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ABSTRACT

This paper continues a series of papers that develop a new approach to syntax and semantics of dependent type
theories. Here we study the interpretation of the rules of the identity types in the intensional Martin-Löf type theories
on the C-systems that arise from universe categories. In the first part of the paper we develop constructions that produce
interpretations of these rules from certain structures on universe categories while in the second we study the functoriality
of these constructions with respect to functors of universe categories. The results of the first part of the paper play a crucial
role in the construction of the univalent model of type theory in simplicial sets.
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1. Introduction

He that delivereth knowledge desireth to deliver it in such form as may be soonest believed and not

as may be easiest examined.

“On the Impediments of Knowledge”, from Valerius Terminus by Francis Bacon.

The concept of a C-system in its present form was introduced in [20]. The type
of C-systems is constructively equivalent to the type of contextual categories defined by
Cartmell in [3, 4], but the definition of a C-system is slightly different from the Cartmell’s
foundational definition.

In the past decade or more, it has been a tradition in the study of type theories to
consider, as the main mathematical object associated with a type theory, not a C-system
but a category with families (see [5]). As was observed recently all of the constructions
of [17, 19, 21, 22] and of the present paper (but not of [20] or [16]!) can be either used
directly or reformulated in a straightforward way to provide similar results for categories
with families. This modification will be discussed in a separate paper or papers.
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In this introductory explanation we will distinguish between the syntactic and se-
mantic C-systems. By a syntactic C-system we will mean a C-system that is a regular
subquotient of a C-system of the form CC(R,LM), where R is a monad on sets and LM
is a left module over R, see [16, 20]. In particular, the C-systems of all of the various
versions of dependent type theory of Martin-Löf “genus” are syntactic type systems in
the sense of this definition.

By a semantic C-system we will mean a C-system whose underlying category is a
full subcategory in a category of “mathematical” nature such as the category of sets or
the category of sheaves of sets.

Usually one knows some good properties (e.g., consistency) of a given semantic C-
system and tries to prove similar good properties of a syntactic C-system by constructing
a functor from the syntactic one to the semantic one.

To construct such a functor one tries to show that the syntactic C-system is an
initial one among C-systems equipped with some collection of additional operations and
then to construct operations of the required form on the semantic one. A pioneering
example of this approach can be found in [11].

In this paper we investigate the set of three interconnected operations on C-systems
that, in the case of the syntactic C-systems, corresponds to the set of inference rules that
is known as the rules for identity types in intensional Martin-Löf type theories (first pub-
lished in [9]).1 Since the key ingredient of this structure is known in type theory as the
J-eliminator we call it the J-structure.

We do not use the “sequent” notation that is so widespread in the literature on
type theory for general C-systems—we restrict its use only to examples where we assume
the C-system to be a syntactic one.

The reason for this restriction is that translating sequent-like notation into the al-
gebraic notation of C-systems or categories with families requires considerable mastery
of various conventions connected to the use of dependently typed systems. An example of
such a translation is the description of an object Id3(T) corresponding to the sequent-like
expression (�, x : T, y : T, e : Id T x y ; ) in Construction 2.1.4.

For a syntactic C-system C we are allowed to use sequent notation, for the following
reason. First, since C in this case is a subquotient of CC(R,LM) our notation needs only
to provide a reference to elements of sets associated with CC(R,LM) itself. There, the
first T refers to an element of LM({1, . . . , l}), where l is the length of � and LM(X) is the
set of type expressions in the raw syntax with free variables from a set X and the second
T refers to an element of LM({1, . . . , l + 1}) that is the image of the first T under the
map

LM({1, . . . , l}) → LM({1, . . . , l + 1})
1 There is also a simpler set of rules corresponding to the identity types in the extensional Martin-Löf type theory

(first published in [10]). Cartmell, in his notion of a strong M-L structure [3, p. 3.36], considers the set of rules for the
extensional theory.
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defined by the inclusion {1, . . . , l} ⊂ {1, . . . , l + 1}. In this case the map does not de-
pend on T. We should distinguish between Id as a structure on the C-system and the
corresponding syntactic construction (because they have different types). If we denote the
syntactic “identity types” by Ids T t1 t2 then for the sequence

�, x : T, y : T, e : Ids T x y;
to define an element of Ob(CC(LM,R)), the expression Ids T x y must refer to an element
of LM({1, . . . , l + 2}) and its form shows that we assume that there is an operation

Ids : LM × R × R → LM

(a natural transformation of functors that is a linear morphism of left R-modules) and
Ids T x y is the “named variables” notation for Ids

1,...,l+2(T, l + 1, l + 2).
We do not continue this explanation of how to construct J-structures on syntactic

C-systems. This will be done in a separate paper. Let us remark, however, that construct-
ing J-structures on syntactic C-systems is relatively easy, and that the difficult questions
about J-structures on such C-systems are those related to the initiality properties of the
resulting objects.

While constructing J-structures on syntactic C-systems is relatively straightforward,
constructing non-degenerate2 J-structures on semantic C-systems or categories with fam-
ilies proves to be very difficult.

The first instance of such a construction, due to Martin Hofmann and Thomas
Streicher, appeared in [7]. It was done in the language of categories with families and the
underlying category there was the category of groupoids.

The construction of Hofmann and Streicher was substantially extended and gen-
eralized in the Ph.D. thesis of Michael Warren [23, 24] and his subsequent papers such
as [25] and [1].

Further important advances were achieved in the work of Benno van den Berg and
Richard Garner [13].

The two main results of the first part of this paper provide a new approach to
the construction of J-structures on semantic C-systems, an approach that can be used to
construct the J-structure on the C-system of the univalent model.

Construction 2.2.18 provides a simple way of extending a J1-structure on a uni-
verse p : ˜U → U in a category C to a full J-structure.

Construction 2.4.16 provides a method of constructing a J-structure on the C-
system CC(C, p) from a J-structure on p.

Combined, they provide a method of constructing a J-structure on CC(C, p) from
a J1-structure on p.

2 See Remark 2.1.8 for the definition of degenerate J-structure.
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We also discuss two sets of conditions on a pair of classes of morphisms TC and
FB in a locally Cartesian closed category that can be used in combination with Con-
struction 2.2.18 to construct J-structures. These conditions often hold for the classes of
trivial cofibrations and fibrations in model categories (or categories with weak factoriza-
tion systems) providing a way of constructing C-systems with J-structures starting from
such categories.

In this paper we continue to use the diagrammatic order of writing composition of
morphisms, i.e., for f : X → Y and g : Y → Z the composition of f and g is denoted by
f ◦ g.

In this paper, as in the preceding papers [17, 19, 21, 22], we often have to consider
structures on categories that are not invariant under equivalences and their interaction
with structures that are invariant under equivalence.

The methods used in this paper are fully constructive and the paper is written in
“formalization ready” style, with all the proofs provided in enough detail to ensure that
there are no hidden difficulties for the formalization of all of the results presented here.

Except for the section that discusses the use of classes TC and FB, the methods we
use are also completely elementary in the sense that they rely only on the quasi-algebraic
language of categories with various structures.

The key Definition 2.2.11 and its relation to the J-structures on categories CC(C, p)

first appeared in [14].
The author would like to thank the Department of Computer Science and Engi-

neering of the University of Gothenburg and Chalmers University of Technology for its
hospitality during the work on this paper.

1.1. A note from the academic executor

After the death of Vladimir Voevodsky in September, 2017, Daniel Grayson was
appointed as the academic executor, in order to help arrange for the publication of his works.
This paper had been submitted for publication, comments had been received twice from
the referee, and Voevodsky had started rewriting the paper. Grayson has edited the paper,
following the advice of the referee, and has made additional changes. Where anything
substantively mathematical is involved, a footnote from the academic executor has been
inserted.3 In order to make it possible and convenient for readers to review Grayson’s
changes, all existing versions of the paper have been entered into a github repository, and
editing was done in an incremental fashion, with commit messages describing the work done
at each step. The repository is visible at

https://github.com/DanGrayson/VV-paths-Csystems-univ.

3 Note from the academic executor: ... such as this one.

https://github.com/DanGrayson/VV-paths-Csystems-univ
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The paper is visible as an entry in the archival record of Voevodsky’s work at

http://www.math.ias.edu/Voevodsky/voevodsky-publications_abstracts.html#1505.
06446,

and a link there will allow the reader to view all existing drafts of the paper. If those links
are ever broken, perhaps a search for the randomly chosen string

864338b2cec01ffb32fdaaa6bd8fafb803c070e7

will allow the files to be located.
The academic executor thanks Benedikt Ahrens for many useful contributions to

the editing process.

2. J-structures on C-systems and on universe categories

We begin by recalling the definition of “C-system” from [20]. C-systems were in-
troduced by John Cartmell ([3], [4, p. 237]) and studied further by Thomas Streicher
(see [11, Def. 1.2, p. 47]). Both authors used the name “contextual categories” for these
structures.

By a pre-category C we mean a pair of sets Mor(C) and Ob(C) with four maps

∂0, ∂1 : Mor(C) → Ob(C)

Id : Ob(C) → Mor(C)

and

◦ : Mor(C)∂1 ×∂0 Mor(C) → Mor(C)

which satisfy the well known conditions of unity and associativity (note that we write
composition of morphisms in the form f ◦ g or fg where f : X → Y and g : Y → Z). These
objects would usually be called categories but we reserve the name “category” for those
uses of these objects that are invariant under equivalence.

Definition 2.0.1. — A C0-system is a pre-category CC with additional structure of the form

1. a function l : Ob(CC) → N,

2. an object pt,

3. a map ft : Ob(CC) → Ob(CC),

4. for each X ∈ Ob(CC) a morphism pX : X → ft(X),

5. for each X ∈ Ob(CC) such that l(X) > 0 and each morphism f : Y → ft(X) an object

f ∗(X) and a morphism q(f ,X) : f ∗X → X,

http://www.math.ias.edu/Voevodsky/voevodsky-publications_abstracts.html#1505.06446
http://www.math.ias.edu/Voevodsky/voevodsky-publications_abstracts.html#1505.06446
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which satisfies the following conditions:

1. l−1(0) = {pt}
2. for X such that l(X) > 0 one has l(ft(X)) = l(X) − 1
3. ft(pt) = pt

4. pt is a final object,

5. for X ∈ Ob(CC) such that l(X) > 0 and f : Y → ft(X) one has l(f ∗(X)) > 0,

ft(f ∗X) = Y and the square

(2.1)

f ∗X
q(f ,X)−−−→ X

pf ∗X

⏐

⏐

�

⏐

⏐

�

pX

Y
f−−−→ ft(X)

commutes,

6. for X ∈ Ob(CC) such that l(X) > 0 one has id∗
ft(X)(X) = X and q(idft(X),X) = idX,

7. for X ∈ Ob(CC) such that l(X) > 0, g : Z → Y and f : Y → ft(X) one has

(gf )∗(X) = g∗(f ∗(X)) and q(gf ,X) = q(g, f ∗X)q(f ,X).

Remark 2.0.2. — In this definition pt stands for “point” and serves as our notation
for a final object of a category. The name “ft” stands for “father” which is the name given
to this map in [11, Def. 1.1].

For f : Y → X in CC we let ft(f ) : Y → ft(X) denote the composition f ◦ pX.

Definition 2.0.3. — A C-system is a C0-system together with an operation f �→ sf defined for

all f : Y → X such that l(X) > 0 and such that the following properties hold.

1. sf : Y → (ft(f ))∗(X),

2. sf ◦ p(ft(f ))∗(X) = 1Y,

3. sf ◦ q(ft(f ),X) = f ,

4. if X = g∗(U) where g : ft(X) → ft(U) then sf = sf ◦q(g,U).

From [20, Prop. 2.4] it follows that, in a C-system, the squares 2.1 are pullback
squares, and the maps sf are obtainable using the universal property of those pullback
squares.

Remark 2.0.4. — We record some identities for later reference.
In the case where Y = ft(X) and ft(f ) = 1X, and thus f is a section of pX, one has

the following identity.

(2.2) sf = f
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The formation of the section sf is natural in the sense that, for a map h : Z → Y, one has
the following identity.

(2.3) h∗(sf ) = sh◦f

In the case where one takes Y = X, and f = 1X, we let δ(X) denote the diagonal
morphism δ(X) := s1X : X → p∗

X(X).

(2.4) p∗
X(X)

q(pX,X)

pp∗
X(X)

X

pX

X
1X

pX

δ(X)

ft(X)

Using (2.3), one shows, for a map f : Y → X, the following identity.

(2.5) f ∗(δ(X)) = sf

Now we also recall the notations Obn(�) and Obwtn(�) from [19, §3], as well as
the notation ∂(o) from [20, §3].

Let � be an object in C. The set Obn(�) is the set of objects � of C such that
l(�) − n = l(�) and ftn(�) = �.

For n > 0, the set ˜Obn(�) is the set of morphisms of the form o : ft(�) → � for
some � ∈ Obn(�) that are sections of the corresponding canonical projection, i.e., where
o ◦ p� = 1; in that case ∂(o) denotes �.

Similarly, for an object � with l(�) > 0, we let ˜Ob(�) denote the set of sections
of p�.

Observe that sf above is an element of ˜Ob1(Y), and δ(X) above is an element of
˜Ob1(X).

2.1. The notion of J-structure on a C-system

To define the notion of “J-structure” on a C-system C we will actually define three
types of structure: a J0-structure, a J1-structure over a J0-structure, and a J2-structure
over a J1-structure—then a J-structure will be the same as a triple (Id, refl, J), where Id is
a J0-structure, refl is a J1-structure over Id, and J is a J2-structure over refl.

Definition 2.1.1. — A J0-structure on a C-system C is a family of functions

Id� : {(o1, o2) | o1, o2 ∈ ˜Ob1(�), ∂(o1) = ∂(o2)} → Ob1(�),

given for all � ∈ Ob, that is natural in �, i.e., such that for any f : �′ → �, one has the identity

(2.6) f ∗(Id�(o1, o2)) = Id�′(f ∗(o1), f ∗(o2)).
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When there is no risk of ambiguity, we will write Id(o1, o2) for Id�(o1, o2).

Definition 2.1.2. — Let Id be a J0-structure on C. A J1-structure over Id is a family of

functions

refl : ˜Ob1(�) → ˜Ob1(�)

given for all � ∈ Ob such that:

1. refl is natural in �,

2. for any � and o ∈ ˜Ob1(�) one has

(2.7) ∂(refl(o)) = Id�(o, o)

To define the notion of a J2-structure over a given J1-structure we will need to
describe two constructions first.

Problem 2.1.3. — Given a J0-structure Id, to construct a family of functions

Id3 : Ob1(�) → Ob3(�),

such that for f : �′ → � and T ∈ Ob1(�) one has f ∗(Id3(T)) = Id3(f
∗(T)).

Construction 2.1.4 (For Problem 2.1.3). — The objects and some of the morphisms
involved in this construction can be seen in the following diagram, in which the down-
ward maps are canonical projections.

(2.8) p∗
p∗

T(T)
(p∗

T(T)) p∗
T(T)

q(pT,T)

pp∗
T(T)

T

pT

p∗
T(T)

pp∗
T(T)

δ(p∗
T(T))p∗

p∗
T(T)

(δ(T))

T
pT

δ(T)

�

Since p∗
p∗

T(T)
(δ(T)) and δ(p∗

T(T)) are sections of the same canonical projection, we
may make the following definition.

(2.9) Id3(T) := Idp∗
T(T)(p

∗
p∗

T(T)(δ(T)), δ(p∗
T(T)))

The fact that Id3(T) ∈ Ob3(�) follows now from the fact that ft2(p∗
T(T)) = ft(T) = �.

The proof that Id3 is natural in f : �′ → � is omitted. �

Problem 2.1.5. — Given a J0-structure Id and a J1-structure refl over it, to con-
struct for all � ∈ Ob and T ∈ Ob1(�) a morphism

rfT : T → Id3(T)

over �, such that for any f : �′ → � one has f ∗(rfT) = rff ∗(T).
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Construction 2.1.6 (For Problem 2.1.5). — We have the following chain of equations.

δ(T)∗(Id3(T))

= δ(T)∗(Idp∗
T(T)((p

∗
p∗

T(T)(δ(T)))), δ(p∗
T(T))) (by Definition 2.9)

= IdT(δ(T)∗(p∗
p∗

T(T)(δ(T))), δ(T)∗(δ(p∗
T(T)))) (by naturality (2.6))

= IdT((δ(T) ◦ pp∗
T(T))

∗(δ(T)), δ(T)∗(δ(p∗
T(T)))) (by def ’n. of C-system)

= IdT((1T)∗(δ(T)), δ(T)∗(δ(p∗
T(T)))) (by def ’n. of C-system)

= IdT(δ(T), δ(T)∗(δ(p∗
T(T)))) (by def ’n. of C-system)

= IdT(δ(T), sδ(T)) (by (2.5))

= IdT(δ(T), δ(T)) (by (2.2))

This shows that we have the canonical square in the following diagram.

(2.10) Id�(δ(T), δ(T))
q(δ(T),Id3(T))

pId�(δ(T),δ(T))

Id3(T)

T
δ(T)

refl(δ(T))

rfT

p∗
T(T)

Since refl(δ(T)) is a morphism T → Id(δ(T), δ(T)) and is a section of the corresponding
canonical projection, we may introduce the following definition.

(2.11) rfT := refl(δ(T)) ◦ q(δ(T), Id3(T))

The proof that for any f : �′ → � one has f ∗(rfT) = rff ∗(T) is omitted. �

Definition 2.1.7. — Let Id and refl be a J0-structure and a J1-structure over it. A J2-
structure over (Id, refl) is data of the form: for all � ∈ Ob, for all T ∈ Ob1(�), for all

P ∈ Ob1(Id3(T)), for all s0 ∈ ˜Ob(rf∗T(P)), an element J(�,T,P, s0) of ˜Ob(P) such that:

1. J satisfies the ι-rule. For �,T,P, s0 as above one has

rf∗T(J(�,T,P, s0)) = s0

2. J is natural in �, i.e., for any f : �′ → � and T,P, s0 as above one has

f ∗(J(�,T,P, s0)) = J(�′, f ∗(T), f ∗(P), f ∗(s0)),

where the right hand side of the equation is well-defined because of the naturality in f of Id3

and rf∗.
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Remark 2.1.8. — A J0-structure is called degenerate or extensional if for all T ∈
Ob≥1(C) and o, o′ ∈ ˜Ob(T) one has4

˜Ob(Id3(o, o′)) =
{∅ if o �= o′

pt if o = o′

One can easily see that any two extensional J0-structures are equal and that any exten-
sional J0-structure has a unique extension to a full J-structure that is also called exten-
sional.

We will not consider these extensional versions of J in the present version of the
paper.

Remark 2.1.9. — When one studies J-structures on C-systems that have no (�,λ)-
structures it is important, as emphasized, for example, in [8], [6, Remark 2.4.1], and [12],
to consider a more complex structure than the one that we consider here.5 This more
complex structure can be seen as a family of structures eJn, where eJ0 = J (as above in Defi-
nition 2.1.7), and where eJn over (Id, refl) is a collection of data of the form: for all � ∈ Ob,
for all T ∈ Ob1(�), for all � ∈ Obn(Id3(T)), for all P ∈ Ob1(�), for all s0 ∈ ˜Ob(rf∗T(P)),
an element eJn(�,T,�, s0) in ˜Ob(P) such that eJn satisfies the obvious analogue of ι-rule
and such that it is natural in �. See also Remark 2.2.19.

2.2. The notion of J-structure on a universe in a category

Let C be a category,6 and let p : ˜U → U be a morphism in C. Recall [17] that a
universe structure on p is a choice of pullback squares of the form

(2.12) (X;F)
Q(F)

pX,F

˜U

p

X
F

U

for all objects X and all morphisms F : X → U . We refer to the pullbacks given by a
universe structure as canonical pullbacks. A universe in C is a morphism with a universe
structure on it, and a universe category is a category with a universe and a choice of a
final object pt.

4 The condition stated is the classical way of saying that there is an equivalence between the types ˜Ob(Id3(o, o′))
and (o = o′).

5 Note from the academic executor: So presumably, this paper will find its applications in situations where the
C-systems do have (�,λ)-structures.

6 Note from the academic executor: Not all of the constructions appearing in the sequel will be invariant under
equivalence of categories, and hence, in a formalization using Voevodsky’s Univalent Foundations, such categories will
not be assumed to be “univalent”. Indeed, in Voevodsky’s view, univalent categories are so important that non-univalent
categories shouldn’t even be called categories, hence the introduction of the term “C-system”.
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Definition 2.2.1. — Given a sequence of maps

Fi+1 : (. . . (X;F1); . . . ;Fi) → U

for each i, we will use the notation (X;F1, . . . ,Fn) for (. . . (X;F1); . . . ;Fn).

For f : W → X and g : W → ˜U satisfying f ◦F = g ◦p we will let f ∗ g : W → (X;F)

denote the unique morphism such that

(f ∗ g) ◦ pX,F = f(2.13)

(f ∗ g) ◦ Q(F) = g(2.14)

Observe that if h : W′ → W is a map, then

h ◦ (f ∗ g) = (h ◦ f ) ∗ (h ◦ g)(2.15)

When we need to distinguish canonical squares arising from different universe
structures we may write (X;F)p, Qp(F), and f ∗p g. We may also write (X;F)′ for (X;F)p′

and (X;F)′
i for (X;F)p′

i
, and similarly for Q(F).

Remark 2.2.2. — Note that we made no assumption about Q(1U) being equal
to 1

˜U . In fact, since we want the results of this paper to be constructive, we are not allowed
to make such an assumption, since whether a morphism is an identity morphism need not
be decidable, and therefore we can not normalize a construction of a universe structure
by doing something different when a morphism is not the identity. The importance of
this observation (in the context of whether a simplex is degenerate) was emphasized by
[2].

Definition 2.2.3. — For X′ f→ X
F→ U we let Q(f ,F) denote the morphism

(pX′,f ◦F ◦ f ) ∗ Q(f ◦ F) : (X′; f ◦ F) → (X;F)

As shown in [17, Lemma 2.3], the left hand square in the following diagram is a
pullback square.

(2.16) (X′; f ◦ F)
Q(f ,F)

Q(f ◦F)

pX′,f ◦F

(X;F)

pX,F

Q(F)

˜U

p

X′ f

f ◦F

X
F

U
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Following [21, 2.30] we define for any universe p : ˜U → U and any V ∈ C a con-
travariant functor from C to the category of sets,

Dp(−,V) : X �→ �F:X→UHom((X;F),V).

For F : X → U and G : (X;F) → V, the corresponding element of Dp(X,V) will be
written as the pair (F,G). The action of the functor on a morphism f : X′ → X is given
by

Dp(f ,V) : (F,G) �→ (f ◦ F,Q(f ,F) ◦ G).

Recall that for an object X of C, the slice category C/X is the category whose objects
are morphisms p : Y → X of C, and whose morphisms from p : Y → X to p′ : Y′ → X
are those morphisms f : Y → Y′ that make the evident triangle commute. We may also
use (Y, p) as notation for the object p, to prevent ambiguity. When C is locally Cartesian
closed, then the slice categories are Cartesian closed, and we use Hom((Y, p), (Y′, p′)) to
denote the internal Hom in the slice category.

When C is a locally Cartesian closed category, any morphism p : ˜U → U defines a
functor

Ip : C → C/U

which sends an object V to

Ip(V) := Hom((˜U , p), (U × V,pr1)).

We denote by

(2.17) prIp(V) : Ip(V) → U

the arrow of Ip(V).
We have constructed in [21, Construction 2.6.4] (originally in [18, Construc-

tion 3.9]) a family of bijections

η!
p,X,V : Hom(X, Ip(V)) → Dp(X,V),

which are natural in X and V. We let η!−1 denote the inverse bijections

η!−1
p,X,V : Dp(X,V) → Hom(X, Ip(V)).

For F : X → U and G : (X;F) → V, we will abbreviate η!−1
p,X,V(F,G) to η!−1

p (F,G); this
should cause no confusion, because X and V are determined by F and G. Similarly, for
H : X → Ip(V), we will abbreviate η!

p,X,V(H) to η!
p(H), provided that X and V can be

determined from the context. We may even write η! for η!
p and η′ ,! for η!

p′ .
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Using the functorial structure on the mapping V �→ (U × V,pr1) together with the
naturality of internal Hom-objects in the second argument we get a functoriality structure
on Ip,

(f : V → V′) �→ (Ip(f ) : Ip(V) → Ip(V′)).

Similarly, using the functoriality of Hom in the second argument (see, e.g., [21, §4.2])
we obtain, for any universe p : ˜U → U , any universe p′ : ˜U ′ → U , any map h : ˜U ′ → ˜U
over U , and object V, a morphism

Ih(V) : Ip(V) → Ip′(V).

Lemma 2.2.4. — Given a map f : V → V′ and a map h : ˜U ′ → ˜U over U , as in the notation

introduced above, the following square is commutative.

Ip′(V)
Ip′ (f )

Ih(V)

Ip′(V′)

Ih(V′)

Ip(V)
Ip(f )

Ip(V′)

Proof. — This is a particular case of the commutative square of [21, Lemma 4.1.5].
�

Lemma 2.2.5. — Let p : ˜U → U and p′ : ˜U ′ → U be two morphisms with universe structures

and f : ˜U ′ → ˜U be a morphism over U . For V ∈ C let If (V) be the corresponding morphism Ip′(V) →
Ip(V). Then for any X the square

Dp(X,V)
η!−1

p,X,V

Df (X,V)

Hom(X, Ip(V))

−◦If (V)

Dp′(X,V)
η!−1

p′,X.V

Hom(X, Ip′(V)),

where the left hand vertical arrow is defined by

Df (X,V) : (F,F′) �→ (F,F∗(f ) ◦ F′),

commutes.
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Proof. — Since η!−1 is defined as an inverse to η! it is sufficient to show that for any
g ∈ Hom(X, Ip(V)) one has η′ ,!(g ◦ If (V)) = Df (X,V)(η!(g)). Let

pr = prIp(V) : Ip(V) → U
pr′ = prIp′(V) : Ip′(V) → U

(cf. (2.17)) be the canonical projections. Let

st = stp(V) : (Ip(V);pr) → V

st′ = stp′(V) : (Ip′(V);pr′)′ → V

be the morphisms introduced in [21, (2.60)]. By the definition introduced in [21, (2.65)]
we have

η′ ,!(g ◦ If (V)) = (g ◦ If (V) ◦ pr′,Q′(g ◦ If (V),pr′) ◦ st′)

and

Df (X,V)(η!(g)) = Df (X,V)(g ◦ pr,Q(g,pr) ◦ st)

= (g ◦ pr, (g ◦ pr)∗(f ) ◦ Q(g,pr) ◦ st).

Therefore it is sufficient to show that

If (V) ◦ pr′ = pr(2.18)

and

Q′(g ◦ If (V),pr′) ◦ st′ = (g ◦ pr)∗(f ) ◦ Q(g,pr) ◦ st.(2.19)

The first equality asserts that If (V) is a morphism over U , which follows from its con-
struction.

By Lemma 3.1.1 we have

(g ◦ pr)∗(f ) ◦ Q(g,pr) = Q′(g,pr) ◦ pr∗(f ).

Next we have the following equations.

Q′(g ◦ If (V),pr′)

= Q′(g, If (V) ◦ pr′) ◦ Q′(If (V),pr′) (by [17, Lemma 2.5])

= Q′(g,pr) ◦ Q′(If (V),pr′) (by 2.18)

It remains to check that

Q′(If (V),pr′) ◦ st′ = pr∗(f ) ◦ st.



MARTIN-LÖF IDENTITY TYPES IN C-SYSTEMS 15

This requires opening up the definitions [21, (2.60)] of st and st′, which gives us

Q′(If (V),pr′) ◦ ι′ ◦ ev′ ◦ pr2 = pr∗(f ) ◦ ι ◦ ev ◦ pr2.

It will suffice to prove the following equation:

(2.20) Q′(If (V),pr′) ◦ ι′ ◦ ev′ = pr∗(f ) ◦ ι ◦ ev.

We will obtain Equation (2.20) as a consequence of commutativity of the three squares in
the following diagram.

(2.21) (Ip(V);pr)′
pr∗(f ) Q′(If (V),pr)

ι′(Ip(V);pr)

ι

(Ip′(V);pr′)′

ι′(Ip(V),pr) ×U (˜U ′, p′)

1×f If (V)×1

(Ip(V),pr) ×U (˜U , p)
ev

(Ip′(V),pr′) ×U (˜U ′, p′)
ev′

U × V

The top two squares are particular cases of [21, Lemma 4.1.3] applied to the category of
objects over U ; the maps ι and ι′ are defined in the statement of the lemma. To obtain the
upper right square one sets b = 1

˜U ′ and a = If (V). To obtain the upper left square one
sets b = f and a = 1Ip(V). The lower square is a particular case of [21, Lemma 4.1.6]. �

Definition 2.2.6. — A J0-structure on a universe p in a category C is a morphism Eq :
(˜U; p) → U .

Let Eq be a J0-structure on p. Consider the object7

E˜U := (˜U; p,Eq)

of C together with the composite

E˜U
p(˜U;p),Eq−−−−→ (˜U; p)

p
˜U ,p−−→ ˜U p−→ U

of projections as an object over U ; let pE˜U denote that composite map.

7 Note from the academic executor: As introduced in 2.2.1, (˜U; p,Eq) is notation for ((˜U; p);Eq).
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Problem 2.2.7. — To construct a universe structure on pE˜U .

Construction 2.2.8 (For Problem 2.2.7). — The three squares in the following dia-
gram are pullback squares.

(2.22) (X;F,Q(F) ◦ p,Q(Q(F), p) ◦ Eq)
Q(Q(Q(F),p),Eq)

p(X;F,Q(F)◦p),Q(Q(F),p)◦Eq

(˜U; p,Eq)

p(˜U;p),Eq

pE˜U

(X;F,Q(F) ◦ p)
Q(Q(F),p)

p(X;F,Q(F)),p

(˜U; p)

p
˜U ,p

(X;F)
Q(F)

pX,F

˜U

p

X
F

U

Remarking that the composite of the right-hand vertical maps is pE˜U , we define the
canonical square for F relative to pE˜U to be the square obtained by concatenating these
three squares. �

Let us denote the components of the canonical squares for pE˜U as follows:

(2.23) (X;F)E

Q(F)E

pE
X,F

E˜U

pE˜U

X
F

U

Explicitly we have

(X;F)E = (X;F,Q(F) ◦ p,Q(Q(F), p) ◦ Eq)(2.24)

Q(F)E = Q(Q(Q(F), p),Eq)(2.25)

pE
X,F = p(X;F,Q(F)◦p),Q(Q(F),p)◦Eq ◦ p(X;F),Q(F)◦p ◦ pX,F(2.26)

Definition 2.2.9. — For any map f : X′ → X, we will write Q(f ,F)E for the canonical

morphism from (X; f ◦F)E to (X;F)E, defined analogously to Definition 2.2.3. It fits into the following
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diagram.

(2.27) (X′; f ◦ F)E
Q(f ,F)E

Q(f ◦F)E

pE
X′,f ◦F

(X;F)E

pE
X,F

Q(F)E

E˜U

pE˜U

X′ f

f ◦F

X
F

U

Definition 2.2.10. — Let p : ˜U → U be a universe in C and Eq be a J0-structure on p.

A J1-structure on p over Eq is a morphism � : ˜U → ˜U such that the square

(2.28) ˜U
�

�

˜U

p

(˜U; p)
Eq

U ,

where � := (1
˜U) ∗ (1

˜U) is the diagonal of ˜U , commutes.

The square (2.28) defines a morphism ˜U → E˜U , which will be denoted by ω, as in the following

diagram.

(2.29) ˜U
ω

�

�

E˜U
Q(Eq)

p(˜U;p),Eq

˜U

p

(˜U; p)
Eq

U

To define a J2-structure on a universe we will need to assume that C is a lo-
cally Cartesian closed category. Recall that a locally Cartesian closed category is a cat-
egory with the choice of fiber squares based on all pairs of morphisms with a common
codomain as well as the choice of relative internal Hom-objects and co-evaluation mor-
phisms for all such pairs. For our notation related to the locally Cartesian closed cate-
gories as well as for some other notations used below see [19, 21, 22].
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When a universe is considered in a locally Cartesian closed category we make no
assumption about the compatibility of choices of the pullback squares of the universe
structure on p and pullback squares of the locally Cartesian closed structure.

Consider the functors Ip and IpE˜U . We have the following commutative square:

(2.30) IpE˜U(˜U)
Iω(˜U)

IpE˜U (p)

Ip(˜U)

Ip(p)

IpE˜U(U)
Iω(U)

Ip(U)

and therefore a morphism

coJ : IpE˜U (˜U) −→ (IpE˜U(U), Iω(U)) ×Ip(U) (Ip(˜U), Ip(p))

Definition 2.2.11. — A J2-structure on p : ˜U → U , relative to a J0-structure Eq and a

J1-structure � over Eq, is a morphism

Jp : (IpE˜U(U), Iω(U)) ×Ip(U) (Ip(˜U), Ip(p)) → IpE˜U (˜U)

such that Jp ◦ coJ = 1.

Definition 2.2.12. — A J-structure on p : ˜U → U is a triple (Eq,�, Jp), where Eq is a

J0-structure, � is a J1-structure relative to Eq, and Jp is a J2-structure relative to Eq and �.

Definition 2.2.13. — Let Fp = FpEq,� denote the fiber product

(IpE˜U(U), Iω(U)) ×Ip(U) (Ip(˜U), Ip(p))

and let pFpEq,� be the projection FpEq,� → U . Let further pr1 be the projection from Fp to IpE˜U (U),

and let pr2 be the projection from Fp to Ip(˜U).

Note that we have the following two equations.

(2.31) Jp ◦ IpE˜U(p) = Jp ◦ coJ ◦ pr1 = pr1

(2.32) Jp ◦ Iω(˜U) = Jp ◦ coJ ◦ pr2 = pr2

Definition 2.2.14. — Let C be a Cartesian closed category. For any objects X, Y, Z of C, we

let

adj : Hom(X,Hom(Y,Z))
∼=−→ Hom(X × Y,Z)

denote the corresponding adjunction bijection.
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Remark 2.2.15. — We will use the adjunction adj as follows. Consider the map
pr1 : Fp → IpE˜U (U) = HomU(E˜U ,U × U) over U . Applying adj yields a map adj(pr1) :
Fp ×U E˜U → U ×U over U . Composing with pr2 : E˜U ×U → U yields a map adj(pr1) ◦
pr2 : Fp ×U ˜U → U (not over U ).

The same reasoning yields the map adj(pr2) ◦ pr2 : Fp ×U ˜U → ˜U .
These maps will be used below.

Our solution to the following problem is the key to the construction of J-structures
over a given J1-structure in categories with weak factorization systems, particularly in
Quillen model categories.

Problem 2.2.16. — Let C be a category with a locally Cartesian closed struc-
ture and Eq,� be a J1-structure on (C, p). To construct a bijection between the set of
J-structures on p over (Eq,�) and the set of morphisms (Fp,pFp) ×U (E˜U , pE˜U) → ˜U
that split the following commutative square into two commutative triangles:

(2.33) (Fp,pFp) ×U (˜U , p)
adj(pr2)◦pr2

1Fp×ω

˜U

p

(Fp,pFp) ×U (E˜U , pE˜U)
adj(pr1)◦pr2

U

(Commutativity of the square follows from the naturality of the adjunction adj and the
equation pr1 ◦ Iω(U) = pr2 ◦ Ip(p).)

Remark 2.2.17. — If we omit, as is customarily done, the explicit functions to the
base in the notation of the fiber products, then the square (2.33) takes the following form.

(2.34) (IpE˜U(U) ×Ip(U) Ip(˜U)) ×U ˜U
adj(pr2)◦pr2

1Fp×ω

˜U

p

(IpE˜U(U) ×Ip(U) Ip(˜U)) ×U E˜U
adj(pr1)◦pr2

U

Construction 2.2.18 (For Problem 2.2.16). — Observe first that there is a bijection
between the set of morphisms

(Fp,pFp) ×U (E˜U , pE˜U) → ˜U
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that split the square (2.33) into two commutative triangles and the set of morphisms

(Fp,pFp) ×U (E˜U , pE˜U) → U × ˜U

that split into two commutative triangles the commutative square:

(Fp,pFp) ×U (˜U , p)
adj(pr2)

1Fp×ω

U × ˜U

1U×p

(Fp,pFp) ×U (E˜U , pE˜U)
adj(pr1)

U × U

The rule f �→ adj(f ) gives us a bijection of the form

HomU ((Fp,pFp), (IpE˜U(˜U),_))

→ HomU ((Fp,pFp) ×U (E˜U , pE˜U), (U × ˜U ,pr2))

All sections of coJ are automatically morphisms over U . Therefore it remains to show that
this bijection defines a bijection of the subset of morphisms that are sections of coJ and
morphisms that make the two triangles commutative.

One verifies first that a morphism f : Fp → IpE˜U (˜U) is a section of coJ if and only if
f ◦ IpE˜U (p) = pr1 and f ◦ Iω(˜U) = pr2. This is omitted.

Next we have

IpE˜U(p) = HomU ((E˜U , pE˜U),1U × p)

Iω(˜U) = HomU (ω, (U × ˜U ,pr2))

Therefore by [21, Lemma 4.1.7] one has

adj(f ◦ IpE˜U (p)) = adj(f ) ◦ (1U × p) and

adj(f ◦ Iω(˜U)) = (1Fp ×U ω) ◦ adj(f ),

and we conclude that f is a section of coJ if and only if

adj(f ) ◦ (1U × p) = adj(pr1) and

(1Fp ×U ω) ◦ adj(f ) = adj(pr2).

These two equations are the ones that assert the two triangles involving adj(f ) commute.
This completes the construction. �
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Remark 2.2.19. — It is likely to be relatively easy to generalize the constructions
of this paper to the extended J-structures eJn (see Remark 2.1.9). The structures eJpn can
be defined in the same way as Jp but with the square (2.30) replaced by the square

(2.35) IpE˜U (Inp(˜U))
Iω(Inp(˜U))

IpE˜U (Inp(p))

Ip(Inp(˜U))

Ip(I
n
p(p))

IpE˜U (Inp(U))
Iω(Inp(U))

Ip(Inp(U))

2.3. J-structures on universes in categories with two classes of morphisms

Recall that a collection of morphisms R is said to have the right lifting property for
the collection of morphisms L if for any commutative square of the form

Z
fZ

i

E

p

W
fW

B

such that i ∈ L and p ∈ R there exists a morphism g : W → E that makes the two triangles
into which it splits the square commute, i.e., a morphism g such that i ◦ g = fZ and g ◦ p =
fW.

We are going to consider two sets of conditions (Conditions 2.3.2 and 2.3.4) on a
pair of classes of morphisms FB and TC in a category with fiber products and then show
in Theorems 2.3.3 and 2.3.9 how pairs satisfying conditions of each of these two sets can
be used to construct J-structures on elements of FB.

Remark 2.3.1. — This is the only part of the paper where we depart from con-
structions that are conservatively algebraic over the theory of categories, i.e., from con-
structions that can be expressed in terms of adding new quasi-algebraic operations to the
theory of categories without adding new sorts to this theory.

Considering classes of morphisms in categories can be expressed in the quasi-
algebraic way, but this requires adding new sorts to the theory.

This is also the only context where we use the concept “there exists” in this paper.
In all the previous cases the objects that we considered were given (specified). To make
the lemmas proved below into constructions and to avoid the use of “there exists” one
would have to define the collection FB as a collection of pairs of a morphism p together
with, for all i ∈ TC, fW and fZ such that fZ ◦ p = i ◦ fW, a morphism g such that i ◦ g = fZ
and g ◦ p = fW.
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Our first set of conditions is as follows:

Conditions 2.3.2. 1. A morphism is in FB if and only if it has the right lifting property

for TC,

2. consider morphisms f : B′ → B, p1 : E1 → B, p2 : E2 → B and i : E1 → E2 such that

p1, p2 ∈ FB, i ◦ p2 = p1, and i ∈ TC. Then the morphism

1B′ × i : (B′, f ) ×B (E1, p1) → (B′, f ) ×B (E2, p2)

is in TC.

Theorem 2.3.3. — Let FB and TC be two classes of morphisms in a locally Cartesian closed

category C that satisfy Conditions 2.3.2. Let p : ˜U → U be a universe in C, let Eq be a J0-structure

on p, and let � be a J1-structure over Eq. Assume further that:

1. p is in FB,

2. ω : ˜U → E˜U is in TC (see Definition 2.2.10 for the definition of ω).

Then there exists an extension of (Eq,�) to a full J-structure on p.

Proof. — Let us apply Construction 2.2.18 to (Eq,�). To construct the required
morphism it is sufficient to establish that 1Fp × ω is in TC. It follows from the first of our
conditions that FB is closed under pullbacks and compositions. Therefore, pE˜U is in FB.
It remains to apply the second of our conditions. �

Our second set of conditions is more involved. Conditions of this set can be satisfied
in the situations arising when one attempts to localize Quillen model structures and when
the resulting sets of morphisms do not form a model structure. The difference is mainly
concerned with the fact that the good behavior is required only for fibrations over fibrant
objects. One particular example of such a situation is considered in [15, Section 3.3].

Conditions 2.3.4. 1. 1pt is in FB,

2. let B be such that the morphism B → pt is in FB, then a morphism p : E → B is in FB if

and only if it has the right lifting property for TC,

3. if p : E → B and B → pt are in FB, i : Z → W is in TC and f : W → B is an arbitrary

morphism, then

(i ×U 1E) : (Z, i ◦ f ) ×B (E, p) → (W, f ) ×B (E, p)

is in TC.

We will say that B is fibrant if the morphism B → pt is in FB.
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Lemma 2.3.5. — Assume Conditions 2.3.4 are satisfied. Let p : E → B be in FB and f :
B′ → B be a morphism. Assume in addition that B and B′ are fibrant, then for any pullback square of

the form

E′

p′

E

p

B′ f

B

the morphism p′ is in FB.

Proof. — Since B′ is fibrant it is sufficient to verify that p′ has the right lifting prop-
erty for TC. This can be shown in the standard way to be a consequence of p having the
right lifting property for TC. That p has this property we know because p is in FB and B
is fibrant. �

Lemma 2.3.6. — Assume Conditions 2.3.4 are satisfied. Let B be fibrant and p2 : E2 → E1,

p1 : E1 → B be in FB. Then p2 ◦ p1 is in FB.

Proof. — Let us show first that E1 is fibrant, i.e., that πE1 : E1 → pt is in FB. Since
pt is fibrant it is sufficient to show that πE1 has the right lifting property for TC. It is
shown in the standard way from the fact that both p1 and πB : B → pt have the right
lifting property for TC and πE1 = p1 ◦ πB.

Since E1 is fibrant we know that p2 has the right lifting property for TC, and since
B is fibrant we know that p1 has the right lifting property for FB. From this we conclude in
the standard way that p2 ◦ p1 have the right lifting property for TC, and since B is fibrant
this implies that p2 ◦ p1 is in FB. �

Lemma 2.3.7. — Assume Conditions 2.3.4 are satisfied. Assume that U ,V are fibrant and

that p : ˜U → U is in FB. Then the morphism prIp(V) : Ip(V) → U is in FB.

Proof. — Since U is fibrant it is sufficient to check that pr = prIp(V) has the right
lifting property for TC. Consider a commutative square of the form

Z
fZ

i

HomU((˜U , p), (U × V,pr1))

pr

W
fW

U

We need to construct a morphism f : W → HomU((˜U , p), (U × V,pr1)) that would make
the two triangles commutative. The commutativity of the lower triangle means that f is
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a morphism over U which is equivalent to the assumption that f = adj−1(g) for some
g : (W, fW) ×U (˜U , p) → U × V over U .

Consider the following square.

(Z, i ◦ fW) ×U (˜U , p)
adj(fZ)

i×1
˜U

U × V

pr1

(W, fW) ×U (˜U , p) U

Here the bottom horizontal arrow is the projection to U . By Lemma 2.3.5 we know
that pr1 belongs to FB. By our assumptions on TC and FB we know that i × 1

˜U is in
TC. Therefore there exists a morphism g : (W, fW) ×U (˜U , p) → U × V that makes the
two triangles commute. The commutativity of the lower triangle means that this is a
morphism over U . Therefore adj−1(g) is defined. Set f = adj−1(g). It remains to check
that i ◦ f = fZ. This is equivalent to adj(i ◦ f ) = adj(fZ). Since adj(i ◦ f ) = (i × 1

˜U) ◦
adj(f ) by [18, Lemma 8.7(3)], this is equivalent to (i × 1

˜U ) ◦ g = adj(fZ) which is the
commutativity of the upper triangle. �

Lemma 2.3.8. — Assume Conditions 2.3.4 are satisfied. Assume that U and V are fibrant and

that p : ˜U → U and r : V′ → V are in FB. Then Ip(r) : Ip(V′) → Ip(V) is in FB.

Proof. — By Lemmas 2.3.7 and 2.3.6 we know that Ip(V) is fibrant. Therefore it is
sufficient to show that Ip(r) has the right lifting property for TC. Consider a commutative
square of the form

(2.36) Z
fZ

i

HomU ((˜U , p), (U × V′,pr1))

HomU ((˜U ,p),1U×r)

W
fW

HomU((˜U , p), (U × V,pr1))

The lower right corner is an object over U through the morphism p�pr1. Let pW =
fW ◦ (p�prU ,V

U ) and

pZ = i ◦ pW = fZ ◦ (p�prU ,V′
U ).

Consider the square

(2.37) (Z,pZ) ×U (˜U , p)
adj(fZ)

i×1
˜U

U × V′

1U×r

(W,pW) ×U (˜U , p)
adj(fW)

U × V
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This square commutes. Indeed,

adj(fZ) ◦ (1U × r) = adj(fZ ◦ HomU((˜U , p),1U × r))

= adj(i ◦ fW)

= (i × 1
˜U ) ◦ adj(fW),

where the first equality is by [18, Lemma 8.7(1)] and the third by [18, Lemma 8.7(3)]. By
Lemmas 2.3.5 and 2.3.6 we know that 1U × r is in FB. By our assumption (3) on FB and
TC we know that i × 1

˜U is in TC. Therefore, there exists a morphism g : (W,pW) ×U
(˜U , p) → U × V′ that splits this square into two commutative triangles. Since the lower
triangle commutes, g is a morphism over U and, in particular, g = adj(f ) for some f :
W → HomU ((˜U , p), (U × V′,pr1)). Let us show that f splits the square (2.36) into two
commutative triangles, i.e., that we have i ◦ f = fZ and f ◦ HomU((˜U , p),1U × r) = fW.

The first equality is equivalent to adj(i ◦ f ) = adj(fZ) which is equivalent, by [18,
Lemma 8.7(3)] to (i × 1

˜U ) ◦ g = adj(fZ), which is the commutativity of the upper of the
two triangles into which g splits (2.37).

The second equality is equivalent to adj(f ◦HomU((˜U , p),1U × r)) = adj(fW), which
is equivalent by [18, Lemma 8.7(1)] to g ◦ (1U × r) = adj(fW), which is the commutativity
of the lower of the two triangles into which g splits (2.37). �

We can now prove the second main theorem of this section.

Theorem 2.3.9. — Let (C, p, pt) be a universe category, let C be given a locally Cartesian

closed structure and let TC and FB be two collections of morphisms in C that satisfy Conditions 2.3.4.

Let further Eq : (˜U; p) → U be a J0-structure on p, and let � : ˜U → ˜U be a J1-structure over Eq.

Assume that the following conditions hold:

1. U is fibrant,

2. p : ˜U → U is in FB,

3. the map ω : ˜U → E˜U constructed in (2.29) is in TC.

Then there exists a J2-structure Jp relative to Eq and �.

Proof. — Let us use the notation of Problem 2.2.16. We need to show that under
the assumptions of the current theorem there exists a morphism that splits the square of
Problem 2.2.16 into two commutative triangles. Observe first that constructing such a
splitting is equivalent to constructing the splitting of the square

(˜U , p) ×U (Fp,pFp)
σ◦adj(pr2)

ω×1Fp

U × ˜U

1U×p

(E˜U , pE˜U) ×U (Fp,pFp)
σ ′◦adj(pr1)

U × U ,
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where

σ : (˜U , p) ×U (Fp,pFp) → (Fp,pFp) ×U (˜U , p)

σ ′ : (E˜U , pE˜U) ×U (Fp,pFp) → (Fp,pFp) ×U (E˜U , pE˜U)

are permutations of the factors.
It is easy to show that U ×U is fibrant. Therefore it is sufficient to show that 1U × p

is in FB and ω ×U 1Fp is in TC. The first fact follows from the assumption that p is in FB
and that U is fibrant. To obtain the second fact let us apply condition (3) on the classes
FB and TC to B = U , f = pE˜U , i = ω and p = pFp. It remains to show that pFp is in FB.
We can represent pFp as the composition

Fp
pr1→ IpE˜U (U)

prIpE˜U→ U

The morphism pE˜U is in FB as a composition of pullbacks of p with respect to mor-
phisms with fibrant domains through repeated application of Lemmas 2.3.5 and 2.3.6.
Therefore, the morphism prIpE˜U is in FB by Lemma 2.3.7 and as a corollary we know
that IpE˜U(U) is fibrant. Similarly Ip(U) is fibrant and Ip(p) is in FB and applying again
Lemma 2.3.5 we see that pr1 is in FB. And again by Lemma 2.3.6 we see that pFp is in
FB which finishes the proof of the theorem. �

Corollary 2.3.10. — Let C be a locally Cartesian closed category with a Quillen model struc-

ture, p a universe in C and (Eq,�) a J1-structure on p. Assume further that p is a fibration and

ω : ˜U → E˜U is a trivial cofibration and that in addition one of the following two conditions holds:

1. consider morphisms f : B′ → B, p1 : E1 → B, p2 : E2 → B and i : E1 → E2 such that

p1, p2 are fibrations, i ◦ p2 = p1, and i is a trivial cofibration. Then the morphism

1B′ × i : (B′, f ) ×B (E1, p1) → (B′, f ) ×B (E2, p2)

is a trivial cofibration; or

2. U is fibrant and the pullback of a trivial cofibration along a fibration is a trivial cofibration.

Then (Eq,�) can be extended to a full J-structure on p.

The following result can be used to produce many examples of (non-univalent)
universes with J-structures.

Let C be a locally Cartesian closed category with coproducts �n∈NXn of sequences
of objects. We let inn : Xn → �nXn the canonical inclusion. Given a sequence of maps fn :
Xn → Y, we let 〈fn〉n : �nXn → Y denote the associated morphism. Given two sequences
of objects, Xn and Yn, along with a sequence of maps fn : Xn → Yn, we let �fn : �nXn →
�nYn denote the morphism 〈fn ◦ inn〉n.
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Assume that these coproducts satisfy the following two conditions:

1. for a sequence of morphisms fn : En → Bn the square

�n(En, fn) ×Bn
(En, fn)

�npr2

�npr1

�nEn

�nfn

�nEn

�nfn �nBn

is a pullback square,
2. for a sequence of morphisms fn : En → Bn the square

�nEn+1

〈inn+1〉n

�nfn+1

�nEn

�nfn

�nBn+1

〈inn+1〉n �nBn

is a pullback square.

Problem 2.3.11. — Let C be as above FB and TC two classes of morphisms satis-
fying one of the sets of Conditions 2.3.4 or 2.3.2. Assume in addition the following:

1. the coproduct of a sequence of morphisms from TC is in TC and the coproduct
of a sequence of morphisms from FB is in FB,

2. the composition of a morphism from TC with an isomorphism is in TC,
3. for any morphism f : X → Y there is given an object P(f ) and morphisms

if : X → P(f ), qf : P(f ) → Y such that if ∈ TC, qf ∈ FB and f = if ◦ qf .

To construct, for any universe p : ˜U → U such that p ∈ FB a sequence of morphisms
pn : ˜Un → Un such that p0 = p, pn ∈ FB and �np, with the universe structure defined by
the fiber squares of C, has a J-structure with ω ∈ TC.

Construction 2.3.12 (For Problem 2.3.11). — Define pn : ˜Un → Un inductively as
follows. For n = 0 we take p0 = p. To define pn+1 consider the diagonal �n : ˜Un →
(˜Un,pn) ×Un

(˜Un,pn) and let

pn+1 = q�n
: P(�n) → (˜Un,pn) ×Un

(˜Un,pn)

so that, in particular, Un+1 = (˜Un,pn) ×Un
(˜Un,pn).

Let U∗ = �nUn, ˜U∗ = �n
˜Un and p∗ = �npn. According to the first of the two prop-

erties that we required from the coproducts the canonical morphism

ι : �n(˜Un,pn) ×Un
(˜Un,pn) → (˜U∗,p∗) ×U∗ (˜U∗,p∗)
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is an isomorphism. Together with the second property applied to the right-most square
this gives us a diagram with pullback squares of the form:

�n
˜Un+1

=

r◦ι

�n
˜Un+1

=

r

�n
˜Un+1

〈inn+1〉n

r

˜U∗

p∗

(˜U∗,p∗) ×U∗ (˜U∗,p∗)
ι−1

�n(˜Un,pn) ×Un
(˜Un,pn)

= �nUn+1

〈inn+1〉n

U∗,

where r = �npn+1. Define Eq as the composition of the lower horizontal arrows of this
diagram (up to an isomorphism this is just 〈inn+1〉n). Since the squares of the diagram are
pullback squares, the natural morphism

ι′ : �n
˜Un+1 → ((˜U∗,p∗) ×U∗ (˜U∗,p∗),Eq)U∗(

˜U∗,p∗)

is an isomorphism. Define

� = (�ni�n
) ◦ ι′ ◦ 〈inn+1〉n

such that then

ω = (�ni�n
) ◦ ι′.

By our assumptions ω ∈ TC and then by Theorem 2.3.3 if FB and TC satisfied Condi-
tions 2.3.2 or by Theorem 2.3.9 if FB and TC satisfied Conditions 2.3.4 we conclude that
(Eq,�) can be extended to a full J-structure on p∗. �

2.4. Constructing a J-structure on CC(C, p) from a J-structure on p

The construction of a C-system CC(C, p) from a category with a universe p and a
final object pt was presented in [17] and summarized in [18]. Let us recall some facts and
notation. The underlying category of CC(C, p) is equipped with a functor int to C. Note
that while int is the identity function on Hom-sets by the construction of CC(C, p), the
notations for an element of Hom(�′,�) = Hom(int(�′), int(�)) may differ. In particular,
for f : �′ → � in CC(C, p) and F : int(�) → U in C, we have the following equation.8

(2.38) q(f , (�,F)) = Q(f ,F).

8 Note from the academic executor: The notation (�,F) refers to the inductive construction of objects of CC(C, p)
presented in [17]. Here � is an object of CC(C, p), so (�,F) is a new object of CC(C, p), with ft(�,F) = � and int(�,F) =
(�;F). In the equation displayed, the left side, q(f , (�,F)), refers to the C-system structure on CC(C, p), while the right
side, Q(f ,F), refers to the universe structure on C. The equation follows from the definition [17, 2.6 (4)].
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For each � ∈ Ob(CC(C, p)) we have natural bijections

u1 = u1,� : Ob1(�)
∼=−→ Hom(int(�),U)(2.39)

ũ1 = ũ1,� : ˜Ob1(�)
∼=−→ Hom(int(�), ˜U),(2.40)

where u−1
1 (F) = (�,F) and where

(2.41) ũ1(s) = s ◦ Q(u1(∂(s))).

In particular,

ũ1(s) ◦ p = s ◦ Q(u1(∂(s))) ◦ p = s ◦ p∂(s) ◦ u1(∂(s)) = u1(∂(s)),

i.e., with respect to these bijections the function ∂ : ˜Ob1(�) → Ob1(�) is given by com-
position with p : ˜U → U .

Problem 2.4.1. — Let Eq : (˜U; p) → U be a J0-structure on a universe p in a cate-
gory C. To construct a J0-structure on CC(C, p).

Construction 2.4.2 (For Problem 2.4.1). — Since the canonical squares given by the
universe structure on p are pullback squares, the bijections u1 and ũ1 give us a bijection

ũu : {o, o′ ∈ ˜Ob1(�) | ∂(o) = ∂(o′)} ∼=−→ Hom(int(�), (˜U; p)),

where ũu(o, o′) = ũ1(o) ∗ ũ1(o
′). We set:

Id(o, o′) := u−1
1 (ũu(o, o′) ◦ Eq). �

We let IdEq denote the J0-structure on CC(C, p) constructed from Eq in Construc-
tion 2.4.2. Note that

(2.42) int(Id(o, o′)) = (int(�); (̃u1(o) ∗ ũ1(o
′)) ◦ Eq)

and

(2.43) u1(Id(o, o′)) = (̃u1(o) ∗ ũ1(o
′)) ◦ Eq

Recall that in [20] we let p�,n : � → ftn(�) denote the composition of n canonical
projections p� ◦ · · · ◦ pftn−1(�).

Lemma 2.4.3. — Let Eq be a J0-structure on p. Let � ∈ Ob and F : int(�) → U . Then

one has:

Id3(�,F) = (((X,F),Q(F) ◦ p),Q(Q(F), p) ◦ Eq)(2.44)
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int(Id3(�,F)) = (int(�);F)E(2.45)

int(pId3((�,F)),3) = pE
�,F(2.46)

Q(F)E ◦ Q(Eq) = Q(Q(Q(F) ◦ p) ◦ Eq)(2.47)

Proof. — It will be helpful for the reader to refer to diagram (2.22). Let T = (�,F),
and set

o := p∗
p∗

T(T)(δ(T)) ∈ ˜Ob1(�) and

o′ := δ(p∗
T(T)) ∈ ˜Ob1(�).

We then have

Id3(T) = Idp∗
T(T)(o, o′) = (p∗

T(T), (̃u1(o) ∗ ũ1(o
′)) ◦ Eq).

Furthermore, we have

p∗
T(T) = ((�,F),Q(F) ◦ p)

and

ũ1(p
∗
p∗

T(T)(δ(T))) = p(int(�,F,Q(F)◦p) ◦ Q(F)

ũ1(δ(p
∗
T(T))) = Q(Q(F) ◦ p)

which shows that ũ1(o) ∗ ũ1(o
′) = Q(Q(F), p) and completes the proof of the first three

equations.
The last equality is a corollary of the equality Q(F)E = Q(Q(Q(F), p),Eq) and the

equality Q(f ,F) ◦ Q(F) = Q(f ◦ F). �

Problem 2.4.4. — Let Eq : (˜U; p) → U be a J0-structure on a universe p in a cate-
gory C, and let � : ˜U → ˜U be a J1-structure over Eq. To construct a J1-structure refl over
IdEq on CC(C, p).

Construction 2.4.5 (For Problem 2.4.4). — Due to the natural bijections (2.40) the
morphism � defines maps

refl : ˜Ob1(�) → ˜Ob1(�)

by the formula

(2.48) refl(s) = ũ−1
1 (̃u1(s) ◦ �),

which are natural in �. Equation (2.7) follows from the commutativity of the square
(2.28).
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We let refl� denote the J1-structure constructed from � in Construction 2.4.5. The
following technical lemma is needed only in the proof of Lemma 2.4.7.

Lemma 2.4.6. — For s ∈ ˜Ob1(�) one has:

refl�(s) ◦ Q(s ◦ Q(F) ◦ � ◦ p) = s ◦ Q(F) ◦ �,

where F = u1(∂(s)).

Proof. — We have

u1(∂(refl�(s))) = ũ1(refl(s)) ◦ p = ũ1(s) ◦ � ◦ p = s ◦ Q(F) ◦ � ◦ p

therefore

ũ1(refl�(s)) = refl�(s) ◦ Q(u1(∂(refl�(s))))

= refl�(s) ◦ Q(s ◦ Q(F) ◦ � ◦ p).

On the other hand, by definition of refl�,

ũ1(refl�(s)) = ũ1(s) ◦ � = s ◦ Q(F) ◦ �. �

Lemma 2.4.7. — Given Eq and � consider the corresponding Id and refl. For � ∈
Ob(CC(C, p)) and for T ∈ Ob1(�) let

rfT : int(T) → int(Id3(T))

be the morphism constructed in Construction 2.1.6. On the other hand let

F∗(ω) : (int(�);F) → (int(�);F)E

be the pullback of ω : ˜U → E˜U (defined in Definition 2.2.10) with respect to F := u1(T), i.e., the

unique morphism

(int(�);F) → (int(�);F)E

such that

F∗(ω) ◦ pE
int(�),F = pint(T)(2.49)

F∗(ω) ◦ Q(F)E = Q(F) ◦ ω(2.50)

Then

rfT = F∗(ω).
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Proof. — In view of Lemma 2.4.3, both rfT and F∗(ω) are morphisms from
(int(�);F) to (int(�);F)E. Let us denote int(�) by X and (int(�);F,Q(F) ◦ p) by Y.
We have

(X;F)E = (Y;Q(Q(F), p) ◦ Eq)

and we can see this object as a part of the diagram with two pullback squares:

(2.51) (X;F)E

h1

pY,Q(Q(F),p)◦Eq

E˜U
h2

p(˜U;p),Eq

˜U

p

Y
Q(Q(F),p)

(˜U , p)
Eq

U

,

where h1 := Q(F)E and h2 := Q(Eq).
Let � := (1

˜U) ∗ (1
˜U) be the diagonal of ˜U over U .

The following commutative diagram of canonical pullback squares clarifies some
of the forthcoming computations.

(2.52) ˜U

�

(X;F)

Q(F)

δ(T)

(˜U; p)

p
˜U ,p

Q(p)
˜U

pint(p∗
T(T))

=
(X;F,Q(F) ◦ p)

Q(Q(F),p)

pp∗
T(T)

(X;F)

p(X;F)

Q(F)

˜U
p

U

int(T)
=

(X;F)
p(X;F)

Q(F)

X
F

We have the following two projections.

h := h1 ◦ h2 = Q(Q(Q(F), p) ◦ Eq) : (X;F)E → ˜U(2.53)

v := pY,Q(Q(F),p)◦Eq : (X;F)E → Y(2.54)
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It suffices to check the following equations.

rfT ◦ h = F∗(ω) ◦ h

rfT ◦ v = F∗(ω) ◦ v

We have

rfT ◦ h

= refl�(δ(T)) ◦ q(δ(T), Id3(T)) ◦ h (by def ’n (2.11))

= refl�(δ(T)) ◦ Q(δ(T),Q(Q(F), p) ◦ Eq) ◦ h (by (2.38) and (2.44))

= refl�(δ(T)) ◦ Q(δ(T),Q(Q(F), p) ◦ Eq)

◦ Q(Q(Q(F), p) ◦ Eq) (by (2.53))

= refl�(δ(T)) ◦ Q(δ(T) ◦ Q(Q(F), p) ◦ Eq) (by (2.16))

= refl�(δ(T)) ◦ Q(Q(F) ◦ � ◦ Eq) (by (2.52))

= refl�(δ(T)) ◦ Q(Q(F) ◦ � ◦ p), (by (2.28))

and thus we deduce that

(2.55) rfT ◦ h = refl�(δ(T)) ◦ Q(Q(F) ◦ � ◦ p).

We have

δ(T) ◦ Q(u1(∂(δ(T))))

= δ(T) ◦ Q(u1((X;F,Q(F) ◦ p))) (by def ’n of ∂ )

= δ(T) ◦ Q(Q(F) ◦ p) (by def ’n of u1)

= δ(T) ◦ Q(pX,F ◦ F) (by (2.12))

= δ(T) ◦ Q(pX,F,F) ◦ Q(F) (by (2.16))

= 1int(T) ◦ Q(F) (by def ’n of δ(T))

= Q(F).

In particular, we have the following equation, because T = (X,F).

δ(T) ◦ Q(pT ◦ F) = Q(F)

Using that and applying Lemma 2.4.6 with s as δ(T) and F as pT ◦ F, we derive the
following equation.

refl�(δ(T)) ◦ Q(Q(F) ◦ � ◦ p) = Q(F) ◦ �
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Combining that with (2.55), we deduce that

rfT ◦ h = Q(F) ◦ �.

On the other hand, we have the following sequence of equations.

F∗(ω) ◦ h = F∗(ω) ◦ h1 ◦ h2 (by def ’n of h)

= F∗(ω) ◦ Q(F)E ◦ h2 (by def ’n of h1)

= Q(F) ◦ ω ◦ h2 (by (2.50))

= Q(F) ◦ ω ◦ Q(Eq) (by def ’n of h2)

= Q(F) ◦ � (by (2.29))

This proves that rfT ◦ h = F∗(ω) ◦ h.
Both rfT ◦ v and F∗(ω) ◦ v are morphisms int(T) → int(p∗

T(T)). Since int(p∗
T(T))

is a part of a pullback square with the projections being pp∗
T(T) and Q(Q(F), p), to prove

rfT ◦ v = F∗(ω) ◦ v it suffices to verify the following equations.

rfT ◦ v ◦ pp∗
T(T) = F∗(ω) ◦ v ◦ pp∗

T(T)(2.56)

rfT ◦ v ◦ Q(Q(F), p) = F∗(ω) ◦ v ◦ Q(Q(F), p)(2.57)

Similarly, because the common target in the first equation above is (X;F), which is a pull-
back whose projections are pT and Q(F), to verify (2.56) it suffices to verify the following
equations.

rfT ◦ v ◦ pp∗
T(T) ◦ pT = F∗(ω) ◦ v ◦ pp∗

T(T) ◦ pT(2.58)

rfT ◦ v ◦ pp∗
T(T) ◦ Q(F) = F∗(ω) ◦ v ◦ pp∗

T(T) ◦ Q(F)(2.59)

We verify (2.58) as follows.

rfT ◦ v ◦ pp∗
T(T) ◦ pT = δ(T) ◦ pp∗

T(T) ◦ pT (by (2.10))

= 1int(T) ◦ pT (by def ’n of δ(T))

= pT

= F∗(ω) ◦ v ◦ pp∗
T(T) ◦ pT (by def ’n of F∗(ω))

We verify (2.59) as follows.

rfT ◦ v ◦ pp∗
T(T) ◦ Q(F)

= δ(T) ◦ pp∗
T(T) ◦ Q(F) (by (2.10))

= 1int(T) ◦ Q(F) (by def ’n of δ(T))
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= Q(F) (by def ’n of δ(T))

= Q(F) ◦ � ◦ p
˜U ,p (by def ’n of �)

= Q(F) ◦ ω ◦ p(˜U;p),Eq ◦ p
˜U ,p (by (2.29))

= F∗(ω) ◦ Q(F)E ◦ p(˜U;p),Eq ◦ p
˜U ,p (by (2.50))

= F∗(ω) ◦ h1 ◦ p(˜U;p),Eq ◦ p
˜U ,p (by def ’n of h1)

= F∗(ω) ◦ pY,Q(Q(F),p)◦Eq ◦ Q(Q(F), p) ◦ p
˜U ,p (by (2.51))

= F∗(ω) ◦ v ◦ Q(Q(F), p) ◦ p
˜U ,p (by (2.54))

= F∗(ω) ◦ v ◦ pp∗
T(T) ◦ Q(F) (by (2.52))

We verify (2.57) as follows.

rfT ◦ v ◦ Q(Q(F), p) = δ(T) ◦ Q(Q(F), p) (by (2.10))

= Q(F) ◦ � (by (2.52))

= Q(F) ◦ ω ◦ p(˜U;p),Eq (by (2.29))

= F∗(ω) ◦ Q(F)E ◦ p(˜U;p),Eq (by (2.50))

= F∗(ω) ◦ Q(Q(Q(F), p),Eq) ◦ p(˜U;p),Eq (by (2.25))

= F∗(ω) ◦ pY,Q(Q(F),p)◦Eq ◦ Q(Q(F), p) (by (2.22))

= F∗(ω) ◦ v ◦ Q(Q(F), p) (by (2.54))

This completes the proof of Lemma 2.4.7. �

Problem 2.4.8. — Let (Eq,�, Jp) be a J-structure on a universe p. To construct
for all � ∈ Ob = Ob(CC(C, p)), for all T ∈ Ob1(�), for all P ∈ Ob1(Id3(T)), for all s0 ∈
˜Ob(rf∗T(P)), an element J(�,T,P, s0) of ˜Ob(P). (This is the type of element required by
Definition 2.1.7 of a J2-structure on the C-system CC(C, p).)

Construction 2.4.9 (For Problem 2.4.8). — Let X := int(�), F := u1(T) : X → U , so
T = (�,F). By Lemma 2.4.3 we have int(Id3(T)) = int(Id3(�,F)) = (X;F)E. Therefore
we further have G := u1(P) : (X;F)E → U and ˜H := ũ1(s0) : (X;F) → ˜U .

Let us show first that

η!−1
pE˜U (F,G) ◦ Iω(U) = η!−1

p (F, ˜H) ◦ Ip(p)

We show this as follows.

η!−1
pE˜U (F,G) ◦ Iω(U)
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= η!−1
p (F,G ◦ F∗(ω)) (by Lemma 2.2.5)

= η!−1
p (F, rfT ◦ G) (by Lemma 2.4.7)

= η!−1
p (F, s0 ◦ Q(rfT ◦ G) ◦ p) (by commutativity of

the canonical square)

= η!−1
p (F, ˜H ◦ p) (by (2.41))

= η!−1
p (F, ˜H) ◦ Ip(p) (by naturality of η!−1

p,X,V).

Therefore the pair (η!−1
pE˜U (F,G), η!−1

p (F, ˜H)) gives us a morphism

φ(�,T,P, s0) : X → (IpE˜U(U), Iω(U)) ×Ip(U) (Ip(˜U), Ip(p))

and composing it with Jp (cf. Definition 2.2.11) we obtain a morphism

φ(�,T,P, s0) ◦ Jp : X → IpE˜U (˜U)

Consider the element

(F1,F2) := η!
pE˜U(φ(�,T,P, s0) ◦ Jp) ∈ DpE˜U (X, ˜U)

We have the following computation.

(F1,F2 ◦ p)

= DpE˜U(X, p)(F1,F2) (by def ’n of DpE˜U )

= DpE˜U(X, p)(η!
pE˜U(φ(�,T,P, s0) ◦ Jp)) (by def ’n of (F1,F2))

= η!
pE˜U(φ(�,T,P, s0) ◦ Jp ◦ IpE˜U (p)) (by naturality of η!

pE˜U )

= η!
pE˜U(φ(�,T,P, s0) ◦ Jp ◦ coJ ◦ pr1) (by def ’n of coJ)

= η!
pE˜U(φ(�,T,P, s0) ◦ pr1) (by (2.2.11))

= η!
pE˜U(η!−1

pE˜U(F,G)) (by def ’n of φ(�,T,P, s0))

= (F,G)

(For naturality of η!
pE˜U , refer to [18, Problem 3.8(1)].)

Therefore, F1 = F and F2 ◦ p = G. Thus F2 is of type (X;F)E → ˜U , and thus
it is of the form F2 = ũ1(J(�,T,P, s0))) for some unique J(�,T,P, s0) such that
∂(J(�,T,P, s0)) = u−1

1 (F2 ◦ p) = u−1
1 (G) = P. �
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Remark 2.4.10. — When more than one J2-structure Jp is under consideration, we
may write JJp = JJp(�,T,P, s0) instead of J = J(�,T,P, s0) to indicate which J2-structure
is involved in the construction of J.

Remark 2.4.11. — Note that the defining property of J := J(�,T,P, s0) is that it
is the unique element of ˜Ob(CC(C, p)) that satisfies the equation

η!−1
pE˜U (u1,�(T), ũ1,Id3(T)(J)) = φ(�,T,P, s0) ◦ Jp,

where

φ(�,T,P, s0) : int(�) → (IpE˜U(U), Iω(U)) ×Ip(U) (Ip(˜U), Ip(p))

is given by the pair of morphisms (η!−1
pE˜U (u1,�(T), u1,Id3(T)(P)), η!−1

p (u1,�(T), ũ1,�(s0))).

Lemma 2.4.12. — Let Eq be a J0-structure on a universe p, f : �′ → � a morphism in

CC(C, p) and F : int(�) → U a morphism in C. Let q3 : int(Id3(�
′, f ◦ F)) → int(Id3(�,F)) be

the morphism q(f , Id3(�,F),3) defined9 by �, using ft3(Id3(�,F)) = �. Then q3 = Q(f ,F)E.

Proof. — Let X := int(�) and X′ := int(�′). By definition, Q(f ,F)E is the unique
morphism such that

Q(f ,F)E ◦ Q(F)E = Q(f ◦ F)E and

Q(f ,F)E ◦ pE
X,F = pE

X′,f ◦F ◦ f .

We will be building the proof using the following diagram.

(X′, f ◦ F)E

Q(Q(Q(f ,F),Q(F)◦p),Q(Q(F),p)◦Eq)

p3

(X;F)E

Q(Q(Q(F),p),Eq)

E˜U
Q(Eq)

p1

˜U
p

• Q(Q(f ,F),Q(F)◦p)

=
• Q(Q(F),p)

=
• Eq

=
U

• Q(Q(f ,F),Q(F)◦p) • Q(Q(F),p) • Q(p)

p2

˜U
p

• Q(f ,F)

=
• Q(F)

=
˜U

p

=
U

• Q(f ,F) • Q(F) •
p

X′ f

X
F

U

9 The notation q(f ,X, i) is defined in Section 3 of [20], by induction on the third parameter, which is a natural
number.
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By construction that is seen on this diagram we have:

q3 = Q(Q(Q(f ,F),Q(F) ◦ p),Q(Q(F), p) ◦ Eq)

Q(X,F)E = Q(Q(Q(F), p),Eq)

and

Q(X′, f ◦ F)E = Q(Q(Q(f ◦ F), p),Eq)

Therefore, the first equation that we need to verify is

Q(Q(Q(f ,F),Q(F) ◦ p),Q(Q(F), p) ◦ Eq) ◦ Q(Q(Q(F), p),Eq)

= Q(Q(Q(f ◦ F), p),Eq)

By [18, Lemma 3.2] we have, together with the defining rule Q(a,A) ◦ Q(A) = Q(a ◦ A),
also the rule:

Q(a1, a2 ◦ A) ◦ Q(a2,A) = Q(a1 ◦ a2,A)

Applying it twice and then the defining rule we get:

Q(Q(Q(f ,F),Q(F) ◦ p),Q(Q(F), p) ◦ Eq) ◦ Q(Q(Q(F), p),Eq)

= Q(Q(Q(f ,F),Q(F) ◦ p) ◦ Q(Q(F), p),Eq)

= Q(Q(Q(f ,F) ◦ Q(F), p),Eq)

= Q(Q(Q(f ◦ F), p),Eq),

which gives us the first equation. The second equation is immediate from the commuta-
tivity of the three squares that define q3. �

Lemma 2.4.13. — Let (Eq,�, Jp) be a J-structure on a universe p. Then the morphisms of

Construction 2.4.9 are natural in �, i.e., for any f : �′ → � one has

(2.60) f ∗(JJp(�,T,P, s0)) = JJp(�
′, f ∗(T), f ∗(P), f ∗(s0)).

(This is the second condition of Definition 2.1.7 of a J2-structure on the C-system CC(C, p).)

Proof. — Let us write J for JJp(�,T,P, s0) and J′ for JJp(�
′, f ∗(T), f ∗(P), f ∗(s0))

and use the notation of Construction 2.4.9. Recall that for f : �′ → � the operation
f ∗ is defined only on Ob1(�). In all other uses it is an abbreviation for the operation
X �→ f ∗(X, i) or the operation s �→ f ∗(s, i), for various values of i; these operations are
defined in [20, §3] by induction on i. In particular, (2.60) is an abbreviation for

f ∗(J(�,T,P, s0),4) = J(�′, f ∗(T), f ∗(P,4), f ∗(s0,2))



MARTIN-LÖF IDENTITY TYPES IN C-SYSTEMS 39

which in its turn translates into the equation in ˜Ob1(Id3(f
∗(T))) of the form

q(f , Id3(T),3)∗(J,1) = J′

We have:

η!−1
pE˜U (F, ũ1(J)) = φ(�,T,P, s0) ◦ Jp

η!−1
pE˜U (f ◦ F, ũ1(J

′)) = φ(�′, f ∗(T), f ∗(P), f ∗(s0)) ◦ Jp

By naturality of η!−1 with respect to the first argument we have

f ◦ η!−1
pE˜U (F, ũ1(J)) = η!−1

pE˜U (f ◦ F,Q(f ,F)E ◦ ũ1(J))

Therefore, by Lemma 2.4.12 we have

f ◦ η!−1
pE˜U (F, ũ1(J)) = η!−1

pE˜U (f ◦ F, ũ1(Q(f ,F)∗
E(J,1)))

= η!−1
pE˜U (f ◦ F, ũ1(q(f , Id3(T),3)∗(J,1)))

Since both η!−1
pE˜U and ũ1 are bijections and thus injections, it is sufficient to show that

f ◦ φ(�,T,P, s0) ◦ Jp = φ(�′, f ∗(T), f ∗(P), f ∗(s0)) ◦ Jp

or that

f ◦ φ(�,T,P, s0) = φ(�′, f ∗(T), f ∗(P), f ∗(s0))

Since both φ expressions are morphism into a product this amounts to two equations
that, taking into account the definition of φ in Construction 2.4.9 are:

f ◦ η!−1
pE˜U (F,G) = η!−1

pE˜U(f ◦ F, u1(f
∗(P)))

and

f ◦ η!−1
p (F, ˜H) = η!−1

p (f ◦ F, ũ1(f
∗(s0)))

The first equality follows from naturality of η!−1 and Lemma 2.4.12. The second equality
follows from naturality of η!−1. This finishes the proof of Lemma 2.4.13. �

Lemma 2.4.14. — Let (Eq,�, Jp) be a J-structure on a universe p. Then the morphism

of Construction 2.4.9 satisfies the first condition of Definition 2.1.7 of a J2-structure on the C-system

CC(C, p), i.e., for all �, T, P and s0 as above one has

rf∗T(JJp(�,T,P, s0)) = s0
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Proof. — Let J = JJp(�,T,P, s0). Then, using the notation of Construction 2.4.9
we have

η!−1
E˜U(F, ũ1(J)) = η!−1

E˜U(F1,F2) = φ(�,T,P, s0) ◦ Jp

Observe that

η!−1
E˜U(F, ũ1(J)) ◦ Iω(˜U) = η!−1

p (F,F∗(ω) ◦ ũ1(J)),

by naturality of η! with respect to change of universe, established in Lemma 2.2.5. By
Lemma 2.4.7 we have F∗(ω) = rfT. Therefore,

η!−1
E˜U(F, ũ1(J)) ◦ Iω(˜U) = η!−1

p (F, rfT ◦ ũ1(J)) = η!−1
p (F, ũ1(rf

∗
T(J)))

On the other hand, by (2.32),

φ(�,T,P, s0) ◦ Jp ◦ Iω(˜U) = φ(�,T,P, s0) ◦ pr2

which equals, by construction, η!−1
p (F, ũ1(s0)). Therefore,

η!−1
p (F, ũ1(rf

∗
T(J))) = η!−1

p (F, ũ1(s0))

and using again that both η!−1 and ũ1 are injective we conclude that rf∗T(J) = s0. �

Problem 2.4.15. — Let (Eq,�, Jp) be a J-structure on a universe p. To construct a
J-structure on CC(C, p) relative to IdEq and refl�.

Construction 2.4.16 (For Problem 2.4.15). — One has to combine Construction 2.4.9
with Lemmas 2.4.13 and 2.4.14. �

3. Functoriality of J-structures

3.1. A theorem about functors between categories with two universes

Before we can formulate the definition of what it means for a universe category
functor to be compatible with J-structures we need some general results about functors
between categories with two universes, which we will apply in Section 3.2 to the universes
p : ˜U → U and pE˜U : E˜U → U in a locally Cartesian closed category C.

Given two universes p : ˜U → U and p′ : ˜U ′ → U , with canonical squares of the
form

(X;F)
Q(F)

pX,F

˜U

p

X
F

U

(X;F)′ Q′(F)

p′
X,F

˜U ′

p′

X
F

U
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and given f : ˜U ′ → ˜U over U , we let F∗(f ) denote the unique morphism (X;F)′ → (X;F)

such that

(3.1) F∗(f ) ◦ Q(F) = Q′(F) ◦ f

(3.2) F∗(f ) ◦ pX,F = p′
X,F

Note that F∗(f ) depends on the universe structures on p and p′. Even when two universe
structures give the same choices of the objects (X;F) and (X;F)′, the difference in the
choice of some of the morphisms, e.g., Q(F) will affect morphisms F∗(f ). We will need
the following lemma about these morphisms.

As in Definition 2.2.3, for X′ f→ X
F→ U we let Q(f ,F) denote the morphism

(pX′,f ◦F ◦ f ) ∗ Q(f ◦ F) : (X′; f ◦ F) → (X;F)

We let Q′(−) and Q′(−,−) denote the morphisms Q(−) and Q(−,−) relative to the
universe p′.

Lemma 3.1.1. — Let X′ g→ X
F→ U be two morphisms. Then the square

(X′; g ◦ F)′ Q′(g,F)

(g◦F)∗(f )

(X;F)′

F∗(f )

(X′; g ◦ F)
Q(g,F)

(X′; g ◦ F)

commutes.

Proof. — Since (X;F) is a fiber product relative to the projections pX,F and Q(F) it
is sufficient to verify that

Q′(g,F) ◦ F∗(f ) ◦ Q(F) = (g ◦ F)∗(f ) ◦ Q(g,F) ◦ Q(F)

and

Q′(g,F) ◦ F∗(f ) ◦ pX,F = (g ◦ F)∗(f ) ◦ Q(g,F) ◦ pX,F

which easily follows from the defining equations for Q(−,−) and (−)∗. �

Let (C, p, pt), (C ′, p′, pt′) be two universe categories such that C and C ′ are equipped
with locally Cartesian closed structures. Consider now a functor of universe categories

� = (�,φ,˜φ) : (C, p, pt) → (C ′, p′, pt′).



42 VLADIMIR VOEVODSKY

The notion was defined in [17, 4.1] and in [18, §5]. It means that � : C → C ′ is a functor,
φ : �(U) → U ′ and ˜φ : �(˜U) → ˜U ′ are morphisms, that � sends the chosen final object
to a final object, that � takes canonical squares of p to pullback squares, and that the
square

�(˜U)
˜φ

�(p)

˜U ′

p′

�(U)
φ

U ′

is a pullback square. In [18, Construction 5.2] we have constructed, for any map F : X →
V in C, a canonical isomorphism

ι = ι�,X,F : (�(X);�(F) ◦ φ)′ ∼=−→ �((X;F)),

which results from the two objects involved being pullbacks of the same diagram, as
illustrated here:

(3.3) (�(X);�(F) ◦ φ)′ Q′(�(F)◦φ)

p′
�(X),�(F)◦φ

ι

∼=
�((X;F))

�(Q(F))

�(pX,F)

�(˜U)
˜φ

�(p)

˜U ′

p′

�(X)
�(F)

�(U)
φ

U ′

In [18, Construction 5.2] we have defined, for any X,V ∈ C, a map

�2 : Dp(X,V) → Dp(�(X),�(V)),

by setting

(3.4) �2(F,G) := (�(F) ◦ φ, ι�,X,F ◦ �(G)).

In [18, Construction 5.6] we have also defined a morphism

χ�(V) : �(Ip(V)) → Ip′(�(V)),

by setting

χ�(V) := η!−1
p′,�(Ip(V)),�(V)

(

�2
(

η!
p,Ip(V),V(1Ip(V))

))

.

These constructions will be used later.
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We now need to consider the situation where we have the following collection of
data:

1. two universes p1, p2 in C with the common codomain U and a morphism g :
˜U1 → ˜U2 over U ,

2. two universes p′
1, p′

2 in C ′ with the common codomain U ′ and a morphism
g′ : ˜U ′

1 → ˜U ′
2 over U ′,

3. a functor � : C → C ′,
4. a morphism φ : �(U) → U ′,
5. two morphisms ˜φi : �(˜Ui) → ˜U ′

i , i = 1,2, and
6. final objects pt of C and pt′ of C ′,

and this data is such that:

1. the square

(3.5) �(˜U1)
˜φ1

�(g)

˜U ′
1

g′

�(˜U2)
˜φ2

˜U ′
2

commutes, and
2. the triples �i := (�,φ,˜φi), for i = 1,2, are universe category functors from

(C, pi, ptk) to (C ′, p′
i, pt′).

We will use the notations (X;F)1, (X;F)2, (X;F)′
1, and (X;F)′

2 for the pullback
objects that are part of the four universe structures under consideration.

Let us denote the morphisms

χ�i
(V) : �(Ipi

(V)) → Ip′
i
(�(V))

by χi(V). The maps �2
i in the following lemma were introduced above.

Lemma 3.1.2. — Under the previous assumptions and notation the squares

Dp2(X,V)
�2

2

Dg(X,V)

Dp2(�(X),�(V))

Dg′ (�(X),�(V))

Dp1(X,V)
�2

1

Dp′
1
(�(X),�(V))

commute.
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Proof. — We will use ιi as an abbreviation for an isomorphism ι derived from �i .
Given (F1,F2) ∈ Dp2(X,V), we see that:

Dg′
(�(X),�(V))(�2

2(F1,F2))

= Dg′
(�(X),�(V))(�(F1) ◦ φ, ι2 ◦ �(F2)) (by def ’n of �2

2)

= (�(F1) ◦ φ, (�(F1) ◦ φ)∗(g′) ◦ ι2 ◦ �(F2)) (by def ’n of Dg′

in Lemma 2.2.5)

On the other hand

�2
1(D

g(X,V)(F1,F2))

= �2
1(F1,F∗

1(g) ◦ F2) (by def ’n of Dg in Lemma 2.2.5)

= (�(F1) ◦ φ, ι1 ◦ �(F∗
1(g) ◦ F2)) (by def ’n of �2

1)

Thus it remains to check that

(�(F1) ◦ φ)∗(g′) ◦ ι2 ◦ �(F2) = ι1 ◦ �(F∗
1(g) ◦ F2).

For that it is sufficient to check that

(�(F1) ◦ φ)∗(g′) ◦ ι2 = ι1 ◦ �(F∗
1(g)).

The codomain of both morphisms is �((X;F1)2), and since � takes canonical squares
based on p2 to pullback squares it is sufficient to check that

(�(F1) ◦ φ)∗(g′) ◦ ι2 ◦ �(Q2(F1)) ◦ ˜φ2 = ι1 ◦ �(F∗
1(g)) ◦ �(Q2(F1)) ◦ ˜φ2

and

(�(F1) ◦ φ)∗(g′) ◦ ι2 ◦ �(p2,X,F1) = ι1 ◦ �(F∗
1(g)) ◦ �(p2,X,F1)

We prove the first equation as follows.

(�(F1) ◦ φ)∗(g′) ◦ ι2 ◦ �(Q2(F1)) ◦ ˜φ2

= (�(F1) ◦ φ)∗(g′) ◦ Q′
2(�(F1) ◦ φ) (by commutativity of (3.3))

= Q′
1(�(F1) ◦ φ) ◦ g′ (by (3.1))

= ι1 ◦ �(Q1(F1)) ◦ ˜φ1 ◦ g′ (by commutativity of (3.3))

= ι1 ◦ �(Q1(F1)) ◦ �(g) ◦ ˜φ2 (by (3.5))

= ι1 ◦ �(Q1(F1) ◦ g) ◦ ˜φ2 (by functoriality of �)
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= ι1 ◦ �(F∗
1(g) ◦ Q2(F1)) ◦ ˜φ2 (by (3.1))

= ι1 ◦ �(F∗
1(g)) ◦ �(Q2(F1)) ◦ ˜φ2 (by functoriality of �)

The second equation is proved as follows.

(�(F1) ◦ φ)∗(g′) ◦ ι2 ◦ �(p2,X,F1)

= (�(F1) ◦ φ)∗(g′) ◦ p′
2,�(X),�(F1)◦φ (by commutativity of (3.3))

= p′
1,�(X),�(F1)◦φ (by (3.2))

= ι1 ◦ �(p1,X,F1) (by commutativity of (3.3))

= ι1 ◦ �(F∗
1(g) ◦ p2,X,F1) (by (3.2))

= ι1 ◦ �(F∗
1(g)) ◦ �(p2,X,F1) (by functoriality of �)

This finishes the proof of Lemma 3.1.2. �

Lemma 3.1.3. — Under the previous assumptions and notation the squares

�(Ip2(V))
χ2(V)

�(Ig(V))

Ip′
2
(�(V))

Ig
′
(�(V))

�(Ip1(V))
χ1(V)

Ip′
1
(�(V))

commute.

Proof. — Let X = Ip2(V). Then we have:

χ2(V) ◦ Ig
′
(�(V))

= η!−1
p′

2,�(X),�(V)(�
2
2(η

!
p2,X,V(1X))) ◦ Ig

′
(�(V)) (by definition of χ2(V))

= η!−1
p′

1,�(X),�(V)(D
g′
(�(X),�(V))(�2

2(η
!
p2,X,V(1X)))) (by Lemma 2.2.5)

= η!−1
p′

1,�(X),�(V)(�
2
1(D

g(X,V)(η!
p2,X,V(1X)))) (by Lemma 3.1.2)

= η!−1
p′

1,�(X),�(V)(�
2
1(η

!
p1,X,V(1X ◦ Ig(V))) (by Lemma 2.2.5)

= η!−1
p′

1,�(X),�(V)(�
2
1(η

!
p1,X,V(Ig(V)))

It remains to show that

�(Ig(V)) ◦ χ1(V) = η!−1
p′

1,�(X),�(V)(�
2
1(η

!
p1,X,V(Ig(V)))
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Let a be any element of Hom(Ip2(V), Ip1(V)). It will suffice to show that

�(a) ◦ χ1(V) = η!−1
p′

1,�(X),�(V)(�
2
1(η

!
p1,X,V(a)).

We have

�(a) ◦ χ1(V)

= �(a) ◦ η!−1
p′

1,�(Ip1 (V)),�(V)(�
2
1(η

!
p1,Ip1 (V),V(1Ip1 (V)))) (by def ’n of χ1(V))

= η!−1
p′

1,�(Ip2 (V)),�(V)(Dp′
1
(�(a),�(V))(�2

1(η
!
p1,Ip1 (V),V(1Ip1 (V))))

(by naturality of η!−1
)

= η!−1
p′

1,�(Ip2 (V)),�(V)(�
2
1(Dp1(a,V)(η!

p1,Ip1 (V),V(1Ip1 (V))))

(by [18, Lemma 5.3])

= η!−1
p′

1,�(Ip2 (V)),�(V)(�
2
1(η

!
p1,Ip2 (V),V(a ◦ 1Ip1 (V))) (by naturality of η!−1

)

= η!−1
p′

1,�(Ip2 (V)),�(V)(�
2
1(η

!
p1,Ip2 (V),V(a))

= η!−1
p′

1,�(X),�(V)(�
2
1(η

!
p1,X,V(a))

This finishes the proof of Lemma 3.1.3. �

Consider the morphisms

ζi : �(Ipi
(U)) → Ip′

i
(U ′)

given by ζi := χi(U) ◦ Ip′
i
(φ) and

˜ζi : �(Ipi
(˜U1)) → Ip′

i
(˜U ′

1)

given by ˜ζi := χi(˜U1) ◦ Ip′
i
(˜φ1). (Recall from [18, §6] the morphisms ξ� : �(Ip(U)) →

Ip′)(U ′) and ˜ξ� : �(Ip(˜U)) → Ip′(˜U ′) introduced, for a universe category functor � =
(�,φ,˜φ), by defining ξ� := χ�(U) ◦ Ip′(φ) and ˜ξ� := χ�(˜U) ◦ Ip′(˜φ). Note that ζi = ξ�i

and ˜ζ1 =˜ξ�1 , but ˜ζ2 �=˜ξ�2 .)
The following theorem will be used to formulate the condition of compatibility of

a universe functor with full J-structures.
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Theorem 3.1.4. — Under the previous assumptions and notation the morphisms ζ1, ζ2,˜ζ1,˜ζ2

form a morphism from the square

�(Ip2(
˜U1))

�(Ig(˜U1))

�(Ip2 (p2))

�(Ip1(
˜U1))

�(Ip1 (p2))

�(Ip2(U))
�(Ig(U))

�(Ip1(U))

to the square

Ip′
2
(˜U ′

1)
Ig

′
(˜U ′

1)

Ip′2 (p′
2)

Ip′
1
(˜U ′

1)

Ip′1 (p′
2)

Ip′
2
(U ′)

Ig
′
(U ′)

Ip′
1
(U ′)

Proof. — We need to prove commutativity of the outer squares of the following four
diagrams:

�(Ip2(
˜U1))

χ2(˜U1)

Ig
′
(�(˜U1))

Ip′
2
(�(˜U1))

Ip′2 (˜φ1)

Ig
′
(�(˜U1))

Ip′
2
(˜U ′

1)

Ig
′
(˜U ′

1)

�(Ip1(
˜U1))

χ1(˜U1)

Ip′
1
(�(˜U1))

Ip′1 (˜φ1)

Ip′
1
(˜U ′

1)

�(Ip2(U1))
χ2(U1)

�(Ig(U1))

Ip′
2
(�(U1))

Ip′2 (˜φ1)

Ig
′
(�(U1))

Ip′
2
(U ′

1)

Ig
′
(U ′

1)

�(Ip1(U1))
χ1(U1)

Ip′
1
(�(U1))

Ip′1 (˜φ1)

Ip′
1
(U ′

1)

�(Ip2(
˜U1))

χ2(˜U1)

�(Ip2 (p1))

Ip′
2
(�(˜U1))

Ip′2 (˜φ1)

Ip′2 (�(p1))

Ip′
2
(˜U ′

1)

Ip′2 (p′
1)

�(Ip2(U1))
χ2(U1)

Ip′
2
(�(U1))

Ip′2 (˜φ1)

Ip′
2
(U ′

1)
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�(Ip1(
˜U1))

χ1(˜U1)

�(Ip1 (p1))

Ip′
1
(�(˜U1))

Ip′1 (˜φ1)

Ip′1 (�(p1))

Ip′
2
(˜U ′

1)

Ip′1 (p′
1)

�(Ip1(U1))
χ1(U1)

Ip′
1
(�(U1))

Ip′1 (˜φ1)

Ip′
1
(U ′

1)

The left squares in the first and the second diagram are commutative by Lemma 3.1.3.
The left squares in the third and the fourth diagram are commutative by [18,

Lemma 5.7].
The right hand side squares in the first and second diagram commute by

Lemma 2.2.4.
The right hand side squares of the third and the fourth diagram commute because

Ip′
i
are functorial and therefore take commutative squares to commutative squares. �

3.2. Universe category functors compatible with J-structures

Let us define now conditions on functors of universe categories that reflect the
idea of compatibility with the J0- J1- and J2-structures on the universes. For any functor
� = (�,φ,˜φ) : (C, p, pt) → (C ′, p′, pt′) of universe categories (the notion was recalled in
the previous section), for any X ∈ C, and for any F : X → U , the morphism

�(pX,F) ∗ (�(Q(F)) ◦ ˜φ) : �((X;F)) → (�(X);�(F) ◦ φ)′

is an isomorphism, and it will be denoted by �X,F. (This isomorphism appears in (3.3)
above, as the inverse �X,F = ι−1

�,X,F.) Let �˜Up be the composition

�((˜U; p))
�

˜U ,p−→ (�(˜U);�(p) ◦ φ) = (�(˜U);˜φ ◦ p′)
Q′(˜φ,p′)−→ (˜U ′; p′)

We have another description of this morphism given by the following lemma.

Lemma 3.2.1. — One has:

�˜Up = (�(p
˜U ,p) ◦ ˜φ) ∗ (�(Q(p)) ◦ ˜φ)

Proof. — One has

�˜Up◦ p′
˜U ′,p′ = �

˜U ,p ◦Q′(˜φ, p′)◦ p′
˜U ′,p′ = �

˜U ,p ◦p�(˜U),˜φ◦p′ ◦˜φ = �(p
˜U ,p)◦˜φ,

where the second equality is by definition of Q′(−,−) and the third equality is by defini-
tion of �

˜U ,p. Then

�˜Up ◦ Q′(p′) = �
˜U ,p ◦ Q′(˜φ, p′) ◦ Q′(p′)

= �
˜U ,p ◦ Q(˜φ ◦ p′)
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= �
˜U ,p ◦ Q(�(p) ◦ φ)

= �(Q(p)) ◦ ˜φ,

where again the second equality is by definition of Q(−,−) and the fourth equality is by
definition of �

˜U ,p. �

Lemma 3.2.2. — For s, s′ : Y → ˜U such that s ◦ p = s′ ◦ p one has

�(s ∗ s′) ◦ �˜Up = �(s ◦ ˜φ) ∗ �(s′ ◦ ˜φ)

and thus

�(�) ◦ �˜Up = ˜φ ∗ ˜φ.

Proof. — Using Lemma 3.2.1 we have

�(s ∗ s′) ◦ �˜Up ◦ p′
˜U ′,p′ = �(s ∗ s′) ◦ �(p

˜U ,p) ◦ ˜φ = s ◦ ˜φ

and

�(s ∗ s′) ◦ �˜Up ◦ Q′(p′) = �(s ∗ s′) ◦ �(Q(p)) ◦ ˜φ = s′ ◦ ˜φ

The particular case of � follows from the fact that � = 1
˜U ∗ 1

˜U . �

Lemma 3.2.3. — The square

(3.6) �((˜U; p))
�˜Up

�(p
˜U ,p)

(˜U ′; p′)

p′̃
U ′,p′

�(˜U)
˜φ

˜U ′

is a pullback square.

Proof. — This square is equal to the composition of two squares

�((˜U; p))
�

˜U ,p

�(p
˜U ,p)

(�(˜U);˜φ ◦ p′)
Q′(˜φ,p′)

p�(˜U),˜φ◦p′

(˜U ′; p′)

p′̃
U ′,p′

�(˜U)
=

�(˜U)
˜φ

˜U ′
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The right hand side square is a pullback square (2.16). The left hand side square is a
pullback square as a commutative square whose sides are isomorphisms. We conclude
that the composition of these two squares is a pullback square. �

Definition 3.2.4. — Let Eq be a J0-structure on p and Eq′ a J0-structure on p′. A universe

category functor (�,φ,˜φ) is said to be compatible with Eq and Eq′ if the square

(3.7) �((˜U; p))
�(Eq)

�˜Up

�(U)

φ

(˜U ′; p′)
Eq′

U ′

commutes.

Let Eq, Eq′ be as above. Let (�,φ,˜φ) be a universe functor compatible with Eq

and Eq′. Define a morphism

˜φE : �(E˜U) → E˜U ′ = ((˜U ′; p′),Eq′)

as

˜φE := (�(p(˜U;p),Eq) ◦ �˜Up) ∗ (�(Q(Eq)) ◦ ˜φ).

Lemma 3.2.5. — Let Eq, Eq′ be as above. Let (�,φ,˜φ) be a universe functor compatible

with Eq, and Eq′. Then the square

�(E˜U)
˜φE

�(p(˜U;p),Eq)

E˜U ′

p(˜U ′;p′),Eq′

�((˜U; p))
�˜Up

(˜U ′; p′)

is a pullback square.

Proof. — Consider the diagram

(3.8) �(E˜U)
˜φE

�(p(˜U;p),Eq)

E˜U ′ Q(Eq′)

p(˜U ′;p′),Eq′

˜U ′

p′

�((˜U; p))
�˜Up

(˜U ′; p′)
Eq′

U ′
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The outer square of this diagram is equal to the outer square of the diagram

(3.9) �(E˜U)
�(Q(Eq))

�(p(˜U;p),Eq)

�(˜U)
˜φ

�(p)

˜U ′

p′

�((˜U; p))
�(Eq)

�(U)
φ

U ′,

where the equality of the lower horizontal arrows follows from the commutativity of the
square (3.7). The left hand side square of this diagram is a pullback square because �

takes canonical squares to pullback squares. The right hand side square is a pullback
square by definition of a functor of universe categories. Therefore the outer square is a
pullback square. The right hand side square of (3.8) is a canonical square and therefore a
pullback square. We conclude that the left hand square of (3.8) is a pullback square. �

Lemma 3.2.6. — Let Eq, Eq′ be as above. Let (�,φ,˜φ) be a functor of universe categories

compatible with Eq, and Eq′. Then the square

(3.10) �(E˜U)
˜φE

�(pE˜U)

E˜U ′

pE˜U ′

�(U)
φ

U ′

is a pullback square.

Proof. — It follows from the fact that the square (3.10) is equal to the vertical com-
position of the squares of Lemmas 3.2.5 and 3.2.3 with the square (3.6). �

Definition 3.2.7. — Let Eq, Eq′ be as above and let �, �′ be J1-structures over Eq and Eq′

respectively. A universe category functor (�,φ,˜φ) is said to be compatible with � and �′ if the square

�(˜U)
�(�)

˜φ

�(˜U)

˜φ

˜U ′ �′
˜U ′

commutes.
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Lemma 3.2.8. — Let Eq,� and Eq′,�′ be as above and let � be a universe category functor

compatible with Eq,Eq′ and �,�′. Then the square

�(˜U)
˜φ

�(ω)

˜U ′

ω′

�(E˜U)
˜φE

E˜U ′

commutes.

Proof. — Since E˜U ′ = ((˜U ′; p′);Eq′) it is sufficient to verify that the compositions
of the two paths in the square with p(˜U ′;p′),Eq′ and Q(Eq′) coincide. We have:

˜φ ◦ ω′ ◦ Q(Eq′) = ˜φ ◦ �′

by definition of ω′. On the other hand

�(ω) ◦ ˜φE ◦ Q(Eq′) = �(ω) ◦ �(Q(Eq)) ◦ ˜φ = �(�) ◦ ˜φ,

where the first equation holds by definition of ˜φE. The proof follows now from the as-
sumption that � is compatible with � and �′. �

To formulate the condition of compatibility of a universe functor with full J-
structures on C and C ′ we will use Theorem 3.1.4.

Let � = (�,φ,˜φ) : (C, p, pt) → (C ′, p′, pt′) be a functor of universe categories. In
view of Lemma 3.2.6, if � is compatible with Eq and Eq′ then the triple �E := (�,φ,˜φE)

is a functor of universe categories as well, from (C, pE˜U , pt) to (C ′, pE˜U ′, pt′). If, in ad-
dition, � is compatible with � and �′ then, by Lemma 3.2.8, the morphisms ω and ω′

satisfy the conditions on morphisms g and g′ of Section 3.1.
Let

ξ� : �(Ip(U)) → Ip′(U ′)

˜ξ� : �(Ip(˜U)) → Ip′(˜U ′)

denote the compositions χ�(U) ◦ Ip′(φ) and χ�(˜U) ◦ Ip′(˜φ), respectively,10 and let

ζ� : �(IpE˜U (U)) → IpE˜U ′(U ′)

˜ζ� : �(IpE˜U (˜U)) → IpE˜U ′(˜U ′)

10 These maps were introduced in [18, §6], and were recalled above.
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be given by the following compositions.

ζ� := χ�E(U) ◦ IpE˜U ′(φ)(3.11)

˜ζ� := χ�E(
˜U) ◦ IpE˜U ′(˜φ)(3.12)

Don’t confuse these maps with ζi and ˜ζi , which were introduced above. Also note that
ζ� = ξ�E , but ˜ζ� is different from ˜ξ�E , since the latter is equal to the composition
χ�E(E˜U) ◦ IpE˜U ′(˜φE).

Applying Theorem 3.1.4 in this context we get the following.

Theorem 3.2.9. — Let � be a functor of universe categories compatible with the J1-structures

(Eq,�) and (Eq′,�′) on p and p′ respectively. Then the morphisms ξ�,˜ξ�, ζ�,˜ζ� form a morphism

from the square

�(IpE˜U (˜U))
�(Iω(˜U))

�(IpE˜U (p))

�(Ip(˜U))

�(Ip(p))

�(IpE˜U (U))
�(Iω(U))

�(Ip(U))

to the square

IpE˜U ′(˜U ′)
Iω

′
(˜U ′)

IpE˜U ′ (p′)

Ip′(˜U ′)

Ip′ (p′)

IpE˜U ′(U ′)
Iω(U ′)

Ip′(U ′)

Let R� denote the composite map

�((IpE˜U(U), Iω(U)) ×Ip(U) (Ip(˜U), Ip(p)))(3.13)

→ �(IpE˜U (U), Iω(U)) ×�(Ip(U)) �(Ip(˜U), Ip(p))(3.14)

→ (IpE˜U ′(U ′), Iω
′
(U ′)) ×Ip′ (U ′) (Ip′(˜U ′), Ip′(p′)),(3.15)

where the second arrow is defined by ξ�,˜ξ� and ζ� in view of Theorem 3.2.9.

Definition 3.2.10. — Let Eq, Eq′, � and �′ be as above. Let Jp and Jp′ be J2-structures over

(Eq,�) and (Eq′,�′) respectively. A universe category functor (�,φ,˜φ) is said to be compatible
with Jp and Jp′ if it is compatible with Eq, Eq′ and �, �′ in the sense of Definitions 3.2.4 and 3.2.7
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respectively, the square

IpE˜U ′(˜U ′)
Iω

′
(˜U ′)

IpE˜U ′ (p′)

Ip′(˜U ′)

Ip′ (p′)

IpE˜U ′(U ′)
Iω(U ′)

Ip′(U ′)

commutes, and the square

�((IpE ˜U (U), Iω(U)) ×Ip(U) (Ip(˜U), Ip(p)))
R�−−−−−→ (IpE ˜U ′ (U ′), Iω

′
(U ′)) ×Ip′ (U ′) (Ip′ (˜U ′), Ip′ (p′))

�(Jp)
⏐

⏐

�

⏐

⏐

�
Jp′

�(IpE ˜U (˜U))
˜ζ�−−−−−→ IpE ˜U ′ (˜U ′)

commutes.

In Lemma 3.4.1 we will use the definition above to show that universe category
functors compatible with J-structures give rise to homomorphisms of C-systems with J-
structures.

3.3. Homomorphisms of C-systems compatible with J-structures

Definition 3.3.1. — Let H : C → C′ be a homomorphism of C-systems.

1. Let Id and Id′ be J0-structures on C and C′ respectively. Then H is called a homomorphism

of C-systems with J0-structures (C, Id) → (C, Id′) if for each � ∈ Ob(C) and o, o′ ∈
˜Ob1(�) such that ∂(o) = ∂(o′), one has

H(Id�(o, o′)) = Id′
H(�)(H(o),H(o′))

(the right hand side of the equality makes sense because H commutes with ∂).

2. Let Id, Id′ be as above and let refl, refl′ be J1-structures over Id and Id′ respectively. A ho-

momorphism of C-systems with J0-structures H : (C, Id) → (C′, Id′) is called a homo-

morphism of C-systems with J1-structures

(C, Id, refl) → (C′, Id′, refl′)

if for all � ∈ Ob(C) and o ∈ ˜Ob1(�) one has

H(refl(o)) = refl′(H(o))

For a C-system C with a J0-structure Id and a J1-structure refl over Id define
Jdom(C, Id, refl) as the set of quadruples (�,T,P, s0), where � ∈ Ob, T ∈ Ob1(�),
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P ∈ Ob1(Id3(T)) and s0 ∈ ˜Ob(rf∗T(P)). Equivalently we can say that Jdom(C, Id, refl) is the
subset in Ob × Ob × Ob × ˜Ob that consists of quadruples (�,T,P, s0), where ft(T) = �,
ft(P) = Id3(T) and ∂(s0) = rf∗T(P). Then a J2-structure is defined by a map Jdom → ˜Ob

with some properties.

Lemma 3.3.2. — Let H : C → C′ be a homomorphism of C-systems. Let �,X,Y ∈
Ob(C), m, n ∈ N and suppose that ftm(X) = ftn(Y) = �. Let f : X → Y be a morphism over

� and let F : �′ → � be a morphism. Then

H(F∗(f )) = H(F)∗(H(f ))

Proof. — This is easy to show from the defining properties of F∗(f ) and
H(F)∗(H(f )). �

Lemma 3.3.3. — Let Id, Id′, refl and refl′ be as in Definition 3.3.1 and let

H : (C, Id, refl) → (C′, Id′, refl′)

be a homomorphism of C-systems with J1-structures. Then for all elements (�,T,P, s0) of

Jdom(Id, refl) one has (H(�),H(T),H(P),H(s0)) ∈ Jdom(Id′, refl′).

Proof. — We have ft(H(T)) = H(ft(T)) = H(�) and ft(H(P)) = H(ft(P)) =
H(Id3(T)). We also have ∂(H(s0)) = H(∂(s0)) = H(rf∗T(P)). By Lemma 3.3.2 we fur-
ther have

H(rf∗T(P)) = H(rfT)∗(H(P))

It remains to show that the following two equations.

H(Id3(T)) = Id′
3(H(T))(3.16)

H(rfT) = rf′H(T)(3.17)

They follow by a lengthy computation from the defining equations (2.9) and (2.11), which
we omit. �

Definition 3.3.4. — Let Id, Id′, refl and refl′ be as in Definition 3.3.1 and let J, J′ be J2-

structures over (Id, refl) and (Id′, refl′) respectively. A homomorphism of C-systems with J1-structures

H : (C, Id, refl) → (C′, Id′, refl′)

is called a homomorphism of C-systems with J-structures

(C, Id, refl, J) → (C′, Id′, refl′, J′)
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if for all � ∈ Ob(C), T ∈ Ob1(�), P ∈ Ob1(Id3(T)) and s0 ∈ ˜Ob(rf∗T(P)) one has

H(J(�,T,P, s0)) = J′(H(�),H(T),H(P),H(s0)),

where the right hand side of the equation makes sense by Lemma 3.3.3.

3.4. Functoriality of the J-structures (IdEq, refl�, JJp)

Let us first recall that by [17, Construction 3.3] any universe category functor

� = (�,φ,˜φ) : (C, p, pt) → (C ′, p′, pt′)

defines a homomorphism of C-systems

H = H(�) : CC(C, p) → CC(C ′, p′).

To define H on objects, one defines by induction on n, for all � ∈ Obn(CC(C, p)), pairs
(H(�),ψ�), where H(�) ∈ Ob(CC(C ′, p′)) and ψ� is a morphism

ψ� : int′(H(�)) → �(int(�)),

as follows. For n = 0 one has H(()) = () and ψ() : pt′ → �(pt) is the unique morphism to
a final object �(pt). For T = (�,F) ∈ Obn+1 one has

H(T) = (H(�),ψ� ◦ �(F) ◦ φ),

in other words, that

(3.18) u1(H(T)) = ψft(T) ◦ �(u1(T)) ◦ φ

and

(3.19) ft(H(T)) = H(ft(T)).

Moreover, ψ(�,F) is the unique morphism int′(H(�,F)) → �(int(�,F)) such that

(3.20) ψ(�,F) ◦ �(Q(F)) ◦ ˜φ = Q′(ψ� ◦ �(F) ◦ φ)

and

(3.21) ψ(�,F) ◦ �(p�,F) = pH((�,F)) ◦ ψ�

Observe that ψ� is automatically an isomorphism. The action of H on morphisms is
given, for f : � → �′, by

H(f ) = ψ� ◦ �(f ) ◦ ψ−1
�′
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Lemma 3.4.1. — Let � be a universe category functor as above that is compatible (as defined in

Definition 3.2.4) with the J0-structures Eq and Eq′ on p and p′ respectively. Then the homomorphism of

C-systems H = H(�) is a homomorphism of C-systems with J0-structures relative to IdEq and IdEq′ .

Proof. — Let Id = IdEq and Id′ = IdEq′ . We need to check that for all � ∈
Ob(CC(C, p)) and o, o′ ∈ ˜Ob1(�) such that ∂(o) = ∂(o′) one has

H(Id(o, o′)) = Id′(H(o),H(o′))

Since

∂(H(Id(o, o′)) = H(�) = H(ft(∂(o))) = ft(∂(H(o))) = ∂(Id′(H(o),H(o′)))

it suffices to check that

u1(H(Id(o, o′))) = u1(Id
′(H(o),H(o′))).

We have:

u1(H(Id(o, o′)))

= ψ� ◦ �(u1(Id(o, o′))) ◦ φ (by [18, Lemma 6.1(1)])

= ψ� ◦ �((̃u1(o) ∗ ũ1(o
′)) ◦ Eq) ◦ φ (by (2.43))

= ψ� ◦ �(̃u1(o) ∗ ũ1(o
′)) ◦ �(Eq) ◦ φ (by functoriality of �)

= ψ� ◦ �(̃u1(o) ∗ ũ1(o
′)) ◦ �˜Up ◦ Eq′ (by (3.7))

= ψ� ◦ ((�(̃u1(o)) ◦ ˜φ) ∗ (�(̃u1(o
′)) ◦ ˜φ)) ◦ Eq′ (by Lemma 3.2.2)

= ((ψ� ◦ �(̃u1(o)) ◦ ˜φ) ∗ (ψ� ◦ �(̃u1(o
′)) ◦ ˜φ)) ◦ Eq′ (by (2.15))

= (̃u1(H(o)) ∗ ũ1(H(o′))) ◦ Eq′ (by [18, Lemma 6.1(2)])

= u1(Id
′(H(o),H(o))) (by (2.43)) �

Lemma 3.4.2. — Let � be a universe category functor as above that is compatible with the

(J0, J1)-structures (Eq,�) and (Eq′,�′) on p and p′ respectively. Then the homomorphism of C-

systems H = H(�) is a homomorphism of C-systems with (J0, J1)-structures relative to (IdEq, refl�)

and (IdEq′, refl�′).

Proof. — Let refl = refl� and refl′ = refl�′ . The compatibility condition is

(3.22) �(�) ◦ ˜φ = ˜φ ◦ �′

We need to check that for � ∈ Ob(CC(C, p)) and s ∈ ˜Ob1(�) one has

H(refl(s)) = refl′(H(s))
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We have

H(refl(s)) = H(̃u−1
1 (̃u1(s) ◦ �)) (by (2.48))

= ũ−1
1 (ψ� ◦ �(̃u1(s) ◦ �) ◦ ˜φ) (by [18, Lemma 6.1(2)])

= ũ−1
1 (ψ� ◦ �(̃u1(s)) ◦ �(�) ◦ ˜φ) (by functoriality of �)

= ũ−1
1 (ψ� ◦ �(̃u1(s)) ◦ ˜φ ◦ �′) (by (3.22))

= ũ−1
1 (̃u1(H(s)) ◦ �′) (by [18, Lemma 6.1(2)])

= refl′(H(s)) (by (2.48)) �

To prove the functoriality of the full J-structures we will need some lemmas first.
Recall that in [20] we let p�,n : � → ftn(�) denote the composition p� ◦ · · · ◦pftn−1(�)

of n canonical projections.

Lemma 3.4.3. — Let � be a universe category functor and � ∈ Ob(CC(C, p)) be such that

l(�) ≥ n. Then the square

int′(H(�))
ψ�−−−→ �(int(�))

pH(�),n

⏐

⏐

�

⏐

⏐

�
�(p�,n)

int′(H(ftn(�)))
ψftn(�)−−−→ �(int(ftn(�)))

commutes.

Proof. — It follows by induction from the defining relation ψ� ◦ �(p�) = pH(�) ◦
ψft(�) of ψ� . �

Lemma 3.4.4. — Let Eq and Eq′ be J0-structures on (C, p) and (C ′, p′) respectively; let

� : (C, p, pt) → (C ′, p′, pt′) be a universe category functor compatible with Eq and Eq′ (as defined in

Definition 3.2.4); let Id′
3 be the analogue, for the category CC(C ′, p′), of Id3; let �2

E be the analogue, for

the universe pE˜U , of �2 (as defined in (3.4)); and let H = H(�). Then for all � ∈ Ob(CC(C, p)),

T ∈ Ob1(�), P ∈ Ob1(Id3(T)), and o ∈ ˜Ob(P), one has:

1. (u′
1,H(�)(H(T)), u′

1,Id′
3(H(T))

(H(P))) is a well defined element of DpE˜U ′(�(int(�)),U ′),

and it is equal to DpE˜U ′(ψ�, ˜U ′)(DpE˜U ′(int′(H(�)),φ)(�2
E(u1,�(T), u1,Id3(T)(P))));

and

2. (u′
1,H(�)(H(T)), ũ′

1,Id′
3(H(T))

(H(o))) is a well defined element of DpE˜U ′(�(int(�)), ˜U ′),

and it is equal to DpE˜U ′(ψ�, ˜U ′)(DpE˜U ′(int′(H(�)),˜φ)(�2
E(u1,�(T), ũ1,Id3(T)(o)))).
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Remark 3.4.5. — Since

u2(T) := (u1(ft(T)), u1(T)) ∈ Dp(int(�),U) and(3.23)

ũ2(s) := (u1(ft(∂(s))), ũ1(s)) ∈ Dp(int(�), ˜U),(3.24)

this lemma is very similar to [18, Lemma 6.1(3, 4)], but its proof is more involved because
of the interaction of the two universe functors. (For the introduction of u2 and ũ2 see [18,
Problem 3.5].)

Proof. — We will consider only the second assertion; the proof of the first one is
similar and simpler.

To prove that the pair

(u′
1,H(�)(H(T)), ũ′

1,Id′
3(H(T))(H(o)))

is a well defined element of DpE˜U ′(�(int(�)), ˜U ′) we need to show that ft(∂(H(o))) =
Id′

3(H(T)) and that the source of ũ′
1,Id′

3(H(T))
(H(o))) equals (int′(H(�)); u′

1(H(T)))E, i.e.,
that

int′(Id′
3(H(T))) = (int′(H(�)); u′

1(H(T)))E

The former is a corollary of our assumptions and Lemma 3.4.1, and the latter is a corol-
lary of [18, Problem 3.3(1)] and the first equation of Lemma 2.4.3.

Let X = int(�), F = u1,�(T), and ˜G = ũ1,Id3(T)(o), so that (F,˜G) ∈ DpE˜U(X, ˜U). By
the definitions we have

DpE˜U ′(ψ�,_)(DpE˜U ′(_,˜φ)(�2
E(F,˜G)))

= DpE˜U ′(ψ�,_)(DpE˜U ′(_,˜φ)(�(F) ◦ φ, ι ◦ �(˜G)))

(by def ’n of �2
E; cf. (3.4))

= DpE˜U ′(ψ�,_)(�(F) ◦ φ, ι ◦ �(˜G) ◦ ˜φ)

(by def ’n of DpE˜U ′ on morphisms)

= (ψ� ◦ �(F) ◦ φ,Q(ψ�,�(F) ◦ φ)E′ ◦ ι ◦ �(˜G) ◦ ˜φ),

(by def ’n of DpE˜U ′ on morphisms)

where

ι : (�(X);�(F) ◦ φ)E′ → �((X;F)E)
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is the unique morphism such that the following two equations are satisfied.

ι ◦ �(pE
X,F) = pE′

�(X),�(F)◦φ(3.25)

ι ◦ �(Q(F)E) ◦ ˜φE = Q(�(F) ◦ φ)E′(3.26)

(This map ι is analogous to the one defined in (3.3).)
On the other hand, by [18, Lemma 6.1(1)],

u1,H(�)(H(T)) = ψ� ◦ �(u1,�(T)) ◦ φ

and

ũ1,Id′
3(H(T))(H(o)) = ũ1,H(Id3(T))(H(o))

= ψH(Id3(T)) ◦ �(̃u1,Id3(T)(o)) ◦ ˜φ

by [18, Lemma 6.1(1,2)]. Applying that and (3.18), we see that to prove the lemma it is
sufficient to show that

ψId3(T) = Q(ψ�,�(F) ◦ φ)E′ ◦ ι.

Both sides are morphisms with codomain

�(int(Id3(T))) = �((X;F)E),

and since �E is a universe category functor it is sufficient to show that the compositions
of the two sides with �(pE

X,F) and �(Q(F)E)◦˜φE are the same, i.e., that the following two
equations hold.

ψId3(T) ◦ �(pE
X,F) = Q(ψ�,�(F) ◦ φ)E′ ◦ ι ◦ �(pE

X,F)(3.27)

ψId3(T) ◦ �(Q(F)E) ◦ ˜φE = Q(ψ�,�(F) ◦ φ)E′ ◦ ι ◦ �(Q(F)E) ◦ ˜φE(3.28)

We establish equation (3.27) as follows.

Q(ψ�,�(F) ◦ φ)E′ ◦ ι ◦ �(pE
X,F)

= Q(ψ�,�(F) ◦ φ)E′ ◦ pE′
�(X),�(F)◦φ (by (3.25))

= pE′
int′(H(�)),ψ�◦�(F)◦φ ◦ ψ� (by commutativity of (2.27))

= pH(Id3(X,F)),3 ◦ ψ� (by (2.45))

= pH(Id3(T)),3 ◦ ψ� (by def ’n of X and F)

= ψId3(T) ◦ �(pId3(T),3) (by (3.4.3))

= ψId3(T) ◦ �(pId3(X,F),3) (by def ’n of X and F)

= ψId3(T) ◦ �(pE
X,F). (by (2.46))
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Since

Q(ψ�,�(F) ◦ φ)E′ ◦ ι ◦ �(Q(F)E) ◦ ˜φE

= Q(ψ�,�(F) ◦ φ)E′ ◦ Q(�(F) ◦ φ)E′ (by (3.26))

= Q(ψ� ◦ �(F) ◦ φ)E′, (by (2.2.9))

equation (3.28) reduces to

(3.29) ψId3(T) ◦ �(Q(F)E) ◦ ˜φE = Q(ψ� ◦ �(F) ◦ φ)E′ .

We have

˜φE = (�(p(˜U;p),Eq) ◦ �˜Up) ∗ (�(Q(Eq)) ◦ ˜φ).

Therefore (3.29) is equivalent to two equations:

ψId3(T) ◦ �(Q(F)E) ◦ �(p(˜U;p),Eq) ◦ �˜Up = Q(ψ� ◦ �(F) ◦ φ)E′ ◦ p(˜U ′;p′),Eq′(3.30)

ψId3(T) ◦ �(Q(F)E) ◦ �(Q(Eq)) ◦ ˜φ = Q(ψ� ◦ �(F) ◦ φ)E′ ◦ Q′(Eq′).(3.31)

The first equality we will have to decompose further into two using the fact that by
Lemma 3.2.1 we have

�˜Up = (�(p
˜U ,p) ◦ ˜φ) ∗ (�(Q(p)) ◦ ˜φ).

Therefore (3.30) is equivalent to two equations:

ψId3(T) ◦ �(Q(F)E) ◦ �(p(˜U;p),Eq) ◦ �(p
˜U ,p) ◦ ˜φ(3.32)

= Q(ψ� ◦ �(F) ◦ φ)E′ ◦ p(˜U ′;p′),Eq′ ◦ p
˜U ′,p′

ψId3(T) ◦ �(Q(F)E) ◦ �(p(˜U;p),Eq) ◦ �(Q(p)) ◦ ˜φ(3.33)

= Q(ψ� ◦ �(F) ◦ φ)E′ ◦ p(˜U ′;p′),Eq′ ◦ Q′(p′).

To prove (3.31) observe first two useful equalities:

u1(Id3(T)) = Q(Q(F), p) ◦ Eq(3.34)

Q(u1(Id3(T))) = Q(F)E ◦ Q(Eq),(3.35)

where the first follows from the proof of Lemma 2.4.3, and the second is the combination
of the first with the third equality of the same lemma.

Now we have:

ψId3(T) ◦ �(Q(F)E) ◦ �(Q(Eq)) ◦ ˜φ

= ψId3(T) ◦ �(Q(F)E ◦ Q(Eq)) ◦ ˜φ (by functoriality of �)
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= ψId3(T) ◦ �(Q(u1(Id3(T)))) ◦ ˜φ (by (3.35))

= Q′(ψ� ◦ �(u1(Id3(T))) ◦ φ) (by (3.20))

= Q′(u1(H(Id3(T)))) (by (3.18))

= Q′(u1(Id
′
3(H(T)))) (by (3.16))

= Q(u1(H(T)))E′ ◦ Q′(Eq′) (by (3.35))

= Q(ψ� ◦ �(F) ◦ φ)E′ ◦ Q′(Eq′). (by (3.18))

The equality (3.31) is proved.
To prove (3.32) observe two equalities:

Q(F)E ◦ p(˜U;p),Eq = pId3(T) ◦ Q(Q(F), p)(3.36)

Q(Q(F), p) ◦ p
˜U ,p = pft(Id3(T) ◦ Q(F).(3.37)

The same equalities hold for F′ := ψ� ◦ �(F) ◦ φ = u′
1(H(T)), and Equation (3.32) be-

comes

ψId3(T) ◦ �(pId3(T)) ◦ �(pft(Id3(T))) ◦ �(Q(F)) ◦ ˜φ

= pId′
3(H(T)) ◦ pft(Id′

3(H(T))) ◦ Q(F′)

Using the defining equations for ψ we rewrite the left hand side as follows:

ψId3(T) ◦ �(pId3(T)) ◦ �(pft(Id3(T))) ◦ �(Q(F)) ◦ ˜φ

= pH(Id3(T)) ◦ pft(H(Id3(T))) ◦ ψT ◦ �(Q(F)) ◦ ˜φ.

It remains to show that

(3.38) Q(ψ� ◦ �(F) ◦ φ) = ψ(�,F) ◦ �(Q(F)) ◦ ˜φ,

which is the defining equation of ψ(�,F).
We prove (3.33) as follows.

ψId3(T) ◦ �(Q(F)E) ◦ �(p(˜U;p),Eq) ◦ �(Q(p)) ◦ ˜φ

= ψId3(T) ◦ �(Q(F)E ◦ p(˜U;p),Eq) ◦ �(Q(p)) ◦ ˜φ (by functoriality of �)

= ψId3(T) ◦ �(pId3(T) ◦ Q(Q(F), p)) ◦ �(Q(p)) ◦ ˜φ (by commutativity

of (2.22))

= ψId3(T) ◦ �(pId3(T)) ◦ �(Q(Q(F), p) ◦ Q(p)) ◦ ˜φ (by functoriality of �)

= ψId3(T) ◦ �(pId3(T)) ◦ �(Q(Q(F) ◦ p)) ◦ ˜φ (by commutativity

of (2.16))
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= pH(Id3(T)) ◦ ψft(Id3(T)) ◦ �(Q(Q(F) ◦ p)) ◦ ˜φ (by (3.21))

= pH(Id3(T)) ◦ ψ((�,F),Q(F)◦p) ◦ �(Q(Q(F) ◦ p)) ◦ ˜φ (by [18, Lemma 3.2])

= pH(Id3(T)) ◦ Q′(ψ(�,F) ◦ �(Q(F) ◦ p) ◦ φ) (by (3.20))

= pH(Id3(T)) ◦ Q′(u1(H(ft(Id3(T))))) (by (3.18))

= pH(Id3(T)) ◦ Q′(u1(ft(H(Id3(T))))) (by (3.19))

= pId′
3(H(T)) ◦ Q′(u1(ft(Id

′
3(H(T))))) (by (3.16))

= pId′
3(H(T)) ◦ Q′(Q′(u1(H(T))) ◦ p′) (by (2.44))

= pId′
3(H(T)) ◦ Q′(Q′(u1(H(T))), p′) ◦ Q′(p′) (by commutativity

of (2.16))

= Q(u1(H(T)))E′ ◦ p(˜U ′;p′),Eq′ ◦ Q′(p′) (by commutativity

of (2.2.8))

= Q(ψ� ◦ �(F) ◦ φ)E′ ◦ p(˜U ′;p′),Eq′ ◦ Q′(p′) (by (3.18))

That finishes the proof of Lemma 3.4.4. �

Lemma 3.4.6. — Let � be a universe category functor as above that is compatible with the

(J0, J1, J2)-structures (Eq,�, Jp) and (Eq′,�′, Jp) on p and p′ respectively. Then the homomorphism

of C-systems H = H(�) is a homomorphism of C-systems with (J0, J1, J2)-structures relative to

(IdEq, refl�, JJp) and (IdEq′, refl�′, JJp′).

Proof. — Let Id = Id�, Id′ = Id�′ , refl = refl�, refl′ = refl�′ , J = JJp and J′ = JJp′ .
We need to verify that for all � ∈ Ob(CC(C, p)), T ∈ Ob1(�), P ∈ Ob1(Id3(T))

and s0 ∈ ˜Ob(rf∗T(P)) one has

H(J(�,T,P, s0)) = J′(H(�),H(T),H(P),H(s0))

The defining equation for J′ is

(3.39) η!−1
pE˜U ′(u

′
1(H(T)), ũ′

1,Id′
3(H(T)(J

′))) = φ(H(�),H(T),H(P),H(s0)) ◦ Jp′

and to prove the lemma we need to show that H(J) satisfies this equation.
Using Lemma 3.4.4 we have

η!−1
pE˜U (u′

1(H(T)), ũ′
1,Id′

3(H(T)(H(J))))

= η!−1
pE˜U ′(DpE˜U ′(ψ�,_)(DpE˜U ′(_,˜φ)(�2

E(u1(T), ũ1,Id3(T)(J)))))

= ψ� ◦ η!−1
pE˜U ′(�

2
E(u1(T), ũ1,Id3(T)(J))) ◦ IpE˜U ′(˜φ)
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We further have:

ψ� ◦ η!−1
pE˜U ′(�

2
E(u1(T), ũ1,Id3(T)(J))) ◦ IpE˜U ′(˜φ)

= ψ� ◦ �(η!−1
pE˜U (u1(T), ũ1,Id3(T)(J))) ◦ χ�E(

˜U) ◦ IpE˜U ′(˜φ)

(by [18, Lemma 5.8])

= ψ� ◦ �(φ(�,T,P, s0) ◦ Jp) ◦ χ�E(
˜U) ◦ IpE˜U ′(˜φ) (by (2.4.11))

= ψ� ◦ �(φ(�,T,P, s0) ◦ Jp) ◦˜ζ�. (by def ’n of ˜ζ� in (3.12))

It remains to show that

ψ� ◦ �(φ(�,T,P, s0) ◦ Jp) ◦˜ζ� = φ(H(�),H(T),H(P),H(s0)) ◦ Jp′

By the compatibility condition of Definition 3.2.10 we see that it is sufficient to prove that

ψ� ◦ �(φ(�,T,P, s0)) ◦ R� = φ(H(�),H(T),H(P),H(s0))

Let

pr1 : (IpE˜U(U), Iω) ×Ip(U) (Ip(˜U), Ip(p)) → IpE˜U (U)

pr2 : (IpE˜U(U), Iω) ×Ip(U) (Ip(˜U), Ip(p)) → Ip(˜U)

be the projections and let pr′1, pr′2 be their analogues in C ′. Then one has the following
two equations.

R� ◦ pr′1 = �(pr1) ◦ ζ�(3.40)

R� ◦ pr′2 = �(pr2) ◦˜ξ�.(3.41)

On the other hand, the defining relations of φ(�,T,P, s0) are

φ(�,T,P, s0) ◦ pr1 = η!−1
pE˜U (F,G)(3.42)

φ(�,T,P, s0) ◦ pr2 = η!−1
p (F, ˜H),(3.43)

and the defining relations of φ(H(�),H(T),H(P),H(s0)) are

φ(H(�),H(T),H(P),H(s0)) ◦ pr′1 = η!−1
pE˜U ′(F′,G′)(3.44)

φ(H(�),H(T),H(P),H(s0)) ◦ pr′2 = η!−1
p′ (F′, ˜H′),(3.45)

where

F = u1,�(T) F′ = u′
1,H(�)(H(T))
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G = u1,Id3(T)(P) G′ = u′
1,Id′

3(H(T))(H(P))

˜H = ũ1,T(s0), ˜H′ = ũ′
1,H(T)(H(s0))

We need to prove

(3.46) ψ� ◦ �(φ(�,T,P, s0)) ◦ R� ◦ pr′1 = φ(H(�),H(T),H(P),H(s0)) ◦ pr′1

and

(3.47) ψ� ◦ �(φ(�,T,P, s0)) ◦ R� ◦ pr′2 = φ(H(�),H(T),H(P),H(s0)) ◦ pr′2

We establish (3.46) as follows.

ψ� ◦ �(φ(�,T,P, s0)) ◦ R� ◦ pr′1
= ψ� ◦ �(φ(�,T,P, s0)) ◦ �(pr1) ◦ ζ� (by (3.40))

= ψ� ◦ �(φ(�,T,P, s0) ◦ pr1) ◦ ζ� (by functoriality of �)

= ψ� ◦ �(η!−1
pE˜U (F,G)) ◦ ζ� (by (3.42))

= ψ� ◦ �(η!−1
pE˜U (F,G)) ◦ χ�E(U) ◦ IpE˜U ′(φ) (by def ’n of ζ� in (3.11))

= ψ� ◦ η!−1
pE˜U ′(�

2
E(F,G)) ◦ IpE˜U ′(φ), (by [18, Lemma 5.8])

= η!−1
pE˜U ′(DpE˜U (ψ�,_)(DpE˜U(_, φ)(�2(F,G)))) (by naturality of η!

pE˜U ′ )

= η!−1
pE˜U ′(u

′
1,H(�)(H(T)), u1,Id′

3(H(T))(H(P))), (by Lemma 3.4.4(1))

= η!−1
pE˜U ′((F′,G′)) (by def ’n of F′ and G′)

= φ(H(�),H(T),H(P),H(s0)) ◦ pr′1 (by (3.44))

For (3.47), we proceed as follows.

ψ� ◦ �(φ(�,T,P, s0)) ◦ R� ◦ pr′2

= ψ� ◦ �(φ(�,T,P, s0)) ◦ �(pr2) ◦˜ξ� (by (3.41))

= ψ� ◦ �(φ(�,T,P, s0) ◦ pr2) ◦˜ξ� (by functoriality of �)

= ψ� ◦ �(η!−1
p ((F, ˜H))) ◦˜ξ� (by (3.43))

= ψ� ◦ �(η!−1
p ((u1(T), ũ1(s0))) ◦˜ξ� (by def ’n of F and ˜H)

= ψ� ◦ �(η!−1
p ((u1(ft(∂(s0))), ũ1(s0))) ◦˜ξ� (by the type of s0)

= ψ� ◦ �(η!−1
p (̃u2,�(s0))) ◦˜ξ� (by def ’n of ũ2 in (3.24))
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= η!−1
p′ (̃u′

2,H(�)(H(s0))) (by [18, Lemma 6.2(2)])

= η!−1
p′ ((u′

1(ft(∂(H(s0)))), ũ′
1(H(s0)))) (by def ’n of ũ2 in (3.24))

= η!−1
p′ ((u′

1(ft(∂(H(s0)))),˜H′)) (by def ’n of ˜H′)

= η!−1
p′ ((u′

1(ft(H(∂(s0)))),˜H′)) (by functoriality of H)

= η!−1
p′ ((u′

1(H(ft(∂(s0)))),˜H′)) (by (3.19))

= η!−1
p′ ((u′

1(H(T))),˜H′)) (by the type of s0)

= η!−1
p′ ((F′, ˜H′)) (by def ’n of F′)

= φ(H(�),H(T),H(P),H(s0)) ◦ pr′2 (by (3.45))

This finishes the proof of Lemma 3.4.6. �
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