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ABSTRACT

We establish the Minimal Model Program for arithmetic threefolds whose residue characteristics are greater
than five. In doing this, we generalize the theory of global F-regularity to mixed characteristic and identify certain stable
sections of adjoint line bundles. Finally, by passing to graded rings, we generalize a special case of Fujita’s conjecture to
mixed characteristic.
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1. Introduction

The Kodaira and Kawamata-Viehweg vanishing theorems are among the most
important tools used in algebraic geometry in characteristic zero and are a key com-
ponent of the minimal model program [BCHM10]. They are crucial to understanding
linear systems as they allow the lifting of global sections of line bundles from lower di-
mensional subvarieties. Unfortunately, these vanishing theorems are false in general when
working over fields of positive characteristic (such as Fp, [Ray78]) or mixed characteristic
rings (such as Z or Zp

1).
In characteristic p > 0, the Frobenius morphism and asymptotic Serre vanishing

can be used as a replacement in some contexts. An important class of such applications
of Frobenius goes back to the development of tight closure theory and the notions of
F-split and F-regular varieties [HH90, MR85, RR85]. The discovery of connections be-
tween these notions and birational geometry led to a plethora of applications, for in-
stance: [Smi97a, MS97, Har98, HW02, HY03, Tak04b, STZ12, Tak04a, Pat14, Zha14,
MS14, CHMS14, Hac15, BST15, Das15, GLP+15, CTW17, CRST18, HP16, HPZ19,
AP22, Eji19, Ber21]. In particular, building on [Kee99] and [Sch14], Hacon and Xu
proved the existence of minimal models for positive characteristic terminal threefolds
over algebraically closed fields of characteristic p > 5 [HX15]; this was then extended
in various directions [CTX15, Bir16, Xu15, BW17, Wal18, HNT20, GNT19, DW22,
XZ19, HW22b, HW22a, HW23].

In the mixed characteristic setting, the theory of perfectoid algebras and spaces
[Sch12] has led to spectacular advancements, including proofs of the direct summand
conjecture and the existence of big Cohen-Macaulay algebras by André [And18, And20]
(see also [Bha18]). Building on these techniques, the second and fourth authors developed
a mixed characteristic analog of F-regularity called BCM-regularity in [MS18, MS21],
and, together with the fifth, sixth, and the seventh author, its adjoint (plt) variant (see
[MST+22]). In particular, it was shown that klt surface singularities of mixed charac-
teristic (0, p > 5) are BCM-regular and that inversion of adjunction holds for three-
dimensional plt singularities; the positive characteristic analogs of these results were key
initial ingredients for the aforementioned work of Hacon and Xu.

What is missing is a mixed characteristic analog of the theory of global F-regularity,
a strengthening of the log Fano condition which was introduced in positive characteristic
in [Smi00] (see also [SS10]). We establish such a theory, which we call globally+++-regularity,
based upon the recent work of the first author, [Bha20], who showed that the absolute

1 Burt Totaro [Tot21] has pointed out to us that examples of failure of relative Kawamata-Viehweg vanishing in
mixed characteristic can be obtained via methods similar to those in [Tot19].
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integral closure R+ of an excellent domain R is Cohen-Macaulay in mixed characteristic
and deduced a variant of Kodaira vanishing up to finite covers. Like in positive character-
istic one may also define globally+++-regularity by the study of BCM-regularity of section
rings (normalizations of cones); in fact, this point of view will be important in proofs of
some of our results. Note that, while globally +++-regular varieties (and pairs) could also
reasonably be called global splinters, our syntax more closely matches existing terminology
for global F-regularity.

As our main application we develop the mixed characteristic Minimal Model Pro-
gram for threefolds when the residual characteristics are zero or bigger than 5.

Theorem A. — Let R be a finite-dimensional excellent domain with a dualizing complex and

containing Z whose closed points have residual characteristics zero or greater than 5. Let X be a klt

integral scheme of dimension three which is projective and surjective over Spec(R). Then we can run a

Minimal Model Program on X over Spec(R) which terminates with a minimal model or a Mori fiber

space.

In fact, our results are much stronger (see Section 1.1 for more details). They ex-
tend earlier results on the mixed characteristic case including H. Tanaka’s work on the
MMP for excellent surfaces ([Tan18b]) and the work of Y. Kawamata on the MMP
for mixed characteristic semistable threefolds [Kaw94]. Other related work appears in
[Lip69, Theorem 4.1], [Lic68] and [Sha66]. We also point out that some variants of
this theorem were obtained independently by Takamatsu and Yoshikawa in [TY20] (see
Remark 1.1 for additional discussion).

From now on, (R,m) is a Noetherian complete local domain of mixed character-
istic (0, p > 0) (although what follows also works when R is of characteristic p > 0). For
simplicity, in the introduction, we present our initial results in the non-boundary-case
(�= 0) and append references to full statements.

First, we discuss the analog of global F-regularity. We say that a normal integral
scheme X proper over R is globally +++-regular if OX −→ f∗OY splits for every finite cover
f : Y−→X, and observe the following as a straightforward consequence of generalizations
and reformulations (see Section 3) of the vanishing theorems of [Bha20].

Theorem B (Corollary 6.12). — Suppose that X is globally +++-regular and proper over

Spec(R). If L is a big and semiample line bundle on X, then Kawamata-Viehweg vanishing holds for

L , that is Hi(X,ωX⊗L )= 0 for i > 0.

In positive characteristic, global F-regularity implies global +++-regularity (Lem-
ma 6.14), but the converse is an open problem even in the affine setting.

In fact, the previous result is an direct consequence of the following generalization
of the vanishing theorem of Bhatt to more arbitrary excellent local bases [Bha20]. Indeed,
this vanishing theorem will be used multiple times in key ways in this paper.



72 B. BHATT ET AL.

Theorem C (Corollary 3.7). — Suppose that (T, x) is an excellent local ring of residue charac-

teristic p > 0. Let π : X −→ Spec(T) be a proper map with X integral. Suppose that L ∈ Pic(X)

is a big and semiample line bundle. Then for all b < 0 and all i < dim(X), we have that

Hi(R�x(R�(X+,Lb)))= 0.

Another key notion used in applications in positive characteristic birational geom-
etry is that of Frobenius stable sections S0(X,M ) ⊆ H0(X,M ), for a line bundle M ,
and its variant T0(X,M ), introduced in [Sch14] and [BST15] respectively. These sec-
tions behave as if Kodaira vanishing was valid for them. In this article, we consider the
following mixed characteristic analog thereof (see Definition 4.2):

B0(X,M ) :=
⋂

f : Y−→X
finite

im
(
H0(Y,OY(KY/X + f ∗M))−→H0(X,M )

)
.

We call these global sections +++-stable. We also consider an adjoint (plt-like) version
B0

S(X,S;M ) for an irreducible divisor S and a line bundle M =OX(M).

Theorem D. — The following holds for a normal integral scheme X proper over Spec(R):

(a) Under appropriate assumptions,

B0
S(X,S;OX(KX + S+A))−→ B0(S;OS(KS +A|S))

is surjective, where A is an ample Cartier divisor, see Theorem 7.2.

(b) X is globally+++-regular if and only if B0(X,OX)=H0(X,OX), see Proposition 6.8.

(c) If X is Q-Gorenstein, then

B0(X,M ) :=
⋂

f : Y−→X
alteration

im
(
H0(Y,OY(KY/X + f ∗M))−→H0(X,M )

)
,

see Corollary 4.13.

(d) If X= Spec R is Q-Gorenstein and affine, then B0(X,OX)= τR+(R), where the latter term

is the BCM-test ideal defined in [MS21], see Proposition 4.17.

(e) B0 transforms as expected under finite maps and alterations, see Section 4.2.

(f) If L is an ample line bundle on X, and S=⊕
i≥0 H0(X,L i) is the section ring, then for i > 0

we have that B0(X,ωX ⊗L i) is the ith graded piece of a test submodule τR+,gr(ωS) on S, see

Proposition 5.5.

(g) If X is projective over Spec R, is regular (or has sufficiently mild singularities) and L is ample,

then for n� 0

B0(X,ωX⊗L n)=H0(X,ωX⊗L n),

see Theorem 5.8.
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The proofs of the above results are based on [Bha20, BL] as well as ideas developed
in [Sch14, BST15, MS21, MST+22]. We should note that (c) shows that B0 agrees with
the notion of T0 introduced in [BST15] for Q-Gorenstein varieties in characteristic p > 0
and defined and used in similar ways in mixed characteristic in the independent work
[TY20] mentioned above.

Theorem E (Theorem 5.9). — Let X be a d-dimensional scheme that is regular (or has

sufficiently mild singularities) and which is flat and projective over R. Set t = dim R and let L
be an ample globally generated line bundle on X. Then ωX ⊗ L d−t+1 is globally generated by

B0(X,ωX⊗L d−t+1).

We also note that we obtain related global generation results for adjoint line bun-
dles ωX⊗L via Seshadri constants, see Theorem 7.11.

One should expect that this variant of the Fujita conjecture would hold for any X
admitting BCM-rational singularities (in the sense of [MS21]), as in [Smi97b, Kee08].
Indeed, our argument would show this if we knew that the formation of our test ideals
commuted with localization in a sufficiently strong sense. Indeed, a limited localization
result from [MST+22] was how we proved (g) above, which was used in our proof of this
theorem. The question of whether BCM-test ideals localize in general is one of the key
remaining open problems about BCM-singularities. In forthcoming work, we shall prove
that localization holds in certain circumstances and derive geometric consequences.

We warn the reader however that, in general, the localization is false for B0(X,M )

when X is projective:

Theorem F (Example 4.14). — Let E be a smooth elliptic curve over Zp. Then

(a) B0(E,OE)= 0, but

(b) B0(EQp
,OEQp

)=Qp.

This also shows that in contrast to positive characteristic, B0(X,M ) cannot be
calculated on a single finite cover (or an alteration).

Our definition of B0 works most naturally when the base ring is complete. How-
ever, certain partial results on lifting sections can be obtained when the base is not com-
plete, see Corollary 7.8. Since most geometric results can be deduced from the complete
case, we shall always assume, when talking about B0, that the base is complete. In particu-
lar, our setup allows for running the Minimal Model Program over algebraic and analytic
singularities. Since many results of [Bha20] assume that the base is finitely presented over
a DVR, we provide generalizations thereof in Section 3.

1.1. Minimal Model Program. — In this subsection, R is an excellent domain of finite
Krull dimension admitting a dualizing complex. In most theorems, we will also assume
that the closed points of R have residual characteristics zero or greater than 5 (the cases
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R = Z[1/30] or R = Zp for p > 5 are already interesting). Let T be a quasi-projective
scheme over R.

Theorem G (MMP, Proposition 9.20, Theorem 9.37). — Let (X,B) be a three-dimensional

Q-factorial dlt pair with R-boundary, which is projective over T. Assume that the image of X in T is

of positive dimension and that T has no residue fields of characteristic 2,3 or 5.

If KX + B is pseudo-effective, then we can run a (KX + B)-MMP and any sequence of steps

of this MMP terminates with a log minimal model.

If KX + B is not pseudo-effective, then we can run a (KX + B)-MMP with scaling over T
which terminates with a Mori fiber space.

Note that the assumption on the image of X in T is needed because we do not
know that all flips terminate in purely positive characteristic. In fact, even the MMP with
scaling is not known to terminate when the base field is imperfect, however, log minimal
models exist in this case by [DW22]. Also, we do not know the existence of Mori fibre
spaces when T = Spec(k) for an imperfect field k. Indeed, we do not know the validity
of the Borisov-Alexeev-Borisov conjecture in this setting, the version of which over an
algebraically closed field was used in [BW17].

Theorem H (Base-point-free theorem, Theorem 9.17, Theorem 9.27). — Let (X,B) be a three-

dimensional Q-factorial klt pair with R-boundary admitting a projective morphism f : X−→ T. Let L
be an f -nef Q-Cartier divisor on X such that L− (KX + B) is f -big and nef. Suppose that

(a) L is f -big, or

(b) the image of X in T is positive dimensional and T has no residue fields of characteristic 2,3 or 5.

Then, L is f -semiample.

Note that a similar result for R-divisors is proved in Theorem 9.33.

Theorem I (Cone theorem, Theorem 9.28). — Let (X,�) be a three-dimensional Q-factorial

dlt pair with R-boundary, projective over T having no residue fields of characteristic 2,3 or 5 and such

that the image of X in T is of positive dimension. Then there exists a countable collection of curves2 {Ci}
over T such that

(a)

NE(X/T)=NE(X/T)KX+�≥0 +
∑

i

R≥0[Ci],

(b) The rays [Ci] do not accumulate in the half space (KX +�)<0, and

(c) For all i, there is a positive integer dCi
such that

0 <−(KX +�) ·k C≤ 4dCi

2 Curves in this article are assumed to be projective over the base, see the definition in Section 2.5.
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and if L is any Cartier divisor on X, then L ·k Ci is divisible by dCi
, where k is the residue field of

the closed point of T lying under C.

Note that we cannot expect the bounds on extremal rays to be as in characteristic
zero, since the residue fields of T might not be algebraically closed (cf. [Tan18a, Example
7.3] and [Tan18b, DW22]).

Besides the above constructions and results on B0, the proofs of the above results
are based on the recent generalization of Keel’s theorem on the semiampleness of line
bundles to mixed characteristic (see [Wit22]), the MMP for mixed characteristic sur-
faces (see [Tan18b]), and all the previous work on the positive characteristic MMP (most
notably: [HX15] for the existence of pl-flips with standard coefficients, [Bir16] for the
existence of pl-flips with arbitrary coefficients, [BW17] for the termination of the MMP
with scaling and the existence of Mori fiber spaces, and [DW22] for the generalization of
the cone and contraction theorems to non-perfect residue fields).

Our proof of the fact that pl-flips, with standard coefficients, exist follows the strat-
egy of [HX15], see Section 8. Although we employ all key ideas of their work, we are
able to simplify each step. Further, we provide a new proof of the base point free theorem
for nef and big line bundles; we infer it from the mixed characteristic Keel’s theorem
by employing the recent work of Kollár, [Kol21], on the non-Q-factorial MMP, and the
ideas of [HW22b]. In fact, our proof yields the validity of the base point free theorem for
big and nef line bundles for threefolds in any positive characteristic p > 0, a result which
was not known before.

The termination of all flips when the image of X in T has positive dimension
and when KX + � is pseudo-effective, is proven by the argument of Alexeev-Hacon-
Kawamata, see [AHK07]. Our proof of the base point free theorem for non-big line
bundles uses this together with abundance in lower dimensions to provide substantial
simplifications over the argument from [BW17]. Furthermore, our more general set-up
also requires a different proof of the cone theorem. These are used to deduce termination
with scaling and the existence of Mori fiber spaces following [BW17].

Remark 1.1. — While finalizing our project, we were contacted by Teppei Taka-
matsu and Shou Yoshikawa, who informed us that they were working on related top-
ics (see [TY20]). In their article, among many other things, they show the validity of
some special cases of the three-dimensional MMP in all (mixed) characteristics p≥ 0: for
semistable threefolds (generalizing [Kaw94]) and for resolutions of singularities. Aside
from [Bha20] and [Kaw94], their work builds upon ideas from the proof of the existence
of some flips discovered recently in [HW23] and on the results of [HW22b]. They also
define and study the notion of global T-regularity which is very closely related to our
global+++-regularity, and obtain results on lifting sections.

1.2. Applications to moduli theory. — We have the following sample corollaries to the
moduli theory of surfaces. We recall that stable surfaces are the two dimensional gener-
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alizations of stable curves. In particular, they are supposed to provide a good compactifi-
cation of the moduli space of smooth canonically polarized surfaces. The present article
concludes the last step needed to show that their moduli stack exists over Z[1/30] (see
[Pat18] for a historical overview of the subject).

Theorem J. — (Existence of M 2,v over Z[1/30], Corollary 10.2)

(a) The moduli stack M 2,v of stable surfaces of volume v over Z[1/30] exists as a separated Artin

stack of finite type over Z[1/30] with finite diagonal.

(b) The coarse moduli space M2,v of stable surfaces of volume v over Z[1/30] exists as a separated

algebraic space of finite type over Z[1/30].
Unfortunately at this point it is not known whether M 2,v is proper, and M2,v is

projective over Z[1/30]. The best we can say is the following.

Theorem K. — (Theorem 10.6) Fix an integer v > 0 and let

d =
∏

p prime, p≤f (v)

p, where f (v)=
{

373 if v = 1

213v+ 48 if v ≥ 2.

Then, the closure M
sm

2,v of the locus of smooth surfaces in M 2,v is proper over Z[1/d]. Additionally, it

admits a projective coarse moduli space M
sm
2,v over Z[1/d].

These results are shown in Section 10.

1.3. Applications to commutative algebra. — We highlight one more standard corollary
of the minimal model program which we expect to be useful in commutative algebra. It
follows from the above results as in [Kol08, Exercises 108, 109].

Corollary L. — Suppose (X = Spec R,�) is a three-dimensional klt pair where R is an

excellent local domain of residue characteristic p for p > 5. Then for every Weil divisor D on X we have

that the local section ring
⊕

i≥0 OX(iD) is finitely generated. In other words, if I is an ideal of pure

height one in R, then the symbolic power algebra

R⊕ I⊕ I(2)⊕ I(3)⊕ . . .

is finitely generated.

This result in characteristic p has applications to tight closure theory. In fact, com-
bining the above Corollary with [AP22, Theorem B] yields a generalization of [AP22,
Theorem A] from rings essentially of finite type over a field to the case of excellent local
rings.

Corollary M. — Let (R,m) be a four-dimensional excellent local ring of equal characteristic

p > 5. If R is F-regular then R is strongly F-regular.
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1.4. Applications to four-dimensional Minimal Model Program and liftability. — In
[HW23], it is shown that a variant of the four-dimensional semistable Minimal Model
Program over curves and over singularities is valid in positive characteristic p > 5 contin-
gent upon the existence of resolutions of singularities. Using the techniques and results
of our paper as well as the generalisation of the result of Cascini and Tanaka on relative
semiampleness (now proven in [Wit21]), this semistable MMP may be extended to mixed
characteristic. In turn, this may be used to show that liftability of three-dimensional va-
rieties of characteristic p > 5 is stable under the Minimal Model Program. These results
are now contained in an update to [HW23].

1.5. Technical notes. — We summarize here the major technical points of the article.
(a) Most of the theory developed in the article assumes we are working over a complete

local base. This lets us show, in Lemma 4.8, that elements of B0(X,OX(M)) have
compatible systems of pre-images in H0(Y,OY(KY/X + f ∗M)). In fact, even in charac-
teristic p > 0, [DM20] gives examples of excellent regular local (non-F-finite) rings
that are not F-split. It follows that there cannot be compatible systems of pre-images for
these examples for X= Spec R. Our proofs crucially use this compatibility (or Matlis
dual versions). In proofs, typically completeness comes as the necessary condition to
apply Matlis-duality, e.g., Corollary 4.13 and Theorem 7.2.

(b) A priori plt pairs in the non-Q-factorial setting could have intersecting boundary
components, cf., Lemma 2.33.

(c) We needed Bertini-type statements over a local ring of mixed characteristic, see Sec-
tion 2.4.

(d) The known resolution theorems for Noetherian excellent schemes of dimension 3
do not produce resolutions by sequences of blow-ups of non-singular centers. See
Remark 2.35.

(e) When we pass to the localization or the completion of the base, then Q-factoriality or
the Picard number being 1 may be lost. In particular certain theorems and definitions
had to be adapted, e.g., the paragraphs after Definition 2.28 and Definition 8.4, as
well as the proof of Corollary 8.26.

(f) When working over arbitrary Noetherian excellent schemes, it can happen that the
codimension and the dimension of a closed subscheme does not add up to the di-
mension of the ambient scheme, cf., Remark 2.23.

(g) For the technical advances related to the Minimal Model Program, see the begin-
nings of Section 8 and Section 9.

2. Preliminaries

For much of the article we work over an excellent domain R of finite Krull dimension with a

dualizing complex. Unless otherwise specified, we shall write R+ to denote an absolute integral closure
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of R in the sense of [Art71] (i.e., the integral closure of R in an algebraic closure of Frac(R)); this

object is unique up to isomorphism, and our constructions will be independent of the specific choice.

Moreover, except for Section 2, Section 3 and Section 9 or where otherwise noted, we will also assume

that (R,m) is a complete local Noetherian domain whose residual characteristic is p > 0 (in this case

R is excellent [Sta, Tag 07QW], it has finite Krull dimension [Sta, Tag 0323], and it admits a

dualizing complex as discussed in Section 2.1). Most typically, we are interested in the case that R is

of mixed characteristic (0, p > 0). Now suppose that a scheme S is excellent with a dualizing complex

(most typically S = Spec R). Observe that any scheme X with a map f : X −→ S of finite type is

also excellent [Sta, Tag 07QU] and has a dualizing complex induced from S, see [Sta, Tag 0AUA],

which we take as ω
�

X = f !ω �

S when f is separated (our typical case). Furthermore, in Section 9 we will

sometimes assume that our schemes X have XQ non-trivial.

In this article, we say that a scheme over R is n-dimensional if its absolute dimension

is equal to n (as opposed to the relative dimension). Furthermore, the underlying scheme
of a pair is always assumed to be normal, excellent, Noetherian, integral and admitting a
dualizing complex (see Definition 2.27 for the precise statement).

If X is a normal integral scheme over R, then Xm denotes the fiber over m ∈
Spec R.

Definition 2.1. — Given an integral Noetherian scheme X, an alteration π : Y −→ X is a

surjective generically finite proper morphism with Y integral. (We shall often be in the situation where Y
is normal.)

Note that constructibility of the level sets and the upper semi-continuity of the
dimension of fibers function holds in the setting of Definition 2.1 [Sta, Tag 05F9], [Sta,
Tag 0D4I]. Similarly, it holds that over the locus where the fibers are finite, π is finite
[Sta, Tag 02OG]. In particular, if π is an alteration, then there exists a non-empty open
set over which π is finite. Additionally, the additivity of dimension also holds here [Sta,
Tag 02JX], and so we have dim X= dim Y.

Throughout this article, we will frequently use that local cohomology on the
Noetherian ring R commutes with direct limits (in other words, filtered colimits) just
as sheaf cohomology does on Noetherian topological spaces, see [Har77, Chapter III,
Proposition 2.9] [Sta, Tag 01FF]. In particular, we have for a directed system of R-
modules Mα that

lim−→
Mα

Hi
m
(Mα)=Hi

m
(lim−→

Mα

Mα),

see [BS98, Theorem 3.4.10]. More generally, if X is a Noetherian scheme and E⊆X is
closed, by mimicking the argument of [Har77, Chapter III, Proposition 2.9], one imme-
diately sees for a directed system of sheaves of OX-modules Fα that

(2.1.1) lim−→
Fα

Hi
Z(X,Fα)=Hi

Z(X, lim−→
Fα

Fα).

https://stacks.math.columbia.edu/tag/07QW
https://stacks.math.columbia.edu/tag/0323
https://stacks.math.columbia.edu/tag/07QU
https://stacks.math.columbia.edu/tag/0AUA
https://stacks.math.columbia.edu/tag/05F9
https://stacks.math.columbia.edu/tag/0D4I
https://stacks.math.columbia.edu/tag/02OG
https://stacks.math.columbia.edu/tag/02JX
https://stacks.math.columbia.edu/tag/01FF
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Recall also that tensor products commute with arbitrary colimits [Sta, Tag 00DD].

2.1. Dualizing complexes and local duality. — Recall that any complete Noetherian
local ring (R,m) has a dualizing complex ω

�

R, since such an R is a quotient of a regular
ring ([Sta, Tag 032A], [Sta, Tag 0A7I], [Sta, Tag 0A7J]). We always choose ω

�

R to be
normalized in the sense of [Har66], that is H−iω

�

R = 0 for i > dim R and H−dim Rω
�

R �= 0.
If then π :X−→ Spec R is a proper morphism (or even separated morphism), we define
the dualizing complex ω

�

X of X to be π !ω �

R and the dualizing sheaf ωX to be H−dim X(ω
�

X).
We make these choices so that Grothendieck local duality can be applied as described
below. Before doing that however, we observe that when R is an excellent regular domain
of finite Krull dimension, we can define ω

�

X and ωX similarly. We shall work in this non-
local generality in Section 9.

Back in the complete local case, fix E = ER(R/m) to be an injective hull of the
residue field. This provides an exact Matlis duality functor (−)∨ :=HomR(−,E) which
induces an anti-equivalence of categories of Noetherian R-modules with Artinian R-
modules [Sta, Tag 08Z9]; by exactness, Matlis duality extends to the derived category
as well, and we continue to denote it by (−)∨. In particular, since E is injective, we may
harmlessly identify HomR(−,E) and R HomR(−,E). Note that here, and when working
in the derived category in general, we shall also simplify notation by writing E (rather
than E[0]) for the relevant complex concentrated in degree zero.

There is also a Matlis duality when (R,m) is not complete (but still local and
Noetherian). In this, we still define E = ER(R/m) to be the injective hull of the residue
field. Then (−)∨ :=HomR(−,E) is an exact functor which takes Noetherian modules to
Artinian modules (which are then canonically modules over R̂). Note that for M Noethe-
rian, (M∨)∨ ∼= M̂. For additional discussion see [BS98, 10.2.18].

Since we work with normalized dualizing complexes, we have an isomorphism
R�m(ω

�

R)� E [Sta, Tag 0A81]. Using this isomorphism and the complete-torsion equiv-
alence ([Sta, Tag 0A6X]) shows the following compatibility of Grothendieck and Matlis
duality: for any K ∈Db

coh(R), the following natural maps give isomorphisms

R HomR(K,ω
�

R)�R HomR

(
R�m(K),R�m(ω

�

R)
)

�HomR

(
R�m(K),E

)=R�m(K)∨.

As R is complete and HomR(−,E) induces an anti-equivalence of Noetherian and Ar-
tinian R-modules, this yields

(
R HomR(K,ω

�

R)
)∨ �R�m(K)

for K ∈Db
coh(R). For more details see for instance [Har67, Har66, BH93] and [Sta, Tag

0A81].
We will be particularly interested in applying the above considerations in the fol-

lowing situation.

https://stacks.math.columbia.edu/tag/00DD
https://stacks.math.columbia.edu/tag/032A
https://stacks.math.columbia.edu/tag/0A7I
https://stacks.math.columbia.edu/tag/0A7J
https://stacks.math.columbia.edu/tag/08Z9
https://stacks.math.columbia.edu/tag/0A81
https://stacks.math.columbia.edu/tag/0A6X
https://stacks.math.columbia.edu/tag/0A81
https://stacks.math.columbia.edu/tag/0A81
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Lemma 2.2. — Suppose that (R,m) is a Noetherian complete local ring, X is an integral

scheme proper over Spec R, and that L is a line bundle on X. Then

R�mR�(X,L )∼=Hom
(
R�(X,L −1⊗ω

�

X),E
)
.

In the case that X is Cohen-Macaulay, the right side becomes Hom
(
R�(X,L −1⊗ωX[dim X]),E

)
.

Furthermore,

R�mR�(X,ω
�

X⊗L −1)∼=Hom
(
R�(X,L ),E

)

and if X is Cohen-Macaulay, the left side becomes R�m(R�(X,ωX⊗L −1))[dim X].
Proof. — Both statements follow by combining Grothendieck and local duality with

the observations made above. In the first case take K=R�(X,L ) and in the second take
K=R�(X,ω

�

X⊗L −1). �

We will also use the following consequence of local duality frequently.

Lemma 2.3. — Suppose that (R,m) is a Noetherian complete local ring, X is an integral

scheme proper over Spec R, and that F is a coherent sheaf on X. Then we have an isomorphism of

R-modules
(
HdR�mR�(X,F )

)∨ ∼=HomOX(F ,ωX),

where d = dim X.

Proof. — The fact that X−→ Spec R is proper is essential in what follows. By local
duality ([Sta, Tag 0A84]) and Grothendieck duality (cf. [Sta, Tag 0AU3(4c)]), we have

(2.3.1)
(

HdR�m

(
R�(X,F )

))∨ ∼=H−dR HomR

(
R�(X,F ),ω

�

R

)

∼=H−dR� ◦RH omOX(F ,ω
�

X)∼=H−dR HomOX(F ,ω
�

X).

If X was Cohen-Macaulay so that ω
�

X = ωX[d], then we would be done. However, we
are taking the bottom cohomology, so the higher cohomologies of the dualizing complex

do not interfere, as we work out in detail now. Form a triangle ωX[d] −→ ω
�

X −→ C
+1−→.

Applying R HomOX(F ,−) to this triangle we get:

R HomOX(F ,ωX[d])−→R HomOX(F ,ω
�

X)−→R HomOX(F ,C)
+1−→ .

Note that C and hence R HomOX(F ,C) only live in cohomological degree ≥ −d + 1,
thus we have

(2.3.2) H−dR HomOX(F ,ω
�

X)∼=H−dR HomOX(F ,ωX[d])∼=HomOX(F ,ωX).

Combining (2.3.1) and (2.3.2) yields exactly the statement of the claim. �
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2.2. Big Cohen-Macaulay algebras. — Let (R,m) be a Noetherian local ring of di-
mension d and let M be a (not necessarily finitely generated) R-module. A sequence of
elements x1, . . . , xn of R is called a regular sequence on M if xi+1 is a nonzerodivisor on
M/(x1, . . . , xi)M for each i. We consider the following conditions on M (which are equiv-
alent when M is finitely generated).
(a) Hi

m
(M)= 0 for all i < d .

(b) There is a system of parameters x1, . . . , xd of R that is a regular sequence on M.
(c) Every system of parameters of R is a regular sequence on M.
(d) Hi

P(MP)= 0 for all P ∈ Spec(R) and all i < dim(RP).
It is straightforward to see that (c) ⇒ (b) ⇒ (a). If M satisfies condition (a) and

M/mM �= 0, then the m-adic completion M̂ satisfies condition (c) by [BH93, Exercise
8.1.7, Theorem 8.5.1]. We will see below (Lemma 2.6) that, under mild assumptions on
R, condition (c) and condition (d) are equivalent. These implications are summarized in
the diagram below.

(
(a) Hi

m
(M)= 0

for i < d

)

if M �=mM and

M := M̂

��

(
(b) ∃x1, . . . , xd s.o.p. of R,

which is a reg. seq. on M

)

��

(
(c) ∀x1, . . . , xd s.o.p. of R,

is a reg. seq. on M

)

��

��

if R is

equidimensional

& catenary

��(
(d) Hi

P(MP)= 0
for i < dim RP

)

The module M is called:
◦ big Cohen-Macaulay if M satisfies condition (b) and M/mM �= 0, see [Hoc75],
◦ balanced big Cohen-Macaulay if M satisfies condition (c) and M/mM �= 0, see [BH93,

Chapter 8].
◦ cohomologically Cohen-Macaulay if M satisfies condition (d), see [Bha20].

If B is an R-algebra that is (big/balanced big/cohomologically) Cohen-Macaulay as an
R-module, then it is called a (big/balanced big/cohomologically) Cohen-Macaulay algebra. Note
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that, in the definition of cohomologically Cohen-Macaulay, we do not require the non-
triviality condition M/mM �= 0, so this definition passes to localization, which is conve-
nient for some inductive arguments in [Bha20].

Remark 2.4. — For our purpose, even the weakest notion (a) above suffices for
most of our applications. In fact, we can usually replace B by its m-adic completion to
obtain the strongest notion. Thus, for most practical purposes, the distinctions between
these notions can be ignored.

Balanced big Cohen-Macaulay algebras always exist: in equal characteristic, this is
a result of Hochster-Huneke [HH92, HH95], and in mixed characteristic, this is settled
by André [And18]. For our purposes, the following theorem (due to Hochster-Huneke
in equal characteristic p > 0, and the first author in mixed characteristic (0, p > 0)) gives
an explicit construction of balanced big Cohen-Macaulay algebras, and is the key behind
our definitions and constructions.

Theorem 2.5. — Let (R,m) be an excellent local domain of residue characteristic p > 0. Let

R+ be an absolute integral closure of R. Then Hi
m
(R+)= 0 for i < dim R and the p-adic completion

of R+ is a balanced big Cohen-Macaulay algebra.

Proof. — In positive characteristic, the p-adic completion of R+ is R+ and this is
[HH92, Theorem 1.1]. In mixed characteristic, the statement about local cohomology
is [Bha20, Theorem 5.1]. The extension to the p-adic completion is explained below in
Corollary 2.10, also see [Bha20, Corollary 5.17]. �

We caution the reader that if R has equal characteristic 0 (i.e., contains Q) with
dim(R)≥ 3, then R+ is never big Cohen-Macaulay in any of the senses discussed above
because of a simple trace obstruction. For example, one may first construct a finite normal
domain extension S of R that is not Cohen-Macaulay and Hi

m
(S) �= 0 for some i < dim R.

Since the normalized (field) trace splits the inclusion S −→ S+ = R+, Hi
m
(S) is a direct

summand of Hi
m
(R+) and thus R+ fails to satisfy condition (a). See also [ST21, Proof of

Proposition 2.1] for a collection of explicit constructions.
We next want to explain how to drop the additional assumptions on the existence

of Noether normalization in [Bha20, Corollary 5.17] in the local case.

Lemma 2.6. — Let (R,m) be a Noetherian, equidimensional, catenary local ring and let M
be an R-module. Then every system of parameters of R is a regular sequence on M if and only if

Hi
P(MP)= 0 for all P ∈ Spec(R) and all i < dim(RP). In particular, M is balanced big Cohen-

Macaulay if and only if M is cohomologically Cohen-Macaulay and M/mM �= 0.

Proof. — The if direction follows from [Bha20, Corollary 2.8]. For the only if di-
rection, let P be a prime ideal of height h. There exists x1, . . . , xh part of a system of
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parameters such that P is a minimal prime of (x1, . . . , xh). Thus we know that x1, . . . , xh is
a regular sequence on M and hence a regular sequence on MP. But the image of x1, . . . , xh

is a system of parameters on RP, and thus Hi
P(MP)= 0 for all i < h as desired. �

Lemma 2.7. — Suppose R is a commutative ring and f , g ∈ R is a regular sequence on an

R-module N. Then g, f is a regular sequence on N̂f , the f -adic completion of N.

Proof. — First of all, f is a nonzerodivisor on N and hence a nonzerodivisor on
N̂f . Because N/f N ∼= N̂f /f N̂f , f , g is a regular sequence on N̂f . This implies that f is
a nonzerodivisor on N̂f /gN̂f . It remains to prove that g is a nonzerodivisor on N̂f . So
suppose ga= 0 where a=∑∞

i=0 aif
i where ai ∈N. Then for each k,

g ·
k∑

i=0

aif
i =−g ·

∞∑

j=k+1

aj f
j ∈ f k+1N̂f .

Thus we actually have g ·∑k

i=0 aif
i ∈ f k+1N and hence

∑k

i=0 aif
i ∈ f k+1N for each k since

f , g is a regular sequence on N. But then we have

a=
∞∑

i=0

aif
i =

k∑

i=0

aif
i +

∞∑

j=k+1

aj f
j ∈ f k+1N̂f

for all k, which implies a= 0 since N̂f is f -adically separated. �

Lemma 2.8. — Suppose N is f -adically complete and f is a nonzerodivisor on N/gN, then

N/gN is f -adically complete.

Proof. — N/gN is always derived f -adically complete. Since f is a nonzerodivisor
on N/gN, we know that the f -adic completion of N/gN is the same as the derived f -adic
completion of N/gN, which is N/gN. Hence N/gN is f -adically complete. �

Theorem 2.9. — Let (R,m) be a Noetherian, equidimensional, catenary local ring and let M
be an R-module. Suppose t ∈R is a parameter such that

(a) t is a nonzerodivisor on M
(b) M/tM is balanced big Cohen-Macaulay over R/tR.

Then M̂t , the t-adic completion of M, is balanced big Cohen-Macaulay over R.

Proof. — We prove by induction on d = dim(R). So we assume the conclusion of
the theorem holds whenever the local ring has dimension < d .

We first prove that every system of parameters x1, . . . , xd of R such that xi = t for
some i is a regular sequence on M. This is clear if i = 1 and so we assume x1 �= t. We
claim that
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(c) t is a nonzerodivisor on M̂t/x1M̂t .
(d) M̂t/(x1, t)M̂t is balanced big Cohen-Macaulay over R/(x1, t).

Here (d) is obvious since M̂t/(x1, t)M̂t =M/(t, x1)M, and (c) follows from Lemma 2.7
since t, x1 is a regular sequence on M.

By induction, we know that the t-adic completion of M̂t/x1M̂t is balanced big
Cohen-Macaulay over R/x1R. Since t is a nonzerodivisor on M̂t/x1M̂t , by Lemma 2.8
M̂t/x1M̂t is t-adically complete. Therefore M̂t/x1M̂t is balanced big Cohen-Macaulay
over R/x1R. But since x1 is a nonzerodivisor on M̂t by Lemma 2.7, x1, . . . , xd is a regular
sequence on M̂t .

Now let P be a prime ideal of height h. Suppose t ∈ P, then since M̂t/tM̂t =M/tM,
we have Hi

P((M̂
t)P/t(M̂t)P)=Hi

P((M/tM)P)= 0 for all i < h−1, which by the long exact
sequence of local cohomology implies that Hi

P(M̂
t)= 0 for all i < h. Now suppose t /∈ P,

by prime avoidance, we can pick x1, . . . , xh and xh+2, . . . , xd such that

(e) P is a minimal prime of (x1, . . . , xh)

(f) x1, . . . , xh, t, xh+2, . . . , xd is a system of parameters of R.

By what we have already proved, x1, . . . , xh, t, xh+2, . . . , xd and hence x1, . . . , xh is a regular
sequence on M̂t . Thus x1, . . . , xh is a regular sequence on (M̂t)P and so Hi

P((M̂
t)P)= 0 for

all i < h. Therefore M̂t is cohomologically Cohen-Macaulay. Since M̂t/mM̂t =M/mM �=
0 (by condition (b)), M̂t is balanced big Cohen-Macaulay as desired. �

Now we can prove the promised extension of [Bha20, Corollary 5.17].

Corollary 2.10. — Let (R,m) be an excellent local domain of mixed characteristic (0, p > 0).

Then R̂+
p
, the p-adic completion of R+, is a balanced big Cohen-Macaulay.

Proof. — This follows from [Bha20, Corollary 5.11] and Theorem 2.9. �

As we mentioned before, one advantage of the notion of cohomologically Cohen-
Macaulay is that it behaves well under localization. It is not clear that (balanced) big
Cohen-Macaulay algebras behave well under localization, we record the following partial
result for psychological comfort; it will not be used in this paper.

Proposition 2.11. — Suppose R is a complete Noetherian local domain and B is a balanced big

Cohen-Macaulay algebra, then BP is balanced big Cohen-Macaulay for RP for all P ∈ Spec(R).

Proof. — Let x1, ..., xh be a system of parameters in RP, by prime avoidance, we
may assume that x1, ..., xh is also part of a system of parameters of R, thus it is a regular
sequence on B and hence a possibly improper regular sequence on BP. But since B is big
Cohen-Macaulay and R is a Noetherian complete local domain, B is a solid R-algebra
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(see [Hoc94, Corollary 2.4]) and thus Spec(B) −→ Spec(R) is surjective, so BP/PBP �= 0
and hence x1, . . . , xh is a regular sequence on BP. �

We conclude our discussion with a definition related to the discussion above.

Definition 2.12 (Splinters). — A Noetherian reduced ring R is called a splinter if for every

finite extension of rings R⊆ S we have that R ↪→ S splits as a map of R-modules.

As mentioned above, in characteristic zero, every normal ring is a splinter (the
trace can be used to split the inclusions). However, in characteristic p > 0 or mixed
characteristic (0, p > 0), if a local ring (R,m) is a splinter, then Hi

m
(R) −→ Hi

m
(R+) =

Hi
m
(lim−→S⊆R+

S) is injective for every i > 0. In particular, by Theorem 2.5 we see that
splinters are Cohen-Macaulay.

2.3. Resolution of singularities. — In this section, we recall known results about res-
olutions of singularities for mixed characteristic three-dimensional schemes. Note that
resolutions of singularities exist for Noetherian excellent surfaces in full generality by
[Lip78].

Theorem 2.13 ([CP19, Theorem 1.1] and [CJS20, Corollary 1.5]). — Let X be a reduced

and separated Noetherian scheme which is quasi-excellent and of dimension at most three, and let T be a

subscheme of X. Then there exists a proper birational morphism g : Y−→ X from a regular scheme Y
such that both g−1(T) and Ex(g) are divisors and Supp(g−1(T)∪Ex(g)) is simple normal crossing.

Proof. — By [CP19, Theorem 1.1], there is a projective morphism f : Z−→X such
that Z is regular. Then applying [CJS20, Corollary 1.5] to (Z,T′) with T′ = f −1(T) gives
the required g. �

Proposition 2.14. — Let X be a reduced scheme of dimension 3, quasi-projective over a Noethe-

rian quasi-excellent affine scheme Spec(R). Let T be a subscheme of X. Then there exists a projective

birational morphism g : Y −→ X from a regular scheme Y such that both g−1(T), and Ex(g) are

divisors, Supp(g−1(T) ∪ Ex(g)) is simple normal crossing and Y supports a g-ample g-exceptional

divisor.

Proof. — By taking normalization, we may assume that X is normal and integral.
Let g′ : Y′ −→X be the proper birational morphism given by Theorem 2.13. By Chow’s
lemma [Gro61, Theorem 5.6.1(a)] applied to g, there exists a projective birational map
g̃ : Ỹ−→X which factors through f : Ỹ−→ Y′, and which is the blow up of some ideal sheaf
I by [Liu02, Theorem 1.24]. By the universal property of blow-ups [Sta, Tag 0806], Ỹ
is also the blow-up of I ′ =I OY′ , which is the ideal sheaf of a subscheme Z. Now let
h : Y −→ Y′ be the projective embedded resolution of (Y′,Z ∪ (g′)−1(T) ∪ Ex(g′)) given
by [CJS20, Corollary 1.5], which is projective since it is a composition of blowups. Then
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g : Y−→X factors through Ỹ by the universal property of blow-ups, and so g is projective
by [Sta, 0C4P] since Y is projective over Ỹ and Ỹ is projective over X. Given this Y, we
may replace it with a resolution supporting a g-ample g-exceptional divisor by [KW21,
Theorem 1]. �

Remark 2.15. — Note that the construction in Proposition 2.14 does not result in
a morphism g which is an isomorphism over the simple normal crossing locus of (X,T).
Cossart and Piltant [CP19] prove Theorem 2.13 with this hypothesis, but they do not
have the requirement that g is projective or that Y supports a g-ample g-exceptional
divisor as in Proposition 2.14.

Furthermore, we do not know if Proposition 2.14 is valid over non-affine bases (due
to the assumptions of [Liu02, Theorem 1.24]). For this reason, we assume in Section 9
that all the schemes are quasi-projective over an affine scheme.

We also need the following version of the negativity lemma from birational geom-
etry [KM98, Lem 3.39].

Lemma 2.16. — Let f : Y −→ X be a projective birational morphism of normal excellent

integral schemes and � is a R-Cartier R-divisor on Y such that f∗� is effective and −� is f -nef. Then

� is effective.

Proof. — Observe that by [CT20, Lem 2.6] (which is stated for Cartier divisors,
but its proof works word for word for R-Cartier R-divisors), we have that −� is nef after
restricting to all fibers of f (including fibers over non-closed-points).

Now, f -nefness is preserved by localisation on X, and so is the birationality of
f . Additionally, effectivity of divisors can be checked on all localizations of X. Hence,
we may assume that X = Spec A, where (A,m) is local. In particular then Y has finite
Krull dimension. If dim Y≤ 2, then we are done by [Tan18b, Lem 2.11]. Hence we may
assume that dim Y > 2 and that the statement of the lemma is known for all dimensions
smaller than dim Y.

Assume then that � is not effective. Let E be the prime divisor on Y which has a
negative coefficient in �. By localizing at the points of positive codimension, and using
the induction hypothesis, we see that the components of � that are mapping to the non-
closed point of X have non-negative coefficients. In particular, E lies over the closed point
of X. As dim Y > 2 we can find a hypersurface H⊆ Y such that

(a) H∩ E �= ∅, and
(b) no component of H is contained in any irreducible component of Exc(f ).

We introduce the following notation:

◦ Y′ is the normalization of an irreducible component of H that intersects E,



GLOBALLY+++-REGULAR VARIETIES AND THE MINIMAL MODEL PROGRAM. . . 87

◦ h : Y′ −→ Y is the induced morphism,
◦ X′ is the normalization of f (Y′), where f (Y′) is also local as it is a closed subscheme

of X, and then X′ is semi-local,
◦ f ′ : Y′ −→X′ is the induced morphism, which is birational due to assumption (b) and

the fact that codimY h(Y′)= 1, we have h(Y′) �⊆ Exc(f ),
◦ �′ := h∗�, for which we have that f ′∗�

′ is effective as we know that the coefficients of
�′ are already positive over the non-closed points of X.

By the above observations we may apply the induction hypothesis to f ′ : Y′ −→X′ and to
�′. By our choice of Y′, �′ has a negative coefficient, which is a contradiction. �

2.4. Bertini. — We will need certain Bertini theorems in mixed characteristic.

Theorem 2.17. — Let R be a Noetherian local domain. Fix an integer N ≥ 1. Let

X1, ...,Xn ⊂ PN
R be a finite collection of regular closed subschemes. Then there exist some d � 0

and 0 �= h ∈H0(PN
R,O(d)) such that V(h)∩Xi is regular for all i.

Proof. — Let k denote the residue field of R, and let Xs = ∪iXi,s ⊂ PN
k be the

subscheme of PN
k obtained by taking the scheme-theoretic union of the special fibres

Xi,s ⊂ Xi . Choose a stratification {Uj}j∈J of Xs by locally closed subschemes such that
each Uj is connected, regular (and so k-smooth if k is perfect, for instance if k is finite),
and such that each Xi,s ⊂Xs is (set-theoretically) a union of strata: this is clearly possible
without assuming connectedness/regularity of the strata, and the connectedness/regu-
larity can be ensured a posteriori by further refining the stratification.

Next, we claim that there exists some d � 0 and some 0 �= a ∈ H0(PN
k ,O(d))

such that V(a) ∩Ui is regular for all i. If k is infinite, then this follows with d = 1 from
the classical Bertini theorem (see, e.g., [FOV99, Corollary 3.4.14]): there is a Zariski
dense open inside V(H0(PN

k ,O(1))) parametrizing the sections a that solve the problem
for each Ui separately, and intersecting these opens gives a Zariski dense open inside
V(H0(PN

k ,O(1))) parametrizing the sections a solving the problem for all the Ui ’s simul-
taneously; we then conclude by noting that any k-rational variety has a k-point as k is
infinite. When k is finite, this follows with d� 0 from the variant of Poonen’s Bertini the-
orem presented in [GK19, Proposition 5.2] applied with Z= Y= Vi = ∅ and T= {0},
noting that ζUi

(s) does not have a zero or a pole at s = dim(Ui) + 1 (e.g., by the Weil
conjectures).

Pick a section 0 �= a ∈H0(PN
k ,O(d)) as constructed in the previous paragraph, and

pick a lift 0 �= h ∈H0(PN
R,O(d)) of a. We shall show that h solves our problem. First, by

construction, for any closed point u of any Uj , the image of a in O(d)⊗O
PN

k

OUj
/m2

Uj ,u
is

nonzero. Now each Xi,s is a union of strata, so for each closed point x ∈Xi,s, we can find
some stratum Uj ⊂Xi,s containing x. As there is a natural restriction map OXi,s

/m2
Xi,s,x
−→

OUj
/m2

Uj ,x
, we conclude that the image of a in O(d)⊗O

PN
k

OXi,s
/m2

Xi,s,x
is also nonzero for
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all closed points x ∈ Xi,s. But closed points of Xi and Xi,s are the same by properness
of Spec(R). By the same reasoning used to pass from Uj to Xi,s and functoriality of
restriction maps, we learn that for any index i and any closed point x ∈Xi , the image of
h in O(d)⊗O

PN
R

OXi
/m2

Xi,x
is also nonzero. This means exactly that V(h) ∩Xi is regular

at all closed points of Xi that it contains, i.e., V(h) ∩Xi is regular at its closed points. As
the regular locus is stable under generalization, we conclude that V(h)∩Xi is regular, as
wanted. �

Remark 2.18. — Now suppose that X−→ Spec R is projective, X is regular and B
is a snc divisor on X. If we apply Theorem 2.17 to X itself and the finitely many strata of
B, then we obtain an H=V(h) such that (X,H+ B) and (H,B∩H) are also snc pairs.

2.5. Log Minimal Model Program. — We refer the reader to [KM98] for the standard
definitions and results in the Minimal Model Program. Here we briefly recall some basic
notions, in particular highlighting the adjustments required by our generality.

Definition 2.19. — Given a Cartier divisor D on a Noetherian normal separated scheme X, we

define Mob(D)=D− Fix(D), where the divisor Fix(D) is defined by requiring that for each prime

divisor E on X

coeffE Fix(D)= min
D′∈|D|

coeffE D′

Note that as D is Cartier the above coefficients are integers and hence the minimum exists. We also note

that here, and in general in the article, the linear system |D| simply means the set of all effective divisors

linearly equivalent to D. That is, we do not put any scheme structure on |D|.

Remark 2.20. — In the situation of Definition 2.19, there is a natural identification
of H0(X,OX(D)) with H0(X,OX(Mob(D))). Note also that if D′ =D+ F for a Cartier
divisor F ≥ 0, then Mob(D′) ≥Mob(D). Further observe that when D is effective, so is
Mob(D).

A Q-divisor (resp. R-divisor) is a finite formal sum
∑n

i=1 diDi where Di is an integral
codimension one subscheme of X, and di ∈Q (resp. di ∈R). Two divisors are Q-linearly
(resp. R-linearly) equivalent if their difference is a Q-linear (resp. R-linear) combination
of principal divisors. A Q-divisor (resp. R-divisor) is Q-Cartier (resp. R-Cartier) if some
multiple of it is a Cartier divisor (resp. if it can be written as an R-linear combination of
Cartier divisors). Note that a Q-divisor which is R-Cartier is automatically Q-Cartier.

An R-Cartier R-divisor D is R-ample if it is R-linearly equivalent to
∑

αiDi , where
αi ∈ R>0 and Di are ample Cartier divisors (not necessarily effective). Note that if D is
R-ample, it is in fact equal to an R-linear combination

∑
αiDi of ample Di with αi ∈R>0

(no R-combination of principal divisors is necessary as we may perturb them to ample
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divisors). Note that a R-ample Q-Cartier divisor is automatically ample. Henceforth, we
will refer to R-ample R-Cartier divisors as ample R-Cartier divisors, as no confusion can
arise.

Lemma 2.21 (Nakai-Moishezon Criterion, cf. [Tan18b, Remark 2.3]). — Let π : X −→ Y
be a proper morphism from an algebraic space X to a Noetherian scheme Y. Let D be a Q-Cartier

Q-divisor on X. Then D is ample over Y if and only if Ddim V · V > 0 for every y ∈ Y and every

positive dimensional closed integral subspace V of the fiber Xy over y.

If X is scheme, then the same condition characterizes ampleness of R-Cartier divisors D.

Proof. — If X is proper over a field, then the statement holds by [Kol90, Theorem
3.11]. Therefore, we can apply Nakai-Moishezon on the fibers of π , and so Xy is a pro-
jective scheme and D|Xy

is ample for every y ∈ Y. Now the statement follows from [Sta,
Tag 0D3A].

As for R-divisors on schemes, the statement over algebraically closed fields follows
from [FM21, Theorem 1.3]; the reduction to that case can be done similarly to [FM21,
Lemma 6.2]). �

Given a projective morphism f :X−→ Z, we define a curve over Z to be a scheme C
of dimension 1 such that C is proper over some closed point z ∈ Z. Define N1(X) to be
the vector space generated by integral curves over Z modulo numerical equivalence: that
is
∑

aiCi = 0 in N1(X) if and only if (
∑

aiCi) ·D= 0 for every Cartier divisor D on X.
We say that a R-Cartier divisor D is f -nef if D · C ≥ 0 whenever C is an integral curve
over Z.

Remark 2.22 (The relative Picard rank). — Let f : X −→ S be a proper morphism of
Noetherian schemes. Write Picτ (X/S) ⊂ Pic(X) for the subgroup of line bundles L on
X which are numerically trivial on all fibres Xs of f , i.e., for every point s ∈ S and every
irreducible curve C⊂Xs, the restriction L|C has degree 0 (in fact, it is enough to verify
this for closed points only). Define N1(X/S)= (Pic(X)/Picτ (X/S))⊗Z R. This R-vector
space is finite dimensional: the case of varieties over a field is explained in [Kle66, §4,
Proposition 2], and the same arguments go through in the general case (we learnt of
the reference [Kle66] from [TY20]). The integer ρ(X/S) := dimR N1(X/S) is called the
relative Picard rank of f .

Remark 2.23. — We warn the reader that in some situations we consider, a Cartier
divisor may not have the expected dimension: for example if X = Spec Zp[t] and Z =
Spec Zp[t]/(pt − 1)� Spec Qp, then dim X= 2, but dim Z= 0 despite Z being a divisor.

Furthermore, we make the following related observation. Although it is enough
to check nefness of line bundles on proper curves only, it may still happen in mixed
characteristic that some of these proper curves map to points of characteristic zero. For
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example, let X= Spec Zp[x, y], let π : Y−→X be the blow-up of X along the subscheme
Z given by the ideal (x, y), with the relatively ample line bundle OY(1). Let O be the
point given by (p, x, y), and let η be the generic point of Z. Here Z = {O, η}. Let X′ =
X\ {O} and Y′ = π−1(X′). In particular, η is a characteristic zero closed point of X′.
Then OY′(−1) is non-negative (in fact, zero) on all positive characteristic proper curves,
but it is not relatively nef. This may be checked on the proper characteristic zero curve
π−1(η). Note that when X = Z[x, y], the situation is different as there are many closed
points of positive characteristic on Z.

Definition 2.24. — We say that a proper map f : X−→ Z is small if Exc(f ) is of codimension

at least two (all flips and flipping contractions are assumed to be small) and that it is divisorial
if Exc(f ) is of codimension one (but it could still happen that dim Exc(f ) ≤ dim X − 2 as in

Remark 2.23). Note that the codimension of a subscheme Y in X is equal to dim(OX,ξ ), where ξ is the

generic point of Y [Sta, Tag 02IZ].

Remark 2.25. — The fact that curves on a three-dimensional scheme can be of
codimension one may be a source of understandable confusion. However, when T is a
spectrum of an excellent local domain (denote the closed point of T by s), it is always true
that divisors on a proper integral scheme X over T are of dimension dim X− 1.

To see this, first the following computation shows that every closed point x ∈ Xs

has codimension dim X:

dimOX,x = dim T+ trdegK(T)K(X)− trdegκ(s)κ(x)

= dim T+ trdegK(T)K(X)= dim X,

where
◦ in the first equality, we used [Sta, Tag 02JT]
◦ in the second equality, we used that trdegκ(s)κ(x) = 0 since Xs is a scheme of finite

type over κ(s) and x is a closed point, and
◦ the last equality is given by [Sta, Tag 02JX].

Now, if D is a divisor of X, then f (D) is closed, where f : X −→ T is the structure mor-
phism. Hence f (D) contains s ∈ T, and so D intersects Xs in a non-empty closed subset
of X. In particular, X contains a closed point x ∈Xs, which must necessarily map to s ∈T
since f is proper: the argument gives this by construction. Then,

dim X > dim D≥ dimOD,x = dimOX,x − 1= dim X− 1.

where in the first equality we used that X is catenary. We obtain that dim D= dim X− 1.
Since the existence of contractions and flips in the Minimal Model Program can

be checked after localisation at each point, in this case we may always assume that T is a
spectrum of a local domain. However, we cannot reduce to the local situation in the case
of the cone theorem and termination of flips.

https://stacks.math.columbia.edu/tag/02JT
https://stacks.math.columbia.edu/tag/02JX
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Remark 2.26. — Let T be a quasi-projective scheme over a finite dimensional
excellent ring. The reader should be wary that dim TQ may be equal to dim T even when
T �=TQ. For example, take T= (Spec Zp[[x, y]])\(p, x, y) which is two-dimensional, as so
is TQ = Spec Zp[[x, y]] ⊗Qp. In particular, it may happen that given a three-dimensional
proper scheme X over T, the localisation XQ is still three-dimensional.

However, it is always true that dim XQ ≥ dim X − 1 when all the generic points
of X have characteristic 0. Pick a point x ∈ X such that d := dim X = dimOX,x =
dim(OX,x/P) where P is a minimal prime of OX,x. Now if the residue field OX,x/mx

has characteristic zero, then OX,x contains Q and hence dim XQ ≥ dim(OX,x ⊗ Q) =
dimOX,x = dim X. If the residue field OX,x/mx has characteristic p > 0, then by our
assumption on generic points, we know that p /∈ P and thus we can complete p to a
system of parameters (p, x2, . . . , xd) of the excellent local domain OX,x/P and we have
(OX,x/P)⊗Q∼= (OX,x/P)[1/p]. Since p is not in any minimal prime Q of (x2, . . . , xd) and
any such Q has height d − 1 in OX,x/P, it follows that dim XQ ≥ dim((OX,x/P)⊗Q)=
dim(OX,x/P)[1/p] ≥ dim(OX,x/P)Q = dim X− 1.

Given a projective morphism f :X−→ Z, we say that a Q-Cartier divisor D is f -big
if D|Xη

is big where η is the generic point of f (X). Equivalently, rank f∗OX(kD) > ckdim Xη

for some constant c for k sufficiently large and divisible. If D is f -nef, then D is f -big if
and only if Ddim(Xη)|Xη

�= 0. We say that an R-Cartier divisor is f -big if it can be written
as

∑
αiDi , where αi ∈R>0 and Di are f -big Cartier divisors.

Definition 2.27. — In this article, (X,�) is a ( log) pair if X is a normal Noetherian excellent

integral d-dimensional scheme with a dualizing complex, � is an effective R-divisor. Frequently, but not

always, we also assume that KX +� is R-Cartier.

If � is a Q-divisor (resp. R-divisor), we call it a Q-boundary (resp. R-boundary). Outside of

Section 9, we will assume that our boundaries are Q-boundaries unless otherwise stated. We say that �

has standard coefficients if they are contained in {1− 1
m
| m ∈ Z>0} ∪ {1}.

Before the next definition note that if X is a Noetherian excellent integral scheme
of dimension d with a dualizing complex, then the canonical sheaf ωX introduced in
Section 2.1 is S2 by [Sta, Tag 0AWN]. Additionally ω

�

X is compatible with localiza-
tion [Sta, Tag 0A7G]. In particular, taking into account the normalization of dual-
izing complexes (also explained in Section 2.1) we obtain that for the generic point
η ∈X we have ω

�

X,η
∼= ω

�

η [−d] ∼=Oη[d] and for any codimension 1 point x ∈X we have
ω
�

X,x
∼= ω

�

SpecOX,x
[−(d−1)]. So, if X is normal, then also at the points of the latter type we

have ω
�

X,x
∼= OSpecOX,x

[d], and hence ωX is a rank 1 divisorial sheaf [Har94]. We denote
the corresponding linear equivalence class of divisors by KX.

If f : Y −→ X is a proper birational morphism of Noetherian excellent integral
schemes of finite Krull dimension with dualizing complexes, and � is an R-divisor on X
with KX +� R-Cartier, then we can find an R-divisor � satisfying the equation

(2.27.1) f ∗(KX +�)=KY +�Y.

https://stacks.math.columbia.edu/tag/0AWN
https://stacks.math.columbia.edu/tag/0A7G
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Note that �Y is uniquely defined if we add the assumption f∗KY = KX, which we will
always assume in such situations.

Definition 2.28. — Consider a pair (X,�) with KX +� being R-Cartier such that every

coefficient in � is at most 1. If for every birational morphism f : Y−→X from a normal scheme, divisor

�Y as in (2.27.1) and for every prime divisor E on Y which is exceptional over X, we have

◦ multE(�Y) < 0, then (X,�) is terminal,
◦ multE(�Y)≤ 0, then (X,�) is canonical,
◦ multE(�Y) < 1 and ��� = 0, then (X,�) is kawamata log terminal ( klt),
◦ multE(�Y) < 1, then (X,�) is purely log terminal ( plt),
◦ multE(�Y) < 1 unless the generic point of the image of E on X is contained in the simple normal

crossing locus of (X,�), then (X,�) is divisorially log terminal ( dlt),
◦ multE(�Y)≤ 1, then (X,�) is log canonical ( lc).

In the first definition, ��� = 0 is automatic. Further, notice that (X,�) being plt
does not imply ��� is irreducible for (X,�) plt. This is not merely a technical subtlety,
as otherwise plt would fail to be stable under certain base-changes. On the other hand,
the irreducibility of ��� is at times required in a number of standard arguments, which
then we have to revise with extra care (c.f. Section 8).

We call the number a(E,X,�)= 1−multE(�Y) the log discrepancy of (X,�) along
E (the number−multE(�Y) is called discrepancy). If (X,�) admits a log resolution f : Y−→
X, then it suffices to verify the above definitions (except the terminal and the plt case) for
the divisors on Y only [Kol13, Section 2.10].

The base-change properties of the notions defined in Definition 2.28 can be de-
duced from the following lemma.

Lemma 2.29. — Suppose π :X−→ Spec R is a log resolution of some pair (Spec R,�). If

R−→ R′ is a flat map to an excellent ring with geometrically regular fibers (for instance, an étale cover,

the strict henselization at some point of Spec R, or the completion thereof), then the base change

π ′ :X′ =XR′ −→ Spec R′

is a log resolution of the base changed pair (Spec R′,�R′).

Proof. — Since X is regular and X′ −→X is flat with regular fibers, we see that X′ is
regular (and in particular reduced). But this also applies to all strata of the simple normal
crossings divisor π−1� and so its base change is also simple normal crossings. This proves
the lemma. �

Remark 2.30. — Let (X,�) be a three-dimensional klt pair and let D be an ef-
fective divisor. Then (X,�+ εD) is klt for 0 < ε� 1 as proper resolutions exist in this
setting.
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Definition 2.31. — We say that a projective birational morphism g : Y−→X is a terminal-
ization of a klt pair (X,B) if when writing KY+BY = f ∗(KX+B), the pair (Y,BY) is terminal.

Lemma 2.32. — Let f : (X,�) −→ Z = Spec R be a projective birational morphism from

a three-dimensional plt (resp. klt, dlt) pair to the spectrum of an excellent base ring R with a dualizing

complex, and let h :R−→R′ be a flat map between excellent local ring s with dualizing complexes and

suppose that h has geometrically regular fibers (for instance, an étale cover, or the strict henselization at a

maximal ideal, or the completion thereof). Then the base changed pair (XR′,�R′) is plt (resp. klt, dlt).

Proof. — This follows from Lemma 2.29 since we can check these conditions on a
single log resolution. �

Note that the above lemmas in the smooth case are discussed in [Kol13, 2.14 and
2.15].

We say that a scheme is normal up to a universal homeomorphism if its normalization is
a universal homeomorphism.

Lemma 2.33. — Let (X,�) be a dlt pair such that all the irreducible components S1, . . . ,Sk

of ��� are Q-Cartier. Then all Si are normal up to a universal homeomorphism (and normal in

codimension one). Moreover, if (X,�) is plt, then ��� = S1 � . . . � Sk .

The same holds for (X′,�′), where φ : X′ −→X is a flat map with geometrically regular fibers

(for example, a completion at a point x ∈X) and �′ = φ∗(�).

Proof. — The first part follows by exactly the same proof as [HW23, Lemma 2.1]
(we learnt this result from János Kollár). Suppose that (X,�) is plt and Si ∩ Sj �= ∅ for
some i �= j. Since both Si and Sj are Q-Cartier, then Si ∩ Sj contains a codimension two
point η. By localizing at η, we may assume that X is two-dimensional, and so the result
follows from the classification of plt surfaces (cf. [Kol13, Theorem 2.31]). By the same
argument Si are normal in codimension one.

To prove the last statement, we may assume that x ∈ Si . Since normalizations are
stable under flat maps with geometrically regular fibers (cf. S2 is preserved under flat
maps by [Mat89, 15.1, 23.3], R1 is preserved by the argument of Lemma 2.29), we get
that S′i = φ∗(Si) is normal up to a universal homeomorphism. In particular, S′i is a disjoint
union of its irreducible components. �

Lemma 2.34 ([Bir16, Lemma 9.2]). — Let g : (X,B)−→ Spec R be a projective morphism

from a klt (resp. plt, dlt) pair with a Q-boundary over a Noetherian local domain. Suppose that there

exists g :W−→X, a log resolution of (X,B) and of Xm such that there exists a g-exceptional divisor

E ≥ 0 on W such that −E is ample. In the case that (X,B) is dlt, additionally assume that this

resolution has no exceptional divisors with discrepancy −1 (this condition is automatic for the other

cases). Finally suppose that A is an ample divisor on X. Then there exists a divisor 0≤ A′ ∼Q A such

that (X,B+A′) is klt (respectively plt, dlt)
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Proof. — The proof follows [Bir16, Lemma 9.2] (mimicking his argument from the
dlt case) with the following adjustments: we set E′ := E

m
for some m� 0, and we use our

Bertini theorems Theorem 2.17 (in particular Remark 2.18) where the “general” A′W is
chosen. �

Remark 2.35. — If X is a Q-factorial threefold, then any projective resolution
π : Y−→X in the klt/plt case will satisfy the hypotheses of Lemma 2.34. Indeed, if H on
Y is relatively ample, then H−π∗π∗H will be relatively ample and π -exceptional. When
X is not necessarily Q-factorial, the existence of such a resolution locally is guaranteed for
Noetherian quasi-excellent three-dimensional reduced schemes by Proposition 2.14. Un-
fortunately, in contrast to positive or zero characteristics, we do not know if the resolution
as in the dlt case above exists in dimension three.

Given a proper birational map f : Y−→X between normal integral schemes over
Spec R, a Cartier divisor D on X, and an exceptional effective divisor E on Y, we have
that f∗OY(f ∗D + E) = OX(D). The following result, used extensively throughout this
paper, is an easy generalisation of the above fact to Q-Cartier divisors.

Lemma 2.36. — Let f : Y−→X be a proper birational morphism between normal Noetherian

schemes. Let DY and DX be Q-Cartier Weil divisors on Y and X, respectively, such that f∗DY =DX

and DY ≥ �f ∗DX� (equivalently, �DY − f ∗DX� ≥ 0). Then f∗OY(DY)=OX(DX).

The aim of the log minimal model program is to take a projective scheme with
mild singularities and perform certain birational operations on it, to arrive at a projective
scheme of the one of the following two special kinds. Here, a morphism f : X −→ Z is
called a contraction if it is projective and satisfies f∗OX =OZ.

Definition 2.37. — Let (X,�) be a pair and f :X−→ Z a projective contraction. We say that

(Y,�Y) with projective contraction g : Y−→ Z is a log birational model of (X,�) over Z if X is

birational to Y and �Y is the sum of the birational transform of � and the reduced exceptional divisor

of Y ��� X.

We say that a log birational model (Y,�Y) is a log minimal model of (X,�) over Z if

(a) (Y,�Y) is Q-factorial dlt,

(b) KY +�Y is nef over Z,

(c) for any divisor E on X which is exceptional over Y, a(E,X,�) < a(E,Y,�Y), and

(d) the induced map Y ��� X does not contract any divisors.

We say that a log birational model (Y,�Y) is a Mori fiber space for (X,�) over Z if

(a) (Y,�Y) is Q-factorial dlt,

(b) there is a projective contraction φ : Y−→V over Z such that

◦ the contraction φ is (KY +�Y)-negative,

◦ dim(V) < dim(Y),

◦ ρ(Y/V)= 1,
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(c) for any divisor E on X which is exceptional over Y, a(E,X,�) < a(E,Y,�Y), and

(d) the induced map Y ��� X does not contract any divisors.

If (X,�) is klt, then so is (Y,�Y). We say that a log minimal model (Y,�Y) of
(X,�) is good if KY +�Y is semiample.

Remark 2.38. — Note that for some authors e.g. [Bir16], Definition 2.37(d) is not
assumed in these definitions. We include this assumption since the log minimal models
and Mori fiber spaces we construct will satisfy this.

Definition 2.39. — A flipping contraction f : X−→ Z of a pair (X,�) is a small projec-

tive birational morphism such that −(KX +�) is f -ample.

Note that it is usually assumed, and is the case when running the usual LMMP,
that ρ(X/Z)= 1. However, we will need to make use of the above more general notion.

Definition 2.40. — Given a flipping contraction f : X−→ Z of a pair (X,�), the flip of f (if

it exists) is a small projective birational morphism f + : X+ −→ Z such that KX+ +�X+ is f +-ample.3

2.6. Minimal Model Program for Noetherian excellent surfaces. — We review the Minimal
Model Program for Noetherian excellent surfaces following [Tan18b]. Throughout this
subsection the base ring R is assumed to be a finite dimensional, excellent ring admitting
a dualizing complex, and T to be a quasi-projective scheme over R. In particular, this
covers the key cases from the viewpoint of applications such as when
◦ T is a quasi-projective scheme over a field or a Dedekind domain, or
◦ T= Spec A for any complete Noetherian local domain A (see [Sta, Tag 032D]).

Remark 2.41. — Note that the assumption in [Tan18b] is that the base ring R is
regular. However all the arguments go through with the weaker assumption that R admits
a dualizing complex [Tan20c].

Theorem 2.42 (MMP, [Tan18b, Theorem 1.1]). — Let (X,�) be a log canonical pair over

R of dimension two with R-boundary and admitting a projective morphism f : X−→ T. Then we can

run a (KX +�)-MMP over T which terminates with a minimal model or a Mori fibre space.

Theorem 2.43 (Q-factoriality of dlt singularities, [Tan18b, Corollary 4.11], cf. [Lip69]). —
Let (X,�) be a two-dimensional dlt pair with R-boundary. Then X is Q-factorial.

Theorem 2.44 (Base point free theorem, [Tan18b, Theorem 4.2]). — Let (X,B) be a klt pair

of dimension two with R-boundary and admitting a projective morphism f : X−→ T over R. Let L be

an f -nef Q-Cartier divisor such that L− (KX + B) is f -nef and f -big. Then L is f -semiample.

3 Notice that this X+ is not the one corresponding to the absolute integral closure of OX.
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Proof. — When X is projective over a field, this follows from abundance ([Tan20a,
Theorem 1.1]). Specifically, let E be an effective divisor such that Aε = L−(KX+B)−εE
is ample for all ε sufficiently small. Fix ε such that (X,B+ εE) is klt and by Lemma 2.34
choose 0≤ A′ ∼Q Aε such that (X,B+εE+A′) is klt. Then we can conclude by [Tan20a,
Theorem 1.1] using the fact that L∼Q KX + B+ εE+ A′. If X is not projective over a
field the result is implied by [Tan18b, Theorem 4.2]. �

Note that when X is not defined over a field we even know that nL is base point free
for all n� 0 and not just divisible enough. Unfortunately, this does not hold in general,
specifically when the numerical dimension of L is equal to one and the base field has
characteristic two and three (see [Tan20b, Theorem 1.2]).

The following theorem is well-known in characteristic zero, and has been re-
cently established for varieties which are projective over a field of positive characteristic
[Tan20a]. We prove the general case later on.

Theorem 2.45 (Theorem 9.24). — Let (X,�) be a log canonical pair of dimension 2, pro-

jective over T with Q-boundary. Assume in addition that T is the spectrum of a local ring with positive

residue characteristic. If KX +� is nef over T, then it is semiample over T.

We present a strengthening of [Tan18b, Theorem 2.14] following [DW22, Theo-
rem 4.3]. As our residue fields are not necessarily algebraically closed, the bound on the
length of extremal rays involves a term dC introduced in [op. cit.].

Theorem 2.46 (Cone theorem). — Let π :X−→ T be a projective morphism with X integral,

normal, and of dimension at most two. Let �≥ 0 be such that KX+� is R-Cartier. Then there exist

countably many curves {Ci}i∈I on X such that

(a) π(Ci) is a closed point.4

(b)

NE(X/T)=NE(X/T)KX+�≥0 +
∑

i∈N

R≥0[Ci].

(c) For any ample R-divisor A, there is a finite n such that

NE(X/T)=NE(X/T)KX+�+A≥0 +
∑

i≤n

R≥0[Ci].

(d) For each Ci , either

i. Ci is contained in the non-lc locus of (X,�).

ii. 0 <−(KX +�) ·k Ci ≤ 4dCi
where dCi

is as in Lemma 2.47.

4 This is automatic by definition of a curve over T.
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Proof. — If dim(X) = 1, then the result is obvious. So we assume dim(X) = 2.
Furthermore if dim(π(X))= 0, the result is proved in [DW22, Theorem 4.3]. Note that
this did not assume that the field had positive characteristic, and while our phrasing of
(d|i.) is slightly stronger than that of [DW22], it is actually what is given by the proof
there.

So we may assume that dim(π(X)) ≥ 1. The first three parts are implied by the
stronger [Tan18b, Lemma 2.13], so it remains to prove (d). For this we must show that
each (KX +�)-negative extremal ray � contains a curve satisfying the bound or con-
tained in Supp(�) Using the argument of [DW22, Proposition 4.5, Step 1] we may
assume that X is regular and (X,�≤1) is dlt.

The extremal ray � contains some curve C by [Tan18b, Lemma 2.13], and as X
is regular we claim that C2 ≤ 0. If π is birational this follows from Lemma 2.16, while if
π has image of dimension 1, it follows because C · F= 0 for F a fiber of π . Let D be the
normalization of an irreducible component of (C⊗k k)red. Then

(KX +�) ·k C≥ (KX +�+ aC) ·k C

= degk(KC +�C)≥ dC degk(KD +�D)≥−2dC

where a is chosen such that C has coefficient one in �+ aC, and �C and �D are effective
divisors on C and D respectively. �

We used the following lemma in the proof of the above theorem.

Lemma 2.47. — Let X be a scheme over a Dedekind domain V containing a proper curve C
over a point v ∈ Spec(V) with residue field k. Let φ :Xv ⊗k k −→Xv be the natural projection. Then

there is a positive integer dC such that for any R-Cartier divisor D, if Ck is any integral curve on Xv⊗k k

whose image on Xv is C we have

D ·k C= dC(φ∗D ·k Ck)

In particular if L is any Cartier divisor on X, then L ·k C is divisible by dC.

Proof. — This is [DW22, Lemma 4.1] applied to C⊂Xv . Note that the statement
of [DW22, Subsection 3] required that Xv be proper, however the proofs only require
that the curve C be proper. �

2.7. Characteristic zero base point free theorem. — We note that the base point free the-
orem for Noetherian excellent schemes of characteristic zero follows from the vanishing
theorems in [Mur21].

Proposition 2.48. — Suppose that T is a scheme which is quasi-projective over a finite dimen-

sional excellent ring R admitting a dualizing complex and containing Q.
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Let (X,�) be a Q-factorial klt pair with R-boundary. Let f : X −→ T be a projective mor-

phism, and let L be an f -nef Q-Cartier Q-divisor on X such that L−KX −� is f -nef and f -big.

Then L is f -semiample.

Proof. — By a perturbation we may assume that � is a Q-divisor and L−KX−� is
ample. We may assume that T is integral, and then use the argument of [KMM87, Theo-
rem 3-1-1]. This has three main imputs: relative Kawamata-Viehweg vanishing [Mur21],
the existence of a projective resolution with ample exceptional divisor ([Tem11]), and the
non-vanishing theorem on the generic fiber Xη of X−→T (that is, H0(Xη,OXη

(mL)) �= 0
for some m ≥ 1). As this generic fiber is a variety over a field of characteristic zero, the
non-vanishing theorem [KMM87, Theorem 2-1-1] applies directly via the base change
of its Stein factorization to the algebraic closure of K(T). �

2.8. Mixed characteristic Keel’s theorem. — In what follows, we say that a nef Cartier
divisor L on a scheme X proper over a Noetherian excellent base scheme T is EWM over
T if there exists a proper morphism f : X −→ Y to a proper (over T) algebraic space Y
such that a closed integral subscheme V⊆X is contracted (that is, dim f (V) < dim V) if
and only if L|V is not big.

Remark 2.49. — The original definition of EWM in [Wit22] differed from the one
above (which is the same as in [CT20, Kee99]). It was weaker, as it only required f to
contract proper curves C such that L ·C= 0. This was corrected in an update to [Wit22].

We start by recalling the main results of [Wit22].

Theorem 2.50 ([Wit22, Theorem 6.1]). — Let L be a nef Cartier divisor on a scheme X
projective over a Noetherian excellent base scheme T. Then L is semiample (EWM. resp.) over T if and

only if L|E(L) and L|XQ are semiample (EWM. resp.) over T.

Here, XQ denotes the characteristic zero fiber of X −→ Spec Z and E(L) denotes
the union of closed integral subschemes V⊆X such that L|V is not relatively big over T.

Proof. — This is [Wit22, Theorem 6.1]. Note that the EWM case of this theorem
assumed that the base scheme T is of finite type over a mixed characteristic Dedekind
domain. This assumption was needed to invoke [Art70, Theorem 3.1 and Theorem 6.2],
but the only reason Artin stated it in his article was because the Popescu approximation
theorem was not known at that time ([Sta, Tag 07GC]). This assumption was retained in
[Wit22] out of abundance of caution. �

Proposition 2.51. — Let T be a quasi-projective scheme over a finite dimensional excellent ring

R admitting a dualizing complex. Let (X,S+B) be a three-dimensional dlt pair which is projective over

T, where S is a prime divisor and B is an effective Q-divisor. Suppose that each irreducible component
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of �S+ B� is Q-Cartier. Let L be a nef Cartier divisor on X such that L− (KX + S+ B) is ample

and E(L)⊆ S. Then L is semiample.

Moreover, if φ : X−→ Z is the associated semiample fibration, then every relatively numerically

trivial Q-Cartier Q-divisor D on X descends to Z.

Proof. — By means of perturbation, we can assume that (X,S + B) is plt and
S= �S+ B�. By Lemma 2.33, we also know that S is normal up to a universal homeo-
morphism. Since L|XQ is semiample by Proposition 2.48, it is enough to show that L|E(L)

is semiample by Theorem 2.50, and so that L|S is semiample. First, note that L|S̃ is semi-
ample, where S̃ is the normalization of S. Indeed, write KS̃+BS̃ = (KX+S+B)|S̃. Since
(S̃,BS̃) is klt and dim S̃≤ 2, we have that L|S̃ is semiample by Theorem 2.44. Then L|S
is semiample in view of S̃−→ S being a universal homeomorphism by [Wit21, Theorem
2.22].

The second part follows by applying the first part to L+D over Z. �

Proposition 2.52. — Let (X,S+ B) be a pair with KX + S+ B R-Cartier, and with X
projective over a Noetherian excellent scheme T admitting a dualizing complex such that S is a Weil

divisor not contained in Supp(B) whose image in T is a closed point with residue field k. Let Z be the

normalization of Sk . Then there are effective divisors C, M and F, and a R-divisor BZ on Z such that

(KX + S+ B)|Z ∼R KT +C+M+ F+ BZ

where

◦ Supp(C) is the pullback to Z of the locus on which the normalization Sν −→ S fails to be an

isomorphism.

◦ Supp(F) is the locus on which Z−→ ((Sν)k)red fails to be an isomorphism.

◦ Supp(M)= 0 if and only if Sk is reduced.

Proof. — First, by adjunction, (KX + S+ B)|Sν = KSν + CSν + BS where CSν ≥ 0
is the conductor of the normalization Sν −→ S and BS ≥ 0. Then we have KSν |Z =KZ +
M+ F where M and F are elements of the linear systems (p− 1)F and (p− 1)M from
[JW]. Note that [JW] assumes that the ground field is a function field, but our situation
can be reduced to this as explained in [JW, Subsection 2.1] and [DW22, Theorem 4.12,
Step 1, (1)]. �

Corollary 2.53. — Let (X,B) be a klt pair of dimension three admitting a projective morphism

f : X−→ T to a finite dimensional Noetherian excellent scheme T. Let L be an f -nef and f -big Cartier

divisor such that L− (KX + B) is f -nef and f -big as well. Then L is EWM over T.

Proof. — This is proven in [Wit22, Corollary 6.7] under the assumption that T is
a spectrum of a mixed characteristic Dedekind domain with perfect residue fields.
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The fact that the base is a Dedekind domain was used three times in the proof:
to employ the mixed characteristic Keel theorem, to invoke [Wit22, Proposition 6.6],
and to deduce that L|XQ is semiample. These results hold in our more general setting
by Theorem 2.50, Lemma 2.54, and by Proposition 2.48, respectively. Note that L is
semiample over every non-closed point of T by Theorem 2.44.

The assumption on the residue fields was used to deduce that L restricted to an
appropriately chosen surface Di ⊆ X, which is projective over a field of positive char-
acteristic, is EWM. This can be resolved by arguing as in Case 1 of [DW22, Theorem
4.12]. Indeed, the semiampleness of L|(Di)k

follows by the same argument as that of L|Di

in [Wit22, Corollary 6.7] thanks to Proposition 2.52. Here k is the algebraic closure of
the base field k. Then L|Di

is semiample by [Kee99, Lemma 2.2]. �

Lemma 2.54 ([Wit22, Proposition 6.6]). — Let X be a two-dimensional normal integral

scheme projective and surjective over a Noetherian excellent scheme T such that dim T≥ 1. Let L be a

line bundle on X which is nef over T and suppose that L|Xη
(and L|XQ if XQ �= ∅) are semiample for

the fiber Xη over the generic point η ∈ T. Then L is EWM over T.

Proof. — Replacing T by the Stein factorization of f :X−→T, we may assume that
T is normal and f∗OX =OT. If L|Xη

is big or dim T= 2, then dim E(L)= 1. Thus L|E(L)

is EWM, and so L is EWM by Theorem 2.50. Otherwise, dim T = 1, dim Xη = 1, and
L|Xη
∼Q 0. In this case, the normality of T ensures that T is regular and so we can apply

[CT20, Lemma 2.17] to deduce that L is relatively torsion. �

2.9. Seshadri constants. — Recall that for a projective scheme X over a Noetherian
excellent base scheme T, a nef and big Q-Cartier Q-divisor A, and a closed point x ∈X,
we define the Seshadri constant

ε(A; x)= sup
{
t ∈Q | π∗A− tE is nef

}
,

where π : X′ −→ X is the blow-up of x and OX(−E) = mx · OX′ is the exceptional divi-
sor. When A is in addition semiample, then, with notation as above, we also define the
semiample Seshadri constant

εsa(A; x)= sup
{
t ∈Q | π∗A− tE is semiample

}
.

In particular, the Seshadri and the semiample Seshadri constants are non-negative,
and positive if A is ample. Further, note that ε(A+B; x)≥ ε(A; x)+ε(B; x) (resp. εsa(A+
B; x) ≥ εsa(A; x)+ εsa(B; x)), where A and B are nef and big (resp. semiample and big)
Q-Cartier Q-divisors on X.

For the proof of the existence of flips, we will need the following results.
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Lemma 2.55. — Let f : Y −→ X be projective birational morphism, where Y is a two-

dimensional regular integral scheme, and X is affine and klt. Assume that the reduced exceptional divisor

F is of positive characteristic.

Then every nef Cartier divisor L on Y is relatively semiample over X. In particular, if A is a

semiample Q-Cartier Q-divisor on Y, then εsa(A; x)= ε(A; x) for every closed point x ∈ F.

Since f is birational, every Q-Cartier Q-divisor is automatically big over X.

Proof. — Since semiampleness is stable under strict henselization, we can assume
that X is strictly henselian. Note that F is simple normal crossing and is a tree of regular
conics, because the morphism f may be constructed from the minimal resolution of X
by successively blowing up closed points, and the claim holds for the minimal resolution
of X by [Kol13, Section 3]. With notation as in Section 2.8, we have that E(L) ⊆ F.
Hence, by Theorem 2.50, it is enough to show that L|F is semiample. To do this we may
assume that F is contracted to a single point x with separably closed residue field k. By
[DW22, Lemma 4.4], L is semiample on every irreducible component of F, and so L|F
is semiample by [Kee99, Corollary 2.9] as F is a tree of regular conics over a separably
closed field, and so the intersection points are geometrically connected. �

Lemma 2.56. — Let f : Y −→ X be a projective birational morphism, where Y is a two-

dimensional regular integral scheme, and X is affine and klt. Assume that the reduced exceptional divisor

F is of positive characteristic.

Let M be an effective semiample Cartier divisor on Y with no exceptional curve of Y−→X in its

support, and let x ∈M∩ F be of multiplicity k ∈ Z>0 in M. Then

εsa(M; x)= ε(M; x)≥ k.

More generally, let D be a fixed divisor and let A be a semiample Q-Cartier Q-divisor such

that A ∼Q M+�, where M is an effective Cartier divisor with no exceptional curve of Y −→ X in

its support, and −δD ≤�≤ δD for δ > 0. Take x ∈ F ∩M of multiplicity k ∈ Z>0 in M. Then

εsa(A; x) converges to k when δ −→ 0.

Proof. — We show the second statement. Then the first one follows by the same
argument. Suppose that 0 < δ� γ � 1 and let π : W −→ Y be the blow-up at x. Since
x ∈M is of multiplicity k, we have that π∗M=MW+kE, where MW is the strict transform
of M and E is the exceptional divisor of the blow-up π .

By Lemma 2.55, it is enough to verify that ε(A; x)≥ k − γ , that is

π∗A− (k− γ )E

is nef. Let C be an exceptional irreducible curve on W over X. We need to check that
(π∗A− (k − γ )E) ·C≥ 0. We consider the following cases:
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◦ C= E, then

(π∗A− (k− γ )E) ·C=−(k− γ )E2 > 0,

◦ C �= E and C∩ E �= ∅, then

(π∗A− (k− γ )E) ·C= (π∗(M+�)− (k − γ )E) ·C
= (MW + γ E+ π∗�) ·C
≥ (γ E+ π∗�) ·C
= γ E ·C+� · π∗C
≥ γ E ·C− δ|D · π∗C|
≥ 0,

for 0 < δ� γ � 1 where the last inequality follows as E ·C≥ 1, D is fixed, and there
are only finitely many possible curves C. The first inequality follows as MW contains
no curves in its support which are exceptional over X, and so C �⊆ Supp MW.
◦ C �= E and C∩ E= ∅, then

(π∗A− (k− γ )E) ·C= A · π∗C≥ 0

as A is nef. �

3. Vanishing in mixed characteristic

The goal of this section is to extend the first author’s vanishing theorem [Bha20,
Theorem 6.28(b)] from the case of essentially finitely presented algebras over excellent
henselian DVRs in mixed characteristic5 to the case of arbitrary excellent local domains
of mixed characteristic. As in the corresponding local story in [Bha20, §5], our main tools
are Popescu’s approximation theorem [Sta, Tag 07BW] together with limit arguments
[Sta, Tag 01YT]. We follow the notation from [Bha20] in this section; in particular, we
write Xp=0 :=X×Spec(Z) Spec(Z/p) for any scheme X.

Proposition 3.1. — Suppose that (T, x) is an excellent local domain of mixed characteristic

(0, p > 0) that admits a dualizing complex. Let π :X−→ Spec(T) be a proper surjective map with

X reduced, equidimensional and p-torsion free. Suppose that L ∈ Pic(X) is a semiample line bundle.

(a) There exists a finite surjective map Y−→X such that

τ>0R�(Xp=0,La)−→ τ>0R�(Yp=0,La)

5 In fact, any DVR of mixed characteristic (0, p > 0) is excellent, see [Sta, Tag 07QW].
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is 0 for all a≥ 0. In particular,

Hj(R�(X+p=0,La))= 0

for all j > 0 and all a≥ 0.

(b) If L is also big, then for all b < 0 there exists a finite surjective map Y−→X such that

R�x(R�(Xp=0,Lb))−→R�x(R�(Yp=0,Lb))

is the zero map on Hj for j < dim(Xp=0). In particular,

Hj(R�x(R�(X+p=0,Lb)))= 0

for all j < dim(Xp=0) and all b < 0.

In what follows, we will only explain part (b) carefully. Part (a) follows from a similar
and slightly easier argument so we omit it. We begin by proving a variant of [Bha20,
Theorem 6.28(b)] where we allow non-closed points and do not require that the base
DVR is henselian.

Proposition 3.2. — Let V be an excellent DVR of mixed characteristic (0, p > 0) and let

π :X−→ Spec(T) be a proper surjective map of integral flat finitely presented V-schemes. Fix a (not

necessarily closed) point x ∈ Spec(T)p=0 and a big and semiample line bundle L ∈ Pic(X). Then for

all b < 0 there exists a finite surjective map Y−→X such that

R�x(R�(Xp=0,Lb)⊗T Tx)−→R�x(R�(Yp=0,Lb)⊗T Tx)

is the zero map on Hi for i < dim((X ×T Tx)p=0). Here Tx is the localization of T at the prime

ideal x.

Proof. — Without loss of generality, we can assume X is normal. We first assume
x is a closed point. Let Vh be the henselization of V. So Vh = lim−→Vj where each Vj is a
pointed étale extension of V. We have a commutative diagram

X �� Spec(T) �� Spec(V)

Xj
��

��

Spec(Tj) ��

��

Spec(Vj)

��

X′ ��

��

Spec(T′) ��

��

Spec(Vh)

��
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such that each square is Cartesian. By [Bha20, Theorem 6.28(b)] applied to the bot-
tom row of the above diagram,6 there exists a finite surjective map Y′ −→ X′ such that
the map R�x(R�(Xp=0,Lb))−→R�x(R�(Y′p=0,Lb)) is zero on Hi for i < dim X′p=0 (here
we abuse notation and use L to denote the corresponding line bundle on Y′p=0). More-
over, we may assume Y′ = Yj ×Xj

X′ is the base change of a finite surjective map
Yj −→ Xj for some index j. Since V/p = Vj/p = Vh/p, we have Xp=0

∼= Xj,p=0
∼= X′p=0

and Yj,p=0
∼= Y′p=0. Thus the map R�x(R�(Xj,p=0,Lb)) −→ R�x(R�(Yj,p=0,Lb)) is zero

on Hi for i < dim Xp=0. Next we note that by [Bha20, Lemma 4.4],7 there exists a finite
cover Y −→ X such that the base change Y ×X Xj −→ Xj factors through Yj . Therefore
the map R�x(R�(Xp=0,Lb))−→ R�x(R�(Yp=0,Lb)) is zero on Hj for i < dim Xp=0 as it
factors through R�x(R�(Yj,p=0,Lb)).

We next handle the case that x is not necessarily a closed point. By [Bha20, Lemma
4.8], there exists an extension of DVRs V−→W that is essentially of finite type and a (flat)
finite type W-algebra S such that Tx

∼= Sy where y ∈ Spec(S)p=0 is a closed point. Choose
X̃ an integral finitely presented scheme over S (and flat over W) such that X̃ ×Spec(S)

Spec(Sy)∼=X×Spec(T) Spec(Tx), which is possible as the latter is finitely presented over Sy

which is a localization of S. Consider the diagram

X×Spec(T) Spec(Tx) �� Spec(Tx) �� Spec(V)

X̃×Spec(S) Spec(Sy) ��

∼=
��

��

Spec(Sy) ��

∼=
��

��

Spec(W)

��

=
��

X̃ �� Spec(S) �� Spec W

By applying the first part above to X̃ −→ Spec(S) −→ Spec(W) and the closed point y ∈
Spec(S)p=0, we learn that there exists a finite surjective map Ỹ−→ X̃ such that the map

R�y(R�(X̃p=0,Lb))−→R�y(R�(Ỹp=0,Lb))

is zero on Hi for i < dim(X̃ ×S Sy)p=0. Finally, by taking suitable integral closures,
we can choose a finite surjective map Y −→ X such that Y ×Spec(T) Spec(Tx) factors
through (in fact, equals) Ỹ×Spec(S) Spec(Sy), so that the map R�x(R�(Xp=0,Lb)⊗T Tx)−→
R�x(R�(Yp=0,Lb)⊗T Tx) is zero on Hi for i < dim((X×T Tx)p=0). �

This directly leads to the following statement.

6 Since X is normal, each connected component of X′ is integral so technically we are applying [Bha20, Theorem
6.28(b)] to each connected component of X′.

7 Here we are using the scheme version of [Bha20, Lemma 4.4], the proof is the same.
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Corollary 3.3. — Let V be an excellent DVR of mixed characteristic (0, p > 0) and let

π : X −→ Spec(T) be a proper surjective map of integral flat finitely presented V-schemes. Fix

a big and semiample line bundle L ∈ Pic(X). Then for all b < 0, and all x ∈ Spec(T)p=0,

Hi(R�x(R�(X+p=0,Lb)⊗T Tx))= 0 for all i < dim(X×T Tx)p=0.

Proof. — Simply notice that

R�x(R�(X+p=0,Lb)⊗T Tx)= lim−→Y�X
R�x((R�(Y,Lb))p=0⊗T Tx)

where the colimit is over all finite surjective maps Y −→ X. Now the statement follows
from Proposition 3.2. �

Remark 3.4. — In the case that dim X= dim T, we may interpret Corollary 3.3 as
saying that R�(X+p=0,Lb) is a Cohen-Macaulay complex over T/p in the sense of [Bha20,
Definition 2.1].

We now extend our results to Noetherian complete local bases.

Proposition 3.5. — Let T be a complete Noetherian local domain of mixed characteristic (0, p >

0). Let π : X −→ Spec(T) be a proper surjective map such that X reduced, equidimensional, and

p-torsion free. Fix a big and semiample line bundle L ∈ Pic(X). Then for all b < 0 and all j <

dim Xp=0, Hj(R�x(R�(X+p=0,Lb)))= 0 where x ∈ Spec(T) is the closed point.

Proof. — The strategy is similar to that of [Bha20, Theorem 5.1]. By Cohen’s struc-
ture theorem, we may assume that T is finite over a power series ring V�x2, . . . , xn� where
V is a coefficient ring of T (hence a complete DVR). Thus without loss of generality, we
may assume T = V�x2, . . . , xn�. Moreover, we may replace X by its normalization and
work with each connected component to assume X is normal and integral.

By Popescu’s theorem [Sta, Tag 07GC], we can write T = lim−→Qi such that
Q0 = V[x2, . . . , xn] and each Qi is smooth over Q0. Since X −→ Spec(T) is proper and
surjective, we may assume that there exists a proper surjective map Xi −→ Spec(Qi)

such that X ∼= Xi ×Spec(Qi) Spec(T) and the line bundle L is pulled back from some
big and semiample line bundle Li on Xi , see for instance [Mur21, Lemma 4.1]. Now
by Corollary 3.3 applied to Xi −→ Spec(Qi) −→ Spec(V), we know that for all b < 0
and all y ∈ Spec(Qi)p=0, we have Hj(R�y(R�(X+i,p=0,Lb

i ) ⊗Qi
Qi,y)) = 0 for all j <

dim(Xi ×Qi
Qi,y)p=0. In particular, for any y ∈ Spec(Qi) that contains (p, x2, . . . , xn), the

Hj vanish for all

j < dim Xi,p=0 − dim(Qi/(p, x2, . . . , xn)Qi)= n+ dim Xi − dim Qi − 1.

Note that for i � 0, we have dim Xi − dim Qi = dim X − dim T by [Sta, Tag 0EY2].
Thus for i� 0, the Hj vanish for all j < dim X− 1= dim Xp=0. At this point, we apply
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[FI03, Proposition 2.10] or [Gab04, Section 3] to the Qi-complex R�(X+i,p=0,Lb
i ) and

the ideal I= (p, x2, . . . , xn)⊆Qi , we see that Hj(R�(p,x2,...,xn)(R�(X+i,p=0,Lb
i )))= 0 for all

j < dim Xp=0.
Finally, fix j < dim Xp=0, for each η ∈ Hj(R�x(R�(Xp=0,Lb))), it is the im-

age of some η′ ∈ Hj(R�(p,x2,...,xn)(R�(Xi,p=0,Lb
i ))) for some index i. The previous

paragraph shows that there is a finite cover Yi −→ Xi such that η′ maps to zero in
Hj(R�(p,x2,...,xn)(R�(Yi,p=0,Lb

i ))). Base change along Spec(T) −→ Spec(Qi), we see that
there exists a finite cover Y−→X such that the image of η is zero in Hj(R�x(R�(Yp=0,Lb))).
Therefore Hj(R�x(R�(X+p=0,Lb)))= 0 for all j < dim Xp=0. �

Now we can prove the case of an excellent local base. This is precisely part (b) of
Proposition 3.1.

Proposition 3.6. — Suppose that (T, x) is an excellent local domain of mixed characteristic

(0, p > 0). Let π :X−→ Spec(T) be a proper surjective map with X reduced, equidimensional and

p-torsion free. Suppose that L ∈ Pic(X) is a big and semiample line bundle. Then for all b < 0,

Hj(R�x(R�(X+p=0,Lb))) = 0 for all j < dim(Xp=0). If, in addition, (T, x) admits a dualizing

complex ω
�

T, then there exists a finite cover Y−→X such that

R�x(R�(Xp=0,Lb))−→R�x(R�(Yp=0,Lb))

is the zero map on Hj for j < dim(Xp=0).

Proof. — We first assume (T, x) is normal and henselian. By Popescu’s theorem
again, we can write T̂= lim−→Ti where each Ti is smooth over T, and T̂ is a Noetherian
complete local domain. Let X̂ and Xi be the base change of X along T−→ T̂ and T−→Ti

respectively (note that X̂ and Xi are still reduced, equidimensional and p-torsion free).
Given a class η ∈Hj(R�x(R�(Xp=0,Lb))), by Proposition 3.5, there exists a finite cover
Ŷ of X̂ such that the image of η is 0 in Hj(R�x(R�(Ŷp=0,Lb))). We can descend Ŷ
to a finite cover Yi over Xi for i� 0, and enlarging i if necessary, we know the image
of η is 0 in Hj(R�x(R�(Yi,p=0,Lb))). Now (T, x) is henselian and the map T −→ Ti is
smooth with a specified section over the residue field (via the map to the completion);
thus, the map T−→Ti admits a section Ti −→T by [Sta, Tags 07M7, 04GG]. Base change
Yi −→ Spec(Ti) along this section yield a finite cover Y of X such that the image of η is
0 in Hj(R�x(R�(Yp=0,Lb))). Running this argument for all finite covers X′ of X and
taking a direct limit, we find that Hj(R�x(R�(X+p=0,Lb)))= 0 for all j < dim(Xp=0).

Next we assume T is an excellent normal local domain. We may assume X is
normal. Let T−→ Th be the henselization of T. Then X×T Th is also normal, by work-
ing with each connected component, we simply assume that X ×T Th is normal and
integral. Consider X+ ×T Th, this is a cofiltered limit of étale X+-schemes (in particu-
lar it is normal). Since X+ is absolute integrally closed, each connected component of
X+ ×T Th is absolute integrally closed. But each connected component is also integral
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over X×T Th, thus can be identified with (X×T Th)+. By the henselian case we already
proved, we have that Hj(R�x(R�((X ×T Th)+p=0,Lb))) = 0 for all j < dim(Xp=0). This
implies Hj(R�x(R�((X+×T Th)p=0,Lb)))= 0 by [Bha20, Lemma 5.9]. Since Th is faith-
fully flat over T, this implies Hj(R�x(R�(X+p=0,Lb)))= 0.

Finally, if (T, x) is an excellent local domain, then the normalization T′ of T is a
excellent semi-local domain finite over T. Moreover, for any y ∈ Spec(T), we have an
isomorphism

R�y((−)y)=⊕y′R�y′((−)y′)

of functors on T′-complexes, where y′ ∈ Spec(T′) runs over the finitely many preimages of
y in Spec(T′). Applying the above isomorphism when y= x, we can obtain the first part of
the proposition from the excellent normal case (applied to localizations of T′ at preimages
of x). Applying the above isomorphism for all y ∈ Spec(T/p), the last conclusion follows
from [Bha20, Lemma 2.17 and Lemma 2.18] applied to the ind-object {R�(Yp=0,Lb)}Y
where Y runs over all finite covers of X in X+. �

Finally, we reformulate the above result in a form that does not require passing
to the p = 0 fibre; this will be convenient for us and also allows us to give a uniform
statement that includes the equal characteristic p > 0 case.

Corollary 3.7. — Suppose that (T, x) is an excellent local ring of residue characteristic p > 0.

Let π :X−→ Spec(T) be a proper map with X integral. Suppose that L ∈ Pic(X) is a big and semi-

ample line bundle. Then for all b < 0 and all i < dim(X), we have that Hi(R�x(R�(X+,Lb)))=
0.

Proof. — Since X −→ Spec(T) is proper and X is integral, we can replace T by
π∗OX to assume X−→ Spec(T) is proper and surjective and that T is a domain. If (T, x)

has mixed characteristic, then we consider the exact sequence

0 = Hi−1(R�x(R�(X+p=0,Lb)))

−→Hi(R�x(R�(X+,Lb)))
p−→Hi(R�x(R�(X+,Lb))).

This implies that the multiplication-by-p map on Hi(R�x(R�(X+,Lb))) is injective,
which is impossible unless Hi(R�x(R�(X+,Lb)))= 0 since any element of the module is
xn-torsion and so pn-torsion for n� 0.

Now suppose (T, x) has equal characteristic p > 0. By the same argument as in
Proposition 3.6, we may assume (T, x) is a Noetherian complete local domain, and then
by the same reduction as in Proposition 3.5 and Proposition 3.2 (the steps are easier as
we are working over a field and not a mixed characteristic DVR), we may assume (T, x)

is essentially finite type over a field k. We can write k as a filtered colimit of finite type
fields kj and thus T is a filtered colimit of Tj essentially finite type over kj . Note that X
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descends to Xj over Tj for large j (and similarly for the big and semiample line bundle
L, for instance see [Mur21, Lemma 4.1]), and the dimension is preserved. If we can find
a finite cover Yj −→Xj such that Hi(R�x(R�(Xj,Lb)))−→Hi(R�x(R�(Yj,Lb))) is zero,
then after base change to X we see that the image of Hi(R�x(R�(Xj,Lb))) is zero in
Hi(R�x(R�(X+,Lb))) and we will be done. Therefore, replacing T by Tj and X by Xj ,
we may assume that T is essentially finite type over an F-finite field k. In particular, X
and T are F-finite.

The rest argument essentially follows from the proof of [Bha20, Theorem 6.28],
replacing the mixed characteristic results there by their equal characteristic counterparts
in [Bha12]. We can replace X by a finite cover to assume L = f ∗N where f : X −→ Z
is a proper surjective map (of proper integral schemes over Spec(T)) and N is am-
ple on Z. Now by [Bha12, Theorem 1.5], there is a finite cover Y −→ X such that the
map Rf∗OX −→ Rg∗OY factors through g∗OY, where g is the composition map Y −→ Z.
Set Z′ = SpecZ(g∗OY), we find that R�xR�(X,Lb) −→ R�xR�(Y,Lb) factors through
R�xR�(Z′,Nb). Since L is big, dim X = dim Z and hence by the above discussion, to
show there is a finite cover of X such that Hi(R�x(R�(X,Lb))) maps to zero for i <

dim(X), it is enough to show there is a finite cover of Z such that Hi(R�x(R�(Z,Nb)))

maps to zero for i < dim(Z). Thus replacing X by Z and L by N, we may assume L is
ample.

By local duality, for any finite cover Y of X, HiR�x(R�(Y,Lb)) is the Matlis dual
of

H−iR HomT(R�(Y,Lb),ω
�

T)∼=H−iR�(Y,ω
�

Y ⊗ L−b)

Applying [Bha12, Proposition 6.2], there exists a further finite cover Y′ of Y such that the
map

H−iR�(Y′,ω �

Y′ ⊗ L−b)−→H−iR�(Y,ω
�

Y ⊗ L−b)

factors through H−iR�(Y,ωY[dim(X)] ⊗ L−b). Since X is F-finite, we can take Y to be
the e-th Frobenius of X so H−iR�(Y,ωY[dim(X)] ⊗ L−b)= 0 for e� 0 and i < dim(X)

by Serre vanishing (note that L is ample and b < 0). Therefore the composition map

H−iR�(Y′,ω �

Y′ ⊗ L−b)−→H−iR�(X,ω
�

X⊗ L−b)

is the zero map. Thus its Matlis dual HiR�x(R�(X,Lb))−→HiR�x(R�(Y′,Lb)) is also
the zero map. Running this argument for all finite covers of X and taking a colimit, we
find that Hi(R�x(R�(X+,Lb)))= 0 as desired. �

Remark 3.8. — In the context Corollary 3.7, if Hi(R�x(R�(X,L−1))) is bounded
p-power-torsion, then it follows that there exists a finite cover that Y−→X that annihilates
that cohomology group. Dual versions can then be phrased in terms of canonical modules
and dualizing complexes; see Remark 3.9 for the characteristic p analog. This approach
is explored in [TY20].
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Remark 3.9 (Kodaira vanishing up to finite covers in positive characteristic). — Continue in
the setup and notation of Corollary 3.7 and assume that T has characteristic p. The proof
given above then shows the following finer statement: there exists a finite surjective map
Y−→X such that the induced trace map

H−iR�(Y,ω
�

Y ⊗ L−b)−→H−iR�(X,ω
�

X⊗ L−b)

is the 0 map for i < dim(X).

4. The subset of +++-stable sections (B0)

Let X, � and M be as in Definition 4.2 below. In this section, we define special
global sections inside H0(X,OX(M)), which will be important especially when M−KX−
� is ample (or big and semiample). Like S0 and T0 in characteristic p > 0 from [BST15,
Sch14], these special linear systems behave as though Kawamata-Viehweg vanishing is
true. We will use this extensively later in the paper.

Convention 4.1. — In the remainder of the paper, we will often work with intersec-
tions, limits or colimits over the category of all finite covers of an integral scheme X. In
this situation, we always mean the following: fix an algebraic closure K(X) of the func-
tion field of X, and consider the category of all finite integral covers f : Y−→X equipped
with an embedding K(Y)⊂K(X) over X (in particular, the morphisms must respect this
embedding). Thus, our intersections, limits or colimits take place over a poset. Note that
a cofinal collection in this category is given by the finite covers with Y normal when X is
excellent. Moreover

X+ = lim←−
f : Y−→X

finite

Y,

see [Sta, Tag 01YV]. A similar convention applies to categories of alterations.

Definition 4.2 (+++-stable sections). — Consider the following situation:

◦ X is a normal, integral scheme proper over a complete Noetherian local domain (R,m) with char-

acteristic p > 0 residue field,

◦ �≥ 0 is a Q-divisor on X, and

◦ M is a Z-divisor and M = OX(M). In fact, the following definition only depends on the linear

equivalence class of M.

Then, define

B0(X,�;M ) :=
⋂

f : Y−→X
finite

im
(
H0(Y,OY(KY + �f ∗(M−KX −�)�))

−→ H0(X,M )
)

https://stacks.math.columbia.edu/tag/01YV
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where the intersection is taken as R-submodules of H0(X,M ), and runs over all f : Y −→ X as in

Convention 4.1 where Y is normal. One sees by Galois conjugation that the above module is independent

of the choice of geometric generic point of X.

We call the global sections B0(X,�;M ) the +++-stable sections of H0(X,M ) (with re-
spect to (X,�)).

Additionally, assuming that M− (KX +�) is Q-Cartier, define also

B0
alt(X,�;M ) :=

⋂

f : Y−→X
alteration

im
(
H0(Y,OY(KY + �f ∗(M−KX −�)�))

−→ H0(X,M )
)

where the intersection runs over all alterations f : Y−→X from a normal integral schemes as in Conven-

tion 4.1.

If � = 0, then we use the simplified notation: B0(X;M ) := B0(X,�;M ) and

B0
alt(X;M ) := B0

alt(X,�;M ).

Remark 4.3 (B0 for non-integral X). — If X is not integral but still normal where
each component has the same dimension d , we define B0(X,�;M ) as the direct sum of
B0 for each connected (hence irreducible) component of X.

Remark 4.4. — Alternately, we may assume that Y −→ X factors through some
finite h :W−→ X such that h∗(M−KX −�) is integral. In that case, the roundings are
also not needed. If M−KX−� is Q-Cartier, we may also assume that h∗(M−KX−�)

is Cartier (see, for example, [KM98, Section 2.4] or [TW89]; cf. [BST15, Lemma 4.5]).
In this latter case, we do not even need to restrict to normal Y.

Remark 4.5. — Frequently, one applies Definition 4.2 to M = ωX⊗L and �= 0
with L a line bundle, in which case the first notion of Definition 4.2 simplifies to

B0(X;ωX⊗L ) :=
⋂

f : Y−→X
finite

im
(
H0(X,L ⊗ f∗ωY)−→H0(X,L ⊗ωX)

)
.

Remark 4.6 (Non-complete R). — If (R,m) is an excellent non-complete local ring,
with completion R̂, we may base change by the completion R̂ of R to obtain XR̂, and
define B0 and B0

alt as above but restrict to finite covers (respectively, alterations) that arise
as the base change of a finite cover of X. In this case, the resulting intersection, which we
denote by B̂0, is a subset of H0(XR̂,L ⊗R R̂) and so is a finitely generated R̂-module
since XR̂ −→ Spec R̂ is proper and R̂ is Noetherian. However, this intersection need not
be finitely generated as an R-module as R̂ is not. See also Section 4.4 where we show
that B̂0 is equal to B0(XR̂,�|XR̂

,L ⊗R R̂)
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The following basic property of B0 is immediate from the definition.

Lemma 4.7. — With notation as in Definition 4.2, we have that

B0(X,�;M )⊆ B0(X,�′;M )

for every effective Q-divisor �′ ≤�.

Our next goal is to identify B0 with a Matlis dual of a direct limit, and also with
a certain inverse limit. These alternate descriptions of B0 will be both convenient and
crucial in what follows. Before doing that, we make the following observations related to
passing direct limits through cohomology in our setting:

lim−→
f : Y−→X

finite

HdR�mR�(Y,OY(�f ∗(KX +�−M)�))

= lim−→
f : Y−→X

finite

Hd
g−1m

(X, f∗OY(�f ∗(KX +�−M)�))

which, in view of (2.1.1) may be identified with

Hd
g−1m

(X,π∗OX+(π
∗(KX +�−M)))

=HdR�mR�(X+,OX+(π
∗(KX +�−M)))

where g : X −→ Spec R is the given map and π : X+ −→ X is the induced map. In other
words,

lim−→
f : Y−→X

finite

HdR�mR�(Y,OY(�f ∗(KX +�−M)�))(4.7.1)

=HdR�mR�(X+,OX+(π
∗(KX +�−M))).

Of course, this identification can be obtained in other ways as well.

Lemma 4.8 (Alternate descriptions of B0). — Work in the situation of Definition 4.2 and

suppose d = dim X.

(a) We then have that B0(X,�;M ) is the R-Matlis dual of

im
(

HdR�mR�(X,OX(KX −M))

−→ lim−→
f : Y−→X

finite

HdR�mR�(Y,OY(�f ∗(KX +�−M)�))
)
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or equivalently, by (4.7.1), the R-Matlis dual of:

im
(

HdR�mR�(X,OX(KX −M))

−→HdR�mR�(X+,OX+(π
∗(KX +�−M)))

)
.

(b) Dually, we have that:

B0(X,�;M )= im

((
lim←−

f : Y−→X
finite

H0(Y,OY(KY + �f ∗(M−KX −�)�))
)

−→H0(X,M )

)
.

(c) Similarly, when M− (KX +�) is Q-Cartier, B0
alt is the R-Matlis dual of

im
(

HdR�mR�(X,OX(KX −M))

−→ lim−→
f : Y−→X
alteration

HdR�mR�(Y,OY(�f ∗(KX +�−M)�))
)

where Y runs over alterations.

(d) Dually, we have that

B0
alt(X,�;M ) = im

((
lim←−

f : Y−→X
alteration

H0(Y,OY(KY + �f ∗(M−KX −�)�))
)

−→H0(X,M )

)
.

An alternate description of (b), is that for every s ∈ B0(X,�;M ) there exists a
compatible system as follows such that sX = s:

(
sY ∈H0

(
Y,OY

(
KY + �f ∗(M−KX −�)�)

)

∀f : Y−→X finite

∣∣∣∣∣
such that sZ "→ sY for any factorization
of finite maps Z−→ Y−→X

)
.

Similarly for (d).

Proof. — For each finite map f : Y −→ X with Y normal, we have a natural map
OX(KX −M)−→ f∗OY(�f ∗(KX +�−M)�) (for alterations, where the argument will be
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the same, we also require that KX +�−M is Q-Cartier). Thus we have

HdR�mR�(X,OX(KX −M)) � imY(4.8.1)

↪→HdR�mR�(Y,OY(�f ∗(KX +�−M)�)).

Taking filtered colimit for all Y, we have

HdR�mR�(X,OX(KX −M)) � lim−→
Y

imY(4.8.2)

↪→ lim−→
Y

HdR�mR�(Y,OY(�f ∗(KX +�−M)�)).

Notice also that lim−→Y
imY is the image of the map (a). We shall show that the Matlis dual

of the limit of the images satisfies the following:

(4.8.3) (lim−→
Y

imY)∨ = lim←−
Y

im∨Y = B0(X,�;M ).

To see this, first observe that the Matlis dual of HdR�mR�(X,OX(KX − M)) is
H0(X,M ) by Lemma 2.3. Similarly, and using the fact that H omOY(OY(�f ∗(KX +
�−M)�),ωY) ∼= OY(KY + �f ∗(M−KX −�)�) since Y is normal, the Matlis dual of
HdR�mR�(Y,OY(�f ∗(KX + � −M)�)) is H0

(
Y,OY(KY + �f ∗(M − KX − �)�)) by

Lemma 2.3. Hence, applying Matlis duality to (4.8.2), and noticing that Matlis duality
turns colimits into limits, we obtain

H0(X,M ) = H0(X,OX(M))←↩ lim←−
Y

im∨Y(4.8.4)

� lim←−
Y

H0
(
Y,OY(KY + �f ∗(M−KX −�)�)).

It follows that

lim←−
Y

im∨Y = im

((
lim←−

f : Y−→X
finite

H0(Y,OY(KY + �f ∗(M−KX −�)�))
)

(4.8.5)

−→H0(X,M )

)
.

But since applying Matlis-duality to (4.8.1) yields

im∨Y = im
(
H0(Y,OY(KY + �f ∗(M−KX −�)�))−→H0(X,M )

)
,
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we know that

lim←−
Y

im∨Y =
⋂

f : Y−→X
finite

im
(
H0(Y,OY(KY+�f ∗(M−KX−�)�))−→H0(X,M )

)

= B0(X,�;M )

Now (a) follows from (4.8.2) and (4.8.3), and (b) follows from (4.8.3) and (4.8.5). The
argument for B0

alt(X,�;M ) is the same. �

Remark 4.9. — The proof above uses that (R,m) is complete in an essential way
since the Matlis dual of local cohomology modules supported at the maximal ideal m are
finitely generated R̂-modules (and not necessarily finitely generated over R).

Furthermore, without the complete hypothesis Lemma 4.8 (b) is false. Even in
equal characteristic p > 0, suppose (R,m) is as in [DM20, Corollary C] an excellent
regular local ring, X= Spec R, M= 0, and �= 0. Then we have

lim←−
R⊆S

ωS/R = lim←−
R⊆S

HomR(S,R)=HomR(lim−→
R⊆S

S,R)=HomR(R+,R)= 0

where R⊆ S runs over finite extensions of R in R+. Hence the image in Lemma 4.8 (b) is
zero. On the other hand, each map ωS/R =HomR(S,R)−→R is surjective for any finite
extension R⊆ S by the direct summand theorem in characteristic p > 0 [Hoc73].

We will also need completeness in the proof of our section-lifting result Theo-
rem 7.2 (which uses the vanishing of Section 3). For our geometric applications, this will
not be a substantial restriction as we can reduce to this case. Also see Remark 4.6.

Lemma 4.8 essentially asserts that the formation of images and inverse limits com-
mutes in certain situations. Such an assertion would be automatic if the relevant inverse
limits were exact functors. This is in fact true more generally, and we extrapolate the
following observation from the method of proof8 of Lemma 4.8 above:

Lemma 4.10. — Let R be a complete Noetherian local ring. Let {Ki}i∈I be a projective system

of finitely generated R-modules with cofiltered indexing category I. Then R lim←−i
Ki is concentrated in

degree 0. Consequently, the functor {Mi} "→ lim←−i
Mi is exact on I-indexed diagrams of finitely generated

R-modules.

Proof. — Let E be the injective hull of the residue field of R. Write (−)∨ :=
R HomR(−,E) for the Matlis duality functor regarded as a functor on the derived cate-
gory D(R), so (−)∨ :D(R)−→D(R) is t-exact (because E is an injective R-module), and

8 Specifically, the observation comes from extracting what is needed to ensure the surjective arrow in (4.8.4).
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we have a natural isomorphism K � (K∨)∨ for K ∈ Db
coh(R). Now take {Ki} as in the

lemma. We then have

R lim←−
i

Ki =R lim←−
i

((K∨i )∨)=R lim←−
i

R HomR((K∨i ),E)

=R HomR(lim−→i
(K∨i ),E).

As (−)∨ is t-exact, each (Ki)
∨ lies in degree 0. But filtered colimits are exact, so lim−→i

(K∨i )

also lies in degree 0. Finally, E is injective, so the last term above also lies in degree 0,
whence R lim←−i

Ki lies in degree 0, as wanted in the first part.
The second part is formal given the first part. For instance, say {fi} : {Mi} −→ {Ni} is

an I-indexed diagram of surjections of finitely generated R-modules. To show lim←−i
Mi −→

lim←−i
Ni is surjective, we simply use that R lim←−i

ker(fi) is concentrated in degree 0 by the first
part, and that R lim←−i

takes any short exact sequence of I-indexed diagrams of R-modules
to an exact triangle in D(R). �

Applying this lemma to I being the category of all finite covers (resp. alterations)
and the map of projective systems

{
H0(Y,OY(DY))

}
Y−→X

�
{
im

(
H0(Y,OY(DY))−→H0(X,OX(M ))

)}
Y−→X

with DY =KY + �f ∗(M−KX −�)�, appearing in Lemma 4.8 then gives an alternative
proof of the lemma.

Remark 4.11. — The proofs of Lemma 4.10 and Corollary 4.13 below feature fil-
tered colimits in the derived category. Literally interpreted in the triangulated category
setting, this does not give a sensible object. For example, the formation of filtered col-
imits in the derived category D(R) of a commutative ring R (when they exist) does not
commute with taking cohomology groups (even when everything is in a degree 0), mak-
ing the former a rather obscure notion.9 Instead, to obtain the notion of filtered colimits
for which passing to cohomology is exact, one can work with ∞-categories. Alternate
approaches include dg-categories, or a 1-categorical substitute such as the notion of ho-
motopy colimits over suitable diagram categories, e.g., see [Sta, Tag 0A5K] for colimits
over the poset N). We will elide this issue in the sequel.

9 At the request of the referee, we give an example where colimits in the triangulated category D(R) work poorly.
Given a countable diagram M0 −→M1 −→M2 −→ ... in D(R), if the colimit M := lim−→i

Mi in D(R) exists, then the map
⊕iMi −→M must be a categorical epimorphism as HomD(R)(M,−) −→∏

i HomD(R)(Mi,−) is injective by the defining
property of a colimit. But any epimorphism f : x −→ y in a triangulated category splits: the canonical map g : y−→ cone(f )
is 0 as g ◦ f is 0. So we learn that ⊕iMi −→M admits a right inverse. This is clearly not the case for colimits of interest, e.g.,
if we take R= Z and Mi = Z/pi with maps Mi −→Mi+1 determined by 1 "→ p, then the “correct” colimit is Qp/Zp, but the
map ⊕iZ/pi −→Qp/Zp does not have a right inverse: the right side admits a nonzero map from Qp while the left side does
not.
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Remark 4.12. — We explain why the completeness of R is essential to Lemma 4.10;
we shall use the theory of derived completions, see [Sta, Tags 091N,0BKF,0BKH].
Suppose (R,m) is a Noetherian local ring. Then R is m-adically complete exactly
when it is derived m-complete (since R is Noetherian and m is finitely generated),
and the latter happens exactly when R is derived f -complete for every f ∈ m, i.e.,

R1 lim←−(· · ·R f−→ R
f−→ R) = 0 (noting that R0 lim←− always vanishes in this case by Krull’s

intersection theorem). Therefore if (R,m) is not m-adically complete, then there exists

f ∈m such that R1 lim←−(· · ·R f−→R
f−→R) �= 0, i.e., R lim←−(· · ·R f−→R

f−→R) is not concen-
trated in degree 0 so Lemma 4.10 is false.

The next result relies on deep results on p-adic Riemann-Hilbert correspondence
[BL] in the form of [Bha20, Theorem 3.12].

Corollary 4.13 (Alterations vs finite covers). — With notation as above, and assuming that

M−KX −� is Q-Cartier, we have that

B0(X,�;M )= B0
alt(X,�;M ).

Proof. — We follow the notation of the statement and proof of Lemma 4.8, keeping
in mind Remark 4.11. It suffices to demonstrate that

lim−→
f : Y−→X

finite

HdR�mR�(Y,OY(�f ∗(KX +�−M)�))

= lim−→
f : Y−→X
alteration

HdR�mR�(Y,OY(�f ∗(KX +�−M)�)).

Since p ∈ m, we have R�m(M̂) = R�m(M) for all R-complexes M, where M̂ denotes
the derived p-completion (see [Sta, Tag 091N] for definitions and details about derived
completion). Since filtered colimits are exact (cf. [Sta, Tag 00DB]), it is thus enough to
show that the natural map identifies

HdR�m

⎛

⎜⎝ ̂lim−→
f : Y−→X

finite

R�(Y,OY(�f ∗(KX +�−M)�))
⎞

⎟⎠

=HdR�m

⎛

⎜⎝ ̂lim−→
f : Y−→X
alteration

R�(Y,OY(�f ∗(KX +�−M)�))
⎞

⎟⎠ .

At this point, we recall that derived p-complete complexes obey a derived Nakayama
lemma, i.e., in order to show a given map M−→N of derived p-complete objects in D(Ab)
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is an isomorphism, it is enough to show that M⊗L Z/p−→N⊗L Z/p is an isomorphism
(cf. [Sta, Tag 0G1U]). Therefore, it is enough to show that

lim−→
f : Y−→X

finite

R�(Y,OY(�f ∗(KX +�−M)�))⊗L Z/p

= lim−→
f : Y−→X
alteration

R�(Y,OY(�f ∗(KX +�−M)�))⊗L Z/p

via the natural map. As a corollary of the p-adic Riemann-Hilbert functor from [BL] (see
[Bha20, Theorem 3.12]), we know that

lim−→
f : Y−→X

finite

Rf∗OY⊗L Z/p= lim−→
f : Y−→X
alteration

Rf∗OY⊗L Z/p

via the natural map. Because twisting by a divisor and applying R�(X,−) commutes
with filtered colimits, we are done. �

In characteristic p > 0, the analogs of B0 typically stabilize, in other words we
might expect that there exists a finite cover or alteration such that the image of

H0(Y,OY(KY + �f ∗(M−KX −�)�))−→H0(X,M )

is exactly equal to B0. In characteristic p > 0, when one restricts the finite covers to iter-
ates of Frobenius, this is essentially Hartshorne-Speiser-Gabber-Lyubeznik stabilization
[HS77, Gab04, Lyu06], see for instance [HX15, Section 2.4] for a version of this in
the relative setting. If one instead considers arbitrary finite covers in characteristic p > 0,
certain stabilization results in the case where X−→ Spec R is an alteration can be found
in [BST15, ST14, CEMS18], these are then all consequences of the equational lemma
[HH92, HL07, Bha12].

However, in mixed characteristic such stabilization is not possible.

Example 4.14. — Let E −→ Spec(Zp) be an elliptic curve,10 so ωE/Zp
∼= OE and

H0(E,ωE/Zp
)� Zp. We claim that

(a) B0
(
E,ωE/Zp

)= 0, but
(b) im(Trf :H0(Y,ωY/Zp

)−→H0(E,ωE/Zp
)) �= 0 for every alteration f : Y−→ E.

To prove (a), fix an integer n≥ 1 and consider the pn-power map [pn] : E−→ E. We
claim that the corresponding trace map Tr[pn] :H0(E,ωE/Zp

)−→H0(E,ωE/Zp
) is multipli-

cation by pn; this will imply that

B0(E,ωE/Zp
)⊂

⋂

n

pnH0(E,ωE/Zp
)=

⋂

n

pnZp = 0,

10 That is, E−→ Spec(Zp) is a proper smooth morphism whose geometric fibers are connected curves of genus one
together with a prescribed section.
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as wanted. By duality, the claim for Tr[pn] is equivalent to showing that the pullback map
[pn]∗ : H1(E,OE) −→ H1(E,OE) is given by pn. But this is a general and standard fact
about multiplication maps on abelian schemes, as we briefly recall. The map [pn] : E−→ E

factors as E
�−→ E×pn μ−→ E, where μ denotes the addition map and � is the diagonal, so we

have [pn]∗ =�∗ ◦ μ∗. Now the Künneth formula gives H1(E×pn

,OE×pn )�H1(E,OE)
⊕pn

,
with projection to the i-th summand (resp. inclusion of the i-th summand) on the right
given by the inclusion E −→ E×pn

in the i-th factor (resp. the projection E×pn −→ E to the
i-th factor). It is then immediate that μ∗ :H1(E,OE)−→H1(E×pn

,OE×pn )�H1(E,OE)
⊕pn

is the diagonal map, so postcomposing with �∗ gives pn, as asserted.
To prove (b), it suffices to show that for every integral alteration f : Y −→ E, the

map Trf :H0(Y,ωY/Zp
) −→H0(E,ωE/Zp

) is surjective after inverting p. Let η ∈ Spec(Zp)

be the generic point. As fη : Yη −→ Eη is an alteration of integral curves over Qp, it is in
fact a finite map. The claim now follows as Eη is a global splinter; explicitly, the map
Trfη = (Trf )[1/p] is dual to the pullback map f ∗η :H1(Eη,OEη

)−→H1(Yη,OYη
), and the

latter is injective since the map on sheaves OEη
−→ fη,∗OYη

is split injective, with splitting
coming from the normalized trace map on functions.

Remark 4.15. — The phenomenon in Example 4.14 is not specific to elliptic
curves and in fact generalizes significantly. Indeed, for any mixed characteristic DVR
V and a normal integral proper flat V-scheme X of relative dimension d ≥ 1 such that
H0(X,ωX/V) �= 0, we have the following:
(a) B0(X,ωX/V)= 0.
(b) im(Trf :H0(Y,ωY/V) −→H0(X,ωX/V)) �= 0 for every finite cover f : Y −→ X. (More

generally, the same holds true for every alteration if we additionally assume that Xη

has rational singularities.)
The proof of (b) is identical to that of Example 4.14 (b). For (a), observe that the du-
ality R HomV(R�(X,OX),V)� R�(X,ω

�

X/V) and the fact that R�(X,OX) ∈ D≤d im-
ply that H0(X,ωX/V)�H−d(X,ω

�

X/V) is naturally identified with HomV(Hd(X,OX),V),
and similarly for all finite normal covers of X. Following the argument in the proof of Ex-
ample 4.14 (a), it is enough to show that for each n≥ 1, there exists a finite normal cover
f : Y−→X such that the pullback map f ∗ :Hd(X,OX)−→Hd(Y,OY) is divisible by pn as
a map. This follows from [Bha20, Theorem 3.12].

Working in equicharacteristic p > 0, we may form an analog of Example 4.14
by considering a family of elliptic curves over k�t�. However, such an example does not
satisfy (b). Indeed, the generic fiber of E over k((t)) is not globally F-regular, and so there
exists an alteration which is zero on global sections.

4.1. B0 in the affine case. — In the case where X = Spec(R), our definition pro-
duces a test ideal which we denote by τ+(R,�) := B0(Spec(R),�;OX)⊂OX. We prove
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here that this agrees with a special case of the big Cohen-Macaulay test ideal defined in
[MS21], which we first recall.

Definition 4.16. — Suppose � ≥ 0 is a Q-Cartier divisor on X= Spec(R), where (R,m)

is a Noetherian complete local normal domain, such that div(f )= n� for some f ∈ R. We also fix a

canonical divisor KX ≥ 0 and a big Cohen-Macaulay R+-algebra B. Then define

0B,�

Hd
m(R)
:= ker(Hd

m
(R)

·f 1/n−−→Hd
m
(B))

and the BCM-test submodule of (ωR,�) with respect to B:

τB(ωR,�) := AnnωR 0B,�

Hd
m(R)

.

Equivalently, τB(ωR,�) is the Matlis dual of the image of Hd
m
(R)

·f 1/n−−→Hd
m
(B).

Now given �≥ 0 such that KX+� is Q-Cartier we define the BCM-test ideal with respect to

B to be τB(R,�) := τB(ωR,KR+�). Via our embedding OX ⊆OX(KR), τB(R,�) is contained

in R. Note this definition requires that KX +� is Q-Cartier.

In this article we are interested in the particular big Cohen-Macaulay algebra B=
R̂+, the p-adic completion of the absolute integral closure of R, see Corollary 2.10. Since
Hd

m
(R+) = Hd

m
(R̂+), we can ignore the p-adic completion for the purposes of defining

τB(X,�) and thus in what follows we will write τR+(R,�) for τR̂+(R,�).

Proposition 4.17. — τR+(R,�) = τ+(R,�) := B0(Spec(R),�;OX) if KR + � is

Q-Cartier.

Proof. — Set X= Spec R and assume that KX ≥ 0. Define � =KX+� and write
divX(f ) = n� = n(KX +�). By Lemma 4.8 (a), we see that B0(X,�;OX) is the Matlis
dual of the image, where d = dim R, of

Hd
m
(OX(KX))−→ lim−→

Y

Hd
m

(
OY(�f ∗(KX +�)�))

= Hd
m

(
lim−→

Y

OY(�f ∗(KX +�)�)).

where Y= Spec S
f−→ Spec R=X is finite, in other words R⊆ S⊆ R+ is a finite exten-

sion. Because R−→ ωR has cokernel ωR/R of dimension < d , we see that Hd
m
(ω/R)= 0

by [Sta, Tag 0DXC] which implies that Hd
m
(R) � Hd

m
(ωR) surjects. Hence their images

in Hd
m

(
lim−→Y

OY(�f ∗(KX +�)�)) are the same. By restricting to those S which are large
enough to contain f 1/n, we see that OY(�f ∗(KX+�)�)= 1

f 1/n ·OY. Finally, putting this all

https://stacks.math.columbia.edu/tag/0DXC
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together, R+ = lim−→S we see that B0(X,�;OX) is Matlis dual to the image of

Hd
m
(R)

·f 1/n−−→Hd
m
(R+).

But this image is Matlis dual to τR+(R,�). �

4.2. Transformation of B0 under alterations. — In this section we record for later use a
number of transformation rules for B0 as we pass from an alteration to the base X.

The first transformation rule allows us to do away with the divisor � by absorbing
it into M , at least on some cover.

Lemma 4.18. — With notation as in Definition 4.2. Suppose that π : Y −→ X, where Y is

normal, is either:

(a) a finite surjective map, or

(b) M−KX −� is Q-Cartier and π is an alteration.

In either case, assume that π∗(M−KX −�) has integer coefficients and consider the map

Tr :H0(Y,OY(KY + π∗(M−KX −�)))−→H0(X,M ).

Then we have that

Tr
(
B0(Y,OY(KY + π∗(M−KX −�)))

)= B0(X,�,M ).

Proof. — This is an immediate consequence of Lemma 4.8. �

We now record a transformation for a birational π :W−→X.

Lemma 4.19. — Let X be a normal integral scheme proper over Spec(R) as in Definition 4.2

and B≥ 0 a Q-divisor on X such that KX+B is Q-Cartier. Let π : W−→X be a proper birational

morphism from a normal integral scheme W and write KW + BW = π∗(KX + B). Let B′ ≥ 0 be an

effective Q-divisor such that B′ ≥ BW. Then for every Cartier divisor L on X, we have

B0(X,B;OX(L))⊇ B0(W,B′;OW(π∗L)).

Furthermore, if B′ = BW (in particular, this assumes that BW is effective), then this containment is an

equality.

Proof. — For every alteration f : Y−→W we have the following diagram

H0
(
Y,OY(KY + �f ∗(π∗L− (KW + B′))�)) H0(W,π∗L)

H0
(
Y,OY(KY + �(π ◦ f )∗(L− (KX + B))�)) H0(X,L).

⊆ =
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Note that in the case that B′ = BW, the left vertical containment is an equality. An appli-
cation of Corollary 4.13 completes the proof. �

In the proof of the existence of flips, we will need a technical variant of
Lemma 4.19. We record it here.

Lemma 4.20. — Let X be a normal integral scheme proper over Spec(R) as in Definition 4.2

and B≥ 0 a Q-divisor on X such that KX + B is Q-Cartier. Let π : Y−→X be a proper birational

morphism from a normal integral scheme Y and write KY+BY = π∗(KX+B). Let L be a Q-Cartier

Q-divisor on X such that (X,B+ {−L}) is klt. Then H0(X,OX(�L�))=H0(Y,OY(�π∗L+
AY�)) and

B0(X,B+ {−L};OX(�L�))= B0(Y, {BY − π∗L};OY(�π∗L+AY�)),
where AY := −BY =KY − π∗(KX + B). Here {�} =�− ��� is the fractional part of �.

Proof. — First, since (X,B+ {−L}) is klt, implicitly {−L} is also Q-Cartier. Thus
so is �L� = L+ {−L}. Notice that

�π∗L+AY� − (KY + {BY − π∗L})
= �π∗L+AY� −KY − BY + π∗L+�BY − π∗L�
= �π∗L+AY� −KY − BY + π∗L− �π∗L+AY�
= π∗(L−KX − B)

= π∗(�L� − (KX + B+ {−L})).
Therefore, for every sufficiently large alteration f : W −→ Y we have the following dia-
gram

H0
(
W,KW + f ∗(�π∗L+AY� − (KY + {BY − π∗L}))) H0

(
Y,OY(�π∗L+AY�)

)

H0
(
W,KW + (π ◦ f )∗(�L� − (KX + B+ {−L}))) H0

(
X,OX(�L�)).

= κ,=

The equality of the left vertical arrow follows from our chain of equalities above. However,
we need to justify the equality, and in fact existence, of the right vertical arrow labeled κ

(this is where we use that (X,B+ {−L}) is klt).
Now, since (X,B + {−L}) is klt, the components of −B − {−L} = −B + L +

�−L� = L− B− �L� have coefficients ≤ 0 and >−1. Thus �L− B� = �L� and so since
π∗ of a divisor simply removes exceptional components, we have that:
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π∗�π∗L+AY� = π∗�π∗L− BY� = �L− B� = �L�.
This at least implies that the map κ exists.

Next, again because (X,B+ {−L}) is klt, �AY− π∗{−L}� = �KY− π∗(KX+B+
{−L})� is effective and exceptional over X. Therefore:

��π∗L+AY� − π∗�L�� ≥ �π∗L+AY − π∗�L�� = �AY − π∗{−L}� ≥ 0.

Hence the map κ is an isomorphism (Lemma 2.36) and the diagram exists as claimed.
Once we have the diagram in place, the result follows immediately by Corollary 4.13. �

4.3. Adjoint analogs. — The subspace B0 of H0 provides a global analog of the test
ideal in positive characteristic and the multiplier ideal in mixed characteristic. In fact,
we will see it frequently as a graded piece of the R+-test ideal for a cone. Therefore, the
subspace B0, in contrast to S0 of [Sch14] (a global analog of a non-F-pure ideal / lc ideal),
cannot satisfy the sharpest possible adjunction to a divisor. To address this problem we
will create an adjoint-ideal version of B0, to which we can lift sections. With notation as
in Definition 4.2 assume that �= S+B where S is a reduced divisor whose components
do not appear in B.

For each irreducible component Si of S (i = 1, . . . , t), choose an integral subscheme
S+i of X+ which lies over S. Notice that this S+i is indeed an absolute integral closure of
S so this is not an abuse of notation. Equivalently this means that for every normal finite
cover Y −→ X we pick a compatible choice of prime divisor Si,Y lying above Si . In that
case, we set SY to be the sum of the Si,Y. We define:

S+ :=
t∐

i=1

S+i .

There is an affine map f : S+ −→ X+ but it is not in general a closed immersion unless
t = 1. Indeed, we notice that when S has multiple irreducible components, the map
OX+ −→ f∗OS+ ∼=⊕t

i=1OS+i is not surjective (the isomorphism follows since S+ is a disjoint
union). From here on out, we abuse notation slightly and omit the f∗ on OS+ . Notice that
OX+ −→OS+i is surjective for each i.

We will define the adjoint-ideal version of B0 as the R-Matlis dual of the image of

HdR�mR�(X,OX(KX −M))

−→HdR�mR�(X+,
t⊕

i=1

OX+(−S+i + π∗(KX + S+ B−M))).

The origin of this map is carefully described below. This dual is also identified with the
intersection
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B0
S(X,S+ B;M )

=
⋂

Y

Image

(
H0

(
Y,

t⊕

i=1

OY(KY + Si,Y + f ∗(M−KX − S− B))
)

−→H0(X,M )

)

see Lemma 4.24.
Consider the short exact sequence (a direct sum of short exact sequences):

0 ��
⊕t

i=1 OX+(−S+i ) ��
⊕t

i=1 OX+ ��
⊕t

i=1 OS+i
�� 0

OS+

where OX+(−S+i ) is the colimit of the OY(−SYi
). We notice that there is a map of short

exact sequences where the bottom vertical maps correspond to the diagonals:

0 �� OX(−S)

��

�� OX
��

��

OS
��

��

0

0 �� OY(−SY)

��

�� OY
��

��

OSY
��

��

0

0 �� ⊕t
i=1 OX+(−S+i ) �� ⊕t

i=1 OX+ �� OS+ =
⊕t

i=1 OS+i
�� 0.

Assume that f ′ : Y′ −→ X is such that f ′ ∗(KX + S+ B) is integral. Twisting the top row
by KX + S−M and the second and third by f ′ ∗(KX + S+ B−M) (and using that B is
effective for the second map), we obtain a factorization

OX(KX −M)−→OY′(−SY′ + f ′ ∗(KX + S−M))(4.20.1)

−→OY′(−SY′ + f ′ ∗(KX + S+ B−M))

−→
t⊕

i=1

OY′(−Si,Y′ + f ′ ∗(KX + S+ B−M))

−→ lim−→
Y

t⊕

i=1

OY(−Si,Y + f ∗(KX + S+ B−M))

=
t⊕

i=1

OX+(−S+i + π∗(KX + S+ B−M)).
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Definition 4.21. — With notation as above, and in particular fixing S+ =∐t

i=1 S+i −→X+,

define B0
S(X,S+ B;M ) to be the R-Matlis dual of the image of

HdR�mR�(X,OX(KX −M))

−→ lim−→
Y

HdR�mR�(Y,

t⊕

i=1

OY(−Si,Y + f ∗(KX + S+ B−M)))

︸ ︷︷ ︸
Hd R�mR�(X+,

⊕t
i=1 OX+ (−S+i +π∗(KX+S+B−M)))

where d = dim X and Y runs over finite maps with Y normal and f ∗(KX + S + B) has inte-

ger coefficients. Notice that B0
S(X,S+ B;M ) ⊆ H0(X,M ) since its Matlis dual is a quotient of

HdR�mR�(X,OX(KX −M)), see Lemma 2.3.

Similarly, we define B0
S,alt(X,S+ B;M ) to be the R-Matlis dual of the image of

HdR�mR�(X,OX(KX −M))

−→ lim−→
Y

HdR�mR�(Y,

t⊕

i=1

OY(−SY,i + �f ∗(KX + S+ B−M)�))

where Y runs over all normal alterations and we define SY,i to be the strict transform of the corresponding

divisors on the Stein factorization. We may restrict to those where f ∗(KX+ S+B) is Cartier if desired.

A priori, these definitions depend on the choice of S+ =∐t

i=1 S+i −→X+. Thus, our
first order of business is to show that this choice does not matter. We begin with the case
that S is integral.

Lemma 4.22. — Suppose S is integral. The objects B0
S(X,�;M ) and B0

S,alt(X,�;M )

are independent of the choice of S+ ⊆X+.

Proof. — We prove only the case of B0
S(X,�;M ) as the alteration case is very

similar. For any two choices S+ and S′+ mapping to X+, pick an element σ of Gal(X+/X)

which sends S+ to S′+. Then one obtains the trace maps in the tower computing B0
S′ by

precomposing those computing B0
S by the isomorphism σ . Therefore the images are

pairwise equal and the intersections are the same. �

The following lemma allows us to assume that S is integral in some cases, and
finishes the proof that B0

S is independent of S+ −→X+.

Lemma 4.23. — With notation as above,

B0
S(X,S+ B;M )=

t∑

i=1

B0
Si
(X,S+ B;M ).



GLOBALLY+++-REGULAR VARIETIES AND THE MINIMAL MODEL PROGRAM. . . 125

Likewise with B0
S,alt(X,S+B;M ) when KX+ S+B is Q-Cartier. As a consequence, B0

S(X,S+
B;M ) and B0

S,alt(X,S+ B;M ) are independent of the choice S+ =∐t

i=1 S+i −→X+.

Proof. — The first statement is a direct application of Matlis duality. Indeed sup-
pose that A � B ↪→⊕t

i=1 Ci is a surjective map followed by a injective map of R-
modules. The Matlis dual B∨ is then the sum of the images of the C∨i −→ A∨. The alter-
ation statement is proven in the same way. The statement about independence of choice
now follows from Lemma 4.22 as each Si is integral. �

Our next goal is to study several alternate characterizations of B0
S.

Lemma 4.24. — With notation as above, then

B0
S(X,S+ B;M )

=
⋂

Y

Image

(
H0

(
Y,

t⊕

i=1

OY(KY + Si,Y + f ∗(M−KX − S− B))
)

−→H0(X,M )

)

where d = dim X and Y runs over finite maps where f ∗(KX + S+ B) is a Weil divisor. Likewise

with B0
S,alt (with alterations instead of finite maps). Furthermore, the elements in those sets correspond to

compatible systems of elements

sY ∈H0
(

Y,

t⊕

i=1

OY(KY + Si,Y + f ∗(M−KX − S− B))
)

as in Lemma 4.8.

Proof. — The statement about compatible systems and Matlis duality follows ex-
actly as in Lemma 4.8. �

Lemma 4.25. — With notation as above, and assuming that KX + S+ B is Q-Cartier, then

B0
S(X,S+ B;M )= B0

S,alt(X,S+ B;M ).

Proof. — By Lemma 4.23, we may assume that S is integral. For each alteration
f : Y−→X we have an exact sequence

0−→OY(−SY)−→OY −→OSY −→ 0.

Notice that SY −→ S is an alteration as well.



126 B. BHATT ET AL.

For the equality of B0
S with B0

S,alt, by the same argument as in Corollary 4.13, it is
enough to show the following:

OX+(−S+)⊗L Z/p ∼= lim−→
f : Y−→X
alteration

Rf∗OY(−SY)⊗L Z/p.

Now, we have an exact triangle

Rf∗OY(−SY)⊗L Z/p−→Rf∗OY⊗L Z/p−→Rf∗OSY ⊗L Z/p
+1−→ .

By taking filtered colimits and applying the isomorphism:

lim−→
f : W−→Z
alteration

Rf∗OW/p=OZ+/p,

implied by [Bha20, Theorem 3.12] (which in turn relies on [BL]) as in Corollary 4.13, to
both Z=X and Z= S, gives an exact triangle

lim−→
f : Y−→X
alteration

Rf∗OY(−SY)⊗L Z/p−→OX+ ⊗L Z/p−→OS+ ⊗L Z/p
+1−→,

so the desired quasi-isomorphism follows. �

We now compare B0
S with B0.

Lemma 4.26. — With notation as in Definition 4.21, we have that

B0
S(X,S+ B;M )⊆ B0(X, aS+ B;M )

for every 0≤ a < 1.

Proof. — By Lemma 4.23, we may assume that S is integral. Fix such an 0≤ a < 1.
For sufficiently large finite covers f : Y−→X with f ∗(KX+S+B) Cartier and f ∗(aS+B)

having integer coefficients, observe that

f ∗(aS+ B)≤ f ∗(S+ B)− SY.

Therefore, by (4.20.1) the map

HdR�mR�(X,OX(KX −M))

−→HdR�mR�(Y,OY(−SY + f ∗(KX + S+ B−M)))

factors through HdR�mR�(Y,OY(f ∗(KX+ aS+B−M))). The result follows by Matlis
duality. �
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Next we point out that B0
S behaves well with respect to birational maps, in analogy

with Lemma 4.19.

Lemma 4.27. — Let X be a normal integral scheme, proper over Spec(R) as in Definition 4.2,

S a reduced divisor and B ≥ 0 a Q-divisor on X with no common components with S, such that

KX + S+ B is Q-Cartier. Let π : W−→X be a proper birational morphism from a normal integral

scheme W and write KW+ SW+BW = π∗(KX+ S+B) where SW is the strict transform of S. Let

B′ ≥ 0 be an effective Q-divisor such that B′ ≥ BW. Then for every Cartier divisor L on X, we have

B0
S(X,S+ B;OX(L))⊇ B0

SW
(W,S+ B′;OW(π∗L)).

Furthermore, if B′ = BW (in particular, this assumes that BW is effective), then this containment is an

equality.

Proof. — The proof is analogous to that of Lemma 4.19. For every alteration
f : Y−→W with Si,Y as above, we have the following diagram

H0(Y,
⊕t

i=1 OY(KY + Si,Y + �f ∗(π∗L− (KW + SW + B′)))�) H0(W,π∗L)

H0(Y,
⊕t

i=1 OY(KY + Si,Y + �(π ◦ f )∗(L− (KX + S+ B))�)) H0(X,L).

⊆ =

Note that in the case that B′ = BW, the left vertical containment is an equality. An appli-
cation of Lemma 4.24 and Lemma 4.25 completes the proof. �

4.3.1. Comparison with alternate versions. — In the first arXiv version of this article,
we did not take a direct sum of O+X (−S+i ). Instead, we primarily worked by forming an
exact triangle:

D
�

Y −→OY −→
t⊕

i=1

OSi,Y

+1−→

for each finite cover Y−→X. We then used lim−→D
�

Y instead of
⊕t

i=1 OX+(−S+i ). Of course,
when S has only one component, these two definitions agree.

In general case, this had several disadvantages compared to our current approach.
First, it was not clear whether B0

S was independent of the choice of S+ when S was not
integral. Furthermore, we ended up working with a complex instead of a sheaf in all
essential proofs. In particular, the lemma that said we could work with a sheaf (Lemma
4.25 of that first arXiv version) was incorrect, although it was not used in a crucial way.
We notice the object B0

S defined in this paper is always at least contained in the one
from the first arXiv version, essentially since the map to

⊕t

i=1 OX+ factors through the
diagonal map OX+ −→⊕t

i=1 OX+ (see Lemma 4.28).
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Back to the first arXiv version of this article, when working with alterations to
define B0

S,alt we could restrict ourselves to alterations f : Y−→X that separated the indi-
vidual components of S. This also yields a satisfactory theory although it is still not clear
whether it depends on the choice of S+.

However, when M− (KX+ S+ B) is big and semiample, it turns out that the two
approaches coincide (a fact we will not use).

Lemma 4.28. — With notation as above, assume additionally that M− (KX + S+ B) is

big and semiample. Then

B0
S(X,S+ B,M )

=
⋂

Y

Image
(

H0
(
Y,OY(KY + SY + f ∗(M−KX − S− B))

)

−→H0(X,M )
)

where f : Y−→X runs over alterations such that f ∗(KX + S+ B) is a Cartier divisor.

Proof. — The containment ⊆ follows from the dual of the diagonal maps
OY(−SY)−→⊕t

i=1 OY(−Si,Y) so we prove the reverse.
Fix π :W−→X a birational map that separates the components of S. We have the

commutative diagram where the vertical maps are induced by the diagonal:

0 �� OW+(−SW+)

��

�� OW+ ��

��

OSW+
��

∼
��

0

0 �� ⊕t
i=1 OW+(−Si,W+) �� ⊕t

i=1 OW+ �� ⊕t
i=1 OSi,W+

�� 0

Note that the right vertical map is an isomorphism and the middle vertical map is split
injective (simply project onto one of the coordinates). We cannot say something similar
about the left vertical arrow however. Twisting by the pullback L + to W+ of the line
bundle OY(f ∗(M− (KX + S+ B))) (for some finite cover f : Y −→W), and taking local
cohomology, we obtain:

0 �� Hd−1R�mR�(OSW+ ⊗L+) ��

∼
��

Hd R�mR�(OW+ (−SW+ )⊗L+) ��

��

Hd R�mR�(L+)
� �

��
0 �� Hd−1R�mR�(OSW+ ⊗L+) �� Hd R�mR�(

⊕t
i=1 OW+ (−S

i,W+ )⊗L+) �� Hd R�mR�(
⊕t

i=1 L+)

The left zeros are due to Corollary 3.7 and the fact that L + is the pullback of a big and
semiample line bundle. The five lemma then shows that the middle arrow is injective.
Dualizing and applying Lemma 4.25 implies the containment ⊇ as desired. �
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4.4. +++-Stable sections and completion. — The importance of working over a complete
base has been highlighted in the presentation above. The goal of this subsection is to
show that, when working over a non-complete excellent local base, the base change to
the completion can still reasonably be used to define B0 and B0

alt. However, if one wishes
to work without base changing to the completion, there are a number of (potentially
non-equivalent) analogs of B0 and B0

alt that one might consider; see also [DT21].

Proposition 4.29. — Consider

◦ (R,m, k) is a normal local excellent domain with a dualizing complex and with characteristic

p > 0 residue field,

◦ X is a normal, integral scheme proper over R with H0(X,O)=R,

◦ �≥ 0 is a Q-divisor on X, and

◦ M is a Z-divisor and M =OX(M).

and for any flat R-algebra S denote by ( )S the corresponding base change to S. We have that

B0
(
XR̂,�R̂;MR̂

)

=
⋂

f : Y−→X
finite

im
(
H0(Y,OY(KY + �f ∗(M−KX −�)�))⊗R R̂

−→H0(X,M )⊗R R̂
)

where the intersection is taken as R̂-submodules of H0(X,M ) ⊗R R̂, and runs over finite covers

f : Y−→X as in Convention 4.1, and where Y is normal. Equivalently, this intersection is the Matlis

dual of

im
(

HdR�mR�(X,OX(KX −M))

−→ lim−→
f : Y−→X

finite

HdR�mR�(Y,OY(�f ∗(KX +�−M)�))
)

.

If additionally M−KX −� is Q-Cartier, we also have

B0
(
XR̂,�R̂;MR̂

)

=
⋂

f : Y−→X
alteration

im
(
H0(Y,OY(KY + �f ∗(M−KX −�)�))⊗R R̂

−→H0(X,M )⊗R R̂
)

where the intersection is taken as R̂-submodules of H0(X,M ) ⊗R R̂, and runs over all alter-

ations f : Y −→ X as in Convention 4.1 and where Y is normal. In other words, when computing
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B0(XR̂,�R̂;MR̂), it suffices to consider only the completions of the finite covers (respectively, alter-

ations) of X.

Proof. — We prove only the statement for finite covers, as the alteration version
follows in a similar fashion. For any coherent sheaf F on X, applying Lemma 2.3 to
F ⊗R R̂ gives that

(
HdR�mR�(X,F ))∨ ∼=HomOX(F ⊗R R̂,ωXR̂

)

where d = dim X and (−)∨ denotes Matlis duality HomR(−,ER(k)). Arguing as in the
proof of Lemma 4.8, we see that

⋂

f : Y−→X
finite

im
(
H0(Y,OY(KY + �f ∗(M−KX −�)�))⊗R R̂

−→H0(X,M )⊗R R̂
)

is Matlis dual to the image of

HdR�mR�(X,OX(KX −M))
α−−→ lim−→

f : Y−→X
finite

HdR�mR�(Y,OY(�f ∗(KX +�−M)�).

On the other hand, we have that B0(XR̂,�R̂;MR̂) is Matlis dual to the image of

HdR�mR�(X,OX(KX −M))

β−−→ lim−→
g : Z−→XR̂

finite

HdR�mR�(Z,OZ(�g∗(KXR̂
+�R̂ −MR̂)�).

To show the desired equality, it suffices to verify that the kernels of α and β coincide.
Since a finite cover of X completes to one for XR̂, we need only check that the kernel of
β is contained in the kernel of α.

We shall do this in three steps. An element η of the kernel of β is necessarily in the
kernel of

HdR�mR�(X,OX(KX −M))

−→HdR�mR�(Z,OZ(�g∗(KXR̂
+�R̂ −MR̂)�)

for some finite g : Z−→XR̂. We first pass from the completion R̂ down to the henselization
Rh, showing that there is some finite f ′ : Y′ −→XRh with η in the kernel of

HdR�mR�(X,OX(KX −M))
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−→HdR�mR�(Y′,OY′(�f ′ ∗(KX +�−M)�).
Second, we pass from Rh down to a certain pointed ètale extension Si of R, showing that
there is a finite f ′i : Y′i −→XSi

so that η is in the kernel of

HdR�mR�(X,OX(KX −M))

−→HdR�mR�(Y′i,OY′i(�f ′ ∗i (KXSi
+�Si

−MSi
)�).

Finally, in the third and last step, we find a normal and finite f : Y−→X so that

HdR�mR�(X,OX(KX−M))−→HdR�mR�(Y,OY(�f ∗(KX+�−M)�)
verifying that η is in the kernel of α.

Step 1: Passing from R̂ down to Rh. An element η of the kernel of β is necessarily in the
kernel of

HdR�mR�(X,OX(KX −M))

−→HdR�mR�(Z,OZ(�g∗(KXR̂
+�R̂ −MR̂)�)

for some finite g : Z−→XR̂. Consider first the henselization Rh of R. By Popescu’s Theo-
rem [Sta, Tag 07GC] applied to the regular morphism Rh −→ R̂, we have that R̂= lim−→Ri

is the filtered colimit of smooth Rh-algebras Ri . We can descend Z to a finite level, so
say without loss of generality that there is a finite cover g0 : Z0 −→ XR0 that completes
to g : Z −→ XR̂. Base change to Ri for all i ≥ 0 gives a finite cover gi : Zi −→ XRi

so that
Z= lim←−Zi . As

HdR�mR�(Z,OZ(�g∗(KXR̂
+�R̂ −MR̂)�)

= lim−→i
HdR�mR�(Zi,OZi

(�g∗i (KXRi
+�Ri

−MRi
)�)

we must have that η is in fact in the kernel of

HdR�mR�(X,OX(KX −M))

−→HdR�mR�(Zi,OZi
(�f ∗i (KXRi

+�Ri
−MRi

)�)
for some i. Now, Rh −→Ri is a smooth map, and using Ri −→ R̂−→ k we have a surjection
Ri −→ k = Rh/mRh. By [Sta, Tag 07M7], there is an étale Rh-algebra Ri and Rh-algebra
homomorphism Ri −→Ri so that the surjection Ri −→ k =Rh/mRh factors as Ri −→Ri −→
k = Rh/mRh. In particular, Ri −→ k = Rh/mRh is surjective, so there is a prime q of Ri

lying over mRh with residue field k. By [Sta, Tag 04GG] as Rh is henselian, Rh −→Ri has
a section, and so also (pre-composing that section with Ri −→ Ri ) Rh −→ Ri must have a



132 B. BHATT ET AL.

section Ri −→Rh. Base change along this section yields a finite cover f ′ : Y′ = Zi⊗Ri
Rh −→

XRh so that η is in the kernel of

HdR�mR�(X,OX(KX −M))

−→HdR�mR�(Y′,OY′(�f ′ ∗(KX +�−M)�).
Step 2: Passing from Rh down to a pointed ètale extension. Now, Rh = lim−→Si is the directed colimit
of pointed étale extensions Si of R, which in turn are localizations of finite extensions of
R with R⊆ Si ⊆ Rh ⊆ R̂. Once again, the finite cover f ′ : Y′ −→ XRh must descend to a
finite level, so say without loss of generality that there is a finite cover f ′0 : Y′0 −→XS0 that
henselizes to f ′. Base change to Si for all i ≥ 0 gives a finite cover f ′i : Y′i −→ XSi

for all
i ≥ 0 so that Y′ = lim←−Y′i . As

HdR�mR�(Y′,OY′(�f ′ ∗(KXRh
+�Rh −MRh)�)

= lim−→i
HdR�mR�(Y′i,OY′i(�f ′ ∗i (KXSi

+�Si
−MSi

)�)
we must have that η is in fact in the kernel of

(4.29.1) HdR�mR�(X,OX(KX−M))−→HdR�mR�(Y′i,OY′i(�f ′ ∗i (KXSi
+�Si

−MSi
)�)

for some i.

Step 3: Passing from the pointed ètale extension down to R. Let S be the integral closure of R in
the fraction field of Si , so that S is a finite extension of R and Si is the localization of S
at one of the (finitely many) maximal ideals mi lying over m in R. Take L to be normal
closure of the function field of Y′i inside the fixed geometric generic point of X, with G the
corresponding group of automorphisms of L over the function field of X. The fixed field
LG is then such that LG ⊆ L is a Galois extension with Galois group G, and LG is a purely
inseparable extension of the function field of X. Set f : Y−→X to be the normalization of
X inside of L. We have that T=H0(Y,OY) is a finite normal extension of S, and hence
also of R. The group G acts on Y and hence also on T, and the invariant ring TG ⊆ LG

is a finite and purely inseparable extension of R. Letting n0, . . . ,n� denote the (finitely
many) maximal ideals of T lying over m, we have that G acts transitively on the nj ’s [Sta,
Tag 0BRK]. Without loss of generality, we may assume that n0 ∩ S=mi.

We have that Y is normal and finite over X, and we will argue that η is in the
kernel of

(4.29.2) HdR�mR�(X,OX(KX−M))−→HdR�mR�(Y,OY(�f ∗(KX+�−M)�).
To do so, it suffices to show that η is in the kernel of

(4.29.3) HdR�mR�(X,OX(KX−M))−→HdR�mR�(Ynj
,OYnj

(�f ∗(KX+�−M)�).

https://stacks.math.columbia.edu/tag/0BRK
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for j = 0, . . . , �, where Ynj
= Y⊗T Tnj

. Moreover, using the transitive action of G on the
set of the nj ’s, it suffices to show that η is in the kernel of (4.29.3) for j = 0. By construction,
we have a factorization

fn0 : Yn0 −→ Y′i
f ′i−→XSi

−→X

so that (4.29.3) factors through (4.29.1). Thus, we conclude η is in the kernel (4.29.2) and
hence too of α as desired, completing the proof. �

Remark 4.30. — With X as in Proposition 4.29, suppose we can write �= S+ B
where S =∑t

i=1 Si is reduced and B has no common components with S. Fixing S+i in
X+ as in Section 4.3, it would be natural to hope that

⋂

f : Y−→X
finite

im

(
t⊕

i=1

H0(Y,OY(KY + Si,Y + �f ∗(M−KX −�)�))⊗R R̂(4.30.1)

−→H0(X,M )⊗R R̂

)

or equivalently the Matlis dual of

im

(
HdR�mR�(X,OX(KX −M))

−→HdR�mR�(X+,
t⊕

i=1

OX+(−S+i + π∗(KX +�−M)))

)

agrees with B0
S(XR̂,SR̂ + BR̂;MR̂). However, we do not see how to prove that – even

when S is irreducible (which may not be preserved under completion). The problem is
we do not seem to have fine enough control over the Galois actions to mimic the end
of the proof of Proposition 4.29 (the reduction to the Henselian case) since we have to
simultaneously control Si,Y and maximal ideals lying over m⊆R. In other words, and in
the notation used at the end of the proof of Proposition 4.29, one must be able to use the
Galois action to permute the ideals nj independently of the Si,Y.

Regardless however, we do define B̂0
S(X,S+B;M ) to be the R-Matlis dual of the

displayed image above.

We finally explain what happens when H0(X,OX) is only semi-local.

Remark 4.31. — With notation as in Proposition 4.29, instead assume that
H0(X,OX) =: T is semi-local with a finite map R −→ T. For each maximal ideal ni
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of T let Ti = Tni
denote the localization and set Xi = XTi

= X ×Spec T Spec Ti . Then
H0(Xi,OXi

) = Ti and since T ⊗R R̂ =⊕
i T̂i , we obtain that XR̂ =

∐
XT̂i

. Now by
Proposition 4.29

B0(XT̂i
,�T̂i
;MT̂i

)

=
⋂

f : Yi−→Xi
finite

im
(
H0(Yi,OYi

(KYi
+ �f ∗(M−KXi

−�)�))⊗Ti
T̂i

−→H0(Xi,MTi
)⊗Ti

T̂i

)

where the finite covers f : Yi −→Xi are as in Convention 4.1 and each Yi is normal. Each
finite cover Yi −→Xi is the localization of a finite cover Y−→X. Therefore, we have that

B0(XR̂,�R̂;MR̂)=
⊕

i

B0(XT̂i
,�T̂i
;MT̂i

)

=
⋂

f : Y−→X
finite

im
(
H0(Y,OY(KY + �f ∗(M−KX −�)�))⊗R R̂

−→H0(X,M )⊗R R̂
)

where the intersection runs over finite covers f : Y−→X as in Convention 4.1, and where
Y is normal.

5. Section rings and +++-stable sections

The goal of this section to relate B0 with the test ideal of the section ring S (the
affine cone). As a consequence, we will deduce that H0 = B0 at least when working with
sufficiently ample divisors on non-singular schemes since we know that the test ideal
agrees with S on the nonsingular locus by [MST+22].

To avoid dealing with technical issues, we make some simplifying assumptions. In
particular, we assume that �= 0 and we work with M = ωX⊗L as in Remark 4.5. By
Lemma 4.18, one may frequently reduce to this case.

Setting 5.1. — With notation as in Section 2, suppose that π : X −→ Spec(R) is
a projective morphism where X is a normal integral d-dimensional scheme and R is a
complete Noetherian local domain of mixed characteristic (0, p). Choose L an ample
line bundle. Write

S=R(X,L ) :=
⊕

i≥0

H0(X,L i).
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It is important to note that S is normal, see [Har77, Chapter III, Exercise 5.14]. We
notice that R′ :=H0(X,OX) is a finite R-algebra which is integral and normal (as X is
so), so R′ is itself a complete Noetherian local domain.

By [Bha20], once we fix an absolute integral closure X+ −→ X, we have graded
algebras S+,gr ⊆ S+,GR defined as follows. First, set

S+,gr := lim−→
f : Y−→X

R(Y, f ∗L )=
⊕

i∈Z≥0

H0(X+,L i)

where the colimit runs over all finite normal covers of X dominated by X+. Likewise after
fixing a compatible system of roots {L 1/n}n≥1 of L pulled back to X+ (such systems exist
and are unique up to isomorphism, see [Bha20, Lemma 6.6]), we can define

S+,GR :=
⊕

i∈Q≥0

H0(X+,L i),

Notice that S+,gr is a S+,gr-module direct summand of S+,GR. In [Bha20, Section 6], it is
proved that S+,gr/p and S+,GR/p are big Cohen-Macaulay over S/p under the set up that
X is projective over R which is finite type and flat over a henselian DVR. Here we need a
version when R is a Noetherian complete local domain and we deduce it from [Bha20].

Theorem 5.2. — With notation as in Setting 5.1, we have Hj

m+S>0
(S+,gr) = 0 for all j <

d + 1. Therefore, Ŝ+,gr is a balanced big Cohen-Macaulay algebra over Ŝ, where the completion is at

the ideal m+ S>0. Here S>0 denotes the irrelevant ideal, i.e., the ideal generated by all homogeneous

elements in S of degree > 0.

Proof. — We have an exact triangle R�S>0(S
+,gr) −→ S+,gr −→ ⊕i∈ZR�(X+,L i)

coming from [Sta, Tag 0G71] and using the fact that ⊕i∈ZR�(X+,L i)∼= R�(Spec S \
V(S>0), S̃+,gr); which can be seen from a computation of Čech cohomology (cf. [Eis95,
Theorem A.4.1]). After derived tensoring with Z/p we have

R�S>0(S
+,gr/p)−→ S+,gr/p−→⊕i∈ZR�(X+p=0,L

i).

Claim 5.3. — S+,gr/p∼=⊕i∈Z≥0R�(X+p=0,L
i).

Proof. — This is essentially [Bha20, Proposition 6.12]. We briefly recall the argu-
ment. Using our chosen compatible system {L 1/n} of roots of L over X+, for each n we
have a proper birational map Tn := SpecX+(⊕i∈Z≥0L

i
n ) −→ Spec(⊕i∈Z≥0H

0(X+,L
i
n )),

where the latter is considered as an affine scheme over R, see [Bha20, Notation 6.7].
By compatibility we have a system of maps indexed by divisible n with affine transi-
tion maps thus we can take limit: f : T∞ −→ Spec(S+,GR), which is pro-proper. Note
that f is an isomorphism outside Spec(R+) ⊂ Spec(S+,GR), and when pulled back
along Spec(R+) ⊂ Spec(S+,GR), it gives g: X+ −→ Spec(R+). Since X+ and R+ are

https://stacks.math.columbia.edu/tag/0G71
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absolute integrally closed, Rg∗Fp,X+ ∼= Fp, Spec(R+) by [Bha20, Proposition 3.10] and so
Rf∗Fp,T∞

∼= Fp, Spec(S+,GR). Now the p-adic completion of T∞ and S+,GR are perfectoid by
[Bha20, Lemma 6.10 and 6.11] (these results do not require we are working over an
absolute integrally closed DVR). Therefore we have

S+,GR/p=RH�(Fp, Spec(S+,GR))∼=RH�(Rf∗Fp,T∞))∼=Rf∗RH�(Fp,T∞)

=Rf∗OT∞/p∼=R�(X+,OT∞)/p∼=⊕i∈Q≥0R�(X+p=0,L
i).

Here RH� denotes the p-adic Riemann-Hilbert functor of Bhatt-Lurie [BL] (see
[Bha20, Section 3]), the two equalities above follow from [Bha20, Theorem 3.4 (1)] as
the p-adic completion of T∞ and S+,GR are perfectoid, and the last isomorphism on
the first line follows from [Bha20, Theorem 3.4 (2)] and taking colimit (each Tn −→
Spec(⊕i∈Z≥0H

0(X+,L
i
n )) is proper). Now passing to the summand, we get S+,gr/p ∼=

⊕i∈Z≥0R�(X+p=0,L
i) as desired. �

By Claim 5.3 we have

R�S>0(S
+,gr/p)∼=⊕i<0R�(X+p=0,L

i)[−1].
Applying R�m(−) and taking cohomology, we thus have

HjR�mR�S>0(S
+,gr/p)∼=⊕i<0Hj−1R�mR�(X+p=0,L

i).

Since L is ample, by Proposition 3.1, Hj−1R�mR�(X+p=0,L
i) = 0 for all j < d . Thus

HjR�mR�S>0(S
+,gr/p)=Hj

m+S>0
(S+,gr/p)= 0 for all j < d . But note that we have

· · · −→Hj−1
m+S>0

(S+,gr/p)−→Hj

m+S>0
(S+,gr)

·p−→Hj

m+S>0
(S+,gr)

−→Hj

m+S>0
(S+,gr/p)−→ · · · .

Since Hj

m+S>0
(S+,gr) is p∞-torsion, multiplication by p is not injective on Hj

m+S>0
(S+,gr)

unless it vanishes. Thus it follows from the long exact sequence above that Hj

m+S>0
(S+,gr)=

0 for all j < d + 1. �

We recall, as explained in [HS03, 2.6.2], that the graded canonical module ωS is
the graded dual of Hd+1R�mR�S>0S and that in degree i > 0, [ωS]i =H0(X,ωX⊗L i).
Other potential definitions of the graded canonical have a different shift but we use this
choice.

As in [MS21], we define τS+,gr(ωS)⊆ ωS to be the graded Matlis dual of

Image(Hd+1R�mR�S>0S−→Hd+1R�mR�S>0S
+,gr).
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Note that S+,gr and S+,GR are not complete (or perfectoid) but since we are taking local
cohomology we can ignore this detail. Notice that we can also define τS+,GR(ωS) analo-
gously, but since S+,gr −→ S+,GR splits, this provides no new information.

Definition 5.4. — With notation as in Setting 5.1, we define for i > 0

B0
gr(X,ωX⊗L i) := [τS+,gr(ωS)]i ⊆ [ωS]i =H0(X,ωX⊗L i).

Proposition 5.5. — In the above situation, B0
gr(X,ωX ⊗L i)= B0(X,ωX ⊗L i) for all

i > 0.

Proof. — By graded local duality, we have

B0
gr(X,ωX⊗L i) = [im(Hd+1R�mR�S>0(S)

−→Hd+1R�mR�S>0(S
+,gr))]∨−i

where (−)∨ is Matlis duality over R.
Note that we have a commutative diagram of exact triangles:

R�S>0(S) ��

��

S ��

��

⊕i∈ZR�(X,L i)
+1

��

��

R�S>0(S
+,gr) �� S+,gr �� ⊕i∈ZR�(X+,L i)

+1
��

.

Applying R�m and taking cohomology, we have

[HdR�m(S)]−i
��

��

HdR�mR�(X,L −i) ��

��

[Hd+1R�mR�S>0 (S)]−i

��

�� 0

[HdR�m(S+,gr)]−i
�� HdR�mR�(X+,L −i) �� [Hd+1R�mR�S>0 (S

+,gr)]−i
�� 0

Note that, [HdR�m(S)]−i = [HdR�m(S+,gr)]−i = 0 when i > 0: this is because m ⊆ R
lives in degree 0 so [HdR�m(S)]−i =HdR�m([S]−i) = 0 and similarly for S+,gr. There-
fore the diagram shows that

[im(Hd+1R�mR�S>0(S)−→Hd+1R�mR�S>0(S
+,gr))]−i

= im(HdR�mR�(X,L −i)−→HdR�mR�(X+,L −i))

Taking Matlis dual over R and using (a) in Lemma 4.8, we see that B0
gr(X,ωX ⊗L i)=

B0(X,ωX⊗L i) for all i > 0 as desired. �
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In what follows, we will be studying H0(X,ωX⊗L N) for N sufficiently large when
X has sufficiently mild singularities. For our purposes, sufficiently mild means the follow-
ing.

Definition 5.6. — We say that a Noetherian ring R has finite summand singularities if

there exists a finite extension R⊆ S such that S is regular and the map splits as a map of R-modules.

We note that by [CRMP+21], 2-dimensional klt singularities of residual charac-
teristic p > 5 are finite summand singularities. For an excellent ring, the locus of finite
summand singularities is readily verified to be open. We also note that if a Noetherian
ring R has finite summand singularities, then any finite extension R ↪→ S splits as a map
of R-modules as a consequence of the direct summand theorem [And18]. In particular,
using the notation from the next section Definition 6.1, we see that Spec R is globally
+++-regular (that is R ⊆ S splits for every finite extension, in other words R is a splinter).
Note in equal characteristic p > 0, being globally +++-regular is quite closely related to F-
regularity (and they are conjectured to be equivalent), an analog of klt singularities. Not
all rings R that are globally +++-regular have finite summand singularities however, even
in equal characteristic p > 0.

In [MST+22, Theorem 4.1] it was shown that if (R,�) has simple normal cross-
ings at Q with ��Q� = 0, then τB(R,�)Q =RQ. We will use this below, which will later
help us study H0(X,ωX⊗L N).

In the next theorem we assume that X has finite summand singularities, which
implies that S has finite summand singularities (and so globally +++-regular singularities)
away from the irrelevant ideal S>0. It is natural to try to compute the some (local)+++-test
ideal on S to measure this. However, we don’t know that such ideals commute with lo-
calization. On the other hand, the ideal im(∗HomS(S+,gr,S)−→ S), which can be viewed
as a sort of test ideal, can be thought of as a measure of the obstruction to the global+++-
regularity of S (again, its formation does not obviously commute with localization since
S+,gr is note finitely presented over S). Regardless of these difficulties, we are able to that
image ideal contains S>m for some m� 0.

In what follows, we use graded Hom and graded injective hulls, denoted ∗Hom
and ∗E respectively, see [BH93, Chapter 3, Section 6].

Theorem 5.7. — Suppose that X, L , R and S are as in Setting 5.1. Let mS =m · S+ S>0

denote the homogeneous maximal ideal of S. Suppose X has finite summand singularities. Then for

m� 0, S>m annihilates the kernel of

∗ES −→ ∗ES⊗ S+,gr

where ∗ES =Hd+1R�mS(ωS) is the graded injective hull of the residue field of S. Dually,

S>m ⊆ im(∗HomS(S+,gr,S)−→ S).
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Proof. — Begin by choosing a finite affine cover {Ui} of X, such that for each such
Ui there exists a finite surjective map fi : Vi −→ Ui where Vi is regular and such that
OUi
−→ (fi)∗OVi

splits. Without loss of generality, we may assume that L |Ui
∼=OUi

, ωVi
∼=

OVi
, and Ui is the complement of some V(ti) with ti ∈H0(X,L n) for some n (which we

may pick independently of i). For each i, let Xi denote the normalization of X in K(Vi)

and fix πi : Xi −→ X to be the induced map. Let Si denote the graded section ring of
Xi with respect to π∗i L , let mi denote the homogeneous maximal ideal, and note that
S⊆ Si is finite. Set Ŝi to be the mi-adic completion of Si . Notice we also abuse notation
to view ti = π∗i ti as an element of Si and also as an element of Ŝi .

Forgetting the grading for now, embed ω
(−1)

Ŝi
⊆ Ŝi such that ω

(−1)

Ŝi
[t−1

i ] = Ŝi[t−1
i ]. By

Flenner’s local Bertini theorem (see [Fle77, Satz 2.1], [Vij94, Theorem 1] and [Tri97]),
there exists f ∈ ω

(−2)

Ŝi
, such that f is not contained in Q(2) for all Q ∈ Spec(Ŝi) not con-

taining ω
(−2)

Ŝi
. In particular f is not contained in Q(2) for all Q ∈ Spec(Ŝi[t−1

i ]), it follows

that Ŝi[t−1
i ]/(f ) is regular. Set Di to be the effective divisor corresponding to f ∈ ω

(−2)

Ŝi
and

let �i = 1
2Di . By construction, (Ŝi,�i) is simple normal crossing at all Q ∈ Spec(Ŝi[t−1

i ])
and KŜi

+�i = 1
2 div(f ) is Q-Cartier. Applying [MST+22, Theorem 4.1] with the per-

fectoid big Cohen-Macaulay Si-algebra Ŝ+i = Ŝ+, we have that τŜ+(Ŝi,�i)Q = ŜiQ for all
Q ∈ Spec(Ŝi[t−1

i ]). In particular, there exists a such that ta
i ∈ τŜ+(Ŝi,�i).

Now since Ŝi

·f 1/2−−→ Ŝ+ factors through Ŝi(KŜi
) ∼= ωŜi

by construction, we have in-
duced maps

·f 1/2 :Hd+1
mS

(ωŜi
)−→Hd+1

mS
(ωŜi
⊗ Ŝ+)−→Hd+1

mS
(Ŝ+).

Applying Matlis duality, we have

Hd+1
mS

(ωŜi
)∨

∼=
��

Hd+1
mS

(ωŜi
⊗ Ŝ+)∨

∼=
��

�� Hd+1
mS

(Ŝ+)∨��

∼=
��

Ŝi HomŜi
(Ŝ+, Ŝi)�� HomŜi

(Ŝ+,ωŜi
)��

Since the image of the composition map is equal to τŜ+(Ŝi,�i) by [MS21, Proof of The-
orem 6.12], we see that im(HomŜi

(Ŝ+, Ŝi) −→ Ŝi) contains τŜ+(Ŝi,�i), so it contains ta
i ,

i.e., there exists a map ψi : Ŝ+ −→ Ŝi such that ta
i is in the image.

Now if we view S as a subring of Si , then by hypothesis, tb
i is in the image of some

ρi : Si −→ S. Completing, we see that ta+b
i is in the image of Ŝ+

ψi−→ Ŝi

ρi−→ Ŝ. Since S−→ Ŝ+

factors through S+,gr, we see that ta+b
i annihilates the kernel of

∗ES −→ ∗ES⊗ S+,gr.
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Finally, since the Ui =D(ti) cover X, we see that the ta+b
i generate the prime ideal

S>0 up to radical. Thus Sm1
>0 ⊆ 〈ta+b

1 , . . . , ta+b
n 〉 for some m1. But since S is Noetherian, a

sufficiently high veronese subalgebra S(e) ⊆ S is generated in degree 1, [Bou98a, Chapter
III, Proposition 3]. Thus by [Bou98a, Chapter III, Proposition 2, Lemma 2], for all l� 0
and k ≥ 0 we have that Ske ·Sl = Ske+l . It follows that S>m ⊆ Sm1

>0 for some sufficiently large
m > 0. This completes the proof of the first statement.

For the final statement, by graded Matlis duality, we know that the cokernel of
∗HomS(S+,gr,S) −→ S is annihilated by S>m, i.e., S>m ⊆ im(∗HomS(S+,gr,S) −→ S) as
desired. �

Theorem 5.8. — Suppose that X, L , R and S are as in Setting 5.1. Let mS =m · S+ S>0

denote the homogeneous maximal ideal of S. Suppose X has finite summand singularities. Further suppose

that L is ample on X. Then there exists m > 0 such that S>m · ωS ⊆ τS+,gr(ωS). As a consequence,

for n� 0, we have that

B0(X,ωX⊗L n)=H0(X,ωX⊗L n).

Proof. — By Theorem 5.7, we know S>m ⊆ im(∗HomS(S+,gr,S)−→ S). This means
for all (homogeneous) x ∈ S>m, there is a (homogeneous) map φ ∈ ∗HomS(S+,gr,S) such
that φ(1)= x. Therefore the composition map:

Hd+1
mS

(S)−→Hd+1
mS

(S+,gr)
Hd+1

mS
(φ)−−−−→Hd+1

mS
(S)

is multiplication by x on Hd+1
mS

(S). Thus we find that S>m annihilates the kernel of
Hd+1

mS
(S) −→ Hd+1

mS
(S+,gr). By the definition of τS+,gr(ωS) and using graded local duality,

it follows S>m ·ωS ⊆ τS+,gr(ωS).
Finally, since ωS is finitely generated, for all n� 0, [ωS]n ⊆ S>m · ωS ⊆ τS+,gr(ωS).

Therefore [ωS]n = [τS+,gr(ωS)]n. Hence by Proposition 5.5, we have

B0(X,ωX⊗L n)=H0(X,ωX⊗L n)

for all n� 0 as desired. �

5.1. An application to Fujita’s conjecture in mixed characteristic. — We conclude with a
mixed characteristic version of a special case of Fujita’s conjecture, analogous to the main
result of [Smi97b]. Indeed, our proof very closely follows the strategy of K. Smith.

Theorem 5.9. — Let X be a d-dimensional regular scheme (or a scheme with finite summand

singularities) which is flat and projective over R. Set t = dim R and let L be an ample globally

generated line bundle on X. Then ωX⊗L d−t+1 is globally generated by B0(X,ωX⊗L d−t+1).

We first prove the following result, whose proof is nearly the same as, and heavily
inspired by, [Smi97b, Proposition 3.3].
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Proposition 5.10. — With notation as in Theorem 5.9, let (S,mS) be the section ring of X
with respect to L as above. Further suppose that y0, . . . , yt−1 are a system of parameters for R and

xt, . . . , xd ∈ S1 are such that y0, . . . , xd are a system of parameters for S.

Then there exists N0 ∈ N such that every homogeneous 0 �= η ∈Hd+1
mS

(S) of degree less than

−N0 (degη < −N0) admits a non-zero multiple η′ of degree −d − 1 + t = −dim X − 1 +
dim R=−dim S+ dim R. Furthermore, any such η′ has non-zero image in Hd+1

mS
(S+,gr).

Proof. — We begin with a claim.

Claim 5.11. — There exists N0 ∈N such that the kernel K of Hd+1
mS

(S)−→Hd+1
mS

(S+,gr) is

zero in degrees <−N0.

Proof of claim. — Let K be the kernel of Hd+1
mS

(S) −→ Hd+1
mS

(S+,gr). The graded
Matlis dual K∨ fits into an exact sequence 0 −→ τS+,gr(ωS) −→ ωS −→ K∨ −→ 0. Now,
Theorem 5.8 implies that [K∨]i = 0 for i� 0. Thus [K]n = 0 for n� 0, which proves
Claim 5.11. �

We now come to our main computation.

Claim 5.12. — Suppose η ∈ Hd+1
mS

(S) is a homogeneous element of degree −N < −d +
t − 1 such that every S-multiple of degree −d + t − 1 has zero image in Hd+1

mS
(S+,gr) (that is

Image(SN−d+t−1 · η)= 0 ∈Hd+1
mS

(S+,gr)). Then the image of η in Hd+1
mS

(S+,gr) is zero.

Proof of claim. — Write η = [ z

yvxv ] where x = xt · · · xd and y= y0 · · · yt−1 and z is ho-
mogeneous of degree (d− t+1)v−N. Because SN−d+t−1 ·η has zero image in Hd+1

mS
(S+,gr),

there exists some s ≥ 0 so that

(5.12.1) (xt, . . . , xd)
N−d+t−1 · (ysxs) · z⊆ (yv+s

0 , . . . , xv+s
d )Ŝ+,gr.

Thus, since Ŝ+,gr is Cohen-Macaulay and y0, . . . , xd is a regular sequence on it, we have
that

z ∈ (yv
0, . . . , xv

d )Ŝ+,gr : (xt, . . . , xd)
N−d+t−1.

Now working modulo yv
0, . . . , yv

t−1, we see that

z ∈ (xv
t , . . . , xv

d )(Ŝ+,gr/(yv
0, . . . , yv

t−1)) : (xt, . . . , xd)
N−d+t−1

=
(
(xv

t , . . . , xv
d )+ (xt, . . . , xd)

(d−t+1)v−N+1
)
(Ŝ+,gr/(yv

0, . . . , yv
t−1))

where the equality follows because xt, . . . , xd is a regular sequence on (Ŝ+,gr/(yv
0, . . . , yv

t−1))

so the computation of colon ideal is the same as if the xi ’s are indeterminates in a poly-
nomial ring (see [Smi97b, (3.3.3)]). It follows that

z ∈
(
(yv

0, . . . , xv
d )+ (xt, . . . , xd)

(d−t+1)v−N+1
)

Ŝ+,gr.
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However, since z has degree (d − t+ 1)v−N, we see that z ∈ (yv
0, . . . , xv

d )Ŝ+,gr. Thus the
image of η in Hd+1

mS
(S+,gr) is zero, proving Claim 5.12. �

To finish the proposition, choose N0 as in Claim 5.11 and a nonzero η ∈Hd+1
mS

(S)

of degree <−N0. Hence η /∈K= ker
(
Hd+1

mS
(S)−→Hd+1

mS
(S+,gr)

)
by Claim 5.11. But now

by the contrapositive of Claim 5.12, we see that η has a nonzero S-multiple η′ of degree
−d+ t−1=−dim S+dim R whose image in Hd+1

mS
(S+,gr) is also nonzero. This completes

the proof. �

Proof of Theorem 5.9. — We first show that there exists a finite étale extension R′

of R such that the section ring S′ of X′ := X×R R′ with respect to L |X′ admits a ho-
mogeneous system of parameters y0, . . . , yt−1, xt, . . . , xd as in the statement of Proposi-
tion 5.10. Let Rsh be the strict henselization of R (so Rsh has an infinite residue field).
Then Xsh := X×R Rsh is flat and projective over Rsh of relative dimension d − t and so
Xsh

0 := Xsh ×Rsh (Rsh/mRsh) is projective over an infinite field of dimension d − t. Since
L is globally generated on X, the image of the linear system |L | in H0(Xsh

0 ,L |Xsh
0
)

is base point free. As Xsh
0 is projective over an infinite field, we can pick general lin-

ear combinations of sections in the image of |L |, call them xt, . . . , xd , such that they
form a homogeneous system of parameters in R(Xsh

0 ,L |Xsh
0
). Since Rsh is a colimit of

finite étale extensions of R, there exists a finite étale complete domain extension R′ of
R such that xi is the image of xi ∈H0(X′,L |X′). Now it is straightforward to check that
y0, . . . , yt−1, xt, . . . , xd form a system of parameters in S′ = R(X′,L |X′) for every system
of parameters y0, . . . , yt−1 of R: modulo m (the radical of (y0, . . . , yt−1)), S′/mS′ is a homo-
geneous coordinate ring of X′0 and so R(Xsh

0 ,L |Xsh
0
) is integral over S′/mS′ of the same

dimension, thus by our choice, xt, . . . , xd form a homogeneous system of parameters in
S′/mS′ (as they are so in R(Xsh

0 ,L |Xsh
0
)).

Next we claim that in order to show ωX ⊗ L d−t+1 is globally generated by
B0(X,ωX ⊗L d−t+1), it is enough to prove this when we base change X to X′. Indeed,
we have a surjective map of sheaves T : ωX′ ⊗L d−t+1 −→ ωX ⊗L d−t+1. Furthermore,
if B0(X′,ωX′ ⊗L d−t+1) (globally) generates the left side its image via T generates the
right sheaf. But B0(X′,ωX′ ⊗L d−t+1) � B0(X,ωX⊗L d−t+1) surjects by Lemma 4.18.
Therefore, without loss of generality, we now replace R and X by R′ and X′ to assume
that S= R(X,L ) admits a homogenous system of parameters y0, . . . , yt−1, xt, . . . , xd as
in Proposition 5.10. Note that X′ is still regular (or has finite summands singularities)
since it is finite étale over X.

By the discussion above, it is enough to show that the multiplication map (which is
well defined since τS+,gr(ωS) is an S-module)

H0(X,L N−d+t−1)︸ ︷︷ ︸
SN−d+t−1

⊗R B0(X,ωX⊗L d−t+1)︸ ︷︷ ︸
[τS+,gr (ωS)]d−t+1
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−→ B0(X,ωX⊗L N)︸ ︷︷ ︸
[τS+,gr (ωS)]N

=H0(X,ωX⊗L N)︸ ︷︷ ︸
[ωS]N

is surjective for N� 0. By graded local duality on S, this is equivalent to the injectivity
of the map

[Hd+1
mS

(S)]−N

∼= [
Image

(
Hd+1

mS
(S)−→Hd+1

mS
(S+,gr)

)]
−N

−→HomR

(
SN−d+t−1⊗R [τS+,gr(ωS)]d−t+1,E

)

∼=HomR

(
SN−d+t−1, Image

([Hd+1
mS

(S)]−d+t−1 −→ [Hd+1
mS

(S+,gr)]−d+t−1

))

where E is the injective hull of the residue field of the complete local ring (R,m) and
the final isomorphism is Hom-tensor adjointness and duality. Just as in [Smi97b, Lemma
1.3], this map sends η ∈ [Hd+1

mS
(S)]−N to the map which is multiplication by η. Hence this

map is injective by Proposition 5.10 and our proof is complete. �

Remark 5.13. — It would be natural to try to obtain the following stronger re-
sult. Suppose that X has the property that for each closed point x ∈ X, we have that
Hd

x(OX)−→Hd
x(OX+) injects (in other words, OX,x is O+X,x-rational in the sense of [MS21],

but without the Cohen-Macaulay hypothesis). We expect that if L is a globally generated
ample line bundle on X, then

ωX⊗L d−t+1

is globally generated by B0(X,ωX⊗L d−t+1). The missing piece is a proof that τS+,gr(ωS)

agrees with ωS except at the irrelevant ideal (a generalization of Theorem 5.8).

6. Globally +++-regular pairs

In this section we define and discuss various properties of globally+++-regular pairs;
analogous to globally F-regular pairs in positive characteristic. The reader interested in
the results on globally F-regular pairs is referred to [SS10]. The reader unfamiliar with
this story is invited to imagine that this means the section ring / cone has singularities
which are a mixed characteristic analog of klt singularities. Throughout this section, we
work under the following assumptions unless otherwise stated:
(a) X is a normal, integral, d-dimensional, excellent scheme with a dualizing complex

where every closed point has residue field of positive characteristic.
(b) �≥ 0 is a Q-divisor on X.

Whenever there is a base scheme Spec R, we also assume that R is excellent with a du-
alizing complex and that every closed point of Spec R has positive characteristic residue
field.
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Frequently, we also assume that R is complete and X is proper over Spec R. How-
ever, the above setting also applies when the base is a positive or mixed characteristic
Dedekind domain.

Definition 6.1. — We say that (X,�) is globally +++-regular if for every finite dominant

map f : Y−→X with Y normal, the map OX −→ f∗OY(�f ∗��) splits as a map of OX-modules.

If we have X−→ Spec R proper, then we say that (X,�) is completely globally+++-regular
over R if for every closed point z of Spec R, the base change (XR̂z

,�R̂z
) is globally+++-regular. If R

is clear from the context, we will omit the “over R”.

Notice that globally +++-regular is an absolute notion but completely globally +++-
regular requires a base.

Remark 6.2. — In the above definition, we may restrict ourselves to f : Y −→ X
such that f ∗� has integer coefficients, since any f ′ : Y′ −→X is dominated by such a Y.

Remark 6.3 (Characteristic zero). — If we did not require that our closed points have
residual characteristic p > 0, then our definition would not always yield what the reader
might expect. For instance, when X is purely of characteristic zero, our condition defining
global +++-regularity simply means that X is normal and that the coefficients of � are
< 1. If one additionally assumes that KX +� is Q-Cartier, then one could alternately
require that for every alteration π : Y −→ X the map OX −→ Rπ∗OY(�π∗��) splits. In
characteristic zero, this again does not provide any global information and only means
that (X,�) has rational singularities in the sense of [ST08]. Lastly, one could require the
trace map

(6.3.1) H0(Y,OY(KY − �π∗(KX +�)�))−→H0(X,OX)

to be surjective for every alteration (as discussed in [TY20], where they called it global
T-regularity). This in characteristic zero is equivalent to (X,�) being klt. When X −→
Spec R is proper and R only admits positive characteristic closed points (the latter is
always assumed throughout this section), we see that global+++-regularity is equivalent to
global T-regularity (the surjection of (6.3.1)). This follows from Proposition 6.8 in view of
Proposition 4.29.

Remark 6.4 (Non-integral X). — If X is not integral, but still normal with all con-
nected components d-dimensional, we define (X,�) to be globally+++-regular if all its con-
nected components are. This coincides with the variant of B0 in this setting as explained
in Remark 4.3. The results of this section go through since they may all be checked work-
ing one component at a time.

Remark 6.5. — If (R,m) is complete local, X −→ Spec R is proper, and X is in-
tegral, then R −→ H0(X,OX) is a finite map of rings. Since X is integral, we see that
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H0(X,OX) is an integral domain. But since R is complete and in particular henselian,
we also know that H0(X,OX) is a product of local rings [Sta, Tag 04GG (9)]. Such a
product cannot be an integral domain unless it only has one factor, thus we know that
H0(X,OX) is a local ring.

On the other hand if (R,m) is not complete but only a Noetherian local ring, then
H0(X,OX) is only semi-local (it has finitely many maximal ideals). In many cases though,
we localize T = H0(X,OX) at a maximal ideal to obtain a local ring T′ (and perhaps
even take completion of that if desired) and consider the base change XT′ = X ×T T′.
Replacing R by T′ and X by XT′ we have that H0(X,OX)=R.

Lemma 6.6. — Suppose we are given X−→ Spec(R), the following are equivalent:

(a) (X,�) is globally+++-regular.

(b) for each closed point z ∈m- SpecR we have that the base change to the localization (XRz
,�Rz

)

is globally+++-regular.

Proof. — The pair is globally+++-regular if and only if the evaluation-at-1 map

(6.6.1) HomOX(f∗OY(�f ∗��),OX)−→H0(X,OX)

surjects for each finite dominant f : Y−→X with Y normal. Indeed, that map is surjective
if and only if there exists φ ∈Hom(f∗OY(�f ∗��),OX) sending 1 to 1.

Now, we observe that since Hom(f∗OY(�f ∗��),OX) =
H0(X,H omOX(f∗OY(�f ∗��)) and f∗OY is a coherent OX-module, the formation of this
Hom-set commutes with localization on the base (a flat base change). In other words:

Hom(f∗OY(�f ∗��),OX)⊗R Rz

∼= �(X,H omOX(f∗OY(�f ∗��),OX)⊗R Rz)

∼= �(XRz
,H omOX(f∗OY(�f ∗��)⊗R Rz,OXRz

))

∼= �(XRz
,H omOXRz

(f∗OYRz
(�f ∗�|XRz

�),OXRz
)).

Note the evaluation-at-1 map also base changes to the evaluation-at-1 map of the local-
ization. Hence, since a map of modules is surjective if and only if it is surjective after
localization at all maximal ideals, for each Y −→ X finite surjective, we see that (6.6.1)
surjects if and only if

HomOXRz
(f∗OYRz

(�f ∗�|XRz
�),OYRz

)−→H0(XRz
,OXRz

)

surjects for each z ∈m- SpecR.
Finally, notice that a finite surjective h : Y′ −→XRz

with Y′ integral produces a finite
surjective Y−→X that localizes to h (simply take the normalization of OX in the fraction
field Y′) and we are indexing over the same set of finite surjective maps (which we can
take with a fixed geometric generic point). �
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Lemma 6.7. — If (X,�) is globally+++-regular and 0≤�′ ≤�, then (X,�′) is globally

+++-regular as well.

Proof. — This follows from the definition. �

Proposition 6.8. — Suppose that X−→ Spec R is proper and (R,m) is local. Then (X,�)

is globally+++-regular if and only if B0(XR̂,�R̂;OXR̂
)=H0(XR̂,OXR̂

). In the case that KX +�

is Q-Cartier, this is also equivalent to B0
alt(XR̂,�R̂;OXR̂

)=H0(XR̂,OXR̂
).

Proof. — Notice that the map R−→H0(X,OX)=: T is finite (although it will not
be injective if X−→ Spec R is not dominant) and so its base change T⊗R R̂ to the comple-
tion of R may break up into a product of normal domains

∏
Ti . In particular, the normal

scheme XR̂ may have several connected components. In such a case, working one com-
ponent at a time, we may replace R by Ti , a localization of T at a maximal ideal, and X
by the base change X⊗T Ti and so assume that H0(X,OX)=R, also see Remark 4.31.

By Proposition 4.29 we have that B0(XR̂,�R̂;OXR̂
) equals

⋂

f : Y−→X
finite

im
(
H0(Y,OY(KY−�f ∗(KX +�)�))⊗RR̂−→H0(X,OX)⊗R R̂

)
.

Suppose that B0(XR̂,�R̂;OXR̂
) = H0(XR̂,OXR̂

) and let f : Y −→ X be a normal finite
cover. Then, Tr : f∗OY(KY − �f ∗(KX +�)�)−→OX is surjective on global sections (after
completion, hence also before it), and so there exists a map φ such that

OX
φ−→ f∗OY(KY − �f ∗(KX +�)�) Tr−→OX

is the identity (to define φ, send 1 ∈ �(X,OX) to a global section which Tr sends to 1).
Hence, Tr is split surjective. But now apply H om(−,OX) to Tr and observe that the
obtained map OX −→ f∗OY(�f ∗��) also splits, as desired.

For the converse, note that when the map OX −→ f∗OY(�f ∗��) splits, then the dual
map11 Tr : f∗OY(KY−�f ∗(KX+�)�)−→OX is split surjective, and so surjective on global
sections. Hence, B0(XR̂,�R̂;OXR̂

)=H0(XR̂,OXR̂
) by Proposition 4.29.

The final assertion follows from Corollary 4.13. �

Corollary 6.9. — Suppose that X−→ Spec R is proper. Then (X,�) is globally +++-regular

if and only if it is completely globally+++-regular over R.

Proof. — By Lemma 6.6 we may assume that R is local. We then see that (X,�) is
globally +++-regular if and only if B0(XR̂,�R̂;OXR̂

) = H0(XR̂,OXR̂
) by Proposition 6.8.

But this latter statement is also equivalent to requiring that (XR̂,�R̂) is globally +++-
regular. �

11 Obtained by applying H om(−,OX).
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We now show that globally+++-regular pairs have controlled singularities.

Proposition 6.10 (Global to local). — Suppose X is globally +++-regular. Then X is pseudo-

rational and in particular Cohen-Macaulay (and so has rational singularities in the sense of [Kov17]).

Further, suppose that (X,�) is globally +++-regular and KX +� is Q-Cartier. Then (X,�) is klt

(and Cohen-Macaulay).

Proof. — Since the question is local, we may localize X at a closed point x ∈X and
take R=OX,x so that X= Spec R. Furthermore, we may assume that R is complete by
Corollary 6.9.

First suppose that X is globally+++-regular and �= 0. By definition, R is a splinter,
hence it is Cohen-Macaulay and pseudo-rational ([Bha20, Corollary 5.10 and Remark
5.14(1)]). This proves the first statement.

Now suppose that (X= Spec R,�) is globally+++-regular and KX+� is Q-Cartier.
By Proposition 6.8 the trace map

H0(Y,OY(KY − �f ∗(KX +�)�))−→H0(X,OX)=R

is surjective for every projective birational morphism f : Y−→X from a normal integral
scheme Y. This is the case exactly when �KY− f ∗(KX+�)� is effective and exceptional
over X, which, in turn, is equivalent to ��� = 0 and all the exceptional divisors on
Y having log discrepancy greater than 0. As this is true for every projective birational
morphism, (X,�) is klt. Further, X is Cohen-Macaulay by our work above since X is
globally+++-regular by Lemma 6.7. �

Lemma 6.11. — Suppose that (X,�) is globally+++-regular, X−→ Spec R is proper and R
is local. Then for any line bundle L = OX(L) we have B0(XR̂,�R̂;LR̂) = H0(XR̂,LR̂). In

particular, if R is complete then B0(X,�;L )=H0(X,L ).

Proof. — Without loss of generality, using Proposition 4.29 and Corollary 6.9, we
may assume that R is complete. Since OX −→ f∗OY(�f ∗��) splits for every normal finite
cover f : Y−→X, then so does OX(KX − L)−→ f∗OY(�f ∗(KX +�− f ∗L)�). Hence

HdR�mR�(X,OX(KX−L))−→HdR�mR�(Y,OY(�f ∗(KX+�− f ∗L)�))
is injective and so by Lemma 4.8, we see that B0(X,�;L )=H0(X,L ) as desired. �

Corollary 6.12 (Relative Kawamata-Viehweg vanishing for globally +++-regular varieties). —
Suppose that X−→ Spec R is proper, (X,�) is globally+++-regular and L is a Cartier divisor such that

L− (KX +�) is Q-Cartier, big, and semiample. Then Hi(X,OX(L))= 0 for all i > 0.

Proof. — Via Corollary 6.9 and flat base change for cohomology, we may as-
sume that R is complete and local. By Lemma 2.2, to show that Hi(X,OX(L)) = 0
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for i > 0, it suffices to show that H−iR�mR�(X,OX(−L)⊗ ω
�

X) = 0. Since X is glob-
ally +++-regular, it is Cohen-Macaulay by Proposition 6.10. Hence, we must show that
Hd−iR�mR�(X,OX(KX − L))= 0 for all i > 0 where d = dim X. Consider the map

OX(KX−L)−→ lim−→
f : Y−→X

f∗OY(f ∗(KX+�−L))= π∗OX+(π
∗(KX+�−L))

where π :X+ −→X and we restrict ourselves to finite f : Y−→X such that f ∗� has integer
coefficients. Note that while π is not finite, it is affine so its higher direct images vanish
for quasi-coherent sheaves by [Sta, Tag 01XC]. This is a colimit of split maps since X is
globally+++-regular and hence

Hd−iR�mR�(X,OX(KX − L))

−→Hd−iR�mR�(X,π∗OX+(π
∗(KX +�− L)))

injects. But the right side is zero for all i > 0 by Corollary 3.7, completing the proof. �

We also obtain vanishing of the structure sheaf.

Proposition 6.13. — Suppose that X is globally+++-regular and X−→ Spec R is proper. Then

Hi(X,OX)= 0 for all i > 0.

Proof. — We may assume R is local with residue field R/m of characteristic
p > 0. By Proposition 3.1(a), taking L = OX, we can find a finite cover π : Y −→ X
where the map Hi(Xp=0,OX)−→Hi(Yp=0,OY) is zero, but it is also split injective, there-

fore Hi(Xp=0,OX) = 0. Since we have an exact sequence Hi(X,OX)
·p−→ Hi(X,OX) −→

Hi(Xp=0,OX)= 0, it follows that Hi(X,OX) is p-divisible, but as Hi(X,OX) is a finitely
generated R-module and p ∈m, thus Hi(X,OX)= 0 by Nakayama’s lemma. �

Lemma 6.14. — Suppose that X is an F-finite normal integral scheme of characteristic p > 0.

If (X,�) is globally F-regular, then it is globally+++-regular.

Proof. — Suppose that (X,�) is globally F-regular and that π : Y−→X is a finite
dominant map with Y normal and integral. By replacing Y by a higher cover if necessary,
we may assume that π∗� has integer coefficients.

Claim 6.15. — There exists a divisor D≥ 0 on X and a map

φ ∈HomOX(π∗OY(π∗�),OX(D))

which sends 1 "→ 1.

https://stacks.math.columbia.edu/tag/01XC
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Proof of claim. — We begin by explaining what the claim is asserting. Let K(X) and
K(Y) denote the constant sheaves associated to the fraction fields of X and Y respectively.
Notice that π∗OY(π∗�) is a subsheaf of π∗K(Y). Since � is effective, 1= 1Y is a global
section of π∗OY(π∗�). Likewise since D is effective, 1= 1X is a global section of OX(D).
The claim asserts that we can find a φ that sends 1 to 1.

Now, working on an affine chart j : U ↪→ X whose complement is a divisor D′ ≥
0, set V = π−1(U). It follows from [BST15, Proposition 4.2]12 that there exists φU ∈
Hom(π∗OV(π∗�),OU) ∼= π∗OV(KY − π∗(KX +�)) sending 1 "→ 1. By working from
the stalk of the generic point, we see that φU induces a map φK : π∗K(Y) −→ K(X).
Note, restricting φK to U and restricting the domain to π∗OV(π∗�) ⊆ (π∗K(Y))|U we
recover φU since both X and Y are integral schemes. Next, restrict the source of φK to
π∗OY(π∗�)⊆ π∗K(Y) to obtain

φ′ : π∗OY(π∗�)−→ j∗OU =
⋃

n≥0

OX(nD′).

But since the source of φ′ is coherent, the image of φ′ is contained in OX(nD′) for some
sufficiently large n > 0. Set D= nD′. This proves the claim. �

Now, since (X,�) is globally F-regular, there exists e > 0 and

ψ ∈Hom(Fe
∗OX(�(pe − 1)�� +D),OX)

which sends Fe
∗1 to 1. Twisting the φ from the claim by �(pe−1)��, and pushing forward

by Frobenius, we obtain a map

φ′ : Fe
∗π∗OY((Fe)∗π∗�)⊆ Fe

∗π∗OY(π∗�+ π∗�(pe − 1)��)
−→ Fe

∗OX(�(pe − 1)�� +D)

sending Fe
∗1 "→ Fe

∗1. Composing with ψ we see that the composed map ψ ◦ φ′ sends
Fe
∗1 to 1. Thus OX −→ Fe

∗π∗OY((Fe)∗π∗�) splits, and since this map factors through
π∗OY(π∗�), we have OX −→ π∗OY(π∗�) splits. This proves that (X,�) is globally +++-
regular. �

Remark 6.16. — It is reasonable to expect that there is a converse to Lemma 6.14.
Even in the local case where X= Spec R and �= 0 (but R is not Q-Gorenstein) this is an
open question. It specializes in that setting to the conjecture that splinters are strongly F-
regular, see for instance [Sin99, CEMS18]. Note that we do not even know that splinters
are klt for some appropriate boundary if R is not Q-Gorenstein. In the non-local case,
we expect that (X,�) is of log Fano type but we do not know how to show that.

12 In that paper, it was assumed that KX +� is Q-Cartier, but that hypothesis is not needed when π is finite.
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We also state a related open question, analogous to the main result of [SS10].

Conjecture 6.17. — With notation as in the start of the section, suppose that X is globally

+++-regular and that X−→ Spec R is projective. Then there exists an effective Q-divisor � on X such

that (X,�) is globally+++-regular and −KX −� is ample.

This conjecture is open in characteristic p > 0, even in the local case when X =
Spec R. In mixed characteristic, even if X is nonsingular, we do not even know how to
construct a boundary � where (X,�) is lc and KX +�∼Q 0.

Corollary 6.18. — Suppose that (X,�) is proper over a complete Noetherian local ring

(R,m, k) of characteristic p > 0. Let R′ := R⊗̂kk
1/p∞ be the complete tensor product (so R′ is an

F-finite complete local ring). If (XR′,�R′) is globally F-regular, then (X,�) is globally+++-regular.

Proof. — The natural maps X+R′ −→XR′ −→X induce:

HdR�mR�(X,OX(KX))

−→HdR�mR�(XR′,OXR′ (KXR′ ))

−→HdR�mR�(X+R′,OX+
R′
(π ′ ∗(KXR′ +�R′)))

where π ′ : X+R′ −→ XR′ and d = dim X. Notice that the base change of ωX is ωXR′ . The
first map is injective by faithfully flat base change, and the second map is injective since
(XR′,�R′) is globally +++-regular by Lemma 6.14 and using duality (see Proposition 6.8
and Lemma 4.8). Therefore the composition is injective. But as X+R′ −→X factors through
X+, we obtain that

HdR�mR�(X,OX(KX))−→HdR�mR�(X+,OX+(π
∗(KX +�)))

is injective where π : X+ −→ X. So using Proposition 6.8 and Lemma 4.8 again we see
that (X,�) is globally+++-regular. �

Proposition 6.19. — If f :X−→ Y is a proper birational morphism between schemes satisfying

the conditions at the start of this section, and �≥ 0 is a Q-divisor on X such that (X,�) is globally

+++-regular, then so is (Y, f∗�). Hence Y is also pseudo-rational (and so rational in the sense of [Kov17]),

and if KY + f∗� is Q-Cartier, then (Y, f∗�) is klt.

Proof. — Set �Y = f∗�. Let g : Z−→ Y be a normal finite cover and let W be the
normalization of X×Z Y. We have that following diagram:
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X

f

��

W

h

��

ξ
��

Y Z.
g

��

Since X is globally+++-regular, the map OX −→ ξ∗OW(�ξ ∗��) splits. Let U⊆ Y be an open

subset with complement of codimension at least two and such that V := f −1(U)
f−→U is

an isomorphism. By restricting the above splitting to V, we get that the map

OU −→ g∗Og−1(U)(�g∗�Y|U�)
splits as well, and so does OY −→ g∗OZ(�g∗�Y�), since Y \U is of codimension two and
the sheaves are S2. Hence, (Y,�Y) is globally+++-regular. The last assertion follows from
Proposition 6.10. �

In the opposite direction, we have the following for étale covers.

Proposition 6.20. — Suppose that (X,�) is globally+++-regular, X−→ Spec R is proper and

f : Y −→ X is a finite quasi-étale13 cover from a normal integral scheme Y. Then (Y, f ∗�) is also

globally+++-regular.

Proof. — We may assume that H0(X,OX) = R. Then we may assume that R is
complete and local by Corollary 6.9, possibly working component by component on Y
after completion so that H0(Y,OY) is also local. Since f is quasi-étale, we know that
f ∗KY =KX. Hence by Lemma 4.8 we see that

B0(Y, f ∗�;OY) � B0(X,�;OX)=H0(X,OX)

surjects. But the induced trace map H0(Y,OY)−→H0(X,OX) sends the maximal ideal of
H0(Y,OY) to the maximal ideal of H0(X,OX), hence B0(Y, f ∗�;OY)=H0(Y,OY). �

The local case. — We conclude the section by briefly describing some of the key
features of local +++-regularity.

Definition 6.21. — Suppose that (A,m) is an excellent normal local ring whose residue field

A/m has positive characteristic and set Y = Spec A. Further suppose that � ≥ 0 is a Q-divisor on

Y. We say that (Y,�) is +++-regular if it is globally+++-regular in the sense of Definition 6.1.

Notice that the m-adic completion Â of A is +++-regular if and only if so is A (this
is Corollary 6.9 applied to the identity map X = Spec A −→ Spec A). Furthermore, if

13 Meaning étale in codimension 1
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�= 0, then A is+++-regular if and only if it is a splinter. Lastly, if (A,�) is+++-regular, then
it is Cohen-Macaulay by Proposition 6.10.

Lemma 6.22. — If (X,�) as in the start of the section is globally+++-regular, then for x ∈X
whose stalk A=OX,x has positive characteristic residue field, (Spec A,�|Spec A) is globally+++-regular.

Remark 6.23. — Suppose that KA + � is Q-Cartier. It follows from Proposi-
tion 4.29 by taking X= Spec A that (A,�) is globally+++-regular if and only if (Â,�Â) is
BCMÂ+-regular.

6.1. Purely globally+++-regular schemes. —

Definition 6.24. — With notation as in the start of the section, suppose that there exists a reduced

divisor S such that �= S+B for B≥ 0 with no common components with S. Fix a reduced subscheme

S+ in X+ as in the second paragraph of Section 4.3 with corresponding
∑t

i=1 Si,Y = SY −→ Y on

each finite dominant map f : Y −→ X with Y normal. We say that (X,S+ B) is purely globally
+++-regular (along S), if for every finite dominant f : Y−→X with Y normal, the following map splits

OX −→ f∗
t⊕

i=1

OY(−Si,Y + �f ∗(S+ B)�).

If we have X −→ Spec R proper as in the start of the section, then we say that (X,S + B) is

completely purely globally +++-regular over R (along S) if the base change to the completion

(XR̂z
,�R̂z

) along every closed point z ∈m- SpecR is purely globally+++-regular.

Note in the case that S is integral and f ∗(S + B) has integer coefficients, this is
simply asking that

OX −→ f∗OY(f ∗(S+ B)− SY)

splits.
This definition is still meaningful even when R is not complete although we will pri-

marily work in the complete case, see the issues discussed in Remark 4.30. In particular,
we do not have a full analog of Proposition 6.8 or any analog of Corollary 6.9. However,
see Corollary 7.6 where we prove the equivalence of completely purely globally+++-regular
pairs with purely globally+++-regular pairs when −KX −� is big and semiample.

Lemma 6.25. — Suppose we have X−→ Spec(R), the following are equivalent:

(a) (X,S+ B) is purely globally+++-regular.

(b) for each closed point z ∈m- SpecR we have that the base change to the localization (XRz
, (S+

B)Rz
) is purely globally+++-regular.
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Proof. — We restrict to Y large enough so that f ∗�= f ∗(S+B) has integer coeffi-
cients. The pair is globally+++-regular if and only if the sum of the evaluation-at-1 maps

t⊕

i=1

Hom(f∗OY(−Si,Y + f ∗(S+ B)),OX)−→H0(X,OX)

surjects for each finite dominant f : Y −→ X with Y normal. Again, this surjectivity can
be checked after localizing at closed points of R. �

Similar to Proposition 6.8, we have the following alternate characterization
of purely globally +++-regular. We recall the following notation from Remark 4.30.
If H0(X,OX) = R is local and X −→ Spec R is proper then B̂0

S(X,S + B;OX) ⊆
H0(XR̂,OXR̂

) is the R-Matlis dual of

Im
(

HdR�mR�(X,OX(KX))

−→HdR�mR�(X+,
t⊕

i=1

OX+(−S+i + π∗(KX +�)))

)
.

Proposition 6.26. — With notation as in Definition 6.24, suppose R=H0(X,OX) is local

and X−→ Spec R is proper. Then (X,S+B) is purely globally+++-regular if and only if B̂0
S(X,S+

B;OX)=H0(XR̂,OXR̂
).

In particular, if R is complete, then (X,S + B) is purely globally +++-regular if and only if

B0
S(X,S+ B;OX)=H0(X,OX).

Proof. — We work with covers large enough so that f ∗(KX + S + B) has integer
coefficients. The strategy is the same as in Proposition 6.8. If

OX −→ f∗
t⊕

i=1

OY(−Si,Y + f ∗(S+ B))

splits for all Y, then twisting by KX and taking local cohomology, we see that each

(6.26.1) HdR�mR�(X,OX(KX))−→HdR�mR�

(
Y,

t⊕

i=1

OY(−Si,Y+ f ∗(KX+S+B))

)

is injective. Hence B̂0
S(X,S+ B;OX)=H0(XR̂,OXR̂

).
Conversely, if each map of the form (6.26.1) injects, then

H0

(
YR̂,

t⊕

i=1

OY(KY + Si,Y − f ∗(KX + S+ B))R̂

)
−→H0(XR̂,OXR̂

)



154 B. BHATT ET AL.

surjects. Since R−→ R̂ is faithfully flat, each

H0

(
Y,

t⊕

i=1

OY(KY + Si,Y − f ∗(KX + S+ B))

)
−→H0(X,OX)

surjects. Hence there exists

z ∈H0

(
Y,

t⊕

i=1

OY(KY + Si,Y − f ∗(KX + S+ B))

)

mapped to 1 ∈H0(X,OX). Thus we have a map

OX −→ f∗
t⊕

i=1

OY(KY + Si,Y − f ∗(KX + S+ B))

induced by sending 1 "→ z giving us a splitting. Apply H om(−,OX) to obtain the desired
result. �

Lemma 6.27. — If (X,S+ B) is purely globally +++-regular along a reduced divisor S then

(X, aS+ B) is globally+++-regular for every 0≤ a < 1.

Proof. — This follows from Lemma 4.26 when R is complete and X−→ Spec R is
proper. Alternately, for the general case, note that for large enough covers Y −→ X we
have a factorization:

OX −→OY(f ∗(aS+ B))−→ f∗
t⊕

i=1

OY(−Si,Y + f ∗(S+ B)).

The splitting of the composition implies splitting of the left map. �

Proposition 6.28. — Suppose X−→ Spec R is proper. Additionally, let f : Y−→X be a proper

birational morphism between normal schemes. Let � ≥ 0 be a Q-divisor on X such that (X,�) is

globally +++-regular (completely purely globally +++-regular over R, resp.). Suppose that �Y ≥ 0, where

KY +�Y = f ∗(KX +�). Then (Y,�Y) is globally+++-regular (globally+++-regular, resp.).

Proof. — We can assume that R is local and complete by Corollary 6.9. Then this
follows from Lemma 4.19 and Lemma 4.27. �

Remark 6.29. — If (X,S + B) is purely globally +++-regular, then we will see in
Proposition 7.7 that it is plt, and in Corollary 7.9 that S is normal.



GLOBALLY+++-REGULAR VARIETIES AND THE MINIMAL MODEL PROGRAM. . . 155

6.2. Summary of terminology. — We conclude this section by summarizing the ter-
minology we have introduced.

Recall, saying that (X,�) is globally +++-regular means that every finite surjective
map f : Y−→X between integral schemes, one has that OX −→OY(�f ∗��) splits as a map
of OX-modules. We then potentially add two different modifiers to this term.
(a) purely, which should be thought of as a plt variant of+++-regularity.
(b) completely, which makes (purely) globally +++-regular a relative notion (over a base

Spec R), meaning that after completing at each closed point of the base, we have
(pure) globally+++-regularity.

7. Lifting +++-stable sections from divisors

In this section we aim to prove that we may lift global sections of B0 from hyper-
surfaces in many cases. In order to lift sections we need vanishing theorems, and the key
vanishing theorem we use in this case is Corollary 3.7.

Setting 7.1. — In this section, R is an excellent local domain with a dualizing
complex and positive characteristic residue field.

Frequently, R will even be complete.

Theorem 7.2. — Let X be a normal integral scheme of dimension d that is proper over a complete

local Noetherian base Spec R with positive characteristic residue field. Let �≥ 0 be a Q-divisor such

that KX+� is Q-Cartier. Suppose that �= S+B where S=∑
Si is a sum of prime components of

� of coefficient one with normalization ν : SN −→ S, and M is a Cartier divisor such that M−KX−�

is big and semiample.

Set M =OX(M). Then the restriction map H0(X,M )−→H0(SN,M |SN) induces a sur-

jection

B0
S(X,�;M )� B0(SN,�SN;M |SN)

where �SN is the different of KX + S+ B along SN and the right side is defined as in Remark 4.3 in

the case where SN has multiple connected components (taking the direct sum).

For more information on the different (of KX + S+ B along SN), see for instance
[Kol13, Section 4.1].

Proof. — This argument is very closely related to, and inspired by, the proof of
[MST+22, Theorem 3.1]. In the proof below, we frequently abuse of notation in the fol-
lowing way. Let where π : X+ −→ X be the natural map. For a quasi-coherent sheaf F
on X+ we will also write F for π∗F . This is essentially a harmless notational device as
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Riπ∗F = 0 for all i > 0 since π is an affine morphism, [Sta, Tag 01XC], and in partic-
ular R�mR�(X+,F )∼=R�mR�(X,Rπ∗F )∼=R�mR�(X,π∗F ). The same notational
consideration applies to the affine morphisms S−→X, SN −→X, S+ −→X, etc.

With this abuse of notation in mind, we have the following diagram

OX(−S) ��

��

OX

��⊕t

i=1 OX+(−Si,X+) ��
⊕t

i=1 OX+

of quasi-coherent sheaves on X as in Section 4.3.
Set

L :=OX+(L)=OX+(π
∗(KX + S+ B−M))

to be the line bundle on X+ corresponding to KX+ S+ B−M. Twist the top row of the
above diagram by KX+ S−M and reflexify, then twist the bottom row by L . Using the
additional downward inclusions given that B is effective, we obtain the leftmost square in
the commutative diagram with exact rows:

0 �� OX(KX −M) ��

��

OX(KX + S−M)

��

�� OX(KX + S−M)/OX(KX −M) ��

��

0

0 �� ⊕t

i=1 OX+ (L− Si,X+ ) �� ⊕t

i=1 OX+ (L) �� OS+ ⊗L �� 0

Recall that S+ is the disjoint union of the S+i as in Section 4.3. Taking cohomology
then gives the following commutative diagram, where the factorization of the left vertical
arrow into surjective maps will be explained below.

Hd−1R�mR�(S,OX(KX + S−M)/OX(KX −M))

ρ
��
��

�� HdR�mR�(X,OX(KX −M))

��
��

Hd−1R�mR�(S,ωS ⊗ (M−1|S))

��
��

ImageS
� � κ

��
� �

��

ImageX� �

��
Hd−1R�mR�(S+,L |S+ )

� � �� HdR�mR�(X+,
⊕t

i=1 OX+ (L− Si,X+ ))

https://stacks.math.columbia.edu/tag/01XC
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Here we define ImageS to be:

Image
(

Hd−1R�mR�(S,OX(KX + S−M)/OX(KX −M))

−→Hd−1R�mR�(S+,L |S+)
)
.

Note that ImageX is the R-Matlis dual of B0
S(X,�,M ) by definition, see Definition 4.21.

A main goal of the rest of the proof is to show that ImageS is dual to B0(SN,�SN,M |SN).
We first explain the injection of κ . Observe that

Hd−1R�mR�(X+,
t⊕

i=1

L )

surjects onto the kernel of the bottom row, and so, since L −1 is big and semiample, we
may apply Corollary 3.7 and see that the bottom row injects. Thus κ : ImageS ↪→ ImageX
also injects and hence its R-Matlis dual

B0
S(X,�,M )� (ImageS)

∨

surjects.
We now explain origin and surjectivity of ρ. Because X is normal and so Cohen-

Macaulay in codimension 2, the S2-ification on S of OX(KX + S−M)/OX(KX −M) is
ωS⊗ (M −1|S) (see [MST+22, Subsection 2.1]) and so we have a factorization of sheaves
on S

OX(KX + S−M)/OX(KX −M)−→ ωS⊗ (M −1|S)−→L |S+
as well since L |S+ =OS+(L|S+) is a colimit of S2 coherent sheaves. Applying local coho-
mology explains the origin of the map ρ. We now explain the surjectivity of ρ (in fact,
we will show that ρ is an isomorphism). Applying R Hom(−,ω

�

X) to 0 −→ OX(−S) −→
OX −→OS −→ 0 and taking cohomology, we obtain

0−→OX(KX)−→OX(KX + S)−→ ωS −→H−(d−1)(ω
�

X)−→ · · ·
Since X is normal and hence S2, we know that dim H−(d−1)(ω

�

X) < d − 2. After twisting
by M −1, we observe that the cokernel C of

(7.2.1) OX(KX + S−M)/OX(KX −M)−→ ωS⊗ (M −1|S)
satisfies dim Supp C < d−2 (alternatively, one sees that (7.2.1) is precisely the S2-ification
map and thus an isomorphism in codimension one). It follows that Hd−2R�mR�(S,C)=
Hd−1R�mR�(S,C) = 0 by [Sta, Tag 0A4R]. This implies that ρ is an isomorphism.
Therefore ImageS is also the image of

Hd−1R�mR�(S,ωS⊗ (M −1|S))−→Hd−1R�mR�(S+,L |S+).

https://stacks.math.columbia.edu/tag/0A4R
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Next notice that dual to OS −→OSN we obtain ωSN −→ ωS which induces a map of
sheaves on S

OSN(KSN −M|SN)−→ ωS⊗ (M −1|S).
The cokernel of this map is supported in dimension < d − 1, and so, arguing as above,
we see that

Hd−1R�mR�
(
SN,OSN(KSN−M|SN)

)
� Hd−1R�mR�(S,ωS⊗ (M −1|S))

surjects.
In particular, we have the following composition:

Hd−1R�mR�
(
SN,OSN(KSN −M|SN)

)

� Hd−1R�mR�(S,ωS⊗ (M −1|S))
� ImageS

↪→Hd−1R�mR�
(
S+,L |S+

)

Since S+ = (SN)+, it should be expected, using Lemma 4.8 ((a)), that the R-Matlis dual
of ImageS is B0(SN,�′,M |SN) for some Q-divisor �′ on SN. We wish to show that this is
true where �′ =�SN is the different of KX+ S+B along SN, see [Kol13, Section 4.1] or
[MST+22, Section 2.1] for more discussion of the different. In other words, we will show
that the composition OSN(KSN−M|SN)−→ ωS⊗(M −1|S)−→L |S+ may be identified with
the canonical map (since the different �SN is effective) viewed as sheaves on either S (or
equivalently on SN)

(7.2.2) OSN((KSN −M)|SN)−→OS+(π
∗
SN(KS +�SN −M)|S+)

where πSN : S+ = (SN)+ −→ SN is the usual map.
To conclude the proof, we must show that we have an isomorphism of OS+ -

modules

L |S+ ∼=OS+(π
∗
SN(KSN +�SN −M|SN)),

and that the map OSN(KSN −M|SN)−→LS+ we obtained by composition is the same as
the map (7.2.2). The first isomorphism is an immediate consequence of the definition of
the different which guarantees that

(KX + S+ B)|SN ∼Q KSN +�SN .

The second assertion is local on S. In particular, we may forget about R, set M= 0 and
assume that X= Spec A is normal and local, S= Spec(A/I) is reduced and local so that
SN = Spec(A/I)N is the spectrum of a semi-local normal ring. At this point, the argument
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is essentially identical to the argument of [MST+22, Theorem 3.1] which we now explain
in a slightly different way.

We first need a precise definition of the different. We may write KX = −S + G
where G ≥ 0 does not contain any component of S within its support. This in fact de-
termines a canonical divisor on SN. Consider a global section y ∈OX(KX + S)=OX(G)

determining G (note we may take y = 1 ∈ OX(G)). The image of y, y ∈ ωS becomes a
rational section of ωSN via the map ωSN −→ ωS, this rational section determines the divisor
we call KSN. Write KX+ S+B= 1

m
div f for some f ∈ A. Then, setting f ∈ (A/I)N as the

image of f , we define the different as

�SN := 1
m

divSN f −KSN .

It is independent of our choices and always effective, see [Kol13, Section 4.1]. With this
in place, and the careful choice of KSN described above, the map we constructed earlier
in the proof

(7.2.3) OSN(KSN)−→ ωS −→L |S+ =OS+(π
∗(KX + S+ B)|S+)

sends the rational section y to an honest section of ωS which came from the section 1 ∈
OX(KX+S)⊆OX+(π

∗(KX+S+B))= 1
f 1/m OX+ . In particular, in the composition (7.2.3),

y is sent to 1 ∈ 1

f
1/m OS+ =L |S+ . On the other hand, the map

OSN(KSN)−→OS+(π
∗(KSN +�SN))= 1

f
1/m

OS+

also sends y to 1 by construction, and so the two maps agree since they are maps between
rank-1 sheaves and so are determined by where they send any single nonzero (on any
irreducible component) rational section. �

Remark 7.3. — One may also obtain an alternative proof in the case where M−
KX−� is ample, by passing to the affine cones, and using Theorem 5.2 and [MST+22].

Recall from Remark 4.30 that when R is not necessarily complete, we define
B̂0

S(X,�;M ) to be the Matlis dual of

Im
(

HdR�mR�(X,OX(KX −M))

−→HdR�mR�(X+,
t⊕

i=1

OX+(−S+i + π∗(KX +�−M)))

)
.
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Corollary 7.4. — With the same assumptions as in Theorem 7.2, but with H0(X,OX)=R
and R not necessarily complete but satisfying Setting 7.1, we have that the restriction map

H0(X,M )⊗R R̂=H0(XR̂,MR̂)−→H0(SN
R̂,M |SN

R̂
)

=H0(SN,M |SN)⊗R R̂

induces a surjection

B̂0
S(X,�;M )� B0(SN

R̂;�SN
R̂
;M |SN

R̂
).

Proof. — The proof is the same as that of Theorem 7.2 in view of Proposition 4.29
since Corollary 3.7 does not require that R is complete. �

When S is globally+++-regular, we obtain the following important consequence.

Corollary 7.5 (Adjunction and inversion of adjunction). — Let (X,� = S + B) be a pair

proper over R = H0(X,OX) satisfying Setting 7.1. Assume additionally that S is a reduced Weil

divisor having no common components with B, and such that −KX−� is big and semiample. Let �SN

denote the different of KX + S+ B on SN with respect to (X,S+ B).

Then (X,S+ B) is purely globally +++-regular (along S) if and only if (SN,�SN) is globally

+++-regular (in the sense of Remark 6.4 if S is not irreducible).

When R is complete, notice that R= R̂ and B0
S = B̂0

S.

Proof. — By and using the notation of Corollary 7.4, we have a surjection

B̂0
S(X,�,OX)� B0(SN

R̂,�SN
R̂
;OSN

R̂
).

Notice that B̂0
S(X,S+ B;OX)⊆H0(XR̂,OXR̂

)= R̂.
First suppose that (SN,�SN) is globally +++-regular. Then so is the base change to

the completion (SN
R̂,�SN

R̂
) by Corollary 6.9. Notice that a priori, SN

R̂ may have even more
components than SN since if SN

i is such a component of SN, we may have that H0(SN
i ,OSN

i
)

is only semilocal. However, this will not cause a problem for us; SN already perhaps had
multiple components.

Regardless, B0(SN
R̂,�R̂;OXR̂

) = H0(SN
R̂,OSN

R̂
). Our surjectivity then implies that

B̂0
S(X,�,OX) must contain an element z of H0(XR̂,OXR̂

) = R̂ mapping to 1 ∈
H0(SN

R̂,OSN
R̂
). But such a section z is necessarily a unit of R̂ and so B̂0

S(X,S+ B;OX)=
R̂=H0(XR̂,OXR̂

). Hence (X,�) is purely globally+++-regular along S.
Conversely, if (X,S + B) is purely globally +++-regular then B̂0

S(X,S + B;OX)

contains a unit, and hence so does its image B0(SN
R̂,�SN

R̂
;OSN

R̂
) ⊆ H0(SN

R̂,OSN
R̂
). Thus

(SN,�SN) is globally+++-regular by Proposition 6.8. �
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Corollary 7.6. — Let X−→ Spec R be a proper morphism of schemes such that H0(X,OX)=
R satisfies Setting 7.1. Suppose that (X,S+ B) is a pair where S and B have no common components

and S is reduced. Finally, assume that −KX − S − B is big and semiample over Spec R. Then

(X,S+B) is purely globally+++-regular along S if and only if it is completely purely globally+++-regular

over R along S.

Note that the assumptions of this corollary are satisfied when X= Spec R.

Proof. — By Corollary 7.5, we see that (X,S+ B) is purely globally +++-regular if
and only if (SN,�SN) is globally +++-regular. That is equivalent to (SN

R̂,�SN
R̂
) being glob-

ally +++-regular by Corollary 6.9. Hence applying Corollary 7.5 again, we see that this is
equivalent to (XR̂, (S+ B)R̂) being purely globally+++-regular as desired. �

Proposition 7.7 (Global to local). — Suppose X is a normal Noetherian excellent integral scheme

with a dualizing complex and where every closed point of X has positive characteristic residue field. Further

suppose that (X,S+ B) is purely globally+++-regular for a reduced divisor S and that KX + S+ B is

Q-Cartier. Then (X,S+ B) is plt.

Proof. — Choose x a closed point and let R = ÔX,x. By Corollary 7.6 we may
assume X= Spec R. By Lemma 4.25, the map induced by Grothendieck duality:

H0(Y,OY(KY + SY−�f ∗(KX + S+ B)�))−→H0(X,OX)

is surjective for every projective birational morphism f : Y−→X from a normal integral
scheme Y. This is the case exactly when �KY + SY − f ∗(KX + S+ B)� is effective and
exceptional over X (cf. Lemma 2.36), which, in turn, is equivalent to the requirement that
�B� = 0 and that all the exceptional divisors on Y have discrepancy greater than −1. As
this is true for every projective birational morphism, (X,�) is plt. �

Our result also implies a surjectivity of H0 under certain hypotheses, which implies
that SN is connected. Also compare with [KM98, Theorem 5.48] and [Sho92, 5.7].

Corollary 7.8. — Assume X−→ Spec R is proper where R satisfies Setting 7.1 and such that

H0(X,OX)= R. Suppose that (SN,�SN) is globally +++-regular (in the sense of Remark 6.4 if S is

not integral) and M−KX −� is big and semiample. Then

H0(X,M )−→H0(SN,M |SN)

is surjective. As a consequence, if additionally −KX −� is big and semiample, then SN
R̂ is connected

and thus integral and thus so is SN.

Proof. — By Corollary 7.4, the map

B̂0
S(X,�;M )−→ B0(SN

R̂,�SN
R̂
;M |SN

R̂
)
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is surjective. By Proposition 6.8, we know that B0(SN
R̂,�SN

R̂
;M |SN

R̂
) = H0(SN

R̂,M |SN
R̂
)

and so since B0
S(XR̂,SN

R̂ + �R̂;MR̂) ⊆ H0(XR̂,MR̂), we obtain that H0(XR̂,MR̂) −→
H0(SN

R̂,M |SN
R̂
) is surjective. Thus H0(X,M )−→H0(SN,M |SN) is surjective as well, since

R̂ is faithfully flat over R.
For the statement that SN

R̂ is connected, notice that we have that H0(XR̂,OXR̂
)−→

H0(SN
R̂,OSN

R̂
) =: A surjects and that H0(XR̂,OXR̂

) = R̂ is a local domain. Thus A is a
normal local ring as well. This implies that A is an integral domain. On the other hand
SN

R̂ is a disjoint union of normal integral schemes say
∐

Si. Thus A=∏
H0(Si,OSi

) is a
product of domains, and so cannot be a domain itself unless there is only one Si , meaning
that SN

R̂ is connected and integral as desired. �

In fact, we frequently also have that S is normal.

Corollary 7.9. — Suppose (X,S+B) is a pair where KX+S+B is Q-Cartier, S is reduced,

and B≥ 0 is a Q-divisor with no common components with S. We assume that all closed points of X are

of positive characteristic. Let �SN denote the different of KX+S+B on SN with respect to (X,S+B).

Suppose that (SN,�SN) is globally+++-regular or that (X,S+ B) is purely globally+++-regular

along S. In either case, S is normal.

Proof. — Fix a closed point x ∈ S ∈X. It suffices to show that OS,x is normal (note
that such localizations still imply the various pairs are globally +++-regular). Thus we as-
sume that X= SpecOX,x = Spec R.

In view of Corollary 7.5, in either case we have that (SN,�SN) is globally +++-

regular. Observe that
(

SN
R̂,�SN |SN

R̂

)
is still globally +++-regular by Corollary 6.9. Now, if

SR̂ is normal then so is S, so we may assume that R= R̂, X= Spec R̂ and observe that
−(KX + S+ B) is big and semiample since we are working locally. But now by Corol-
lary 7.8 we see that the composition OX −→OS −→OSN is a surjection, implying that S is
normal. �

Note in the above we needed to assume every closed point has positive characteris-
tic residue field since we do not believe that the globally+++-regular hypothesis necessarily
implies plt without it, see Remark 6.3 for some additional discussion.

Corollary 7.10. — Suppose that X −→ Spec R is proper where H0(X,OX) = R and R
satisfies Setting 7.1. Next assume that (X,S+ B) is a purely globally+++-regular (or completely purely

globally+++-regular over R) pair along S and −KX − S− B is big and semiample. Then S is normal

and integral.

Proof. — Since X is proper over R, every closed point of X has positive character-
istic residue field (since they must all map to the closed point of Spec R). We may now
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replace R by its completion by Corollary 7.6 since if SR̂ is normal and integral so is S.
We see that (SN,�SN) is globally+++-regular by Corollary 7.5 hence S is normal by Corol-
lary 7.9. Furthermore, S is connected by Corollary 7.8. This proves that S is integral. �

As a corollary, we also recover the standard global generation result on Seshadri
constants [Dem93] (cf. Section 2.9, [Laz04, Chapter 5]).

Theorem 7.11. — Let (X,B) be a pair of dimension n proper over Spec R where R is Noethe-

rian complete local and has positive characteristic residue field. Let x ∈X be a closed point such that at

the point x, (X,B) is klt, X is regular, and Supp B is simple normal crossing. Let M be a Cartier

divisor with M = OX(M) such that A :=M− (KX + B) is big and semiample. Further suppose

that εsa(A; x) > a(E,X,B) where a(E,X,B) is the log discrepancy of (X,B) along the exceptional

divisor E of the blow-up π : X′ −→X at x.

Then B0(X,B;M ) globally generates M at x. In particular, x is not a base point of |M|.
If X is nonsingular and B = 0, then a(E,X,B) = dimOX,x = dim X under our

hypotheses. Hence we recover the usual formulation of global generation via Seshadri
constants: namely that εsa(M−KX; x) > dim X implies that M is globally generated at x.

Proof. — Denote the log discrepancy a(E,X,B) by a. By definition, KX′ +π−1
∗ B+

(1 − a)E = π∗(KX + B). Notice that for each rational 0 ≤ t < εsa(A; x) we have that
π∗A− tE is big and semiample. Thus since εsa(A) > a, we have that

π∗M− (KX′ + E+ π−1
∗ B)

= π∗A+KX′ + π−1
∗ B+ (1− a)E− (KX′ + E+ π−1

∗ B)

= π∗A− aE

is big and semiample, and so

(7.11.1) B0
E(X

′,E+ π−1
∗ B;π∗M )−→ B0(E,BE;OE)

is surjective by Theorem 7.2, where KE + BE = (KX′ + E + π−1
∗ B)|E. Notice that E �

Pn−1 since X is regular at x. Furthermore, since Supp B is simple normal crossings, the
components of B are defined locally by part of a system of parameters of mx. Hence
the support of BE is made up of coordinate hyperplanes, which thus remain coordinate
hyperplanes even after base change of the residue field of x. We would like to assert
that (E,BE) is globally F-regular but the residue field k(x) need not be F-finite and so
neither is E. However, because the coefficients of BE are < 1, we have that the base
change of (E,BE) to the perfection of k(x) is globally F-regular; indeed notice that the
base change BE remains coordinate hyperplanes with coefficients < 1 and so (E,BE) is
globally F-regular by [SS10, Proposition 5.3] (since the section ring pair is strongly F-
regular). Therefore (E,BE) is globally+++-regular by Corollary 6.18. Thus, the right hand
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side of (7.11.1) is equal to H0(E,OE). Hence B0
E(X

′,E+ π−1
∗ B;π∗M )⊆H0(X′,π∗M )

contains a section which does not vanish at x. But now, for 1� ε > 0

B0
E(X

′,E+ π−1
∗ B;π∗M )⊆ B0(X′, (1− ε)E+ π−1

∗ B;π∗M )

⊆ B0(X,B;M ).

where first containment follows from Lemma 4.26 and the second follows from
Lemma 4.19. This completes the proof. �

Remark 7.12. — The condition that B is simple normal crossing at x was only
used to guarantee that the exceptional divisor pair (E,BE) was globally F-regular (up
to appropriate base change to make it F-finite). One can weaken the simple normal
crossing hypothesis if one instead assumes that (E,BE) is globally F-regular, the proof
is unchanged.

7.1. Globally +++-regular birational morphisms of surfaces. — In this subsection, we give
new proofs of [MST+22, Theorem 7.11 and Theorem G], in the case when the fixed
big Cohen-Macaulay algebra is equal to R̂+. Explicitly, we show that, locally, two-
dimensional klt and three-dimensional plt pairs (X,�) with standard coefficients and
residue characteristics p > 5 are globally +++-regular and purely globally +++-regular, re-
spectively. In fact, we will show much stronger results, which we shall need in the proof of
the existence of flips: that two-dimensional klt and three-dimensional plt Fano pairs are
globally +++-regular and purely globally +++-regular relative to a birational map. Our ap-
proach for proving these results is the same as in [HW22a] which simplified the original
strategy of [HX15].

In what follows, we continue to assume Setting 7.1 that (R,m) is an excellent local
domain with residue characteristic p > 0 and a dualizing complex.

We start by stating the following lemma, which generalizes the existence of Kollár’s
component for surfaces (c.f. [MST+22, Proof of Theorem 7.11]).

Lemma 7.13. — Let (X,B) be a two-dimensional klt pair admitting a projective birational map

f : X−→ Z= Spec R such that −(KX + B) is relatively nef, assuming that R is as in Setting 7.1

and additionally has infinite residue field. Then there exist an f -exceptional irreducible curve C on a

blow-up of X and projective birational maps g : Y−→X and h : Y−→W over Z such that:

(a) g extracts C or is the identity if C⊆X,

(b) (Y,C+ BY) is plt,

(c) (W,CW + BW) is plt and −(KW +CW + BW) is ample over Z,

(d) h∗(KW +CW + BW)− (KY +C+ BY)≥ 0,

where KY + bC+ BY = g∗(KX + B) for C �⊆ Supp BY, CW := h∗C �= 0, and BW := h∗BY.

We warn the reader that it may happen that g is the identity and C lies on X.
Further, we added the assumption that R/m is infinite to avoid potential issues with tie-
breaking (cf. Remark 8.6).
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Proof. — This follows by exactly the same proof as [HW22a, Lemma 2.8]. This is
a consequence of the two dimensional Minimal Model Program in mixed characteris-
tic, see [Tan18b]. Note that tie-breaking employs Bertini’s theorem for regular schemes,
which in our setting is known by Theorem 2.17. �

In this and the next result, we add an additional εD to the boundary as it will be
important in the proof of the existence of flips.

Theorem 7.14. — Let (X,B) be a two-dimensional klt pair admitting a projective birational

map f : X−→ Z= Spec R such that−(KX+B) is relatively nef. Here the ring R is as in Setting 7.1

and has residual characteristic p > 5. Suppose further that B has standard coefficients. Then, for every

divisor D≥ 0 and 0≤ ε� 1 depending on D, we have that (X,B+ εD) is globally+++-regular.

Proof. — We may assume that R=H0(X,OX) is normal. By Corollary 6.9 we may
also assume that R is complete.

If the residue field of the complete ring R is not infinite, we may further pass to
the completion of the strict Henselization R′. Indeed, checking that OX −→ f∗OY(�f ∗(B+
εD)�) splits for a finite dominant map f : Y −→ X can be checked after such a base
change. Hence we may assume that the residue field of R is infinite.

We apply Lemma 7.13 and use its notation. First, write KC + BC = (KW +CW +
BW)|C where C is identified with CW. Further, write DY = g−1

∗ D and pick a divisor DW

on W such that CW �⊆ Supp DW and DY ≤ h∗DW + C. Since −(KC + BC) is ample and
BC has standard coefficients, we must have that Ck

∼= P1 since by [Sta, Lemma 0C19],
g(C) = 0, and if Ck was not normal, then deg BCk

≥ 2 for the anti-ample Q-Cartier
divisor KCk

+ BCk
= (KW + CW + BW)|Ck

by [PW22, Theorem 1.1]. Furthermore BCk

also has standard coefficients, since coefficient of BCk
is either equal to a coefficient of BC

or is at least p times such a coefficient (hence it is at least p

2), and with p > 5, the presence
of such a coefficient would prevent ampleness of −(KCk

+ BCk
). Therefore, (Ck,BCk

) is
globally F-regular, see [Wat91], and so is (Ck,BCk

+ εDW|Ck
) for 0 ≤ ε� 1. Hence by

Corollary 6.18, (C,BC + εDW|C) is globally+++-regular. Thus, by inversion of adjunction
in the form of Corollary 7.5, (W,CW + BW + εDW) is purely globally+++-regular.

Proposition 6.28 and Condition (d) imply that (Y,C + BY + εh∗DW) is purely
globally +++-regular. By Lemma 6.7 and Lemma 6.27, (Y, bC + BY + εDY) is glob-
ally +++-regular, and so is (X,B + εD) by Proposition 6.19 where the notation is as in
Lemma 7.13. �

Corollary 7.15. — Let (X,S + B) be a three-dimensional plt pair and let f : X −→ Z =
Spec R be a projective birational map such that −(KX + S + B) is relatively semiample, where R
satisfies Setting 7.1 and is of residue characteristic p > 5. Assume further that B has standard coefficients,

�B� = 0, and S is reduced.

https://stacks.math.columbia.edu/tag/0C19
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Then S is a normal prime divisor and setting KS + BS = (KX + S + B)|S (with BS the

different), we have that (S,BS+εD) is globally+++-regular for every Cartier divisor D and 0 < ε� 1.

Finally, (X,S+ B) is purely globally+++-regular.

Proof. — By Corollary 6.9 and Corollary 7.6 we may assume that R is complete.
Let SN −→ S be the normalization of S and write KSN + BSN = (KX + S+ B)|SN . Theo-
rem 7.14 implies that each component of (SN,BSN + εD|SN) is globally +++-regular (and
hence (SN,BSN + εD|SN) is globally +++-regular in the sense of Remark 6.4). Hence S is
normal and integral and (X,S + B) is purely globally +++-regular by Corollary 7.5 and
Corollary 7.10. �

In fact, the proof even shows that (X,S+B+ εH) is purely globally+++-regular for
every Cartier divisor H on X not containing any component of S, for 1� ε > 0.

We also observe that Theorem 7.14 gives a new proof of the following results of a
subset of the authors, in the case when the fixed big Cohen-Macaulay algebra is equal to
R̂+.

Corollary 7.16 ([MST+22, Theorem 7.11]). — Let (S,�) be a klt pair with standard

coefficients where S= Spec A for an excellent two-dimensional normal local domain (A,m) of mixed

characteristic (0, p) for p > 5. Then (S,�) is globally+++-regular.

Proof. — Apply Theorem 7.14 to (X,B)= (S,�) and f the identity map. �

We also recall a special case of [MST+22, Theorem G] in our setting. The follow-
ing proof shows that the divisor S of a three-dimensional plt pair (X,S+ B) is normal at
every closed point where the residual characteristic is greater than 5 as long as either B
has standard coefficients or X is Q-factorial

Corollary 7.17. — Let (X,S+ B) be a three-dimensional plt pair where S is reduced, B has

standard coefficients and �B� = 0. Then at every closed point x ∈ X where char k(x) > 5, we have

that S is normal at x and if Sx = SpecOS,x, then (Sx,BS|Sx
) is globally+++-regular at (here BS is the

different of KX + S+ B along S).

Moreover, S is normal at every closed point x ∈X of residue characteristic p > 5 even when B
does not have standard coefficients, if we assume that X is Q-factorial.

Proof. — Note first that since (X,S+ B) is plt, and since log resolutions exist for
3-dimensional excellent schemes see Section 2.3, the completion of (X,S + B) at any
closed point is also plt. Hence replacing X by its completion at a closed point x ∈ X,
we may assume that X= Spec R for a three-dimensional complete local domain (R,m)

of residual characteristic p > 5. Here we used that the completion of a ring is faithfully
flat, and normality descends under faithfully flat extensions. Notice that X −→ Spec R
is projective since it is the identity. Let SN −→ S be the normalization of S and set BSN
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to be the different of KX + S + B along SN. By [Kol13, Lemma 4.8] (SN,BSN) is klt
and so Corollary 7.16 implies that (SN,BSN) is globally+++-regular. Hence S is normal by
Corollary 7.10.

The last part follows as (X,S) is plt when X is Q-factorial. �

Remark 7.18. — Suppose (X,S + B) is a Q-factorial three dimensional plt pair
over any excellent finite dimensional domain R with a dualizing complex and whose
residue characteristics at closed points have characteristic zero or greater than 5. Then S
is normal. Indeed, the above result implies that S is normal at the closed points of pos-
itive residual characteristics. At characteristic zero points this follows from the standard
arguments [KM98, Proposition 5.51] in view of [Mur21].

8. Existence of flips

Notation 8.1. — All schemes in this section are defined over a complete normal
Noetherian local domain (R,m) with residue field R/m of characteristic p > 0. We set
Z= Spec(R), which will serve as the base of our flipping contractions.

For pairs (X,�) in this section, we will always assume that � is a Q-divisor and
KX +� is Q-Cartier.

Remark 8.2. — In this remark, fix the fraction field K of some excellent domain A.
We say that V=⊕

i Vi is a function algebra if it is an N-graded A-algebra with A⊆V0 being
a finite extension, Vi ⊆K finitely generated over A, and the multiplication on V induced
from K (that is, V is a subalgebra of K[T]). We call V(j) =⊕

j|i Vi the j-Veronese subalgebra

of V. We say that two function algebras V and V′ are Veronese equivalent, if some Veronese
subalgebra of V is isomorphic to some Veronese subalgebra of V′. Finite generation of
function algebras is stable under Veronese equivalence (cf. [Cor07, Lemma 2.3.3]).

We encourage the reader to recall Definition 2.19 and Remark 2.20.

Outline 8.3. — The goal of the present section is to prove the existence of flips for
threefolds in the situation of Notation 8.1 when p > 5.

Let us start with presenting the general idea of our proof, which largely follows
the argument of Hacon and Xu in positive characteristic [HX15] (in turn motivated by
the strategy of Shokurov in characteristic zero, see [Cor07]). As explained in [KM98,
Lem 6.2], the main goal is to show that for a pair (X,�) with mild singularities (such as
klt) and with a flipping contraction f :X−→ Z of relative Picard rank one,14 the sheaf of
OZ-algebras

⊕

m∈N

f∗OX(�m(KX +�)�)

14 In our actual proof this assumption will be weakened.
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is finitely generated; the flip is then given as the Proj of this algebra. For this purpose we
may assume that Z is affine, which reduces the problem to showing that the section ring

(8.3.1) R(X,KX +�)=
⊕

m∈N

H0(X,OX(�m(KX +�)�))

is finitely generated over R=H0(Z,OZ). An obvious way to approach this is to prove that
KX +� is semiample over R. Unfortunately, this will never happen as, by the definition
of a flipping contraction, KX + � is anti-ample. This suggests that we should find a
semiample Q-divisor to which R(X,KX+�) can be related. More precisely, we want to
find a projective birational morphism π : Y−→X and i > 0 such that

(8.3.2) Mi :=Mob
(
iπ∗(KX+�)

)
is base point free, and kMi =Mik for all k > 0.

Then R(X,KX + B) and R(Y,Mi) are Veronese equivalent by the definition of the mo-
bile part and by the stabilization. In particular, since the latter algebra is finitely generated
by base-point-freeness, so is the former.

It turns out that it is very hard to prove such a statement. For every i we can find a
resolution for which Mi is base point free, but the resolution will a priori depend on i, and
there are not enough tools to prove that kMi =Mik directly on Y. As usual in birational
geometry we address this problem by restricting to a divisor.

Suppose that there exists an irreducible relatively anti-ample divisor S with singu-
larities so mild (and being sufficiently transversal to �) that we can increase its coefficient at
� so that ��� = S and (X,�) is plt. Since the relative Picard rank is one and S is anti-
ample,−(KX+�) is still ample and the new canonical ring is Veronese equivalent to the
old one. Hence, it is enough to show that our new R(X,KX +�) is finitely generated.
Flipping contractions for which such S exists are called pl-flipping; note that this is quite
a restrictive condition: in the spirit of Bertini, we should be able to find a very ample
divisor with mild singularities, but not necessary an anti-ample one. Nevertheless, it is a
standard argument that if you can prove the existence of flips for pl-flipping contractions
(called pl-flips), then you can use them to construct all flips (cf. Proposition 9.13); briefly
speaking, you pick an arbitrary anti-ample S and then improve its singularities by run-
ning a special MMP on a log resolution and this only needs pl-flips. The huge advantage
of pl-flipping contractions is that (KX + �)|S = KS + �S for a klt pair (S,�S) which
suggests a possibility for applying induction.

Alas, the finite generation of R(S,KS + �S) is not enough to deduce the finite
generation of R(X,KX +�) as the restriction map R(X,KX +�) −→ R(S,KS +�S)

need not be surjective. It is easy to see, however, that if

RS = image
(
R(X,KX +�)−→R(S,KS +�S)

)

is finitely generated, then so is R(X,KX +�) (see the proof of Theorem 8.25). To this
end, we apply the idea mentioned earlier: we find a projective birational morphism
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π : Y −→ X such that Mi|S′ satisfies the conditions of (8.3.2), where S′ is the strict trans-
form of S, and so R(S′,Mi|S′) is finitely generated. It turns out, after some work, that RS

is Veronese equivalent to R(S′,Mi|S′), and so is finitely generated as well, concluding the
proof.

The finite generation of (8.3.1) for pl-flips is shown in the present section (Corol-
lary 8.26), and the next section contains the reduction to pl-flips. Below, we introduce the
notation needed to make the present outline more precise. Then, we give a more detailed
explanation in Outline 8.12. The assumption that p > 5 and � has standard coefficients
will be needed so that (S,BS) is globally +-regular.

Definition 8.4. — In the situation of Notation 8.1, a pl-flipping contraction over Z= Spec R
is a projective birational morphism f : X−→ Z of a plt pair (X,S+B) with �B� = 0 and S irreducible

such that f is small (that is, Exc(f ) is of codimension at least two), and −S and −(KX + S+ B)

are f -ample.

Note that we do not assume in Definition 8.4, as is usually the case, that ρ(X/Z)=
1.

8.1. Finite generation of the restriction algebra. — In the entire present subsection we
work in the framework of the following notation. We do not state separately that this
setting is assumed.

Setting 8.5. — In the situation of Notation 8.1, we assume additionally that R/m is
infinite. Let f : X−→ Z be a three-dimensional pl-flipping contraction of a plt pair (X,S+
B), where dim R = 3 and Z = Spec R. Since X admits a small birational morphism to
an affine scheme, we can replace KX by a linearly equivalent divisor so that KX + S+ B
is an effective Q-divisor and does not contain S in its support. This choice of KX is fixed
for the whole section.

We also assume that S is normal and (S,BS + εD) is globally+++-regular for every ef-
fective divisor D on S and 0≤ ε� 1 (depending on D), where KS+BS = (KX+S+B)|S.
This is the case, for example, if B has standard coefficients and p > 5 (Corollary 7.15).

Under the above hypothesis, KX is not effective and KX + S + B may contain
some components of B in its support. We choose KX in the way as above so that BS is the
different of (X,S+ B) along S, where (KX + S+ B)|S =KS + BS.

Remark 8.6. — The residue field R/m in Setting 8.5 is assumed to be infinite for
the sole purpose so that if we have
◦ a normal Noetherian excellent separated scheme X over R,
◦ a base-point-free line bundle L on X, and
◦ finitely many points x1, . . . , xn ∈Xm,
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then there is an element in the linear system |L| which does not vanish at any of the
points xi .

Notation 8.7. — For a log resolution π : Y−→X of (X,S+B) as in Setting 8.5, we
introduce the following notation:
◦ S′ is the strict transform of S,
◦ KY + S′ + B′ = π∗(KX + S+ B),
◦ KS′ +BS′ = (KY+S′ +B′)|S′ , where we choose for KS′ the representative (KY+S′)|S′ ,
◦ A′ = −B′, and
◦ AS′ = −BS′ , so that AS′ = A′|S′ .

Furthermore, for every integer i > 0 such that i(KX + S+ B) is Cartier, we set

Mi :=Mob(i(KY + S′ + B′)), and(8.7.1)

Mi,S′ :=Mi|S′,
which makes sense as Mi does not have S′ within its support. We note that it is vital to
remember that Mi,S′ is the restriction of the mobile part, as opposed to the mobile part
of the restriction. Additionally write

Di := 1
i
Mi, Di,S′ := 1

i
Mi,S′ .

By definition, Dj ≤Di whenever j(KX + S+ B) is Cartier and j | i.
Remark 8.8. — As π is a log resolution of (X,S + B), the induced morphism

π |S′ : S′ −→ S is a log-resolution as well. Additionally, BS is defined in a way such that
KS′ + BS′ = π |∗S′(KS + BS) holds. This implies that AS′ = −BS′ is the discrepancy divisor
of the pair (S,BS) on the log resolution S′ −→ S.

Since (X,S+ B) is plt, (S,BS) is also klt. Therefore, by the definition of A′ and by
the previous paragraph, we have that �A′� and �AS′� are effective and exceptional over
X and S, respectively. We will also repeatedly use that every line bundle on Y or S′ is
automatically big (as Y−→ Spec R and S′ −→ f (S) are birational).

Definition 8.9. — In the situation of Notation 8.7, let π : Y −→ X be a log resolution of

(X,S+ B). We say that it is good if

◦ it is also a log resolution of (X,S+ B+ (KX + S+ B)) for KX + S+ B being the explicit

effective Q-divisor fixed in Setting 8.5, and

◦ S′ −→ S factors through the terminalization S of (S,BS) (which is unique as S is two-dimensional)

Let i > 0 be an integer such that i(KX + S + B) is Cartier. Then we say that π : Y −→ X is

compatible with i, if it is good and it is a resolution of the linear system |i(KX+ S+B)|. The latter

condition is equivalent to |Mi| being base point free.

Observe that S is a terminal surface hence it is regular.
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Remark 8.10. — If π : Y −→ X is a good log resolution of (X,S + B), then
Supp(S′ + B′ +Mi + Ex(π)) is simple normal crossing for every integer i > 0 such that
i(KX + S+ B) is Cartier.

When Y is compatible with i, which essentially will always need to be the case for
us, then the choice of π , Y, and S′ depends on i. Note that given i, j ∈N, we can always con-
struct Y which is compatible with both i and j (cf. [CP19, Lemma 4.5]). However, a priori,
it might not be possible to construct Y which is compatible with all i ∈N simultaneously;
a posteriori such Y exists as a consequence of the existence of flips.

Remark 8.11. — Given a sequence of maps Ỹ
h−→ Y −→ X such that Ỹ −→ X and

Y−→X are resolutions compatible with i, we have that h∗Di = D̃i , where D̃i is calculated
for Ỹ exactly as Di is calculated for Y. The same property holds for Di,S′ .

We emphasize that if Y−→X is not compatible with i, then although Di = h∗D̃i , it
need not even be true that Di,S′ = (h|S̃′)∗D̃i,S̃′ , where S̃′ is the strict transform of S′ and
D̃i,S̃′ = D̃i|S̃′ (pushing forward for divisors does not commute with restrictions).

Outline 8.12. — Having introduced the above notation, we are able to provide a
more detailed version of Outline 8.3. As explained therein, our goal is to show that

RS = image
(
R(X,KX + S+ B)−→R(S,KS + BS)

)

is finitely generated. We will prove that, up to taking a Veronese subalgebra,

(8.12.1) RS =
⊕

i

H0
(
S,OS(iDS)

)

for a semiample Q-divisor DS on S, where (S,BS) is the terminalization of (S,BS). In
particular, this implies that RS is finitely generated.

The Q-divisor DS is constructed as follows. First, for a log resolution π : Y −→ X
compatible with i ∈N we show that Di,S′ is a pullback of a Q-divisor Di,S on S (Propo-
sition 8.15). Then, we define an R-divisor DS as the limit of Di,S for i −→∞ and show
that, in fact, it is a Q-divisor (Theorem 8.20). Next, we show that Di,S coincides with
DS for divisible enough i > 0 (Proposition 8.22). Last, we prove the validity of (8.12.1)
(Claim 8.24), and conclude that RS is finitely generated (Proposition 8.23).

Let us emphasize that we use in an essential way that S is a surface, and so we
cannot run the above limiting process directly on a birational model of X.

The key to our strategy is to understand the divisors Mi|S′ which are restrictions of
mobile parts of iπ∗(KX+ S+B) to S′. Since Mob does not commute with restrictions in
general, we want to find a property of the divisors Mi that could also be shared by Mi|S′ .
The following technical lemma identifies such a property.
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Lemma 8.13. — For every log resolution π : Y−→X of (X,S+ B), if i, j > 0 are integers

such that i(KX + S+ B) and j(KX + S+ B) are Cartier, then Mob�jDi +A′� ≤ jDj .

Let us point out that from the viewpoint of Kawamata-Viehweg or B0-lifting, the
divisors of the form �jDi +A′� work well, see (8.18.1).

Proof. — Since �A′� ≥ 0 is exceptional over X, we have that π∗OY(j(KY + S′ +
B′)+�A′�)=OX(j(KX+S+B))= π∗OY(j(KY+S′+B′)) (cf. Lemma 2.36). This implies
that D "→D+ �A′� yields a bijection between |j(KY + S′ + B′)| and |j(KY + S′ + B′)+
�A′�|, which is what we use in the first equality of the following computation:

Mob(�jDi +A′�)≤Mob(j(KY + S′ + B′)+ �A′�)
=Mob(j(KY + S′ + B′))= jDj . �

In fact, to deduce the properties of DS mentioned in Outline 8.12, it is enough
to show that the identity of Lemma 8.13 holds also after restricting to S′, and the rest
of the argument for the existence of flips would be mostly characteristic free except
for some technical issues with Bertini. In characteristic zero, this can be achieved by
the Kawamata-Viehweg vanishing. More precisely, the surjectivity of H0(Y,OY(�jDi +
A′�)) −→ H0(S′,OS′(�jDi,S′ + AS′�)) in characteristic zero (cf. (8.18.1)) immediately im-
plies that Mob�jDi,S′ + AS′� ≤ jDj,S′ Alas, it seems impossible to show this surjectivity
directly in positive and mixed characteristic, so we obtain the above surjectivity only to-
wards the end of this subsection in Proposition 8.22.

Remark 8.14. — In the following proof we will use that the normalization f (S)N

of f (S) is Q-factorial. Indeed, by Lemma 2.34 in dimension two, we can pick an
effective ample Q-divisor HS ∼Q −(KS + BS) such that (S,BS + HS) is klt. Hence
(f (S)N, (f |S)∗BS + (f |S)∗HS) is klt as well.

Proposition 8.15. — Let i > 0 be an integer such that i(KX + S + B) is Cartier and let

π : Y −→ X be a log resolution of (X,S + B) which is compatible with i. Then the divisor Mi,S′

descends to S: it is a pullback of some divisor Mi,S on S.

We emphasize here that Mi,S is not defined as Mi,S′ was defined in (8.7.1), i.e. by
restricting a divisor from an ambient space; it is the pushforward of Mi,S′ to S.

Proof. — As Mi and Mi,S′ are integral, we have that

�Mi +A′� =KY + S′ + {B′} +Mi − π∗(KX + S+ B), and(8.15.1)

�Mi,S′ +AS′� =KS′ + {BS′ } +Mi,S′ − (π |S′)∗(KS + BS).(8.15.2)
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Since Mi−π∗(KX+S+B) is big and semiample (as both Mi and −π∗(KX+S+B) are
big and semiample), Theorem 7.2 yields a surjection

(8.15.3) B0
S′(Y,S′ + {B′};OY(�Mi +A′�))� B0(S′, {BS′ };OS′(�Mi,S′ +AS′�)).

Applying Lemma 8.13 with j = i yields Mob(Mi + �A′�) =Mi . Combining this with
(8.15.3) we obtain that every section in the vector space B0(S′,{BS′ };OS′(�Mi,S′ + AS′�))
vanishes along �AS′�.

As the support of �AS′� is equal to the exceptional locus of g : S′ −→ S (by definition
of terminalization), to prove the proposition it is enough to show that there exists an
element of |Mi,S′ | which does not intersect �AS′�. Assume by contradiction the opposite.
Then, as |Mi,S′ | is free, there exists an element M ∈ |Mi,S′ | which does not contain any
component of �AS′� in its support, see Remark 8.6. By our contradiction assumption we
may then choose x ∈ Supp M∩ Supp�AS′�.

Note that the exceptional locus of S′ −→ f (S) is simple normal crossing and the
normalization of f (S) is Q-factorial by Remark 8.14. Therefore, we can pick an effective
Q-divisor F on S′ which is anti-ample and exceptional over f (S) and such that (S′, {BS′ }+
F) is both klt at x and simple normal crossing at x. Furthermore, by taking a suitable
positive multiple of F, for any 0 < δ � 1 (to be determined later) we may find Fδ ≥ F
such that at least one of the exceptional divisors passing through x has coefficient 1− δ

in {BS′ } + Fδ (and (S′, {BS′ } + Fδ) is still klt at x). In particular, the log discrepancy of the
exceptional divisor of the blow-up at x with respect to this pair is at most 1+ δ. Then,

B0(S′, {BS′ };OS′(�Mi,S′ +AS′�))⊇ B0(S′, {BS′ } + Fδ;OS′(�Mi,S′ +AS′�)),
and the latter space, hence also the former, is free at x for sufficiently small δ by Theo-
rem 7.11. Indeed,

(8.15.4) εsa(�Mi,S′ +AS′� − (KS′ + {BS′ } + Fδ); x)≥ εsa(M− Fδ; x)
≥ εsa(M− F; x) > εsa(M; x)≥ 1,

where �Mi,S′ + AS′� − (KS′ + {BS′ } + Fδ) ∼Q M− Fδ − (π |S′)∗(KS + BS) is semiample
(8.15.2), and

◦ in the first inequality we used that −(π |S′)∗(KS + BS) is big and semiample,
◦ in the second and third inequality we used that −F is ample, and that Fδ is a positive

multiple of F, and
◦ the last inequality is a direct consequence of Lemma 2.56.

Using (8.15.4), we may now choose 0 < δ � 1 to be such that εsa(M − F, x) > 1 + δ,
resulting in Fδ satisfying εsa(M− Fδ, x) > 1+ δ, which allows us to apply Theorem 7.11.

The freeness of B0(S′, {BS′ };OS′(�Mi,S′ + AS′�)) at x is a contradiction to the fact
that every section of this linear system vanishes along �AS′�. �
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Note that Mi,S is independent of the choice, in the above proposition, of a log
resolution π : Y −→ X compatible with i by Remark 8.11, and so it exists and is unique
for every integer i > 0 such that i(KX + S+ B) is Cartier. Therefore, we may introduce
the following notation, which is assumed until the end of this subsection.

Notation 8.16. — We set

Di,S := 1
i
Mi,S, DS := lim

i−→∞Di,S,

where the limit is taken over all integers i > 0 such that i(KX+ S+B) is Cartier; it exists
by Lemma 8.17. Note that Di,S is an R-divisor.

Further, for any good log resolution π : Y −→ X of (X,S+ B) (in the situation of

Notation 8.7), write DS′ := g∗DS, where S′
g−→ S

h−→ S is the given factorization. Last, set
KS + BS = h∗(KS + BS).

We emphasize that DS′ cannot be defined as a limit of Di,S′ directly on S′ as Di,S′

does not have good properties unless the log resolution π : Y −→ X is compatible with i

(cf. Remark 8.11), in which case S′ depends on i.
We need the following lemmas.

Lemma 8.17. — The limit DS, as defined in Notation 8.16, exists. It is a nef R-divisor, and

moreover, Dj,S ≤Di,S when j(KX + S+ B) is Cartier and j | i. In particular, Dj,S ≤DS.

Proof. — Let i, j > 0 be integers such that i(KX + S+ B) and j(KX + S+ B) are
Cartier. Pick a log resolution π : Y −→ X which is compatible with i, j, and i + j. By
definition, Mi +Mj ≤Mi+j . Hence, Mi,S′ +Mj,S′ ≤Mi+j,S′ , and so Mi,S +Mj,S ≤Mi+j,S.
In turn, this gives

i

i+ j
Di,S + j

i+ j
Dj,S ≤Di+j,S.

Further, note that Di,S ≤ KS + BS (recall that KX + S + B is an explicit effective Q-
Cartier Q-divisor without S in its support; by restricting to S and pulling back to S this
determines the right hand side as an effective Q-divisor). In particular this ensures that
there is a fixed finite set of irreducible divisors which contain the support of every Di,S.

The existence of the limit now follows from the fact that any sequence of real num-
bers {ai}i∈Z>0 which is bounded from above and satisfies i

i+j
ai + j

i+j
aj ≤ ai+j is convergent.

Moreover, this condition implies that aj ≤ ai when j | i, and so aj ≤ limi−→∞ ai . �

Lemma 8.18. — Let i > 0 be an integer such that i(KX+S+B) is Cartier and let π : Y−→
X be a log resolution of (X,S+ B) which is compatible with i. Then the following map is surjective
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for every j > 0:

B0
S′(Y,S′ + {B′ − jDi};OY(�jDi +A′�))
−→ B0(S′, {BS′ − jDi,S′ };OS′(�jDi,S′ +AS′�)).

Proof. — Using the identity �L� = L+ {−L} for any Q-divisor L, we have that

�jDi +A′� =KY + S′ + {B′ − jDi} + jDi − π∗(KX + S+ B), and(8.18.1)

�jDi,S′ +AS′� =KS′ + {BS′ − jDi,S′ } + jDi,S′ − (π |S′)∗(KS + BS).(8.18.2)

Since jDi − π∗(KX+ S+ B) is big and semiample, we obtain the sought-after surjection
by Theorem 7.2. Here, we used that (KY+S′ + {B′ − jDi})|S′ =KS′ + {BS′ − jDi,S′ } which
follows from Remark 8.10. �

Lemma 8.19. — Fix a1, . . . , ak ∈R, and let G be the image of the additive semigroup
{
(ja1, . . . , jak)

∣∣ j ∈ Z≥0

}

under the natural projection λ : Rk −→ Rk/Zk of topological groups. Let G be the closure of G and set

T :=Rk/Zk . Then:

(a) G is a closed topological subgroup of T, and hence it is a disconnected union of finitely many

translates of the connected component G
0

of the identity, and

(b) λ−1(G
0
)= Zk + L for an R-linear subspace L of Rk ,

In particular, for every ε > 0 we can find a natural number j > 0 and integers m1, . . . ,mk such that

|mi − jai|< ε for every i.

Proof. — By the main theorem of [Wri56], G is a closed subgroup of T. In par-
ticular it is compact, which implies (a). The rest follows from [Bou98b, Ch. 7.2, Thm.
2]. �

Theorem 8.20. — The R-divisor DS is in fact a semiample Q-divisor.

Proof. — First, as (S,BS) is klt, it is Q-factorial. Second, by the base point free theo-
rem for Noetherian excellent surfaces [Tan18b, Theorem 4.2 and Remark 4.3] and since
−(KS + BS) is nef and big, we know that every nef Q-divisor on S is not only Q-Cartier,
but also semiample. This we will use multiple times during the proof. Additionally, it also
reduces our goal to showing that DS is a Q-divisor.

As S−→ f (S) is a projective birational morphism of Noetherian excellent surfaces,
there are finitely many irreducible curves E1, . . . ,Es on S that are exceptional over f (S).
Additionally, we can reorder them so that E1, . . . ,Er for some integer r > 0 are exactly
the curves for which Ei ·DS = 0. As DS is nef, we have that DS · Ei > 0 for r < i ≤ s. Set

V= {
D

∣∣ D · Ei = 0 for 1≤ i ≤ r
}⊆Div(S)⊗Z R,
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where Div(S) is a free abelian group on all (not necessarily exceptional) prime divisors
on S. We endow Div(S)⊗R with the standard Euclidean metric by setting ‖G‖ = 1 for
every irreducible divisor G.

Since V is defined over Q, we can pick Z-divisors N1, . . . ,Nk ∈V such that DS =∑
aiNi for some positive real numbers a1, . . . , ak . Moreover, we can re-choose Ni to be in

a δ-neighborhood of qDS for some q� 0, where δ is the diameter of the fundamental
parallelepiped in the lattice spanned by the originally chosen Ni , so that we obtain:

(8.20.1)
∥∥∥DS − Ni

q

∥∥∥� 1,

Explicitly, q is chosen big enough so that (DS − Ni

q
) · Ej < DS · Ej for all r < j ≤ s (this

is possible as the right hand side is positive). In particular, Ni · Ej > 0 for all r < j ≤ s.
Moreover, since Ni ∈V, we have that Ni · Ej = 0 for all 1≤ j ≤ r. This implies:

◦ for every 1≤ j ≤ s we have Ni · Ej = 0 if and only if DS · Ej = 0, and
◦ Ni are nef (and hence semiample) over f (S).

Therefore, by replacing Ni by their multiples (this might render
∥∥DS − Ni

q

∥∥� 1
invalid but we will not need this going forward), we may assume that:

◦ the linear systems |Ni| define the same birational morphism a : S−→ S+,
◦ a contracts exactly the curves E1, . . . ,Er , and
◦ Ni = 3a∗N+i , where N+i is a very ample divisor on S+.

Recall that DS =
∑

aiNi . Thus DS = a∗DS+ for the R-divisor DS+ =∑
3aiN+i on S+. We

also set BS+ = a∗BS and AS+ = a∗AS.
Assume by contradiction that DS is not a Q-divisor. Under this assumption, we

claim that we can find an integer j > 0 and a base point free Weil divisor N on S such
that

(a)
∥∥jDS −N

∥∥� 1, and
(b) jDS −N is not effective.

For condition (a), we can just set N = m1N1 + . . .mkNk for positive integers m1, . . . ,mk

and j > 0 as in Lemma 8.19. However to guarantee also condition (b) we have to do
a more involved argument. We consider the image W ⊆ V of the vector space L from
Lemma 8.19 under the linear map φ : Rk −→ Div(S) ⊗ R given by φ : (x1, . . . , xk) "→
x1N1+ . . .+ xkNk . Note that W is a non-trivial vector space; indeed, otherwise the classes
of jDS =

∑
jaiNi in Div(S)⊗R

/
Div(S) for integers j > 0 would belong to a finite subset.

Hence, DS would be a Q-divisor, contradicting our assumption.
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The effective cone in W (that is, the subset of all R-divisors in W with coefficients
at prime divisors being at least 0) is a closed cone which does not contain a line. Hence, we
can pick � ∈W in a small neighborhood of 0 which is not effective. Additionally, by the
definition of L in Lemma 8.19 and by the closedness of the effective cone, we can find
j > 0 and positive integers m1, . . . ,mk such that jDS −N is sufficiently close to �, where
N= m1N1+ . . .+mkNk . Hence, jDS−N is not effective and additionally ‖jDS−N‖� 1.
This concludes the above claim and the proof of conditions (a) and (b). Since both jDS

and N are pullbacks from S+, we obtain that in fact jDS+ − a∗N is not effective. Further
we remark that in the above construction we may assume that j is divisible enough so
that j(KX+ S+B) is Cartier. Indeed, for this we just have to replace (a1, . . . , ak) with an
adequate multiple at the beginning of the argument.

Since Ni = 3a∗N+i for every i, we see that 1
3N is a pullback of a very ample divisor

from S+, and we can pick a curve C ∼ 1
3N on S which does not contain any of the

exceptional divisors of S−→ f (S) in its support (Remark 8.6).

Claim 8.21. — �jDi,S+AS�− jDj,S is a-exceptional for all i ∈N such that i� j and j | i.
Explicitly, we pick i� j so that ||jDi,S−N|| � 1. Note that since the images of Di,S

and Dj,S agree on f (S), we have that �jDi,S+AS�− jDj,S is automatically exceptional over
f (S).

Proof of claim. — Let π : Y −→ X be a log resolution compatible with i and j and
let S′ be the strict transform of S on Y as before. By re-choosing C we can assume that
it does not contain the image of Exc(S′ −→ S) under the map S′ −→ S in its support. Let
C′ be the strict transform of C on S′. By the above, we can assume that C′ is a pullback
of C, contains no curves exceptional over f (S) in its support, and is disjoint from the
exceptional locus of S′ −→ S+. Note that C′ intersects every curve which is exceptional
over f (S) but horizontal over S+.

Since Mob�jDi + A′� ≤ jDj (see Lemma 8.13), every section of H0(Y,OY(�jDi +
A′�)) vanishes along �jDi+A′�− jDj ≥ 0 (here, jDj =Mj is integral, Di ≥Dj , and �A′� ≥
0). Thus, by Lemma 8.18, all the sections of

B0(S′, {BS′ − jDi,S′ };OS′(�jDi,S′ +AS′�))
vanish along E := �jDi,S′ + AS′� − jDj,S′ ≥ 0. But the above space is base point free at
every point x ∈ C′ ∩ E by Theorem 7.11, and so there is no such point, concluding the
proof. We can invoke Theorem 7.11, because

εsa(�jDi,S′ +AS′� − (KS′ + {BS′ − jDi,S′ }); x)
≥ εsa(jDi,S′ ; x)
= εsa(jDi,S; y),
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= εsa((jDi,S −N)+ 3C; y) > 2,

where y is the image of x on S. Here:

◦ the first inequality holds, because �jDi,S′ +AS′� − (KS′ + {BS′ − jDi,S′ })− jDi,S′ is big
and semiample (see (8.18.2) in the proof of Lemma 8.18)
◦ the first equality holds, because Di,S′ is a pullback of Di,S and x is not contained in

the exceptional locus of S′ −→ S,
◦ the second equality holds, because 3C∼N, and
◦ the second inequality holds by Lemma 2.56 for k = 3 as y ∈C and ‖jDi,S−N‖� 1.

�

Claim 8.21 implies that a∗N ≤ �jDS+ + AS+� = jDj,S+ ≤ jDS+ , where the first in-
equality follows from 0 < ‖jDS+ − a∗N‖ � 1 and the fact that AS+ has coefficients in
(−1,0). Here we put the norm on Div(S+) the same way as on Div(S), and hence
0 < ‖jDS+ − a∗N‖� 1 follows from 0 < ‖jDS−N‖� 1, as the former contains a subset
of the non-zero coefficients of the latter.

Therefore, we obtained a∗N≤ jDS+ , which contradicts the fact that jDS+ − a∗N is
not an effective R-divisor. �

Proposition 8.22. — Let i, j > 0 be integers such that i is divisible by j and i� j . Further

assume that j(KX + S+ B) and jDS are Cartier. Let π : Y−→X be a log resolution compatible with

i and j. Then the following identity holds:

Mob�jDi,S′ +AS′� ≤ jDj,S′ .

In particular, if j is chosen so that jDS is base point free, then Dj,S =DS.

Explicitly, we pick i� j so that �jDi,S� = jDS and the coefficients of {−jDi,S} are� 1.

Proof. — Since Mob�jDi +A′� ≤ jDj by Lemma 8.13, it suffices to show that

H0(Y,OY(�jDi +A′�))−→H0(S′,OS′(�jDi,S′ +AS′�))
is surjective. By Lemma 8.18, we have a surjection

B0
S′(Y,S′ + {B′ − jDi};OS′(�jDi +A′�))
−→ B0(S′, {BS′ − jDi,S′ };OS′(�jDi,S′ +AS′�)),

and so we will be done if we show that the right hand side equals H0(S′,OS′(�jDi,S′ +
AS′�)).
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Since jDS is integral, jDi,S ≤ jDS (Lemma 8.17), and for j � i, we obtain that
�jDi,S� = jDS and the coefficients of {−jDi,S} are� 1. In particular, (S,BS+{−jDi,S}) is
klt and globally+++-regular for i� 0. Indeed, this follows from Proposition 6.28 as (S,BS+
εG) is globally +++-regular for every effective divisor G and 0 < ε� 1 by assumptions.
Therefore,

B0(S′, {BS′ − jDi,S′ };OS′(�jDi,S′ +AS′�))
= B0(S,BS + {−jDi,S};OS(�jDi,S�))
= B0(S,BS + {−jDi,S};OS(jDS))

=H0(S,OS(jDS))

=H0(S′,OS′(�jDi,S′ +AS′�)),
where the first equality follows by Lemma 4.20 and Proposition 8.15, the third one by
the global +++-regularity of (S,BS + {−jDi,S}) (see Lemma 6.11), and the fourth one by
Lemma 4.20 again. This concludes the proof of the first part of the proposition.

Since H0(S,OS(jDS))=H0(S′,OS′(�jDi,S′ +AS′�)) by Lemma 4.20, we get that

Mob(jDS)= g∗Mob�jDi,S′ +AS′� ≤ jDj,S.

As jDS is base point free, we thus get jDS ≤ jDj,S. By Lemma 8.17, the other inequality
holds true, too, hence jDj,S = jDS. �

An important difficulty in the proof of the above result is that a priori {−jDi,S′ } � 1
and �jDi,S′� = jDS′ need not hold for i� 0 (because S′ depends on i).

Proposition 8.23. — With notation as above, the restricted algebra

RS =
⊕

i∈N

im
(
H0(X,OX(�i(KX+S+B)�))−→H0(S,OS(�i(KS+BS)�))

)

is finitely generated.

Proof. — The proof proceeds as in characteristic zero and is based purely on
Proposition 8.22 (see [Cor07, Chapter 2]). For the convenience of the reader, we pro-
vide a slightly different argument that avoids a direct use of b-divisors.

First, it is enough to show that any Veronese subalgebra of RS is finitely generated
(cf. [Cor07, Lemma 2.3.3]). We will show that R(j)

S is finitely generated for j > 0 as in
Proposition 8.22, that is, satisfying that j(KX + S+ B) is a Cartier divisor and jDS is a
Cartier base point free divisor.



180 B. BHATT ET AL.

Claim 8.24. — For every i > 0 divisible by j and resolution π : Y−→ X compatible with i,

the following map is surjective

H0(X,OX(i(KX + S+ B)))=H0(Y,OY(�iDi +A′�))
−→H0(S′,OS′(�iDi,S′ +AS′�))=H0(S,OS(iDi,S)).

Assuming the claim, we finish the proof. Using Proposition 8.22 we have that
iDi,S = iDS and so R

(j)

S is equal to
⊕

j|i
H0(S,OS(iDS))⊆

⊕

j|i
H0(S,OS(i(KS + BS)))

=
⊕

j|i
H0(S,OS(i(KS + BS))).

Since DS is semiample (Theorem 8.20), R(j)

S is finitely generated.

Proof of Claim 8.24. — The proof is completely analogous to that of Proposi-
tion 8.22. Note that iDi and iDi,S′ = iDS′ are integral, and so it is not necessary to assume
that i� 0. Moreover, the first equality in the statement of the claim holds by Lemma 8.13
for i = j, while the second identity is a consequence of Lemma 2.36 as �AS′� ≥ 0.

Recall that (S,BS) is globally +++-regular, and so is (S,BS) by Proposition 6.28.
Therefore,

B0(S′, {BS′ };OS′(�iDi,S′ +AS′�))= B0(S,BS;OS(iDi,S))

=H0(S,OS(iDi,S))

=H0(S′,OS′(�iDi,S′ +AS′�)),
where the first equality is a very special case of Lemma 4.20, the second one follows by
the global+++-regularity of (S,BS) (see Lemma 6.11), and the third one by Lemma 2.36.

By Lemma 8.18, we have a surjection

B0
S′(Y,S′ + {B′};OS′(�iDi +A′�))−→ B0(S′, {BS′ };OS′(�iDi,S′ +AS′�))

= H0(S′, �iDi,S′ +AS′�)
which concludes the proof of the claim. �

The claim completes the proof. �

8.2. Conclusion. — In this subsection we conclude the proof of the existence of
flips. For the sake of precision, we abandon the notions introduced in Subsection 8.1,
but we keep Notation 8.1 introduced at the beginning of Section 8. That is our base is a
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complete Noetherian local domain (R,m) with residue field R/m of characteristic p > 0,
and Z= Spec(R).

Theorem 8.25. — Let f : X−→ Z be a three-dimensional pl-flipping contraction of a plt pair

(X,S+ B) with Q-boundary over the affine scheme Z= Spec R with S= �S+ B� an irreducible,

normal, Q-Cartier divisor. Suppose that R/m is infinite, KX + S + B ∼Z,Q bS for some b ∈ Q,

and that (S,BS + εD) is globally +++-regular for every effective divisor D and 0 < ε � 1, where

KS + BS = (KX + S+ B)|S. Then the canonical ring

R(X,KX + S+ B)=
⊕

m∈N

H0(X,OX(�m(KX + S+ B)�))

is finitely generated. In particular, the pl-flip of (X,S+ B) over Z exists.

Proof. — This is a consequence of RS being finitely generated by Proposition 8.23
(note that the assumptions of Setting 8.5 are satisfied). Explicitly, we follow the explana-
tion from [Cor07, Lemma 2.3.6]. Consider a divisor G∼ S which does not contain S in
its support. Let k, l ∈N be such that k(KX + S+ B)∼ lS. It is enough to show that the
Veronese subalgebra R(k)(X,KX + S+ B) is finitely generated, and so that R(l)(X,S) is
finitely generated. Finally, this reduces to showing that R := R(X,G) is finitely gener-
ated. From Proposition 8.23 we can deduce, following a similar argument to that above,
that

R0 = image(R(X,G)−→
⊕

i∈N

K(S))

is finitely generated, where K(S) is the fraction field of S. Here, the map is induced by
the restriction OX(iG)−→K(S).

Let K(X) be the fraction field of X and choose t ∈K(X) such that div(t)+G= S.
By definition t ∈ R1. We claim that the kernel of the above map R(X,G) −→ R(S,G|S)
is the principal ideal generated by t which concludes the proof. Indeed, then R(X,G) is
generated by t and any homogeneous lifts of the homogeneous generators of R0. To show
the claim suppose that the image of φ ∈Rn is equal to 0 ∈R0. Then div(φ)+ nG−S≥ 0.
Hence, we can write φ = tφ′, where div(φ′)+ (n− 1)G≥ 0. In particular, φ′ ∈Rn−1, and
φ ∈ (t)R. �

Corollary 8.26. — Let f : X−→ Z be a pl-flipping contraction of a three-dimensional plt pair

(X,S+B) over the affine scheme Z= Spec R where S= �S+B� is a Q-Cartier irreducible divisor,

B has standard coefficients and p > 5. Suppose that KX + S+ B∼Z,Q bS for some b ∈Q. Then the

pl-flip of (X,S+ B) over Z exists.

Proof. — This follows from Theorem 8.25 and Corollary 7.15, except that the
former result assumes that R/m is infinite. However, one can reduce the statement
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to the case when R/m is infinite by applying the base change to the completion of
the strict henselization of R, see Lemma 2.32. This works first because of the state-
ment of Lemma 2.32, and second because this is a faithfully-flat base-change, so
R(X,KX+ S+ B) is finitely generated if and only if R(X′,KX′ + S′ + B′) is finitely gen-
erated, where X′, S′ and B′ are the base-changes of X, S and B, respectively. Moreover, S′

is irreducible; indeed, since it is anti-ample over the base change Z′ of Z, it must contain
the exceptional locus of X′ −→ Z′ which is the fiber over m′ and is necessarily connected.
As S′ is a disjoint union of its irreducible components by Lemma 2.33, each of which
must intersect the fiber over m′, S′ can only have a single irreducible component. �

As it will be needed for running a non-Q-factorial MMP, we also prove the fol-
lowing proposition inspired by [HW22b]. It shows the existence of “one-complemented”
flips for arbitrary residual characteristics even when the coefficients are not standard. It
is called one-complemented because the divisor A in the boundary has coefficient 1.

Proposition 8.27. — Let f : X −→ Z be a small projective birational contraction of a three-

dimensional dlt pair (X,S+A+B) over the affine scheme Z= Spec R such that S and A are effective

Q-Cartier Weil divisors, S is irreducible, and B is an effective Q-divisor satisfying �B� = 0. Assume

that −(KX + S+A+ B), −S, and A are f -ample. Further, suppose that KX + S+A+ B∼Z,Q

bS∼Z,Q cA for some b, c ∈Q. Then the canonical ring

R(X,KX + S+A+ B)=
⊕

m∈N

H0(X,OX(�m(KX + S+A+ B)�))

is finitely generated.

Proof. — By the same argument as in Corollary 8.26 (applying Lemma 2.32 and
Lemma 2.33 to (X,S+B)) we can assume that R/m is infinite. Further, since KX+S+B
is f -anti-ample and Q-linearly equivalent to a multiple of KX + S+ A+ B, it is enough
to show that R(X,KX + S+ B) is finitely generated.

Write KS̃ +AS̃ + BS̃ = (KX + S+A+ B)|S̃, where AS̃ = A|S̃ and S̃ is the normal-
ization of S. By adjunction, (S̃,AS̃+BS̃) is dlt. Since S̃ is Q-factorial, we may perturb AS̃

a bit, to a Q-divisor A′
S̃

such that C = �A′
S̃
� is a prime divisor which is not contracted,

(S̃,A′
S̃
+BS̃) is plt, and −(KS̃+A′

S̃
+BS̃) is ample. By Lemma 8.28, (S̃,A′

S̃
+BS̃+ εD) is

purely globally +++-regular for every effective Cartier divisor D with no common compo-
nent with C and 0 < ε� 1. Hence the log Fano pair (S̃,BS̃ + εD) is globally+++-regular
for every Cartier divisor D and 0 < ε� 1; in particular, S is normal by Corollary 7.9.
Therefore, R(X,KX + S+ B) is finitely generated by Theorem 8.25. �

Lemma 8.28 (cf. [HW23, Lemma 4.1]). — Let (S,C+ B) be a two-dimensional plt pair

admitting a projective birational (onto its image) morphism f : S−→ Spec R such that C is not contracted

and −(KS +C+ B) is f -ample. Then (S,C+ B) is purely globally+++-regular.



GLOBALLY+++-REGULAR VARIETIES AND THE MINIMAL MODEL PROGRAM. . . 183

Proof. — We replace Spec R by the normalization of the image of S. To show that
(S,C+B) is purely globally+++-regular, it suffices to apply Corollary 7.5 and the following
claim (here KC + BC = (KS +C+ B)|S).

Claim 8.29. — The pair (C,BC) is globally+++-regular.

Proof. — If there was no pair, this would just be the direct summand theorem for
1-dimensional rings.15 In general, we pass to a finite cover to remove the boundary BC.
Note C is affine, one-dimensional, normal and hence regular, and �BC� = 0. It suffices
to show that for any finite cover κ : C′ −→ C (with C′ integral and κ∗BC integral), OC −→
κ∗OC′(κ

∗BC) splits. Since C is affine, this may be checked at the stalk of a closed point
Q of C. Thus consider a DVR V = OC,Q with uniformizer v and BC|Spec V = a

b
div(v)

with a < b coprime integers. Form the extension V′ =V[v1/b]. The map V−→V′ sending
1 "→ va/b splits by construction. Since V′ is also regular, any further finite extension V′ ⊆
W is split. Hence the map V −→W sending 1 "→ va/b splits. This shows that OC,Q −→
(κ∗OC′(κ

∗BC))Q splits and proves the claim. �

The claim completes the proof. �

9. Minimal Model Program

We develop the Minimal Model Program for arithmetic threefolds.

Setting 9.1. — In this section we work over a base scheme T which (for us) is always
quasi-projective over a finite dimensional excellent ring R admitting a dualizing complex.
Note that this includes the cases where T is purely of zero or positive characteristic.

Throughout this section, the dualizing complex on R is fixed. This in turn defines
a unique dualizing complex, and so a canonical sheaf, on all schemes which are quasi-
projective (or constructed therefrom by ways of localisation or completion) over R.

Whenever we use the word curve, it will implicitly mean curve over T, that is a one
dimensional scheme which is proper over a closed point of T. Recall that curves can be
of codimension one even when X is of dimension three (cf. Remark 2.23).

Unless otherwise stated, a field k will refer to the residue field of T at a suitable
closed point. Furthermore, in this section, all boundary divisors � will be R-divisors,
unless otherwise stated. Notions such as semiampleness or nefness are assumed to be
relative, typically over the base T.

Recall from Section 2.6, that the key examples of T include quasi-projective
schemes over Dedekind domains or spectra of complete Noetherian local domains.

The argument has the following steps:

15 This just uses that if C⊆D is a finite extension, then D is finite flat and hence C⊆D splits.
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Step 1 We prove the cone theorem and the existence of pl-contractions in the pseudo-
effective case.

Step 2 We construct flips with arbitrary coefficients in the Q-factorial setting using the
existence of pl-flips with standard coefficients proven in the previous section.

Step 3 We prove the base point free theorem for nef and big line bundles using the
existence of “one-complemented” pl-flips (Proposition 8.27).

Step 4 We show the termination of any sequence of flips when KX + � is pseudo-
effective using [AHK07], and conclude the proof of the MMP in this case.

Step 5 We prove the base point free theorem in its most general form, for non-big line
bundles.

Step 6 We show the full cone theorem, and deduce termination with scaling and the
existence of Mori fiber spaces when KX +� is not pseudo-effective.

Steps 2 and Step 3 are independent: Step 2 is based on Corollary 8.26. It requires the
assumptions of Q-factoriality and characteristics different than 2,3 or 5, but otherwise
has no special requirements.

On the other hand, in Step 3 we need to run a non-Q-factorial MMP in the case
relative to a birational morphism [Kol21]. This means that we cannot apply Corol-
lary 8.26 directly, because it assumes that the coefficients are standard, and we cannot
apply the existence of flips with arbitrary coefficients obtained in Step 2 either due to
the Q-factoriality restrictions. Since we work with a special MMP relative to a birational
morphism, the flipping contractions occurring in this MMP are “one-complemented”,
and so we can apply Proposition 8.27.

Also, observe that the argument of [AHK07] used in Step 4 works when KX +
�∼R M for some effective R-divisor M and terminalizations exist. The former condition
holds automatically when KX+� is pseudo-effective, (X,�) is klt, and X is not defined
over a closed point of T (for example, when X is of mixed characteristic) by applying the
non-vanishing theorem for varieties of dimension at most 2 over the generic point of the
image of X in T [Fuj12, Theorem 7.2]. To construct a terminalization we run an MMP
which terminates for terminal pairs by Shokurov’s argument.

Remark 9.2. — The cone theorem in the pseudo-effective case holds by the same
arguments as in [Kee99, DW22] while the existence of pl-contractions follows from
[Wit22]. The argument behind Step 2 is due to [Bir16]. The base point free theorem
for nef and big line bundles was proven in characteristic p > 0 in [Bir16] and [Xu15]
based on Keel’s theorem and the generalized MMP ([HX15, Bir16]). The existence of
log minimal models in the pseudo-effective case in positive characteristic was proven in
[Bir16]. The general version of the cone theorem, the termination with scaling, the exis-
tence of Mori fiber spaces, and the base point free theorem for nef line bundles in positive
characteristic is due to [BW17] (see [CTX15] for partial results). The generalization of
some of the above results from algebraically closed fields to arbitrary F-finite fields is due
to [DW22] (cf. [GNT19] for the case of perfect fields). We give different proofs for most
of these results in the relative situation.
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Remark 9.3. — In [HW22b] it is proven that the Minimal Model Program is valid
over three-dimensional singularities and in semi-stable families in all characteristics p > 0.
In the process of showing the base point free theorem, we generalize the former result
to mixed characteristic (Theorem 9.15), and the latter should go through with almost
no modifications. Similarly, most of our results can be extended to include p = 5 in the
general case using the arguments of [HW22a] as has been verified in [XX21].

Remark 9.4. — The only place in this section where the theory of R-divisors is
used in an essential way is the proof of the non-Q-factorial MMP (Theorem 9.15) which
in turn is employed to show the base point free theorem in the big case (Theorem 9.17).
In particular, readers interested in the case of Q-boundaries only, may assume in the
remaining steps that all the boundaries are Q-divisors (in Theorem 9.34 which is used
to prove termination with scaling, Theorem 9.35, one should only consider points of
the polytope which are rational). Note that in [BW17] it was essential to consider the
full power of the MMP for R-divisors as they come up as limits of Q-boundaries in an
essential way. This is not the case in our arguments in Steps 5–6, as we employ a different
strategy of proof.

Before proceeding, we recommend the reader to review Remark 2.23, Re-
mark 2.25, and Remark 2.26, which discuss the unexpected behaviour of the dimension
of Cartier divisors and localisation at Q.

9.1. Existence of flips and background on termination. — We start by stating the existence
of pl-flips in our setting, and recalling the statement of special termination. First we tackle
the case in which X is a scheme of pure characteristic zero – we must deal with the
generalization from varieties to Noetherian excellent schemes. Our argument above can
be adapted to this situation, where we would use the fact that B0

alt =H0 for a klt scheme
of characteristic zero and deduce the relevant liftings from [Mur21]. However, we believe
it is more straightforward for the reader to follow the original argument as explained in
[Cor07] which goes through verbatim, given the appropriate vanishing theorems:

Proposition 9.5. — Suppose in addition to Setting 9.1 that R is a domain with all residue

characteristics being zero. Let f : X −→ Z be a three-dimensional pl-flipping contraction where Z is

quasi-projective over R, (X,S+B) is plt, S= �S+B� is a Q-Cartier prime divisor, B is an effective

Q-divisor, and KX+S+B is Q-linearly equivalent to a multiple of S. Then the pl-flip of (X,S+B)

over Z exists.

Proof. — As mentioned above, this follows from the proof of [Cor07, Theorem
2.2.25] (it is assumed therein that X is Q-factorial and ρ(X/Z) = 1, but our weaker
assumptions are sufficient). There are various ingredients, which mirror the steps used in
Section 8, and all of which go through using the existing proofs as application of [Mur21,
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Theorem A] in characteristic zero. We have normality of plt centers [Kc92, Corollary
17.5], plt inversion of adjunction [KM98, Theorem 5.50] and existence of projective
resolutions of singularities with ample exceptional divisors (Proposition 2.14). �

Proposition 9.6. — Let f : X−→ Z be a three-dimensional pl-flipping contraction of a plt pair

(X,S+B) where S= �S+B� is a Q-Cartier prime divisor, B is an effective Q-divisor with standard

coefficients, KX+ S+B is Q-linearly equivalent to a multiple of S, and Z is a quasi-projective scheme

over R. Suppose that none of the residue fields of R have characteristic 2, 3 or 5. Then the pl-flip of

(X,S+ B) over Z exists.

Proof. — By Proposition 9.5 and localisation, we may assume that Z is the spec-
trum of a local ring with positive residue characteristic (note that it will not be quasi-
projective over R any more). We need to show that some Veronese subalgebra of the
canonical ring R(X,KX + S+ B)=⊕

i∈N H0(X,OX(�i(KX + S+ B)�)) is finitely gen-
erated. This is equivalent to verifying that there exists a divisible enough j > 0 such that
the multiplication map

(9.6.1) f∗OX(j(KX + S+ B))⊕i/j −→ f∗OX(i(KX + S+ B))

is surjective for every i > 0 divisible by j. Let
(
X̂, Ŝ+ B̂

)
be the completion of (X,S+B)

at z= f (Exc(f )) ∈ Z. By Lemma 2.32,
(
X̂, Ŝ+ B̂

)
is plt. Moreover, by Lemma 2.33, Ŝ is

a disjoint union of its irreducible components. Since Ŝ is anti-ample over the completion
Ẑ of Z at z, it must contain the exceptional locus of X̂ −→ Ẑ which is the fiber over the
closed point of Ẑ and is connected. As every component of Ŝ must also intersect this
exceptional locus, this is only possible when Ŝ is irreducible.

The condition that KX + S+ B ∼Z,Q −bS, for some b ∈Q>0, is preserved under
completion. Hence, (9.6.1) is surjective after completion by Corollary 8.26, and since
surjectivity of finitely generated modules can be verified after completion, the proposition
follows. �

Theorem 9.7. — Let (X,�) be a three-dimensional Q-factorial dlt pair with R-boundary

which is projective over T, and let

(X,�) ��� (X1,�1) ��� (X2,�2) ��� · · ·
be a sequence of (KX +�)-flips and divisorial contractions over T. Then after finitely many steps all

the maps are flips and the flipped and flipping loci are disjoint from ��i�.
Proof. — Since divisorial contractions decrease the Picard rank (cf. Remark 2.22),

we can assume that the above sequence consists only of flips.
The result then follows by the same argument as in [Fuj07, Theorem 4.2.1].

The proof employs the two dimensional MMP (Theorem 2.42). Implicitly, this refer-
ence assumes the normality of the irreducible components of ���, but what is only
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needed is normality up to a universal homeomorphism (see [HW22b]) which follows from
Lemma 2.33. We point out that the irreducible components Y⊆ Xi of the flipping and
flipped loci cannot be contained in the prime divisors D⊆ Supp�i satisfying dim D= 1
(otherwise, D= Y, and so Y would be a divisor). Similarly, the flipped contraction is small
([KM98, Lemma 6.2]), thus the flipped locus must also have codimension at least 2 and
therefore it cannot contain a divisor of dimension 1. Thus, no new phenomena show up
and the proof is really exactly as in [Fuj07, Theorem 4.2.1]. �

Theorem 9.8. — Let (X,�) be a three-dimensional Q-factorial dlt pair with R-boundary

which is projective over T, and suppose that all three-dimensional Q-factorial klt pairs projective over T
and with underlying scheme birational to X admit terminalizations. Let

(X,�) ��� (X1,�1) ��� (X2,�2) ��� · · ·
be a sequence of (KX +�)-flips and divisorial contractions over T. Then after finitely many steps all

the flipped and flipping loci in the above sequence are disjoint from Supp�i .

Proof. — Suppose by contradiction that there exists an infinite sequence of flips
(X,�) ��� (X1,�1) ��� (X2,�2) ��� · · · for which the statement fails. By Theorem 9.7,
we can assume that the flipping loci are disjoint from ��i�. Hence, by decreasing the
coefficients of �, we can assume that (X,�) is klt; the sequence X ��� X1 ��� · · · is still
a (KX+�)-MMP as all the flipping loci are disjoint from the divisors whose coefficients
were decreased.

Now the proof follows from the argument of Alexeev-Hacon-Kawamata ([HW23,
Proposition 2.10], [AHK07]); although the statement assumes that the schemes are de-
fined over a field and the boundaries are Q-divisors, it is valid in our setting as well (in
particular, the proof of [HW23, Lemma 2.11] goes through for arbitrary Noetherian
excellent surfaces). Note that [HW23, Proposition 2.10] requires the existence of termi-
nalizations (which is assumed in Theorem 9.8), and the existence of proper resolutions of
singularities (Theorem 2.13). Finally, we point out that, as explained in the proof of The-
orem 9.7, the divisors D⊆ Supp�i satisfying dim D= 1 do not cause any problems. �

9.2. Step 1: partial cone and contraction theorems. — In what follows, given a ray � and
a Q-Cartier divisor D, we shall write, by abuse of notation, that � · D > 0 when � is
D-positive (and analogously for � ·D= 0 and � ·D < 0), although the number D ·� is
not well defined.

Theorem 9.9. — Let (X,�) be a normal Q-factorial three-dimensional pair with R-boundary

and coefficients in [0,1], which is projective over T. If KX +� ≡T M for some effective R-Cartier

divisor M, then there exists a countable set of curves over T, denoted {Ci}, such that

(a)

NE(X/T)=NE(X/T)KX+�≥0 +
∑

i

R≥0[Ci].
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(b) The rays [Ci] do not accumulate in the half space (KX +�)<0, and

(c) For all but finitely many i,

0 <−(KX +�) ·k Ci ≤ 4dCi

where k is the residue field of the closed point on T which is the image of Ci , dCi
is the constant from

Lemma 2.47 such that if L is any Cartier divisor on X, then L ·k Ci is divisible by dCi
.

Remark 9.10. — Note that the condition KX+�≡T M≥ 0 is automatic whenever
KX +� is pseudo-effective and the image of X in T is at least one-dimensional, by non-
vanishing applied to the generic fiber of X−→T (see [Fuj12] and [Tan20a]). In particular,
the latter condition holds when X has mixed characteristic.

Proof. — Let � be a (KX+�)-negative extremal ray. Choose an irreducible com-
ponent E of Supp M which is negative on �. If dim E= 1, then � =RE. Since there are
only finitely many irreducible components of M, we may assume that E is among the set
of curves {Ci}. Thus, we are henceforth free to assume that dim E= 2.

We first aim to show that � contains a curve satisfying the required bound.

Claim 9.11. — � is in the image of NE(̃E)−→NE(X) where Ẽ is the normalization of E.

Proof of claim. — Fix an ample Q-divisor H sufficiently small that � is also (KX +
�+H)-negative. Fix a non-zero cycle � in �, and write � as a limit of effective cycles:
� = limj �j . Further, write �j =∑

i ai,jCi +∑
i bi,jDi where Ci · E < 0 and Di · E≥ 0 for

each i. Letting A by an ample Cartier divisor, and after replacing by a subsequence, we
may assume that

∑

i

ai,j +
∑

i

bi,j ≤
∑

i

ai,jCi ·A+
∑

i

bi,jDi ·A= �j ·A < � ·A+ 1

for some fixed ample Cartier divisor A. This shows that the ai,j and bi,j are all bounded
independently of i and j. Let aE be such that �+ aEM has coefficient 1 in E. Then by
Theorem 2.46(c) and adjunction of KX +� + aEM + H to the normalization Ẽ of E,
Ci may be taken to be from finitely many extremal rays on E. It follows that we may
take all the Ci to come from a fixed finite set, and so after replacing by a subsequence,
ai = limj ai,j is a well defined non-negative number.

It follows that limj(
∑

i ai,jCi) is a well defined pseudo-effective 1-cycle, and it
is non-zero since it intersects negatively with E. As a result, limj(

∑
i bi,jDi) exists as

a class in N1(X) as it is the difference of � and a converging sequence. Then as
� = limj(

∑
i ai,jCi)+ limj(

∑
i bi,jDi) is a decomposition into a sum of pseudo-effective cy-

cles, we must have that limj(
∑

i ai,jCi) is in � by extremality. Then the fact that Ci ·E < 0
for each i means that each Ci is contained in Supp(E) and so � is contained in the image
of NE(̃E)−→NE(X), and the claim is proved. �
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Returning to the proof of the Cone Theorem, by adjunction there is an effective
divisor �Ẽ on Ẽ satisfying (KX+�+ aEM)|Ẽ =KẼ+�Ẽ, where aE is such that �+ aEM
has coefficient 1 in E. Thus � is in the image of some (KẼ +�Ẽ)-negative extremal ray
�Ẽ via the map NE

(
Ẽ
)−→NE(X). By Theorem 2.46, any (KẼ+�Ẽ)-negative extremal

ray either contains a curve satisfying the required bound or a curve in Supp(�Ẽ). Note
that there are only finitely many possibilities for the latter curves independently of the
choice of E as they lie in Sing(Supp(� +M)) ∪ Sing(X). We have proved that every
(KX + �)-negative extremal ray � contains a curve C such that C either satisfies the
bound in (c) or is an element of a fixed finite set of curves.

Next we show that the extremal rays do not accumulate in NE(X/T)KX+�<0. Sup-
pose otherwise, so we have a sequence of distinct (KX +�)-negative extremal rays �i

which converge to a (KX +�)-negative ray �. Fix a component E of M which is neg-
ative on �. By passing to a subsequence we may assume that E is also negative on �i

for all i, and so by Claim 9.11, � and �i are all in the image of ι∗ : NE
(
Ẽ
) −→ NE(X)

where Ẽ is the normalization of E. For each i, choose a (KẼ+�Ẽ)-negative extremal ray
�E

i such that ι∗�E
i =�i where ι∗ :NE

(
Ẽ
)−→NE(X). By Theorem 2.46, the rays �E

i do
not accumulate to a (KẼ +�Ẽ)-negative ray. But by compactness of NE(̃E) intersected
with the unit ball, by again taking a subsequence we may assume that �E

i do converge in
NE

(
Ẽ
)
, and so converge to a ray �E satisfying

0≤ (KẼ +�Ẽ) ·�E = (KX +�+ aEM) · ι∗�E ≤ (KX +�) · ι∗�E.

This shows that the rays �i could not converge to a (KX +�)-negative ray. This con-
cludes the proof of (b).

It remains to prove the countability of the set of curves in (a). Fix an ample divisor
H. For each n ∈ N, the previous paragraph implies that there are only finitely many
(KX+�+ 1

n
H)-negative extremal rays. Then there can be only countably many (KX+

�)-negative rays because each is (KX +�+ 1
n
H)-negative for some n. �

Proposition 9.12 (cf. [HW23, Proposition 4.4]). — Let (X,S+ B) be a Q-factorial three-

dimensional projective dlt pair over T, where S is a prime divisor and B is an effective R-divisor. Suppose

that KX + S+ B is pseudo-effective over T. Let � be a (KX + S+ B)-negative extremal ray over

T such that � is S-negative. Then the contraction f : X −→ Z of � exists so that f is a projective

morphism with ρ(X/Z)= 1.

Proof. — First, we reduce to the plt case with Q-boundary. By graded prime avoid-
ance (see [Sta, Tag 00JS]), we may pick an ample Cartier divisor A which does not
contain any log canonical center of (X,S + B), so that (X,S + B + εA) is dlt for
ε� 1 and KX + S+ B+ εA is big and negative on �. Now replacing (X,S+ B) with
(X,S + B′ + εA) where B′ is a Q-divisor which is a small perturbation of B such that
KX + S+ B′ + εA is still big and negative on �, we may assume that B is a Q-divisor.
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Furthermore, by decreasing all the coefficients of �B�, we may assume that (X,S+ B) is
plt.

By Theorem 9.9, we may pick an ample (over T) Q-divisor H such that L=KX+
S+B+H is nef and L⊥ ⊆NE(X/T) is spanned by �. Let A be another ample Q-divisor
such that (S+A) ·� = 0. Again, by Theorem 9.9, we have that Lε =KX + S+ B+Hε

is nef over T and (Lε)
⊥ is spanned by � for any 0 < ε� 1, where Hε =H+ ε(S+ A)

is an ample Q-divisor. Explicitly, by Theorem 9.9(b), there are finitely many (KX + S+
B+ 1

2H)-negative extremal rays: �,�1, . . . ,�l . For every ε such that Hε − 1
2H is ample,

Lε is positive on all extremal rays except possibly these �,�1, . . . ,�l . By decreasing ε

further we can assume that Lε is also positive for on �j for all 1≤ j ≤ l. Last, Lε ·� = 0
holds for all ε.

Moreover, we have that E(Lε) ⊂ S. Indeed, if V ⊂ X is a an integral subscheme
not contained in S, then Lε|V = (L+ ε(S+A))|V is nef and big over T. Replacing L by
Lε, we may assume that E(L)⊂ S.

Now, over closed points of residual characteristic p > 0 the proposition follows
from Proposition 2.51, and over closed points of residual characteristic zero from Propo-
sition 2.48 applied to a klt perturbation of (X,S+ B). �

9.3. Step 2: construction of flips with arbitrary coefficients. — We recall the standard ar-
gument for reducing the existence of flips to pl-flips.

Proposition 9.13. — Let (X,B) be a Q-factorial klt pair of dimension three, where B is a

Q-divisor with standard coefficients. Let f : X −→ Z be a flipping contraction over an affine scheme

Z= Spec R such that ρ(X/Z)= 1. Suppose that none of the residue fields of R have characteristic 2,

3 or 5. Then, the flip X+ −→ Z of f exists.

Proof. — We closely follow the presentation from [HW22b, Theorem 4.1]. Fix
BZ = f∗B and let HZ be a reduced Cartier divisor on Z where the following hold:

(a) f ∗HZ contains the exceptional set of f ,
(b) HZ and BZ have no irreducible components in common,
(c) for any projective birational morphism h : Y−→ Z where Y is Q-factorial, N1(Y/Z) is

generated by the h-exceptional divisors and the irreducible components of the strict
transform of HZ.

For the (non-trivial) condition (c), we use that the relative group of divisors up to nu-
merical equivalence of a birational morphism of Q-factorial varieties is generated by the
exceptional divisors. In view of this, we may pick HZ so that it satisfies (c) for a single
resolution of singularities, and condition (c) is then satisfied for every larger resolution of
singularities as well. The statement follows since h as above is a factor of some resolu-
tion and the group of divisors on Y over Z is the image of the group of divisors of any
projective birational cover.
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Fix a log resolution h : Y
p−→ X

f−→ Z of (Z,BZ + HZ) which factors through X.
We may assume that HZ contains the image of each h-exceptional divisor, and we claim
that we can run a (KY + BY + HY)-MMP over Z where HY is the strict transform of
HZ and BY := h−1

∗ BZ + Exc(h). The cone theorem is valid by Theorem 9.9, and note
that every extremal ray � over Z is contained in the support of h∗HZ. By condition
(c), there is a component of the support of h∗HZ having non-zero intersection with �.
Since � · h∗HZ = 0, there is a component E of the support of h∗HZ with � · E < 0. In
particular, we have E ⊆ �BY +HY�. Hence, contractions exist by Proposition 9.12, the
necessary flips exist by Proposition 9.6 applied to a plt perturbation of (Y,BY+HY), and
special termination follows by Theorem 9.7.

Now replace (Y,BY+HY) by its minimal model over Z, and HY by its pushforward
under the map to the minimal model. While Y need no longer admit a map to X, it still
necessarily maps to Z, which we denote by h : Y−→ Z.

Write BY = D+ B<1
Y , where D =∑m

i=1 Di is the sum of exceptional divisors and
�B<1

Y � = 0. As HY is contained in the pullback of HZ from Z, we have

HY ≡h −
∑

j

bjDj,

where bj ∈Q≥0. Run a (KY+BY)-MMP over Z with scaling of HY, noting that an MMP
with scaling is well-defined by the existence of bounds on extremal rays from Theo-
rem 9.9. Arguing as above, to show that such an MMP can be run, it suffices to show
that flips and contractions exist. Let 0 < λ≤ 1 be such that KY + BY + λHY is h-nef and
there exists a (KY + BY)-negative extremal ray � satisfying (KY + BY + λHY) ·� = 0.
Since (KY + BY) ·� < 0, we have that HY ·� > 0, and the equivalence above implies
that Dj ·� < 0 for some j. It follows that the contraction of � exists by Proposition 9.12,
and in the case that the contraction is small the flip exists by Proposition 9.6. Once again,
the MMP terminates by special termination as above.

Denote by (X+,B+) an output of this MMP, so that KX+ + B+ is nef over Z, and
notice that the projection f + : X+ −→ Z is small. Indeed, the negativity lemma applied to
a resolution of indeterminacies π1 : W′ −→X and π2 : W′ −→X+ shows that

G := π∗1 (KX + B)− π∗2 (KX+ + B+),

is effective (and non-zero) which is only possible when �B+� = 0 since (X,B) is klt. As
all of the exceptional divisors on X+ over Z are contained in �B+�, this shows that f +

is small. Moreover, KX+ + B+ is ample over Z; otherwise, as ρ(X+/Z)= 1 (here X and
X+ are Q-factorial and f , f + are small over Z, so ρ(W/X)= ρ(W/X+) is equal to the
number of exceptional divisors, thus16 ρ(X+/Z) = ρ(W/Z)− ρ(W/X+) = ρ(W/Z)−
ρ(W/X)= ρ(X/Z)= 1), KX+ +B+ would be numerically trivial over Z, and so G would

16 The additivity of the Picard rank here follows again from the Q-factoriality of X and X+.
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be numerically trivial over X. As G is exceptional and non-zero, this contradicts the
negativity lemma (over X). Hence, f + is the flip of f . �

The following technique was discovered in [Bir16]; we closely follow the presen-
tation from [HW22a, Proof of Theorem 1.1]. We emphasize that � is allowed to have
arbitrary R-coefficients.

Theorem 9.14. — If (X,�) is a dlt pair with R-boundary and f : X −→ Z is a three-

dimensional Q-factorial flipping contraction to a quasi-projective scheme Z over R, whose residue fields

do not have characteristic 2, 3 or 5, with ρ(X/Z)= 1, then the flip of (X,�) exists.

Proof. — We begin with a number of reductions. By perturbing B and using that X
is Q-factorial, we may assume that � is a Q-divisor. After replacing � with �− 1

l
��� for

l � 0, we can further assume that (X,�) is klt. Finally, we may also assume that every
component of Supp� is relatively antiample, as removing the ample and numerically-
trivial components will not affect the anti-ampleness of KX +�.

In case � has standard coefficients, the theorem follows from Proposition 9.13. In
the remainder, we proceed with a proof by induction on the number ζ(�) of components
of � with coefficients outside of the standard set {1− 1

m
| m ∈N}∪ {1}. Assuming ζ(�) >

0, write �= aS+ B where a �∈ {1− 1
m
| m ∈N} ∪ {1}.

Consider a log resolution π : W−→X of (X,S+ B) with reduced exceptional di-
visor E. Setting BW := π−1

∗ B+ E and SW := π−1
∗ S, since KX +�≡Z μS for some μ > 0

and S is relatively anti-ample as it is a component of Supp�, we have that

KW+ SW+BW = π∗(KX+�)+ (1− a)SW+ F≡Z (1− a+μ)SW+ F′,

where F, F′ are effective exceptional Q-divisors over X.
We now run a (KW + SW + BW)-MMP over Z. As ζ(SW + BW) < ζ(�) and by

decreasing the coefficients by 1
l
�SW + BW� for l � 0 so as to make the pair klt without

affecting ζ , all flips exist in this MMP. Additionally, as every extremal ray is negative on
(1− a+μ)SW+ F′ (and so on an irreducible component of �SW+BW�), all contractions
in this MMP exist by Proposition 9.12. The cone theorem is valid by Theorem 9.9, and
the MMP terminates by the special termination in Theorem 9.7. Let h : W ��� Y be an
output of this MMP where SY, BY, and F′Y are the strict transforms of SW, BW, and F′ on
Y, respectively.

Next, we run a (KY+ aSY+BY)-MMP over Z with scaling of (1− a)SY. If � is an
extremal ray, then � · SY > 0 and (KY + BY) ·� < 0. As ζ(BY) < ζ(�), again decrease
the coefficients by 1

l
�BY� for l� 0 to make the pair klt without affecting ζ , all the flips in

this MMP exist by induction. Noting

KY + aSY + BY ≡Z μSY + F′Y,
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every extremal ray is negative on μSY + F′Y, hence on F′Y (as � · SY > 0) and so on an
irreducible component of �BY�. It follows from Proposition 9.12 that all contractions in
this MMP exist. As in the paragraph above, the cone theorem and termination are both
valid in this setting. Set (X+, aS+ + B+) to be an output of this MMP.

To conclude the proof, we show that (X+, aS+ + B+) is the flip of (X, aS + B).
Notice that the negativity lemma applied to a common resolution of indeterminacies
π1 : W−→X and π2 : W−→X+ implies that

G := π∗1 (KX + aS+ B)− π∗2 (KX+ + aS+ + B+)

is effective and non-zero. Since (X, aS+ B) is klt, we get that �B+� = 0, and so all the
exceptional divisors were contracted and X ��� X+ is an isomorphism in codimension
one. Moreover, since X and X+ are Q-factorial we have that ρ(W/X) = ρ(W/X+) is
equal to the number of exceptional divisors, and it follows that ρ(X+/Z)= 1 using that
ρ(W/X) + ρ(X/Z) = ρ(W/Z) = ρ(W/X+) + ρ(X+/Z) and ρ(X/Z) = 1. Again we
must now have that KX+ + aS+ + B+ is relatively ample over Z, else KX+ + aS+ + B+

is relatively numerically trivial over Z and then G is exceptional and numerically trivial
over X, contradicting the negativity lemma once more. It follows that (X+, aS+ + B+) is
the flip of (X,�) as desired. �

9.4. Step 3: base point free theorem for nef and big line bundles. — The following theorem
is key in our proof of the base point free theorem. Here, condition (e) may be thought of as
numerical klt-ness of (X,π∗�). When X is Q-factorial, then this is a mixed characteristic
variant of [HW22b, Theorem 1.1] (cf. [TY20, Theorem 4.6]).

Theorem 9.15 ([Kol21, Theorem 1]). — Let (Y,�) be a three-dimensional dlt pair with

Q-boundary and let π : Y−→X be a projective birational map of quasi-projective schemes over R with

irreducible exceptional divisors E1, . . . ,Er . Suppose that

(a) there exists an ample exceptional Q-divisor � on Y,

(b) all Ei are Q-Cartier,

(c) ��� = E1 + . . .+ Er ,

(d) KY +�≡X
∑

eiEi for ei ∈Q, and

(e) (X,π∗�) is klt, or more generally that there exists a sub-klt17 pair (Y,�′) such that KY+�′ ≡X

0 and �−�′ is exceptional.

We can run a (KY+�)-MMP over X in the sense of [Kol21] and it terminates with X. In particular,

every Q-Cartier Q-divisor D on Y such that D≡X 0 satisfies D∼Q,X 0 (in other words, some multiple

of D descends to X).

We decompose Y−→X into pl-contractions and pl-flips, such that D descends un-
der each operation. This uses Kollár’s non-Q-factorial MMP [Kol21, Theorem 1], in

17 Satisfying the same conditions as klt but not requiring that the boundary divisor is effective.
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which all contractions behave as if they were of Picard rank one with respect to excep-
tional divisors, and so their Q-Cartierness is in fact preserved. For the convenience of the
reader we write down a detailed explanation below. Unless otherwise stated, the excep-
tionality and ampleness below is always relative to X.

Proof. — It is enough for the last sentence of the statement to show that π∗D is
Q-Cartier, as then D = π∗π∗D ∼Q,X 0 by the negativity lemma. By Conditions (a) and
(b), we can pick an R-divisor H and h′ ∈R>0 such that

(f) H=∑
γiEi where {γ1, . . . , γr} are linearly independent over Q, and

(g) KY +�+ h′H is R-ample.

To this end, we may initially take H to be R-ample, but we will not use that in proofs since
it will not be stable under the procedure described below. Further, note that Condition (a)
implies that Exc(Y/X) is a divisor (and hence equal to ��� by Condition (c)); indeed,−�

is effective by the negativity lemma (Lemma 2.16), and so if there exists an irreducible
component C⊆ Exc(Y/X) such that C �⊆ Supp E1 ∪ . . . ∪ Supp Er (in particular, C is a
component of codimension at least two, and since it cannot be a point it must be a curve),
then C ·�≤ 0, contradicting the ampleness of �.

We start by establishing the cone theorem. Set (KY +�)|Ẽi
=KẼi

+�Ẽi
for the nor-

malization Ẽi of Ei , which makes sense as Ei ⊆ ���. Since Exc(Y/X) is a divisor, the
map

∑r

i=1 NE(Ẽi/X)−→NE(Y/X) is surjective and by applying Theorem 2.46 we get

NE(Y/X)=NE(Y/X)KY+�≥0 +
∑

t≥0

R≥0[Ct],

for a countable set of curves {Ct} and positive integers dCt
such that 0 < −(KY +�Y) ·

Ct ≤ 4dCt
, and L ·k Ct is divisible by dCt

for every Cartier divisor L. We also obtain that
the rays R≥0[Ct] do not accumulate in the half space NE(Y/X)KY+�<0. This concludes
the proof of the cone theorem.

We run a (KY + �)-MMP with scaling of H as in [Kol21] and explain that this

determines the choice of extremal faces so that they behave as if they were one-dimensional with respect to

exceptional divisors. We construct it explicitly. Let h ∈R≥0 be the smallest number such that
KY +� + tH is nef for all h ≤ t < h′. If h = 0, then move to the last paragraph of the
proof.

Since

(9.15.1) KY +�+ hH= (1− h/h′)(KY +�)+ (h/h′)(KY +�+ h′H)

and KY+�+ h′H is R-ample, we see that KY+�+ hH is positive on NE(Y/X)KY+�≥0

and on all but a finite number of extremal rays by the non-accumulating property of
extremal rays. In particular, (KY+�+hH) ·�j = 0 for all such extremal rays �1, . . . ,�c.
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Set V= span(�1, . . . ,�c)= (KX+�+ hH)⊥. We have H ·�j =− 1
h
(KY+�) ·�j , and

so
∑

i γiEi ·�j =H ·�j ∈ 1
h
Q.

Since γi are linearly independent over Q, the number 1
h

has a unique presentation as
a linear combination of γi , and so we get that the vectors (E1 ·�j, . . . ,Er ·�j) ∈Qr are
colinear (that is, Q-multiples of one another) for different j. It follows then that Ei ∈W for
every i, where W⊆DivQ(X) is the subspace of Q-Cartier Q-divisors which are colinear
with E1 as functionals on V. Since KY +�≡∑

eiEi , we also have that KY +� ∈W.
As the ample Q-divisor � is exceptional over X, we get that � ∈W, too. In par-

ticular, every exceptional divisor Ei is colinear with a multiple of � as a functional on
V, and so is either entirely positive, trivial, or negative on V. Since � is ample, and
so anti-effective by the negativity lemma, it cannot happen that every exceptional divi-
sor is positive or trivial on V. Hence there must exist an exceptional irreducible divisor
S⊆ Supp��� such that S is negative on V.

We construct the contraction of V. First, we claim that there exists an ample Q-divisor
G such that V= (KY +�+G)⊥. To this end, define the R-divisor

G′ = h/h′

1− h/h′
∑

(ei + h′γi)Ei ≡X
h/h′

1− h/h′
(KY +�+ h′H).

Note that KY+�+G′ ≡X
1

1−h/h′ (KY+�+hH) by (9.15.1). So, G′ satisfies all the require-
ments for G, except that it is not a Q-divisor. However, since the irreducible components
of G′ are contained in W we can perturb it in W to obtain the claimed Q-divisor G. Note
that as the perturbation happens in W, we can make KX+�+G trivial on V. Addition-
ally, by the non-accumulating property of extremal rays for small enough perturbation,
KX +�+G is still positive on all extremal rays not in (KX +�+G′)⊥ =V, and hence
(KX +�+G)⊥ =V holds.

Having shown the claim, we can invoke Proposition 9.16 to construct a contraction
f : Y−→ Z of V. Moreover, KY+�+ hH ∈W⊗Q R descends to an R-Cartier R-divisor
on Z, which must be R-ample by the Nakai-Moishezon criterion Lemma 2.21. Indeed, to
apply the Nakai-Moishezon criterion we need to check that a closed integral subscheme
Q⊆ Y over a field is contracted by f if and only if (KY +�+ hH)|Q is not big. This is
automatic when dim Q= 1 as (KY+�+ hH)⊥ =V, and so we can assume that Q= Ei

for some i and Ei is defined over a field.
But (KY+�+ hH)|Ei

is semiample (by (9.15.1) and [Tan20a, Theorem 1.1]), and
hence it is big if and only if Ei is not contracted.

We construct the flip. Suppose that f is small. We have that KY+�+hH≡X,R
∑

(ei+
hγi)Ei and the R-divisor on the right descends to an R-Cartier R-divisor

∑
(ei + hγi)f∗Ei

on Z by Proposition 9.16.(a) (with f∗Ei �= 0, as f is small), which is R-ample. Hence,
by the negativity lemma, ei + hγi < 0 for all i. If C is a curve contracted by f , then
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C ·∑(ei + hγi)Ei = 0. As C · S < 0, there must exist another irreducible exceptional
divisor A such that C ·A > 0. Since A ∈W, we get that A is f -ample. We use the divisors
A and S to construct the flip f + : Y+ −→ Z of f .

By Proposition 9.16.(a) (applied to T = Z), all R-divisors in W ⊗Q R are in fact
R-linearly equivalent over Z to multiples of each other; similarly for Q-divisors. Hence,
the existence of f + follows from Proposition 8.27 as in the proof of Proposition 9.6 (we
can perform a necessary perturbation so that ��� = S+A as the irreducible components
of ��� are Q-Cartier and contained in W).

Additionally, we note that

(9.15.2) the strict transform D+ of D ∈W⊗Q R is R-Cartier.

In fact, in this situation D+ a(KX +�) ≡Z 0 for some a ∈ R. Hence, D+ a(KX +�)

descends to Z by Proposition 9.16.(a), and so D+ + a(KX+ + �+) is R-Cartier. Since
KX+ +�+ is Q-Cartier, so is D+. Let φ : Y ��� Y+ be the induced rational map.

We show that the above procedure can be repeated. Pick g : Y ��� Y as follows: Y= Z (with
g = f ) when f is divisorial and Y = Y+ (with g = φ) when f is small. We claim that we
can replace Y, �, �′, D, H, h′ by Y, �Y, �′

Y
, DY, HY, h− ε, respectively (with 0 < ε� 1

and the corresponding divisors being their strict transforms on Y), so that (a)-(g) hold and
the algorithm can be run again:

◦ note that g∗M is Q-Cartier for every Q-divisor M ∈W by Proposition 9.16.(b) and
(9.15.2). In particular, if M ≡X 0, then M ∈ W, and so g∗M ≡X 0 is Q-Cartier
(cf. Proposition 9.16.(a)). This immediately yields (b),(d),(e) shows that KY + �Y

is Q-Cartier and that DY ≡X 0 and is Q-Cartier (by setting M = Ei,KY + � −∑
eiEi,KY +�′,KY +�,D, respectively).

◦ we have HY =
∑

γig∗Ei, and those γi for which g∗Ei �= 0 comprise a subset of
{γ1, . . . , γr}, and so are linearly independent over Q; hence (f) holds,
◦ the R-divisor KY +�Y + (h− ε)HY is R-ample, and so (g) holds. This is automatic

in the divisorial case as f∗(KY +�+ hH) is ample, and in the flipping case it follows
from KY+ + �Y+ + (h − ε)HY+ = (f +)∗(KZ + �Z + hHZ) − εHY+ , where HY+ is
anti-ample over Z as H ∈W was ample over Z. Here, divisors with subscripts denote
appropriate strict transforms.
◦ (a) is satisfied for �=∑

(ei+ (h− ε)γi)g∗Ei ≡X g∗(KY+�+ (h− ε)H) by the above
paragraph. Note that such a chosen � is only an R-divisor, but since each irreducible
component of Supp� is Q-Cartier, we can perturb it so that it is an ample Q-divisor.

However, note that HY is not necessarily R-ample any more.
Now, repeat the above procedure. It eventually stops by the same argument as in

special termination ([Fuj07, Theorem 4.2.1], cf. Theorem 9.7).
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Thus, we can assume that KY+� is nef. Then KY +�− (KY+�′) is nef, effec-
tive, and exceptional, hence zero by the negativity lemma. Since Exc(Y/X)= ���, this
implies that Y=X and conclude the proof as D is Q-Cartier. �

In the above proof, we used the following results. First, we state a variant of the
contraction theorem. Here we say that the cone theorem is valid for a pair (X,�) over T if there
exists a countable set of curve {Ci} such that conditions (a), (b), and (c) of Theorem 9.9
are satisfied.

Proposition 9.16. — Let (X,�) be a three-dimensional dlt pair which is projective over T,

and let G be an ample Q-divisor on X such that:

◦ KX +� is pseudo-effective over T.

◦ � is a Q-divisor such that all irreducible components of ��� are Q-Cartier.

◦ The cone theorem holds for (X,�) over T.

◦ L=KX +�+G is nef.

◦ V= L⊥ ⊆NE(X/T) is an extremal face.

◦ There exists a prime divisor S ⊆ ���, which is negative on V and is contained in W, where

W ⊆ DivQ(X) is the subspace of Q-Cartier Q-divisors which are colinear with KX + � as

functionals on V.

Then the contraction f : X−→ Z of V exists. Moreover:

(a) If D ≡Z 0 is a Q-Cartier Q-divisor, then D descends to Z; the same holds for D ∈W⊗Q R
satisfying D≡Z 0,

(b) If f contracts an irreducible divisor E ∈W, then f∗D is R-Cartier for every D ∈W⊗Q R (in

particular, if D ∈W, then f∗D is Q-Cartier).

Note that W⊗R agrees with the subspace of R-Cartier R-divisors which are col-
inear with KX +� as functionals on V.

Proof. — Since L⊥ = V, we have that L is trivial on V, and so G ∈W. Further,
KX + � is negative on V. Pick an ample Q-divisor A ∈W (by rescaling G) such that
S+A acts trivially on V (this is possible as S,G ∈W).

We claim that, Lε =KX+�+Gε is nef over T and (Lε)
⊥ =V for any 0 < ε� 1,

where Gε =G+ ε(S+A) is an ample Q-divisor. Indeed, by non-accumulating property
of the cone theorem, there are finitely many (KX + � + 1

2G)-negative extremal rays:
�1, . . . ,�l . We may assume that V= span(�1, . . . ,�k) for some k ≤ l. For every ε such
that Gε− 1

2G is ample, Lε is positive on all extremal rays except possibly these �1, . . . ,�l .
By decreasing ε further we can assume that Lε · �j is close enough to L · �j , and so it
is also positive for k < j ≤ l. Last, Lε · �j = 0 for 1 ≤ j ≤ k holds for all ε as L · �j =
(S+A) ·�j = 0.

Moreover, we have that E(Lε)⊂ S. Indeed, if V⊂X is an integral subscheme not
contained in S, then Lε|V = (L + ε(S + A))|V is nef and big over T. Replacing L by
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Lε, we may assume that E(L)⊂ S. Now, the contraction exists by Proposition 2.51 and
Proposition 2.48.

As for condition (a), the case of Q-Cartier Q-divisor D follows directly from Propo-
sition 2.51 and Proposition 2.48. So, we only have to prove the case of 0≡ZD ∈W⊗Q R.
In this case, D=∑

aiDi for Di ∈W and ai ∈ R. Pick bi ∈Q such that Di ≡Z biS. Then
D =∑

ai(Di − biS) + (
∑

aibi)S and Di − biS descend to Z by Proposition 2.51. As
D≡Z 0, we have

∑
aibi = 0, and hence D descends to Z.

It remains to show point (b). If f contracts E ∈W, then E= S and f∗D= f∗(D− cS)

is R-Cartier for every D ∈W⊗R by condition (a) proved in the above paragraph, where
c ∈R is chosen so that D− cS≡Z 0. �

Theorem 9.17. — Let (X,B) be a Q-factorial three-dimensional klt pair, with R-boundary,

which is projective over T. Let L be a nef and big Q-Cartier divisor on X such that L− (KX + B) is

nef and big. Then L is semiample.

Proof. — By a small perturbation, since X is Q-factorial we may assume that B is a
Q-divisor, and L− (KX+B) is ample. By Corollary 2.53, there exists a proper birational
T-morphism f : X−→ Z to a proper algebraic space Z over T such that a proper integral
subscheme V ⊆ X is contracted if and only if L|V is not relatively big. In particular,
L≡Z 0.

We claim that OX(mL)= f ∗M for some m > 0 and a line bundle M on Z. This will
conclude the proof of the theorem as M must then be ample by the Nakai-Moishezon
criterion (Lemma 2.21). For any proper integral subspace W ⊂ Z, choose an integral
subscheme V of X which is finite over W. Then we have Ldim V · V = 0 if and only if
Mdim W ·W = 0 by the projection formula, and the former happens if and only if V ⊆
Exc(f ).

To show the claim, it is enough to prove that f∗OX(mL) is a line bundle for some
m > 0 which can be verified étale locally (Q-factoriality may be lost, but it will not be
needed again). Thus, we can assume that Z is the spectrum of a Noetherian local ring.
The assumptions of Lemma 2.34 are satisfied, and as A= L− (KX+B) is ample, we can
assume that (X,B′) is klt for B′ = B+A. Set B′Z = f∗B′. Note that −(KX+B) is relatively
ample over Z.

Let h : Y−→ Z be a log resolution of (Z,B′Z) which admits a factorization π : Y−→
X and such that there exists an ample exceptional divisor (see Proposition 2.14). Set
�Y = h−1

∗ B′Z + Exc(h). Note that KY + B′Y ≡Z 0 for KY + B′Y = π∗(KX + B′) = π∗L.
Further KY +�Y ≡Z KY +�Y − (KY + B′Y) and the latter Q-divisor is exceptional over
Z. Thus the assumptions of Theorem 9.15 for (Y,�Y) over Z are satisfied, and so π∗L
descends to Z. Hence, f∗OX(mL)= h∗OY(mπ∗L) is a line bundle for m divisible enough
by the projection formula. �
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Corollary 9.18 (Contraction theorem for birational extremal rays). — Let (X,B) be a Q-

factorial dlt pair with B an R-divisor. Suppose that � is a (KX + B)-negative extremal ray such that

there is some nef and big divisor D with � = D⊥. Then there is a projective contraction f : X −→ Z
of �.

Proof. — As X is Q-factorial, we may decrease the coefficients of B to assume it
is a Q-divisor and (X,B) is klt, while maintaining that � is (KX + B)-negative. By a
standard argument using Theorem 9.9, we may find an ample Q-divisor A such that
� = (KX + B+A)⊥. Now we may apply Theorem 9.17 to L=KX + B+A. �

9.5. Step 4: MMP in the pseudo-effective case. — Next, we note that projective ter-
minalizations of klt pairs can be constructed. This is used in the proof of termination
below.

Proposition 9.19. — Let (X,B) be a three-dimensional quasi-projective klt pair with R-

boundary over R as in Setting 9.1 where additionally the residue fields of R do not have characteristic

2, 3 or 5. Then there exists a projective birational morphism g : Y−→X and a terminal pair (Y,BY)

such that KY + BY = g∗(KX + B).

Proof. — By [KM98, Proposition 2.36] there are only finitely many divisors over X
with log discrepancy at most 1. Therefore by [KM98, Lemma 2.45] and Proposition 2.14
we may find a projective log resolution g : Y−→X of (X,B) which extracts all divisors of
log discrepancy at most 1 with respect to (X,B). Define

KY + BY ∼ g∗(KX + B)+ F− E

where E and F are effective R-divisors with no common prime divisors in their support,
and BY is the strict transform of B. By repeatedly blowing up strata of (Y,BY + E) we
may assume that the irreducible components of Supp(BY+E) do not meet. If we replace
Y, F and E by the result of this process, all new exceptional components will be added
to F. As a result we may assume that the irreducible components of Supp(BY + E) are
disjoint and hence that (Y,BY + E) is terminal.

Run a (KY + BY + E)-MMP over X, which uses the cone theorem Theorem 9.9,
contractions theorem Corollary 9.18, and existence of flips Theorem 9.14. This LMMP
terminates by a standard argument involving Shokurov’s difficulty [KM98, Theorem
6.17]. Note that [KM98] deals with only Q-boundaries, however the same argument
works in the R-boundary case. It uses the fact that the variety underlying a terminal sur-
face pair is regular in codimension 2 which holds in our case by [Kol13, Theorem 2.29],
and also uses the fact that there are only finitely many components of log discrepancy at
most one [KM98, Proposition 2.36]. Let φ : W−→X be the outcome of this MMP and
let EW and FW be the images of E and F, respectively. We know that φ contracts every
component of F since by construction FW − EW is nef and φ∗(EW − FW)= 0, so FW = 0
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by the negativity lemma. Since KY+BY+E∼Q,g F, this means that every divisorial con-
traction which occurs is negative for F, and hence the contracted divisor is a component
of F. As a result we see that this MMP contracts exactly the components of F and so
produces the required terminalization. �

Proposition 9.20. — Let (X,B) be a Q-factorial three-dimensional dlt pair with R-boundary

which is projective and surjective over T with dim(T) > 0 and such that none of the residue fields have

characteristic 2, 3 or 5. Suppose that KX+B is pseudo-effective. Then we can run a (KX+B)-MMP

and any sequence of the steps of the MMP terminates. As a result, (X,B) has a log minimal model.

Proof. — First, note that KX + B ∼T M ≥ 0. Indeed, it is enough to show that
κ(KXη

+ B|Xη
)≥ 0, where Xη is the fiber over a generic point η ∈ T, and this follows by

the two-dimensional non-vanishing theorem in equicharacteristic [Fuj12, Tan20a].
We can apply Theorem 9.9, Theorem 9.14 and Corollary 9.18 to run a (KX+B)-

MMP, and it remains to show that it terminates.
Suppose we have an infinite sequence of (KX + B)-flips Xi ��� Xi+1. By the first

assertion in Theorem 9.7, eventually the flipping loci are disjoint from �B�. Thus, by
replacing X by Xi for i� 0, we can assume that all these flips are (KX +�)-flips for
� = B − �B� + εM and 0 < ε � 1. Explicitly, we pick ε so that (X,�) is klt. Then
the statement follows from Theorem 9.8, where the existence of terminalizations is a
consequence of Proposition 9.19. Note that KX+� is not necessary pseudo-effective any
more, but here we only use that the extremal rays of Xi ��� Xi+1 are negative on M, and
so also on an irreducible component of Supp�. �

Corollary 9.21. — Let X be a variety which is quasi-projective over Spec R, such that X has

no residue fields of characteristic 2, 3 or 5.

Let � =∑
ai�i be an R-divisor such that �i are prime divisors and such that KX +� is

R-Cartier. Let

� =
∑

i:ai>1

�i +
∑

i:ai≤1

ai�i.

Then there exists a dlt modification of (X,�), which is a projective birational morphism

π : Y −→ X with the properties listed below. First define �Y by KY + �Y := π∗(KX + �) and

�Y by �Y = π−1
∗ � + Ex(π). Then π satisfies:

(a) Y is Q-factorial.

(b) (Y,�Y) is dlt,

(c) KY + �Y is nef over X,

(d) �Y − �Y ≥ 0, and

(e) for every x ∈X, either π−1(x) is contained in Supp(�Y − �Y) or is disjoint from it.

Proof. — Take π : Y−→X to be a log resolution of (X,�). Then a minimal model
of (Y,π−1

∗ � + Ex(π)) over X, which exists by Proposition 9.20, is a dlt modification of
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(X,�). The first three properties may be verified by the same argument as in [Fuj11,
Theorem 10.4]. For (d) note that

�Y − �Y =KY +�Y − (KY + �Y)

is anti-nef over X and its pushforward via π is effective. Thus, it is effective by the nega-
tivity lemma (Lemma 2.16) concluding (d). For (e), note that π−1(x) is connected for every
x ∈X, and if C is a curve in π−1(x) which intersects Supp(�Y−�Y) but is not contained
in it, then C · (�Y−�Y) > 0, contradicting the fact that �Y−�Y is anti-nef over X. �

Remark 9.22. — Even when X does admit residue characteristics 2, 3, or 5, one
can still construct a dlt modification of X by [Kol21] (cf. Theorem 9.15). However, it will
not necessarily be Q-factorial unless X is Q-factorial as well.

9.6. Step 5: base point freeness. — In this subsection, we prove the full basepoint free-
ness theorem. We do this only in the case of dim(T) > 0, an assumption that automat-
ically holds in the arithmetic situation which is the main motivation of our article. The
case of a projective variety over a field appears in [KM98, Theorem 3.3] when the field
has characteristic zero (see [Kaw85] for the original proof stated less generally), [BW17]
when it is algebraically closed of characteristic p > 5 and [GLP+15] when it is perfect
of characteristic p > 5. We leave open the case of a variety projective over an imperfect
field.

While many of the arguments of [BW17] go through in our situation of a positive
dimensional base, there are several things which do not work, such as Tsen’s theorem.
However, the relative situation provides advantages which enable us to avoid those prob-
lems. In the first version of this article we directly referred to the arguments of [BW17]
wherever possible, while below we provide simpler proofs which make full use of the
advantages offered by the relative situation.

First, we prove the abundance theorem for semi-log canonical curves and log
canonical surfaces, for which we were unable to find a reference in sufficient general-
ity.

Lemma 9.23. — Let (X,�) be a semi-log canonical curve pair with Q-boundary, such that

KX +� is nef. Then KX +� is semiample.

Proof. — By Keel’s theorem ([Kee99]) we can reduce to the case of KX +�≡ 0,
and furthermore assume that X is connected. If � = 0, we need only show that
h0(X,ωX) �= 0 which follows from the general Riemann-Roch theorem for reduced
curves [Liu02, Thm VII.3.26] (note that X is Cohen-Macaulay):

dimk H0(X,ωX)= dimk H1(X,ωX)+ 0+ χ(X,OX)

= 2− dimk H1(X,OX)= 2− dimk H0(X,ωX)
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When � �= 0 on the other hand, we claim that X is a chain of curves C such that(
Ck

)
red
∼= P1. Let C1 be an irreducible component which supports a component of the

boundary. Then it can meet at most one other irreducible component C2, at a single
point. Since C2 gains a non-zero conductor component in the normalization, it can
meet at most one other component C3 at a single point, and C3 is disjoint from C1.
The argument continues to produce the required chain. Since normalization produces a
non-zero conductor (or boundary) on each component, we must have a chain of curves(
Ck

)
red
∼= P1 as claimed. Hence, KX + � is semiample on all irreducible components.

Thus we may conclude by [Kee99, Cor 2.9] and induction on the number of compo-
nents. �

Theorem 9.24. — Let (X,�) be a log canonical pair of dimension 2, projective and surjective

over T with Q-boundary, and assume in addition that T is the spectrum of a local ring with positive

residue characteristic. If KX +� is nef over T, then it is semiample over T.

Proof. — By [Tan20a] we may assume that X is surjective over T with dim(T) >

0, and by Theorem 2.44 we may assume that dim(T) = 1. We may replace T by its
normalization to assume that it is a spectrum of a DVR of positive residue characteristic.
By taking a dlt modification, we may assume that (X,�) is Q-factorial and dlt.

We first deal with the case where KX + � is big by adapting the argument of
[Wal18, Theorem 1.1] to the two dimensional case. Firstly, (KX +�)|XQ is semiample
since dim XQ = 1 (here it is crucial that T is a spectrum of a DVR, cf. Remark 2.26),
in which case abundance is straightforward. So by Theorem 2.50 it is enough to show
that (KX + �)|E(KX+�) is semiample. Run a (KX + � − ε���)-MMP, with scaling of
���. By taking ε sufficiently small, we may assume that this only contracts (KX +�)-
trivial curves, and also that KX+�− ε��� is big. Once the MMP terminates, we obtain
ψ : X −→ Y, such that ψ∗(KY +�Y)= KX +�, and (Y,�Y − ε��Y�) is klt. It follows
from the base-point free theorem Theorem 2.44) that KY +�Y − ε��Y� is semiample.
As Y is a surface, every irreducible component of E(KY+�Y) is one dimensional, and a
curve C is in E(KY +�Y) if and only if (KY +�Y)|C ≡ 0. By construction, Y contains
no (KY + �Y)-trivial curves which intersect ��Y� positively, and so every connected
component of E(KY +�Y) is either contained in ��Y� or disjoint from it.

Suppose first that E is a connected component of E(KY+�Y) which is completely
disjoint from ��Y�. Then (KY+�Y)|E ∼Q (KY+�Y− ε��Y�)|E, which as noted earlier
is semiample by the base-point free theorem. This implies that (KY+�Y)|E is semiample.
On the other hand, if E is a connected component of E(KY +�Y) which is contained
entirely in ��Y�, then if KE + �E = (KY + �Y)|E, we have that (E,�E) is a semi-log
canonical pair by [Kol13, Corollary 3.35] and so (KY+�Y)|E is semiample by adjunction
and Lemma 9.23.

Assume now that KX +� is not big. Since we may assume as above that T is the
spectrum of a DVR, the semiampleness now follows from [CT20, Lemma 2.17]. �
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The following result on descending nef divisors is an adaptation of [BW17, Lemma
5.6] and [Kaw85, Proposition 2.1].

Lemma 9.25. — Let f : X −→ T be a projective and surjective contraction between normal

integral schemes over R. Let L be a Q-Cartier Q-divisor on X, nef over T, such that L|F is semiample,

for the generic fiber F of f . Assume dim X≤ 3. Then there exists a commutative diagram

X′
φ

��

f ′
��

X

f

��

Z
ψ

�� T

with φ and ψ projective and φ birational, where f ′ agrees with the map induced by φ∗L over the generic

point of T, and with Q-Cartier Q-divisor D on Z satisfying φ∗L∼Q f ′ ∗D.

Proof. — Up to replacing X by a projective birational cover, we may pick a projec-
tive surjective morphism X−→ Z′ to a normal projective scheme Z′ over T such that its
restriction to the generic fibre is the fibration defined by L|F.

Now take a flattening (see [RG71, Theorem 5.2.2]):

X′′
φ′′

��

f ′′
��

X

f

��

Z′′
π

�� Z′.

Here f ′′ is flat (hence equidimensional, see [Sta, Tag 0D4J]), and φ′′ and π are birational.
We can then replace Z′′ with a resolution Z and X′′ with the normalization X′ of the
irreducible component of X′′ ×Z′′ Z which is dominant over Z to assume that Z is regular
and X′ is normal. Note that f ′ may not be flat, but it stays equidimensional. Denote
φ : X′ −→ X and f ′ : X′ −→ Z. By [CT20, Lemma 2.17], we get that φ∗L ∼Q f ′ ∗D for
some Q-divisor D on Z. �

Lemma 9.26. — Let X be a three-dimensional normal integral scheme, projective over T. Sup-

pose L is a nef Q-Cartier Q-divisor which is not big over T and such that L|XQ is semiample (if XQ

is not empty), and L|G is semiample where G is the fiber over the generic point of the image of X in T.

Then L is endowed with a map f :X−→V over T to an algebraic space V proper over T.

Moreover if L|F ∼Q 0 for every fiber F of f , then L is semiample over T.

Proof. — First we may replace T by the image of X in T to assume that X−→T is a
surjective contraction. Let g :X′ −→ Z be the morphism given by Lemma 9.25. Replacing
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X birationally (which we can do as X is normal so X′ −→ X is a contraction) we may
assume that X=X′, so that there is a Q-divisor D on Z such that L∼Q g∗D.

To show that L is EWM, it suffices to show that D is EWM. If dim(Z)= 2, then
D is EWM by Lemma 2.54. If dim(Z) = 1 then we may assume that dim T = 0 or
Z=T= Spec(R) for R a Dedekind domain, and then there is nothing to prove.

For the second part of the lemma, first localize T at a closed point of positive
characteristic, which we may do by semiampleness of L|XQ . Let f : X −→ V be the map
associated to L, and assume that L is semiample on every fiber of f . It is enough to show
that the divisor D on Z is semiample. Furthermore, we may assume dim(Z)= 2 otherwise
we are done. As D is big and EWM on Z, E(D) is a finite set of curves contracted to points
on T, whose pre-images on X are therefore contained in fibers of f . Hence f ∗D|f −1(E(D))

is semiample, and so is D|E(D) by [CT20, Lemma 2.11(3)] as f −1(E(D)) −→ E(D) has
geometrically connected fibers. We are done by Theorem 2.50. �

We now prove the base point free theorem.

Theorem 9.27. — Let (X,B) be a three-dimensional Q-factorial klt pair with R-boundary

admitting a projective morphism f :X−→ T, such that the image of f has positive dimension, and none

of the residue characteristics of T are 2, 3 or 5.

Suppose that L is an f -nef Q-divisor such that L− (KX + B) is f -big and f -nef. Then L is

f -semiample.

Proof. — By Theorem 9.17, it remains to prove the case where L is not big. By a
small perturbation we may assume that B is a Q-boundary, and that L − (KX + B) is
f -ample.

By the base point free theorem in dimension 1 and 2, L|G is semiample, where G
is the fiber over the generic point of Im(f ). By Lemma 2.34 we may choose 0 ≤ A ∼Q

L − (KX + B) such that (X,B + A) is klt, and it suffices to show that KX + B + A is
semiample. By Lemma 9.26 and Proposition 2.48, KX + B + A is EWM over T, and
let g :X−→ V be the associated map. Note that in particular, KX + B+ A≡V 0. By the
second part of Lemma 9.26, it is enough to show that L|F ∼Q 0 for every fiber F of g. This
is satisfied over the generic point of V by the base point free theorem in lower dimensions
and furthermore holds over the points of characteristic zero by Proposition 2.48. So we
may fix a point v ∈V of positive residue characteristic, not equal to the generic point, for
which we must test semiampleness on the fiber F over v.

Let h :V′ −→V be an étale cover of a neighbourhood of v ∈V by an affine scheme,
and fix v′ ∈ h−1(v). Since Fv′ is only a base change of F by an extension of the ground
field, it is enough to check semi-ampleness of L|Fv′ . Hence after performing a small Q-
factorialization of the base change X×V V′, we may assume that V is an affine scheme,
and furthermore by passing to the localization at v we may assume it is the spectrum of
a local ring with positive residue characteristic.
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Fix a Cartier divisor D on V which contains the point v (which we may do because
v is not the generic point), and furthermore that D is of pure characteristic p. It follows
that Supp(f ∗D) contains the fiber F. Note that if X is not purely of characteristic p, we
can just take D= (p).

Let k = lct(X,B+A, g∗D) ∈Q. After shrinking V and replacing k we may assume
that all log canonical centers of (X,B + A + kg∗D) intersect F. After tie breaking by
changing A up to linear equivalence, we may assume that (X,B+ A+ kg∗D) has only
one log canonical place. Note that to perform the tie breaking argument of [Cor07,
Section 8.7], it is enough to have a log resolution with an ample exceptional divisor
Proposition 2.14 and log Bertini for a sufficiently ample divisor Remark 2.18, which holds
in complete generality in our setting. Let π : Y−→X be a Q-factorial dlt modification of
(X,B+A+kg∗D), see Corollary 9.21, and let KY+�Y = π∗(KX+B+A+kg∗D), where
we have ��Y� := S irreducible and therefore KY+�Y is plt. The divisor S is not disjoint
from FY, the fiber of Y−→V over v. Since π has connected fibres, so does π |FY : FY −→ F
since this is set theoretically a union of fibres of π . Hence by [CT20, 2.11(3)], it is enough
to show that (KY + �Y)|FY is semiample. Furthermore, the converse is also true since
semi-ampleness is preserved under pullback. We will use this trick repeatedly in what
follows: if we take a morphism with connected fibres for which KY + �Y descends or
pulls back, it is enough to show semi-ampleness of L restricted to the new fiber.

Run a (KY+�Y− S)-MMP over V with scaling of S (which terminates by Propo-
sition 9.20 as KY + �Y − S ≡V −S is pseudo-effective over V being equivalent to an
effective Q-divisor af ∗D− S for a� 0) to reach Y′ on which −S is nef over V. By con-
struction this cannot have contracted S, as each step intersects it positively. Again, the
fiber FY′ over v ∈ V is not disjoint from S. But any curve � in FY′ satisfies S · � ≤ 0 and
so FY′ is either contained in S or disjoint from it. However we know that it cannot be
disjoint, and so FY′ ⊂ S. The divisor KY +�Y is trivial for every step in the prior MMP
since KY+�Y ≡V 0, and so it descends to every step. As a result, by repeatedly applying
[CT20, 2.11(3)] at every step of the MMP as explained above, it is enough to show that
(KY′ +�Y′)|FY′ ∼Q 0, and for this it is enough to see that (KY′ +�Y′)|S′ is semiample,
but this follows from Theorem 9.24 and Corollary 7.17, since (Y′,�Y′) is plt as it has the
same non-klt places as (Y,�): which are S′ and S respectively. �

The proof of the base point free theorem for R-line bundles will be given in the
next section (Theorem 9.33) as it requires the cone theorem.

9.7. Step 6: cone theorem and Mori fiber spaces. — The first goal of this section is to
prove the full cone theorem:

Theorem 9.28. — Let (X,�) be a three-dimensional Q-factorial dlt pair with R-boundary

projective and surjective over T, which has positive dimension and no residue fields of characteristic 2, 3
or 5. Then there exists a countable collection of curves {�i} such that
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(a)

NE(X/T)=NE(X/T)KX+�≥0 +
∑

i

R[�i],

(b) The rays R[�i] do not accumulate in the half space (KX +�)<0,

(c) For each �i ,

−4d�i
< (KX +�) · �i < 0

where d�i
is such that for any Cartier divisor L on X, we have L · �i divisible by d�i

.

The cone theorem is a formal consequence of Lemma 9.29, our proof of which is
inspired by the flip case of [BW17, Lemma 3.2]. We are unable to apply the other cone
theorem arguments of [BW17, Section 3] directly due to the possibility that we work over
a local base where general closed fibers need not exist.

Lemma 9.29. — Let (X,B) be a Q-factorial klt threefold with Q-boundary, projective and

surjective over T with dim(T) > 0 and having no residue fields of characteristic 2, 3 or 5. Suppose that

KX + B is not nef. Then there exists an integer n depending only on (X,B) such that if H is an ample

Cartier divisor, and

λ=min{t ≥ 0 |KX + B+ tH is nef}
then λ= n

m
for some natural number m.

Furthermore, there is a (KX + B+ λH)-trivial curve � satisfying

−4d� ≤ (KX + B) · � < 0

where d� is such that for any Cartier divisor L on X, L · � is divisible by d� .

Proof. — First suppose that KX + B+ λH is big. Then KX + B+ (λ− ε)H is also
big for sufficiently small ε, and by definition of λ, it fails to be nef. By Theorem 9.9 there
are only finitely many (KX+B+(λ−ε)H)-negative extremal rays for ε sufficiently small,
and these rays are isolated. Therefore at least one of these rays R must satisfy R · L= 0,
and R has a projective contraction f :X−→ Z by Corollary 9.18 which contracts a curve
C. This satisfies (KX + B) · C = −λH · C and therefore λ is rational as KX + B and H
are both Q-Cartier. We now show that f contracts a curve satisfying the required bound.

Suppose that f is a divisorial contraction, contracting a divisor S. Let A = λH,
which we have just seen is Q-Cartier, so that by Theorem 9.17 L=KX + B+A∼Q,Z 0.
Note that it is sufficient to find a curve � such that

0 < A · � ≤ 4d�.
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Let φ :W −→ X be a log resolution of (X,B + S), let BW be the sum of the birational
transform of B and the reduced exceptional divisor of φ, SW be the birational transform
of S, and let AW = φ∗A. By the projection formula, it is enough to find a curve �W on W
which satisfies

0 < AW · �W ≤ 4d�W .

Let a be such that S has coefficient 1 in B + aS. We have KW + BW + AW +
aSW ∼R,Z E+aSW for some exceptional/X effective Q-divisor E. This means that E+SW

is in fact effective and exceptional over Z, and Ex(f ◦ φ) = �BW +AW + aSW�. Run a
(KW + BW + AW + aSW)-MMP over Z, which must terminate on Z by the negativity
lemma and the fact that Z is Q-factorial. Suppose that a step W ��� W′ of this MMP
contracts a curve over X. Then AW descends to AW′ for it is a pullback from X, and
again it is enough to find a curve �W′ satisfying

0 < AW′ · �W′ ≤ 4d�W′ .

We are reduced to the same problem for the next step of the MMP. As the MMP ter-
minates on Z, we must eventually reach a step contracting a ray R which is not over
X. Then as AW is ample over X, we have AW · � > 0 and so the step is also negative
for KW + BW + aSW. But since this MMP is negative for E + aSW, whose support is
equal to the reduced boundary, we can choose a component F of E+ SW on which R is
negative. By restricting to F and applying adjunction [Kol13, Section 4.1], we find that
(KW + BW + aSW)|F = KF + BF for some dlt pair (F,BF). If F has dimension 1, then it
follows that F= � satisfies

−2d�W≤ (KW + �W) · �W ≤ (KW + BW + aSW) · �W < 0

e.g. by [DW22, Lemma 4.4]. Meanwhile if F is two dimensional we see by Theorem 2.46
that there is a curve �W ⊂ F in R satisfying

−4d�W ≤ (KW + BW + aSW) · �W < 0.

In either case, since the ray is also negative for KW + BW +AW + aSW, we find that

0 < AW · �W ≤ 4d�W

as required.
Now suppose that f : X −→ Z is a flipping contraction, and z ∈ Z is the image of

the flipping locus. In this case, the argument for the flipping case in [BW17, Lemma
3.2] applies directly, with the only change being to insert d� in appropriate places. The
reference to [Bir16, 3.4] in [BW17, Lemma 3.2] can be replaced by the argument in the
first paragraph of this proof using Theorem 9.9.
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Next suppose that the R-divisor L=KX+ B+ λH is not big. Let ξ be the generic
point of T. By Theorem 2.44, L|Xξ

is semiample, and by Proposition 2.48 we may assume
that L|XQ is semiample, if this fiber is non-empty. As L is not big, there is a curve C in Xξ

(over the residue field of ξ ) which is contracted by the induced map. This satisfies

(KX + B)|Xξ
·C=−λH|Xξ

·C
and therefore because KX + B is a Q-Cartier Q-divisor and H is an ample Cartier di-
visor, λ ∈Q and L is a Q-divisor. Let A = λH, where after changing A up to Q-linear
equivalence we may assume that (X,B+ A) is klt (see Lemma 2.34). L is semiample by
Theorem 9.27, and so let f :X−→ Z be the induced contraction. We may assume that Z
is normal and projective over T.

Choose a Cartier divisor DZ ⊂ Z. Let π :W−→X be a dlt modification of (X, (B+
A+ f ∗DZ)

≤1) (see Corollary 9.21), where D≤1 denotes the divisor obtained by truncating
the coefficients of D at 1. Then let AW = π∗A and BW be the sum of the strict transform
of B and the unique effective Q-divisor necessary to ensure that BW+AW has coefficient
one at every component of Supp(π∗f ∗DZ). As in the divisorial case, it suffices to find a
curve � on W which satisfies 0 < AW · � ≤ 4d� .

We have

(9.29.1) KW + BW +AW ∼Q,Z E

where E is effective and each component of E is supported over DZ. In particular this
implies that KW + BW + AW is not big over Z. Furthermore, �BW +AW� and E both
contain every component of Supp(π∗f ∗DZ).

Run a (KW + BW + AW)-MMP over Z, which exists and terminates by Proposi-
tion 9.20. If the first step of the MMP, W ��� W′, is over X then exactly as before, AW

descends to AW′ , and so we may replace W by W′ and continue. On the other hand,
suppose that a step of the MMP contracting a ray R is not over X. As before, since A is
ample on X we see that AW · R > 0, and as a result (KW + BW) · R < 0 But as (9.29.1)
implies that the curves contracted are contained in the reduced boundary, we find a curve
�W which satisfies

−4d�W ≤ (KW + BW) · �W < 0

by the log canonical case of Theorem 2.46. But as this ray was chosen to be negative for
KW + BW +AW, it follows that we must also have 0 < AW · �W ≤ 4d�W as required.

Hence we may assume that the entire MMP is over X and terminates with a model
Y with maps φ : Y−→X and ψ : Y−→ Z, and such that KY+BY+AY is nef over Z, where
AY = φ∗A. Now KY+BY+AY ∼Q,ψ KY+BY+AY−εψ∗DZ, and the pair (Y,BY+AY−
εψ∗DZ) is klt for any sufficiently small ε. Hence by Theorem 9.27, using the fact that AY

is big, we see that KY + BY + AY is ψ -semi-ample. Let σ : Y −→ V be the morphism
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induced by KY + BY + AY, so that KY + BY + AY ∼φ 0. Since KY + BY + AY is not big
over Z, dim(V) < dim(Y). We have varieties and morphisms:

Y
φ

��

σ

��

ψ

		�
��

��
��

X

��

V �� Z.

Choose a component S of ψ∗DZ which is not contracted over X, or equivalently which
is the strict transform on Y of a component of f ∗DZ. As S is not contracted over X, AY|S
is big. However, since dim(S) ≥ dim(V), and S is not horizontal over Z and hence not
horizontal over V, we see that S is contracted over V.

Hence S contains a curve C which is vertical over V and which satisfies AY|S ·C >

0, since AY|S is big and S is contracted over V. The divisor S is contained in �BY +AY�,
so by adjunction let KS + BS = (KY + BY)|S, and if S is one dimensional (as in Remark
2.23), set � = S. The latter satisfies the required bounds exactly as in the birational case
above. Otherwise apply the cone theorem Theorem 2.46 over Z to KS + BS. This finds
an extremal ray which is (KS + BS + A|S)-trivial (here we use that KY + BY + AY ∼σ 0)
and so A|S-positive which contains a curve � such that

−4d� ≤ (KS + BS) · � = (KY + BY) · � =−AY · � < 0.

Taking the pushforward of � to X gives the required curve as in the birational case, since
AY is the pullback of A from X and the curve � is contracted over Z.

Now to prove the statement about λ, let I be the Cartier index of KX + B. Then
we have that I(KX+B) ·� is an integer divisible by d� , and so is an integer between −4I
and −1.

Since

λ= −I(KX + B) · �

d�

IH · �

d�

,

we can take n= (4I)!. �

Definition 9.30. — Let X be a scheme with a projective morphism f : X −→ T, and R an

extremal ray over T. Let H be an f -ample Cartier divisor on X. We say that a curve � ∈ R is

extremal if

H · �
d�

=min{H · C
dC
|C ∈R}.
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The extremality of a curve does not depend on the ample divisor H, since if H′ is
a different ample divisor, there is λ > 0 such that H ·C= λH′ ·C for any C in R, and so

H · �

d�

H′ · �

d�

= H · C
dC

H′ · C
dC

for any other curve C ∈R. Similarly, if D is a Q-divisor such that D ·R < 0, we have

D · �
d�

=max{D · C
dC
|C ∈R}.

Finally we are ready to prove the cone theorem.

Proof of Theorem 9.28. — If we assume that � is a Q-divisor, and (X,�) is klt, (a)

and (b) follow formally from Lemma 9.29 using [KM98, Theorem 3.15] (one can also
use the standard proof of the cone theorem in the smooth case [KM98, Theorem 1.24]
as Lemma 9.29 recovers a singular variant of Mori’s bend-and-break [KM98, Theorem
1.13]).

Now suppose that � is an R-divisor or (X,�) is not klt. We first prove that there
are only countably many (KX + �)-negative extremal rays and that they do not ac-
cumulate in (KX + �)<0. For each integer n, choose a klt Q-boundary �n such that
Supp(�n) = Supp(�) and |� − �n| < 1

n
. Each (KX + �)-negative extremal ray is

(KX + �n)-negative for some n, and so the collection of (KX + �)-negative extremal
rays is a subset of a countable union of countable sets, hence countable. Furthermore, if
there is a sequence of (KX+�)-negative extremal rays which accumulate in (KX+�)<0,
then they accumulate to a ray in (KX +�n)<0 for some n� 0. Therefore by truncating
the sequence of extremal rays we obtain a sequence of (KX +�n)-negative rays which
accumulate in (KX +�n)<0, contradicting (b) in the klt Q-divisor case.

Now we move to (c). Let R be a (KX+�)-negative extremal ray. Then let �n be a
sequence of klt Q-boundaries with limn �n =�, and such that R is (KX +�n)-negative
for every n. For each n, we can find an ample divisor An such that R= (KX+�n+An)

⊥,
and then Lemma 9.29 shows that there is a curve Cn in R, which satisfies

−4dCn
≤ (KX +�n) ·Cn < 0

for every n. Then as R contains a curve, it contains an extremal curve C, which satisfies

−4≤ (KX +�n) · Cn

dCn

≤ (KX +�n) · C
dC

< 0.

It then follows that

−4dC ≤ (KX +�) ·C < 0

as required. �
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Our next result is finiteness of log minimal models, for which we first recall the
setup.

Setup 9.31. — Let X be a three dimensional, klt Q-factorial integral scheme, pro-
jective over T, such that the image of X in T is positive dimensional. Let A ≥ 0 be a
Q-divisor and V a finite dimensional rational affine subspace of the vector space of R-
Weil divisors on X. Then we define the Shokurov polytope

LA(V)= {� | 0≤�−A ∈V and (X,�) log canonical}.
As we know that projective log resolutions exist in our situation, this is a rational polytope
by [Sho92, 1.3.2].

The proof of the next proposition closely follows that given in [BW17, Proposition
3.8]. Note that the proofs of parts (4) and (5) of [BW17, Proposition 3.8] do not work in
our situation, but we do not need them.

Proposition 9.32. — Let X, T, V, and L be as above, and fix B ∈ L. Then there are real

numbers α, δ > 0 depending only on (X,B) and V, such that

(a) If � is an extremal curve on X and if (KX + B) · � > 0, then (KX + B) · �

d�
> α,

(b) if � ∈L and ||�−B||< δ and (KX+�) ·R≤ 0 for an extremal ray R then (KX+B) ·R≤
0.

(c) Let {Rt}t∈S be a family of extremal rays of NE(X/T). Then the set

NS = {� ∈L | (KX +�) ·Rt ≥ 0 for any t ∈ S}
is a rational polytope.

Proof. — The proofs of the corresponding statements in [BW17, Proposition 3.8]
work here, by replacing every appearance of a curve � with �

d�
. �

The following base point free theorem for R-divisors is used in the upcoming proof
of finiteness of log minimal models.

Theorem 9.33. — Let (X,B) be a Q-factorial three dimensional klt pair with R-boundary,

projective over T and such that the image of X in T has positive dimension and that none of the residue

fields of T have characteristic 2, 3 or 5. Suppose that D is a nef R-divisor such that D− (KX+B) is

nef and big. Then D is semiample.

Proof. — Let A=D− (KX + B). It is sufficient to prove the statement after local-
izing at a point t ∈ T. Thus we may change A and B using Lemma 2.34 to assume that
(X,� := B+ A) is klt and A is an ample Q-divisor. By Proposition 9.32(c) there are Q-
boundaries �j such that �=∑

j aj�j for aj > 0, ||�−�j|| are sufficiently small, �j ≥ A,
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(X,�j) are klt and KX+�j are all nef. By Theorem 9.17 KX+�j are all semiample, so
KX +� is also semiample. �

Theorem 9.34. — In the situation of Setup 9.31, assume that A is also big over T, and the

image of X in T is positive dimensional. Let C ⊂ LA(V) be a rational polytope such that (X,B) is

klt for every B ∈ C. Then there exist finitely many birational maps φi :X ��� Yi over T such that for

each B ∈ C for which KX + B is pseudo-effective over T, there is some i such that (Yi,BYi
) is a log

minimal model of (X,B) over T.

Proof. — The proof is identical to that of [BW17, Proposition 4.2], with the inputs
being Proposition 9.32, the base point free theorem Theorem 9.33 and the existence of
log minimal models Proposition 9.20. �

Theorem 9.35. — Let (X,B) be a Q-factorial three-dimensional klt pair with R-boundary,

projective over T, such that the image of X in T has positive dimension and that none of the residue fields

of T have characteristic 2, 3 or 5. Suppose A is an ample R-divisor such that KX+B+A is nef over

T. Then we can run the (KX + B)-MMP over T with scaling of A and it terminates.

Proof. — This follows by the arguments of [BW17, Proposition 4.3] using Theo-
rem 9.34, and [BW17, Proof of Theorem 1.6] except that we replace the reference to
[BW17, Proposition 4.5] with Proposition 9.20. �

Note that if we assume that T is a curve with finitely many closed points, for in-
stance if T= Spec(Zp), we get a stronger termination result:

Proposition 9.36. — Let (X,B) be a Q-factorial three dimensional klt pair with R-boundary

projective and surjective over T of positive dimension, and T has only finitely many closed points, none of

which have residue fields of characteristic 2, 3 or 5. Then any sequence of (KX + B)-flips terminates.

Proof. — By Theorem 9.7, after finitely many flips both the flipping and flipped
loci are disjoint from the birational transform of the boundary. Given this, note that any
(KX + B)-MMP is also a (KX + B + ε

∑
i Fi)-MMP for 0 < ε � 1 where Fi are the

pullbacks of Cartier divisors on T which contain the finitely many closed points of T,
and so the flips eventually terminate. �

Theorem 9.37. — Let (X,B) be a three-dimensional Q-factorial dlt pair, with R-boundary,

projective over T such that the image of X in T has positive dimension and none of the residue fields of T
have characteristic 2, 3 or 5. Suppose that KX + B is not pseudo-effective over T. Then we can run a

(KX + B)-MMP with scaling of an ample divisor which terminates with a Mori fiber space.

Proof. — If (X,B) is klt, this follows by combining the Theorem 9.28, Theo-
rem 9.33, Theorem 9.14, and Theorem 9.35.
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If it is not klt, fix an ample divisor A and run a (KX + B)-MMP with scaling of
A. The cone theorem holds by Theorem 9.28, contractions and flips exist by perturbing
the boundary to a klt boundary and then applying Theorem 9.17 and Theorem 8.25. It
remains to show termination.

Fix δ sufficiently small that KX+B+δA is not pseudo-effective over T. Now choose
ε� δ sufficiently small that εB+ δA is ample over T. Note that since KX + B+ δA is
not pseudo-effective, a (KX + B)-MMP with scaling of A is also a (KX + B+ δA)-MMP
with scaling of (1− δ)A.

For any point t ∈ T, we may localize over t, apply Lemma 2.34 and then spread
out over some open subset t ∈U⊂ T and its preimage XU in X, to find a divisor H∼R

εBXU + δAXU such that (XU, (1 − ε)BXU + H) is klt. Therefore by Theorem 9.35 our
MMP terminates over U since it is also an MMP for KXU + (1− ε)BXU +H. Since we
can cover T with finitely many such open sets, we see that the (KX + B)-MMP with
scaling of A terminates everywhere. �

10. Applications to moduli of stable surfaces

The goal of this section is to show the existence of the moduli stack M 2,v of stable
surfaces of volume v over Z[1/30] as an Artin stack with finite stabilizers and of finite
type over Z[1/30]. By the Keel-Mori theorem [KM97, Con05] this then also implies the
existence of the coarse moduli space M2,v of stable surfaces of volume v as an algebraic
space over Z[1/30]. We refer to [Pat18, Sec 1.3] for the precise definitions of the moduli
functor of M 2,v .

The starting point is that in [Pat18, Thm 9.7] it was proven that one has to only
show a special case of inversion of adjunction: if f :X−→T is a 1-parameter flat projective
family of geometrically demi-normal varieties with semi-log central fiber, then X is semi-
log canonical. By passing to the normalization of X this follows from the log canonical
inversion of adjunction. So, this version of inversion of adjunction is our first goal, which
is a consequence of the following existence statement for dlt-models.

Corollary 10.1 (Log canonical inversion of adjunction). — In the situation of Setting 9.1 suppose

that none of the residue fields of R have characteristic 2, 3 or 5. Let (X,D) be a normal pair of dimension

3 such that KX+D is Q-Cartier, and with a prime divisor S that has coefficient 1 in D. Let SN be the

normalization of S. If (SN,DSN) is log canonical, where DSN is the different of D along S, then so is

(X,D) in a neighborhood of S.

Proof. — Consider a Q-factorial dlt-model g : (Z,�) −→ (X,D) constructed in
Corollary 9.21. Here � is the boundary used in Corollary 9.21, that is, it can be ob-
tained by lowering to 1 all the greater than 1 coefficients of g−1

∗ D and additionally adding
in all the g-exceptional divisors with coefficient 1. Let T be the component of � domi-
nating S. Since Z is Q-factorial we use Corollary 7.17 and a pertubation argument to see
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that T is normal. We fix the following notation for the induced morphisms:

T

γ





α

�� SN

β

�� S.

Let � be the crepant boundary on Z, that is for which KZ+�= g∗(KX+D). Note that
by point (d) of Corollary 9.21, �− � is effective and it is non-zero exactly at each prime
divisor E of Z for which coeffE � > 1. Note also that (T,�T) is a crepant dlt-model for(
SN,DSN

)
, where �T is the different of � along T. In other words, we have that

(10.1.1) KT +�T = α∗ (KSN +DSN) .

Additionally, (T,�T) is dlt, where �T is the different of � along T. As
(
SN,DSN

)
is log

canonical, by (10.1.1), we see that the coefficients of �T are at most 1. By the surface
inversion of adjunction applied at the codimension 1 points of T, this means that the
coefficients of � are at most 1 in a neighborhood of T. We note that here we crucially use
the Q-factoriality of Z, which implies that divisors on Z can only meet T in codimension
1 points of T. Since at all divisors in Supp(�− �), the coefficient of � is 1, we obtain
that the divisors � and � agree in a neighborhood of T. However, Corollary 9.21(e) tells
us that for each fiber, Supp(�− �) either contains it or is disjoint from it. So, we obtain
that g

(
Supp(�− �)

)
is a closed set that is disjoint from S. This concludes our proof as

(X,D) is log canonical over X \ g
(

Supp(�− �)
)
. �

In fact, we believe that the above result works even when R has arbitrary residue
characteristics, by using the non-Q-factorial dlt modification as in Remark 9.22 and re-
placing T in the proof by its normalisation.

In the proofs of the following statements we use the language of almost Cartier
divisors on S2 and G1, Noetherian schemes, as introduced in [Har94], for the canonical
divisor of demi-normal schemes and their one-parameter families. Furthermore, for such
families the canonical divisor is compatible with base-change, as they contain a relatively
Gorenstein open set, the complement of which has codimension two in every fiber (for
the arbitrary Gorenstein base-change see [Con00, Sec 3.6]).

Corollary 10.2 (Existence of M 2,v over Z[1/30]). — With notation as above:

(a) The moduli stack M 2,v of stable surfaces of volume v over Z[1/30] exists as a separated Artin

stack of finite type over Z[1/30] with finite diagonal.

(b) The coarse moduli space M2,v of stable surfaces of volume v over Z[1/30] exists as a separated

algebraic space of finite type over Z[1/30].

Proof. — Point (b) follows from point (a) using the Keel-Mori theorem [KM97,
Con05]. So, we only have to show (a). By [Pat18, Thm 9.7] we have to show that if
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f : X −→ T is a flat family of geometrically demi-normal projective schemes over the
spectrum of a DVR with t being the closed point and Xt being a stable surface, then X
has slc singularities. (We note that [Pat18, Thm 9.7] is based on [HK19], [Ale94] and
[Kol11].)

First, we show the corollary under an assumption that Xt is slc. Let g : (Y,D)−→
X be the normalization, where D is the conductor. As X is demi-normal, D has only
coefficients 1. We have to show that (Y,D) is log canonical. Note that as X is regular
at every generic point of every fiber of f , Y −→ X is an isomorphism at these points.
In particular Yt −→ Xt is an isomorphism around the generic points of Xt . As Y is S2,
Yt is S1. So, all embedded points of Yt are at generic points which implies that Yt is
reduced. Hence, the normalization of Yt and of Xt agree. Let us write δ : Z :=XN

t −→Xt

for this normalization. Take the boundary DZ on Z which is crepant to (Y,D), that is,
KZ +DZ = α∗(KY +D), where α : Z−→ Yt −→ Y is the induced composition morphism.
In fact, this boundary is also crepant to Xt , that is KZ +DZ = δ∗KXt

. This follows from
the fact that both KXt

and KY+D are pullbacks of KX. To sum up, we have the following
commutative diagram, where every arrow connects crepant equivalent pairs (i.e., the log-
canonical divisors are compatible via pull-backs by any of the arrows):

(Z,DZ) Xt

(Y,D) X.

α

δ

normalization

central fiber

g

normalization

By the definition of Xt being slc, (Z,DZ) is lc, hence by Corollary 10.1 (Y,D) is also lc,
and hence X is slc.

Second, we show that Xt being slc implies that Xt is slc (note: we know that Xt is
geometrically demi-normal and hence geometrically reduced). This is a standard argu-
ment: we need to show that (Z,DZ) is log canonical. Let ρ : V−→ Z be a log resolution
of singularities with DV so that KV+DV = ρ∗(KZ+DZ). In other words DV is a crepant
sub-boundary. We need to show that DV has coefficients at most 1.

Let ξ :W−→Vk be the normalization of Vk , where k = k(t). Let DW be a Q-divisor
on W such that KW +DW = ξ ∗(KV +DV)k . It is crepant to both (V,DV) and to Xt ; in
the latter case, we use that ν∗KXt

= KXt
as relative canonical divisors are stable under

base change. Let φ :W−→V be the induced morphism, and let E be the boundary on W
that makes (W,E)−→V crepant. In other words, as V is geometrically reduced by being
generically isomorphic to Xt , E is the conductor of W−→Vk . In particular E≥ 0. By the
definition of the respective divisors we see that DW = E+ φ∗DV. To sum up, we have the
following commutative diagram, where every arrow connects crepant equivalent pairs:

(W,DW) (Vk,Dk) Xt

(V,DV) (Z,DZ) Xt

φ

ξ

normalization

base-extension to k(t)ν

ρ

log-resolution
δ

normalization
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As Xt is slc, and (W,DW) is crepant to Xt , we obtain that the coefficients of DW are at
most 1. Coupling this up with the equation DW = E+ φ∗DV and with the effectivity of
E, we obtain that the coefficients of DV are in fact at most 1 too. �

Corollary 10.2 implies different modular lifting statements on stable varieties. A
sample one is the following which gives the lifting to be over a localisation of a finite
extension of Z (alas, we need to assume that the base field is finite). One can also show
that if the surface is defined over a perfect field k, then there exists a lifting over W(k).

Corollary 10.3. — For every rational number v > 0 there exists a prime p(v) with the following

property: for all stable surfaces X of volume v over a finite field of characteristic p≥ p(v), there is a family

of stable surfaces X over an open set of the spectrum of the ring of integers of a number field such that X
is a fiber of X .

Remark 10.4. — The point of Corollary 10.3, where we think that Corollary 10.2
is essentially used, is that it states a lifting to a stable family, not only to an arbitrary flat
family. We think that for this type of application one essentially needs the openness of the
stable locus in adequate flat families, which was our main contribution to the proof of
Corollary 10.2.

The following theorem uses the notion of a Lefschetz pencil of a smooth projective
variety X over an field k. By definition [SGA73, Sec XVII.2.2 on page 215], this is a
pencil φ :X′ −→ P1

k of hyperplane sections of X such that general fibers of φ are regular
and every singular point of every fiber has quadratic singularity. The latter in dimen-
sion 1 means nodal singularity. Note that by the virtue of being a pencil, φ fits into a
commutative diagram as follows:

X X′ X× P1
k

P1
k

birational closed embedding

φ

Remark 10.5. — Let X be a smooth projective variety over k. It is shown in
[SGA73, Sec XVII, Thm 2.5] that for any projective embedding of X given by a very
ample line bundle L, Lefschetz pencils exist for the projective embedding given by L⊗2.
Additionally, over algebraically closed fields Lefschetz pencils can be obtained as general
pencils of hyperplane sections [SGA73, Sec XVII, Cor 3.2.1].

Theorem 10.6. — Fix an integer v > 0 and let

d =
∏

p prime, p≤β(v)

p, where β(v)=
{

393 if v = 1

213v + 48 if v ≥ 2.
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Then, the closure M
sm

2,v of the locus of smooth surfaces in M 2,v is proper over Z[1/d]. Additionally, it

admits a projective coarse moduli space M
sm
2,v over Z[1/d].

Proof. — REDUCTION TO THE EXISTENCE OF LIMITS: First, let us note that [Pat18,
Thm 1.2] shows the projectivity of M

sm
2,v contingent upon the properness of M

sm

2,v . We
note here that [Pat18, Thm 1.2] is unfortunately not stated as precisely as needed here,
but its (few paragraph long) proof exactly shows this, using [Pat18, Thm 1.1]. So, we are
left to show the properness of M

sm

2,v .
By Corollary 10.2, we know that M2,v is an Artin stack of finite type over Z[1/30]

with finite diagonal. So, we only have to show that M is closed under limits. As the
properness of M 2,v is known in characteristic zero, it is enough to show the M is closed
under limits of characteristic p > 0. That is, we have to show that if f 0 : X0 −→ T0 is a
smooth canonically polarized surface over the spectrum of a field K, and R is a DVR of K
with residue field characteristic p greater than β(v), then f 0 extends to a family of stable
surfaces f :X−→T= Spec R, after possibly replacing K and R with finite extensions and
f 0 with the corresponding base-change. We may even assume that the residue field of R
is algebraically closed.

THE PLAN OF SHOWING THE EXISTENCE OF LIMITS: The construction of f happens in
the following steps:

◦ We construct a birational model Y0 −→X0 admitting a fibration Y0 −→ P1
K with cer-

tain singularity and boundedness properties.
◦ The above singularity and boundedness properties are tailored exactly, so that [Sai04,

Corollary 2] provides a semi-stable extension fY : Y −→ T, after possibly applying a
finite base-change.
◦ We run an MMP to turn the semi-stable extension into a stable family.

EXISTENCE OF SEMI-STABLE LIMITS: To state the above mentioned singularity and bounded-
ness properties, let Y0 −→ X0 be a projective birational morphism from another smooth
surface over T0, and let f

0 : Y0 −→ T0 be the composition. [Sai04, Corollary 2] tells us
that in this situation we can find at least a semi-stable extension fY : Y −→ T of f

0
if we

can produce a diagram as follows

(10.6.1) Y0
g

��

f
0




P1

K
h

�� T0

such that:

(a) g is projective and surjective,
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(b) for the degree d of the canonical sheaves of the fibers of g and of h we have p≥ d+ 4,
which is guaranteed if β(v)≥ d + 4,

(c) for

D=

⎧
⎪⎨

⎪⎩

the reduced discriminant divisor
Dg

if deg Dg ≥ 3

a reduced divisor of degree 3 containing
Dg in its support, otherwise

we have p > deg D, which again is guaranteed if β(v)≥ deg D, and
(d) D is étale over T0 = Spec K, that is, all the residue fields of D are separable extensions

of K
(e) the degree of the canonical sheaf of the fibers of g is greater than 0.

In the above, the discriminant divisor is the divisor over which the non-smooth points of
g lie. We note that for this application of [Sai04, Corollary 2], one needs to set X1 = P1,
D1 =D, U1 =X1 \D, X2 = Y0, D2 = 0. We also note that using the notation of [Sai04,
Corollary 2],

◦ condition (b) guarantees that p≥ 2g1 + 2 and p≥ 2g2 + 2,
◦ condition (c) guarantees that p > r1 and that 2g1 − 2+ r1 > 0,
◦ condition (d) guarantees that D1 is étale over U0, and
◦ condition (e) guarantees that 2g2 − 2≥ 0, where we took into account that r2 = 0.

We construct the Y0 above and the fibration (10.6.1) by taking a Lefschetz pencil
of X0

K
, and descending it to a finite extension K′ of K. Note, this descent can be done,

as the Lefschetz pencil is defined by finitely many equations. We may even assume that
over K′ the discriminant divisor Dg consists of only K′-rational points. As throughout our
process we can freely replace K be a finite extension, we may assume that in fact K=K′.
Additionally, for a Lefschetz pencil one always needs to fix a projective embedding, and
as we explained Remark 10.5, then one has to post-compose this projective embedding
by the second Veronese embedding. As the linear systems

∣∣4KXK

∣∣ if v > 1 and
∣∣5KXK

∣∣ if
v = 1 are very ample by [Eke88, p 13, Main Thm], we obtain a Lefschetz pencil for the
embedding

∣∣8KXK

∣∣ if v > 1, and for
∣∣10KXK

∣∣ if v = 1.
So, we are able to construct (10.6.1) itself, but we also need to verify conditions (b),

(c), (d) and (e). Condition (d) is automatic as we choose our Lefschetz pencil so that the
discriminant consists only of K-rational points. Conditions (b) and (e) have to be verified
only for the fibers of g, as the only fiber of h is isomorphic to P1

K. Additionally, when
v > 1, then the degree of the canonical sheaf of the fibers of g by adjunction is:

0 < (KX + 8KX) · 8KX = 72K2
X = 72v < 213v+ 44= β(v)− 4.

If v = 1, then by the corresponding computation we obtain that the degree is 110 ≤
373− 4= 369. So, this concludes the verification of conditions (b), (d) and (e).



GLOBALLY+++-REGULAR VARIETIES AND THE MINIMAL MODEL PROGRAM. . . 219

Hence, we are left to verify condition (c). For this we use the formula that the degree
of the discriminant locus of a Lefschetz pencil associated to a very ample line bundle L
on X is:

(10.6.2) 3L2 + 2L ·KX + c2(�X).

We learned this formula from [Sta13]. As we did not find a proof in the literature, we
briefly indicate the argument using the notation of (10.6.1): one can base-change to the
algebraic closure of K, then one uses the Giambelli-Thom-Porteous formula that the
cycle given by the degeneracy locus of TY −→ g∗TU is given by plugging into the Chern
number c2

1− c2 the virtual bundle18 OU(2G)−TY, where G is a fiber of g. The total chern
class of this virtual bundle is 1+ (2G+KY)+ (

(2G+KY) ·KY − c2(�Y)
)
. Hence, the

degree of the degeneracy locus in terms of the invariants of Y is c2(�Y)+ 2G ·KY, from
which it is straight-forward to deduce (10.6.2).

Plugging 8KX into the L of (10.6.2) yields that the degree of the degeneracy locus
is at most

(3 · 82+2 · 8)K2
X+c2(�X)=

c2(�X)= 12χ(OX)−K2
X by Grothendieck-Riemann-Roch applied to OX

208K2
X+12χ(OX)−K2

X=207K2
X+12χ(OX)

≤

Noether’s inequality [Lie08, Thm 2.1]

207K2
X+12

(
1
2
(K2

X + 6)+ 1
)
= 213K2

X+48= 213v+48= β(v).

When v = 1, we have L= 10KX, for which the same computation gives 325v+48= 373.
This concludes then the verification of (c) too.

EXISTENCE OF STABLE LIMITS: Therefore, we arrive at a semi-stable extension f :
Y −→ T of f

0
. Then we run a KY-MMP on Y over T or equivalently a (KY + Y0)-

MMP over T. Note that X0 is the canonical model of Y0 over T0. Hence, we obtain
the extension f : X−→ T of f 0, where X is a canonical model over T. At the same time
(X,X0 = f −1(0)) is also a log canonical model over T, where 0 ∈T is the closed point. By
adjunction we obtain that (XN

0 ,DiffXN
0
) is log canonical, where XN

0 is the normalisation
of X0 and KXN

0
+DiffXN

0
= (KX +X0)|XN

0
. This implies that X0 is slc, as soon as we can

show that X0 is S2. By looking at the exact sequence

0 �� OX(−X0) �� OX
�� OX0

�� 0

we see that it is enough to show that X is Cohen-Macaulay. This was shown in [BK21,
Thm 2 & Thm 17] (this article depends on [Kol21], which in turn uses the earlier sections
of the present article, however it does not use the present section). �

18 That is an element of the Grothendieck group K0.
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