I®, for0<€<b,— 1.

From here, we also get the estimate

no

) . +1

IS @) <Y NZMIPNL ifxeI™, 0<r<q™*".
n=0

For the general case of a Birkhoff sum S f(x) for any x € [0, 1] and r € N, we can define
no = ny(x, 7) to be the maximum 7y > 1 such that I contains at least #wo points of the
orbit {T"x, 0 <7 < r}. (This guarantees that r is larger than the smallest height of a tower
over 1™ but at the same time that it is smaller than a over IV, Then, if xy = T (x) is
one of the points in [ we can split the Birkhoff sum S f (x) into two sums of the previous
form, one for T and the other for T~ and therefore get

no

(20> |S(f(x)| 5 2 Z ”Zn” ”f(”)”’ for any X E [O’ 1] \ I(710+1).
n=0
2.7. Boundary operators. — We introduce here some operators on the space of

GIETs, first defined in the work of Marmi, Moussa and Yoccoz [47] and known as
boundary operators, for their correspondence with a boundary operator in cohomology (see

Section 2.7.2).
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2.7.1. Boundary operator for observables. — Let T € X be a GIET and let f be a
function in the space C(T) introduced in the previous section Section 2.6.1. By definition
of the functional space, on each of the continuity intervals Iﬁrl(i) = (u'_,(T),u(T)) of T,
for 1 <i<d, f has a right limit at u._, ('T) and a left limit at «'('T). We denote by /" (%;) and
/() respectively the right and left limits at the discontinuity point ;. Explicitely,** if we
denote by f; the ith branch of /" obtained restricting f to I, we have:

S () = linlﬁn(m)(x), Sw) = l_i)rn_ﬁr[(i)(x)'
We also set by convention f*(ug) := 0 and f" () := 0. Let now S = S(T) be the suspended
surface corresponding to T (see Section 2.1.6). Let d = 2g 4+ k where g is the genus of S
and k the cardinality of the set Sing('T') of singularities, which we will label by {1, ..., k}.
Recall that each of the #; corresponds to (the label of) a singular point s(%;) € {1, ..., «}
(see 2.1.6).
For each f € C(I_IIJ(")) and for each 1 <s <k, set

B(N:i= > (fw)—fw).

0<i<d s.t s(u;)=s
This defines by a map

B:=Cy(UI(T)) —  R*
f e (BJQF)) 1<s<k-

A combinatorial definition of the correspondence between endpoints and singularities as
well as of the boundary operator following [44] is given in the Appendix, see Section A.1.

2.7.2. Cohomological interpretation of the boundary operator. — When one restricts the
boundary operator to piecewise constant functions, one recovers a standard boundary
map in homology. The intervals (I{(T));<, can be put into one-to-one correspondence to
curves on S, whose endpoints belong to the singularity set Sing(T) (each of them indeed
embed onto a segments S,, whose endpoints can then be slided along the leaves of the
foliation until they become singularities in Sing, see Appendix A.1). The (relative) holon-
omy classes of these curves actually form a base of the relative homology group H, (S,, Sing, Z)
(see e.g. Viana [67] or [79]). A function that is constant on each of the I!(T)s thus defines
a class in H; (S,, Sing, R) = H, (S,, Sing, Z) ® R. The boundary operator defined above
is nothing but the standard boundary operator for relative homology

a: Hn+l (Sg, Sing, R) — Hn(Sa R)
restricted to the case n = 0.

tinys We have to use fr, 11 (%) to take the right limit, while to take the left

t ~ 3 "
() and consider fr,¢.

3" Indeed, since  is the left endpoint of 1
limit we have to see ; as the right endpoint of I
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2.7.3. Renormalization invariance of the boundary operator for GIETs. — The following
Proposition was proved in in [47], see also [79].

Proposition 2.7.1 (properties of the boundary, see Proposition 5.2 in [47]). — The boundary
B: Co( L; IE(T)) — R has the following properties:

i) Foramy ¥ € C(T), B@) = B o T).
(i) If'T is once renormalizable, for any ¥ro € C(T), B(¥o) = B(Yr,) where Y, € CV(T))
us induced from o obtained considering special Birkhoff sums.

2.7.4. Boundary of a GIET. — We define now the boundary of a GIET (see also
[47]).

Definition 2.7.1 (boundary of a GIET). — Given'T € X, we define the boundary of T to be
B(T) := B(logDT), where B is the boundary operator on Co( LJ; IE(T)) defined by Marmi-Moussa-
Yoccoz (see Section 2.7.1).

The following Remark gives an equivalent expression for the boundary in terms of
the shape-profile coordinats (from Section 2.2.3) which will be useful in the sequel. Recall
that give T € X we denote by (Ar, (p%, e (p%) its coordinates for the product structure
X = A x P. We denote w, := w;(T) the logarithm of the slope of At on the i-th interval.

Remark 2.7.1. — Given T = (Ar, ¢y, .. ., (p%) e X, let w(x) and logDgr(x) de-
note the piecewise continuous function in CO( L If(T)) which are respectively equal to w;
and to log Dg% on I'. Then we claim that

B(T) = B(w) + B(log Dg).

This can be seen since the derivative DT of a GIET T is related to the functions Dy
and w by

DT =¢"Der, or, equivalenty,
DT(x) = ¢ logDgl(v), forallxell, 1 <;j<d.

Thus, from the definition of B in terms of right and left limits of a function in Co( iIf(T)),
we have that B(logDT) = B(w) 4+ B(logDg).

Proposition 2.7.1 (proved in [47] as Proposition 3.2) has the following implication
for the boundary of a GIET:

Lemma 2.7.1 (properties of GIETs boundary). — Consider T € X'.

(i) Forany ¥ € DI ([0, 11), B~ o To y) = B(T).
(@) If'T is once renormalizable, B(V(T)) = B(T).
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Thus, the Lemma shows that the boundary of a GIET is both a conjugacy invariant
(by property (2)) and a renormalization invariant (by property (u)).

Progf. — Property (i) follows immediately from the definition of boundary, since
the values of the (left and right) derivatives at the endpoints are invariant by conjugation.
Property (22) is simply a reformulation of property (z2) of the observable boundary B (see
Proposition 2.7.1, proved in [47] as Proposition 3.2) for the observable ¥ =log DT, after
remarking that ¢; =logD(V(T)) (which follows from the definition of the induced map
and the chain rule, taking the log and comparing the result with the definition of special
Birkhoff sums, see Section 2.6.2). O

3. Affine shadowing

In this section we state and prove the dynamical dichotomy for orbits of irrational
GIETs under renormalization (stated below as Theorem 3.2), which is the main result
at the heart of our rigidity results (both Theorem 5.1 and Theorem 6.2.2) and can be
used to prove a priori bounds for minimal GIETs. The precise formulation requires the
definition of a full measure Diophantine condition on the rotation number (which we will
call regular Diophantine condition, or RDC for short, see Section 3.3.5) under which it
will hold. We will later show (in Section 3.3.1 that this Diophantine condition is satisfied
for a full measure set of rotation numbers (see Definition 3.3.1 in Section 3.3.1 for the
notion of full measure).

For expository purposes and to increase readability (in particular for the readers
who are not familiar with the technicalities of Rauzy-Veech induction) we first treat sepa-
rately (in Section 3.2) the case where the rotation number is assumed to be periodic (also
sometimes known, in the one-dimensional dynamics literature, as Fibonacci combinatorics
case). In this case the Diophantine-type conditions simplify drastically and the proof is
less technical (and yields a stronger result, see Proposition 3.2.1), but all the ideas needed
for the general case are already there.

The general case is then treated in Section 3.4. The statement of the affine shadow-
ing dichotomy is given in Theorem 3.2. The required Diophantine condition (introduced
in Section 3.3) is defined using an acceleration of the Zorich induction Z, which we denote
by Z and call Oseledets regular since it is obtained requesting that the estimates given by
Oseledets theorem are effective (see Section 7.2 for details).

3.1. Scaling invariants and mean (log-)slope vectors. — Let us first define the average
slope vector (and the log-average vector) associated to a generalized interval exchange map.
These quantities will play a central role in our study of renormalization, in particular to
define affine shadowing. Recall that in Section 2.2.3 we introduced the skape-profile coor-
dinates of a GIET, so that we can write T = (A, P(T)) where At is an AIET called the
shape of T and P(T) = (@1, ..., @) is its profile (refer to Section 2.2.3).
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Definition 3.1.1 (average vectors p (1) and (1) for a GIET). — Let'T be a GIET in X},
with r > 1. The shape-slope vector p(T) associated to T is by definition

p(L):=pAr), YT=QAr,0,...,90),

v.e. it 15 the slope vector of the atfine interval exchange Ay which gives the shape of T'.
We also define the shape log-slope vector, or; for short, the log-slope vector w(T) to be

o(T) =log p(T) := (log 1. ... logp). i p(T)=(pr. ... po).

Note that, since for every 1 <j < d the slope p(Ar); of the jth branch (Ar); is also
given by the average value of T" on I; (see Section 2.2.3), we can also define explicitly

21) p(T) = (L/DTl(x)dx,...,L/DTAx)dx).
Ll J, Ll J1,

For the reader familiar with one-dimensional dynamics literature, these quantities can be
seen as the key scaling ratios that we want to exploit to encode the dynamics of renormal-
ization.

Remark 3.1.1. — If R is an acceleration of V corresponding to inducing on in-
tervals (I,),en, using the notation in Section 2.3.7 and recalling the explicit form of the
renormalization R"(T) given by (5), which relates the branches of R"(T) with iterates of
the induced map (and since by the chain rule one can see that conjugation with an affine
map does not change the derivative) we have that

DR"(T)(x)dx, --

L] S

(23) 1 / D (qu")> (xd L[ p (17") wa
= x)dx, <o —— i) (x)dx
|I(1") | Jio ! |I§,”) | Jio

3.2. Affine shadowing in the periodic type (or Fibonacct type) case. — In this section, we
assume that T is a infinitely renormalizable generalized interval exchange map of per-
odic type (see Definition 2.3.3) and in addition that it has hyperbolic Rauzy-Veech period
matrix A, or, for short, that T is of hyperbolic periodic type. Thus, there exists a ny > 0 such
that the rotation number is periodic with period kj, namely if n = ik, + » for some : € N
and 0 <r < ny then y (V% (T)) =y (V'(T)). (We remark that even though the rotation
number is periodic, the orbit of T is not in general periodic).

22 R'T)=|——
22 pIRED (IIi(n)l ”~

DR"(T)(x) dx)

In this case, we will use, as renormalization operator, the acceleration of Rauzy-
Veech induction which corresponds to the period 4 of the rotation number T, namely
the operator which, by abusing the notation we will still denote by R, given by

RY(T) :=V"™(T) = V*)(T), forallneN.
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Notice that this definition of R is used only in this section.™

The following proposition gives the dynamical dichotomy for (hyperbolic) periodic-
type IETs, so in a setting which is a special case of Theorem 3.2, but in this special case it
actually yields a stronger conclusion (as remarked after the statement). (as it can be seen
comparing the conclusions in Case 2 of Proposition 3.2.1 here below and Theorem 3.2
stated later on).

Let us write R = E, @ E, ® E, for the splitting of R’ into respectively the sta-
ble space E,, the central space E, and the unstable space E, for the action of A on R?
(corresponding to eigevectors with norm respectively smaller, equal and greater than I).

Proposition 3.2.1 (Affine shadowing dichotomy for periodic type). — Let T be of hyperbolic
periodic type, with rotation number of period ky. Denote by w, := w(R"(T)) € R? the shape log-slope
vector (as defined in Section 3.1) of R"(T), where here R := V™ is the acceleration corresponding to
the period. Then, either

(1) (@,)nen s bounded, or
(2) there exists v € E, such that

w,=A"v+ O(1)
v.e. the difference w, — A™v ts bounded.

Note that cases (1) and (2) can be merged, since case (1) can be reformulated in
the form of case (2) with the additional request that v = 0. The proposition then states
that the sequence (®,),en (of log-slopes vectors for the shape R"(T)) can be approximated
(up to a bounded error) by the linear evolution of a vector v under the action of the period
matrix A. The vector v will be called the (affine) shadow.

We remark that in this special case of periodic type rotation number, the conclu-
sion is stronger than the result we will prove for a full measure set of rotation numbers,
1.e. Theorem 3.2: here in Proposition 3.2.1, the difference w, — A" v in Case 2 is bounded,
while in the general case we will be able to approximate the evolution of (w,),en by a
linear evolution of a shadow vector only up to a lower order (but in general not bounded)
error, see the conclusion of Case 2 in Theorem 3.2.

In the rest of this section we prove Proposition 3.2.1. The reader who is interested
in the general case and familiar with Rauzy-Veech induction can omit this section and
move directly to Section 3.3 (for the Diophantine condition on IETs) and Section 3.4.
The following outline of the proof though may be useful also to follow the strategy of the
proof in the general case.

Sketch of the Proof of Proposition 3.2.1. First we show, in Lemma 3.2.1 (which is the
most important one), that, thanks to a basic (and classical) application distortion bounds

% Note also that the operator R here defined also satisfies the requirements of the acceleration which defines R in
the general case, since in the periodic type case all requests on the acceleration R are trivially satisfied for every iterate of
the orbit of T under V or any of'its powers.
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(in the form given by Lemma 2.4.2), up to some uniformly bounded error, the shape
log-slope vector w, transform linearly via the cocyle (which is this case is just given by
applying repeatingly the period matrix). We refer to this result (i.e. Lemma 3.2.1) as linear
approximation. The projection Py(w,) of w, onto the stable space E; is controlled through
Lemma 3.2.2, which is valid for any T with periodic rotation number and shows that the
part in the stable space always remains bounded.

We then consider iterates of renormalizations of T and consider separately two
cases: (1) if the slopes are bounded, we are in Case 1; otherwise, (2) if the slopes are not
bounded, in virtue of the control of the stable part (given by Lemma 3.2.2), the com-
ponent in the unstable space is also unbounded. To prove that in this case we are in
Case 2, namely we can build an affine shadow, we wait for a time when this compoment
1s large compared to the error that one makes when comparing the actual growth of the
slopes with how it transforms linearly. If one starts renormalizing from that moment, the
slope change almost linearly up to an error that is more and more negligible as slopes
in the unstable space grow exponentially fast. Thus, adjusting using smaller and smaller
corrections (see (26) and (28)) allows to find a vector shadowing the slopes. This is done
rigorously through definition (26) of the shadow and the proof of Proposition 3.2.1 pre-
sented below.

Lemma 3.2.1 (Linear approximation for perodic type GIETs). — For any periodic type T with
period matrix A there exists a constant Ky such that w, = o (R"T) satisfies

w1 — Aw,| < Kr, Jorallne N

Proof. — Since T is of periodic-type with period & and R = V*, for any n > 0 we
have that for each x € [0, 1],

1
Rn+1T(X) — X (RnT)k(x)—l ()\,X),

where A is a rescaling ratio (more precisely, one has A = [1(*FD%)| /|T®0)|) and where 0 <
k(x) < K is uniformely bounded independently on 7 (here £(x) is indeed constant™ on
each continuity interval for R"™!'T). Thus, by chain rule, we have that D(R"T) (Ax/1) =
DR"I'(Ax) and, taking logarithms,

k()—1
(24) logDR™'T(x) = Y logDR'T (R"T)'(»)).

=0

% More precisely, recalling the Rohlin towers point of view from Section 2.3.7 and the dynamical interpretation of
the cocycle entries from Section 2.5.7, for every x belonging to the jth continuity interval of R""''T, we have that

d d
Ko =2 =377 =Y Quko, (n+ ko).
i=1 i=1
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where » := Ax is the point that corresponds to x under the linear rescaling. If we now
consider p, := p(R"T), by definition of the shape slope vector p (see Section 3.1 and in
particular (22) in Remark 3.1.1), for any n € R and any 1 <j < d, there exists by mean
value theorem a point ,; € [0, 1] such that

Thus, if for each 0 < € < k(x) — 1, we letj, € {1, ..., d} be the index such that (R"T)*(y)
belongs the (j;)" continuity interval L (n) of R"T, applying the distortion bound given by
Lemma 2.4.2 to R"T and taking logarithms, we have that

logDR'(T) (R"D)‘(») — (»,);,| < Dr

where D = fol |nrldt and (w,)), is the J entry of w,.
Applying now the formula (24) to the point x = y,4;, where x = 3,4, ; is given by
(25), and denoting by £ = 5,11, since we showed at the beginning that £ < K, we get
k=1
(@1, = Y _ (@), + E(n.j), where |E(n,j)| <Dy < KDy.

=0

Note now that ZIZ:_OI (w,);, 1s exactly the j-th entry of A (because by definition (R"T)*(y)
belongs the j,-th interval of continuity of R"T). The Lemma is thus proven with Ky :=
KDr. 0J

Lemma 3.2.2 (Control of the stable part). — For any hyperbolic periodic type T with periodic
matrix A there exists a constant My > O depending only upon the constant Kt in Lemma 3.2.1 above
such that for alln € N

|P;(w,) || < Mr,
where Py : R = B, @ B, —> E, denoles the projection onto the stable space E., for the action of A on
R
Progf. — By Lemma 3.2.1, we have |w,+1 — Aw,|| < K. Projecting onto E;, since
P; commutes with the action of A, one gets

IPy(@u) | = IAP (@) || 4 K.

Since A contracts E; by a factor y < 1, we get that the sequence (a,),en given by g, :=
IPs(w,)] satisfies

a1 < Y a, + Kr.

One can then check that any sequence with such this property is bounded. This concludes
the proof. O
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Proof of Proposition 3.2.1. — Consider now the projection P : R‘=E,®E, — E,
onto the stable space E, for the action of A on R?. We distinguish on two cases:.

Case I: The sequence {P,(w,)},en 1s bounded.

In this case, by Lemma 3.2.2, P{(w,) is bounded as well thus w, is bounded. This
shows that we are in Case 1 of Proposition 3.2.1.

Case 2: The sequence {P,(®,)},en is unbounded.

In that case let us show that we can define the shadow v € R? to be:

(26) vi= Y AT(Pw — A1) + Py(wp).
=1

We will show at the same time that the series converge and hence v is well defined. Let
us formally compute A"v which, splitting the series and changing index in the finite sum
(using £ = n — 1) to exploit the telescopic nature of the finite sum, gives:

n—1
A=Y PN, — A w, )
k=0

+ Y AR (@ — Awi))) + AP, (@),

i=n

=P,(»,) — P,(A"wo) + Z AP (@; — Awi_1)) + A'(Py(w))).

=n

Since E" is invariant by the action of A, P,(A"wy) = A"(P,(wy)). Moreover, since by defi-
nition v € E*, we get that

(27) P(A" — w,) = A" — Py(@,) = Y A" (P (0; — Aw;))).

i=n

Since the map A is uniformly expanding on E, and, by Lemma 3.2.1, [[w,+1 — Aw,| <
K, there exists ¢ < 1 such that

(28) A" (P (; — Aw;)|| < Kpe'™,  for alli>n.

Using this estimate in (27) gives that

IPA" — )| <Kp Y ¢

J=0
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Since v € E* and Pj(w,) is bounded by Lemma 3.2.2, we have that, for some C, > 0
(depending on the angle between E* and E¥)

A" — w,[| = Gy (IP,(A"v — @) || + [[P,(A"v — w,) )
= Ca (IP.(A"v = @) [ + 110 = Py(w) )

SCA KTZC]—i_MA < 400.

Jj=0

This shows at the same time (taking n = 0) that the series defining v converges and hence
v is well defined and that the difference A"v — w, is uniformely bounded, so property (2)
of the Proposition 3.2.1 holds. This concludes the proof. UJ

3.3. The Diophantine-type condition for the general case. — We now turn to the general
case. This section is devoted to the definition of the Diophantine-type condition under
which we will prove the general case of the affine shadowing dichotomy in Section 3.3.5.
The main difference with the periodic-type case, is that some return times that were
bounded in the special case, are now only bounded on average; the Diophantine con-
dition for the general case (see Definition 3.3.4) is devised to provide a not too sparse
sequence where they are nevertheless uniformly bounded, exploiting the hyperbolicity
of the (Zorich acceleration of the) Rauzy-Veech cocycle. The renormalization operator
which will be used is an acceleration of the Zorich renormalization Z corresponding to
accelerating along this sequence.

The section is organized as follows. We define first a notion of full measure on irra-
tional rotation numbers, see Section 3.3.1. We then introduce in Section 3.3.2 a notion
of Oseledets genericity (corresponding to having an Oseledets generic extension, see Def-
inition 3.3.2 and the comments thereafter). In Section 3.3.3 we define sequences of good
return times; this is a technical condition (which corresponds to occurences of two con-
secutive bounded positive matrix in the cocycle, see Definition 3.3.3) which we want to
assume on the accelerating sequence since it will help to control the size of the dynamical
partitions. Finally, in Section 3.3.5, we define the Regular Diophantine Condition (see
Definition 3.3.4).

3.3.1. Notion of full measure. — Let T be an infinitely renormalizable GIET with
urrational (1.e. infinitely complete, see Definition 2.3.2) rotation number y (T). By Poincaré-
Yoccoz Theorem 2.1, there exists’” a standard IET T, with the same rotation number
y(T) =y (Ty) such that T is semi-conjugated to T}.

Recall that the Lebesgue measure classon Ly, = Ay X 62 (refer to Section 2.2.1 for the
notation) is the measure class of the restriction of the Lebesgue measure on A,_; C R?
and the counting measure on combinatorial data in &Y.

37 The IET Ty is not necessarily unique, but it is unique for a full measure set of rotation numbers.
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Definition 3.3.1 (full measure for rotation numbers). — We say that a set F of rotation numbers

has tull measure if it contains the set of rotation numbers of a_full measure set of classical IET, i.e.
F 2 {y (D), T eI}, where T, C I, is full measure subset of the set T = A,y x & with respect
to Lebesgue measure class on ).

We say that a property holds for almost every irrational GIET if and only if the set of rotation
numbers {y (1), T € G} for which it holds has full measure in the sense above.

Equivalently, we could have asked that, for each given irreducible combinatorial
datum 7 € &Y, F contains the rotation number of almost every IET in Z, with respect
to the Zorich pwz or Masur-Veech measure 1y (see Remark 2.5.1 in Section 2.5.1).

3.3.2. Oseledets generic extensions. — Let T € Z, be a (standard) IET for which
Zorich acceleration Z is defined. The following definition summarizes the Oseledets
genericity-type properties that we will require in the Regular Diophantine Condition.

Defination 3.3.2 (Oseledets generic extensions). — We say that an IET T has an Oseledets
generic extension if there exists a sequence of invariant splittings, .e. decompositions

(29) R'=T"”a®TI'”er"”, neN

into spaces Fé”) with a € {s, ¢, u} which are invariant under the dynamics, i.e. such that
Q(m, n) Flg'") = FIE"), Yae {s,c,u}, Vm < n,

of dimension

(H) dimI'? =dimI'"” =g, dimT? =dimI'"” =g, VneN,

such that, for some @ > 0 and C = C(T) > 0,

(0-s) 1Z" ]| = |Q(0, ) v]| < Ce™™ JorallneN, forallveT",

(O-u) 1ZP) " ] =100,n v <Ce™  forallneN, forallvel”,

; 1 () (0)

(O-c) hrll —log||Z™v]| =0, Jorallvel",
n——+00 n

and_furthermore, for any € > O there exists ¢ = c(€, T) such that
(0-a) |sin Z(CP(D), TO(D)| = c(€)e™,  forall ay # ay, a1, a3 € {5, ¢, u},
where the angle Z (N, W) between two linear subspaces V, W C R? was defined in Section 2.5.10.

[The choice of labels (O-u), (O-s), (O-c) is for Osedelets Stable, Osedelets Unstable and
Osedelets Central conditions, while (O-a) stands for Oseledets angles condition.
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The reader has certainly noticed the similarity with the conclusion of Oseledets
theorem (as recalled in Section 2.5.10): we will indeed show that T has a Oseledets generic
extension if the conclusion of Oseledets theorem holds for an extension T of T. The spaces
r® r® " »eN,wil then be respectively the stable, unstable and central space for (the
nth iterate Z"(T) of) the (extended) Zorich cocycle. By exploiting Oseledets theorem for
the natural extension of Z we will prove in Section 3.3.1 that  z-almost every T has an
Oseledets generic extension.

Remark that while the sequence {I'™, n € N} is uniquely defined by T, the se-
quence {FZS”), n € N} is not; on the other hand, we only require the existence of a such
sequence. The choice of an (invariant) sequence of unstable spaces satistying O-u and
(O-a)is equivalent to the choice of an extension TofT.

3.3.3. Good return tumes. — We introduce now a property of a sequence of iterates
of the induction that will play an important technical role in the proof of exponential
convergence of renormalization.

We say that a matrix A € SL(d, Z) is positive matrix if its entries A; are strictly posi-
tive for each 1 < 1,7 < d. We say that A is a Lorich cocycle matrix if it 1s a product of matrices
of the Zorich cocycle, i.e. there exists a p > 0 and T € Z, such that A = Q(0, p)(T). We
say in this case that p is the Qorich length of A.

Good return times are those that correspond to a double occurrence of a fixed pos-
itive matrix A:

Definition 3.3.3. — Given a positive integer p > 0, the sequence (ny)ren 15 2 sequence of
p-good returns of the Lorich cocycle if there exists a positive orich cocycle matrix A of length p such
that

Qg mp +2p) = AA,  forallke N

and nyy — ny = 2p so that Q(ny, ny41) = QAA for some non-negative matrix Qy € SL(d, Z). We
say that (n;) ren s a sequence of good returns if they are p-good returns_for some positive integer p.
We also say that (n;)ren ts sequence of A-good return times if we want to specify the matrix A.

From ergodicity of Z, one can easily show that almost every IET admits a sequence
of good returns. Recurrence of (fixed) positive matrices in the cocycle are useful in the
study of standard IETs to guarantee some balance in the size of the floors (and heights)
of the Rohlin towers in the dynamical partitions, a key property exploited in almost all
works on IETs starting from the seminal work of Veech [64]. We will show in Section 4
that it can also be used to get some estimates on the size of the dynamical partitions at
recurrence times for the renormalization, when combined with a priori bounds (see in
particular Section 4.3).

The notion of good return may look quite special, but actually a weaker notion (see
Remark 3.3.1 just below) is sufficient (and essentially corresponds to returns to bounded
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sets®®). On the other hand, proving the stronger form in Definition 3.3.3 costs no addi-
tional effort from the technical point of view (see Section 3.3.1) and simplifies the nota-
tion.

Remark 3.3.1. — The definition of good return can be weakened, by considering
(n) ren such that for each £ we can write Q(ny, n41) = QA;By, where Q) 1s a non nega-
tive matrix, while A, and B, are two positive cocycle matrices such that ||A;|| and || B;|| are
uniformely bounded in £.

3.3.4. Notation for Lorich accelerations. — Let us introduce the following terminology
and notation for accelerations of the Zorich cocycle. If () en 18 @ sequence with ry :=0
(which will be in our case a sequence of good returns on which Oseledets theorem can
be made effective, see Section 7.2.1), let us denote by Z and Z respectively the accel-
eration of the Zorich map Z and the associated acceleration of the Zorich cocycle (see
Sections 2.3.6 and 2.5.4) given by:

ZKT):= Z"(T), VkeN, 7Z=7(T)=Q(0,n).

Then Z is a cocycle over Z. We will say that Z and 7 are accelerations along the sequence
(n1) ren- We will also denote by Z; and Q(k, &) for ¥ > k

(30) Qk, k) := QUuy i), Zy =74(T) := Qh, k+ 1) = Qg mi1).

If T has an Oseledets regular extension (in the sense of Definition 3.3.2), let (F,(Z'QN) for x €
{s, ¢, u} the sequences of stable, central and unstable spaces provided by Definition 3.3.2
and denote by

(31) PY:R'—T", forxe{s,cu}, neN.

the standard orthogonal projection (in R) to the subspace I'”. Then, for the acceleration
along the sequence (n;)ren we adopt the notation:

(32) Fik) = E(Ck) :=P"  forxe({s,cu}, neN,

and refer to l"ik), x € {s, ¢, u} as the stable, central and unstable spaces respectively for
the acceleration; the operators P : R? — '™ for x € {s, ¢, u}, are the corresponding
projections.

% In the case of standard IETs, a (future) occurrence of a positive matrix with bounded norm corresponds indeed
to returns to a compact set in simplex A, of lengths vectors, while a time which follows an occurence of a positive matrix
with bounded norm correspond to a compact set in the suspension datum space of parameters (see for example [60]).
Therefore, at time 7; 4 p the induction visits a compact set for the natural extension domain Z,. In Section 4.3, we show
that the double occurrence of a positive matrix, together with a priori distortion bounds, can also be used to prove some
geometric control on dynamical partitions.
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3.3.5. The regular Diophantine condition. — We can now formulate the Diophantine
condition, that we call Regular Diophantine Condition (or RDC). The central Diophantine-
type condition is expressed in terms of convergence of two series (see the forward and
backward conditions (F) and (B) in Definition 3.3.4 below), describing the forward and
backward growth of an acceleration of the cocycle along good returns. It will be crucial
for us to consider times when not only these sequences converge (we will show that these
series always converge along a sequence of effective Oseledets acceleration times, see
Definition 7.2.1), but they are uniformely bounded. The accelerating sequence is required
to be not too sparse, namely has lnear growth (see (22)) and that the matrices of the further
acceleration grow subexponentially (see Condition [S]).

Definition 3.3.4 (Regular Diophantine condition, or RDC). — We say that a (standard) IE'T
T and its rotation number y (T') satisfy the Regular Diophantine Condition, or for short the
(RDC), if

(1) T has an Oseledets generic extension (in the sense of Definition 3.3.2),
(1) there exists a sequence (ny)ren of good return times (see Definition 3.3.5) growing at
linear rate, i.e. such that limy_, « “F < +00,

and, if 7 and Q(k K), for k <K', denole the mamces of the Lorich cocycle acceleration along (n;) ren
as defined in (30) and F(’”) and P, (k), Jor x € {s, ¢, s} denote the spaces and projections defined in (32),

we also have that:

(iii) there exist constants K¥f = K*(T) > 0,8 > 0 and an wncreasing subsequence (ky,) neN
growing at a linear rate, i.e. such that imsup, m < +00, such that the following

conditions hold:
(Condition [B])
km
D QG ko PPN Zir | K™, for all me N;
k=1

(Condition [F])

D 10k D PP INZi | <K for allm e N;
kmht1 '
(Condition [S])
m log ||Q(k7na km+1) || —
k—+00 m
(Condition [A])
AT 5 al < o fr alm N

[Here the letter [S] is chosen to remind of Subexponential, [A] for Angle condition,
while [B] and [F] stay respectively for Backward and Forward respectively since they im-
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pose a certain control of growth on the forward or respectively backward iterates of the
(accelerated) cocycle. ]

We will prove in Section 3.3.1 the following Theorem that shows that the (RDC)
condition 1s satisfied by the rotation numbers of a full measure set of (standard) IETs:

Theorem 3.1 (full measure of the (RDC)). — The set of (standard) IETs in L, which satisfy
the (RDCQ) condition in Definition 5.5.4 has full measure with respect to the Lebesgue measure on L.

Section 3.3.1 1s fully devoted to presenting the proof of the Theorem 3.1. Recalling
the Definition 3.3.1 of full measure set of rotation numbers, we immediately have:

Corollary 3.3.1 (full measure (RDC) rotation numbers). — The set of rotation numbers which
satisfy (RDC) has full measure.

3.4. Affine shadowing under the regular Diophantine condition. — We will now state and
prove the general case of the affine shadowing. The Regular Diophantine Condition
for (irrational) GIETs, which is the condition we will need to prove affine shadowing, is
defined through the standard IET conjugated to it:

Definition 3.4.1 (RDC) for GIETs). — We say that an infinitely renormalizable generalized
IET T with wrrational rotation number satisfies the Regular Diophantine Condition (RDC) off its
rotation number y (‘1) satusfies the (RDC) given by Definition 3.3.4.

This condition is satisfied by a full measure set of GIETs with irrational rotation
number (in the sense of Definition 3.3.1) by Corollary 3.3.1.

The main result is Theorem 3.2 below, formulated as a dichotomy, which shows
that, if the evolution of an infinitely renoramlizable GIET T under renormalization es-
capes (i.e does not stay bounded in the C! sense, see the remarks after the statement), then
the evolution of its shape slope vector can be shadowed by the orbit under renormaliza-
tion of (the slope vector of) an AIET (hence the name affine shadowing). The dichotomy
1s expressed n terms of the evolution of the shape log-slope vector w (T) which we recall 1s
defined to be the log-slope vector w(Ar) of the shape Ar of T, see Section 3.1. Let us
denote by

w, = w(Z"(T)), neN

the log-slope vectors of the iterates of T under the Zorich acceleration Z.

3.5. The affine shadowing dichotomy. — We can now state the main result. We will
consider as renormalization R the acceleration of Z corresponding to the sequence
(m, )men given by the (RDC) in Definition 3.3.4 and separate two cases according to
whether the shape log-slope vectors along the orbit of renormalization are bounded or
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diverge. Consider therefore

R™(T) := Z(T) = Z" (T),
w(R"T) = &

m

=w, , forallmeN.

Theorem 3.2 (Affine shadowing lemma). — Let 'T be a GIET which satisfies the Regular
Drophantine Condition (RDC). Let (n;)ren be the accelerating sequence of s given by the (RDC) (see
(22) in Definition 3.5.4). Then we have the following dichotomy. Either we are in:

Case 1 (recurrence): The sequence (w,),en s bounded along the subsequence (1) nen,
v.e. there exists a NV > O such that

loR"D) | = llw,, | <V, forallmeN,

o, alternatively, we have:

Case 2 (affine shadowing): There exists v € E, such that w, = Q(n, 0)v + o(w,)
Jor every n € N, z.e.

lw, — @ I -0 where v = Q(n, 0)v

oo Jlv@| ’ ' U

Case 1 is called recurrent case since asking that the sequence (||, ||).en 1s bounded
along the subsequence (7, ),en turns out to be equivalent to the fact that the iterates
{R™(T), m € N} stay at C'-bounded distance from Z, C X, together with their inverses;
furthemore, in this case, one can show that the orbit {Z"(T), n € N} of T under Zorich
renormalization is recurrent (along the subsequence (n;,),en) to a subset which 1s bounded
in the space x of GIETs (in view of the conditions imposed on the recurrence sequence
(m, ) men, which are in particular good return times in the sense of Definition 3.3.3, as re-
quested by the (RDC) in Definition 3.3.4).

Case 2, on the other hand, shows that the orbit {w,, n € N} can be approximated,
up to a lower order term, by the orbit {Q(n, 0) v, n € N} of the log-slope vector v under
the Zorich cocycle. If this case, if T is an AIET T, with the same rotation number y (T) =
y (T) and log-slope vector v,*’ the shape log-slope vectors of the orbit {Z"(T)},en of the
GIET T under renormalization can be shadowed (up to lower order terms, i.e. can be
approximated in the first order) by the shape log-slope vectors of the orbit {Z"(T)},en Of
the affine IET T. For this reason we call the vector v the affine shadow of 'T.

The rest of this section 1s devoted to the proof of Theorem 3.2.

% One can show that such an AIET always exists. Indeed it is shown in [46] that the cone Aff (y, v) of AIET with
rotation number y and log-slope vector v is not empty as long as v is orthogonal to the length vector A of the standard
IET with rotation number y (which is unique since one can show that IETs whose rotation number satisfies the (RDC)
are uniquely ergodic). Since by assumption v shadows w, (see the statement of Case 2) and the growth of {w,},en 1s slower
than the growth of the norms of {Q(n, 0)},en, it follows that v does not project to the leading Oseledets eigenspace, thus
Aff (y, v) is not empty and any T, € Aff (y, v) is an affine shadow.
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3.5.1. The shadowing lemma, general case. — We now turn to the proof of Theorem
3.2 in the general case, assuming the Diophantine-type condition (RDC) namely that
the rotation number of T € X is a good rotation number (see Definition 3.3.4). With the
definition of good rotation number comes a sequence (7;)en and a subsequence (7, ) ,eN
we will be working with throughout the proof of Theorem 3.2. As in the previous section,
we first give an outline of the proof (see also the sketch of the proof of Proposition 3.2.1
in the previous section about the periodic-type special case).

Outline: We first prove (in Section 3.5.2) a lnear approximation result (Lemma 3.5.1,
which is a generalization of Lemma 3.2.1 in the proof of Proposition 3.2.1) that shows
that, thanks to the classical distortion bounds given by Lemma 2.4.2, the error between w,
and the linear evolution of the log-slope vector transform under the cocyle is comparable
to the norm of the cocycle matrices. In Section 3.5.2 we then define the candidate vector
v to be the shadow and show that it is well defined (see Lemma 3.5.3).

There is a natural candidate for the shadow (what we call the shadow is the vector
v in the statement if Theorem 3.2). At each step of renormalization, when trying to
approximate w,,,, by Z(k)a)nk, an error is made in both the stable and unstable direction.
Philosophically speaking we can ignore the error in the stable direction as it will be eaten
away by further steps of renormalization. In the unstable direction, we get an error whose
size 1s controlled by ||Z(k)||. Provided ||(Z(/f)|| is not too big we can add a very small
correction vy at the start which is going to be magnified by the renormalization (to reach
a size of the order a*||v;||, where @ = exp(A) > 1 and A is the smallest positive Lyapunoff
exponent).

The heart of the proof'is given by Proposition 3.5.1 in Section 3.5.4, which shows
that the basic dichotomy we are trying to prove holds for the unstable part. We refer to
this result (i.e. Lemma 3.2.1) as linear approximation. Lemma 3.2.1 The projection P (w,)
of w, onto the stable space E; is controlled through Lemma 3.2.2, which is valid for any T
with periodic rotation number and shows that the part in the stable space always remains
bounded.

We then consider iterates of renormalizations of T and consider separately two
cases: (1) if the log-slopes are bounded, we are in Case 1; otherwise, (2) if the log-slopes
are not bounded, in virtue of the control of the stable part (given by Lemma 3.2.2), the
component in the unstable space is also unbounded. To prove that in this case we are
in Case 2, namely we can build an gffine shadow, we wait for a time when this compo-
ment is large compared to the error that one makes when comparing the actual growth
of the slopes with how it transforms linearly. If one starts renormalizing from that mo-
ment, the slope change almost linearly up to an error that is more and more negligible
as slopes in the unstable space grow exponentially fast. Thus, adjusting using smaller and
smaller corrections (see (26) and (28)) allows to find a vector shadowing the slopes. This
is done rigorously through definition (26) of the skadow and the proot of Proposition 3.2.1
presented below.
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3.5.2. Linear approximation error estimate. — We start with the following lemma
which is valid for any infinitely renormalizable T and is a direct generalisation of Lemma
3.2.1 to the non-periodic case. In this proof, though, we use the notation and decompo-
sition for special Birkhoff sums introduced in Section 2.6.2 and Section 2.6.4.

Lemma 3.5.1 (linear approximation in the general case). — For any infinitely renormalizable
GIET'T, for any ng > n, we have

wny, — Qn1, ), || < K(n)[|Qn1, no) ||
<Kp Qi m)ll,  where K(n) := |N| (V™(T))
and Ky := |N|(T), where |N|(T') denotes the total non-linearity of T (see Definition 2.4.1).

As a special case of the above formula, setting n; = 0 and 7y = »; and recalling that
@, = w,, and Z; := Q(m, m11), we then have:

Corollary 3.5.1. — For all k, we have |4, — Zyai ]| < K| Z4ll.

Before proving the Lemma, we state and prove an intermediate step, which will be
used also later and connects the shape log-average vectors with values of special Birkhoff
sums of / :=log D'T.

Lemma 3.5.2 (shape log-averages and special Burkhoff sums). — For any irrational T, for every
neNand 1 <j < d, there exists a point x'™

A eT" ., such that (w,); == £ ("),

where ]j‘»(") is the jth branch jjf»(") of the special Birkhoff sum ™ of the function f :=1og DT and where
(@,); is the jth entry of the shape log-slope vector w, = w (V" (T)). Moreover, for any 0 < m < n,

M(") — (@)l 00 1= sup j(n) (%) — (wy);

(n)
rel;

< INI(2"(T)) = IN[(T).

Progf. — FYor any n € R and any 1 <j < d, using the chain rule and recalling the
definition of special Birkhoff sums (see Section 2.6.2) we have that
.

(33) log (DTq}’”)(x) =S mf () =/"(x), forallxe "
v

Thus, recalling that w, =log p, (see Definition 3.1.1), by mean value theorem and by
Remark 3.1.1 (see in particular equation (23)), for any n € R and 1 <) < d, there exists a
point

n n W n n n
34 x" eI, suchthat (p,);:=D(T )(x"), (@,); :=1log(p.); =1 (x").
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Thus, the classical distortion bounds (Lemma 2.4.2), taking logarithms, shows that special
Birkhoff sums of each continuity interval have bounded fluctuations, namely

V(n) (X) — (a)n)j| — ‘f(n) (X) _f(n) (xj(n))‘
<|N|(T), forallneN,1<;j<d, x€ Ij(n).

This proves the estimate by [N|(T).

Fix now any 0 < m < n; to prove the estimate by |[N|(Z™(T)), one can apply the es-
timate that we already proved to the GIET T := Z”T and the function g := log D(Z"T).
Notice that for any n > m, since by the cocycle property of Birkhoff sums f® = f=m ¢ f(™
and f™ =1ogD(T,), /™ is a rescaled version (obtained by conjugating by a linear map)
of g™,

Finally, Property (#) in Proposition 2.4.1 gives that |N|(V"(T)) < |N|(T). This
concludes the proof. 0J

We can now prove the linear approximation stated as Lemma 3.5.1.

Proof of Lemma 3.5.1. — Fix any ny € N and 1 <) < d. As in the proof of the pre-
vious Lemma, let ¥; be a point in I;"Q) such that (,,); = JJC(”Q)(%J-) where / :=1logDT and
and ﬁ(fm is the jth branch of the special Birkhoff sum /2 (see Section 2.6.2). Thus, using
one step of the decomposition of (special) Birkhoff sums introduced in Section 2.6.4, if for
each 0 <€ < Q(ny, ny), we let j, € {1, ..., d} be the index such that Tme(%j) belongs the

: (n)
interval Ije ,
Q(ny,n)j—1
85)  (w,)=/"@ = Y f"(T,'®). whereQu.m)= Y Qn.m);.
=0 I=isy

By the previous Lemma 3.5.2,
(36) A" = (@n)illoe < K(m) <K,

where K () and Kt are defined as in the statement of the Lemma.
Note now that, by the dynamical interpretation of the cocycle entries (see Sec-
tion 2.5.7) and matrix multiplication,

Q(n1,n2)j—1
(37) Y (@)=Y Cad{l <€ <Qn.n). jo=1}(w,);
=0 1<i<d

=D Quu,m)j(@,)i = (Qn m) @,

1<i<d



A PRIORI BOUNDS FOR GIETS, AFFINE SHADOWS AND RIGIDITY... 287

Thus, combining (35) and (37) and estimating the difference through (36),

Q(ny,n9);—1
‘(wng)] - (Q(nl ) 7’12) (1)711 )j’ S Z ‘]F(nl)i(TmZ(%j)) _ ((Un)ﬂ ‘
=0
< 1Qn, n) 1K (my) = |Qy, mo) [| Koy
Since this holds for every 1 < < d, this completes the proof. UJ

3.5.3. Building the shadow. — We can now construct the affine shadow v and show
that it is well defined. For each £ € N, consider the eror between w,, and the linear
evolution of w,, |, namely w,, — Zf_la)nk_l. Let P, : R = I''® be the projection on the
unstable space at stage £ (for the Zorich induction). Set

¢ = Pu(a)k - zk—l&v)k—l) = Pu(a)nk - zk—la)m_l)
and formally define
+oo _
(38) vi=Y v+ P(w). where v :=Q0,n) g = Q0. b e

k=1

We just need to check that this series converges.

Lemma 3.5.3. — The series in (38) converges and hence v is well defined.

Progf. — Recall that by one of the assumptions in the (RDC) (see Definition 3.3.4),
T is Oseledets generic; thus there exists C = C(T) > 0 such that

Q(0, n")|_r1 oy = Ce™", for every n € N,

where we can take A > 0 to be A := 6,/2 where 6, > 0 is the smallest positive Lyapunov
CXpOLlentNOf the Zorich cocyle. Since ¢, € Flﬂ”"), by Lemma 3.5.1, we can bound ||¢|| by
KT||P/;|| |Z:—1]], so that we can estimate

—+00 +00
-1
ol = IPA@) ]l < D llvell = D110, m); ! o el
k=1 k=1

+00
_ S ~
< CKy Y e PO | Zl,

k=1

The assumption that T is Oseledets generic also implies that ||,§Z(j‘) ||, which is comparable
with L(Fi"k), Fj("k)), grows subexponentially fast, 1.e. for every € > 0 there exists C; =
C,(T, €) such that ||Pff)|| < Cy¢" for every n € N. Finally Condition (S) of the (RDC)
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(see Definition 3.3.4) shows that also ||Zk_1 | < Coec*D for some Cy = Cy(T, €) > 0 and
every k € N. Choosing € < A/2, guarantees that the series converges and thus that v is
well defined. U

3.5.4. Control of the unstable part. — The following Proposition is at the heart of the
desired dichotomy.

Proposition 3.3.1 (unstable part shadowing). — We have the following dichotomy. Either v # 0
and in this case

(1) for any € > 0, P, (w,) = Q(0, n)v + o(||P,(@,) ) = Q(n, 0)v + o(]|Q0, »)v[|)

or, otherwise, v = 0 and wn this case

(2) there exists K(T) > 0 such that for all m € N, |P,(w,, )| < K(T).

Progf. — Assume to begin with that v # 0. Because T is Oseledets generic,
Q(0, n)v grows exponentially fast. Recall that by definition,

v=Py(@) + ) Q) PG — Z131).

J=1

For each given £ € N, multiplying by Q(O, k) = Q(0, n;) and recalling the cocycle relation
(11), we get

k
(39) Q0, By = Q(0, HP,(w0) + Y QG P, — Z_0,_)

J=1

+00
+ Y Q) Pulw, — Zi1,,,).

J=k+1

Let us show that the first two terms of the RHS sum up to P,(w,,). Indeed, since P,
and Q(/, k) commute for all j < £+ 1, and by the cocycle definitions Q(j, £)Z,_, =
Qmj, m) Q(mj—1, ) = Qmi—y, m) = QG — 1, k), we can write

k k
> QG hP(w, - Ziw, ) =P, | Y QG ho, —QG—1.bHw,_,

j=1 j=1

= —Q(0, HP,(wo) + P,(wy),
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where the last equality exploits the telescopic nature of the sum. Thus, the sum of the first
two terms of the RHS of (39) yields

k
Q0. HP(@0) + > QG HP(w, — Zi 1w, ) =P.(,).

J=1

We now show that the third term in the RHS of (39) grows subexponentially fast. Indeed
Py, —Zj—1w, )| < Kr|[Pl 1 Z;-1 ]| (by Lemma 3.5.1). Recall that by the condition

Condition [F]

nj—1

e¢]

> QB o BB Zi-1 (D] < K.

k=kp+1

We thus obtain, for special times £,,s

1Qk 000 = Pu@,, )l <Ko Y 1Q0. B o | W1 Zi-r (D]

k=kp+1

<KrK.

We now interpolate. Consider arbitrary » € N and let m be such that n,, <n<mn;, ,,. We
have

Q(0, v = Py(w,) = Q(0, n)v — Pu(w,) + Q(ny,, )P, (@y,,)
- Q(nkW n)Pu (wnkw)-

One the one hand we have

Q0. mv — Q(m, . MP(,,,) = Q. ) (Qlk,)v — Py(w,,,))
from which we get
100, nyv — Q.. WP (@, )l < 1Qn,, )| KK
We have
Q. WP(w,,) — P(w,) = P,(Q(n,, W, — w,)
and thus by Lemma 3.5.1
1Q(n,, WP(@,,) — Pl < Ke Pl Q. )|
and putting the last two inequalities together we obtain

1Q(0, mv — Py (@) || = Kr(IP, () || + K)1Q(n,, ).
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Since n < ny,,, [1Q(ny,,, W < Qny,, my,,,,) = Q(/fm, kyt1). The Diophantine-type condi-
tion Condition [S] ensures that ilog 1Q ., , ny,,. )|l tends to zero which implies that for
any € there exists C. > 0 such that

1Q s, g, )Nl < Cee™.

Similarly, n < n,,,. Recall that the angles between '™, '™ and '™ decrease at most
subexponentially fast (by condition (O-a)) for all € > 0, there exists D, > 0 such that

[P, ()] <Dece™.

Since ny, grows linearly in £ (by Condition (RDC) in 3.3.4, item (u22)) we deduce the
existence of D, > 0 such that

1P, (i, )| < Dee™.

We conclude by showing the existence of A > 1 such that for m large enough,
1Q0, mu|l = A"

Write
Qn, 1) Q. mv = QO k).

Since v belongs to the unstable space of the cocycle, there exists 2’ > 1 such that for m
large enough [|Q(O0, £,4+1)v]| = (X")™. We thus get

A" = 11Q(n, m,,, ) QO, vl < 1Q(n, ny,,, DIHQO, mv]l.
To conclude, observe that [|Q(n, n;,,,) < [|Q(n,, n,,. ) || < Cee™ which implies
1Q0, myvll = CA"e " = C, exp((log X' — €)m).

Take € > 0 small enough so logA” — € > 0 and set A = exp(log A’ — €). For any sequence
b, growing faster than A" for A > 1, a sequence g, growing subexponentially fast is o(5¢)
for any € > 0. Applying this to [|Q(0, n)v]| for the sequence growing at rate A" and to
1Q(0, n)v — P,(w,) || growing subexponentially fast we obtain that for any positive €,

190, Wv — Py (@,) |l = o(|Q0, v |°).

A similar reasoning shows that ||P,(®,)]| is larger than (A")" for m large enough and that
we also have

1Q(0, mv — Py (@)l = o(IP, (@) ).
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We are left with the case v = 0. In that case we still get

+00
P,(@,) =P,(@,) — Qu.0v=— > QG.H P, - Z_ 1w, )

j=k+1

(same calculation as in (39) above). Thus we get, at special times 7,

+o00
IPu(@, I <K Y 11QG k) o HPIHIZi- -
jzkm
By condition (F) we get that for all m € N,

1P, () = Kr K. O

N

3.6. Control of the central part. — We now turn to controlling the central component
of (w,),en along the subsequence (7, ).en. Here the control will exploit the invariance of
the boundary operators defined in Section 2.7.1 and Section 2.7.4.

Proposition 3.6.1. — For any "I satisfying the (RDC) there exists C.(T) > O such that we
have

(1) v =0, [P, )]l < C(T), forallm € N.
2) ifv#0, [Pl = o(IP@)]|) for all € > 0.

We need a couple of Lemmata. Recall that B, : R’ — R’ denotes the boundary
operator (see Section 2.7) at T®.

Lemma 3.6.1. — Foralln € N,

(B,) -0 = 0.

Progf. — The B, are uniformly bounded (as the sequence B, takes finitely many
values in L(R?, R¥). They are also invariant under the action of the Zorich cocycle thus
forany w e I'?,

B,(w) = B, +(Q(n, n+ Hw).

By definition of T, Q(n,n + k)w tends to 0 when £ tends to infinity which implies
B,(w) =0. O

Lemma 3.6.2. — There exusts constants D, and L, < 1 such that for all n € N,

1B | < Dy
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Progf — By invariance of the I'"’s, we have that for any v € T'”,

Bn(v) = BO(Q,(O’ n)ilv)'

Since T is Oseledets generic there exists constants D/ > 0 and A, < 1 such that
1Q(0, n)~'v|| < D/A" Thus

B, (v)|| < 1Byl DAL O
Lemma 3.6.3. — For all € > O there exists constants D (€) such that for any n € N and any
wel®,

lwl <D, Z(, T & T)IIB, wll.

Proof. — From the following three observations:

(1) by Lemma 3.6.2, Z(I'™, KerB,) < D”A" for a certain D{; > 0.

(2) we have that dim(I"\” @ I'”) = dim(KerB,).

(3) by Oseledets genericity for any € there exists D/(¢) > 0 such that Z(I'"”, T'{” @
I > Di(e)e;

one can deduce that there exists a constant D,(¢) > 0 such that Z(T",, KerB,) <
D.Z(T,,T™ @™, O

We are now ready to present the proof of Proposition 3.6.1.

Proof of Proposition 3.6.1. — Recall that B is a renormalization invariant (see
Lemma 2.7.1, property (z2)), therefore, by Remark 2.7.1, we can write

B(T®) = B(logD¢") + B(w") + B(') + B(w})

where ¢" € P is the profile of T™, and ", @’ and " are the projection of w, on '™, '™

and '™ respectively. By the a priori bounds for the profile given by Lemma 4.2.4, there

exists a constant M = M(T) such that ||logDg¢"|| <M for all n > 0, thus B(logD¢") is

uniformly bounded by a constant L. = L(T)) > 0. Also B(w;) = 0 by Lemma 3.6.1.
Assume that v # 0. We have in that case

IB@) | < IB(DI + L+ [Bwpll.

By Proposition 3.5.1, w! = Q(0, n)v + o(]|w!||€) for any € > 0. By invariance of B we get
IB@)Il < 1B + L+ Bl + o(lle}][)-

Since [|w; || < D,(€)e" (by Lemma 3.6.3 we get that

_ €
llw, Il = o(llw,1I)
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for all €. Assume now that v = €. The exact same reasoning as above gives
Bl = IB(DII + L+ [B@)ll-

But by Proposition 3.5.1 we have w, < K(T) for all m > 0, and by Condition [A] com-
bined with Lemma 3.6.3 we obtam ||a)‘ | <DS[B(w))|l for m > 0. Putting everything
together we get the existence of K, = K (T) such that for all m > 0

oo, Il < C(T). 0

3.7. Control of the stable part. — We now 3.2 by establish bounds for the projection
of (w,),en on the stable part of the splitting. We have the following,

Proposition 3.7.1. — For any 'T satisfying the (RDC) there exists C,('T) > 0 such that we
have

|Ps(w,, )| < C,(T), forallmeN

e

Progf. — The proof is a rather straightforward application of Lemma 3.5.1. Writ-
ing
Wy, = Wy, — Zk—lwnk_l + Zk—l (wy,_, — zk—ank_Q) + -

+ Zk—l e Zl(wm - zoa)nn) + Zk—l e Z(Ja)no

which can be rewritten as

w,, = ZQ(j,/f)(CU Ziw, ),

J=1

we get by projecting on stable spaces and applying Lemma 3.5.1

k
IP (@)l <Kp Y 1QG) I PPN NZ -

J=1

We then see that since T satisfies the (RDC), by (Condition [B]) in Definition 3.3.4 the
right-hand side of the inequation is bounded by K - - - Kt at special times n;, which con-
cludes the proof of the Lemma. O

3.8. Proof of Theorem 3.2. — The proof of Theorem 3.2 ensues easily from Propo-
sitions 3.5.1, 3.6.1 and 3.7.1. Indeed assume that v of Proposition 3.5.1 is non-zero.
Condition (S) and (B) imply that P,(w,) grows subexponentially fast in which case
Pi(w,) = o(P,(w,)), and by Proposition 3.6.1 ||P,(w,)| = o(||P,(@,)]|€)). We thus have
w, ~ Q(n, 0)v. Otherwise, v = 0. In this case Propositions 3.5.1, 3.6.1 and 3.7.1 imply
that at times n;,, P;(w,), P.(w,) and P,(w,) are uniformly bounded by a constant x (T) > 0

m

which implies the theorem.
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4. Convergence of renormalization in the recurrent case

In this section we prove exponential convergence of renormalization for irrational
GIETs in the recurrent case, 1.e. Case 1, of Theorem 3.2. The key steps of the proof follow
conceptually the main steps in the work of Herman [29] on circle diffeomorphisms, thus
generalizing his results to GIETs. Although a lot of the material contained in this section
is similar to Herman’s work or further extensions of his theory, we believe it does not
appear under this form (to the best knowledge of the authors) anywhere in the literature
about GIETs. Some steps in particular require a careful treatment to be generalized to
d > 2, see for example Section 4.3 or Lemma 4.5.1.

We will show more precisely that, under suitable assumptions that we now com-
ment upon, the orbit {R"(T), m € N} of an acceleration of Rauzy-Veech induction
(that, a posteriori, can be taken to be simply Zorich acceleration) converge at an ex-
ponential rate to the space of IETs. This will then allows to show in Section 5.1 that the
GIETs for which we have this form of exponential convergence of renormalization are
C'-conjugated to a standard IET. We will first show that if T is a GIET satisfying the
Regular Diophantine Condition and that Case 1 of Theorem 3.2) holds, the C'-distance
between Z"(T) and the subspace M, of Moebius IETs (see Definition 2.1.4 and Sec-
tion 2.2) decrease exponentially. To show convergence to the space of linear IETs (affine
first and standard then), we exploit the boundary operator B(T) of a GIET (see Defini-
tion 2.7.1 in Section 2.7.4), which is a renormalization invariant based on the boundary
operator defined by Marmi, Moussa and Yoccoz in [47]. The boundary gives an obvious
obstruction to the existence of a C! conjugacy, so it is necessary to ask that B(T) =0 to
prove convergence to the subspace Z, of standard IETs.

The main result of this section is thefore the following theorem.

Theorem 4.1 (Exponential convergence of renormalization). — Assume that T € X} satisfy
the (RDC) Diophantine condition. There exists Ky = K (T) > 0 and o = (1) < 1 such that if
B(T) =0, we have

des(Z2"(1), L) <Ko

The distance des which appears in the statement of the theorem is a C*-distance
with respect to the shape-profile parametrisation X} = A4, x P, introduced in Sec-
tion 2.2.3 and will be defined in Section 4.2.1 below. We remark that for the re-
sults of this paper, proving C'-convergence of renormalization (i.e. that the C'-distance
der (Z2"(T),Z,;), where de1 is defined in Section 4.2.1, converges to zero exponentially)
suffices, but since our methods actually allow us with little additional effort to prove the

stronger C*-convergence stated in Theorem 4.1, we chose to state it for future use.*’

* For example, C* convergence of renormalization, i.e. exponential decay of des (2"(T), Z,), plays a key role in a
follow-up paper [26], in which we improve the regularity of the conjugacy given by Theorem B. See [26] for further details.
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The heart of the proof consists in showing that the exponential decay of the C'-distance
der(Z"(T), Z;). In order to control the C'-distance, we are going to work with the a dis-
tance d, defined using otal non-linearity on the profile coordinates, see Section 4.2.1, since
(as we hinted when describing the properties of total non-linearity, see the comments after
Proposition 2.4.1) this quantity does not increase under renormalization (and, as we will
show, decreases strictly along the subsequence of good return times (7;).en given by the
(RDC), see Section 4.5.2). We relate d¢1 and d,, in Section 4.2.2.

Remark 4.0.1. — Pushing the techniques further (in particular, showing, along the
lines of Appendix A.3.4 that the Schwarzian derivative, together with the decay of non-
linearity, can be used to control also C* distances with £ > 3), one could prove also con-
vergence of renormalization in any C* distance dex for £ € N, as long as the initial GIET
is assumed to be sufficiently regular, namely showing the following result: for any £ > 3
be an integer, for any T € X which satisfies the same (RDC) Diophantine condition,
the distance de+(Z"(T), Z,) also converge exponentially to zero.

The boundary B(T) is a vector b = (b,), € R* (where we recall that « is the car-
dinality of singularities of any surface suspension of T, see Section 2.1.6), which encodes
information about geometric obstructions given by each singularity. It is philosophically
important to distinguish on three cases:

(1) The case b =0, which contains all standard IETs which we call the lnear regime.

(2) The case ) _,_ _, b, = 0 (which contains all affine IETs) which we call the affine
regime.

(3) The case where b 1s arbitrary, which 1s the non-lnear regime.

Thus, asking that ), _ _ b, = 0 is a necessary assumption to prove convergence to A,
and the request that B(T) = b =0, is a necessary assumption to prove convergence to
Z,. While article is concerned with establishing a rigidity theory for the linear regime,
we stress that some of the results we prove in this section apply to the other cases too (as
explained already in the Outline in Section 4.1 below). The non-linear regime, in par-
ticular, is of independent interest and provides a natural higher genus framework which
generalizes the much studied space of circle diffeomorphisms with break points.

4.1. Outline of the proof. — Let us give an outline of the main steps of the proof of
Theorem 4.1 and describe the organization of the section.

(1) A priort bounds. We first show (in Section 4.2.5) that the uniform bound on
(@, )men 1mplies that the iterates of accelerated renormalisation R™(T) :=
Z"n('T) (corresponding to the special sequence (7, ).en given by the (RDC)),
as well as their inverses R™(T)~!, m € N, remain in a bounded set for the C!-
topology. This is what is often called an a priori bound, and in our case replaces
the Denjoy-Koksma inequality for circle diffeomorphisms.
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Exponential decay of the partitions mesh. In Section 4.3 we then show that such a
priori bounds, combined with the fact the times (n;,),.en are good return times
(see Definition 3.3.3) imply that the size of the dynamical partition associated
with T at step n decreases at an exponential rate (with respect to 7). While in
the study of circle diffeomorphisms this is an easy step, as no particular arith-
metic hypothesis is needed, it is an important step to deal with in the treatment
of GIETs, which requires new ideas. Indeed, when renormalization has more
than two dynamical towers (¢ in this case), these are not a priori related as
in the case of circle diffeomorphisms. In order to compare different towers, we
exploit a quite subtle geometric argument based on renormalization, which ex-
ploits good return times and a priori bounds to prove first balance of some rela-
tive dynamical partitions and then infer, through distortion bounds, the needed
decay of the mesh size (see in particular Section 4.3.2 for details).

Convergence to Moebius IETs. The exponential decay of the size of the dynamical
partition is easily shown to imply convergence of Z"(T) to the space of Moe-
bius IETs with respect to the C*-norm, as shown in Section 4.4. This part is
completely standard, and is where is made use of the Schwarzian deriwative. This
step 1s exactly the same as in the case of circle maps, and it is the reformulation
of Herman’s theory in renormalization terms due to Khanin and Sinai (see
[36, 37], which generalize [35, 69]).

The intuition behind this is the following: convergence to Moebius al-
lows for a simplification of the discussion and at this point the total non-
linearity will be a good enough measure of the complexity of the maps we
are dealing with. As we have seen in Section 2.4.1, the total non-linearity is a
decreasing function, which is the average of the absolute value of a mean-zero
function. Renormalization operates enough cancellation between positive and
negative values of 7y to get it to cancel altogether at the limit.

Convergence to AIE'Ts. While the first steps do not require any particular hypoth-
esis on the value of B(T), under the additional hypothesis that the sum of the
components of B(T) € R? vanishes (namely, that we are in the affine regime listed
below) or, equivalently, that f nt = 0), in Section 4.5 we show that Z"(T) actu-
ally converges (exponentially fast) to the space of affine IETs. This step makes
use of the fact the times (ny, ) .en are good return times.

Convergence to IETs. Finally, under the extra hypothesis that B(T) vanishes alto-
gether (which annihilates any potential contribution of the central part of w,),
in Section 4.6 we show convergence at an exponential rate to the space of stan-
dard IE'Ts. A technical (but important) tool for this part of the proof is some
partial differentiability properties of Z which are proved in Appendix A.4.

For the rest of the Section, we will assume that T is a GIET such that:

(1)

the rotation number y (T) satisfies the Regular Diophantine Condition (RDC)
in Definition 3.3.4;
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(2) the sequences denoted by (7;)ren and (%,,) nen are the sequences of good recur-
rence times given by Definition 3.3.4;

(3) the conclusion of Case 1 of Theorem 3.2 holds true, ze. the sequence
(llwn,, D men 1s bounded.

4.2. Preliminaries: distances and a prior: bounds. — In this first section we define the
distances which we will use (see Section 4.2.1 and Section 4.2.2) and the boundary of a
GIET (in Section 2.7.4 and Section 4.2.4) and then show show that being in Case 1 of
Theorem 3.2 ensures a priori bounds, see Section 4.2.5.

4.2.1. Drustances on parameter space. — To define the distances dg1 and d, on X,
for any r > 2, let us consider for each m the shape-profile coordinates decomposition

X! = A, x P’ where P" = Diff ([0, 1])? with r > 2:

- since A, identifies with a subset of R? x R?~? an is endowed with a distance d4
induced by the Euclidean distance of R? x R,

- on P’ = Diff ([0, 1]), for » > 2, we can endow each of the coordinates of P’
with either the distance d¢1 or or the distance 4, on Diff*([0, 1]) D Diff ([0, 1]),

namely

de (@1, 92) =191 — alloo + 1 (@1 — ¢2)/||oo
= sup [(¢1 — @2)' (0| + sup |@i(x) — @a(x)],

0<x<l 0<x<l

1
dn(gols QDQ)::/ |77(p1 - rltpzldx’
0

where 7, denotes the non-linearity (see Section 2.4.1).

It is well know that d¢1 is a distance and one can show that d, is also a distance (see Ap-
pendix A.3.1); it is the distance induced by the L'-norm on C°([0, 1], R) via the homeo-
morphism between Diff*([0, 1]) and C°([0, 1], R) given by f —> 7;.

We can then endow P with the distances dg and df defined taking the sums of
the corresponding distance on each coordinates, namely, if ¢, € P have coordinates
(gz)%l_, el (pi‘fi) for:=1, 2, setting

d d
A (@1 or) =Y _der(@h k). A (prer) =) dy(@h, o).

j=1 j=1
Through the shape-profile coordinates identification X, = A, x P, (introduced in Sec-
tion 2.2.3) this hence defines also two product distances on X}, namely d4 x dfl and
dy x df , which can then be extended to X; = U, c0X, using the discrete distance’' on

1 The discrete distance dy on & is simply the distance given by d (), 7o) = 1 for any 7, 7y € &° unless 7, = 7 (in
which case d(m;, m9) = 1).
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the combinatorial data &°. Abusing the notation, we will still denote by d¢i and d, the
distances on X} obtained in this way.

For any £ € N and any r > £, distances d¢r on &) can also define in analogous way,
considering on each coordinate of the profile P’ the distance dg: on Diff ([0, 1]) (instead
of der on Diff ([0, 1])).

We conclude the subsection with a useful intepretation of the total non-linearity as
distance from the (sub)space of AIETs:

Remark 4.2.1 (interpretation of total non-linearity as distance). — Notice that, for every
fe Diff? ([0, 1]), if we denote by I the identity map I(x) = x, since n; = 0, we can write
IN|(f) = d,(f, I) where |N|(f) denotes the total non-linearity (see Definition 2.4.1). Thus,
if Ar is the shape of T, which has shape-profile decomposition A = (Ar, (1, ..., 1)),
since d, on X for r > 2 is defined as a product distance,*

d,(T, A) = d,(T,Ar) = [N|(T), forall Te X

4.2.2. C*-bounded sets. — Since we are working with invertible maps which are
piecewise diffeomorphisms, when we describe a bounded set we also need to have lower
bounds on derivatives, or, equivalently, upper bounds on the derivative of the nverse. For
fixed &, on Diff*([0, 1]), with 7 > £ it is customary to introduce the distance dcik (f 90 =
dei(f, ) + der(f7', g7 "). We then say that a set K C Diff ([0, 1]) is C*-bounded if it has
bounded diameter with respect to the distance déi,.

Similarly, we therefore define, at the level of GIETS,

dyi(Ty, To) :=der(Ty, To) + dex (T, T, forall Ty, Ty € X%,

Definition 4.2.1 (C*-bounded sets). — We will say that a set KK C X* is C*-bounded #ff it
is bounded with respect to dcik, v.e. contained i a ball with respect to dé.

Lemma 4.2.1 (Equivalent characterizations of C'-bounded sets). — For k=1, KL C X' is
C'-bounded in the sense of Definition 4.2.1 iff; equivalently, one of the following conditions hold:

(1) there exists a constant vic > 1 such that (vic) ™" < ||DT||oo < vic_for every T € K.
(2) there exusts a constant Cc > 0 such that || logD'T|| o < Cic_for every T € IC;

Proof. — The lemma follows from the explicit expression for DT in shape-profile
coordinates, given by (3), which shows that if T = (A, ¢1) and p = p(T) is the average
slope vector of T (see Definition 3.1.1),

(40) IDTlls < lloll max D¢} .

2 Indeed, given any A € A,, d,(T, A) depends on d 4 (Ar, A) and dP (pr, Pp(A)), where ¢ = Pp(T) is the profile
of T, but since Pp(A) =(,..., I) where I(x) = x is the identity in Diff ('7[0, 1] for any A € A,, the profile component is
independent on A € A,, while the first component, namely d 4 (Ar, A), is clearly minimized by the shape A = Ay of T, for
which it is zero.
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Asking that K is C'-bounded (i.e. that K has bounded diameter with respect to d3;, see
Definition 4.2.1), in view of the definition of d¢1 in shape-profile coordinates, is equivalent
to asking that ||p(T)| and ||o(T~")||, as well as ||Dg0%||OO and ||Dg0%,l |loo for 1 <i<d,
are bounded above by a constant depending on K only (notice that the other parameters
describing A, as well as the sup norm of the profile coordinates, are always bounded). In
view of (40) (applied to T and its inverse), this shows that there exists a constant v > 0
such that |DT ||, [D(T™) [0 < vk.

The equivalence with (1) now follows simply by the formula for the derivative of
the inverse, which shows that a lower bound on |[DT(x)| for all x € I is equivalent to an
upper bound for |DT™!|| . The equivalence between (1) and (2) is clear. U

When studying convergence of renormalization, using dé or der 1s equivalent, as
shown by the following remark. The use of déck on the other hand is important for us
since we study the global dynamics or renormalization and recurrence to bounded (but not

shrinking) sets.

Remark 4.2.2. — On cach C*-bounded set, dcik and der are comparable: in partic-
ular, for any subset ) C X} and any infinitely renormalizable T € X, dei(R"(T), )
converges to zero (exponentially) if and only if dé:k (R"(f), ) converges to zero (exponen-

tially).

4.2.3. Dustances comparision. — Let us consider and compare the two distances d,
and d¢1 on each profile coordinate, namely on Diff' ([0, 1]), where 7 is an integer r > 2.
Recall that the definition of K C Diff ([0, 1]) is C'-bounded was given in the previous
Section 4.2.2.

Lemma 4.2.2 (de and d, comparision). — For any K C Diff ([0, 11) which is C'-
bounded, there exists a constant L. = L(K) > O such that for f1, fo € Diff*([0, 1])

der (i, o) < dgi (. /) < Ldy(fi. /o)

The proof of this lemma 1s included for completelenss in Appendix A.3, together
with the proof of the next lemma (consequence of the definition of distances on GIETs
and classical distortion bounds), that provides a comparison of distances from AIETs,
which will be useful later:

Corollary 4.2.1 (dc1 and d,) distance from AIETs). — For any d > 2 and any T € X} with
r > 2, there exists L= L(T) such that

do (V'(T), Ap) < ds; V'(T), Ap) <Ld,(V'(T), A)), forallneN.
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4.2.4. Boundary stratification and regimes. — Consider the boundary B(T) of a GIET
T (see Definition 2.7 of a GIET in Section 2.7.4), which is given by B(T) := B(logDT)
(where B is the Marmi-Moussa-Yoccoz boundary operator for observable CO( LJ; If(T)),
see Section 2.7.1). For each value b € R*, we can define the following subspaces

X(b):={TeX|B(T) =b}.

In view of property () in Lemma 2.7.1, since X' (b) is invariant under the action of V
(and consequently under that of Z), these subspaces are invariant under renormalization.
Moreover, Z, (resp. A,) is a subspace of X'(b) for & in the linear-regime b = 0 (resp. in the
affine regime ) _,_ _ b, = 0). As remarked in the introduction of this section Section 4,
in order for a GIET T to converge to IETs (resp. AIETS) under renormalization, T needs
therefore to already belong to X (0) (resp. X' () with b in the affine regime).

Lemma 4.2.3 (Affine regime and vanishing of non-linearity). — The atfine regime corresponds
to the assumption that the mean non-linearity vanishes, i.e.

1
> b,=0, where (b)_, =B(T) <« N(T)= / nr(x)dx = 0.
0

1<s<k

Proof. — On one hand, by definition of non-linearity (see Section 2.4.1 and in
particular Definition 2.4.1), on each continuity interval I' = («, u},,) for 1 <j < d, we
have that nr(x) = DlogDT;(x) so

d d—1
NI =) f 11 (x) dx:Z( lim DT;(x) — lim DTj(x)>.
=11

1 — N+
=0 X—> (uj-Jrl) x—> (u])

One can then check that this is the same than )_\_, b, simply by recalling the definition
of B(T) = B(logDT) and boundary of an observable (see Section 2.7.1) and remarking
that summing over all possible values of s(x;) € {1, ..., k} gives a rearrangement of the
above sum over singularities uj‘ 0

Remark 4.2.3. — If T is a circle diffeomorphisms with breaks (i.e. a piecewise dif-
ferentiable homemorphism, with d — 1 breaks (1. e. d —1 points of discontinuity of the
derivative), T can be seen as a d-GIET in X} (with a rofational combinatorics). In this case
k =d—1 (since g= 1 and d = 2g + k — 1) and the values ¢, where b, are the entries
of B(T) for 1 <5 <d—1, encode the breaks, which are well-known C'-invariants in the
theory of circle diffeos with break points. In this case, the assumption that B(T) is zero,
1.e. that each entry b; is zero, is equivalent to asking that T is indeed induced from a circle
diffeomorphism (i.e. there are no breaks).
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4.2.5. A priori bounds. — Let us first show that in the recurrent case (Case 2 of
Theorem 3.2), we have a priori bounds which hold along the orbit {R"(T)},.em where R is
the acceleration of )V along the subsequence {n;, }.en given by the (RDC).

Notation: To lighten the notation, we denote by ||f||~ the sup-norm on the domain
where f is defined, so if / : I = R, ||[f lloc := |/ lLocry = sup,; [f ().

Proposition 4.2.1 (a priori bounds). — The iterates {DR™(T), m € N} belong to a C'-
bounded set (in the sense of Definition 4.2.1), 1.e. there exists a constant Ko = Ko (T) > O such that

Ko(T)™' < [IDR™(T) |l := [DT" ||
=|DT,, || <Ky(T), forallmeN.

The Proposition can be easily proved using the shape-profile decomposion X} =
Ay x P? (see Section 2.2.3). We will first show (in Lemma 4.2.4 here below) that the profile
coordinates always satisty a priori bounds along the orbit of renormalization, simply as a
consequence of the classical distortion bounds (given by Lemma 2.4.2). The assumption
of being in the recurrent case 2 of Theorem 3.2) provides the required bounds for the
shape coordinates.

Let Pp: X} — P} = (Diﬂﬂ([O, 1]))d be the projection on the profile coordinates P;
(see Section 2.2.3).

Lemma 4.2.4 (bounded distortion for the profile). — For any GIET T € X? there exists a
constant M = M(T) (which depends only on the C*-norm of T and T~' and hence is uniform on
C?-bounded sets) such that for any T GIET renormalizable under Rauzy-Veech induction n times we
have

IPp(V'(T)) — (Id)’ller < M, IPp(V'(D)™) = Ad)ler < M,

where (1d)" = (Id, ..., 1d) € P = (Dif%([0, 1]))".

Proof. — Let ga{; be a coordinate of Pp (V”(T)). By definition of profile, go{l is ob-
tained by composing the restrictions of T to pairwise disjoint intervals and then rescaling.
More precisely, if we denote by ¢; := q;") the height of the Rohlin tower 7/ and by ]jf-k,

for 0 < k < g, the restriction of T to the floor T* (I;")) of P/, then ¢/ = N (Tj”)) where

T;") = jij’i o JJCQ"_Q o---0f0f; and N(-) is the normalisation operator which produces a
diffeo of [0, 1].

Since ¢/ is a diffeomorphism of [0, 1], by chain rule and mean value, choosing
€ [0, 1] such that D(pﬁ;(y) =1,

su D(p](x) = su M = su DNqu_l o - o\f/;()))(X)
xe[ol’)l] n "6[01*3” D¢, (7) x,ye[(I)),u DN (15~ o 0 f2) ()
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D™ o0 ") (%)
= sup — VR
XJ'GI;N) D(f9™" o -0 /) ()

so that we can now apply the distortion bound given by Lemma 2.4.2. Since we can
reverse the role of x and y, recalling the formula for the derivative of the inverse function,
we can then deduce from Lemma 2.4.2 that, for all x € [0, 1],

1
max {Dg) (9. (Dgj(0) | < exp ( / |nT<x>|dx)
0

1
= exp ( f |D*T'(x)/DT(x)| dx) ,
0

where the last equality uses simply the definition nt = % and shows that the RHS
depends on the C* norm of T and T~ only. This, recalling the definition of total non-
linearity (see Definition 2.4.1), shows that

max sup |logDg! (x)| < [N|(T).

1<7=1 ve[0,1]
Since the exponential is Lipschitz on bounded sets of R, there exists a constant L. > 0
(which depends on the C*-norm of T and T~! only) such that

sup |(Dg)(x))*' — 1| <L sup |logDg(x)|

x€[0,1] O<x<l1

<LIN|(T), foralll<j<d.

Since these inequality holds for all the components of the profile, this proves the lemma.

O

Proof of Proposition 4.2.1. — Let us consider R™(T) := Zhn (T) = T, Denote by

@" := w,, the shape log-slope vector of R"(T) and by p" := p,, be the slope vector, so
p" = exp(@”).

By the chain rule, since the induced map T is related to R™T through conju-

gation by a linear map, see (4), and by the explict expression for DR™T in shape-profile

coordinates (see in particular (3)), we have that, denoting by (f,l,; ce Qi) the profile co-
ordinate of R™(T),
(41) IDTO ) = IDR Tl 1) < max [p7 g o

We remark now that:

(1) by Lemma 4.2.4, all coordinates of P (R"(T)), and therefore max;<;-, || gjﬂ”oo,
are uniformly bounded;
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(2) by the assumption that we have made on T, the sequence ||w,|| = [lw,, | is
bounded, so also max;<;<4| E;"’| = max|<;<4 2| is uniformly bounded.

Using these two facts to estimate (41) we get the desired upper bounds. For the lower
bounds, it suffices to estimate similarly the inverse (DR"T)™" (which has slope vector
¢~2", which is also bounded) and recall the formula for the inverse function (see also the
proof of Lemma 4.2.1). O

4.3. Exponential decay of the dynamical partitions mesh. — We will now prove exponen-
tial estimates on the decay of the size of the sequence of dynamical partitions {P,, n € N}
along the sequence (%,),, given by the (RDC). Since the sequence (%,), grows linearly,
we can then deduce a posteriori that the mesh decay exponentially (see Corollary 4.3.1).

Throughout this section, {P,,n € N'} denotes the sequence of dynamical parti-
tions (as defined in Section 2.3.7) associated to the orbit T® := Z"T, n € N of T under
the Zorich acceleration Z. Let us measure their size by mesh(P,), given by definition
mesh(P,) :=sup;.p |I|. Then

Proposition 4.3.1 (Partition mesh decay). — There exists 0 < o, (1) = oy < 1 such that for
allmeN

mesh(P,, ) <af.

To prove this Proposition we will crucially exploit both that (n,),.enx are good return
times, and that, at the same time, there are a priori bounds. More precisely, we will show
that if the double occurrence of a positive matrix occur at a time where also the shape
log-slope vector is bounded, then this produces enough geometric control on ratios of floors
in the dynamical partitions of the generalized IET to in particular produce a controllable
decay of the mesh (see Lemma 4.3.1). We encode here in the definition of good bounded

distortion sequence the simultaneous presence of good return time with a priori bounds.

Definition 4.3.1 (s00d C'-recurrence sequence). — Let us say that the sequence (1) men
is a good C'-recurrence sequence if (n,,)ien 5 a sequence of p-good returns (in the sense of Defini-
tion 3.3.3) for some p > 0 and K > 0 such that

1
—<|IDT, <K, VmeN.
K

We call each time n,, in a good C'-recurrence sequence (n,,) nen @ good C'-recurrence time.

A good C'-recurrence describes iterates of renormalization that are are recurrent to
certain C'-bounded sets in the space X (in the sense of Definition 4.2.1, see Lemma 4.2.1)
and at the same time are good returns,*’ from which the choice of the name.

5 We remark that recurring to a C'-bounded sets (in the sense of Definition 4.2.1 only controls the profile coordinates
as well as the log-slope vector of the shape, but does not control the lengths coordinates, which are always bounded. The
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The crucial step in proving exponential decay of the size of dynamical partitions is
the following

Lemma 4.3.1 (Key lemma_for mesh decay). — For every good C' -recurrence sequence {n,,}en
(which 1s 1 particular a p-good recurrence sequence for some p > 0) there exists a constant 0 < o) <1
such that

mesh(P,,+,) < a;mesh(P,).

The proof of this key Lemma will take all of Section 4.3.2. Let us first show that
the Lemma allows to finish by induction the proof of exponential decay of the partitions
mesh.

Proof of Proposition 4.3.1 (from Lemma 4.5.1). — Notice that, if we are in Case 1 of
the conclusion of Theorem 3.2, the sequence (n;,),.en is @ good C'-recurrence sequence,
since the sequence (1;)en (and therefore any of its subsequences) is, by the (RDC) (recall
Definition 3.3.4) a sequence of good-returns and {||DT,, ||, m € N} are controlled above
and below by the a-priori bounds in Proposition 4.2.1. Without loss of generality, we can
also assume (disregarding some good times if needed) that n;,,,, — 7, > p (notice that this
new subsequence still grows linearly). Thus, iterating the key Lemma 4.3.1, we get that,

forany m> 1,

mesh(P") < mesh(P"n17) < oymesh(P"n-1) <.

< (a1)"mesh(P"™) < (a1)",

where the last inequality holds trivially since mesh(P) < 1 for any partition of [0, 1]. [

Let us also deduce that the whole sequence (mesh(P")),n decay exponentially. We
record separately the following elementary servation since it will be used again in this
section.

Remark 4.3.1. — If a decreasing (i.e. non increasing) sequence (a;)reN decays expo-
nentially along a subsequence with linear growth, then the whole sequence (a;) ren decays exponentially.
To see this, assume that there exist a subsequence () ,en such that £, /m has a finite limit
and 0 < 6, < | and K > 0 such that ¢;,, < K(6y)" for every m € N. Then, if £ > 0 is such
that m > £,,1, /€ for all m € N, setting 0, := (09) "¢, we still have 0 < 6, < 1 and, for each
k € N, choosing m such that £,, < k£ < £+, and using that (4;)en 1S Dot increasing, we see
that ¢; < ¢, < K(0p)" < K(6p)"n1/t = K@{%H <Kot

request that the C'-recurrence is also a sequence of good returns plays an essential role in controlling ratios of dynamical
partition elements, see Lemma 4.3.1.
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Since mesh(P") is descreasing in n and both () .en and () ren grow linearly (see
Property (i) and (uz) in Definition 3.3.4), Proposition 4.3.1 combined with the above
Remark gives the following stronger conclusion.

Corollary 4.3.1 (exponential decay of the mesh). — There exists 0 < o (1) = o9 < 1 such
that mesh(P,) < o for all n € N.

We will now focus on proving the key Lemma. We first isolate and prove, in the
next Section 4.3.1, an intermediate technical step in the proof. The proof of the key
Lemma is then given in the following Section 4.3.2.

4.3.1. Balance of continuity intervals via good C'-recurrence sequence. — Let A" be the
length vector, whose entries )\.](”) = |I;") |, 1 <j <dbe the lengths of the continuity intervals
of the induced map T, on I, We say that A" is v-balanced for some constant v > 1, iff

A

max —e- < V.
1<ij<d
<iy< )‘i

1
- <
=
It 1s well known, in the study of standard IET, that the occurrence of a positive matrix
produces balanced lengths vectors (a fact which has been exploited since the seminal

work by Veech [64]). It turns out that the same 1s also true for GIETs, as long as one has
a priori bounds. More precisely, we will prove in this section the following:

Lemma 4.3.2 (Balance of continuaty intervals). — Guen a positive Lorich matrix A €
SL(d, Z) of length p (see Section 3.3.3 for terminology) and K > O, there exists a constant v =
V(A, K) which depends only on K and the norm ||Al| such that, if n is such that Q(n,n+ p) = A
and K™ < ||D'T, || < K, then the lengths vector ™ at time n is v-balanced.

Progf — Without loss of generality, by replacing T with T® we can assume that
n=0. Consider the dynamical partition P,. By construction, since Q(0, p) = A this par-
tition consists of ||A[| intervals. Let Iy be the largest, so that |Fy| > 1/||A||. Let j, be the
index of the Rohlin tower P}’ which contains Fy as a floor. Since every floor F in P}’
can be written in the form F = T*'F, for some 0 < i < ||A||, by mean value we have that
|Fo| < IDTF|||F| and thus, from the distortion bound on DT, and the analogous one for
DT, ! (which holds by the formula for the derivative of the inverse function) we get that

IFl_ [Fol 1

=0 JO
|F| > |Fol TN > KIAT > AN forall F e 77/,

(where the last inequality is by the choice of |Fy|).
Now, since A is positive, each continuity interval )»J(-O), for any 1 <j < d con-

tains at least one floor of the tower P). The previous lower bound hence shows that
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min; << )L;O) > (||A||K”A”)_1. Since max <j<; X;O) < 1, this proves that ¥ is v-balanced
for v := ||A||K!*I' and concludes the proof. O

4.3.2. Decay of the mesh at good C" -recurrence times. — The goal of this section is now
to prove the key Lemma 4.3.1. The main idea behind the proof, which is split in sev-
eral intermediate steps, is that a good C'-recurrence times produces relative balance of the
dynamical partitions, i.e. if one studies the dynamical partitions of the induced map T,
corresponding to a good C'-recurrence time 7, (that we call relative partitions), one can
show that after p (Zorich) renormalization steps (hence at the time 7,, 4 p in the ‘middle’
of the double occurrence of the positive matrix A) one can have a good control on the ra-
tios of all partition elements (i.e. we show that this relative partition is balanced, see Step 2
of the proof for the precise statement). Moreover, this partition is made by a subset of the
intervals of the dynamical partition P, , sufficiently well spaced to be able to infer (via
the classical distortion bound) the desired decay of the mesh.

Proof of the key Lemma 4.3.1. — Let n;, be a given good time; let A be the positive
matrix whose double occurrence gives the corresponding good return time and let p be
its Rauzy-Veech length. In the proof we will work with four different renormalization
times, namely n;, n; 4+ p and n; + 2p (which are, informally, the times just before, in the
middle and just after the double occurrence of A) an the initial time n = 0. For brevity of
notation, let us use the notation

Ly :=mny, L= Mitps Ly = Myt-9p

Thus, € 1s the time just before the occurrence of AA, £, is the time in the middle, and £,
just afler. We split the proof in several steps.

Step 0: Persistence of a priort bounds up to time £9. By assumption, since £y 1= n; is a
C'-recurrence time, DT, || < K. We claim that since £y — £, = 2p, for some K; > 0, we
actually have a that

(42) KL <|IDT,|| <K,, forallf, <n<4¥,.
1
To see this, remark first that (by definition of A-good return times and the cocycle rela-
tions, see 2.5.6), we have that ¢ = A? ¢ and therefore, for all £, < n < £y, writing
DT,(x) (for any x in the domain I of T,) by the chain rule as a product of at most
|A[|* terms of the form DT, (x;) (or equivalently, considering the logarithm and de-
composing the special Birkhoff sums £ (x) as sum of special Birkhoff sums /0 (x;), see
Section 2.6.2), we have that

IDT,|| < IDT,, ||""" < K, := K",
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To prove the lower bound, we can use D(T'). By decomposing it in the same way as a
product of at most [|A[|? terms of the form DT[U1 (x;) and exploiting twice the formula for
the derivative of the inverse function as well as the lower bound | DT, || > K™,

‘ 1 [V ‘
= ID(T 0 = D = () =K =K

DLl DT, I B

which 1s the desired lower bound |DT,|| > Kl_l.

Step 1: Balance of continuily intervals at time £,. Consider now the induced map T, at
time £,. Since £, is the time before an occurrence of A, 1.e. Q(¢,, £9) = A, and, by Step 0,
we have the derivatives bounds (42) for n = £, Lemma 4.3.2 gives that the lengths )L;ZI) =
|I;m | of the continuity intervals of T, are vay-balanced for a constant v > 0 (depending
on the matrix A but independent on the choice of the C'-recurrence time), i.e.

1 )\}fl)
’(lll) < Va.
i

Va T 1=ig=d A

Step 2: Balance of the relative towers of step £y over £,. The induced map Ty, on 1€V,
since ¢; > £, can also be seen as first return map of Ty, on the subinterval 1V c 1¢0),
Consider hence the corresponding dynamical partition of I©) into subintervals which are
floors of Rohlin towers (see Section 2.3.7) for the map T}, seen as acting on a skyscraper
with base 1“0 (see Figure 2). We will call this dynamical partition (and resp. its Rohlin
towers) the relative dynamical partitions (resp. the relative towers) of step £, with respect to
step £, and denote it P (£, £;) (resp. P/(£oy, £1), 1 <j < d). We claim that this relative
dynamical partition is balanced, in the sense that there exists a constant v; > 0 (which
depends on A and K but not on the initial choice of C'-recurrence time £,) such that all
floors Fy, Fy of towers P (€, £,) have comparable lengths, i.e.

L _ 5

— == =V,
vy |F|

for all F; = (T, )" I, 1 <j <d, 0 <k, b < (L. £1),

where qjeo’m is the height of the relative Rohlin tower P’ (£, £). Since £, is just affer an

occurrence of A and therefore ¢ = A g0, the heights of each of these relative towers
PI(Ly, £)) is at most ||A||. Since Kl_1 < ||IDTy, || <K, by Step 0, it thefore follows that,
for every floor F of the relative tower 7/ (£, £,),

L _

— <
KHAH - |I(7l0)| -
1 J

Therefore, since the base intervals |Ijm| are va-balanced by Step 1, this shows that floors

A
are v;-balanced for v, := K¥ I VA.
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P(lo)

lo

P(l)

|
b

FiG. 2. — The partitions Py, and P,

Step 3: Decay of mesh in the bases of step £ relative partition. Let us now think of the same
relative partition P (£, £1) not as Rohlin towers, but as a partition of 1) (as shown in
the lower row of Figure 2). Notice that each of the continuity intervals IJQO), 1<j<d, is
partition into a union of at most ||A|| elements of I), Therefore,

mingepe,,¢,) |1 mingep . ¢,) |1 - 1

(43) i) s Sp——
) JATmaxicpe.e 11— v 1A

where the last inequality follows from the balance of the partition P (£, £;) proved in
Step 1.

Step 4: Propagating the decay of mesh in the base through distortion bounds. In this final step,
we infer the decay of the mesh by an argument very similar to Step 3, only not at the base,
but in the floor of the Rohlin tower of P (£,) which contains the interval of P (£;) which
relized the mesh. The classical distortion lemma will allow us to propagate and repeat the
estimates of Step 3 to other floors of P(€,).

Notice first of all that the elements of the relative partition P (€, £,) are a subset
of the elements of the partition P;,, consisting exactly of all elements of P,, which are
contained in the interval 10| as illustrated in Figure 2 (this is because Ty, is by definition
the first return of T to 1),

Let Fy be an interval of Py, such that mesh(P,,) = |F;|. Then, since the partition
Py, is a refinement of Py,, Fi belongs to a floor of one of the Rohlin towers P of P,
say the ji one. Let us call F, this floor. Then we can write (referring the reader to the
schematic representation in Figure 3 for a picture)

Fo:= Tk(JIJ(OZO)’ and F, = Th (I,), forsomel; C I;(fO).
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Tko (1 )

Tko ([J((l)Z))

I

l2)
Jjo

I16. 3. — The tower subintervals used in Step 4 of the proof of the key Lemma 4.3.1

By construction I is an element of P,, and contained in I;(f‘)) and hence, by the initial
remark of this step, it is also an element of P (£, £,). As in Step 3, by positivity of the
matrix A, there is at least one (and actually at least  — 1) other element of P,,, that we
will call Iy, such that I, C I](f(’) Let Fy = T (1), so that Fy C Fy, i.e. it belongs to the
same floor than contains F,. Since F; and F, are by construction different, I, C Fy\F,
and therefore |F,| < |Fy| — |Fy| (refer again to Figure 3). Thus, recalling the choice of I
and using that |Fy| < mesh(P,) (simply since F is an element of P,,), we get

mesh(P,) I _[Rol= Bl _ I
mesh(P,,)  mesh(Py,) — |Fol |Fo|

(44)

We therefore now want to estimate the ratio |Fy|/|F| which appears in the last esti-
mate. Remark first that, by mean value theorem and then the classical distortion bounds
(namely Lemma 2.4.2), for some x, y € I;OZ“)

[Io| |Fol |F0|/|I;f())| |Tk01](lf0)||/|lj§olo)| |DTk0(x)| 3 N
_— = — _ < exp .
IR~ (Rl/Ll DL/ DTRE))

Using this estimate and then Step 3 (in particular (43)) to estimate I/ |IJ(OZ”)| from below),
we get

1Fs| > 1 |Il2| > 1 '

[Fol = exp N|(T) [I] ~ exp N|(T)v A

Thus, using this estimate in (44) and setting o := exp(|N|(T)v1||A||)_1, we get that
mesh(Py,) < (1 — a;)mesh(Py,). Recalling that £, = n,,, and £, = n,, this proves the
key lemma. U

4.4. Convergence to Moebius maps. — Moebius interval exchange transformations
were defined in Section 2.1.2 (see Definition 2.1.4); we recall that M, denotes the space
of Moebius IETs (see Section 2.2). In this section we show that the decay of the mesh of
the dynamical partition given by Proposition 4.3.1 implies fast convergence of Z"(T) to
the subspace M, of Moebius IETs. These are by now classical arguments, well known in
the study of circle diffeomorphisms and circle diffeomorphisms with break points.



310 SELIM GHAZOUANI, CORINNA ULCIGRAI

4.4.1. Estimates of the distance from MIETs. — Let T € X be infinitely renormaliz-
able. Recall that {P,, n € N} denotes the sequence of dynamical partitions (as defined in
Section 2.3.7) associated to Zorich renormalization orbit {Z"T, n € N}.

Proposition 4.4.1 (distance to Moebius via the mesh). — There exists a constant L(T) > 0
such that we have

des (2T, M) < L(T) mesh(P,), jforallne N.

The proof of this statement, which we give below, uses the Schwarzian deriva-
tive (whose definition was recalled in Section 2.4.3). It is a modern reformulation of the
miraculous cancellations that Herman brought to light in his celebrated thesis [29].

Consider the shape-profile coordinates A x P introduced in Section 2.2.3. We first
state and prove a Lemma which relates the C* distance from M to the Schwarzian deriva-
tives of the profile coordinates. Recall that the C* distance ¢} on A x P was defined in
Section 4.2.1 analogously to .

Proposition 4.4.2 (distance to Moebius via the Schwarzian). — For any K C X° which is
C3-bounded, there exists a constant C. = C.(KC) such that for any T € K

d
des(T, M) < C(C) Y 1S o

i=1
where, for each i, S(@%) is the Schwarzian derivative of the coordinate @t of the profile of T.

The proof of this Proposition is given in the Appendix A.3.4. We now prove Propo-
sition 4.4.1.

Proof of Proposition 4.4.1. — For any n € N, let ¢/ € Diff*([0, 1]), for 1 <j < d,
denote the j-th coordinate of the profile of Z"T (in the shape-profile coordinates of Sec-
tion 2.2.3). By definition of profile, ¢/ = N(T{"), where T{" is the jth branch of
T® = Z"T and N(-) denotes the renormalization operator which, to any diffeomor-
phism f : T — J of a connected interval I onto J, associates N'(f) := bo f o a, where a and
b are respectively the only orientation-preserving affine map mapping [0, 1] onto I and ]
onto [0, 1].

For brevity, let us denote by ¢; := qj") the height of the Rohlin tower 7. Let j;k, for

0 < k < ¢;, denote the restriction of T to the floor T* (I;")) of the Rohlin tower P’. Then,

4—2

. .. . . gi—1 .
since by definition of renormalization T}”) =/ of “o---ofyofi, wecan write

% :./\/'(Tj@) :N(J]pﬂ;—l) o./\/'(ﬁq’/_Q) 0. o,/\/'(]]d) o/\/'(j]c0).
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Thus, by the chain rule for the Schwarzian derivative (see (S1) in Section 2.4.3), if we
introduce the following notation for partial products:

_ N(]]Ck)o...oN(}jl)oN(]?O), fOTk:O,..,,q]»—]’

k.
9 0 for k=—1,

one can verify by induction that

g—1

(45) S(e)) = SN o g/ (D))"

k=0

We now use two observations. The first, which follows by Property (S3) of the Schwarzian
derivative (see Section 2.4.3) since the domain of quk is the interval Tk(Ij")), is that the

Schwarzian derivatives of each ]7‘ satisfies

(46) ISV D oo = ITEA IS oo

where || - ||« denotes the sup norm on the domain where the function is defined (so the
Loo([0, 1) norm for N'(f*) and the Lo (T*(I”)) norm for S(f*).

The second important observation is the claim, that follows from the classical dis-
tortion bounds (see Lemma 2.4.2), that the derivatives of ¢J{‘" are uniformly bounded above
and below, z.¢ there exists D, (1) = D, such that for all ) <d and £ < {;Z,

D! SD(N(];/C)O"'ONQ;I)ON(];O)) <D,.

The proof is the same than the proof of the profile a priori bounds in Lemma 4.2.4: by
chain rule and mean value, choosing y € [0, 1] such that D(]bjC (=1,

sup DIV 0+ o N o N (1)
Do (x) D(ff o0 f)(x)
= Sup P = Sup ” 0 9
xe[0,1] Dd)] ())) x,)‘EIj(") DO; o- o.f]; )(y)

so we can then conclude by applying the a priori bounds given by Lemma 3.2.1.
We can now estimate (45) using these two observations, together with the remark
that ||S(]§k) loo < IIS(T)||so since jj.k 1s a restriction of T, thus getting that

g1

IS@) e < IS(D oD Y ITHAM).

k=0
Since for any 0 < £ < ¢;, we can estimate |Tk(1;")) | < |T* (IJ(") )| mesh(P,), we obtain that

IS@) lloe < IS(T) [l DY mesh(P,).
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To conclude, it suffices now to apply Proposition 4.4.2, which shows that the distance
des (2T, M) is controlled by the sum over j =1, ..., d of the Schwarzian derivatives
above and hence gives the desired estimate in terms of mesh(P,). ]

4.4.2. Exponential convergence to MIETs. — Combining Proposition 4.4.1 with the
decay of the partitions mesh given by Corollary 4.3.1 (consequence of Proposition 4.3.1),

we conclude that iterated renormalizations of T converge exponentially fast to Moebius
IETs:

Corollary 4.4.1 (Exponential convergence to Moebius IETs). — Let oty = a9 (T) be as in
Corollary 4.3.1. There exists Kg('T) > O such that for any n € N

des(Z2"T, M) < Ky(T) .

4.4.3. Parameters of MIETs. — Let us gather here some basic properties of Moebius
diffeomorphisms and, as a consequence, of Moebius IETs which will be useful in the
following sections.

Consider first the group M([0, 1]) of orientation preserving Moebius diffeomorphism
of [0, 1]. If m € M([0, 1]), then one can check that:

(m1) the sign of D*m is constant (i.e. m is either convex or concave) and log Dm is
monotone;

(m2) The mean non-linearity N(m) is given by N(m) = logDm (1) — log Dm (0);

(m3) Given u € R, there exists a unique** m, € M([0, 1]) with mean non-linearity
N(m,) = u.

These observations translate into the following properties Moebius IETs. Recall that if M
is a MIET, then each branch M; is a Moebius diffeomorphism of I! into I/ (see Defini-
tion 2.1.4). Since by definition of non-linearity 17y, = DM?/DM; (see (see Section 2.4.1)
and DM,; is continuous and non-zero on each I, the following remark then follows im-
mediately from (ml).

Remark 4.4.1 (Sign-coherence of non-linearity for MIETs). — If T is a Moebius IET, the
sign of the non-linearity ny is constant on each of the continuity intervals Ij, 1 <j<d, of
T.

™ The (unique) Moebius diffeomorphism m, with m,(0) = 0, m,(1) = 1 and mean non-linearity  is indeed ex-
plicitely given by

Xe

l+x(e_% — 1)'

ol

m,(x) =

It can be found for example as a special case of the formula in Appendix A.3.1.
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We now deduce from (m2) and (m3) the finite-dimensionality of M, and charac-
terize subsets which are dgi-bounded in the sense of Definition 4.2.1 in terms of a priori
bounds.

Lemma 4.4.1 (Finite-dimensionality and bounded subsets of M ;). — The space My of MI-
ETs on d intervals is a finite-dimensional space of dimension 3d — 2. More precisely:

(M1) Given M € M, M is completely determined by its shape Ay and the mean non-
linearities of each branch, i.e. by a vectorn = (n1, ..., n4) € R such that n; = NM,)
Sor 1 <1< d, which fully determines the profile coordinate @y ;

(M2) The vector n of mean non-linearities is _fully determined by the right and left limits of
log DM at_endpoints of the top partition; in particular ||n|| < 2| log DM|| s

M3) If KK C My is such that MIETs in K satisfy an a priori bound, i.e. there exists a
K > 0 such that K™' < |DM||o < K for each M € K, then K is C*-bounded for
every k € N.

Progf. — Since A, is a finite dimensional space of dimension 2d — 2 (see Sec-
tion 2.2.2), to show Property (M3) and the finite-dimensionality, it is enough to show
that the vector n = (1, ..., n,;) € R? (which gives d additional parameters) determines
the profile ¢y = ((plil, e gof(,[). For each 1 <1 <d, since (,01"\,I 1s obtained from the branch
M, by rescaling, by the definition of n; = N(M,) and its invariance by affine rescalings
(see property (iv) of Lemma 2.4.1), we must impose N(¢i,) = n;. This determines ¢, by
(m3). Property (M2) now follows from (m2), that shows that 7 is fully determined by the
values of log DM. B

Finally, to prove (M3), let K be a subset of M, which satisfy a priori bounds.
To show that K is dei-bounded (in the sense of Definition 4.2.1, i.e. contained in a ball
for the distance d;), recalling that the distance dgr on each subset of the form A, x P’
is given by a product of distances (see Section 4.2.1), since the shape coordinates are
contained in a ball for d4 by the apriori bounds assumption, we only need to control
the profile coordinates. Now, by (M2) (see also Remark 4.2.1 and Lemma 4.2.2), the
profile coordinates can be controlled by ||log DM]||, which is also bounded by the a
priori bounds assumption, so we conclude that K is contained in a ball for déﬁ. Finally,
since M, is finite dimensional and the distances der, £ € N, are all induced by a norm
and hence all equivalent, K is contained in a ball for défk for any £ € N. This concludes
the proof of (M3). ]

4.5. Convergence to AIETs. — We now turn to improving the convergence to Moe-
bius IETs to a convergence to AIETs, under the additional hypothesis that we are in the
affine regime, namely that Y '_, b, = 0 where (b,), = B(T). We recall that this assump-
tion is equivalent to asking that the mean non-linearity N(T) = fol nr(x)dx vanishes (see
Lemma 4.2.3).
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Our approach to convergence to AIETs is to study the total non-linearity
IN[(Z"(T)) (see Definition 2.4.1) and to show that it converges to zero as n grows.

4.5.1. A combinatorial lemma. — We first need an easy (but crucial) combinatorial
Lemma.

Lemma 4.5.1. — Guven any a; € R, fori,j € {1, ..., d}, denote by

For any given 0 < ¢ < 1/d, there exists ¢ <1 such that, if

(1) Zle A; =0, or equivalenly, Zid— a; = 0; (zero-average assumption)

(2) aj/Ai>cforany i,j € 1,...,d (balance assumption),
(which implies in particular that for every 1, all ay, for 1 <j < d, have the same sign of
Ai);

Then we have that
d d
DOIN =D IAL
j=1 =1

Proof. — We first prove the Lemma for = 2. By assumption (2) and definition of
A;, we can write:

ay =c Ay, ap=(1—=¢)A;, wherec<¢ <1 —g¢
aj9 = ¢9 Ao, a9 = (1 —¢9) Ay, wherec<¢p <1—c.
Thus, by definition of A/ and since Ay = —A,; by (1), we now have
Al =0 A) + Ay = (¢ — o)A,
A* = (1= ce)A+ (1 — ) A = (e — &) A
Now, since |¢; — ¢o| < 1 — 2¢, we thus get
A+ A% < (1 = 20)|A)] + |Agl.

The general case can be reduced to the case d = 2 by grouping together positive A; and
negative A; as follows. Let us define

B,:=) A, B_:=) A

A;>0 A; <0
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We can further write By = b, + b,_ and B_ = b_, + b__ where:

byy = Z s b= Z s

Ai>0,Aj>0 Ai>0,Aj<0
b_y = E aj, b__:= E a;
A;<0,A;>0 Ai<0,Aj<0

We claim now that we can apply the case d = 2 of the lemma {b_l-/-, 1,) € {+, —}}. In-
deed, assumption (1) holds since their sum is By + B_ = ZLI A; =0, while [b,,| >
> A0 ¢|Ail = ¢[B], and similar estimates hold for the other coeflicients, so also the bal-
ance assumption (2) holds. Thus, denoting by BT :=b,, +b_, and B~ :=b,_+b__ the
conclusion of the lemma for d = 2 proved above together with the trivial remark that if
by, ..., b, have the same sign then Zj;l |br] = | Zjl;l by| gives

d d
D OIA| =B 4 BT < (Bl + B_) =Y _|Al,

J=1 =1

which 1s the result for d > 2. O

4.5.2. Non-lnearity decrease at C'-recurrence times. — The following key Lemma,
which is based on the combinatorial Lemma 4.5.1 above, will be used to show that every
C'-recurrence time n;, (which corresponds to a double occurrence of a positive matrix A
together with a priori bounds, see Definition 4.3.1), the total non-linearity decreases by a
definite factor after renormalizing.

Lemma 4.5.2 (Contraction of non-linearity at C'-recurrence times). — Let 1. > 0, let p be
a positive integer and let A be a positive Lorich matrix of length p. There exists a constant a3 =
as(L, p, |All) < 1, such that the following holds. Let M be a Moebwus IET such that:

(1) the total non-linearity vanishes, 1.e. N|(M) = fol v (x) dx = 0;
(2) the distortion bound L.™" < || DM|| o < L holds;
(3) one has Q(0, 2p) = AA where Q(0,n) = Z,(M) ---Z,_1 (M) s the orich cocycle

associated to M.

Then IN|(Z/(M)) < a3|N[(M).

Proof. — Consider the dynamical partitions P,, n € N, associated to Z"M, n € N
(see Section 2.3.7). Let £, := p and let M' := Z% (M).

Step 1: Partition balance at time £,. We first claim that the assumptions (2) and (3) imply
that, at time £, = p, all floors Ff of the partition P, are balanced, i.e. there exists v; > 1
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such that

ki
vl < — <V
1 ko 1s

2

forall | <k <¢®, 1<iyiy<d, where Ff := M (Ij“) .
This can be seen (as in the proof of mesh decay key Lemma 4.3.1 in Section 4.3.2) in two
steps, by considering the three times £ := 0, £, := p and £, := 2p. First, since Q(¢,, £, +
p =Q,2p) =A >0, from Lemma 4.3.1 we get the continuity intervals I}m in the

base IV are all v-balanced for some v = v(A). Then, since the number of floors q]@l)

in each Rohlin tower P, is bounded by [|A| (using here that Q(0, £;) = Q(0, p) = A),
by the C'-recurrence assumption (2), the balance on the base can be transported to show
v, := vKIAl balance for all floors of the towers, as desired (we refer the reader to the
proof of Lemma 4.3.1 for more details).

Step 2: decompositions of non-linearities. Let us now consider the two non-linearities that
we want to compare, namely N(M) and N(M'") for M! = ZM and decompose them as
follows. On one hand, for each continuity interval I; :=I' for M, since we can write
I, = Uj‘fl:l LN 73;51), we can write the mean non linearity of the branch M; of M, that we

wil denote by N;, as

d

47) N; = /1 M () dv= "n;,  where n; := f () d.

. 1
J=1 LnF;

On the other hand, by definition of M' as induced map, on the continuity interval I/-1 =
Ij@‘), since the branch Mjl is the composition of the restrictions of M to the floors Fj’-C of the
Rohlin tower P, of height q]-l = qj@l), exploiting the distribution property of non-linearity
(i.e. property () in Lemma 2.4.1) we can write

1
g1 d

d
4 [ b= > [mwar= [ mwa= ) [, mea=3u.
J = J J 1= J ¢

=1

Step 3: combinatorial lemma assumptions. We now want to apply the combinatorial
Lemma 4.5.1, to the quantities

ng::f ) nw,(x)dx,  jef{l, ..., d}.
llﬂ'le

In Step 2 we have already shown both that N; = 2;1:1 n;, by (47), and that the non-
linearity of Mjl, that we will denote N/, satisfies NV = Zle nj, by (48). Moreover, by the
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assumption N(M) = 0, we have that 30 N, =30 ;. M, (x) dx = 0, which shows that
assumption (1) is satisfied. We will now show that also aissumption (2) holds for a;; :=n
1 <1,7 <d. We use here that M is a Moebius IET.

Remark first of all that since M is a Moebius function:

>

(1) foreach 1 <1 <d, ny,(x) has constant sign on I; (see Remark 4.4.1) and therefore
n;> which are obtained integrating 1y, (x) on subintervals of I;, have the same
sign that n; forally=1,...,d,;

(2) |[logDM]|s < L (by the assumption (2) of the Lemma), so ¢'/" < [|[DM;]|o <
o

(3) mu 1s uniformly bounded above and below on each branch by (1) above;

(4) the floors of P,, are balanced by Step 1.

These remarks can be used to conclude that also assumptions (2) of Lemma 4.5.1 holds
for {n;, 1 <1,5 <d}.

Step 4: Conclusions. By Step 3, we can apply the combinatorial Lemma 4.5.1 and we
get the existence of a constant ¢ > 0 such that

d d
(49) ZMMJ =< C/Z fﬂm{l
=1 1 |Yh

j= Yy

Since both M and Z/(M) are MIETs, the signs of 1y and ny, are constant on each
branches of M and M, respectively (by the considerations in the previous Step), so that

have
/ﬂMl Zf [, IN;| = /UM :/lan'
Iil I]l I; I;

With this observation, since N is the total non-linearity of the j-th branch of M, = Z?(M)
(see Step 1, (48)), the inequality (49) given by Lemma 4.5.1 can be rewritten as

IN'| =

d d

d
IN[(Z(M)) = Z/ Il =Y IN|<¢ Y IN|
J=1 I}

J=1 =1

d
Y1 [ il =< INICD)
=1 J

which proves the Proposition for o5 1= ¢'. U

4.5.3. Exponential decay of the total non-linearity. — We now have everything we need
to show that the total non-linearity decreases exponentially along the orbit under renor-
malization and therefore conclude exponential convergence to the subspace A, of AIETs:
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Proposition 4.5.1 (exponential decay of the total non-linearity). — There exists constants K5 =
K5(T) > 0 and 0 < a5 = a5(T) < 1 such that for all n > 0

INI(Z"T) <K;az.

We prove this Proposition below. This will then be shown to also imply convergence
to AIETs:

Corollary 4.5.1 (exponential convergence to AIETs). — For K5 > 0 and a5 < 1 as in Propo-
sttion 4.5.1,

des(Z2'"T, Ay) <Ksai, for allneN.

In the proof of Proposition 4.5.1, we use the distance d,, which was defined in
Section 4.2.1 and is used here as a technical tool for this step of the proof. We will also
use the following proposition:

Proposition 4.5.2 (see [28] and Appendix A.4.2). — Let K C X® be a C*-bounded set. Then
there exists a constant K = K(K) such that V is K-Lipschitz on K with respect to d,.

The Proposition was proved by the first author in [28]. We include a proof in
Appendix A.4.2.

Proof of Proposition 4.5.1. — For simplicity of notation let us denote in this proof
N,, := IN|(R"T) the total-non linearity of R"T := Z"(T). Since by Corollary 4.4.1
dy,(R"T, M) < K?,Olé, by definition of distance from a set, for every m € N we can find
an Moebius IET M,, in M, such that

(50) d,(R"T,M,,) < (Ks+ Doy

Thus, since [N|(Z"T) is descreasing in 7z (see (uz) of Lemma 2.4.1) and we can assume
without loss of generality that n;,,, > n;,, + p, writing |N[(Z/(R"T)) as a d,, distance (see

m+1

Remark 4.2.1) and using the triangle inequality for 4,
(51) Nt = INI(R™'T)) < INI(Z'(R"T)) < IN|(2'M,,) + d,(Z'R"T, Z'M,).

Since the times (1, ),en (by the (RDC) condition) are p-good return times, for every m
we know that Q(ny,, n;, + 2p) = AA for a fixed positive matrix A and furthermore the
a-priori distortion bounds given by Proposition 4.2.1 holds (so that n;, are C' recurrence
times in the sense of Definition 4.3.1). We can therefore apply the non-linearity decrease
Lemma 4.5.2 to the Moebius IET M, followed by once more the triangle inequality for

d, (recalling Remark 4.2.1) and by (50) to get
IN|(Z'M,,) < a35|N|(M,,) < a5 (IN|(R"T) + d,(R"T, M,))
= o3 (Nm + (K3 + l)a;ﬂ) *
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Combining this with (51), we get
(52) Noit < as(N,, + (Ks + Da) + dy(Z'R"T, Z/M,).

Bounded set_for Lipschitz control. In order to estimate 4,(Z*R"T, Z'M,,) in the next
step by using the Lipschitz property on bounded sets given by Proposition A.4.1, let us
now show that there exists a C*-bounded set K such that R"T, as well as the iterates
V"(R"T) with 0 < n < n,, where n, is such that V" (R"T) = Z/(R"T), all belong to K.

We already know that the a priori bounds given by Proposition 4.2.1 hold for
R = Z"(T), namely K5 '< IDR™(T)|ls < Ko(T). Since ny, 1s also a p-good time

and therefore Q(n;,, n;, +p) = A, we get that all the branches of V'(R"T) for 0 <n <n,

m m

are obtained composing at most ||A|| branches of /R”T". This shows that a priori bounds
also hold for all V"(R"T) for 0 < n < n,, when the constant K, is replaced by KQ‘A”.

Since we have already proved that (Z"T),en converges exponentially fast to M
with respect to the C3-distance (by Corollary 4.4.1) and Moebius IETs which satisfy a pri-
ori bounds, by (M3) in Lemma 4.4.1, belong to a C*-bounded set (in the sense of Defini-
tion 4.2.1), this implies that, for any m which is large enough, the GIETs {V"(R"T), m €
N, 0 <n < ny} as well as the corresponding Moebius maps {V"(M,,), m € N,0 < n < n,}
are contained in a set, that we will denote K, which is C*-bounded subset of X* (see
Lemma 4.2.1).

Lipschitz estimate and final arguments. By Proposition A.4.1, Z is Lipschitz on the
bounded set K constructed in the previous step. Let K be the corresponding Lipschitz
constant. Since by the previous step we can apply the Lipschitz property n, < ||Al| times
to (52) so that, recalling (50), we get

N1 < 3N, + (o3(Ks + 1) + KM (K, + 1)) o,

from which on can derive the existence of K4 and oy such that N,, < Ky« for every
m € N.

Since |N|(Z"T) is decreasing (see Lemma 2.4.1, Property (1)) and (1, ) nen grows
linearly (recall Properties (i) and (zz) in the Definition 3.3.4 of the (RDC)), Remark 4.3.1
now allows to find constants K5 > 0, 0 < a5 < 1 to concludes the proof of Proposi-
tion 4.5.1. [

We can now prove Corollary 4.5.1.

Proof of Corollary 4.5.1. — In view of Remark 4.2.1, d,,(Z"T, A,) = IN|(Z"T) goes
to zero at an exponential rate by Proposition 4.5.1. Therefore, since by Corollary 4.2.1
there exists a constant L = L(T) > 0 such that do1 (Z2"T, A;) < Ld,(Z2"T, A,), we de-
duce that also de1 (Z"T, A,) goes to zero at an exponential rate.

Furthemore, we have also shown that (Z"T),en converge exponentially to M,
with respect to des (see Corollary 4.4.1), thus for every n, we can find a MIET M,
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such des(Z"T,M,) is exponentially small. Since C*-convergence implies in particular
C'-convergence, it follows that dei(M,,, A,) is exponentially small. Since M, is finite
dimensional (see Lemma 4.4.1), it follows that de1 and des, restricted to M, (which con-
tains A,) are comparable. Thus, we conclude that also des (M, A,) is exponentially small
and finally that des (R"T, A,) decay exponentially. O

4.6. Convergence to [E'Ts. — We now want to get convergence to the set of standard
IETs (under the assumption B(T) = 0. The idea behind this last step is the following:
the logarithm of the slopes of an AIET transform under Rauzy-Veech induction under
the action of Zorich-Kontsevich cocycle. Either this vector belongs to the stable space
in which case the logarithm of the slopes converge exponentially fast to zero, which is
equivalent to convergence to IETs; or it belongs to the unstable space in which case it
grows exponentially fast and iterated renormalizations are unbounded in C'-norm which
in our case is impossible. The only thing we need to show is that we can follow this
argument when the GIET we are starting with is not an AIET but only exponentially
asymptotic to the set of AIETs.

Recall that, to control the growth of the log-slope vectors w, = o(V"T) asn € N
grows, we can use that, as T satisfies the (RDC) of Definition 3.3.4, there is a special
subsequence (7, ),en such that:

(1) llw,, I < K for a uniform constant K > 0;
(2) since (n,)nen grows linearly in m, the difference (n;,,, — ny,)/m tends to 0;
(3) there exists a constant C; > 0 and € > 1 such that for all £ and ¢ > we have for

allve W
1QGu, 4D vl = C8' vl
For any n > 0, recall that we write
w,=0'+o +a'elT"dr”er®,

where w? € I'™ for a € {s, ¢, u} are the components of @, with respect to the decomposi-
tion of R? of (the extension of) T given by Definition 3.3.2.

Consider the errors ¢, := w,+1 — Z(n)w, (similar to those used in Section 3.2, but
here defined using the whole sequence of Zorich renormalization times, and not only
the special times given by the (RDC)). Let us decompose also those according to the
invariant splitting, writing, for each n € N,

b =w — 2w, = +d+eeT” el o™,

By Proposition 4.5.1, we know that |[N[(Z"T) < Ksa! for a5 = a5(T) < 1. Thus, by
Lemma 3.5.1, we get that [l¢,|| < KsaZ. Because the angle between Ff"), Ff") and I 15”)
decays at worst subexponentially fast, we can find K¢ and s < 1 such that

(93) max{lle,ll, lle, |, lle,lI} = Ke org.
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Because the action of the cocycle preserves the decompositions R? =T'™ @ I'” we have
(54) w,,, =2,w,+¢, foralacl{s,c, u}
We deal with the decay of @), w;, and w, separately, that of w; being the most delicate.

Lemma 4.6.1 (decay of the unstable component). — There exists K; = K;(T) > 0 and
o7 =o;(1) < 1 such that

o, |l < K7 o}

Progf. — One can first observe that, for all n, £ > 0, by the definition of ¢, and by
, we get the telescopic sum identit
54 get the telescopi identity

J—1

ol =Qun+)ol+ > Q+i+ 1n+je,

i=0
which we re-write, solving for @! and using cocycle identities (see (7)), as

J—1

(55) ol =Qun+) ol =Y Quati+ ).

=0

Step 1: control at special times. We first show that the sequence (w)),en is bounded
along the subsequence (7, ).en given by the (RDC). We recall that:

(1) llet, 1l < Ko™, by (53); |
(2) there exist constants C; > 0 and 6 > 1 ||Q(n;,, m, + 1)~ " >Crle.

m f— ” -

We thus get from (55) at n =, and j =j(m, m) :=n; , — n,

j(m,m/)—l
—1A—7 / —1A—i M,
ot Il < CTlOT "R+ 3 Gl

=0
from which get
J(mm)—1
u < C—le—j(m,m’)K C—l Ny 0—1 z
ey, | <Gy + 0o
<C 19—/(mm)K+C 102a’lkm

where in the last inequality we used that, since > 0 and & < 1, the series Y ;0 o}
converges and denoted by Cy = Cy('T) its value. Since we can take Jm,m') =mn,, —ny,
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arbitrarily large by letting 7' go to infinity, we can infer the existence of Cs = C5(T) such
that

Ny

ot Il < Caor™.

Step 2: interpolation to all times. We can now estimate all » € N by interpolation as follows.
Given n € N, Consider m such that n,, <n <n; . Then, by the linear approximation
Lemma 3.5.1,

llw, = Qg Wy, | < INI(T) [ Q(ng,,, m) |

and hence, by invariance of the splitting,

(56) sl = 1Q0r, Il (INIT) + e, 1)

To estimate (56) and conclude, we now use that:

(1) by Step 1, we have that ||, | < Caorg™;

(2) by the (RDC), [|Q(n,, || < Q(ny,,, n,,,) | = 0(e™) for all € > 0;

(3) By Corollary 4.5.1 along the subsequence (7, ), we know that |N |(T0w)) <
Kia".

Since 7y, grows linearly with m, we have that m < Cn;,, < Cn for some C > 0 and also
that (n;

1 — np,)/m tends to 0. Thus, for m sufficiently large, for i =4 and : = 5, since

. nf, g, — —1 .
n<mn,, , we can estimate ;" < o; "oy " < a(er; ). This final remarks together

with (1) — (3) above allow to deduce the claimed exponential decay of (56). ]

We now turn to showing that also ()),en decays at an exponential rate.

Lemma 4.6.2 (decay of the stable component). — There exists Kg = Kg('T) > 0 and ag =
og(T) < 1 such that

[l || < Kg erg.

Progff — Again, because T is assumed to satisfies the (RDC) we know that there
exists a constant Cy = Co(T) > 0 and a constant 8 = 6(T) < 1 such that for all £ € N
and m € N and all v € I',(T"))

1QGu, , m, + )0l < Cob'[[]].

We also have for all n > 0

n—1

w, = Q0, Wwy+ Y _ Qi n)e.
=0



A PRIORI BOUNDS FOR GIETS, AFFINE SHADOWS AND RIGIDITY... 323

Let m, be such that »;

<
my —

We now group terms by paquets of terms between n;, and ;. .
n=<n, . We thus have

”kj+1 _nkj

w,=Q0. mwy+ Y Y Quy +1, 1 Qg )6,

J=0 =0

my

We recall that
(1) 1Q0 + iy m ) < 1Q0g, g, )| = 0(¢59) for any € > 0;

ng.+1
i

(2) |l€}i@+z‘|| = Kooy’
(3) 1Qm,, i, + vl = Cot[|].
Putting all this together we get

+i

. . . . ny.,
QG + 7, my, ) Q. n)ejlkj+i|| < C(e)e?Cof" "1 Kt

for some constant C. > 0 depending on €. Since n; grows linearly with j we get the
existence of a constant C; > 0 such that

||Q(n/€7 + i’ n/;j+1)Q,(n/fj+1 ) n)e’;ly+1|| = C49’7L
for some 6’ < max(ag, 6). From this we obtain
|, || < max(Cyllwoll, Co)(6)"

and we get the result for any constant ag such that 0’ < ag < 1. UJ

Finally, we show now how to control the central part. Here the boundary assump-
tion 18 crucial.

Lemma 4.6.3 (decay of the central component). — There exists Ko = Ko('1) > 0 and atg =
og(T) < 1 such that

oy || < Ko arg.

Progf — Recall that B(T) = B® = 0 for all n > 0. But we also have B® = B(w") +
B(@!) + B(®}) 4+ B(log¢") where ¢" € P is the profile of T®. By Proposition 4.5.1, we
have ||B(log¢")|| < Cs|llogD(¢")|| < CsKyaj where Cs = ||B||. By Propositions 4.6.1
and 4.6.2 we finally get that

IB(wp) |l < CsKyaf + Ky af + Kgorg.
By Lemma 3.6.3, ||| < D, Z(T,, T" @ I'")||B(«’) ||, which leads to
o) <D, Z(C, T & TCs Kya + K; o + Ky ap.
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But since T satisfies (RDC), we know that Z(I",, I'} @ I'") decreases subexponentially
fast, from which we get the conclusion of Proposition 4.6.3. 0J

Combining the Lemmas which give individual control of the components of
(w,).en, wWe can now prove exponential convergence to IETs:

Proof of Theorem 4.1. — Let us recall that we already proved that des(R"T, A,)
goes to zero at an exponential rate, see Corollary 4.5.1. The control on the unstable,
stable and central components of the log-slope vectors @, = @ (V"(T)), respectively given
by Lemmas 4.6.1, 4.6.2 and 4.6.3, implies that the norms ||w,| converge to zero at an
exponential rate as n grows. Remark now that if an AIET A € A, is such that its logslope

vector w (A) is the zero vector (0, ..., 0), and hence the slope vectoris p(A) = (1, ..., 1),
then A is indeed an IET] 1.e. A € Z,. Thus, we deduce that des(R"T, Z,) goes to zero at
an exponential rate. O

5. Rigidity for GIETs

In this section, we prove our main rigidity result for GIETs.

Theorem 5.1 (GIETs rigidity in genus 2). — Let T € X be an irrational GIET with d = 4
or d =5 continuity intervals and with zero boundary B(T) = 0. For a_full measure set of rotation
numbers, if T is C*-conjugate to a standard IET T, then the conjugacy is in_fact a diffeomorphism of
class C'.

Remark that the case of GIET with d =4 or d = 5 and 7 minimal correspond
to genus two, 1.e. any mummal flow on a (compact, orientable) surface with genus two
has as a Poincaré section (for a suitable chosen transverse arc) which is given by such a
IET. This result will hence imply our foliation rigidity result, which is essentially only a
reformulation in geometric language of the d = 5 case, see Section 6.

In this section will actually prove a more general result (see Proposition 5.2.1 below)
which is valid for minimal IET with any 4 > 2 and yields a partial result also for IETs
with any 4 > 5 (i.e. a rigidity statement conditional to an assumption on the position of the
shadow in the Oseledets filtration). This technical condition is automatically satisfied when
d=4,5.

Strategy outline: Recall that the main result of Section 3, namely Theorem 3.2, tells
us that if T satisfies the (RDC), two scenarios can occur: either the orbit of T under
renormalization is recurrent to a certain bounded set, or the orbit of T is somewhat shad-
owed, in the first order of approximation, by an affine IET. The proof then splits into two
steps.

Step 1. The first step, in Section 5.1, is to show that in the recurrent case, applying
the results of Section 4 about convergence of renormalization, T is indeed C'-conjugate
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to T. This step is simply based by interpolation and Gottschalk-Hedlund theorem and
is by now quite standard also for GIETs.

Step 2. In 5.2, the second step 1s then to show that in the divergent case (where there
is an affine shadow), the map T must have a wandering interval, and therefore was not C-
conjugate to T in the first place. We first of all show that the conclusion of shadowing
allows us to compare the Rohlin towers for T to that of an AIET; we then exploit a
result Marmi-Moussa-Yoccoz [46] giving the existence of wandering intervals for AIETs
to conclude.

This two points together imply Theorem 5.1, as summarized in Section 5.4. The
only place where the genus 2 (i.e. 4 =4, 5) assumption is needed is in Step 2, in the use
of Marmi-Moussa-Yoccoz result [46] for AIETs.

5.1. Regularity of the conjugacy. — In this section we show that convergence of renor-
malization in the C'-norm implies C'-conjugacy to the linear model. We prove the fol-
lowing

Proposition 5.1.1 (exponential convergence gives a.s. C'-conjugacy). — Let T be a C'-GIET
of d intervals satisfying (RDC) and assume that { Z"(T')},en converges exponentially fast to the set of
LETs with respect to C'-distance, namely there exists Ky > 0 and 0 < oy < 1 such that

dci (2"(T),Z) <K, ay.
Then T is C'-conjugate to an IET.

First we show how a statement on the Birkhoft sums of log D'T" implies Proposition
5.1.1. This is a classical result for diffeomorphisms of the circle and also, by now, for
GIETs in view of the work by Marmi, Moussa and Yoccoz (see [45, 47, 79]).

Lemma 5.1.1. — Let T be a GIET of class C' with irrational rotation number. Assume that
there exists K > 0 such that for all x € [0, 1] and for all n € N

n—1

Z log DT(T'(x))

=0

S,log DT (x)| = <K.

Then there exists an IET Ty such that T is conjugate to Ty via a C' diffeomorphism of [0, 1].

Proof. — The proof follows from an application of Gottschalk-Hedlund theorem.
The map T is not a homeomorphism, but by following the arguments by Marmi-Moussa-
Yoccoz (see for example [45], Corollary 3.6), one can extend T to a homeomorphism of
a Cantor space and therefore apply Gottschalk-Hedlund theorem, which gives that there
exists a continuous function ¢ which solves the cohomological equation

goT —¢=logDT.
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We deduce from this cohomological equation that the measure m := ¢“Leb is invariant
under the action of T. Up to normalising m so it has total mass 1, we get that

X
1//:=xl—>/ O dt
0

conjugates T to a GIET which preserve the Lebesgue measure, in other words a standard
IET. The map ¥ being of class C' with Dy (x) = ¢*, the lemma is proven. O

Now that we have this Lemma, the proof'is reduced to showing that, assuming con-
vergence of renormalizations, Birkhoff sums are uniformly bounded, i.e. the assumptions
of Lemma 5.1.1 hold. Let us first isolate in a Lemma the relation between convergence
of renormalization and convergence of special Birkhoff sums of / :=1logDT.

Lemma 5.1.2 (Special Burkhoff sums of log DT via renormalization). — Let T be an infinitely
renormalizable GIET and let f :=1og DT If der(Z¥(T), L) converges to zero exponentially, then
there exists K > 0, a < 1 such that

k k
Il < K,

ve. the sup-norm ||f® || oo of the special Birkhoff sums f™ on their domain 1 also converges to zero
exponentially.

The Lemma shows in particular that exponential convergence of renormalization
to the space of IETs Z, gives exponential decay of the sup norm of special Birkhoff sums
of f =logDT.

Progf — Yor every k € N, the kth image by renormalization Z*(T) and the in-

duced map T are conjugated by an affine map (see (5)),

(57) sup DZ*T(x) = sup DT, (x), sup D(Z'T) " (x) = sup D(T} ") ().

x€[0,1] xel® x€[0,1] xel®

Furthermore, since / =logDT, if we consider a point x € I;k), taking logarithms and
applying the chain rule,

(58) log DT, (x) = log D(T" ) (x) = S » (log DT) (x)
=S,/ (x) = SOw), forallxel®.

These two equations show that ||, is controlled by |logDR*(T)|ls, which in
turn is controlled by dgﬁ (DRH(T),Z,) (see Lemma 4.2.1). Since the assumption that
de(ZH(T), Z;) converges to zero exponentially implies, by Remark 4.2.2, that the same
type of convergence also with respect to déﬁ , this concludes the proof. 0J
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We can now proceed with the proof of rigidity, i.e. of Proposition 5.1.1.

Proof of Proposition 5.1.1. — In order to verify the assumption of Lemma 5.1.1,
consider x € [0, 1] and arbitrary n € N and let us estimate the Birkhoff sums S,/ for
J :=1log DT. By the geometric decomposition of Birkhoff sums described in Section 2.6.4,
if £, is defined to be the largest £ such that the orbit {x, ..., T""'x} visits [ at least twice,
then we have

km

(59) 1S,log DT ()| =[S,/ ()| <2 1 Zl Iy Pl for any x € [0, 1].

k=0

Since by assumption R*(T) converges exponentially fast to the space of IETs with respect
to the C!-distance, by Lemma 5.1.2, ||f®?|| < Ko for some K > 0 and « < 1. Thus, using
this estimate in the decomposition (59) and recalling that by the (RDC) (see in particular
Condition (C) in Definition 3.3.4 that implies that ||Z;|| also grows subexponentially) we
have that, for a chosen € > 0 such that ¢‘o < oy < 1, there exists K} such that

o o)
1S, 1og DTl <K| Y " eaf <K:=K{ ) af<oo, forallneN.
k=0 k=0

Thus, we can apply Lemma 5.1.1 to conclude that T is C'-conjugate to an IET T,. [

5.2. Wandering intervals and distorted towers. — In this section we state the main result
(namely Proposition 5.2.1 below) that we will use to prove the existence of wandering
intervals in Case 2 of Theorem 3.2. We recall that in this case the sequence {w,(T), n € N}
of shape log-slope vectors of the orbit under renormalization of the GIET T is shadowed
by the orbit of the log-slope vector v := w (1)) of an AIET T, with v in the unstable
space. We show 1n this case that the presence of wandering intervals for T can be reduced
to the existence of wandering intervals for Tj,. We then exploit the result by Marmi-
Moussa-Yoccoz [46] that shows that, if v has a non-zero projection on the second positive
Lyapunov exponent, then one can show the existence of wandering intervals. This allows
us to conclude that in genus two (i.e for irreducible IETs with d = 4 or d = 5 intervals),
where there are only two positive Lyapunov exponents and therefore every log-slope
vector as above (1.e. in particular in the unstable space) has automatically a non-zero
projection on the second Lyapunov exponent, one can conclude that Case 2 cannot occur
if we assume that T is topologically conjugated to its linear model T;. Notice in particular
that to extend the rigidity result in Theorem 5.1 to any genus is therefore reduced, by the
results in this paper, to extending the work of Marmi-Moussa-Yoccoz [46] to treat v in
the Oseledets eigenspace of the other non-zero Lypaunov exponents.
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5.2.1. Distorted towers. — Let P,, n € N, be the sequence of dynamical partitions
defined in Section 2.3.7 and let P for 1 <j < d be the corresponding Rohlin towers (refer
to Section 2.3.7 for definitions). Recall that each 7/ is disjoint union of the q;") intervals
THI™), for 0 <k < ¢

Let us recall that J C [0, 1] is a wandering wnterval for T if its images, 1.e. the el-
ements of the orbit {T'(J), 7 € N}, are all disjoint. In this case, one has in particular
Zz_ o IT'(J)| < 1 (where we recall |[T(J)| denotes the Lebesgue measure). Notice also
that, since T is continuous on T'(]) for every i € N, for every n € N, J (as well as any
of its images), should be fully contained in a floor of a Rohlin tower. The presence of a
wandering interval then forces the dynamical towers a very degenerate geometry, that we
now describe introducing the notion of dustorted towers.

Defination 5.2.1 (distorted towers). — We say that'T" admits a sequence of distorted towers
if there exists a constant C. > 0 and infinitely many n € N such that

(60) Leb(P) < C max

0§k<q](”>

A

= Cmax{Leb(T"(I"),0<k < ¢"}, foralll <j<d.

U

Thus, if the towers are distorted, the size of each tower is comparable to the size of
its largest floor.

Let us recall that if T is minimal, the sequence of dynamical partitions has to
converge to the trivial partition into points, i.e. the mesh of the partitions P,, denoted by
mesh(P,) and defined as the maximum length of intervals in P,, has to go to zero as n
grows. The existence of distorted towers is therefore incompatible with minimality and
can be used to prove the existence of wandering intervals, through the following Lemma:

Lemma 3.2.1 (sufficient condition for wandering intervals). — If 'T" admats a sequence of dis-
torted towers, then "' has a wandering interval.

Proof. — Let us recall that minimality of a GIET T is equivalent to the non-
existence of wandering intervals. Thus it is sufficient to show that if T admits distorted
towers, it cannot be minimal. Let (7y)¢en be an increasing sequence of n for which (60)
holds. Since P,, is a partition of [0, 1], Le6(P,,) = 1. Thus, since P,, = Uf:lpj

ng?

£ € N, at least one tower should be large, 1.e. there exists j(£) such that Leb(PZ )>1/d. By
the distortedassumption (60), this implies that

for every

T = max [TV

mesh (73,22) ‘= max max
ﬂz
O§k<qj(

1= o<y

Leb( Pt
> g(P’”)>L>O

- C T dC
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for every £ € N. This shows that mesh (77,%) does not go to zero as £ grows and hence
contradicts minimality and proves the Lemma. O

Remark 5.2.1. — One can show furthermore, following arguments analogous to
those used at the end of the paper [46] by Marmi, Moussa and Yoccoz for affine interval
exchange transformations, that if T has a sequence of distorted towers, the complement
of the union of the orbits of the wandering intervals has zero Lebesgue measure.

5.2.2. Exponentially distorted towers. — For AIETs with wandering intervals and, as
we will show, also for GIETs which are shadowed by them, one can prove the existence of
distorted towers by proving quantitative estimates on the size of the towers floors and by
showing that in each tower they achieve a maximum and then decrease with a stretched
exponential rate. Therefore, let us give the following definition:

Defination 5.2.2 (exponentially distorted towers). — We say that T has a sequence of ex-
ponentially distorted towers if for some constants G > 0, ¢ > 0 and y > 0 such that for in-
finitely many n € N in each Rohlin tower (PY,, 1 <j < d, there is a_floor Fo = ¥ (j) of the_form
F, =Tk (If") ), where ky = ko(j) is an integer with 0 < ky < qj("), such that for every xq € Fy,

|T'F,| = |T/‘°+i1;”)| < Cexp(—clz|”) |Fol, forevery —k <i< q(") — k.

Remark 5.2.2. — If 'T has a sequence of exponentially distorted towers, in partic-
ular it has a sequence of distorted towers (in the sense of Definition 5.2.1 above), because
szoo exp(—c|i|”) is convergent, so |P’| and the size |Fy| of the corresponding floor
Fo = Fy(j) are comparable for every 1 <j < d and every n with exponentially distorted
towers.

5.2.3. Reduction to the affine shadow. — The main result that we prove in this section
is the following.

Proposition 3.2.1 (Reduction to affine distorted towers). — Let T be an irrational GIET with
a rotation number y that satisfies the (RDC). Assume that we are in the affine shadowing (Case 2) of
Theorem 3.2 let v be the shadow of T. Then, if an AIET with rotation number y and log-slope vector
v has exponentially distorted towers, then I also has exponentially distorted towers and has a wandering
interval.

Thus, Proposition 5.2.1 shows that one can reduce the proof of existence of wan-
dering intervals (which follow from the existence of distorted towers by Lemma 5.2.1) to
the study of AIE'Ts. The proof of this Proposition will take all of Section 5.3.3. The work
by [46] by Marmi, Moussa and Yoccoz in Section 5.3.2 shows that exponential distortion
of towers holds indeed for many AIETs. Their results together with this Proposition will
then be used in the proof of the rigidity result for GIETs with d = 4,5 and boundary

ZEro.
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5.3. Towers distortion via Birkhoff sums. — In this section we will control distortion
of towers via Birkhoff sums and then prove Proposition 5.2.1. We fist explain how the
size of Rohlin towers floors is related to Birkhoff sums, see Section 5.3.1. We then re-
call, in Section 5.3.2, the results by Marmi, Moussa and Yoccoz in [46]. The proof of
Proposition 5.2.1 is given in Section 5.3.3.

3.3.1. Partition size estimates via Bukhoff sums. — The following simple Lemma,
based on the distortion bounds in Lemma 2.4.2, show how control on the size of the
floors of dynamical partitions for T can be obtained by estimating Birkhoff sums for the
function f :=1logDT.

Lemma 5.3.1 (reduction to Burkhoff sums). — Given an infinitely renormalizable T, there exsts
a constant Cep > 1 such that, for each n € N and 1 <j < d, for any two floors ¥\, ¥y of the Rohlin
tower 'Pj(") of the form ¥y = TH (IJ(-")) and Fy = TH (I;'l)) Jor some 0 < k) < ky < g;"), Jor any point

x € Fy we have

1 |Fy |
— exp(Syy_p, 1og DT (x)) < —— < Dy exp(Sy,_i, log CT(x)).
Cr |Fs |

Proof. — By definition, Fy = T”~#(F,). For short, let k£ := k, — k; and write Fy =
T*F,. By mean value theorem, there exists ¥ € F; such that |Fy| = |F;|D(T*)(*). Thus,
by the classical distortion bound in Lemma 2.4.2, we have that for any other x € I,
D(TH (x)/Cr < |Fi|/|Fs| < CyD(T*)(x), where Cp := f [nt|dx. Thus the result follows
from the chain rule that relates log(D(T*)(x)) with S;log DT (x). ]

5.3.2. Wandering intervals in affine IETs. — We now recall the estimates proved by
Marmi, Moussa and Yoccoz in [46] to show the existence of wandering intervals for
AIETS and that will be also the starting point for our proof of existence of wandering
intervals for GIETs. The type of estimates that they prove give stretched exponential decay
of the size of floors in each Rohlin towers, which in particular implies that towers are
exponentially distorted.

Let Ty be a standard IET with irrational rotation number y which is Oseledets
generic. Let

(61) 0 =60,>--->0,>0,
R’ =E(Ty) D Ego(To) D -+ D E,(T) D Egy1 (To) := E“(Ty)

be the g positive Lyapunov exponents and the corresponding Oseledets filtration for T,
which we completed with the central stable space E“('T))) which corresponds to zero and
negative exponents, so that if

v € E(To)\E,_ (Ty), lim log ||U(n) | /logn=6;,

where v :=Z®y.
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Given a vector v € R?, we can identify it as usual with a piecewise constant function
in C(Ty), that we will denote by vy(x). We will denote by S’vy(x) the Birkhoff sums of
the function v, over Ty (see Section 2.6.3) where we added the apex 0 to recall that the
Birkhoff sums are with respect to Ty. Similarly, let (P°), with the apex 0, for n € N, be
the dynamical partitions for Ty. The following estimates are proved® in [46].

Proposition 5.3.1 (Marmz, Moussa, Yoccoz, [46]). — For almost every Oseledets generic IET
Ty and any vy € Eo(To)\Es(Ty), there exists Gy > 0 and 0 < yy < 1 such that, for every n € N
and 1 <j < d, there is a floor ¥ of the Rohlin tower ('PO)Q with the property that for every xy € Fo,
the Burkhoff sums SS vo(xo) of the function vo(x) over Ty satisfy

(62) STvo(x0) < Co — |, for every 7 € N.

Notice that the estimate (62) implies in particular (by Lemma 5.3.1) that the dy-
namical towers of T are exponentially distorted (in the sense of Definition 5.2.2). We
remark that the assumption vy € Eo(T)\Es(Ty) plays an important role in their result:
while conjecturally, an analogous result should hold for any vy € Eo(T), the proof in
[46] uses this assumption crucially.®® In the case of d = 4, 5, though, the assumption
vy € Eo(To)\Es(T)) is automatically satisfied since there are no other positive exponents
(see the proof of Theorem 5.1 in Section 5.4 for details). In the special case of rotational
GIETs, this also provides a generalization to almost every GIET of a result by Cunha
and Smania for bounded type GIETs (see [14]).

5.3.3. Proof of Proposition 5.2.1. — Throughout this section we assume that T 1s
an irrational GIET which satisfies the (RDC) and denote by (7:).en the sequence of
renormalization times given by the (RDC) (see Definition 3.3.4). We assume furthermore
that we are in case 2 of Theorem 3.2, so that one can define a shadow v for T. Recall
that to the vector v = (vj)j‘-l:1 we can associate a piecewise constant function v(x) € C('T)
given by v(x) = v; for x € Ijt- (as in Section 2.6.3). To simplify the indexing, in analogy
with the notation Q(/f, k) := Q(m, ny) already introduced in Section 3.3.4, we will use

5 Proposition 5.3.1 is not explicitely stated in this form in [46] but can be deduced from the results in the paper, in
particular from the estimates in Section 3.7 of [46]. The floor F in Proposition 5.3.1 in the Rohlin tower over I (in [46]
indexing of intervals is by letters o € A of an alphabet of cardinality ) which they call I (). Estimates of the form (62)
are explicited stated only for a point ¥* in any non-empty intersection of intervals I{"™ (n) (as stated in Proposition add
ref) but from the arguments in the proof it is clear that they hold for any point in any I{"* (n). The interested reader may
notice also that the estimates in Section 3.7 of [46] are stated for a specific vector v (chosen to generate the 1-dimensional
space associated to the second positive Lyapunov exponent 65 in the Oseledets splitting, which is determined once a past is
given). As the authors remark at the beginning of section Section 3.7.1 of [46], though, the same estimates also hold for
any other vector v € Ey(T)) in virtue of Zorich’s estimates on deviations of Birkhoff averages in [81].

6 In the proof, in order to control Birkhoff sums, the author introduce and exploit an object called lmit shapes, which
is used to describe fluctuations of Birkhoft sums. Limit shapes of a full measure set of IETS are in turn controlled exploiting
returns to a set Vs which gives quantitative control on the location of local maxima of Birkhoff sums at various scales. The
assumption that vy € Ey(T)\E;(Ty) plays an important role in the proof that Vs has positive measure, since it provides
an explicit, smooth dependence of the limit shape on A. This dependence is not explicit in the case of other Lypaunov
exponents other than 6y, which makes the generalization not straighforward.
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the notation
Bo=wy, TP =0, FO =y FO = ),

to denote respectively the vectors w, and v and the special Birkhoff sums v and _f®
of the functions v(x) and f(x) along the subsequence (7;)enN-

As we saw in Section 5.3.1, we can estimate ratios of floors in a tower estimating
Birkhoft sums. The key estimate to reduce the existence of exponentially distorted towers
for the GIET to the one for the shadow is given by the following Lemma. Recall that we
denote by S,/ the Birkhoff sums of a function f over T, see Section 2.6.3.

Lemma 5.3.2 (shadowing interpolation). — Let f :=1log D'T. Then for any €y > O there
exists a constant C = C(€y) > 0 such that, for any n € N, any 1 <j < d and any floor ¥y =
To("),

J

S (x) = S(x)| < Clil°,  for any x € Fy, forany i € N.

Before giving the proof, we remark that, when S,v(x) is a special Birkhoff sum,
le. x € I;m) for some m and n = qj(m), one has that S,v(x) = v]-(m) (see 2.6.2) and furthemore,
from the definition of w,,, one can show that there exists an x such that S,/ (x) = (w,);.
Thus, in this special case, the Lemma follows from the shadowing given by Theorem 3.2,
which gives that |[v™ — w,|| < |[v™||€. The general case will be obtained by interpolation
(from which the name shadowing interpolation), exploiting the geometric decomposition of

Birkhoff sums into special Birkhoff sums described in Section 2.6.4.

Proof of Lemma 5.3.2. — Fix any ¢ € Z. We will consider the case ¢ > 0. The case
¢ < 0 can be treated analogously replacing Birkhoff sums for T with Birkhoft sums for
T~!. Let k; € N be the largest £ € N such that the orbit segment {x, ... T'(x)} intersects
1™ tice. Then, by the geometric decomposition of Birkhoff sums in Section 2.6.4 (see
(20)), we can estimate, for any x € I,

ki
(63) IS0 = Sp@| <2 1ZAIP () = 5 (@) -

k=0

Notice that here v € C(T) is piecewise constant, the special Birkhoff sums ™ (x) (which
are piecewise constant on the continuity intervals of 1) can be identified with the vector
v = ('f);(k))j € R’. To estimate the sup norm of the difference of special Birkhoff sums
f(k) (x) =P, when x € Ijn) we add and subtract the constant (@;);, i.e. the jth entry of the
vector @ = w,,.

For any n € Rand any 1 <j < d, by mean value theorem and by Remark 3.1.1 (see

»
in particular equation (23)) there exists a point xj") in I;") such that (p,); = D(T’f.;‘ )(x;”)).
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Thus, recalling that w, =log p, (see Definition 3.1.1) and / :=1log DT, using the chain
rule and recalling the definition of special Birkhoff sums (see Section 2.6.2) we get that

(@), =1log(p,); =1og (DT1") (5") =S,/ (") =/ (x").

Moreover, by another simple consequence of the classical distortion bounds (Lemma
2.4.2), 1s that special Birkhoft sums of each continuity interval have bounded fluctuations,
namely there exists Gy > 0 such that for any n € N

O = @] =0 -0 (")

Thus, using this estimate for a time 7 of the form 7; and the property of the shadow given
by the conclusion of Theorem 3.2, we get that, for any ¢ > 0, for some ¢ > 0,

<Cp, forallxe I;”), 1 <y;<d.

) =3P lee < sup sup [f () — (@,);] + 1@, = 3|
15j=d ye1®
J

< Cp A [lwy, = vl < Cp 4 el[o™|| < Clv™||¢

for some C. > 0. Inserting this estimate in (63) and using that, by assumption of the
(RDC), there exists C, > 0 such that || Z;(T)|| < C.¢* for any £ and that, for any vector

in R" and hence in particular for v we have that [|[v™]| < Cye

for every n € N where
0 > 0 is any exponent § > 6, (and actually, for v, one can actually choose any 6 > 6)

and n; grow linearly (see Definition 3.3.4), there exists C’ > 0 such that

ki

k;
sup [Sif (1) — S ()| <205 ) N Zll o™ ° < €)™

xely =0 k=0

kl
— C/eeki(l+20) 2 :6—6(14-29)(/@—/\‘)
k=0

)
< C/ge/q(l-i—?@) 2 :g—e(1+29)] < C”(eki)fl’

J=0

for some C” > 0 independent on %; and €, := € (1 4 20). To conclude we will now show
that |¢] > ¢”% for some ¢ > 0 and any 0] < 0y, so that the above estimate can be written
in the desired form Cy|:|® for some €, going to zero as € goes to zero and C, depending
on € (and hence €).

Since by definition of n; the orbit segment {x, ... T"(x)} (or, respectively, in the case
i < 0, the orbit segment {x, T~'(x), ... T™(x)}) intersects 105 at least twice, || is greater
than the height of one Rohlin tower over 1™, Since the sequence (1;);en is a sequence
of p-positive times (see Definition 3.3.4 and Definition 3.3.3), the matrices Q(n, n; + p)



334 SELIM GHAZOUANI, CORINNA ULCIGRAI

are positive matrices, it is now a standard argument to see that, since each Z, increase
subexponentially, for any 6] < 6,

?"Al-—/’) - ||Q(Oa n/cl' _p) ”

|z| > min ank") > max ¢

1<j<d 1<j=<d V - d

(ni;)
10wl 12 o fin
d|QCn, — py ) — Aoy, N Z o -~ N2y -1l

for some ¢y > 0. Since {m;};en grow linearly, this also shows, as claimed, that |¢| > ce1*

and hence concludes the proof. 0J

We can now prove Proposition 5.2.1. We isolate first a remark which will be used
also later.

Remark 5.3.1. — Birkhoff sums of piecewise-constant functions in C(T') transform well
under semi-conjugacy, in the following sense. Assume that T, and T,y are two semi-
conjugated GIET; i.e. assume that there exists a surjective £ : [0, 1] = [0, 1] such that
holy =T oh Given a vector v, if for : = 1, 2, v;(x) denotes the piecewise constant
functions v;(x) € C(T;) associated to v (as in Section 2.6.3 or in the Proof of Lemma 5.2.1
in Section 5.3.3) and SZ v; the nth Birkhoff sum of v; under T;, we claim that we have that

Sivg (x) = S}lvl (h(x)) forallne N

and for all x which belong to a continuity interval for S*vy. The equality follows indeed
from conjugacy relation 4o T = T% o 4 for k£ € N and the observation that, since vy is
plecewise constant on continuity intervals, vy (x) = v; (k(x)).

Proof of Proposition 5.2.1. Let us call T any AIET with the same rotation number
of T and log-slope vector given by the shadow v. Since the GIET T and the AIET T
have the same irrational rotation number, they are both semi-conjugated to a common
standard IET T, via semi-conjugacies that we will call respectively /4 and £. In particular,
since semi-conjugacies map (floors of) Rohlin towers to (floors of) Rohlin towers, the floors
of Rohlin towers P’ for T can be put in one to one correspondence with corresponding

floors of the Rohlin towers for T, that we will denote by 7_7/,1.

We will now show that if T has exponentially distorted towers, also T has them.
Fix n € N and 1 <j < d and let I, be the floor given by Definition 5.2.2 of exponentially
distorted towers for T and F the corresponding floor for T. We want to show that F,
satisfies the estimates in Definition 5.2.2. Consider therefore the floors F; := T'F, which
belong to the same Rohlin tower P/ and correspondigly the floors F; := TF, in 7_7;.

Since T is an AIET with log-slopes vector v, log DT (x) coincides with the piece-
wise constant function v(x) in C(T) given by v. It follows also that the Birkhoff sums
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S;v(x) of v under T are constant on Fy. Therefore, exploiting Remark 5.3.1 twice (for the
semi-conjugacies 4 and %), we have that

S;v(x) = S;v(x), for every x € Fy, and every ¥ € F,.

Thus, by Lemma 5.3.1 we have that, for every ¢ such that T, is a floor of the Rohlin tower
P,

|E;]
Fol —

for all x € Fy.

Thus, together with another application of Lemma 5.3.1, this time to the floors of P/, we
get

|| |F0|
< —e (S;f (x) = S;v(x)), where f =logDT.
|Fol |F;] — Cf PG/ J s

Thus, applying Lemma 5.3.2 and then the exponentially distorted estimates given by
Definition 5.2.2 for T, we get that

IT'Fo| |F|
[Fol — |Fo| CT |Fol

C
exp(—clil” 4+ Coli|*) = Cexp(=([1]")
T

for some €, ¢’ > 0, thus showing that also T has exponentially distorted towers. It then
follows by Remark 5.2.2 and Lemma 5.2.1 that T has wandering intervals. U

5.4. Fmnal arguments in the proof of Theorem 5.1. — We have now all the ingredients to
finalize the proof of Theorem 5.1 according to the Outline shown in the initial subsection
of this section.

Proof of Theorem 5.1. — Let T be an irrational IET in X} U X and assume that its
rotation number y (1) belong to the full measure set obtained intersecting the (RDC)
with the full measure condition on rotation numbers in Proposition 5.3.1. Assume fur-
thermore T is comjugated to an IE'T T, (which hence has rotation number y). This implies
in particular that T is minimal.

Strategy. Let (n;)ren be the sequence given by the (RDC) and consider the shape
log-slope vectors @, := @ (Z"(T)). By Theorem 3.2, either (w;);cn is bounded (i.e. we
are in Case 1), or we are in Case 2 and it shadows a vector v in the unstable space E* (for
the Oseledets regular extension of Ty, see Definition 3.3.2). We will show now that by the
results in this section minimality is incompatible with Case 2, so we are forced to be in
Case 1 and in this case will conclude that the conjugacy is smooth.
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Case 2 implies the existence of wandering intervals. Let us assume first that we are in Case
2 and show that this contradicts minimality. Let v be the shadow given by Theorem 3.2
in Case 2 and consider the Oseledets filtration for T, given in (61). Since we are assuming
that ¢ =4 or d = 5 and that T, is Oseledets generic (which is part of the (RDU)), we
have that g = 2 and there are exactly two simple positive exponents 6, > 6, > 0. Thus
Es(Ty) = E“(Ty). Since as part of the conclusion of Case 2 of Theorem 3.2 we also
know that v € E* (unstable space for the extension of T used in the Definition 3.3.4 of
the RDC), we know that v ¢ E“(T) = E;(Ty), so v € E,(Ty)\E;(Ty).

We will now show that v ¢ E;(T)\Eo(Ty), so that we can conclude that v €
Eo(To)\E;5(Ty). Let us argue by contradiction: if v were in E;(T)\Ey(Ty), it had a pro-
jection on the largest Oseledets exponent (which has a positive Oseledets eigenvector).
In this case there would exist a time n € N for which the entries of v = Z®™v were all
positive (or all negative, in which case we can replace v with -v and reduce to the previ-
ous case) and as large as we like. By the properties of the shadow (see the conclusion of
Theorem 3.2 in Case 2), this would imply that the same is true for w,. This would in turn
imply that p, = exp(w,) has all entries (strictly) larger than 1, which is impossible since by
definition the entries of p, are the shape log-slopes of R"(T) (see (5)) and R"('T) cannot
be either everywhere expanding. Thus, we conclude that v ¢ E; (Ty)\Eo(T)).

Since we now have that v € Eo('T))\E;(T) and we are assuming that y belongs
to the full measure set of rotation numbers under which Proposition 5.3.1 holds, the
estimates (62) of Proposition 5.3.1 hold for the Birkhoff sums S;vy. If we now transport
these estimates through the conjugacy between T and T, since the conjugacy maps
vy (x) € C(Ty) to the function v(x) € C(T) given as usual by v(x) = v, if x € I}, we also
have that the Birkhoff sums S;v of v(x) under T satisfy the same estimates, i.e. for every
ne N and | <j <d there exists a floor Iy of the Rohlin tower 77{; such that

S?vo(xo) <C -, foreveryxelF, 1eN.

This, by Lemma 5.3.1, shows that the AIET with rotation number y and log-slope v
(namely the affine shadow of T) has exponentially distorted towers and wandering in-
tervals. Proposition 5.2.1 therefore implies that also T' has wandering intervals, which
contradicts minimality. We conclude that Case 2 cannot happen when T' is minimal.

Case 1 implies ngidity. We now assume to be in Case 1. Since by assumption we
also have that B(T) = 0, by Theorem 4.1 there is exponential convergence of renor-
malization, namely de1 (Z"(T), IET) < K,«}. Thus, we can apply Proposition 5.1.1 and
conclude that T is C'-conjugate to an IET.

Notice now that IETs with rotation number satisfying the (RDC) are uniquely
ergodic (since by construction the times (7;); are good return times, so they correspond
to returns to a compact subset in the space of IETs and this implies ergodicity by the
seminal results by Veech, see [64] or [77]) and therefore there is a unique IET with
rotation number y. Thus, we conclude that the IET has to be Ty and that the conjugacy
between T and T, is C'. O
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3.5. A priort bounds in genus two. — We can now prove Theorem D in the intro-
duction, namely a priori bounds in genus two, which follows from Theorem 3.2 and
Proposition 5.3.1 using the same reasoning than in the proof of Theorem 5.1.

Proof of Theorem D. — Consider the same full measure set of rotation numbers de-
fined at the beginning of the proof of Theorem 5.1. If Case 2 of Theorem 3.2 holds,
then, as in the proof of Theorem 5.1, we get a contradiction to minimality. Thus, Case 1
of Theorem 5.1 holds. The a priori bounds then follow by Theorem 4.2.1. 0J

6. Rigidity of foliations

In this section we translate our rigidity result on GIETs in the language of folia-
tions on surfaces of genus two. We first give some preliminary definitions on foliations
(see Section 6.1). We then deduce Theorem A from Theorem B in Section 6.2 (see also
Proposition 6.2.2).

6.1. Preliminaries on singular foliations and holonomy. — In this section we define reg-
ularity of singular foliations and holonomy around a singular point. The section follows
partly [2] and [41-43].

6.1.1. Folations singularities and regularity. — Throughout this section, S, is closed
orientable smooth surface and all foliations are orwentable. We consider foliations on S,
with a finite number of singularities, and we further ask that those singularities are of
saddle type, as in Figure 4. Formally:

Defination 6.1.1 (saddle-type singularity). — A singular point p of a_foliation is of saddle-
type tf; locally, in a neighbourhood of p, there are charts for which the topological model of the foliation is
given, equivalently, by either:

(i) the level sets in R* of the function (x, y) —> xy around 0;
(1) the integral curves of the vector field y 0x + x 9.

More generally, one can allow degenerate saddles,"” which are defined by level sets of
a smooth function with a zero of order two or higher.* Let us denote by F the singular
foliation on S, and by Singr C S, be the finite set of (saddle-like) singular points of F. We
define now what it means for F to be of class C". This definition is due to Levitt [42] (see
Section Il.a, page 102-103 in [42]).

7 Degenerate saddles are also called multi-saddles, since they are saddles with more prongs. Since we are considering
only orientable foliations, the number of prongs needs always be even.

8 Condition (z) describes the level sets of the foliation given by level sets of the function (x, ») — Im(z?) := Im((x +
#)%). More generally, one can for example consider the foliation whose leaves are level sets for Im(2") (or Re(2")) for some
n>2.
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Definition 6.1.2 (Foliation of class C). — We say that the foliation F 1is of class C" iff:

(r1) the leaves of F in S, \ Singr are locally embedded C’ -curves;

(r2) for any two smooth open transverse arcs 1 and ] which are joined by leaves of F, the
holonomy map 1 — J is a C" diffeomorphism on its image and extends to the boundary of
I to a C"-dyffeomorphism.

The subtlety covered by this definition is the following: it can happen that a foli-
ation of S,, when restricted to S, \ Singr, is as regular as desired in the standard sense,
but when considering open transverse arc based at a singular point, holonomies from this
arc have a critical point at the singularity, or be much less well-behaved altogether. The
above definition excludes such cases.

We remark that, as special case, foliations defined by C” vector fields with non-
degenerate critical points (which equivalently implies exactly that the leaves in a neigh-
bourhood of each critical points are locally defined by C" Morse functions) are of class C”
in the above sense. It is however not the case that every C” (or even smooth) vector field
gives rise to a C” (or smooth) foliation, see Appendix A.5.

Moreover, it is also not always the case that the differentiable structure of a C’-
foliation near a singularity p (i.e. in a punctured neighbourhood of p) is defined by a C’-
Morse function. The obstruction for a foliation to be C’-smooth in the sense of Defini-
tion 6.1.2, i.e. for the C"-smooth structure to extend at the singularity, can be encoded
through /olonomies around singular points, as we explain in the next subsection.

6.1.2. Holonomy around singular points. — We describe in this paragraph how to con-
struct an invariant of a saddle p of a C'-foliation which essentially encodes the obstruction
for F to be defined as the level sets of a regular function. We give the definition of simple
saddles (4-prongs), but construction straightforwardly generalises to the case of saddles
with an arbitrary even number of prongs.

Consider a 4-pronged saddle p of a C’-foliation as in Figure 4, together with smooth
four transverse arcs, each of which intersecting one of the four separatrices and whose
endpoints pairwise belong to the same leave, as shown in Figure 4. We call these arcs 1,,
I, I, and I, (for down, right, up and left respectively) and, correspondingly, we call v,, v,,
v, and v, the point of intersections of these intervals with the separatrices emanating from
p. We identify each of these arcs with the interval (—¢, €) and assume that 0 is the point of
intersection with the separatrix (i.e. vy, v,, v, and v; respectively. By definition of foliation,
there exists a function f in a neighbourhood U of p which contains I, UT, UT, UI, such
that:

(1) f 1s a continuous function on the whole ¢/ and is equal to 0 on the separatrices;
(ii) f is C" on U \{separatrices}, i.e. on the complement in U of the separatrices
containing p.
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L,

-,

FiG. 4. — A saddle

Let us call quadrants the connected components of U \ {separatrices}. Starting from the
lower right quadrant (which contains the right endpoint of I,) and modifying / in succes-
sive adjacent quadrants, one can assume, without loss of generality, that

(ili) f is a C’-function also on the separatrices through v,, v, and v, so on all of U,
possibly with the exception of the separatrix through v,.

We stress that in general / is not C" in the whole neighbourhood U and we cannot modify
J any further (since it was already chosen on the initial quadrant).

Recalling that I, 1s identified with (—e¢, €) and 0 is the coordinate of the point v,
intersecting the separatrix, by construction, / restricted to 1, defines a continuous function
f :(—€,€) — Rsuch that:

(i) /isC on (=€, €) \ {0);

(i) f extends to a C'-function to both [—¢, 0] and [0, €].

We define the C’-honolomy of F around this saddle as the r-jet defined by the difference
between the value of the extension of (the restriction to I, of) f to the right interval T},
identified with [0, €], at O and the value at 0 of its extension to the /e interval I, iden-
tified with [—e, 0]. This is a measure of the obstruction for f to extend to a C’-function to
the whole neighbourhood U of the saddle.

6.1.3. Mimmality (or quasi-minimality) for a_foliation. — The notion of minimality of
a foliation (which i1s sometimes known as quasi-minimality in the literature) is the following.

Defination 6.1.3 (Minimality of a_foliation). — We say that a (singular) foliation s quasi-
minimal, or simply minimal, iff every regular leaf (1.e. every leaf which is not a point or a separatrix)
is dense.™

* Notice that if the foliation comes from a flow, this is not the usual notion of minimality: the orbits of fixed points,
which correspond to singularities, are indeed not dense. Moreover, if there are saddle connections, these are also not dense.
One can in addition ask that also the orbits of separatrices (i.e. leaves which emanate from a singular points and therefore
are not regular leaves) are dense; in this case, though, these orbits are only dense in the past or in the future only.
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6.1.4. Relation with GIETs. — Let us recall that any C’-generalized interval ex-
change transformation can be suspended to a C’ foliation on a surface S, of a certain
genus g > 1 (see Section 2.1.6 and Appendix A.l for details). This operation can, for
a large class of foliations (which includes all minimal foliations), be inverted, see [2] or
(42, 43]. In particular, we have the following Lemma:

Lemma 6.1.1. — Let F be a minimal C’-foliation on S,. Then there exists a smooth arc ]

in S, everywhere transverse to F and joining two saddles, such that if we wdentify ] with [0, 1], the
Surst-return map of F on ], when identified with [0, 1] is a minimal C"-GIET.

We refer to [2] or [41-43] for a proof of this Lemma.

An important observation, especially to the purpose of our reduction of rigidity of
foliations (Theorem A) to rigidity of GIETs (Theorem B) is the following relation between
holomomies around singularities as defined above and the boundary B(T) of the GIET
as defined in Definition 2.7.1 through the boundary operator defined by Marmi-Moussa-
Yoccoz in [47]:

Lemma 6.1.2 (Boundary as holomomy). — If F s mimimal and T s a GIET obtained as
Surst-return map of F on an arc J identified with [0, 1] as in Lemma 6.1.1, then the exponentials
(exp(bs))f:1 of the entries of the boundary B(T) = (bj)l‘f:1 are exactly the holonomy of F around
singularities of F.

Progff — Let J be a standard arc such that T can be identified to the first-return
of F on J. We can isotope ] to a transverse curve that contains the arcs I, I,, I, and I,
(represented in Figure 4) as subarcs and such that the intersection of the separatrices with
J, which we called v;, v;, v, and v;, are exactly the discontinuities of T and T~! that are
involved in the computation of the value of the boundary B(T) at the singularity p. We
can chose the parametrization of J by [0, 1] (for which the first return of F is T) so that
T is a GIET of class C". This parametrization induces parametrizations of the subarcs I,
I, 1, and I,.

To compute the holonomy around the saddle p using T, we can start from the
parametrization of I by (0, €), extending it and transporting it around, to define a function
f on U which is constant on leaves of each quadrant™ and whose values on I are given
by the parametrization. The request that / is constant on leaves means in particular
that we want that f(x) = f(T(x)) for every x € J. We can easily define such / in the
lower quadrant, containing I}. To extend f to adjiacent quadrants (going around p in
counterclockwise direction), starting from the adjacent quadrant containing I,, first I,
and then each time the new subarc, should be reparametrized using”' either T or T,

50 Recall that a quadrant, as defined in Section 6.1.2, is a connected component of the complement of the separatrices
in the neighbourhood U of p.

3! For example, to reparametrize 1, one should use the change of variables y = T(u; + x) — u,. More generally, if u
is the previous discontinuity and v the next, we either have v = T(z) or v = T~ () and should use, respectively, a change
of variable of the form y =T(u+ x) —v or y =T " (u+ x) — v.
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depending on the parity of the step (since to reach the successive subarc we move along
leaves in a quadrant either in the same, or with opposite orientation, according to the
parity).

The (right or left) germ of such a reparametrisation at each intersections of J with
each separatrix (i.e. at a singularity v € {vy, v,, v,, v;} of T of those involved in the com-
putation of the boundary value at p) is the (right or left) derivative DT*(v) of T or of
T~! at v. We thus realise the germ of the holonomy around the saddle as a product of
values of derivatives of T or T~ at the singular points which correspond to separatrices
at p; recalling the definition of the boundary operator B acting on observables (see Sec-
tion 2.7.1), one can see that the logarithm of such a product is exactly the alternating sum of
right/left derivatives of Dlog D'T" at singularities which gives the value b, of the boundary
B(logDT) at the singularity p. Thus, the holonomy around p is exactly exp(4,). U

6.2. Compugacies of foliations and rigidity. — We now define linear foliations and restate
the existence of topological conjugacy to a linear model in terms of minimality.

6.2.1. Linear foliations. — A special class of foliations are those are given by closed
1-forms, which we will call lnear (since their holonomies belong to the linear group).
Examples of linear foliations include foliations whose leaves are trajectories of linear flows
on translation surfaces (see Remark 6.2.1).

Definition 6.2.1 (linear foliations). — A linear foliation L is a foliation on S, defined by a
smooth, closed 1-form w such that @ vanishes at only finitely many points which are (multi)saddles,
described by level sets of smooth_functions near a zero of finite multiplicity.

The local integration of w defines a (non atomic, smooth) transverse measure to
the foliation £ as well as an Euclidean structure of the space of leaves of the foliation.
One can then show that the first return map of a linear foliation on a transverse curve is
a standard interval exchange transformation with respect to the Euclidean structure induced by
 on this transverse curve. This shows in particular that the holonomies are &near, from
which the name #&near foliation.

Remark 6.2.1. — We remark as an aside that a result of Calabi [10] (see also [82])
shows that under a technical condition” linear foliations in the sense of Definition 6.2.1
are actually given®® by linear flows on translation surfaces.

2 The assumption of Calabi [10] is equivalent (as remarked in [82]) to asking that any cycle obtained as a union
of closed paths following in the positive direction a sequence of saddle connections is not homologous to zero. This is in
particular the case when there are no saddle connections. In this special case the result was proved independently also by
Katok in [33].

% Calabi’s theorem in [10] gives a condition under which a given a closed 1-form is harmonic. In the language
of foliations, this means that the linear foliation is the vertical foliation of a holomorphic differential in some complex
structure.
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6.2.2. Linearization of mimimal foliations. — The following important result classifies
topological conjugacy classes of minimal foliations (see also [33]):

Proposition 6.2.1 (Topological conjugacy of minimal foliations). — A minimal foliation F on
S, is topologically conjugate to a linear one. Furthermore, if the linear foliation is uniquely ergodic,
it 1s the unique linear representative in the topological conjugacy class of F .

Proof. — The first part of the statement is equivalent to the fact that a first-return
map of F is topologically conjugated to a standard IET. By Lemma 6.1.1, there exists a
transverse arc ] to F and a smooth identification of J with [0, 1] such that the first return
map upon J under this identification is a minimal GIET which we call T. Consider any
invariant probability measure®® p for T. By minimality of T, u has no atoms and gives
mass to any open subset of [0, 1]. Thus, the map ¢ : x — fox dp conjugates T to a GIET
which preserves the Lebesgue measure (as ¢ maps @ onto the Lebesgue measure), which
1s by definition a (standard) IET.

Finally, if the IET T is uniquely ergodic, but there were two linear foliations topo-
logically conjugate to F, one could find a different IET T which is topologically conju-
gate to T. The pull-back of the Lebesgue measure via the conjugacy would then produce
an invariant measure for T’ (in addition to the Lebesgue measure), contradicting unique
ergodicity. UJ

6.2.3. Measure (class) on minimal foliations. — A linear foliation, up to smooth iso-
topy fixing the set of singular points Singr, is locally determined by the class defined by
o in H! (Sg, Singr, R). We can therefore endow the space of linear foliations with fixed
singularities, up to isotopy, with the affine structure of H'(S,, Singr, R) = R”. In view of
Proposition 6.2.1, topological classes of (singular) minimal foliations on S, are therefore
parametrized by (relative) cohomology classes in H' (S, Singz, R). The cohomology class
associated to F is known in the literature as Katok fundamental class.”

The Lebesgue measure on R? induces a measure class (i.e. a notion of measure zero
sets) on linear foliations. Notice that a full measure set of such foliations are uniquely ergodic
by a classical result of Masur [52] and Veech [64]. Therefore, through Proposition 6.2.1,
we also have a measure class on (topological conjugacy classes of) minimal foliations. The
notion of full measure in Theorem A is defined with respect to this measure class. It is well
know that this notion of full measure is related to the notion of almost every (standard) IET,
by following remark (see e.g. [61]):

> The existence of such a measure follows for example by Krylov—Bogolyubov theorem: even if T is not continuous,
it can indeed be extended to a homeomorphism of a Cantor space (see [45], Corollary 3.6 or the lecture notes [79]). A
direct proof of the existence of an invariant probability measure can also be found in Katok’s work [33].

% Katok also showed in [33] that the fundamental class is a local smooth (and topological) conjugacy invariant for
foliations with only Morse saddles with a non-atomic invariant measure which gives positive measure to open sets.
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Remark 6.2.2. — To show that a result holds for minimal foliations on surfaces of
genus ¢ > 1 under a full measure condition in the sense above, it is sufficent to prove that it
holds for Lebesgue-almost every (standard) IET (in the sense of Section 2.5.1).

6.2.4. Rigidity of foliations in genus two. — Our rigidity Theorem 5.1 can be refor-
mulated in the language of foliation the following way, by first extending the definition of
the Diophantine-type condition to foliations:

Defination 6.2.2 ((RDC) for linear foliations). — A linear foliation is said to satisfy the Regular
Duophantine Condition (RDCQC) tf there exists a normal transverse arc such that the IET which arise as
Poincaré section satisfies the (RDC) (given by Definition 3.5.4).

It 1s likely that if the (RDC) holds for one choice of section, then it actually holds
for any IETs which arise from any other choice of normal sections (similarly to what one
can show for example for the Roth-type condition for IETS, see the Appendix of [47]),
but we do not dwell into this, since is not needed for our purposes.

Proposition 6.2.2. — Let F be a C*, orientable, minimal foliation on a surface Sy of genus
two. Assume:

(i) F is topologically conjugate to a linear foliation L satisfying the (RDC);
(ii) the C'-holonomies of F all vanish;

then F is actually C" -conjugate to L.

Remark 6.2.3. — We remark that the statement of Proposition 6.2.2 concerns not
only the foliations in Theorem A, which have only (two) simple saddles, but also foliations
on Sy with one degenerate saddle with 6-prongs (whose linear models are linear flows
on translation surfaces in the stratum #H(2) of Abelian differentials with a double zero),
as long as the holomomy around the singularity vanishes (i.e. (zz) holds). This is the case
when the leaves in a neighbourhood of a singularity are given by a level set of a C!
function with a zero of order two.

Proof of Proposition 6.2.2. — By definition of the (RDC) for a (linear) foliation (Def-
inition 6.2.2), there exists an arc ] C Sy such that the Poincaré map of L to J, identified
with [0, 1], is an IET T, which satisfies the (RDC). The Poincaré map of the foliation F
on J is a GIET by Lemma 6.1.1. By assumption (z), T and T are topologically conju-
gate; the conclusion is equivalent to showing that the conjugacy is C'. Since the saddles
of F are Morse, by Lemma 6.1.2 the boundary B(T) = B(logDT) = 0. Therefore we
can apply Theorem B to conclude that the conjugacy is differentiable. UJ

The proof of Theorem A now also follows:
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Proof of Theorem A. — By Theorem 3.1 and Remark 6.2.2, the (RDC) 1s satisfied by
a full measure set of minimal foliations (in the sense of Section 6.2.3) in genus two (and in

any other genus). Moreover for a Morse saddle, all holonomies vanish (see Section 6.1.1
and Section 6.1.2). Thefore Theorem A follows from Proposition 6.2.2. O

7. Full measure of the regular Diophantine condition

This section is fully devoted to the proof that the Regular Diophantine Condition
has full measure, i.e. Theorem 3.1. The condition has three parts (see Definition 3.3.4):
the existence of an Oseledets regular extension, i.e. condition (z), follows simply from
Oseledets theorem applied to the natural extension and is proved for a full measure set
of IETSs in Section 7.1.1, while the existence of good return times (condition (u2) is easy
to prove using ergodicity of Rauzy-Veech induction and is treated in Section 7.1.2. The
harder part to verify is Condition (), in particular the convergence of the series (S) and
(B).

As a key intermediate step towards the proof of convergence of the series in Con-
dition (i), we define in Section 7.2.1 an acceleration of Zorich induction Z that we call
¢ffective Oseledets acceleration and denote by Z. The accelerating times are given by a se-
quence (7;)zen Where Oseledets theorem (for the natural extension) can be made ¢ffective,
1.e. the hyperbolicity control (both in the future and in the past) can be made quantitative
(see Section 7.2.1 and Definition 7.2.1). We show that such sequences exist for almost ev-
ery IE'T and, the same time, we can also guarantee that the accelerating sequence (7;)en
along which one has the effective Oseledets control is a sequence of good return times
(see Proposition 7.2.1). For the times (n;)en, one can prove that the series given by (B)
and (S) both converge. The subsequence (£,)en in the RDC (see Definition 3.3.4, Con-
dition (zzz)) is then chosen to provide a further acceleration given by returns to a set which
allows to ensure that the bounds on the series (B) and (S) are uniform, see Section 7.3,
which contains the proof of Theorem 3.1, for details.

7.1. Full measure of conditions (1) and (i). — Let us first verify that almost every IET
has a Oseledets generic extension, i.e. Condition (z) of Definition 3.3.4 is satisfied (see
Section 7.1.1) and has a sequence of good return times as required by Condition (z2), see
Section 7.1.2.

7.1.1. Full measure of generic Oseledets extensions. — Let us first prove that a.e. IET
has a generic Oseledets extension, in the sense of Definition 3.3.2. Full measure is here
defined in the sense of the Lebesgue measure on Z; defined in Section 2.5.1. The proof
is simply an application of Oseledets theorem for the natural extension of the Zorich accel-
eration.

Lemma 7.1.1 (Full measure of Condition (v)). — Lebesgue almost-every IET T € L, has a
Oseledets generic extension.
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Proof. — By Remark 2.5.1 it is enough to show that for every fixed irreducible
7 € &Y, Lebesgue-almost every T € Z, has a Oseledets generic extension (as defined in
Definition 3.3.2). Consider the natural extension Z: Z:n — ZA-JT of the Zorich acceleration
Z : 1, — 1, defined in Section 2.5.2 and let p : I, — T, be the natural projection and
w2 the invariant measure preserved by Z , which gives @z as pull back by p. Recall from
Section 2.5.10 that the (extented) Zorich cocycle Z : I, — SL(d,Z) is a cocycle over Z
(see Section 2.5.2), is integrable w.r.t. @z and has Lypaunov exponents which, by the
symplectic nature of the cocycle and the results by Forni [22] and Avila-Viana [6] are:

where d = 2g+/c — 1.

Since Z : I — I is ergodic w.r.t. (5 and Z is integrable wirt. p4 2 2 the conclusions
of Oseledets theorem for invertible maps hold for u z-almost every T e and gives the
existence of an invariant splitting as in (29). Since u 3 is the pull-back by p of the measure
Kz, it follows by Fubini theorem that for pz-almost every T there exists an extensmn
T such that [)(T) T. Let E(") (T) be the subspaces given by Oseledets for T. For x €
{s, ¢, u}, if E)(C”) (T) are respectively the stable, central and unstable spaces for T given by
Oseledets, we set " := E® (T). Invariance and property (H) therefore follow (the latter
since A, > 0 so both '™ and 'y have dimension g.

Since Z,(T) = Zn('f) for every n € N (by definition of the cocycle extension, see
Section 2.5.10), the remaining properties in the Definition 3.3.2 then from the conclu-
sions of Oseledets theorem for T: (O-c) and (O-a) are immediate from (15) and (16); both
(O-s) and (O-u) hold for any choice of 0 < 6 < 6, (with a constant C > 0 depending on
T and the choice of 6: (O-s) follows directly from (15) for ¢ < 0, to verify (O-u) notice first
that (15) for 7 > 0, since € < 6,, implies that

log | Q0. m)]
lim

n— 00 n

>0>0,

where Q(0,n)| .« denotes the restriction of Q(0, n) to the invariant space I'"’. There-
fore, there exists ¢ > 0 such that

1Q(0, n) w|| > ce®||w]], forallw e FZEO), for all n € N.

Given any v € ', consider w := Q(0, n)~'v which by invariance of the splitting belongs
to I'"). Then, by the previous inequality applied to w, we get (O-u). UJ

7.1.2. Construction of good return times. — Condition (zz) in Definition 3.3.4 concerns
the existence of good return times. Let us show that sequences of good return times can be
easily constructed exploiting visits to certain sets. Recall from Section 3.3.3 that we say
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that A € SL(d, Z) is a Zorich cocycle matrix of (Zorich) length p if it can be obtained as
product of p matrices of the Zorich cocycle, i.e. A = Q(0, p)(T,) for some Ty € Z,.

Lemma 7.1.2 (Construction of good return times). — There exists a positive Zorzc/z matrix
A e SL(d, Z) and a set GA C Id with |4 5 (GA) > 0 such that f(nk)keN is such that Z" (T) € GA
Jorall k € N, then (n;.)ren ts a sequence of good return times for T’ = p(T).

Proof. — Let A be a positive d x d matrix which can be obtained as product of p
matrices of the Zorich cocycle, 1.e. such that A = Q(0, p)(T'y) for some Ty € Z,. Let Ty
have combinatorial datum . Consider the set Gy C Z, given by

Gyi=A here A2 := (A = ATAY AeA
A= Ap2 X {7T}, where Ap2 1= = m, [SIVAVER T %

Then, if we consider T given by A and 7 with A € A,2, then Z®?(T) = AA, i.e. the
Zorich cocycle matrices at T' start with a double occurence of A (see Section 2.5.8). It
follows if Z™(T) € Ga, then Q(n, n, + 2p) = AA (since Z acts as a shift on the sequence
of matrices (Z,),en associated to T, i.e. the sequence of cocycle matrices associated to
Z" (1) 15 (Zyn)en)-

Let us now define GA = p~'(G,) where p is the projection p : 7, — Z,. Recall
that if T is such that p(T) T, then Z® (T) = Z™(T) for every n € N. Therefore, if

7 (T) € G, we have that Q(m, . + 2p) = AA. This shows that visits to Ga produce
sequences of good returns as desired. 0J

7.2. Effective Oseledets. — We are going to consider sequences where the estimates
given by Oseledets theorem can be quantified in an ¢ffective with uniform constants along
the sequence.

7.2.1. Effective Oseledets return times. — Let T € Z, be Oseledets generic for the
(extension of the) Zorich cocycle Z over the Zorich natural extension Z. Let " for
x € {s, ¢, u}, n € Z be the spaces given by the Oseledets splittings for T. Recall that, for
any pairs of non negative integers m < n, Q(m, n) denotes the matrices of the Zorich
cocycle (see Section 2.5.6) and that Q(m, ) maps '™ to '™ for any x € {s, ¢, u}.

Defiition 7.2.1 (Effective Oseledets sequence). — Given Cy > 0 and € > 0, a sequence
(k) men @5 a (Cy, €)—effective Oseledets sequence for T, if for some 6 > O we have:

(EO1) 1Qn, W) [ ow oo < Ce " for every n > n,
(EO2) 1Q(m, )™, o lloo < Cie ™" for every n <y,
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and furthermore, for some cy(€) > 0, the angle Z(T'™, F)f’l)) Jor distinct x, y € {s, ¢, u} between T'™
and Fy(”) (defined as in Section 2.5.10) satisfies

(EO3) £, T = ex(€) "™, foralln € Z,
and the Lorich cocycle grows subexponentially along the subsequence, i.e.

(EO4) lim 10g ||Q(n/c, |

k——+o00 /f

=0

We say that (n;.) ren ts an effective Oseledets sequence for T ifitis (G, €)—eftective Oseledets
acceleration sequence for some € > 0, C; > 0.

7.2.2. Construction of effective Oseledets sequences. — Effective Oseledets sequences (see
Definition 7.2.1 above) can be obtained (using Oseledets and Lusin’s theorems) as return
times to certain good sets sequences for the natural extension Z (see Section 3.3.1 for de-
tails). We stress that working with the natural extension is an essential technical tool to
impose backward conditions like (EO2) and (EO3) for n < n;, (see Section 3.3.1 for details).

Exploiting ergodicity of Z, let us show that:

Proposition 7.2.1 (Effective Oseledets good returns). — For any irreducible w € &Y, there
exists €9 > 0 such that for every 0 < € < €, there exists a constant C. > O such that p z-almost

every Te I which admlts a (C, €)-effective Oseledets sequence (n;) ez which is also a sequence of
good returns for T = p(T) Furthemore, the sequence 1s given by considering returns of the forward orbut
{Z”T n € N} toasetGCZ

To prove Proposition 7.2.1, we will construct a good set in 2;, denoted by G for
Good (the hat 1s to stress that it is a set in the domain I, of the natural extension) such that
visits to G produce effective Oseledets sequences. In addition, intersecting with the set Ga
given by Lemma 7.1.2 in Section 3.3.3, we can get sequences of good returns (see Defi-
nition 3.3.3) where the Oseledets growth is effective. These will provide the accelerating
sequences (1;)ren Which appear in the RDC (see Definition 3.3.4).

Proof of Proposition 7.2.1. — Fix m € &Y irreducible and let uz be the invariant
measure for the natural extension 2 : Z, — 7, (recall Section 2.5.2 and Section 2.5.1).

Let us first of all construct the good set GCZ, of W z-positive measure where the control
given by Oseledets theorem holds uniformely.

Construction of the good set G. — Let T € Z, be Oseledets generic. Recall that Z" :=
AR (T), for n € Z, and Q(m, n), for m < n, denote its Zorich cocycle matrices, as defined
as in Section 2.5.6. Since the cocyle Z has the Lyapunov exponents in (64), if we denote
by I'"” :=E" (T) for x € {x, 5, u} respectively the stable, central and unstable space given
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by Oseledets (see Section 2.5.10), for every € > 0 there exists a constant C; (e, T) >0
such that, for all n > 0, for all v, in ',

(65) 1Q(0, 2, [l < Ci (€, T)e™ %[0, o,

where —6, < 0 is the largest negative exponent (smallest in absolute value) with respect
to [j, see (64). Moreover, by the symmetry of exponents recalled in (64) above, 6, > 0 is
also the smallest positive exponent (see again (64)), so that for all n > 0 and all v, in T'”,
we also have

(66) 1(Q(=2,0) " v,llee < Cile, T)e %0, 106

(where we can assume without loss of generality that the constant C; = C, (e, T) is the
same than above).

Fix a positive € such that € < 6,/2. Let now Gy be the set given by Lemma 7.1.2
and consider its measure 0 < u ZA(CA}A) < 1. Since the constant C (€, T) depends measur-
ably on T, by Lusin theorem, for some fixed C; = C, (€, n ZA(GA)) > 0 sufficiently large,
we can find a set Gl = Gl (e,A) C i, of measure ﬂg(él) >1-— ,ué((A}A)/Q such that, for
every T’ which belongs to G, (65) and (66) hold uniformely, 1.e. one has G (€, ) <a,.
Thus, for every n; € N such that Z"(T) € G, we have (recalling that 0 < € < 6,/2),

(67) 1O, 1) [ro 2oy lloo < Ce@Otm) < Q@2 0=m) for every n = ny,

(68) 1Q(, 7)™ rw e lloo < Crem @O < Gy /D00

for every n < .

Moreover, Oseledets theorem applied respectively to the cocycle Z over Z and to the
inverse cocycle Z~! over Z- (see Section 2.5.10), gives that, for almost every Te i,, if
we consider the Z(I"'™, l"y('”)) the angle between any two distinct pairs of spaces '™ and
Fy(’”) with x, y € {s, ¢, u} (see Section 2.5.10), we have

_log|Z(T™, T
(69) lim - 2 — =0, forallx,y€{s ¢ u}, x#y.

m—=+o0 |m|

By Egoroff theorem, this pointwise almost everywhere convergence can be upgraded to
uniform convergence, 1.e. there exists a set GQ GQ(G A) C Z,,, with MZ(GQ) > 1 —
K 2/ 2 such that, for all € > 0 exists a constant ¢y(€) > 0 such that, for all Te Gg and
forallme Z

|£(@™, Fy(’"))| > oy(€) e " forall x,y € {s,c,u}, x#).
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Notice that, for any n;, € Z,
-+ 1 (TYV)) — T
Qe =g (2""%(1))) = E" (Z2™(1)),

for all x € {s, ¢, u}, for all m € Z,

so that, if Z2%(T) € G, (taking as index m := n — n; and applying the above subexponen-
tial growth estimate (69) to Zn (T)) we have, for any distinct x, y € {s, ¢, u},

|4(Fi”), Fy(”))l > () el forallne Z.
Notice in particular that, for n = n, this gives that

(70) |Z(TP, T")| = ¢y(€), forall distinct x, y € {s, ¢, u}, forall n € Z.

Define the good set G = (A“{(é) tobe G := (A}l (G)Aﬂ GQ (e)N GA. Notice that since by
construction u 3(G;) > 1 —u3(Gy) for 1 =1, 2, and G has positive measure 5 (G) > 0.

Final arguments. Set €, :=0,/2. For 0 < € < €, let G = G(E) be the good set con-
structed above and define 6 := 6,/2 and C := C,(¢) to be the constant for which (EO1)
and (EO2) hold. By ergodicity of Z, since 13 2 (G) > 0, it follows that z-almost every
Te T, will visit G infinitely often. Set (n;)en to be the successive visits of the forward
orbit {é’Z(T) n € N} to GA, 1.e. we set by convention ny 1= =0 and, given n; for £ € N, we

let 7441 to be the minimum » > n; such that Z”(T) eG. Then, (n;)en 18 by constructlon
a (G, €)-Oseledets effective sequence for T and by Lemma 7.1.2, since Gc GA, (n1) ren
1s also a sequence of good returns for T : p(T) U

7.3. Control of the series in Condition (u12) and proof of full measure. — We can now use
the partial results proved so far to give the proof the RDC has full measure.

Proof of Theorem 3.1. — Fix 7 € &Y irreducible. Let G be the good set given by
Proposition 7.2.1 constructed in 7.2.2. By Proposition 7.2.1, u z-almost every T the for-
ward orbit of T under Z visits G infinitely often along a sequence (7;),en of return times,
which is an effective Oseledets sequence (and also a sequence of A-good return times for
some positive A for T' = p(T)). We now want to impose a better control on the frequency
of visits.

Frequency of recurrence times to G and good set of IE'ls. —  Since both Z and 27" are ergodic
and G has positive measure i.e. [ 2 (G) > 0, almost every Te 7:'7, 1s Birkhoff generic for
the characteristic function ¢, of the good set G, so that its orbit visits infinitely often the
set G and with the expected frequency both in the past and in the future, 1.e.

1) lim - Z xe (24(h) = 1im - Z xe (274(D) = nz(G).

n—-+00o n



350 SELIM GHAZOUANI, CORINNA ULCIGRAI

Furthermore, it follows from Fubini theorem for the measure w3 and the foliation into
fibers {#~'(T), T € Z,} of the natural projection map p : iﬂ — 1., that for set g}; ci,
of T € Z, of full measure w.r.t. iz we have that p~!(T) contains at least one T for which
(71) holds. By Remark 2.5.1, the set Gy := UKGS GY C 7, has full Lebesgue measure.

We will show that for any IET in the set Gy we can find a sequence (7;)en Which
can be used verify the properties in the Definition 3.3.4 of RDC for a IET. We will
later need to refine further this set (keeping it still of full measure) to also guarantee the
existence of a subsequence (%, ).en on which (zz) holds.

Given any T € G, pick a Te 7' (T) (which exists by definition of Gy) and consider
the (infinite) sequence (nk)keN of successive visits of the forward orbit of T under the
iterations of Z to the set G (which again exists by definition of go, since (71) holds): more
precisely, we set 7y := 0 and we let n; be the first entrance time in G, i.c. the minimum

n>0 such that ZA"(T) € G and for any £ > 0, let n;1, be the first return time of 2 (T)
to G under Z.

7.3.1. Induced cocycle. — Denote by Zy, k € Z, and Q(k, K for ¥ > k the matrices
of the cocycle accelerations along (7;)en, namely

(72) Qb K) = QU me),  Zy=Zu(T) 1= Quk, b+ 1) = Qe miya).
By definition of the recurrence sequence (7;)en,
To:=27(1) € G, 2Ty = 2E(Ty) forallk >0,

so that the matrices Z, k> 1 can be seen as the iterates of the cocycle 7 over the induced
map Z(, of Z over G (see Section 2.5.4) starting from TO It follows from integrability of
the Zorich cocycle Z over Z and Section 2.5.5) that 7 is still an integrable cocycle over
Zg and therefore admits Oseledets splittings (see 2.5.10). Moreover, if '™, for x € {s, ¢, u}
are the stable, central and unstable spaces given by Oseledets theorem for T and P™ the
respective orthogonal projections defined in (31), the stable, central and unstable spaces
P(/‘) x € {s, ¢, u}, k € Z, for the accelerated cocycle 7 and the corresponding orthogonal
projections P(k) are given by

chk) = Fi”’f), fﬁik) ‘R — F,Ek), forallx € {s,c,u}, k€Z.

We will show at the end that the sequence (7;).en verifies condition (z) and () in the
Definition 3.3.4 of the RCD for T and that, up to restricting to a smaller full measure set,
we can extract a subsequence (7, ).en along which also (uz) holds.

Linearity of returns and uniform convergence times. From the Birkhoff genericity statement
in (71), it follows that (7;).en grows linearly. Indeed, since #;, is by definition the time of the
nth visit to G, forall T € é , (71) gives that imy 400 k/m = W z(¢)- Moreover, by Egoroff
theorem, there exists sets GB:t c G with n Z(GB:E) > 5/6 on which this convergence (in
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the past and in the future respectively) is uniform, i.e. there exists a constant ¢g > 0 such
that if n,, is such that Z"(T) € Gy, then for every n; > n,

Y e (212 () _

Ny — Ny,

O<eg <

and, similarly, for any n; < n,,

Y e (2@ (D)

Ny — Ny

<1.

0<6‘BS

Thus, setting G := G- NGy, 1(Gg) > 4/6 if n,, is such that Z(T) € Gy, since |m— k|
1s exactly the number of visits to G in the orbit segment considered, we have that

(73) gl — | < |m—kl <ln,—n|, forallkeZ.

Uniform subexponential growth. Let us now estimate the growth of the accelerated
matrices Zk := Q(ny, mp41), k € N and show that it is subexponential. This fact will be
used later in the proof of the convergence of the series (B) and (F). Remark first of all that,
since T € £~'(T) and the (forward) iterates of the cocycle R (or Z) depend only on p(T),
these matrices are the same for T and T. Since, as already remarked at the beginning,
7 is an integrable cocycle over the invertible map i(ﬂ it follows from Oseledets (see in
partlcular (17) in Section 2.5.10) and ergodlClty (which guarantees that Z-almost every
T will enter the full measure set of IETs in G which is Oseledets generic for Ze ), that, for
almost every Tel,,

log || Z(T
- L log 1 Zo(TDl _
{—+o0 |£|

Furthermore, once again by Egoroff theorem, there exists a set Gs c G c Z, with
i (Gs) > 0 (which actually can be made arbitrarily close to i z(G)) such that, for every
€ > 0 there exists a constant C3(€) > 0 such that, for all T} € Gg

1Z,(TDI < Gy, forall £ € Z.

Notice that, if £, € Z is such that Zk’” (T) € GS, then (since the cocycle matrices for
T = Zk (T) are a shifted copy of the matrices for T namely Zg(T(k'")) = Zk M(T)

m

for all £ € Z) this implies (choosing £ = k£ — £, + 1 and applying the previous estimate to
T(k’")) that we have

(75) 1Zi—y (D) < Co(e)e™ 1, forall k € Z.
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The subsequence (k) nen- Let GSB c G be by GSB = GB N Gs where GS and GB
where the sets for uniform Birkhofl convergence and subexponential growth defined in
the previous paragraphs. Remark that u z ((A}SB) > 0. Define finally the sequence (km)meN
to be the subsequence of indexes £ € N which corresponds to visits of the orbit of TO
under Z to the subset GSB defined above, i.e. kj is the first entrance time of TO to GgB
while, for every m > 0, £, 1s defined to be the smallest £ > £,, such that Zk (T) € GSB

Linear growth in Gy,. Linear growth of the sequence (k) en for a full measure set of
T can then be deduced from ergodicity as follows. Since the set G has positive measure
with respect to z and hence for the induced invariant measure jiz. for the Poincaré

map ZA(, and ZA’G (being the induced map of an ergodic maip) is ergodie with respect to
Kz, it follows that for all T in a subset Gi, C G with pnz,(Gr) = pz, (G) = 1, the orbit
of T under Z, vists Ggp with the expected frequency, namely, since, for any m € N, m is
exactly the number of visits to GSB in the piece of orbit {Z%é (T), 0 <k <k,} (since ky >0
1s the time of first visit to Ggp and hence £, corresponds to the mth visit), we have that
76, Lom_ | Gadlk: ZL(1) e Gy, 0<k <k} iz, By > 0.

—
m—>00 f, m—00 km

Thus, if T is such that the first return TO = 20 (T) eG belongs to GL, the corresponding
subsequence (%,,) e~ has linear growth.

The set of IETs which satisfy the RDC. We can now define the set G, C G? of (standard)
IETs in Z,; which satisty the RDC to be the set of IETs T € g}g such that:

(a) T has an Oseledets generic extension Te pI(T);

(b) the forward orbit under Z of Tin part (a) enters the set Gy, defined above;

(c) the first visit To=2"(T) 0 G (whose existence 1s guaranted by (b)) where ng
is the smallest n > 0 such that 2T € G, is Oseledets generic for the induced
cocycle over the induced map ZG.

Full measure of G, Let us show that QAJT has full measure with respect to Ze . Full
measure of condition (a) is given by Lemma 7.1.1, but since we want to verify also (b)
and (¢), let us consider the full measure set Io - I which are Oseledets generic, i.e. the
conclusion of Oseledets theorem holds for the Cocycle Z over Z. Since Z is integrable,
the induced cocycle Z¢ = Z over the induced map Z . (defined as in Section 2.5.4) is
again integrable (see Sectlon 2 5.5). Therefore, by Oseledets theorem, p z, -almost every
Tin G is Oseledets generic (see Section 2.5.10). We denote by ( Go the full measure subset
of G which consiste of Oseledets generlc IET: for the cocycle Z Since, as shown before,
also GL C G has full measure in G the intersection IO N Go N GL has full measure in
G. Reasoning again by ergodicity and Fubini theorem for the measure pg, the set of

IETs T which have an ergodic extension T whose orbit under Z enters the intersection
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io N GO N GL (and hence verify all three assumptions (a), (b) and (¢) has full measure
(with respect to the corresponding i z,) for every irreducible 7. Since this is true for
every irreducible 7, if we set G 1= UHGGS G, then G has Lebesgue full measure (see
Remark 2.5.1).

Verifications (yf the RDC' conditions. Let us now Verlfy that all T € G satisfy the RDC.
Given any T € g, by definition there exists T € p~'(T) which i is recurrent to G along
a subsequence sequences (1;)en of iterates Z, and recurrent to G along a subsequence
(k) men of iterates of the induced map Z¢. We claim that all conditions of Definition 3.3.4
hold for T along the sequences (1;)ren and (£,,) en-

Conditions (i) and (i1). — By definition of G, the extension T is Oseledets generic; there-
fore Condition (2) holds. Furthermore, by Proposition 7.2.1 and the construction of the
set G the sequence (7;)en 1S @ sequence of good return times for T = p(T) Further-
more, we showed earlier that, since Zmn (T) € G, (7)ren has linear growth. Therefore,
also Condition (#) is satisfied.

Conditions (S). — To check Gondition (S) in Gondition (uz), consider the cocycle ob-
tained accelerating z along the sequence (£,),en. This is by constructlon an induced
cocycle (see Section 2.5.3), over the map obtained inducing Z to returns to Gy Since we
assumed in the deﬁmtlon of g (see condition (¢)) that the first visit T} := 2 (”‘)(T) to G of
the chosen extension T of T is Oseledets generic for the induced cocycle corresponding
to returns to G, Condition (S) follows from an application of Oseledets theorem for the
accelererated cocycle, in particular from (17) for the cocycle whose (k — 1)* matrix is

Q(km’ km+1 ) .

Conditions (A). — From the definition of good return times (and since (7, )N 1s @ sub-
sequence of the sequence (7;).en of good returns), we also get that, for any 7, Condition
(A) on the angle holds: this reduces indeed simply the lower bound on angles given by
(70), specialized to the subsequence (n;,),.en When recalling the notation F(k) = F(”k)

Conditions (B) and (F). —  Consider any fixed £, in the subsequence (£,)en. Let us finally
show that Conditions (B) and (F) hold for this £,. Recalling the definition of Q(%, £'), we
hence get from (EO1) and (73) that, for every £ > £,

(77) ”Q(/{,,“ k)|’l:§k) ”oo = ”Q,(nkm’ nk)lr(nk)(T) ”oo < Clg_(eg‘i‘é)(nk—nkm) < Clg—(eg‘i‘é)(/f—km),
and similarly, using (EO2) this time, we also get that, for every 1 <k <%,

<78> || Q(/f7 km)_1 |Fz(lk) ”oo < C e_(9 +E)(km_/f)

Recall now that Ek) and fﬁff) denote respectively the projection operators to the stable and
unstable spaces Ff/‘) =T (T), FZE/‘) =TI'®)(T). Estimate the norms ||P§k) || and ||Pff) || of
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these projections through the angle A(ka), F;k)) between Ff/‘) and f:lﬁk) and using (75) for
a time 7y, which corresponds to a visit to G and again the linear growth of (1;)en, wWe
get, for some universal ¢ > 0, that, for any m € N and for any £ > 0,

c C C

C
— — e < <
4(F§k), ng))) Z(ank), Fénk))) - 62(6)676\71/{771/(“ - CQ(G)

€E |k—Fkn|/cB .

(79) PP, IPD) <

We can now prove the convergence of the series (B) and (F). Fix now ¢ > 0 such that
£ <0,/2(1+ cgl) and let ¢y := ¢y(¢) and Cy := C4(e). Then, combining all the estimates
proved so far, namely (77), (79) and (EO3), which give, setting C := ¢C,Cy4/ ¢y

D 1O k)i B 1Zi-

k=k7n+ 1

< i (Cyem @02 (g Ghnln 0 (O )

& o
< Z Ce—(eg/Q—a(cE'+1))(/c—km) < Kt = ZCE—(%/Q—S(6§1+I))Z’
k=/@)1+1 =1

where K < +00 since 6,/2 — <9(c]§1 4+ 1) > 0 by choice of €. This proves Condition (F).
Similarly, for the series in Condition (B), we get

/Cm km

~ DO T —(0,/2—¢(c5; ' +1)) (k—k
D N1QUs B gl IPP N Zyoy | < Cem /2o b
k=1 k=1

kﬂl
_ Z Ce—(Qg/Q—s(ﬂgl+1))Z <K~
=1

This proves Condition (B) and thus concludes the proof that any T € G satisfy the RDC.
O
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Appendix

We include here, for completeness and for convenience of the reader, some results which
were used in the paper and are either variations of those present in the literature or
folklore.

A.1 Boundary and suspensions
We include in this section an explict construction of a standard suspension as well as the

combinatorial definition of the boundary operator purely in terms of the combinatorial
datum, following [44].
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Let T be a GIET with combinatorial data 7 = (7, 7;). Recall that u! (resp. u?)
denote the endpoints of the top (resp. bottom) partition (see Section 2.1.4). For 0 <:<d
consider A; := |I/‘| = |If| and 7, :=m, 1(j) — ;7! (j) and define the complex numbers

U=ty + ) gy + V=1t Viim g+ ) gy + V=1t

J<i J=i

One has Uy = u) = u} = Vo and U, = «, = «* = V,. Moreover, InU; > 0 and ImV; > 0
for 1 <i<d. The 2d segments L;/(i) =[U;_1, U], Lf[b(l-) =[V;_1, V;]for 1 <¢<d form
the boundary of a polygon. Gluing the pairs of parallel top and bottom sides L and L’
of this polygon produces a translation surface Mr, in which the vertices of the polygon
define a set of marked points.

Consider now the 2d-elelents set V := {Uy =V, U, Vy,...,U;_1, Voo, Uy =
V,}, which is in bijection with the vertices of the polygon. The identifications of elements

of V induced by the glueings of parallel sides is encored by the following permutation o

o(U):=V, ifmG+D)=mG+]1), for 0 <i < d;
o(V):=U, ifmt)=mk), for 0 <j <d.

Thus, cycles of o are in bijection with the singularities Sing(My) of M. This shows that
7 determines «, the number of singularities (which is exactly equal to the number of
cycles of o) and therfore, from the formula d = 2g 4+ « — 1, it determines also the genus
g of any suspension.

We give now the definition of the (observable) boundary operator B : Sing(Mr) —
R*, following [44]. Given a function f € C(T) (recall 2.6.1), B(f) = (b,)1<,< is defined as
follows. For each 1 < s <, if C; is the cycle of o corresponding to the singuarity labeled
s, we have

b= Y (P S W),

0=<i=<d, U;eCy

where f'(#;) and f(«;) denote the left and right limits at the discontinuity point #; (see
Section 2.7.1) and, by convention, /'(Ug) = 0 and f"(U,) = 0.

A.2 Distortion bounds for GIETs

We present here for completeness the proof of the classical distortion bound stated as
Lemma 2.4.2. The proof for GIETS is the same than the classical proof for circle diffeo-

morphisms.
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Proof of Lemma 2.4.2. — Assume without loss of generality that x < y. We have that,
by chain rule,

n—1

logDT"(x) = Y "log DT(T'(x))

i=0
and an analogous expression holds for log D'T"(y). Therefore we can write

n—1
|1og DT"(x) —logDT"(»)| < Z |log DT(T(x)) — log DT(T'(y))|
=0
n—1

T'0)
>IL
Ti(x)

=0

=

Notice now that, since by assumption, T'(J) do not contain singularities of T for any
0 <i < n, each T'(J) is again an interval and, since T is an isometry, T'(x) < T'(y). It
hence follows from the assumptions that the intervals [T'(»), T'(x)] are pairwise disjoint
and

1
| log D'T"(x) —logDT"(y)| < f |nr|dLeb.
0
Exponentiating this bound we get the desired result. U
A.3 Distances comparisons

In Section 4.2.1 we defined two distances, namely @, and d¢1 on Diff®([0, 1]) and, by
abusing the notation, also extended their definition to distances d, and d¢1 on the space
X} of GIETs with r > 2. Here we first show that , is a distance and then prove the
comparisons given by Lemma 4.2.2 and Corollary 4.2.1.

A.3.1 The semi-distance d,, ts a distance

Consider d, on Diff' ([0, 1]) defined in Section 4.2.1. Symmetry and triangle inequality
are obvious, so to see that it is a distance, we only have to check that if d,(¢;, ¢) =0, and
therefore 7y, (x) = n,,(x) for every 0 < x < 1, then ¢, = @,. This can be seen, for exam-
ple, by showing that the non-linearity 7,, completely determines ¢ € Diff*([0, 1]), namely
given a continuos function 7 : [0, 1] — R there exists a unique orientation-preserving
diffeomorphism ¢ € Diff*([0, 1]) such that 5, = 5, which is explicitely given (see for
example [49]) by the formula

fox €Xp (fo’Z n(y)dy) dz.
Jo exp (f n0)dy) dz

@(x) =
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A.3.2 Comparison of d,, and dc1 on Diff' ([0, 1])

Consider first Diff ([0, 1]), where 7 is an integer r > 2. Notice that it is an open subset of
Cy([0, 11, R) := {f € C'([0, 1]) | /(0) = 0 and f (1) = 1}.

Proof of Lemma 4.2.2. — First note that there exists xy € [0, 1] such that f'(xy) =
S (x0) (otherwise f] > f; or fi < f; which is incompatible with the fact that [, f/ = [ f/ =
1). In which case we have
/ (s = 1)
X0

The exponential function being Lipschitz on bounded sets, we can find a constant L > 0
such that |f/(x) —f; (x)| < L|logf, (x) —log/; (x)| and hence control ||/, —f; [|o. From this
control and f;(0) = f2(0) = 0, we can then control also ||f; — f2|lsc and hence d¢:1 (f1, /2)-

O

[log f (x) — long/(x)l =

s/ s = sl < dy (i fo)-
X0

A.3.3 Comparison of d,, and de1 distances from AIETs

We can now deduce Corollary 4.2.2, i.e. the comparison of the d¢i and d, on X? from
the locus of AIETs.

Proof of Corollary 4.2.1. — For any n € N, denote by V"(T) = (A,, ¢,) are the
shape-profile coordinates of V"(T). Recall first of all that the infimum in 4, V"(T), A,) :=
infac 4, d,(V"(T), A) is realized by the shape A, of V"(T) (by Remark 4.2.1, see also foot-
note 42). It is sufficient to find L. = L(T) such that do1 (V"(T), A,) < L4,(V"(T), A,) for
every n € N, since this then gives that

der(V'(D), Ap) <dea (V'(D), A,)) < Ld,(V"(1),A,) =Lda,(V'(1), A).

Since the distances dei and d, on X* are both products of distances in the shape-
profile coordinates (see Section 4.2.1) and d4(V"(T),A,) = 0 by definition of A,,
the distances dc1 (V"(T), A,) and 4,(V"(T), A,) depend only on dg (¢,, (I,..., 1) and
dz) (@, (0, ..., 1)) respectively.”® Notice now that, as a consequence of the classical dis-
tortion bounds, the coordinates {(p,’;, n € N} of the profiles ¢, = (¢!, ..., goff) of the orbit
(V"T),, by Lemma 4.2.4, are C'-bounded (in the sense of Definition 4.2.1) and therefore
there exists a C'-bounded K = K(T) C Diff' ([0, 1]) which contains all coordinates ¢, for
every | <i<d and every n € N. Therefore the conclusion follows from the comparision
given by Lemma 4.2.2 for each profile coordinate, applied to the bounded set (T). [

% Here ({,..., I) € Diff ([0, 1])¢ denotes the identity vector with I(x) = x identify function in every coordinate.
Notice that Pp(A) =(1, ..., I) for every A € Ay, i.e. in particular (I, ..., I) is the profile of Art.
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A.3.4 The Schwarzian derivative and the C*-distance

In this Appendix we give a proof of Lemma 4.4.2, which shows that the C’-distance
des(T, M) of a T € X] from the the subspace M of Moebius IETs can be controlled, on
a bounded set, by the Schwarzian derivative S(f) of T (see Section 2.4.3). We first prove
the analogous statement in Diff ([0, 1]) (namely the following Lemma A.3.1), which will
give control on each of the coordinates of the profile of T

Let MO0, 1] denote the subspace of Diff’([0, 1]) consisting of (restrictions of)
Moebius maps. Recall that S(f) is the Schwarzian derivative of a diffeomorphism

f € Diff*([0, 1]) (see Section 2.4.3).

Lemma A.3.1. — Let KK C Diff*([0, 11) a C?-bounded set, meaning that there exists a con-
stant K > 0 such that for all f € K, || 1log Df || < K and |D*f|| < K. Then there exists a constant
L=L(K) > 0 such that for f € K,

des(f, M([0, 11) = L- (/).
Let us first prove an auxiliary technical lemma.

Lemma A.3.2. — Let g € C'([0, 11, R) such that g(xo) = O _for some x, € [0, 1], and let
£ €C([0, 1], R). Assume that there exists € > 0 such that |Dg — f - g| < €. Then

llgll < el

Proof of Lemma A.3.2. — Define F(x) := xf;f/(zf)dt, so that DF = f and F(0) = 0.
Thus ||F|| < ||f|l. Consider now the auxiliary function ¥ = ge~*. We have Dy = (Dg —
f2)e™¥. We therefore have |Dv/|| < eel/! and v (xy) = 0. We obtain this way that for all
x €0, 1], |¥(x)| < el ]

Proof of Lemma A.3.1. — We consider f € IC, and let a := fol ny. Let m, € M([0, 1])

be the unique Moebius diffeomorphism of K C Diff*([0, 1]) which is such that fol Ny, = a.
Since m, 13 a Moebius map, S(m,) = 0 (see Property (52) in Section 2.4.3) and we thus,
using the expression (6) for S(f) in terms of 1, have

1
S(f) =S(f) = S(m,) =D(y) — D) — 5(0,3 — ).
Set € := ||S(f)||. We have
1
|D(77f - 77m(,) - 5(77/ + nma)(nf - nm,,)l <e€.

Since f is assumed to belong a set K that is C*-bounded (in the sense of Definition 4.2.1),
there exists a constant M = M(K) > 0 such that || %(nf + 1) | <M. We can thus apply
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Lemma A.3.2 (setting / := %(77]‘ +n,,) and g :=n; — n,,) to obtain
Iy =) /21 < €™

Since |D(n; —n,,) — %(nf + 0,) (N — n,,)| < €, we also get that

A.1) DGy = nu) Il < MM+ De.

Let us now show how to use these inequalities to control the norms Crfork=1,2,3.
Control of the C' -norm. Since ||(ny — 1,,,)/2|| < €€", we have in particular d,(f, m,) <
2¢eM. By Lemma A.3.2, there exists a constant L, (which only depends on K) such that

dei (f, my) < L,Me.

Control of the C*-norm. We have

A AN A
flf—nm(,=j7,—ﬁ= JT,—JT, + 7—;

_l " m m_;/ m;_f/>
= 0=+ 5 m )

We obtain this way

//”
[

W = ml < 1y = mall + o, = f711.

(A

Since f (and consequently m,) belong to a C*-bounded set, the terms ||f'|| and ||n] || /||m|
are bounded by constants depending only on IC. Together with the fact that de1 (f, m,) <
L,Me, we get the existence of a constant Ly = 1, (K) such that

If" = myll < Loe.
Control of the C*-norm. Using the fact that

f//‘/f/ _ (f//)Q

()2
and the control given by (A.1) we obtain, via a calculation similar to that done for the
control of the C?>-norm, the existence of Ls = L3(K) > 0 such that

Dny =

" = m |l < Lse.

Adding up the estimates obtained for £ =1, 2, 3, we get the desired control of d¢s by
€ = |IS(f)|l. This concludes the proof. ]
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Proof of Proposition 4.4.1. — The proof follows recalling the definition of des on A®
(see Section 4.2.1), in particular that the profile coordinate dfg is obtained summing up the

distance dgs on each profile component, and applying Lemma A.3.1 to each component
of the profile. UJ

A.4 Lipschitz regularity of composition and renormalization

Consider the composition map

Diff®([0, 1]) x Diff’([0, 1]) — Diff*([0, 1])
9 > fog

A well known difficulty in the theory of renormalization of circle diffeomorphisms is that
composition 1s not differentiable with respect with the natural structure of a Banach space
on Diff*([0, 1]), which is inherited”’ from (C*([0, 1]), R).

A way around this difficulty is to show that the composition, when restricted to
bounded sets of Diff®([0, 1]), is on the other hand Lipschitz with respect to the distance
d, (see Proposition A.4.1 below). From this, one can then show also that the renormal-
ization operator given by Rauzy-Veech induction is Lipschitz (see Section A.4.2 and Pro-
postion 4.5.2).

A.4.1 Lipschitz regularity of composition

The following proposition crucially exploits the good behaviour of of non-linearity n
under composition (see in particular the preservation of mean non-linearity (z2) and the
triangle inequality (uz) for non-linearity in Lemma 2.4.1).

Proposition A4.1. — The composition map Diff®([0, 1]) x Diff*([0, 1]) — Diff’([0,
11) s Lipschtiz with respect to the distance d,, on C S_bounded sets of Diff’ ([0, 1]).

Proof. — Let f1, g1, />, & belong to a fixed bounded K C Diff*([0, 1]), in the sense
of Definition 4.2.1. Recall that by Lemma 4.2.1 (and recalling that the non-linearity is
1, =logDf/(D?f)?, see Section 2.4.1) this implies the existence of a constant K > 0 such
that

| log DA, D/, [log Dgil, [Dgil, Izl Ing] < K

57 Recall that Diff*([0, 1]) is an open subset ong’([O, 11, R), defined in Section A.3. The latter is a codimension 1
affine subspace C3([0, 1]) of tangent space CS’([O, 1, R) := {f € C*([0, 1]) | £(0) = 0 and (1) = 0}. It is endowed of the
structure of a Banach space inherited from the C.



362 SELIM GHAZOUANI, CORINNA ULCIGRAI

for : = 1,2. We want to estimate of fol [Mfi0q — Nprog |- Using the chain rule for non-
linearity (see property (z) in Lemma 2.4.1), we get

1 1
/ 1Nficer = Mol = / 17l 0@ Dgi +ny — 1y, 020 Dgo + 1,1,
0 0

1 1 1
/ |77f10g1 - nfzoggl 5/ |r’g| - ng2| +f |77f1 SFY Dgl - 77f2 OgQDg2|'
0 0 0

The first term on the right hand side is d, (g, &), we then just focus on the second term.
We now rewrite

n; cg1Dgi — nj, 09 Dg = (; 0 g1 Dgy — 1 091 Dgy)
+ (n; 091 Dgy — 1 00 Dgo)
+ (5 090 Dg —np 022 Dgo).

We deal with each of the three terms on the right hand side individually.
Furst term. 'To estimate the first term, let us use that

|77ﬁ og Dg — Npog Dg| < ||D(77f1 og) | [1Dg1 — Dl

Since (f1, g1) are assumed to belong to a bounded set K of Diff*([0, 1]) there exists a
constant C; = G, (K) such that |D(n; o g)| < C,.
Second term. 'To estimate it, we use that

15 0g1Dg — 15 02 Dgo)| < IDgoll Insll llgr — &Il

Last term. Finally, for the last term, by integrating 1, o g Dg, — 1 0 &2 Dg and

. . . 1 1
changing variable using g, we get fo ,|'7f1 02 Dgy —np 0 Dgo| = fo [n; — 1. Because
we are on a bounded set K of Diff([0, 1]), there exists by Lemma 4.2.1 a constant
L =L(K) such that de1 (g1, &) < Ld, (g1, &) and we can conclude that

1
/ N5 081 — np 00| < dy(gr, &) + Cid,y (g1, 2)
0

+ KeKLd,] (g1, 9) + dy(f1, /)

and thus that the composition is Lispchitz for the constant (1 + C; + KeX) on K. O
A.4.2 Lipschitz regulanty of renormalization

Let us recall that V denotes the renormalization map on GIETs defined (almost every-
where) by Rauzy-Veech induction, see Section 2.5. We can now prove Proposition 4.5.2,
namely that V is K-Lipschitz with respect to d, on any set L C X® bounded with respect
to the dgs-topology.
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Proof of Proposition 4.5.2. — Recall that the Banach structure that we are using on
X is given by the identification X* = A x P given by the affine profile coordinates in
Section 2.2.3 (see the definition of the distance 4, Section 4.2.1, the norm is the norm
which induces this distance) we can therefore write V = (V 4, Vp) and it is enough to
show that the restrictin on both coordinates, namely V4 and Vp are Lipschitz.

In [28], it is proven that V4 is actually differentiable and therefore Lispchitz on
bounded sets (see Appendix A in [28]). Therefore, since Vp is obtained by modifying on
component by pre or post-composing it by the restriction of another component, one get
the result by applying Proposition A.4.1. U

A.5 Saddles defined by a non-degenerate vector field

In this Appendix we show that even if a vector field is smooth, it does not have to define a
smooth foliation in the sense of Definition 6.1.2.

Let X be a vector field on R? vanishing at 0 and assume that 0 1s not a critical
point, z.e. DXO is invertible. Assume furthermore that the matrix of DX is of the form

A0
0 u
with A < 0, in such a way that the foliation induced by Xina neighbourhood of 0 is

saddle-like. We treat the case where X is actually equal to Axd, + wyd,. For such an X,
solutions to the differential equation

d -
o =XV

are given by the formula f(£) = (x€"', yoe'). If one sets @ = —%, one easily checks that

the integral curves of X are level sets of the function (%, 9) —> yx”. This function is a
Morse function if and only if @ = 1, or equivalently & = —A. A non-linear version of this
discussion can be obtained by applymg a differentiable Hartman-Grobman theorem to
the vector field X to bring ourselves back to the linear case.
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