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ABSTRACT

We apply Treumann’s “Smith theory for sheaves” in the context of the Iwahori–Whittaker model of the Satake
category. We deduce two results in the representation theory of reductive algebraic groups over fields of positive character-
istic: (a) a geometric proof of the linkage principle; (b) a character formula for tilting modules in terms of the �-canonical
basis, valid in all blocks and in all characteristics.

1. Introduction

1.1. Geometric representation theory of reductive algebraic groups. — Let G be a connected
reductive algebraic group over an algebraically closed field k of characteristic � > 0, and
consider the category Rep(G) of finite-dimensional algebraic representations of G. The
study of this category has seen significant progress over the last fifty years; however several
fundamental questions (e.g. dimensions and characters of simple and indecomposable
tilting modules) remain only partially understood.

One tempting avenue of pursuit is to find relationships to D -modules or con-
structible sheaves, and hence bring sheaf theory into play. The archetypal example
of the success of such an approach is the Beı̆linson–Bernstein localization theorem,
which establishes such an link for modules over complex semi-simple Lie algebras.
Beı̆linson–Bernstein localization is an indispensable tool in modern Geometric Represen-
tation Theory, leading to proofs of the Kazhdan–Lusztig conjectures, character formulas
for real reductive groups, etc.

Back in the setting of Rep(G), the geometric Satake equivalence provides such a con-
nection to constructible sheaves. To G we can associate the affine Grassmannian GrH of
its complex Langlands dual group H (an “infinite-dimensional algebraic variety”), and
one has an equivalence of tensor categories between Rep(G) and a certain category of
perverse sheaves with k-coefficients on GrH. The geometric Satake equivalence is cen-
tral to modern approaches to the Langlands program, and has become a cornerstone of
Geometric Representation Theory.

However, in contrast to Beı̆linson–Bernstein localization, the geometric Satake
equivalence has been surprisingly ineffective at answering questions about Rep(G). For
example, several basic statements and constructions involving Rep(G) (e.g. the linkage
principle, or Frobenius twist) have no geometric explanation. This is the more surpris-
ing, as several known or conjectured formulas (e.g. Lusztig’s character formula) involve
Kazhdan–Lusztig polynomials or their �-counterparts, which encode dimensions of stalks
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of complexes on the affine Grassmannian and flag variety of H. Nowadays we have sev-
eral proofs of Lusztig’s character formula for large �, however none of them pass through
the geometric Satake equivalence!

1.2. Overview. — The main result of the present paper is a proof of the linkage
principle via the geometric Satake equivalence. Our proof also explains that each “block”
in the linkage principle is controlled by a partial affine flag variety for the Langlands dual
group, which gives us new proofs of Lusztig’s conjecture on simple characters (for large
�) and of a conjecture of the authors on tilting characters (for all �).

Our argument is a simple application of two new tools in Geometric Representa-
tion Theory. The first one is Smith–Treumann theory, which is a variant of equivariant
localization for tori. In this theory the circle action is replaced by the action of a cyclic
group of order �, and the coefficients are of characteristic �. We apply this theory to the
loop rotation action on the affine Grassmannian. Whilst the fixed points under the full
loop rotation action (infinitely many partial flag varieties for H) are rather boring, the
fixed points under the subgroup of �-th roots of unity (affine flag varieties for H, which are
finite in number if H is semi-simple) are rich.

The second ingredient is the Iwahori–Whittaker realisation of the Satake category.
This replaces the category of perverse sheaves in the Satake equivalence with an equiva-
lent category of perverse sheaves satisfying a certain equivariance condition with respect
to the pro-unipotent radical of the Iwahori subgroup. (This condition, introduced—to
our knowledge—by Bezrukavnikov, is inspired by the “Whittaker conditions” in the rep-
resentation theory of p-adic groups, hence the name.) It turns out that in the Iwahori–
Whittaker realisation, the components of the fixed points discussed above match precisely
the decomposition of Rep(G) given by the linkage principle. Our main theorem asserts
that the Smith restriction functor gives an equivalence between tilting sheaves in the
Iwahori–Whittaker realisation and a certain category of parity complexes on the fixed
points. It is then straightforward to deduce the linkage principle. The character formulas
for simple and tilting modules alluded to above are also an immediate consequence.

In the rest of the introduction, we give a more detailed overview of the techniques
and results of this paper.

1.3. The linkage principle. — As above, let G be a connected reductive algebraic
group over an algebraically closed field k of characteristic � > 0, and let Rep(G) be its
category of finite-dimensional algebraic representations. Fix a maximal torus and Borel
subgroup T ⊂ B ⊂ G, and let R+ ⊂ R ⊂ X denote the (positive) roots inside the lattice
of characters of T.1 The simple objects in Rep(G) are classified by dominant weights
X+ ⊂ X; given λ ∈ X+ we denote by ∇(λ) the induced G-module of highest weight λ,
and by L(λ) its simple socle.

1 We warn the reader that in the body of the paper we switch to a Langlands dual notation.
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Let Wf denote the Weyl group of (G,T), and consider the affine Weyl group

Waff := Wf � ZR

which acts naturally on X. The linkage principle [Ve, H1, J1, A1] states that we have a
decomposition

(1.1) Rep(G) =
⊕

γ∈X/(Waff,•�)

Repγ (G),

where each summand is the Serre subcategory

Repγ G = 〈L(λ) : λ ∈ γ ∩ X+〉.
Notice that we do not consider the standard action of Waff on X, but rather the “dot”
action (denoted •�); that is, if ρ := 1

2

∑
α∈R+ α, then

(wtμ) •� λ := w(λ + �μ + ρ) − ρ

for w ∈ Wf, μ ∈ ZR and λ ∈ X.

Remark 1.1. — The subcategory Repγ (G) will be called the block of γ . This is
an abuse since this subcategory might be decomposable, hence is not a “block” in the
strict sense. The terminology is convenient however. The blocks of Rep(G) in the strict
sense have been described by Donkin [Do]. In a work in preparation, E. Zabeth uses the
methods of the present paper to recover Donkin’s result geometrically.

1.4. The geometric Satake equivalence. — Let H be the complex2 reductive group
which is Langlands dual to G, and denote its maximal torus by T (so that X∗(T) = X =
X∗(T)). Let LH and L+H denote the “loop” group (ind-)schemes whose R-points are
H(R((z))) and H(R[[z]]) respectively, for any C-algebra R; and let GrH := LH/L+H de-
note the affine Grassmannian. The affine Grassmannian is an ind-projective ind-scheme
whose T-fixed points (resp. L+H-orbits) are in a natural bijection with X (resp. X+),
through a map denoted λ 	→ Lλ (resp. μ 	→ Gr

μ

H). Here, Gr
μ

H contains Lλ iff λ ∈ Wf(μ).
The geometric Satake equivalence [L3, Gi, BD, MV1] gives an equivalence of Tan-

nakian categories

(1.2) (PervL+H(GrH,k), �) ∼= (Rep(G),⊗)

where PervL+H(GrH,k) denotes the category of L+H-equivariant perverse sheaves on GrH

with coefficients in k, with its natural convolution product �.

2 In a few paragraphs we will instead assume that H is defined over a field of characteristic p where p = 0, �.
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1.5. Smith–Treumann theory. — A fundamental role in our proof is played by
Treumann’s “Smith theory for sheaves” [Tr]. The basic idea is that, when dealing with
coefficients of characteristic �, one should be able to localize to fixed points of actions
of cyclic groups of order �. (This theory should be compared with Borel’s “localization
theorem” for manifolds equipped with an action of the circle group; in this analogy, finite
cyclic groups become “discrete circles”; see [W2] for more comments on this analogy.)

More precisely, let X be a variety endowed with an action of the group μ� of �-th
roots of unity, and denote by Xμ� the subvariety of μ�-fixed points. One has two (Verdier
dual) restriction functors

Db
μ�

(X,k) Db
μ�

(Xμ� ,k)

i!

i∗

between the μ�-equivariant derived categories of constructible k-sheaves on X and on
Xμ� .

A fundamental observation of Treumann is that the compositions of these functors
with the quotient functor to the Smith category

SmTreu(Xμ� ,k) := Db
μ�

(Xμ� ,k)/
〈
μ�-perfect complexes

〉

become canonically isomorphic. Here an object in Db
μ�

(Xμ� ,k) is called μ�-perfect if its
stalks (naturally complexes of μ�-modules) may be represented by a bounded complex of
free k[μ�]-modules. The resulting Smith restriction functor

Db
μ�

(X,k) SmTreu(Xμ�,k)
i!∗

has remarkable properties. For example, it commutes with essentially all sheaf theoretic
functors [Tr]. It can be thought of as an analogue of hyperbolic localization [Br] for
μ�-actions.

For technical reasons (most notably, to ensure that the Smith category of a point
satisfies appropriate parity vanishing properties), we use a variant of Treumann’s con-
struction, proposed by the second author in [W2]. Namely, we assume that the action of
μ� can be extended to an action of the multiplicative group Gm on X and consider the
equivariant Smith category

Sm(Xμ� ,k) := Db
Gm

(Xμ� ,k)/

〈
complexes whose restriction
to μ� ⊂ Gm are μ�-perfect

〉
.
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With this definition, the theory of parity complexes from [JMW] applies in the Smith
quotient, which will be crucial for our arguments.3

1.6. Fixed points. — To apply this idea in our setting, note that GrH has a natural
action of Gm via “loop rotation,” induced by the action of Gm on C((z)) which “rescales”
z. A beautiful fact (that we first learned from R. Bezrukavnikov) is that, if μ� ⊂ Gm de-
notes (as above) the subgroup of �-th roots of unity, we have a decomposition

(1.3) (GrH)μ� =
⊔

γ∈X/(Waff,��)

GrH,γ ,

where the action �� of Waff on X is defined by (wtμ)��λ = w(λ + �μ) for w ∈ Wf,
μ ∈ ZR and λ ∈ X. Moreover, each component on the right-hand side of (1.3) is a partial
affine flag variety for the loop group L�H representing R 	→ H(R((z�))), whose “partial-
ity” is governed by the stabilizer of an element in γ . For example, for γ = Waff��0 we
obtain the “thin affine Grassmannian” (defined as above for GrH, but now with z replaced
by z�); and if γ has trivial stabiliser under Waff then GrH,γ is the full affine flag variety for
H.

The similarity between (1.3) and (1.1) is rather striking; for example there are as
many components in the right-hand side of (1.3) as summands in the decomposition (1.1).
However there is a fundamental difference: (1.1) involves the dot action (with Wf fixing
−ρ), whereas (1.3) involves the unshifted action (with Wf fixing 0). Thus we do not expect
the Smith restriction functor to realise the linkage principle in this setting.4

1.7. The Iwahori-Whittaker model. — To get around this issue, we replace the “tra-
ditional” Satake category PervL+H(GrH,k) with the “Iwahori–Whittaker model” consid-
ered in [BGMRR]. There it is proved that (under a mild assumption, satisfied e.g. if H
is semisimple of adjoint type, which we assume from now on for simplicity) one has an
equivalence of abelian categories

(1.4) PervL+H(GrH,k)
∼−→ PervIW(GrH,k)

where the right-hand side denotes a category of perverse sheaves of GrH which satisfy
a certain equivariance condition with respect to the pro-unipotent radical Iw+

u of an
Iwahori subgroup; such perverse sheaves are called “Iwahori–Whittaker.”5

3 The fact that Smith–Treumann theory can be made to accommodate the theory of parity sheaves was first pointed
out by Leslie–Lonergan [LL]. The version they use is however different, and—from our point of view—technically more
involved.

4 The effect of Smith restriction in this setting is investigated in [LL]. The authors show that it realises the “Frobe-
nius contraction” functor of Gros–Kaneda [GK].

5 One can make sense of this condition in various ways. In this work (following Bezrukavnikov) we use étale sheaves
and the Artin–Schreier covering, which necessitates passing to GrH defined over a field of characteristic p > 0 (with p = �).
The geometric Satake equivalence is also available in this setting.
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A crucial point for us is that on simple objects the equivalence (1.4) sends the in-
tersection cohomology complex associated with the L+H-orbit parametrized by λ ∈ X+

(which corresponds to L(λ) under (1.2)) to the Iwahori–Whittaker intersection cohomol-
ogy complex associated with the Iw+

u -orbit parametrized by λ+ρ. Thus, after passage to
the Iwahori–Whittaker model, our issue with the two distinct actions of Waff goes away,
and the linkage principle is reflected perfectly in the geometry of the μ�-fixed points.
In particular, two simple Iwahori–Whittaker perverse sheaves, parametrized by some
weights λ and μ, lie in the same summand in the linkage principle if and only if the
corresponding points Lλ and Lμ lie in the same component of the fixed points!

Another favorable property of the Iw+
u -action on GrH is that each orbit is isomor-

phic to an affine space. This setting is known to imply nice properties for categories of
perverse sheaves (see e.g. [BGS]), and in particular that this category admits a transparent
structure of a highest weight category. The situation is even more favorable here in that
the “relevant” orbits (i.e. those which support a nonzero Iwahori–Whittaker local system)
have dimensions of constant parity in each connected component of GrH. This implies
that the tilting objects in PervIW(GrH,k) are parity in the sense of [JMW]; in particular
the indecomposable tilting perverse sheaves coincide with the self-dual indecomposable
parity objects.

1.8. Main theorems. — Recall that Gm acts on GrH via loop rotation. The Iwahori–
Whittaker condition and the loop rotation equivariance are compatible; we thus obtain
a Smith restriction functor

i!∗ : Db
IW,Gm

(GrH,k) → SmIW((GrH)μ� ,k).

We will write ParityIW,Gm
(GrH,k), resp. SmParityIW((GrH)μ� ,k), for the additive cate-

gory of parity sheaves in the source, resp. target, of this functor, and PerParIW,Gm(GrH,k)

for the full subcategory of ParityIW,Gm
(GrH,k) whose objects are the perverse parity com-

plexes. Our first main result (stated more precisely in Theorem 7.4) is the following.

Theorem 1.2. — Smith restriction yields a fully-faithful functor

i!∗ : PerParIW,Gm(GrH,k) → SmParityIW((GrH)μ�,k).

Remarkably, the proof of this theorem is a few lines once one has the appropriate
technology in place. It is an easy consequence of Beı̆linson’s lemma, once one knows that
i!∗ preserves standard and costandard objects; this in turn follows because i!∗ commutes
with ∗- and !-extensions.

Recall from Section 1.7 that the self-dual indecomposable Iwahori–Whittaker
parity complexes on GrH coincide with the indecomposable tilting perverse sheaves in
PervIW(GrH,k) (which in turn correspond to tilting G-modules under the geometric
Satake equivalence). Given λ ∈ ρ + X+, we denote by E IW

λ the corresponding indecom-
posable parity complex.
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By Theorem 1.2, the image of any E IW
λ under i!∗ has to be supported on a sin-

gle component. This has the following consequence, from which one easily obtains the
promised proof of the linkage principle (see Section 8.2).

Corollary 1.3. — If Hom(E IW
λ ,E IW

μ ) = 0 then Waff��λ = Waff��μ.

Theorem 1.2 implies more generally that many questions about tilting Iwahori–
Whittaker perverse sheaves on GrH (and hence about tilting G-modules) may be answered
after applying Smith restriction. This will be crucial to our second application in repre-
sentation theory, to the tilting character formula (see Section 1.9 below). But, in order to
apply this idea, one needs a more “concrete” description of indecomposable parity ob-
jects in SmIW((GrH)μ� ,k). This is the subject of our second main result on the geometric
side.

Consider the following diagram of quotient and forgetful functors:

SmIW((GrH)μ� ,k)

Db
IW�,Gm

((GrH)μ� ,k)

Db
IW�

((GrH)μ� ,k).

Q ForGm

(Here the subscript in IW� indicates that the Iwahori–Whittaker condition is imposed
with respect to the action of an Iwahori subgroup in L�H now.) Our second main theorem
(which combines Proposition 7.7 and Corollary 7.8) is the following.

Theorem 1.4. — The functors Q and ForGm preserve indecomposable parity complexes. More-

over, if E ,F ∈ Db
IW�,Gm

((GrH)μ� ,k) are parity objects of the same parity, then there exists a canonical

isomorphism

(1.5) Hom(Q(E ),Q(F )) = Hom•(ForGm(E ),ForGm(F )).

The proof of Theorem 1.4 is given in Section 7.4. The first step is the observation
that given parity complexes E ,F ∈ Db

IW�,Gm
((GrH)μ� ,k) of the same parity we have

canonical isomorphisms:

Hom•(ForGm(E ),ForGm(F )) = Hom•(E ,F ) ⊗x 	→0 k.(1.6)

Hom(Q(E ),Q(F )) = Hom•(E ,F ) ⊗x 	→1 k.(1.7)

(Here, x ∈ H2
Gm

(pt,k) denotes the equivariant parameter, and Hom•(E ,F ) is viewed as
an H•

Gm
(pt,k)-module in the natural way. The tensor products are taken over H•

Gm
(pt,k),

with the indicated module structure on k.) The isomorphism (1.6) is simply the equivari-
ant formality of homomorphisms between parity complexes, which follows from a stan-
dard parity argument. The isomorphism (1.7) essentially follows from the analysis of the
Smith category of a point; see the proof of Proposition 7.7 for details.
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The preservation of indecomposable parity objects by the functor ForGm is immedi-
ate from (1.6), and is a basic ingredient in the theory of parity complexes. The statement
for Q is potentially more surprising, as inverting the equivariant parameter rarely pre-
serves indecomposability. The key point is that the Gm-action on (GrH)μ� factors through
an action of Gm/μ� = Gm. As a consequence, this action is indistinguishable from the
trivial action when we take k-coefficients. Hence we obtain a canonical isomorphism

Hom•(E ,F ) = H•
Gm

(pt,k) ⊗k Hom•(ForGm(E ),ForGm(F )),

see Lemma 7.5. Combining this isomorphism with (1.6)–(1.7) we deduce (1.5). Now
preservation of indecomposable parity objects by Q follows from the similar property
for ForGm , as a finite-dimensional Z-graded algebra is local if and only if its degree-0 part
is.

Remark 1.5. — The isomorphism (1.5) shows that “Q ◦ (ForGm)−1” behaves like a
degrading functor. Degrading functors are ubiquitous in modern Geometric Represen-
tation Theory. In algebra, they are often realised by forgetting the grading on a graded
module; in geometry they are often associated with forgetting a mixed structure. The
above shows that Smith–Treumann theory provides another possible geometric realisa-
tion of degrading functors.

1.9. Tilting characters. — A fundamental question in the representation theory of
G is to determine the characters of the indecomposable tilting modules. In [RW1] we
started advocating the idea that character formulas for G-modules should be expressed
in terms of the �-canonical basis of Waff, and illustrated this idea by a conjectural for-
mula for characters of indecomposable tilting modules in the principal block, under the
assumption that � is bigger than the Coxeter number h of G. This formula was proved in
case G = GLn(k) in [RW1], and then for a general reductive group in a joint work with
P. Achar and S. Makisumi, see [AMRW]. A simple consequence of the results of Section
1.8 is a new and much simpler proof of this character formula, along with an extension
to a formula valid in all blocks of Rep(G), without any restriction of �.

To state this formula, recall that the summands on the right-hand side of (1.1) can
be parametrized by the weights in the intersection A of the weight lattice with the closure
of the fundamental alcove for the dot action of Waff. For λ ∈ A we denote by Wλ ⊂ Waff

the stabilizer of λ for •� (a standard parabolic subgroup), and by W(λ)

aff the subset of Waff

consisting of elements w which are both maximal in wWλ and minimal in Wfw. Then
the indecomposable tilting G-modules in the block of Waff •� λ are in a natural bijection
with W(λ)

aff , and we denote by T(w •� λ) the module of highest weight w •� λ.
The tilting character formula alluded to above can be stated as follows.
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Theorem 1.6. — For any λ ∈A and w ∈ W(λ)

aff we have

ch(T(w •� λ)) =
∑

y∈W(λ)
aff

�ny,w(1) · χy•�λ,

where χμ is the Weyl character formula attached to the dominant weight μ, and �ny,w is the antispherical

�-Kazhdan–Lusztig polynomial attached to (y,w).

See [RW1, §1.4] for a comparison of this formula with an earlier formula con-
jectured by Andersen [A2], which was one of our sources of inspiration. The proof of
Theorem 1.6 proceeds as follows. By standard considerations, to compute the characters
of indecomposable tilting modules it suffices to compute the dimensions of morphism
spaces between such objects. In the present setting, thanks to Theorem 1.2 this boils
down to computing the dimensions of morphism spaces between indecomposable par-
ity objects in SmIW((GrH)μ� ,k). Formula (1.5) allows to translate this question into that
of computing dimensions of morphism spaces between indecomposable parity objects
in Db

IW�
((GrH)μ�,k), which can be done using (1.3) and the fact that the dimensions of

stalks of indecomposable parity complexes on (partial) affine flag varieties are computed
by �-Kazhdan–Lusztig polynomials, as follows from the results of [RW1, Part III].

1.10. Simple characters. — Using ideas of Andersen [A2] recently refined by
Sobaje [Sob], from the formula in Theorem 1.6 one can in theory deduce a charac-
ter formula for simple G-modules, in all blocks and all characteristics. This can be done
in at least two ways. The first possibility is to use a “reciprocity formula” due to An-
dersen [A3] (based on earlier work of Jantzen) which expresses multiplicities of simple
modules in Weyl modules in terms of multiplicities of induced modules in indecompos-
able tilting modules. This method has the advantage of allowing to deduce Lusztig’s
conjectural formula [L1] in case the relevant �-Kazhdan–Lusztig polynomials coincide
with the corresponding standard Kazhdan–Lusztig polynomials, but it requires the as-
sumption that � � 2h − 2, and does not produce a very natural formula in general, since
it involves a certain “twist” (denoted y 	→ ŷ below) on indices.

To explain this in more detail, let us assume that � � 2h − 2 and that G is quasi-
simple, and denote by α∨

0 the highest coroot. We then set

Y := {w ∈ Waff | w is minimal in Wfw and 〈w��ρ,α∨
0 〉 < �(h − 1)}.

This subset does not depend on �, and is an ideal in the Bruhat order on the set of el-
ements w minimal in Wfw; in fact, in terms of the notation of [RW2], it consists of the
elements w sending the fundamental alcove Afund inside the portion of the dominant re-
gion delimited by the hyperplane orthogonal to α∨

0 and passing through ρ. Consider also
the operation y 	→ ŷ on Waff corresponding to the operation A 	→ Â on alcoves considered
in [Soe] or [RW2] (through the canonical bijection between Waff and the set of alcoves).
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Then, in view of [RW1, Proposition 1.8.1], from Theorem 1.6 we obtain that for any
w ∈ Y we have

[∇(w •� 0)] =
∑

y∈Y

�nw,ŷ(1) · [L(y •� 0)]

in the Grothendieck group of Rep(G). In order to compare this formula with that in
Lusztig’s conjecture, one needs to invert these equations. In general we do not know how
to do that explicitly. However, if we assume that each polynomial �nw,ŷ in these formulas
coincides with the corresponding “standard” Kazhdan–Lusztig polynomial nw,ŷ (as con-
sidered e.g. in [Soe]), then the inverse matrix is computed in [Soe, Theorem 5.1]; from
this result we obtain that

[L(w •� 0)] =
∑

y∈Y

(−1)�(w)+�(y)hy,w(1) · [∇(y •� 0)]

for any w ∈ Y, as predicted by Lusztig in [L1]. This property is well known to hold in
large characteristic (without any known explicit bound), which explains why Theorem 1.6
provides a new proof of Lusztig’s conjecture in large characteristics.

Remark 1.7. — The condition on w considered above is not the same as in
Lusztig’s formulation of his conjecture. However, the two versions are known to be equiv-
alent under the present assumptions, due to results of Kato; see [W1, §§1.12–1.13] for
more details and references.

The other method to obtain a character formula for simple G-modules out of
a character formula for indecomposable tilting G-modules, which works for all values
of � thanks to the results of [Sob], is to express multiplicities of the simple G-modules
whose highest weight is restricted in the baby Verma G1T-modules. In this way one
obtains a formula that may be compared with the “periodic” formulation of Lusztig’s
conjecture, see [L2]. This formula was made explicit in [RW2], under the assumption
that � � 2h − 1. The extension of the tilting character formula in Theorem 1.6 makes
it desirable to extend the validity of these results to smaller values of �, and we plan to
come back to this question in a future publication.

1.11. Notation. — For an abelian category A , DA , D+A and DbA denote its
unbounded, bounded below and bounded derived category respectively, and H n de-
notes the associated cohomology functors. If A is an algebra, we will denote by A-Mod
the category of (left) A-modules. If A is (left) Noetherian, we will denote by A-Mof the
subcategory of A-modules of finite type.
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2. Preliminaries on equivariant sheaves

2.1. Equivariant sheaves. — We start by recalling some generalities on étale sheaves
on schemes endowed with an action of a finite group. We fix a (commutative) coefficient
ring k.

Let X be a scheme, and let A be a finite group acting on X (by scheme auto-
morphisms). For any g ∈ A, we denote by αg : X

∼−→ X the action on X. Recall that an
A-equivariant (étale) sheaf of k-modules is the datum of an étale sheaf F of k-modules
on X together with a collection (ϕg)g∈A where, for any g ∈ A,

ϕg : α∗
g F

∼−→ F

is an isomorphism of sheaves of k-modules, this collection satisfying the condition that
for g, h ∈ A we have

(2.1) ϕh ◦ α∗
h (ϕg) = ϕgh

as morphisms from α∗
ghF to F . (We will often abuse notation, and omit the isomor-

phisms (ϕg)g∈A from the notation.) Morphisms of A-equivariant sheaves are defined as
morphisms of sheaves compatible (in the natural way) with the isomorphisms ϕg . The
(abelian) category of A-equivariant sheaves of k-modules will be denoted ShA(X,k). We
have a natural “forgetful” exact functor

(2.2) ForA : ShA(X,k) → Sh(X,k)

(which simply forgets the collection of isomorphisms (ϕg)g∈A), where Sh(X,k) denotes
the category of sheaves of k-modules on X. If A acts trivially on X, we have a canonical
identification

(2.3) ShA(X,k) = Sh(X,k[A]).
If X,Y are two schemes with actions of A (with actions denoted αX

− and αY
− re-

spectively), and f : X → Y is an A-equivariant morphism, then for any g ∈ A we have a
canonical isomorphism

(αX
g )∗ ◦ f ∗ ∼= f ∗ ◦ (αY

g )∗.

As a consequence, the functor f ∗ induces an exact functor

ShA(Y,k) → ShA(X,k),

which will also be denoted f ∗. Similarly, we have a canonical isomorphism

(αY
g )∗ ◦ f∗ ∼= f∗ ◦ (αX

g )∗.
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(Here we use the fact that (αZ
g )∗ ∼= (αZ

g−1)∗ for Z = X or Y.) As a consequence, f∗ induces
a functor

f∗ : ShA(X,k) → ShA(Y,k).

2.2. Equivariant sheaves and injective resolutions. — We consider again a scheme X
endowed with an action of the finite group A. For any F in Sh(X,k) we set

AvA(F ) :=
⊕

g∈A

α∗
g F .

We endow AvA(F ) with the structure of an A-equivariant sheaf by defining, for any
g ∈ A, the isomorphism

ϕg : α∗
g AvA(F )

∼−→ AvA(F )

as the canonical identification

α∗
g

(
⊕

h∈A

α∗
h F

)
=

⊕

h∈A

α∗
hgF =

⊕

a∈A

α∗
a F .

This construction extends in a natural way to an exact functor

AvA : Sh(X,k) → ShA(X,k).

Lemma 2.1. — The functor AvA is left and right adjoint to the forgetful functor (2.2).

Proof. — To prove the lemma we have to define morphisms of functors

ForA ◦AvA → id, id → ForA ◦AvA, AvA ◦ForA → id, id → AvA ◦ForA,

and check the appropriate zigzag relations. Here we have

ForA ◦ AvA =
⊕

g∈A

α∗
g ,

and the first two morphisms are defined as the projection to and embedding of the factor
α∗

e = id. On the other hand, for (F , (ϕg)g∈A) in ShA(X), the morphisms

F → AvA ◦ ForA(F ) → F

are defined as
⊕

g∈A(ϕg)
−1 and

⊕
g∈A ϕg respectively. (These morphisms of sheaves are

morphisms of A-equivariant sheaves thanks to the cocyle condition (2.1).) The zigzag
relations are all trivial to check. �
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Lemma 2.1 implies that the functor AvA sends injective objects of Sh(X,k) to
injective objects of ShA(X,k). Since the category Sh(X,k) has enough injectives (see [SP,
Tag 01DU]), it follows that the same property holds in ShA(X,k). In fact, if F belongs
to ShA(X,k), and if I is an injective object of Sh(X,k) such that we have an injection
ForA(F ) ↪→ I , then the map F → AvA(I ) deduced by adjunction is injective, and
AvA(I ) is injective in ShA(X,k).

In particular, if f : X → Y is an A-equivariant morphism between schemes with
A-actions, recall that we have the (non derived) pushforward functor

f∗ : ShA(X,k) → ShA(Y,k).

From the considerations on injective objects above we deduce that this functor admits a
derived functor

Rf∗ : D+ShA(X,k) → D+ShA(Y,k),

which can be computed by means of injective resolutions.
Since the functor ForA admits an exact left adjoint, it sends injective objects to

injective objects. It follows that for an equivariant morphism f : X → Y as above we have
a natural commutative diagram

D+ShA(X,k)
Rf∗

ForA

D+ShA(Y,k)

ForA

D+Sh(X,k)
Rf∗

D+Sh(Y,k),

where the lower horizontal arrow is the standard pushforward functor. In particular, in
case X and Y are of finite type over some field F of finite cohomological dimension
(e.g. algebraically closed), and k is torsion (e.g. a field of positive characteristic), it is known
that the “standard” functor Rf∗ sends DbSh(X,k) into DbSh(Y,k), see [SP, Tag 0F10].
It follows that the “equivariant” functor Rf∗ considered above restricts to a functor

Rf∗ : DbShA(X,k) → DbShA(Y,k).

Of course, since the functor

f ∗ : ShA(Y,k) → ShA(X,k)

is exact, we have an induced functor

f ∗ : DShA(Y,k) → DShA(X,k)

which maps D+ShA(Y,k) into D+ShA(X,k) and DbShA(Y,k) into DbShA(X,k) (and
is compatible with the usual pullback functor f ∗ in the obvious way). It is easily checked
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that the functor

f ∗ : D+ShA(Y,k) → D+ShA(X,k)

is left adjoint to

Rf∗ : D+ShA(X,k) → D+ShA(Y,k).

2.3. Equivariant sheaves and quotient map. — From now on we assume that X is of
finite type over some base scheme S, that A is abelian,6 and that each αg is an automor-
phism of S-schemes. We assume furthermore that the action is admissible in the sense
of [SGA1, Exposé 5, Définition 1.7]. Then we have a quotient scheme X/A, and a finite
quotient morphism q : X → X/A, see [SGA1, Exposé V, Corollaire 1.5]. (Here, by defi-
nition X/A is the scheme which represents the functor Z 	→ Hom(X,Z)A, where A acts
on Hom(X,Z) via its action on X. It can be constructed by gluing affine schemes of the
form Spec(RA) where Spec(R) ⊂ X is an A-stable affine open subscheme of X.)

By finiteness the functor q∗ is then exact (see [SP, Tag 03QP]), and defines an exact
functor

q∗ : ShA(X,k) → ShA(X/A,k)
(2.3)∼= Sh(X/A,k[A]).

Remark 2.2. — As explained in [SGA1, Exposé V, Proposition 1.8], the action of
A on X is admissible iff each orbit of A is included in an affine open subset of X. This
condition is automatic if S = Spec(F) for some field F and X is quasi-projective over S,
see e.g. [Se, p. 59, Exemple 1]. (This setting is the only one we will consider in practice.)

Recall that a complex G ∈ DSh(X/A,k[A]) is said to have tor amplitude in [a, b] (for
a, b ∈ Z with a ≤ b) if for any G ′ ∈ Sh(X/A,k[A]) we have

H n(G ′ L⊗k[A] G ) = 0 unless n ∈ [a, b],
see [SP, Tag 08FZ]. Recall also that G has tor amplitude in [a, b] iff for any geometric
point x of X the complex of k[A]-modules Gx has tor amplitude in [a, b], see [SP, Tag
0DJJ]. Finally, G ∈ DSh(X/A,k[A]) is said to be of finite tor dimension if it has tor amplitude
in [a, b] for some a, b ∈ Z.

The action of A on X induces an action on geometric points. Namely, if

x : Spec(K) → X

6 This assumption is probably not necessary. It is made in order to use [SP] (where rings are assumed to be com-
mutative) as a reference for some facts about (sheaves of) k[A]-modules.
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is a geometric point and g ∈ A, then the geometric point g · x is the composition

Spec(K)
x−→ X

αg−→ X.

We will say that the A-action on X is free if each geometric point of X has trivial stabilizer
for this action.

Lemma 2.3. — Assume that k is a field, and that the A-action on X is free. Then for any G
in ShA(X,k), the sheaf q∗G ∈ Sh(X/A,k[A]) has finite tor dimension.

Proof. — By the comments above, to prove the lemma it suffices to prove that there
exist a, b ∈ Z such that for any geometric point y : Spec(K) → X/A the k[A]-module Gy

has tor amplitude in [a, b]. In fact one can take a = b = 0, as we now explain. By [SP,
Tag 03QP] we have

(q∗G )y =
⊕

x

Gx,

where x runs over the set Xy of maps x : Spec(K) → X such that q ◦ x = y. The mor-
phism q is surjective, and its fibers are the A-orbits (see [SGA1, Exposé V, §1]). Hence
Xy is nonempty, and A acts transitively on this set. Our assumption ensures on the other
hand that this action has trivial stabilizers. Therefore, if we fix some x ∈ Xy, we deduce a
bijection A

∼−→ Xy determined by g 	→ g · x. The A-equivariant structure on G provides a
canonical isomorphism

Gx

∼−→ Gg·x

for each g ∈ A. Using these data we obtain an isomorphism

(q∗G )y = k[A] ⊗k Gx,

which is easily seen to be A-equivariant. Hence (q∗G )y is free as a k[A]-module, in par-
ticular of tor amplitude in [0,0]. �

2.4. Stalks at fixed points. — We continue with the assumptions of Section 2.3. The
closed subscheme XA ⊂ X of A-fixed points is the scheme which represents the functor
Z 	→ Hom(Z,X)A, where A acts on Hom(Z,X) via its action on X. (The representability
of this functor is easy in our setting: since our action is admissible it suffices to treat the
case X = Spec(R) is affine; then XA is the spectrum of the maximal quotient of R on
which A acts trivially, i.e. the quotient of R by the ideal generated by the elements x − g · x

for x ∈ R and g ∈ A.) As a set, the closed subscheme XA ⊂ X consists of the points x ∈ X
which are fixed by A and such that the induced action on the residue field k(x) is trivial.

By definition, any geometric point of X which is stable under the A-action consid-
ered in Section 2.3 factors through a geometric point of XA. In particular, if A is a simple
group then the A-action on the open subset U := X � XA ⊂ X is free.
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Lemma 2.4. — The A-action on U is admissible.

Proof. — Consider the closed subset XA ⊂ X. Since the quotient morphism q is
finite, hence closed, the subset q(XA) ⊂ X/A is closed. Now from the definition of the
subset XA ⊂ X given above and the fact that the fibers of q are the A-orbits in X, one
sees that

U = q−1(X/A � q(XA)).

Hence the claim follows from [SGA1, Exposé V, Corollaire 1.4]. �

From this lemma we obtain in particular that the quotient U/A exists as a scheme.
In fact, in the proof of this lemma we have seen that the open embedding j : U ↪→ X
induces an open embedding j : U/A → X/A, with complement q(XA), and that the
quotient morphism qU : U → U/A is the restriction of q to U.

We now denote by i : XA → X the closed embedding. Note that i is A-equivariant
for the trivial A-action on XA; we therefore have a functor

i∗ : DShA(X,k) → DShA(XA,k)
(2.3)∼= DSh(XA,k[A]).

In other words, if F belongs to DShA(X,k), then i∗(ForA(F )) admits a canonical “lift”
as a complex of sheaves of k[A]-modules. In particular, for any geometric point x of XA

the complex

Fi(x) = (i∗F )x

is in a natural way an object of D(k[A]-Mod).
From now on we assume that S = Spec(F) for some field F of finite cohomological

dimension, and that X is of finite type over F. (This assumption implies that U is also of
finite type over F, see [GW, Example 3.45]. By [SGA1, Corollaire 1.5] we deduce that
X/A and U/A also are of finite type.) We also assume that k is a field of characteristic
� > 0 which is nonzero in F. The proof of the following proposition was explained to us
by L. Illusie and W. Zheng. (A different, longer and slightly less easy proof can also be
deduced from [DL, Proposition 3.7].) Recall that a bounded complex of k[A]-modules
is called perfect if it is isomorphic in Db(k[A]-Mod) to a bounded complex of finitely
generated projective modules.

Proposition 2.5. — Assume that A is a simple group. If F ∈ DbShA(U,k) is such that

ForA(F ) has constructible cohomology sheaves (see [SP, Tag 03RW]), then for any geometric point x

of XA the complex of k[A]-modules

(Rj∗F )x

is perfect.
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Proof. — Recall that the morphism j has finite cohomological dimension by [SP,
Tag 0F10]. As a consequence the complex Rj∗F is bounded, so that (Rj∗F )x is bounded.
On the other hand, by [SGA4½, Th. finitude, Théorème 1.1], the complex Rj∗F is
constructible; hence its stalk (Rj∗F )x has finite-dimensional cohomology. By [SP, Tag
0658], we deduce that to prove that this complex is perfect it suffices to prove that it has
finite tor dimension. But since the image x of x is fixed by A we have q−1(q(x)) = {x},
which implies that

(Rj∗F )x = (
q∗(Rj∗F )

)
q(x)

by [SP, Tag 03QP]. Now we have q ◦ j = j ◦ qU, so that

q∗(Rj∗F ) = Rj ∗((qU)∗F ).

By Lemma 2.3 the sheaf (qU)∗F has finite tor dimension, hence by [SGA4, Exposé
XVII, Théorème 5.2.11] and [SP, Tag 0F10] the complex Rj ∗((qU)∗F ) also does, so
that its stalk

(
Rj ∗((qU)∗F )

)
q(x)

must have finite tor dimension, which finishes the proof. �

3. Smith theory for étale sheaves

3.1. � -equivariant derived categories. — The formalism of “Smith theory” that we
will build will use the equivariant derived category of Bernstein–Lunts [BL]. This cate-
gory is explicitly constructed only in a topological setting in [BL], but it is well known
that it applies also in the setting of étale sheaves under appropriate assumptions, see [BL,
§4.3]. In this subsection we briefly recall this construction in the particular case that we
require.

So, from now on we fix an algebraically closed field F of characteristic p, and a
finite field k of characteristic � = p. We will consider (admissible) actions of the finite F-
group scheme � = μ� of �-th roots of unity on F-schemes of finite type. Here since F
is algebraically closed, μ� is the constant group scheme associated with the finite group
μ�(F), so that the constructions of Section 2 also apply in this setting. For simplicity, we
will not explicitly distinguish the group scheme μ� and the finite group μ�(F).

The construction of [BL] uses some “acyclic resolutions.” In this case these resolu-
tions can be constructed explicitly as follows: for any n � 0 we set

Vn := Fn
� {0},
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with the (admissible) action of � induced by the dilation action of the multiplicative
group Gm. We have

Hm(Vn;k) =
{
k if m = 0;
0 if 1 � m � 2n − 2.

From this we see that for any F-scheme X of finite type the projection

pX
n : Vn × X → X

is (2n − 2)-acyclic, in the sense that for any X-scheme Y of finite type the morphism
pX,Y

n : Y ×X (Vn × X) → Y is such that for any (étale) k-sheaf F the morphism

F → τ�2n−2(R(pX,Y
n )∗(pX,Y

n )∗F )

induced by adjunction is an isomorphism. (In fact, here by the Künneth formula [SP,
Tag 0F1N] we have R(pX,Y

n )∗(pX,Y
n )∗F ∼= H•(Vn,k) ⊗k F .)

We now fix an F-scheme X of finite type endowed with an admissible action of � .
For any n � 1 we set

PX
n := Vn × X,

and consider the projection pX
n : PX

n → X as above. Since the actions of � on Vn and X
are admissible, this property also holds for the product Vn × X (with the diagonal action),
so that we can consider the quotient

P
X
n := PX

n /�.

With the notation of Section 2.4, we have (PX
n )� = ∅; therefore, by [SGA1, Exposé V,

Corollaire 2.3] the quotient map qX
n : PX

n → P
X
n is étale. In fact, in view of [SGA1, Ex-

posé V, Proposition 2.6] this map is an étale locally trivial principal homogeneous space
for � in the sense of [SP, Tag 049A].

For any n, we will denote by

Db(X,�, n,k)

the category whose

• objects are triples (Fn,FX, β) where Fn is an object of DbSh(P
X
n ,k), FX is an

object of DbSh(X,k), and

β : (qX
n )∗Fn

∼−→ (pX
n )∗FX

is an isomorphism;
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• morphisms from (Fn,FX, β) to (Gn,GX, γ ) are pairs (ϕn, ϕX) with

ϕn : Fn → Gn, ϕX : FX → GX

morphisms such that γ ◦ ((qX
n )∗ϕn) = ((pX

n )∗ϕX) ◦ β .

For any bounded interval I ⊂ Z we denote by DI(X,�, n,k) the full subcategory
of Db(X,�, n,k) whose objects are the triples (Fn,FX, β) where H m(FX) vanishes
unless m ∈ I. Then the category DI(X,�, n,k) does not depend (up to canonical equiva-
lence) on the choice of n, as long as 2n − 2 � |I|, where |I| is the length of I; in fact, by the
same arguments as in [BL, §2.3.4], if n,m satisfy this condition then the natural functors
from DI(X,�, n,k) and DI(X,�,m,k) to the category defined similarly with PX

n and
PX

m replaced by

Vn × Vm × X = PX
n ×X PX

m

(with the diagonal � -action) are equivalences of categories.
We can therefore define the � -equivariant derived category

Db
�(X,k)

as the direct limit of the categories DI(X,�, n,k) with n � 0, where I runs over the
bounded intervals of Z. This category admits a canonical structure of triangulated cate-
gory, see [BL, §§2.5.1–2.5.2]. By construction, we have a canonical triangulated forgetful
functor

(3.1) For� : Db
�(X,k) → DbSh(X,k)

which sends a triple (Fn,FX, β) to FX.

Remark 3.1. — As explained in [BL, Lemma 2.3.2], if 2n − 2 � |I| the functor

DI(X,�, n,k) → DbSh(P
X
n ,k)

sending (Fn,FX, β) to Fn is fully faithful. In particular, morphisms between objects in
Db

�(X,k) can always be computed as morphisms in derived categories of quotients of
“sufficiently acyclic” resolutions.

This construction is of course functorial in X. Namely, consider F-schemes of finite
type X,Y endowed with admissible actions of � , and a � -equivariant morphism of F-
schemes f : X → Y. (Note that f is automatically quasi-compact since X is Noetherian,
see [SP, Tag 01P0]. It is also locally of finite type by [SP, Tag 01T8], hence of finite type.
Finally, X, Y and f are quasi-separated by [SP, Tag 01T7].)
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(1) We have a (∗-)pullback functor

f ∗ : Db
�(Y,k) → Db

�(X,k),

which can be explicitly described in terms of the pullback functors associated
with f and the induced morphism P

X
n → P

Y
n .

(2) We have a (∗-)pushforward functor

Rf∗ : Db
�(X,k) → Db

�(Y,k).

(Here we use the fact that the usual pushforward functors respect the bounded
derived categories, see [SP, Tag 0F10], and also that the morphisms pX

n , pY
n , qX

n ,
qY

n are smooth and that the induced morphism P
X
n → P

Y
n is quasi-compact and

quasi-separated, which allows to use the smooth base change theorem [SP, Tag
0EYU] to “transport” the isomorphism β .)

(3) If we assume that f is separated then we also have a !-pushforward functor

Rf! : Db
�(X,k) → Db

�(Y,k),

see [SGA4, Exposé XVII]. (Here, the fact that the !-pushforward functors re-
spect bounded derived categories follows from [SGA4, Exposé XVII, Corol-
laire 5.2.8.1], and we use the base change theorem [SGA4, Exposé XVII,
Théorème 5.2.6] to “transport” β .)

(4) Under the same assumption we also have a !-pullback functor

f ! : Db
�(Y,k) → Db

�(X,k),

see [SGA4, Exposé XVIII]. (The fact that the !-pullback functors respect
bounded derived categories is explained in [SGA4½, Th. finitude, comments
after Corollaire 1.5]. And once again we use the smoothness of qX

n , qY
n , pX

n , pY
n ,

and the fact that for smooth maps the ∗- and !-pullback functors coincide up to
shift, see [SGA4, Exposé XVIII, Théorème 3.2.5], to “transport” the isomor-
phisms β .)

By construction, all of these functors are compatible with the forgetful functor (3.1)
in the obvious way, and satisfy the usual adjunction properties.

Remark 3.2. — In practice all the schemes we will consider will be quasi-projective
over F, hence separated (see [SP, Tag 01VX]), so that any morphism between them will
automatically be separated (see [SP, Tag 01KV]).

3.2. Equivariant derived categories and equivariant sheaves. — We continue with the set-
ting of Section 3.1. In Section 2 we have studied equivariant sheaves on schemes, and
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in Section 3.1 we have considered the equivariant derived category. It is now time to
explain the relation between these two constructions. This relation is based on the ob-
servation that (for any F-scheme X of finite type with an admissible � -action, and any
n � 1) the natural pullback functor

Sh(P
X
n ,k) → Sh�(PX

n ,k)

is an equivalence of categories, by the sheaf condition applied to the étale covering qX
n :

PX
n → P

X
n . Therefore, for any � -equivariant sheaf F on X the pullback (pX

n )∗F admits
a natural structure of � -equivariant sheaf on PX

n , hence descends to a sheaf Fn on P
X
n .

Using this construction we define a canonical triangulated functor

(3.2) DbSh�(X,k) → Db
�(X,k).

Proposition 3.3. — The functor (3.2) is an equivalence of categories.

Proof. — Let us first show that our functor is fully faithful. For this we need to show
that for any � -equivariant sheaves F ,F ′ on X and any m ∈ Z�0, for n � 0 the natural
map

HomDbSh� (X,k)(F ,F ′[m]) → HomDbSh(P
X
n ,k)

(Fn,F
′
n[m])

is an isomorphism, see Remark 3.1. By construction, this amounts to proving that for
n � 0 the pullback functor induces an isomorphism

HomDbSh� (X,k)(F ,F ′[m]) ∼−→ HomDbSh� (PX
n ,k)((p

X
n )∗F , (pX

n )∗F ′[m]).
However by adjunction we have

HomDbSh� (PX
n ,k)((p

X
n )∗F , (pX

n )∗F ′[m])
∼= HomDbSh� (X,k)(F ,R(pX

n )∗(pX
n )∗F ′[m]).

Now the right-hand side can be replaced by

HomDbSh� (X,k)(F , τ�0(R(pX
n )∗(pX

n )∗F ′[m]))
∼= HomDbSh� (X,k)(F , τ�m(R(pX

n )∗(pX
n )∗F ′)[m]).

If 2n − 2 � m the morphism

F ′ → τ�m(R(pX
n )∗(pX

n )∗F ′)

induced by adjunction is an isomorphism, which concludes the proof of fully faithfulness.
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Once fully faithfulness is established, to conclude the proof it suffices to prove
that images of � -equivariant sheaves on X generate Db

�(X,k) as a triangulated cate-
gory. This is however clear from the construction of the “standard” t-structure in [BL,
§§2.5.1–2.5.2]. �

In particular, in the special case where the � -action on X is trivial, using Proposi-
tion 3.3 combined with (2.3), we obtain a canonical equivalence of triangulated categories

(3.3) Db
�(X,k) ∼= DbSh(X,k[� ]).

We now consider two F-schemes X and Y of finite type, with admissible actions of
� , and a � -equivariant morphism f : X → Y. We have considered functors

DbSh�(X,k)

Rf∗

DbSh�(Y,k)

f ∗

in Section 2.2, and functors

Db
�(X,k)

Rf∗

Db
�(Y,k)

f ∗

in Section 3.1. These functors are related in the natural way, as explained in the following
lemma.

Lemma 3.4. — The diagrams

DbSh�(Y,k)
f ∗

�

DbSh�(X,k)

�

Db
�(Y,k)

f ∗
Db

�(X,k)

and

DbSh�(X,k)
Rf∗

�

DbSh�(Y,k)

�

Db
�(X,k)

Rf∗
Db

�(Y,k)

are commutative, where the vertical arrows are the equivalences of Proposition 3.3.

Proof. — The commutativity of the left diagram can be seen from the definitions;
the commutativity of the right diagram follows by adjunction. �
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3.3. The crucial lemma. — We can now prove the lemma that will allow us to de-
velop the “Smith theory for sheaves” from [Tr] in our setting of étale sheaves.

We consider again an F-scheme X of finite type, with an admissible action of � .
As in Section 2.4 we consider the fixed points subscheme X� and the closed, resp. open,
embedding

i : X� ↪→ X, resp. j : X � X� ↪→ X.

(Here i and j are automatically separated, see [SP, Tag 01L7].) For any F in Db
�(X,k)

we have a canonical morphism

(3.4) i!F → i∗F

in the category Db
�(X�,k), which can be obtained by applying the functor i∗ to the

adjunction morphism i!i!F → F .
From now on we will not consider the entire � -equivariant derived category

Db
�(X,k), but only the full triangulated subcategory Db

�,c(X,k) whose objects are those
F ∈ Db

�(X,k) such that the complex For�(F ) has constructible cohomology objects,
where For� is as in (3.1). The pushforward and pullback functors considered in Section
3.1 preserve these subcategories (in the obvious sense) by [SGA4½, Th. finitude, Corol-
laire 1.5].

For any F-scheme Y of finite type with trivial action of � , we will say that an object
F in Db

�,c(Y,k) has perfect geometric stalks if, denoting by F ′ the image of F under
the equivalence Db

�(Y,k) ∼= DbSh(Y,k[� ]) from (3.3), for any geometric point y of Y
the complex F ′

y is a perfect complex of k[� ]-modules.

Lemma 3.5. — For any F in Db
�,c(X,k), the cone of (3.4) has perfect geometric stalks.

Proof. — From the standard distinguished triangle in the “recollement” formalism
we see that the cone of (3.4) is isomorphic to i∗Rj∗j∗(F ). The complex we want to con-
sider is therefore

(
Rj∗j∗(F )

)
x
,

where x is a geometric point of X� . In these terms, the desired claim follows from Propo-
sition 2.5 and Lemma 3.4. �

Later we will also need the following lemma, whose proof is close to that of
Lemma 3.5. Here we consider two F-schemes of finite type Z and Y with trivial ac-
tions of � , and a morphism of F-schemes f : Z → Y. Then we have a derived functor
Rf∗ : Db

�(Z,k) → Db
�(Y,k), see Section 3.1, which sends the subcategory Db

�,c(Z,k)

into Db
�,c(Y,k) by [SGA4½, Th. finitude, Théorème 1.1].
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Lemma 3.6. — The functor

Rf∗ : Db
�,c(Z,k) → Db

�,c(Y,k)

transforms objects with perfect geometric stalks into objects with perfect geometric stalks.

Proof. — As in the proof of Proposition 2.5 it suffices to check that Rf∗ trans-
forms objects of finite tor dimension into objects of finite tor dimension, which follows
from [SGA4, Exposé XVII, Théorème 5.2.11] and [SP, Tag 0F10]. �

3.4. Gm-equivariant derived categories. — Later we will also need to consider equivari-
ant derived categories for actions of the multiplicative group Gm over F. The construc-
tion of this category is similar to, and in fact simpler than, the construction in Section
3.1. Namely, for any n � 1 the � -action on Vn is obtained by restriction from a natural
Gm-action, and moreover we have a canonical map Vn → Pn−1

F which is a Zariski locally
trivial principal Gm-bundle. Therefore, given any F-scheme X endowed with an action
of Gm, we consider the diagonal action on Vn × X, and we have a Zariski locally trivial
principal Gm-bundle

Vn × X → Vn ×Gm X

for some scheme Vn ×Gm X which can be constructed by (Zariski) gluing over the natural
cover which trivializes the map Vn → Pn−1

F . If we assume X to be of finite type, then as
in Section 3.1 the map pX

n : Vn × X → X is (2n − 2)-acyclic, which allows to define a
category Db(X,Gm, n,k) in terms similar to those for Db(X,�, n,k), and check that the
subcategory DI(X,Gm, n,k) does not depend on the choice of n as long as 2n − 2 � |I|.
We can finally define the equivariant derived category Db

Gm
(X,k) as the direct limit of the

categories DI(X,Gm, n,k) (with n � 0) over the finite intervals I ⊂ Z. These categories
have the same functoriality properties as the categories Db

�(X,k); in particular we have
a natural (triangulated) forgetful functor

ForGm : Db
Gm

(X,k) → DbSh(X,k).

As in the � -equivariant setting, we will denote by Db
Gm,c(X,k) the full subcategory of

Db
Gm

(X,k) whose objects are those F such that ForGm(F ) has constructible cohomology
sheaves.

The category Db
Gm

(X,k) has a canonical object whose image under ForGm is the
constant sheaf kX; it will also be denoted kX. In these terms, the Gm-equivariant coho-
mology of a complex F in Db

Gm
(X,k) is defined as

H•
Gm

(X,F ) =
⊕

n∈Z

HomDb
Gm

(X,k)(kX,F [n]).
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In the case X = Spec(F) =: pt, it is well known (and easy to see) that we have a graded
algebra isomorphism7

(3.5) H•
Gm

(pt,kpt) = k[x],
where x has degree 2. If n is even, we will denote by

cann
pt : kpt → kpt[n]

the morphism obtained as the inverse image of xn/2.
By definition we have an embedding � ⊂ Gm, which provides a � -action on X

by restriction, and we have a canonical “restriction” triangulated functor

ResGm
� : Db

Gm
(X,k) → Db

�(X,k).

This functor is compatible (in the obvious sense) with the pushforward and pullback func-
tors when they are defined, and moreover satisfies

For� ◦ ResGm
�

∼= ForGm .

As a consequence, it must send Db
Gm,c(X,k) into Db

�,c(X,k).

3.5. The “Smith category” of a point. — In this subsection we consider the special
case of the constructions of Section 3.4 where X = pt. In this case, in view of (3.3) we
have an equivalence of triangulated categories

(3.6) Db
�(pt,k) ∼= Db(k[� ]-Mod).

Under this equivalence, the full subcategory Db
�,c(pt,k) corresponds to the full subcat-

egory of Db(k[� ]-Mod) whose objects are the complexes whose cohomology is finite-
dimensional (or equivalently finitely generated over k[� ]), which itself is canonically
equivalent to the category Db(k[� ]-Mof). In particular, the sheaf ResGm

� (kpt) corresponds
to the trivial module k.

We will denote by

Db
Gm,c(pt,k)� -perf ⊂ Db

Gm,c(pt,k)

the full triangulated subcategory whose objects are the complexes F such that ResGm
� (F ),

considered as a complex of k[� ]-modules through (3.6), is perfect. We then set

Sm(pt,k) := Db
Gm,c(pt,k)/Db

Gm,c(pt,k)� -perf,

7 To be more precise, to get the isomorphism (3.5) one needs to fix a trivialization of the Tate sheaf on pt, see
e.g. the proof of Lemma 3.9 below. This is possible—though not canonical—since F is algebraically closed; we fix such a
trivialization once and for all.
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where we consider the Verdier quotient category.
The following lemma will be crucial for us below, in that it will allow to use some

parity vanishing arguments in various variants of the category Sm(pt,k).

Lemma 3.7. — For any n ∈ Z we have

HomSm(pt,k)(kpt,kpt[n]) ∼=
{
k if n is even;

0 otherwise,

where we omit the quotient functor Db
Gm,c(pt,k) → Sm(pt,k).

The proof of Lemma 3.7 will require some preparation. We start with the following
claim.

Lemma 3.8. — For any F in Db
Gm,c(pt,k), there exists a canonical isomorphism of graded

k-vector spaces

⊕

m∈Z

HomDb
� (pt,k)

(
kpt,ResGm

� (F )[m]) ∼= H•
Gm

(pt,F ) ⊕ H•
Gm

(pt,F )[−1].

Proof. — We fix F in Db
Gm,c(pt,k) and m ∈ Z. Then for n � 0 the object F is rep-

resented by a triple (Fn,FX, β) in Db(pt,Gm, n,k), and by an analogue of Remark 3.1
we have

Hm
Gm

(pt,F ) = HomDb(Pn−1
F ,k)(kPn−1

F
,Fn[m]),

and similarly for Hm+1
Gm

(pt,F ). If we denote by

πn : Vn/� → Pn−1
F

the natural map, then ResGm
� (F ) is represented by the object ((πn)

∗Fn,FX, β) in
Db(pt,�, n,k), so that we have

HomDb
� (pt,k)

(
kpt,ResGm

� (F )[m]) = HomDb(Vn/�,k)(kVn/�
, (πn)

∗Fn[m]).
To prove the lemma, it therefore suffices to prove that for any G in Db(Pn−1

F ,k) we have
a canonical isomorphism

(3.7) HomDb(Vn/�,k)(kVn/�
, (πn)

∗G ) ∼=
HomDb(Pn−1

F ,k)(kPn−1
F

,G ) ⊕ HomDb(Pn−1
F ,k)(kPn−1

F
,G [−1]).

We start by proving that

(3.8) R(πn)∗kVn/�
= kPn−1

F
⊕ kPn−1

F
[−1].
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In fact, Vn/� is the complement of the zero section in the line bundle π̃n : O(�) → Pn−1
F .

If in : Pn−1
F ↪→ O(�) is the embedding of the zero section, and jn : Vn/� ↪→ O(�) is the

complementary open embedding, then we have a distinguished triangle

(in)∗kPn−1
F

[−2] → kO(�) → R(jn)∗kVn/�

[1]−→ .

Applying the functor R(π̃n)∗ we deduce a distinguished triangle

kPn−1
F

[−2] → kPn−1
F

→ R(πn)∗kVn/�

[1]−→,

in which the first map is (by definition) the (shift by −2 of the) Euler class of O(�).
Since k has characteristic � this Euler class vanishes, and we deduce the desired iso-
morphism (3.8).

Next, we claim that for any G in DbSh(Pn−1
F ,k) we have a canonical isomorphism

(3.9) G ⊗k R(πn)∗kVn/�

∼−→ R(πn)∗(πn)
∗G .

In fact adjunction provides a canonical morphism from the left-hand side to the right-
hand side. To prove that this morphism is invertible it suffices to check this property after
pullback under the surjective morphism πn. However πn is a principal Gm/� = Gm-
bundle, so that we have a Cartesian diagram

Vn/� × Gm Vn/�

πn

Vn/�
πn

Pn−1
F ,

hence the claim follows from the smooth base change theorem [SP, Tag 0EYU] and the
Künneth formula [SP, Tag 0F1N].

Combining (3.8) and (3.9) we obtain, for any G in DbSh(Pn−1
F ,k), an isomorphism

R(πn)∗(πn)
∗G ∼= G ⊕ G [−1].

In view of the isomorphism

HomDb(Vn/�,k)(kVn/�
, (πn)

∗G ) = HomDb(Vn/�,k)((πn)
∗
kPn−1

F
, (πn)

∗G )

∼= HomDb(Pn−1
F ,k)(kPn−1

F
,R(πn)∗(πn)

∗G ),

this implies (3.7), hence finishes the proof of the lemma. �

Using Lemma 3.8 we will be able to give a more explicit description of the category
Db

Gm,c(pt,k)� -perf, as follows.
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Lemma 3.9. — The full subcategory Db
Gm,c(pt,k)� -perf ⊂ Db

Gm,c(pt,k) consists of the com-

plexes F such that

dimk

(
H•

Gm
(pt,F )

)
< ∞.

Moreover, in Sm(pt,k) we have a canonical isomorphism of functors

id ∼= [2].
Proof. — Recall from (3.5) that there exists a canonical morphism

can2
pt : kpt → kpt[2]

in Db
Gm

(pt,k). More explicitly, this morphism can be constructed as follows: consider the
natural dilation action of Gm on A1

F. If we denote by i : pt = {0} ↪→ A1
F the embedding,

then we have i!(kA1
F
) = kpt[−2]. Using adjunction, we deduce a canonical map

i∗(kpt[−2]) → kA1
F
.

(Note that we have ignored a Tate twist here; see Footnote 7.) Applying i∗ and shift-
ing by 2, we obtain the morphism can2

pt. Since (A1
F)

� = {0}, from this description and
Lemma 3.5 we obtain that the cone C of can2

pt belongs to Db
Gm,c(pt,k)� -perf. In particular,

since the tensor product of any bounded complex with a perfect complex is perfect, this
implies that for any F in Sm(pt,k) we have a canonical isomorphism

F
∼−→ F [2],

providing the desired isomorphism of functors id ∼= [2].
Now we claim that the triangulated subcategory 〈C〉� of Db

Gm,c(pt,k) generated by
C is exactly the subcategory whose objects are the complexes F such that

dimk

(
H•

Gm
(pt,F )

)
< ∞.

Indeed we have H•
Gm

(pt,C) = k[2], so that C belongs to this subcategory. To prove the
opposite inclusion, we prove by induction that for any n ∈ Z�0, any complex F such that
dimk

(
H•

Gm
(pt,F )

) = n belongs to 〈C〉�. In fact, if n = 0 then using Lemma 3.8 and the
fact that Db

�(pt,k) is generated (as a triangulated category) by kpt (see (3.6)) we see that
any object F such that H•

Gm
(pt,F ) = 0 satisfies ResGm

� (F ) = 0, hence ForGm(F ) = 0.
From the definition, we see that this implies that F = 0. Fix now n � 0, and assume the
result is known for n. If dimk

(
H•

Gm
(pt,F )

) = n + 1, and if m is maximal such that

Hm
Gm

(pt,F ) = 0,

then any choice of a nonzero vector in this space provides a morphism

kpt[−m] → F
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in Db
Gm

(pt,k). By maximality the composition of this map with can2
pt[−m − 2] vanishes,

so that this map must factor through a morphism

C[−m − 2] → F .

From the long exact sequence in equivariant cohomology we see that the cone G of this
map satisfies dimk

(
H•

Gm
(pt,G )

) = n, which allows to conclude by induction.
The two claims we have proved so far show that the subcategory with objects those

complexes F such that H•
Gm

(pt,F ) is finite-dimensional is included in Db
Gm,c(pt,k)� -perf.

On the other hand, if F is an object of Db
Gm,c(pt,k) such that ResGm

� (F ) is perfect, then

dimk

(
⊕

n∈Z

HomDb
� (pt,k)(kpt,ResGm

� (F )[n])
)

< ∞.

From Lemma 3.8 we deduce that in this case H•
Gm

(pt,F ) is finite-dimensional, which
concludes the proof. �

Remark 3.10. — Concretely, in terms of the equivalence (3.6), the object ResGm
� (C)

corresponds to the complex (· · · → 0 → k[� ] � ·(−)−−−→ k[� ] → 0 → ·· · ) where the
nonzero terms are in degrees −2 and −1.

We can finally give the proof of Lemma 3.7.

Proof of Lemma 3.7. — Lemma 3.9 shows in particular that kpt does not belong to
Db

Gm,c(pt,k)� -perf, hence has nonzero image in Sm(pt,k). In view of the isomorphism
id ∼= [2], this shows that HomSm(pt,k)(kpt,kpt[n]) = 0 for any even n. Hence to conclude it
only remains to prove that

dim HomSm(pt,k)(kpt,kpt[n])�
{

1 if n is even;
0 otherwise.

A morphism a from kpt to kpt[n] in Sm(pt,k) is represented by a diagram

kpt
f←− F

g−→ kpt[n]
in which F belongs to Db

Gm,c(pt,k), f and g are morphisms in Db
Gm,c(pt,k), and the

cone of f belongs to Db
Gm,c(pt,k)� -perf, i.e. has finite-dimensional equivariant cohomology

(see Lemma 3.9). In particular, from the long exact sequence in equivariant cohomology
and (3.5) we obtain that there exists N ∈ 2Z (which, for later use, we will assume to be at
least −n) such that for m � N we have

Hm
Gm

(pt,F ) =
{
k if m is even;
0 otherwise.
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If we choose a nonzero element in HN
Gm

(pt,F ), considered as a morphism h : kpt[−N] →
F in Db

Gm,c(pt,k), then the cone of h has finite-dimensional equivariant cohomology,
i.e. belongs to Db

Gm,c(pt,k)� -perf by Lemma 3.9. As a consequence, a can also be repre-
sented by the diagram

kpt

f ◦h←− kpt[−N] g◦h−→ kpt[n].
In case n is odd we have

HomDb
Gm,c(pt,k)(kpt[−N],kpt[n]) = 0,

so that g ◦ h must be zero, which finishes the proof in this case.
On the other hand, if n is even both spaces HomDb

Gm,c(pt,k)(kpt[−N],kpt) and
HomDb

Gm,c(pt,k)(kpt[−N],kpt[n]) are 1-dimensional, with a basis given by canN
pt[−N] and

cann+N
pt [−N] respectively. Hence to conclude, it only remains to prove that for M,M′ �

−n even, the diagrams

kpt

canM
pt [−M]←−−−−− kpt[−M] cann+M

pt [−M]−−−−−−→ kpt[n]
and

kpt

canM′
pt [−M′]←−−−−− kpt[−M′] cann+M′

pt [−M′]−−−−−−−→ kpt[n]
represent the same morphism in Sm(pt,k). However we can assume that M′ � M;
then the morphism canM′−M

pt [−M′] : kpt[−M′] → kpt[−M] has a cone which belongs to
Db

Gm,c(pt,k)� -perf, and satisfies

canM′
pt [−M′] = (canM

pt [−M]) ◦ (canM′−M
pt [−M′]),

cann+M′
pt [−M′] = (cann+M

pt [−M]) ◦ (canM′−M
pt [−M′]).

The desired claim follows. �

4. Fixed points of roots of unity on the affine Grassmannian

As in Section 3 we let F be an algebraically closed field of characteristic p > 0.

4.1. Affine Weyl group. — Let G be a connected reductive algebraic group over F,
and choose a Borel subgroup B ⊂ G and a maximal torus T ⊂ B. The Weyl group of
(G,T) will be denoted Wf. (Here, the subscript stands for “finite,” and is here to avoid
any confusion with the affine Weyl group introduced below.) We will also denote by U the
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unipotent radical of B, by B+ the Borel subgroup opposite to B with respect to T, and by
U+ the unipotent radical of B+.

We will denote by X := X∗(T) the character lattice of T, and by X∨ := X∗(T)

its cocharacter lattice. Let R ⊂ X be the root system of (G,T), and let R+ ⊂ R be
the system of positive roots consisting of the T-weights in Lie(U+). Let also Rs be the
associated basis of R (the “simple roots”). These data define a set Sf of Coxeter generators
for Wf, consisting of the reflections sα with α ∈Rs.

The affine Weyl group is the semi-direct product

Waff := Wf � ZR∨,

where R∨ ⊂ X∨ is the coroot system, and ZR∨ is the coroot lattice. For λ ∈ ZR∨ we will
denote by tλ the image of λ in Waff. The group Waff admits a natural structure of Coxeter
group extending that of Wf; the corresponding simple reflections Saff ⊂ Waff consist of Sf

together with the elements tβ∨sβ with β a maximal root in R.
Given n ∈ Z� {0}, we will consider two actions of Waff on V := X∨ ⊗Z R defined,

for w ∈ Wf and λ ∈ ZR∨, by

(wtλ) ·n μ = w(μ − nλ), (wtλ)�nμ = w(μ + nλ)

for μ ∈ X∨, where in the right-hand side we consider the natural action of Wf on X∨.
(Here the action ·n appears due to the sign conventions in Bruhat–Tits theory; but the
action �n is closer to the action which will be relevant when considering Representation
Theory.) Of course, these actions are related via

w�nμ = −(w ·n (−μ))

for any w ∈ Waff and μ ∈ V.
We set

an := {λ ∈ V | ∀α ∈R
+, −n < 〈λ,α〉 < 0}.

Then the closure an of an is a fundamental domain for the action of Waff on V via ·n
and via �n. These actions stabilize X∨, and a fundamental domain for the action of Waff

on X∨ (for each of these actions) is therefore an ∩ X∨. (Compared to the conventions
used in [dCHL], our “fundamental alcove” an is opposite. This is related to the fact that
our fixed Borel subgroup B is chosen to be negative, while in [dCHL] it is chosen to be
positive.)

The affine roots are the formal linear combinations α + m� with α ∈ R and m ∈ Z.
To such a combination we attach an affine function f n

α+m� on V, determined by

f n
α+m�(v) = 〈α,v〉 + nm,



256 SIMON RICHE, GEORDIE WILLIAMSON

and an element sα+m� ∈ Waff determined by

sα+m� = tmα∨sα.

We then have

sα+m� ·n v = v − f n
α+m�(v)α∨

for any v ∈ V.

Remark 4.1. — In practice, when considering these constructions in later sections,
the integer n will be either 1 or a prime number different from p. As this assumption
does not simplify the discussion in any way, we will not impose any restriction on n in this
section.

4.2. Some Bruhat–Tits theory. — For any positive integer n, we set Kn := F((zn)).
We will consider K := K1 as a valued field with its natural valuation (such that z has
valuation 1), and endow each Kn with the valuation obtained by restriction. (In this way,
all the fields Kn are canonically isomorphic, but their valuations differ.) We will denote
by On the valuation ring of Kn, so that On := F[[zn]]. For any λ ∈ X∨ we have a point
zλ ∈ G(K ), defined as the image of z under the map (K )× → G(K ) induced by λ. If
λ ∈ nX∨, then zλ belongs to G(Kn).

The group scheme G ×Spec(F) Spec(Kn) is a (split) connected reductive group
scheme over Kn, so that one can consider the associated “enlarged” Bruhat–Tits build-
ing Bn (in the sense considered e.g. in [Pr]) which carries an action of G(Kn). Our
choice of maximal torus in G provides a split maximal torus T ×Spec(F) Spec(Kn) ⊂
G ×Spec(F) Spec(Kn), which itself defines an apartment An in Bn. This apartment is
an affine space with underlying vector space V, and it is stable under the action of
NG(T)(Kn). The vectorial part of the action of NG(T)(Kn) on An factors through the nat-
ural action of NG(T)(Kn)/T(Kn) = Wf on V, and for λ ∈ X∨ the element znλ ∈ T(Kn)

acts by translation by −nλ (see [Pr, §1.8]). Let us choose, for any w ∈ Wf, a lift ẇ of w in
NG(T). Then we will consider the map

ιn : Waff → NG(T)(Kn)

defined by ιn(tλw) = znλẇ for w ∈ Wf and λ ∈ ZR∨.
If we choose a Wf-fixed point in An, then the action of V on this point defines an

identification

(4.1) V
∼−→ An,

under which the action of NG(T)(Kn) on An identifies with the action of Waff on V
provided by ·n. We will fix such an identification once and for all, and use it to identify all
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the data considered above related to V as data related to An. (None of our considerations
below will depend on the choice of identification (4.1).)

The collection of fixed points of the reflections sα+m� (or in other words of kernels
of the functions f n

α+m�) defines a hyperplane arrangement in An, hence a collection of facets

(see [Bo, Chap. V, §1.2]). In particular, an is a facet of maximal dimension, i.e. an alcove.
Another example of facet is the intersection on of the reflection hyperplanes associated
with all the reflections sβ with β ∈ R, i.e. the set of Wf-fixed points. The facets we will
mainly be interested in are those contained in the closure an of an.

To any facet f in An, Bruhat–Tits theory associates a “parahoric group scheme” Pf

over Spec(On), a smooth affine group scheme over Spec(On) with connected geometric
fibers such that

(4.2) Pf ×Spec(On) Spec(Kn) = G ×Spec(F) Spec(Kn),

and whose On-points are of finite index in the pointwise stabilizer of f in G(Kn). (This
group scheme is denoted similarly in [dCHL]; in [Pr] it is denoted G ◦

f .) In particular we
have

Pon
= G ×Spec(F) Spec(On),

and Pan
is an Iwahori group scheme, whose group of On-points is the inverse image of B

under the map G(On) → G of evaluation at zn = 0. This construction is compatible with
inclusions of closures of facets in a natural way; in particular for any facet f contained in
an we have a closed embedding

(4.3) Pan
⊂ Pf.

4.3. Loop groups and partial affine flag varieties. — As above we fix a positive integer
n. The n-th loop group associated with G is the ind-affine group ind-scheme LnG over F
which represents the functor sending an F-algebra R to G(R((zn))). The associated arc

group (or positive loop group) is the affine group scheme L+
n G over F which represents the

functor sending R to G(R[[zn]]). (For basics about ind-schemes, see [Rz, §1].)
The case we are mostly interested in is when n = 1. In this case (here and in later

related notation), we will usually omit the subscript from the notation. The case of a
more general n however naturally appears when considering the action of n-th roots of
unity by loop rotation. Namely, we have a natural action of the multiplicative group Gm

over F on LG by loop rotation. This action stabilizes the subgroup L+G. Denote now
by μn ⊂ Gm the subgroup scheme of n-th roots of unity; we can then consider the fixed-
points ind-scheme (LG)μn and the fixed-points scheme (L+G)μn in the sense of Section
2.4.

Lemma 4.2. — We have identifications

(LG)μn = LnG, (L+G)μn = L+
n G.
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Proof. — For any F-algebra R, the R-points (LG)(R) consist of the F-scheme mor-
phisms Spec(R((z))) → G. Therefore, the R-points of (LG)μn consist of the μn-invariant
morphisms Spec(R((z))) → G, i.e. the morphisms which factor through the quotient
Spec(R((z))) → Spec(R((z)))/μn = Spec(R((zn))). This proves the first identification.
The proof of the second one is similar. �

It is well known (see e.g. [Rz, §3]) that the fppf sheafification of the functor

R 	→ (LG)(R)/(L+G)(R)

is represented by an ind-projective ind-scheme over F, which is called the affine Grass-

mannian of G, and will be denoted GrG. The main goal of this section is to describe the
ind-scheme (GrG)μn , see Proposition 4.7 below. This will require discussing more general
“partial affine flag varieties” attached to LnG, as follows.

If f ⊂ an is a facet, we can consider the affine group scheme L+
n Pf over F which

represents the functor sending R to Pf(R[[zn]]). In view of (4.2), L+
n Pf is a subgroup of

LnG. The partial affine flag variety

Fln
f

associated with f is the ind-projective ind-scheme over F which represents the fppf sheafi-
fication of the presheaf

R 	→ LnG(R)/L+
n Pf(R).

These ind-schemes are the main object of study of [PR]. In particular, the connected
components of Fln

f are in a natural bijection with the algebraic fundamental group of G
(see [PR, Theorem 0.1]); the component corresponding to the neutral element will be
denoted Fl

n,◦
f .

If α ∈ R, we will denote by Uα the root subgroup of G attached to α. Then, for
an affine root α + m�, we will denote by Uα+m� the subgroup of LG which, for any
isomorphism uα : Ga

∼−→ Uα , identifies with the image of the morphism x 	→ uα(xzm).
The following statements are easily checked.

Lemma 4.3. — Let α ∈ R and m ∈ Z.

(1) The subgroup Uα+m� is stable under the action of μn, and we have

(Uα+m�)
μn =

{
Uα+m� if m ∈ nZ;

{1} otherwise.

(2) If λ ∈ X∨, we have

zλ · Uα+m� · z−λ = Uα+(m+〈λ,α〉)�.

(3) If f ⊂ an is a facet, we have Uα+mn� ⊂ L+
n Pf iff f n

α+m� takes nonnegative values on f.



SMITH–TREUMANN THEORY AND THE LINKAGE PRINCIPLE 259

4.4. Fixed points on orbits. — A crucial role in our discussion will be played by the
following Iwahori subgroups of L+G, for which we introduce special notation:

Iw := L+
1 Pa1, Iw+ := ẇ0 · Iw · (ẇ0)

−1.

(Here, w0 is the longest element in Wf.) More concretely, Iw, resp. Iw+, is the inverse
image of B, resp. B+, under the map ev0 : L+G → G sending z to 0. We also denote by
Iwu and Iw+

u the pro-unipotent radicals of Iw and Iw+, i.e. the inverse images of U and
U+ under ev0.

For λ ∈ X∨, we denote by Lλ the coset of zλ in GrG. The group scheme L+G acts on
GrG (see Section 4.3), and the orbits of this action are parametrized by the subsemigroup
X∨

+ ⊂ X∨ of dominant cocharacters. More precisely, we have

(4.4) (GrG)red =
⊔

λ∈X∨+

Grλ
G with Grλ

G := L+G · Lλ,

where the left-hand side denotes the reduced ind-scheme associated with GrG. Moreover,
for any λ ∈ X∨

+ the closure Gr
λ
G is a projective F-scheme, on which the action of L+G

factors through an action of a smooth quotient group scheme of finite type.
The orbits of Iw and Iw+ can be described similarly: we have

(4.5) (GrG)red =
⊔

λ∈X∨
GrG,λ with GrG,λ := Iw · Lλ

and

(4.6) (GrG)red =
⊔

λ∈X∨
Gr

+
G,λ with Gr

+
G,λ := Iw+ · Lλ.

Moreover, each Iw-orbit (resp. Iw+-orbit) is also an Iwu-orbit (resp. Iw+
u -orbit), and for

any μ ∈ X∨
+ we have

Gr
μ

G =
⊔

λ∈Wfμ

GrG,λ =
⊔

λ∈Wfμ

Gr+
G,λ.

For λ ∈ X∨, the embedding of Gr+
G,λ in GrG will be denoted j+λ .

If n ∈ Z>0, we can also consider the Iwahori subgroups Iwn, Iw+
n ⊂ LnG defined as

above with z replaced by zn, and their pro-unipotent radicals Iwu,n, Iw+
u,n.

Lemma 4.4. — We have

Iwμn = Iwn, (Iw+)μn = Iw+
n , (Iwu)

μn = Iwu,n, (Iw+
u )μn = Iw+

u,n.

For any λ ∈ X∨ we have

(GrG,λ)
μn = Iwn · Lλ, (Gr

+
G,λ)

μn = Iw+
n · Lλ.
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Proof. — The identifications in the first sentence are immediate consequences of
Lemma 4.2.

For the description of (GrG,λ)
μn , for any α ∈ R we set δα = 1 if α ∈ R+, and δα = 0

otherwise. Using the notation introduced in Section 4.3, we set

Iwλ
u :=

∏

α∈R

(
∏

δα�m<〈λ,α〉
Uα+m�

)
,

where the products are taken in any chosen order. Then it is well known that the map
u 	→ u · Lλ induces an isomorphism Iwλ

u
∼−→ GrG,λ. Since Lλ is stable under the μn-action

we deduce an isomorphism (Iwλ
u)

μn
∼−→ (GrG,λ)

μn , and here by Lemma 4.3(1) we have

(Iwλ
u)

μn =
∏

α∈R

⎛

⎜⎝
∏

δα�m<〈λ,α〉
n|m

Uα+m�

⎞

⎟⎠ .

It follows that (GrG,λ)
μn = Iwn · Lλ, as desired. The proof that (Gr+

G,λ)
μn = Iw+

n · Lλ is
similar. �

4.5. Big cells in partial affine flag varieties. — Our arguments below will make use
of the “big cell” in Fln

f , whose construction we now recall following de Cataldo–
Haines–Li [dCHL]. We first consider the ind-affine group ind-scheme L(−1)

n G which
represents the functor sending R to the kernel of the morphism

G(R[z−n]) → G(R)

of evaluation at z−n = 0. Then L(−1)
n G is a subgroup ind-scheme of LnG, and we set

L−−
n Pan

= L(−1)
n G · U+.

With this definition, it is well known (see e.g. [Fa, §2]) that the morphism

L−−
n Pan

→ Fln,◦
an

induced by the action on the base point is representable by an open immersion, and that
from this one can obtain an “open cover” of Fln,◦

an
parametrized by Waff, where the open

subset corresponding to w is the image of

ιn(w) · L−−
n Pan

· ιn(w)−1

under the map g 	→ g · [ιn(w)]. (Here, [ιn(w)] is the image of ιn(w) in Fl
n,◦
an

.)
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For a general facet f ⊂ an, we denote by Wf
aff the pointwise stabilizer of f in Waff (a

finite parabolic subgroup) and set

L−−
n Pf =

⋂

w∈Wf
aff

ιn(w) · L−−
n Pan

· ιn(w)−1.

For instance, in the special case f = on, we have

(4.7) L−−
n Pon

= L(−1)
n G.

The following claim is easily checked (see [dCHL, Proposition 3.6.4]).

Lemma 4.5. — For α ∈ R and m ∈ Z, we have Uα+nm� ⊂ L−−
n Pf iff f n

α+m� takes negative

values on f.

With this definition, as explained in [dCHL, §3.8.1], the morphism

L−−
n Pf → Fl

n,◦
f

defined by the action on the base point is representable by an open immersion. One can
obtain from this an “open cover” of Fln,◦

f parametrized by the quotient Waff/Wf
aff, where

the open subset attached to a coset wWf
aff is the image of the subgroup

ιn(w) · L−−
n Pf · ιn(w)−1

under the morphism of action on the image of ιn(w). (These data do not depend on the
choice of w in its coset, and this claim can be deduced from the corresponding fact for an

by using the morphism Fln,◦
an

→ Fln,◦
f induced by (4.3).)

For m ∈ Z�1, we will denote by L(−1)G(m), resp. L(−1)
n G(m), the subgroup of

L(−1)G, resp. L(−1)
n G, which represents the functor sending R to the preimage of

T(R[z−1]/z−m) under the composition

L(−1)G(R) ↪→ G(R[z−1]) → G(R[z−1]/z−m),

resp. the preimage of T(R[z−n]/z−mn) under the composition

L(−1)
n G(R) ↪→ G(R[z−n]) → G(R[z−n]/z−nm).

Below we will require the following properties of these subgroups:

(1) for fixed λ ∈ X∨ and m ∈ Z>0, for m′ � 0 we have zλL(−1)G(m′)z−λ ⊂
L(−1)G(m);

(2) for any facet f ⊂ an, for m � 0 we have L(−1)
n G(m) ⊂ L−−

n Pf.

(For (1), we can use [dCHL, Remark 3.1.1] to reduce the claim to the case G = GLn(F),
which is clear from a matrix calculation. This property implies that for any fixed w ∈ Waff,
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for m � 0 we have L(−1)
n G(m) ⊂ ιn(w) · L(−1)

n G · ιn(w)−1 ⊂ ιn(w) · L−−
n Pan

· ιn(w)−1, which
implies (2).)

For λ ∈ (−an) ∩ X∨, we will denote by

(4.8) fλ ⊂ an

the facet containing −λ.

Lemma 4.6. — For any λ ∈ (−an) ∩ X∨, we have

(zλ · L−−
1 Po1 · z−λ)μn = L−−

n Pfλ .

Proof. — For any α ∈ R, let us denote by iα the largest integer such that the func-
tion f n

α+iα�
takes negative values on fλ. In fact, since fλ ⊂ an we can describe this integer

very explicitly:

• if α ∈R+ then 〈λ,α〉 ∈ {0, . . . , n}, and

(4.9) iα =
{

0 if 〈λ,α〉 > 0;
−1 if 〈λ,α〉 = 0;

• if α ∈ −R+ then 〈λ,α〉 ∈ {−n, . . . ,0}, and

(4.10) iα =
{

−1 if 〈λ,α〉 > −n;
−2 if 〈λ,α〉 = −n.

Recall from (1)–(2) above that we can choose m large enough such that

L(−1)
n G(m) ⊂ L−−

n Pfλ and z−λ · L(−1)
n G(m) · zλ ⊂ L(−1)G.

Then as in [dCHL, Proposition 3.6.4] we have a direct product decomposition

L−−
n Pfλ = L(−1)

n G(m) ·
∏

α∈R+

iα∏

j=−m

Uα+jn� ·
∏

α∈−R+

iα∏

j=−m

Uα+jn�.

(Here we use arbitrary orders on R+ and on −R+.) Our choice of m guarantees that
z−λ · L(−1)

n G(m) · zλ ⊂ L(−1)G, and in view of Lemma 4.3(2), for any affine root α + jn�

appearing in the decomposition above, the fact that f n
α+j�(−λ) < 0 implies that

z−λ · Uα+jn� · zλ ⊂ L(−1)G.

These considerations show that

L−−
n Pfλ ⊂ zλ · L−−

1 Po1 · z−λ
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(see (4.7)), so that

L−−
n Pfλ ⊂ (zλ · L−−

1 Po1 · z−λ)μn .

To prove the reverse inclusion, we continue with some m as above, and choose
m′ � 0 such that

zλL(−1)G(m′)z−λ ⊂ L(−1)G(nm)

(see (1) above). We then have

(zλL(−1)G(m′)z−λ)μn ⊂ (L(−1)G(nm))μn = L(−1)
n G(m).

As above we have a direct product decomposition

L(−1)G = L(−1)G(m′) ·
∏

α∈R+

−1∏

j=−m′
Uα+j� ·

∏

α∈−R+

−1∏

j=−m′
Uα+j�,

where now (for notational convenience) we choose the order on R+ such that all the roots
such that 〈λ,α〉 = 0 are bigger than the other ones, and the order on −R+ such that all
the roots such that 〈λ,α〉 = −n are bigger than the other ones. From this decomposition
we see that (zλ · L(−1)G · z−λ)μn is the product of (zλL(−1)G(m′)z−λ)μn , which is included
in L−−

n Pfλ by the choices of m and m′, and of
⎛

⎝
∏

α∈R+

−1+〈λ,α〉∏

j=−m′+〈λ,α〉
Uα+j� ·

∏

α∈−R+

−1+〈λ,α〉∏

j=−m′+〈λ,α〉
Uα+j�

⎞

⎠
μn

,

which by Lemma 4.3(1) is included in

∏

α∈R+
〈λ,α〉>0

0∏

j=−N

Uα+jn� ·
∏

α∈R+
〈λ,α〉=0

−1∏

j=−N

Uα+jn�·

∏

α∈−R+
〈λ,α〉>−n

−1∏

j=−N

Uα+jn� ·
∏

α∈−R+
〈λ,α〉=−n

−2∏

j=−N

Uα+jn�

for N � 0. Here all the affine root subgroups are included in L−−
n Pfλ by (4.9)–(4.10) and

Lemma 4.5, which finally proves that

(zλ · L(−1)G · z−λ)μn ⊂ L−−
n Pfλ

and concludes the proof. �
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4.6. Fixed points on the affine Grassmannian. — Fix λ ∈ (−an) ∩ X∨, and consider
the morphism from LnG to GrG defined by g 	→ g · Lλ. Arguments similar to those for
Lemma 4.6 show that Lλ is fixed under the action of L+

n Pan
. Since this point is also sta-

ble under the action of lifts of elements in Wfλ
aff (where fλ is as in (4.8)), it is stabilized by

L+
n Pfλ . Since μn acts trivially on LnG, our morphism therefore factors through a mor-

phism Fln
fλ → (GrG)μn , which we can then restrict to a morphism of ind-schemes

(4.11) Fln,◦
fλ → (GrG)μn .

Recall that the category of ind-schemes admits arbitrary coproducts, see [Rz,
Lemma 1.10(3)]. From the morphisms (4.11), using the universal property of coproducts
we deduce a morphism of ind-schemes

(4.12)
⊔

λ∈(−an)∩X∨
Fl

n,◦
fλ → (GrG)μn .

Proposition 4.7. — The morphism (4.12) is an isomorphism of ind-schemes.

Proof. — Let us first check that our map induces a bijection on F-points. For that
we use the decomposition (4.5). Since each orbit in this decomposition is stable under the
action of μn, we deduce a decomposition of fixed points indexed by X∨, whose parts are
described in Lemma 4.4:

(GrG)μn(F) =
⊔

μ∈X∨
Iwn(F) · Lμ.

On the other hand, for any facet f ⊂ an, the Iwn-orbits on Fln,◦
f are parametrized in a

natural way by the quotient Waff/Wf
aff; we deduce a decomposition

⊔

λ∈(−an)∩X∨
Fln,◦

fλ (F) =
⊔

λ∈(−an)∩X∨

⊔

wW
fλ
aff∈Waff/W

fλ
aff

Iwn(F) · [ιn(w)]fλ

where [ιn(w)]fλ is the image of ιn(w) in Fln,◦
fλ . Since (−an)∩ X∨ is a fundamental domain

for the action of Waff on X∨ (via �n), we have a bijection

(4.13)
⊔

λ∈(−an)∩X∨
Waff/Wfλ

aff
∼−→ X∨

sending wWfλ
aff ∈ Waff/Wfλ

aff to −(w ·n (−λ)) = w�nλ. To conclude the proof of our claim,
it therefore suffices to check that for any w and λ our morphism induces a bijection

Iwn(F) · [ιn(w)]fλ
∼−→ Iwn(F) · Lw�nλ,
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which follows from the description of both sides in terms of (affine) root subgroups; see
Lemma 4.3(2) (for the left-hand side) and the proof of Lemma 4.4 (for the right-hand
side).

The rest of the proof will use the “big cell” theory recalled in Section 4.5. Namely,
recall that for ν ∈ X∨ the morphism g 	→ g · Lν defines an “open embedding”

zν · L−−
1 Po1 · z−ν → GrG,

and that the images of these maps constitute an “open cover” of GrG (see Section 4.5).
These open subsets are stable under the Gm-action by loop rotation, hence also under the
μn-action we consider here; it follows that (GrG)μn has an “open cover” parametrized by
X∨, with the subset corresponding to ν naturally isomorphic to (zνL−−

1 Po1z
−ν)μn . Sim-

ilarly, for any λ ∈ (−an) ∩ X∨ and any coset wWfλ
aff in Waff/Wfλ

aff, we have considered
in Section 4.5 an open subset of Fln,◦

fλ naturally isomorphic to ιn(w) · L−−
n Pfλ · ιn(w)−1.

Taken together, this subsets provide an “open cover” of the left-hand side of (4.11). The
sets which parametrize these open covers are in a canonical bijection via (4.13). Now we
will show that the map (4.12) identifies the open subset of Fln,◦

fλ associated with the coset
wWfλ

aff with the open subset of (GrG)μn corresponding to w�nλ.
To prove this claim it suffices to prove the equality

(zw�nλ · L−−
1 Po1 · z−w�nλ)μn = ιn(w) · L−−

n Pfλ · ιn(w)−1.

In case w = 1, this equality was checked in Lemma 4.6. To deduce the general case, write
w = tμv with μ ∈ X∨ and v ∈ Wf. Then we have

(zw�nλ · L−−
1 Po1 · z−w�nλ)μn = (zv(λ)+nμ · L−−

1 Po1 · z−v(λ)−nμ)μn

= znμv̇ · (zλ · L−−
1 Po1 · z−λ)μn · v̇−1z−nμ = znμv̇ · L−−

n Pfλ · v̇−1z−nμ,

which concludes the proof.
These identifications allow us to define a right inverse to (4.12) on each open sub-

set of our “open cover” of (GrG)μn . These morphisms coincide on intersections of open
subsets because they coincide on F-points (by the bijectivity claim at the beginning of the
proof), which are dense since our ind-schemes are of ind-finite type. We can therefore
glue these locally defined morphisms to obtain an inverse to (4.12), which finishes the
proof. �

For λ ∈ (−an) ∩ X∨, we will denote by GrG,(λ) the image of Fln,◦
fλ in (GrG)μn under

the map of Proposition 4.7. We then have

(4.14) (GrG)μn =
⊔

λ∈(−an)∩X∨
GrG,(λ),

which describes (GrG)μn as the union of its connected components.
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Remark 4.8.

(1) The action of LnG on L0 induces an embedding

LnG/L+
n G ↪→ (GrG)μn .

Here LnG/L+
n G is of course isomorphic to GrG. In terms of the decomposi-

tion (4.14), this embedding identifies LnG/L+
n G with the union of the compo-

nents GrG,(λ) where λ runs over (−an) ∩ nX∨. These components are the only
ones that are considered in [LL].

(2) As in the proof of Proposition 4.7 in the case of Iwn-orbits, for any facet
f ⊂ an the Iw+

n -orbits on Fln,◦
f are parametrized in a natural way by the

quotient Waff/Wf
aff. On the other hand, the Iw+-orbits on GrG are naturally

parametrized by X∨, so that by Lemma 4.4 the Iw+
n -orbits on (GrG)μn are

also parametrized by X∨. Under the identification of Proposition 4.7, for any
λ ∈ (−an) ∩ X∨ the orbit in Fl

n,◦
fλ corresponding to the coset wWf

aff is mapped
to the orbit in (GrG)μn parametrized by w�nλ. This correspondence of orbits
will be important for our applications in Section 8.

5. Iwahori–Whittaker sheaves on the affine Grassmannian

We continue with the setting of Section 4.

5.1. Iwahori–Whittaker sheaves. — The category of sheaves on GrG we will study
is the Iwahori–Whittaker derived category, whose definition we briefly recall. (For more
details, see e.g. [AR1, Appendix A].)

From now on we let k be a finite field of positive characteristic � = p containing a
nontrivial p-th root of unity. After choosing such a root of unity ζ , we obtain an Artin–
Schreier local system LAS on Ga, defined as the direct summand of the local system
AS∗kGa

on which Fp acts via n 	→ ζ n. (Here, AS : Ga → Ga is the map x 	→ xp − x, a
Galois cover of group Fp.) We choose once and for all a morphism of F-algebraic groups
χ0 : U+ → Ga which is nontrivial on any root subgroup of U+ associated with a simple
root, and denote by

χ : Iw+
u → Ga

the composition of χ0 with the morphism Iw+
u → U+ induced by ev0.

For X ⊂ GrG a locally closed finite union of Iw+-orbits, we can choose a smooth
quotient J of Iw+

u of finite type such that the Iw+
u -action on X factors through an ac-

tion of J, and such that χ factors through a morphism χJ : J → Ga. Let Db
c (X,k) be the

constructible derived category of k-sheaves on X, i.e. the full subcategory of DbSh(X,k)

whose objects are the complexes with constructible cohomology sheaves. Then the con-
structible (J, χ∗

J LAS)-equivariant derived category of k-sheaves on X is by definition the
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full subcategory8 of Db
c (X,k) whose objects are the complexes F whose pullback un-

der the action map J × X → X is isomorphic to χ∗
J LAS � F . It is well known that this

subcategory is triangulated, and that it does not depend on the choice of J; it will be
denoted

Db
IW(X,k).

It is known also that the perverse t-structure on DbSh(X,k) restricts to a t-structure on
Db

IW(X,k), which will also be called the perverse t-structure. (Here, “IW” stands for
“Iwahori–Whittaker.” We will use this expression as a replacement for “constructible and
(J, χ∗

J LAS)-equivariant” where J is as above, in all circumstances where this notion does
not depend on the choice of J.)

One can also define the category

Db
IW(GrG,k)

of Iwahori–Whittaker sheaves on GrG as the direct limit of the categories Db
IW(X,k)

where X runs over the closed finite unions of Iw+-orbits, ordered by inclusion. (Here,
the transition functors are the fully-faithful pushforward functors.) Since, for X ⊂ Y, the
pushforward functor Db

IW(X,k) → Db
IW(Y,k) is t-exact, from the perverse t-structures

on the categories Db
IW(X,k) we obtain a perverse t-structure on Db

IW(GrG,k), whose
heart will be denoted PervIW(GrG,k).

The considerations in the proof of Lemma 4.4 can be used to see that for λ ∈ X∨,
the orbit Gr+

G,λ supports a nonzero Iwahori–Whittaker local system iff λ belongs to the
subset

X∨
++ := {μ ∈ X∨ | ∀α ∈R

+, 〈μ,α〉 > 0}.
Moreover, in this case there exists (up to isomorphism) exactly one such local system of
rank 1; it will be denoted L λ

AS. This remark implies that for any μ ∈ X∨
� X∨

++ the
category Db

IW(Gr+
G,μ,k) is 0; in particular, the restriction and co-restriction of any object

in Db
IW(X,k) to Gr+

G,μ (where X is any locally closed finite union of Iw+-orbits containing
Gr+

G,μ) vanishes.

Remark 5.1. — If we assume that there exists an element ς ∈ X∨ such that
〈ς,α〉 = 1 for all α ∈Rs, then we have X∨

++ = ς + X∨
+.

For λ ∈ X∨
++, we set

�IW
λ := R(j+λ )!L λ

AS[dim(Gr
+
G,λ)], ∇IW

λ := R(j+λ )∗L λ
AS[dim(Gr

+
G,λ)].

8 We insist that here the equivariant derived category can be simply defined as a full subcategory of the ordinary
derived category, because we are working with an acyclic group. This is completely different from the theory of [BL]; see
again [AR1, Appendix A] for details.
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Since j+λ is an affine embedding, these objects are perverse sheaves by [BBDG,
Corollaire 4.1.3]. Standard arguments (going back to [BGS]) show that the category
PervIW(GrG,k) admits a structure of a highest weight category (in the sense of [Ri, §7])
with weight set X∨

++, standard objects the objects (�IW
λ : λ ∈ X∨

++), and costandard ob-
jects the objects (∇IW

λ : λ ∈ X∨
++). In particular, one can consider the tilting objects in

this category, i.e. the objects which admit both a filtration with standard subquotients,
and a filtration with costandard subquotients. Recall that, as remarked in [BBM], this
notion can also be characterized topologically: a perverse sheaf F is tilting iff the com-
plexes (j+λ )∗F and (j+λ )!F are perverse (i.e. are direct sums of copies of L λ

AS[dim(Gr
+
G,λ)])

for any λ ∈ X∨
++.

The full subcategory of PervIW(GrG,k) whose objects are the tilting objects will
be denoted TiltIW(GrG,k). The general theory of highest weight categories (reviewed
e.g. in [Ri]) guarantees that the indecomposable objects in this category are parametrized
in a natural way by X∨

++. More precisely, for any λ ∈ X∨
++ there exists a unique (up

to isomorphism) indecomposable object T IW
λ in TiltIW(GrG,k) which is supported on

Gr+
G,λ, and whose restriction to Gr+

G,λ is L λ
AS[dim(Gr+

G,λ)]; then the assignment λ 	→ T IW
λ

induces a bijection between X∨
++ and the set of isomorphism classes of indecomposable

objects in TiltIW(GrG,k).

5.2. Loop rotation equivariant Iwahori–Whittaker sheaves. — We will need to “add” the
(loop rotation) Gm-equivariance in the constructions of Section 5.1. We therefore con-
sider a locally closed finite union of Iw+-orbits X ⊂ GrG as above. The Gm-action by
loop rotation on GrG stabilizes each Iw+-orbit, hence also X, so that we can consider the
constructible Gm-equivariant derived category of étale k-sheaves Db

Gm,c(X,k), see Sec-
tion 3.4. The quotient J of Iw+

u as in Section 5.1 can be chosen in such a way that the
Gm-action on Iw+

u induces an action on J. Since the morphism χ : Iw+
u → Ga is Gm-

equivariant (for the trivial Gm-action on Ga), so is χJ, and the local system χ∗
J LAS is

therefore Gm-equivariant. We define the category

Db
IW,Gm

(X,k)

as the full subcategory of Db
Gm,c(X,k) whose objects are the complexes F such that

a∗
J F

∼= χ∗
J LAS �F in Db

Gm
(J × X,k),

where aJ : J × X → X is the action morphism. (Here, Gm acts diagonally on J × X.)
Arguments similar to those for the case when the Gm-action is dropped show that
Db

IW,Gm
(X,k) is a triangulated subcategory of Db

Gm,c(X,k); in fact this category is the
essential image of the fully faithful functor

Db
Gm,c(X,k) → Db

IW,Gm
(X,k)
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sending a complex F to R(aJ)!
(
χ∗

J LAS �F
)
. It is also easily checked that this category

does not depend on the choice of J, and that the perverse t-structure on Db
Gm,c(X,k)

restricts to a t-structure on Db
IW,Gm

(X,k).
Taking the direct limit of the categories Db

IW,Gm
(X,k) where X runs over the

closed finite unions of Iw+-orbits, we obtain a triangulated category

Db
IW,Gm

(GrG,k)

with a natural perverse t-structure, whose heart will be denoted PervIW,Gm(GrG,k). We
have a natural t-exact forgetful functor

(5.1) Db
IW,Gm

(GrG,k) → Db
IW(GrG,k).

5.3. Parity complexes. — Let X ⊂ GrG be a locally closed finite union of Iw+-orbits.
Recall (see [JMW, RW1]) that an object F in Db

IW(X,k) is called ∗-even, resp. !-even, if
for any λ ∈ X∨

++ such that Gr+
G,λ ⊂ X the complex (j+λ )∗F , resp. (j+λ )!F , is concentrated

in even degrees, i.e. is a direct sum of objects of the form L λ
AS[n] with n ∈ 2Z. (Here, by

abuse we still denote by j+λ the embedding of Gr+
G,λ in X. Note also that if λ ∈ X∨

� X∨
++

is such that Gr
+
G,λ ⊂ X, then as explained in Section 5.1 we have (j+λ )∗F = (j+λ )!F = 0

for any F in Db
IW(X,k), so that no condition is required for these strata.) We define

similarly the ∗-odd and !-odd objects (requiring that n is odd in this case), and we say that
F is even, resp. odd, if it is both ∗-even and !-even, resp. ∗-odd and !-odd.

These notions can also be considered in Db
IW,Gm

(X,k); more precisely an object
F in Db

IW,Gm
(X,k) is said to be ∗-even, resp. !-even, etc., if its image in Db

IW(X,k)

(under the forgetful functor) is ∗-even, resp. !-even, etc. If F ∈ Db
IW,Gm

(X,k) is ∗-even,
for any λ ∈ X∨

++ such that Gr+
G,λ ⊂ X the complex (j+λ )∗F is a direct sum of objects of

the form L λ
AS[n] with n ∈ 2Z in Db

IW,Gm
(Gr+

G,λ,k). A similar comment applies to !-even
objects (with respect to !-restriction), and to ∗-odd and !-odd objects.

By definition, the category Db
IW(GrG,k), resp. Db

IW,Gm
(GrG,k), is the direct limit

of the categories Db
IW(X,k), resp. Db

IW,Gm
(X,k), where X runs over the closed finite

unions of Iw+-orbits in GrG. Hence it makes sense to consider even and odd complexes in
these categories. The general theory of [JMW] (see also [RW1, ACR] for some comments
on the Iwahori–Whittaker case) guarantees that for any λ ∈ X∨

++ there exists a unique (up
to isomorphism) indecomposable object in Db

IW(GrG,k), resp. Db
IW,Gm

(GrG,k), which

has the same parity as dim(Gr+
G,λ), which is supported on Gr+

G,λ, and whose restriction to
Gr

+
G,λ is L λ

AS[dim(Gr
+
G,λ)]. This object will be denoted

E IW
λ , resp. E IW

λ,Gm
.

It is known also that the image of E IW
λ,Gm

under the forgetful functor (5.1) is E IW
λ , see

e.g. [MR, Lemma 2.4]. Moreover, any parity object in Db
IW(GrG,k), resp. Db

IW,Gm
(GrG,

k), is a direct sum of cohomological shifts of objects of the form E IW
λ , resp. E IW

λ,Gm
.
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As remarked already in [BGMRR], these objects have an alternative description,
as follows. It is known that the parity of dim(Gr+

G,λ) (with λ ∈ X∨
++) is constant on each

connected component of GrG. (This follows from the same property for L+G-orbits, since
each orbit Gr

+
G,λ with λ ∈ X∨

++ is dense in an L+G-orbit.) As a consequence, a tilting
object supported on a component where these dimensions are even, resp. odd, is even,
resp. odd. In particular, by unicity, for any λ ∈ X∨

++ we must have

(5.2) T IW
λ

∼= E IW
λ .

As a consequence, we obtain that the parity objects in Db
IW(GrG,k) are exactly the direct

sums of cohomological shifts of tilting perverse sheaves.
Using these considerations we prove the following lemma, to be used later.

Lemma 5.2. — The forgetful functor induces an equivalence of categories

PervIW,Gm(GrG,k)
∼−→ PervIW(GrG,k).

Proof. — It follows from the general theory of equivariant perverse sheaves (re-
called e.g. in [BR, §1.16]) that the forgetful functor PervGm(GrG,k) → Perv(GrG,k) is
fully faithful; therefore, so is its restriction PervIW,Gm(GrG,k) → PervIW(GrG,k). This
general theory also implies that the essential image of this functor is stable under subquo-
tients (see e.g. [J3, §12.19]). Now from (5.2) and the fact that each object E IW

λ belongs
to the essential image of the forgetful functor Db

IW,Gm
(GrG,k) → Db

IW(GrG,k) (see the
remarks above), we see that the essential image of our functor contains all the tilting ob-
jects. By the general theory of highest weight categories (see [Ri, Proposition 7.17]), the
canonical functor provides an equivalence of triangulated categories

(5.3) KbTiltIW(GrG,k)
∼−→ DbPervIW(GrG,k).

In particular, it follows that any object of PervIW(GrG,k) is a subquotient of a tilting
object, hence that it belongs to this essential image, which finishes the proof. �

6. Smith theory for Iwahori–Whittaker sheaves on GrG

We continue with the setting of Sections 4–5. Our goal in this section is to build
a “Smith theory” for the category Db

IW(GrG,k), following Treumann [Tr] and Leslie–
Lonergan [LL].

6.1. The Iwahori–Whittaker Smith category. — As in Section 3 we consider the sub-
group scheme � = μ� ⊂ Gm, and the fixed points (GrG)� ⊂ GrG with respect to the
loop rotation action. This subscheme is described in Section 4.6; in particular since
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(Iw+)� = Iw+
� (see Lemma 4.4), this group acts on (GrG)� , and each Iw+

� -orbit is also an
Iw+

u,�-orbit.
The Gm-action on GrG stabilizes (GrG)� , hence induces an action on this sub-

ind-scheme. On the other hand, as explained above we also have an action of Iw+
u,� on

(GrG)� . The analysis in Section 4.4 shows that the orbits of the latter action are naturally
parametrized by X∨, and that each orbit is stable under the action of Gm. Repeating the
construction in Section 5.2, now with the morphism Iw+

u,� → Ga obtained by restricting χ

one can define for any locally closed finite union of Iw+
� -orbits Y ⊂ (GrG)� the Iwahori–

Whittaker loop rotation equivariant derived category

Db
IW�,Gm

(Y,k).

As in Section 5.1, in case Y = (Gr+
G,λ)

� for some λ ∈ X∨, this category vanishes unless
λ ∈ X∨

++.
We define Db

IW�,Gm
(Y,k)� -perf as the full subcategory of Db

IW�,Gm
(Y,k) whose ob-

jects are the complexes F such that ResGm
� (F ) has perfect geometric stalks in the sense

of Section 3.3. We then define the Iwahori–Whittaker Smith category of Y as the Verdier
quotient

SmIW(Y,k) := Db
IW�,Gm

(Y,k)/Db
IW�,Gm

(Y,k)� -perf.

This category has a natural structure of triangulated category; the (cohomological) shift
functor will be denoted [1] as usual.

We now check that this construction is functorial in the following sense.

Lemma 6.1. — Let Y,Z ⊂ (GrG)� be two locally closed finite unions of Iw+
� -orbits such that

Z ⊂ Y. Denoting by f this inclusion, for ? ∈ {∗, !} there exist canonical functors

f Sm
? : SmIW(Z,k) → SmIW(Y,k), f ?

Sm : SmIW(Y,k) → SmIW(Z,k)

such that the diagrams

Db
IW�,Gm

(Z,k)
Rf?

Db
IW�,Gm

(Y,k)

SmIW(Z,k)
f Sm
?

SmIW(Y,k)

and

Db
IW�,Gm

(Y,k)
f ?

Db
IW�,Gm

(Z,k)

SmIW(Y,k)
f ?
Sm

SmIW(Z,k)
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are commutative, where the vertical arrows are the quotient functors.

Proof. — By the universal property of Verdier quotients, we need to show that
the functors Rf∗, Rf!, resp. f ∗, f !, send Db

IW�,Gm
(Z,k)� -perf into Db

IW�,Gm
(Y,k)� -perf,

resp. Db
IW�,Gm

(Y,k)� -perf into Db
IW�,Gm

(Z,k)� -perf. For the functor f ∗ this claim is ob-
vious from definition, and for Rf∗ it follows from Lemma 3.6. For the functor Rf!, one
can argue as follows. If y : Spec(K) → Y is a geometric point of Y, then by [SGA4, Ex-
posé XVII, Proposition 5.2.8] we have

(Rf!F )y
∼= R�c(Z ×Y Spec(K),F ′),

where F ′ is the pullback of F . Now Z ×Y Spec(K) is a locally closed subscheme of
Spec(K), hence is either ∅ or Spec(K). Hence (Rf!F )y is either equal to Fy or to 0,
which shows that Rf!F must belong to Db

IW�,Gm
(Y,k)� -perf.

Finally we treat the case of f !. For this we can assume that f is either a closed
embedding or an open embedding. In the latter case we have f ! = f ∗, hence the claim is
known. In the former case, we denote by g the complementary open embedding. Then,
given F in Db

IW�,Gm
(Y,k)� -perf we consider the distinguished triangle

f∗f !F → F → Rg∗g∗F
[1]−→ .

Here F and Rg∗g∗F belong to Db
IW�,Gm

(Y,k)� -perf, hence so does f∗f !F . This implies
that f !F belongs to Db

IW�,Gm
(Z,k)� -perf, which completes the proof. �

It is easily seen that (f ∗
Sm, f Sm

∗ ) and (f Sm
! , f !

Sm) are adjoint pairs of functors. In par-
ticular, if f is a closed embedding then the functor f Sm

∗ = f Sm
! is fully faithful, so that the

category SmIW(Z,k) can (and will) be identified with a full triangulated subcategory in
SmIW(Y,k). It is also easily checked that, given a decomposition of Y as a disjoint union
of a closed (in Y) finite union of Iw+

� -orbits and its open complement, we have canonical
distinguished triangles as in the “recollement” setting of [BBDG, §1.4].

The full faithfulness of pushforward under closed embeddings allows to define the
category SmIW((GrG)� ,k) as the direct limit of the categories SmIW(Y,k) where Y
runs over the closed finite unions of Iw+

� -orbits in (GrG)� .

6.2. The Smith localization functor. — We will be particularly interested in the con-
struction of Section 6.1 in the case Y = X� for some locally closed finite union of Iw+-
orbits X ⊂ GrG. In this case, we denote by iX : X� → X the embedding. For any F
in Db

IW,Gm
(X,k), we have objects i!XF and i∗XF in Db

IW�,Gm
(X�,k), and a canonical

morphism

i!XF → i∗XF ,
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see (3.4). It follows from Lemma 3.5 that the cone of this morphism is killed by the
quotient functor

Db
IW�,Gm

(X�,k) → SmIW(X�,k).

We can therefore define the functor

i!∗X : Db
IW,Gm

(X,k) → SmIW(X�,k)

as the composition of either i∗X or i!X with this quotient functor.
This functor is compatible with the push/pull functors associated with locally

closed embeddings, in the following sense.

Proposition 6.2. — If X,Y ⊂ GrG are two locally closed finite unions of Iw+-orbits such that

X ⊂ Y, and if we denote by f : X → Y the embedding and by f � : X� → Y� its restriction to X� ,

then we have canonical isomorphisms of functors

i!∗Y ◦ Rf∗ ∼= (f �)Sm
∗ ◦ i!∗X, i!∗Y ◦ Rf! ∼= (f �)Sm

! ◦ i!∗X,

i!∗X ◦ f ∗ ∼= (f �)∗
Sm ◦ i!∗Y , i!∗X ◦ f ! ∼= (f �)!

Sm ◦ i!∗Y .

Proof. — The first, resp. second, isomorphism on the first line follows from the
base change theorem (see [SGA4, Exposé XVIII, Corollaire 3.1.12.3] and [SGA4, Ex-
posé XVII, Théorème 5.2.6] respectively) if we see i!∗Y and i!∗X as the compositions of i!Y
and i!X, resp. of i∗Y and i∗X, with the appropriate quotient functors. The isomorphisms on
the second line follow similarly from the compatibility of pullback functors with compo-
sition. �

Taking the direct limit of the functors i!∗X for X a closed finite union of Iw+-orbits
in GrG, we also obtain a functor

i!∗GrG
: Db

IW,Gm
(GrG,k) → SmIW((GrG)� ,k).

6.3. Some first properties of the Iwahori–Whittaker Smith category. — Let us fix some
λ ∈ X∨

++, and consider the Iw+
u,�-orbit (Gr

+
G,λ)

� ⊂ (GrG)� . (Once again, the Iwahori–
Whittaker category associated with an orbit labelled by a weight in X∨

� X∨
++ vanishes;

these coweights can therefore be ignored.) We set

L λ
Sm := i!∗

Gr+G,λ

(L λ
AS).

Lemma 6.3. — For any n ∈ Z, we have

HomSmIW ((Gr+G,λ)� ,k)(L
λ

Sm,L λ
Sm[n]) =

{
k if n is even;

0 if n is odd.
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Proof. — Since Iw+
u,� acts transitively on (Gr+

G,λ)
� (see Lemma 4.4), we have an

equivalence of triangulated categories

Db
IW�,Gm

((Gr+
G,λ)

� ,k) ∼= Db
Gm,c(pt,k)

which matches L λ
AS with kpt. This equivalence induces an equivalence

SmIW((Gr
+
G,λ)

� ,k) ∼= Sm(pt,k),

where the right-hand side is defined in Section 3.5. The claim then follows from
Lemma 3.7. �

We consider once again a general locally closed finite union of Iw+
� -orbits Y ⊂

(GrG)� .

Lemma 6.4. — There exists a canonical isomorphism of endofunctors of SmIW(Y,k)

id
∼−→ [2].

Proof. — As explained in Lemma 3.7, there exists a canonical map kpt → kpt[2]
in Db

Gm,c(pt,k) whose cone has perfect geometric stalks. Pulling back to Y we deduce
a canonical morphism kY → kY[2] whose cone has perfect geometric stalks. Since the
tensor product with kY, resp. kY[2], defines an endofunctor of Db

IW�,Gm
(Y,k) which is

isomorphic to id, resp. to [2], and since the tensor product (over k) of a perfect complex
of k[� ]-modules with any bounded complex is perfect, the desired claim follows. �

Proposition 6.5. — For any F ,G in SmIW(Y,k), the k-vector space

HomSmIW (Y,k)(F ,G )

is finite-dimensional.

Proof. — The proof proceeds by induction on the number of Iw+
� -orbits in Y. In

fact the distinguished triangles from the “recollement” setting (see Section 6.1) reduce the
proof to the case Y consists of one orbit, which follows from Lemma 6.3. �

7. Parity objects in Smith categories

We continue with the setting of Sections 4–6.
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7.1. Definition. — As remarked already in [LL] (using slightly different defini-
tions), the theory of parity complexes from [JMW] adapts easily to the Smith category
SmIW(Y,k), where Y ⊂ (GrG)� is any locally closed union of Iw+

� -orbits. Namely, we will
say that an object F in SmIW(Y,k) is ∗-even, resp. !-even, if for any λ ∈ X∨

++ such that
(Gr+

G,λ)
� ⊂ Y, denoting by j

+,�
λ : (Gr+

G,λ)
� → Y the embedding, the object (j

+,�
λ )∗

SmF ,
resp. (j

+,�
λ )!

SmF , is isomorphic to a direct sum of copies of L λ
Sm. (In this case we do not

need to consider even shifts because of Lemma 6.4.) We will then say that F is even if it
is both ∗-even and !-even, and define similarly the notions of ∗-odd, !-odd, and odd ob-
jects (replacing L λ

Sm by its shift by 1). We will denote by Sm0
IW(Y,k), resp. Sm1

IW(Y,k),
resp. Sm

par
IW(Y,k), the full subcategory of SmIW(Y,k) whose objects are the even ob-

jects, resp. the odd objects, resp. the objects which are isomorphic to a direct sum of an
even and an odd object.

Recall that an additive category is called Krull–Schmidt if any object can be written
as a direct sum of indecomposable objects whose endomorphism rings are local. (If this
property holds, then such a decomposition is unique up to isomorphism and permutation
of factors.)

Lemma 7.1. — The categories Sm0
IW(Y,k), Sm1

IW(Y,k) and Sm
par
IW(Y,k) are Krull–

Schmidt.

Proof. — By Proposition 6.5 and [CYZ, Corollary A.2], to prove the lemma it suf-
fices to prove that any idempotent in the category Sm

par
IW(Y,k) splits. We do this by

induction on the number of Iw+
� -orbits in Y. If Y = (Gr+

G,λ)
� for some λ ∈ X∨, and if

F belongs to Sm
par
IW(Y,k) then either F = 0 (in which case there is nothing to prove)

or λ ∈ X∨
++ and F = (L λ

Sm)⊕n ⊕ (L λ
Sm)⊕m[1] for some n,m ∈ Z�0. In this case, by

Lemma 6.3 we have

EndSmIW (Y,k)(F ) ∼= Mn(k) × Mm(k),

so that any idempotent in EndSmIW (Y,k)(F ) indeed splits.
To treat the induction step, we choose a closed Iw+

� -orbit Z ⊂ Y, and denote by

i : Z ↪→ Y, j : Y � Z ↪→ Y

the embeddings. For any F in Sm
par
IW(Y,k) we then have a distinguished triangle

iSm
! i!SmF → F → jSm

∗ j∗SmF
[1]−→,

and the objects i!SmF and j∗SmF belong to Sm
par
IW(Z,k) and to Sm

par
IW(Y � Z,k) respec-

tively. If e ∈ EndSmIW (Y,k)(F ) is an idempotent, then i!Sm(e) and j∗Sm(e) are idempotents
too, hence they split by the induction hypothesis. By [LC, Proposition 2.3], this implies
that e splits. �
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We will also define the categories

Sm0
IW((GrG)� ,k), Sm1

IW((GrG)� ,k) and Sm
par
IW((GrG)� ,k)

as the direct limits of their counterparts for Y, where Y runs over closed finite unions
of Iw+

� -orbits in (GrG)� . (Equivalently, these categories can be defined in terms of re-
strictions and corestrictions to Iw+

� -orbits, as for their counterparts above.) Of course,
Lemma 7.1 implies that these categories are Krull–Schmidt.

7.2. Basic properties. — The study of parity objects in SmIW(Y,k) is very similar to
its counterpart in ordinary derived categories of sheaves performed in [JMW]; its essen-
tial ingredients are the parity vanishing property for one stratum proved in Lemma 6.3,
and standard distinguished triangles associated with a decomposition of a space into a
closed part and its open complement. For this reason we will not give any proof in this
subsection; these can be obtained by repeating the proofs of [JMW] essentially word-for-
word.

The following is the analogue of [JMW, Corollary 2.8 and Proposition 2.11].

Lemma 7.2. — If F ,G ∈ SmIW(Y,k) are such that F is ∗-even and G is !-odd, then

we have

HomSmIW (Y,k)(F ,G ) = 0.

As a consequence, if Z ⊂ Y is an open union of Iw+
� -orbits, the restriction of an indecomposable even

(resp. odd) object of SmIW(Y,k) to Z is either indecomposable or zero.

Next, we define the support of an object F ∈ SmIW(Y,k) as the closure of the
union of the strata (Gr

+
G,λ)

� where λ ∈ X∨
++ is such that (Gr

+
G,λ)

� ⊂ Y and (j
+,�
λ )∗

SmF or
(j

+,�
λ )!

SmF is nonzero. The following claim is the analogue of [JMW, Theorem 2.12].

Proposition 7.3. — If F ∈ SmIW(Y,k) is even (resp. odd), nonzero, and indecomposable,

then there exists exactly one λ ∈ X∨
++ such that (Gr

+
G,λ)

� is open in the support of F .

Moreover, for any λ ∈ X∨
++ such that (Gr

+
G,λ)

� ⊂ Y, there exists at most one indecomposable

even, resp. odd, object F in SmIW(Y,k) such that (Gr+
G,λ)

� is open in the support of F and

(j
+,�
λ )∗F ∼= L λ

Sm, resp. (j
+,�
λ )∗F ∼= L λ

Sm[1].

7.3. Comparison of parity objects in Db
IW(GrG,k) and SmIW((GrG)� ,k). — Propo-

sition 7.3 implies that for any λ ∈ X∨
++ there exists at most one indecomposable even,

resp. odd, object in SmIW((GrG)� ,k) in the support of which (Gr
+
G,λ)

� is open, and
whose restriction to (Gr

+
G,λ)

� is L λ
Sm, resp. L λ

Sm[1]. If it exists (which, as we shall see very
soon, is always the case), this object will be denoted E Sm,0

λ , resp. E Sm,1
λ . (Of course, as soon

as one of these objects exists the other one exists also, and we have E Sm,1
λ

∼= E Sm,0
λ [1].)

With this notation, any indecomposable object in Sm
par
IW((GrG)� ,k) is isomorphic to an
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object E Sm,0
λ or E Sm,1

λ , and Lemma 7.1 implies that any object of Sm
par
IW((GrG)� ,k) is a

direct sum of such objects (in an essentially unique way).
Recall that the connected components of (GrG)� are the subvarieties GrG,(λ) with

λ ∈ (−a�) ∩ X∨, see (4.14). Of course, each such connected component is contained
in a connected component of GrG. Recall also (see Section 5.3) that the dimensions of
the orbits Gr+

G,μ with μ ∈ X∨
++ contained in a given connected component of GrG are

of constant parity. We set p(λ) = 0, resp. p(λ) = 1, if all these orbits contained in the
connected component containing GrG,(λ) are even-dimensional, resp. odd-dimensional.
We then denote by Sm�

IW((GrG)� ,k) the full subcategory of SmIW((GrG)� ,k) whose
objects are those whose restriction to GrG,(λ) is even if p(λ) = 0, and odd if p(λ) = 1.

The following statement is the crux of this paper. (This statement is equivalent to
Theorem 1.2 in the introduction since perverse parity objects in Db

IW,Gm
(GrG,k) are the

same as images of tilting perverse sheaves under the equivalence of Lemma 5.2; see Sec-
tion 5.3.)

Theorem 7.4. — The composition

PervIW(GrG,k)
Lemma 5.2−−−−→∼ PervIW,Gm(GrG,k)

i!∗
GrG−−→ SmIW((GrG)� ,k)

restricts to an equivalence of categories

TiltIW(GrG,k) → Sm�

IW((GrG)� ,k).

Moreover, the objects E Sm,0
λ and E Sm,1

λ exist for any λ ∈ X∨
++.

Proof. — It easily follows from Proposition 6.2 and the considerations above that
the functor i!∗GrG

sends even, resp. odd, objects to even, resp. odd, objects. Therefore, since
any indecomposable object in TiltIW(GrG,k) is either even or odd (see (5.2)), our functor
restricts to a functor

TiltIW(GrG,k) → Sm�

IW((GrG)� ,k).

Next, standard arguments (based in particular on Lemma 7.2) allow to prove by induc-
tion on the length of the filtrations that, for any F ,G in PervIW(GrG,k) such that F
admits a standard filtration and G admits a costandard filtration, this functor induces an
isomorphism

HomPervIW (GrG,k)(F ,G )
∼−→ HomSmIW ((GrG)� ,k)(i

!∗
GrG

(F ), i!∗GrG
(G )).

(Here, the crucial case when F = �IW
λ and G = ∇IW

λ for some λ ∈ X∨
++ is given by

Lemma 6.3.) Full faithfulness of our functor follows.
For any λ ∈ X∨

++, the object i!∗GrG
(E IW

λ,Gm
) is indecomposable (by full faithfulness)

and either even or odd. Moreover, since Gr
+
G,λ is open in the support of E IW

λ,Gm
we see that
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(Gr
+
G,λ)

� is open in the support of i!∗GrG
(E IW

λ,Gm
). Therefore the objects E Sm,0

λ and E Sm,1
λ

exist, and we have

(7.1) i!∗GrG
(E IW

λ,Gm
) ∼=

{
E Sm,0

λ if dim(Gr
+
G,λ) is even;

E Sm,1
λ if dim(Gr+

G,λ) is odd.

These considerations show that our functor is essentially surjective, hence an equivalence
of categories. �

7.4. Comparison of parity objects on (GrG)� and in the Smith category. — Now we con-
sider the Iwahori–Whittaker categories

Db
IW�

((GrG)� ,k) and Db
IW�,Gm

((GrG)� ,k),

and the quotient functor

Q : Db
IW�,Gm

((GrG)� ,k) → SmIW((GrG)� ,k).

The theory of parity complexes (as in Section 5.3) of course also applies in the categories
Db

IW�
((GrG)� ,k) and Db

IW�,Gm
((GrG)� ,k); once again the indecomposable parity ob-

jects in these categories are classified (up to cohomological shift) by the Iw+
� -orbits in

(GrG)� which support a nonzero Iwahori–Whittaker local system (i.e. by X∨
++), and the

forgetful functor

ForGm : Db
IW�,Gm

((GrG)� ,k) → Db
IW�

((GrG)� ,k)

sends indecomposable parity complexes to indecomposable parity complexes. In partic-
ular, this functor induces a bijection between the sets of isomorphism classes of indecom-
posable parity objects in Db

IW�,Gm
((GrG)� ,k) and in Db

IW�
((GrG)� ,k); up to replacing

the category of parity objects in Db
IW�

((GrG)� ,k) by an equivalent category (which we
will omit from notation), one can therefore consider whenever convenient that the objects
in these categories are the same.

The situation in this setting is even more favorable than in that of Section 5.3, due
to the following property. (Here, if D is a triangulated category, we write Hom•

D(−,−) for⊕
n∈Z HomD(−,−[n]).)

Lemma 7.5. — For any parity complexes E ,E ′ in Db
IW�,Gm

((GrG)� ,k), there exists a

canonical isomorphism of graded k-vector spaces

Hom•
Db
IW�,Gm

((GrG)� ,k)
(E ,E ′)

∼= H•
Gm

(pt;k) ⊗k Hom•
Db
IW�

((GrG)� ,k)
(ForGm(E ),ForGm(E ′)).

Moreover, these isomorphisms are compatible with composition in the obvious way.



SMITH–TREUMANN THEORY AND THE LINKAGE PRINCIPLE 279

Remark 7.6. — The moral of this lemma is that the Gm-action on (GrG)� “looks
like the trivial action” as it factors through the map t 	→ t� and our coefficients are of
characteristic �.

Proof. — By definition, the Gm-action on (GrG)� factors through the quotient

Gm → Gm/� = Gm, t 	→ t�.

In other words, if we denote by G′
m another copy of Gm, then there exists an action of G′

m
on (GrG)� from which the Gm-action we want to consider is deduced via the morphism
Gm → G′

m defined by t 	→ t�. The Gm-action on Iw+
u,� is similarly obtained from an action

of G′
m, so that one can consider the category Db

IW�,G′
m
((GrG)� ,k) defined in the obvious

way. With this notation introduced, the same considerations as in [MR, Lemma 2.2] show
that for any parity complexes F ,F ′ in Db

IW�,G′
m
((GrG)� ,k), the restriction functor

(7.2) ResG′
m

Gm
: Db

IW�,G′
m
((GrG)� ,k) → Db

IW�,Gm
((GrG)� ,k)

induces an isomorphism of graded k-vector spaces

H•
Gm

(pt;k) ⊗H•
G′

m
(pt;k) Hom•

Db
IW�,G′

m
((GrG)� ,k)

(F ,F ′)

∼−→ Hom•
Db
IW�,Gm

((GrG)� ,k)
(ResG′

m
Gm

(F ),ResG′
m

Gm
(F ′)).

Now since k has characteristic �, the morphism H•
G′

m
(pt;k) → H•

Gm
(pt;k) induced by our

morphism Gm → G′
m vanishes in positive degrees, so that we have

H•
Gm

(pt;k) ⊗H•
G′

m
(pt;k) Hom•

Db
IW�,G′

m
((GrG)� ,k)

(F ,F ′)

∼= H•
Gm

(pt;k) ⊗k

(
k⊗H•

G′
m

(pt;k) Hom•
Db
IW�,G′

m
((GrG)� ,k)

(F ,F ′)
)

.

As in [MR, Lemma 2.2] the forgetful functor ForG′
m

induces an isomorphism

k⊗H•
G′

m
(pt;k) Hom•

Db
IW�,G′

m
((GrG)� ,k)

(F ,F ′)

∼−→ Hom•
Db
IW�

((GrG)� ,k)
(ForG′

m
(F ),ForG′

m
(F ′)),

so that we finally obtain a canonical isomorphism

H•
Gm

(pt;k) ⊗k Hom•
Db
IW�

((GrG)� ,k)
(ForG′

m
(F ),ForG′

m
(F ′))

∼−→ Hom•
Db
IW�,Gm

((GrG)� ,k)
(ResG′

m
Gm

(F ),ResG′
m

Gm
(F ′)).
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To conclude it suffices to remark that the functor ResG′
m

Gm
from (7.2) induces a (canon-

ical) bijection between the isomorphism classes of parity complexes in the categories
Db

IW�,G′
m
((GrG)� ,k) and Db

IW�,Gm
((GrG)� ,k); one can therefore replace ResG′

m
Gm

(F ) and

ResG′
m

Gm
(F ′) in these isomorphisms by general parity complexes in Db

IW�,Gm
((GrG)� ,k).

�

It is clear from definitions that the functor Q sends parity complexes to parity
complexes.

Proposition 7.7. — For any complexes E ,E ′ in Db
IW�,Gm

((GrG)� ,k) which are either both

even or both odd, there exists a canonical isomorphism of k-vector spaces

Hom•
Db
IW�

((GrG)� ,k)
(ForGm(E ),ForGm(E ′))

∼= HomSmIW ((GrG)� ,k)(Q(E ),Q(E ′)).

Moreover, these isomorphisms are compatible with composition in the obvious way.

Proof. — Recall from [JMW, Corollary 2.8] that since E ,E ′ are either both even or
both odd, the graded k-vector space Hom•

Db
IW�,Gm

((GrG)� ,k)
(E ,E ′) is concentrated in even

degrees. Using Lemma 6.4 (and its proof), we see that the functor Q induces a canonical
morphism

Hom•
Db
IW�,Gm

((GrG)� ,k)
(E ,E ′) → HomSmIW ((GrG)� ,k)(Q(E ),Q(E ′))

which factors through a morphism

k
′ ⊗H•

Gm
(pt,k) Hom•

Db
IW�,Gm

((GrG)� ,k)
(E ,E ′)

→ HomSmIW ((GrG)� ,k)(Q(E ),Q(E ′)),

where k′ means k seen as an H•
Gm

(pt,k)-module where x acts by multiplication by 1 under
the identification (3.5). Standard arguments based on Lemma 6.3, Lemma 7.2 and the
distinguished triangles in the “recollement” setting show that the latter morphism is an
isomorphism. The desired isomorphism follows, in view of Lemma 7.5. �

Corollary 7.8. — The functor Q sends indecomposable parity complexes to indecomposable par-

ity complexes.

Proof. — If E is an indecomposable parity complex in Db
IW�,Gm

((GrG)� ,k), then
as explained above the complex ForGm(E ) is indecomposable, so that the ring

HomDb
IW�

((GrG)� ,k)(ForGm(E ),ForGm(E ))
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is local. Since a finite-dimensional graded ring whose degree-0 part is local is itself local
(see [GG, Theorem 3.1]), it follows that the ring

⊕

n∈Z

HomDb
IW�

((GrG)� ,k)(ForGm(E ),ForGm(E )[n])

is also local. In view of Proposition 7.7, this implies that Q(E ) is indecomposable. �

8. Applications in representation theory of reductive algebraic groups

In this section, we finally use the constructions of Sections 4–7 to derive conse-
quences on categories of representations of split connected reductive algebraic groups
over k.

8.1. The geometric Satake equivalence and its Iwahori–Whittaker variant. — The Satake

category is the category

Pervsph(GrG,k)

of étale L+G-equivariant perverse sheaves on GrG. (By definition, this category is the
inductive limit of the categories Pervsph(X,k) where X runs over the closed finite
unions of L+G-orbits in GrG. Given such an X, the category Pervsph(X,k) is defined
as PervH(X,k), where H is a smooth quotient of L+G of finite type such that the L+G-
action on X factors through H, and such that the kernel of the surjection L+G → H
is contained in ker(ev0); the resulting category does not depend on the choice of H
up to canonical equivalence.) The natural convolution product � on the equivariant
derived category Db

L+G(GrG,k) restricts to an exact monoidal product on the category
Pervsph(GrG,k), see [MV1].

The classification of the simple objects in Pervsph(GrG,k) is given by the general
theory of perverse sheaves from [BBDG]. Namely, in view of the description of the L+G-
orbits on GrG (see (4.4)) and since each of these orbits is simply connected, for any λ ∈ X∨

+
there exists a unique simple perverse sheaf IC λ in Pervsph(GrG,k) which is supported on

Gr
λ
G and whose restriction to Gr

λ
G is kGrλG

[dim(Gr
λ
G)]. Moreover, the assignment λ 	→ IC λ

induces a bijection between X∨
+ and the set of isomorphism classes of simple objects in

Pervsph(GrG,k).
On the other hand, we denote by G∨

Z the unique split reductive group scheme over
Z whose base change to C has root datum (X∨,X,R∨,R), and then set

G∨
k

:= Spec(k) ×Spec(Z) G∨
Z.

We will denote by Rep(G∨
k
) the category of finite-dimensional algebraic representations

of the group scheme G∨
k

.
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The following theorem is due (in this generality) to Mirković–Vilonen [MV1,
MV2].

Theorem 8.1. — There exists an equivalence of monoidal categories

S : (Pervsph(GrG,k), �) ∼= (Rep(G∨
k
),⊗k).

Remark 8.2.

(1) In fact, the proof of [MV1] gives slightly more than what is stated in Theo-
rem 8.1: the authors construct a canonical k-group scheme out of the category
Pervsph(GrG,k), and then check that this group scheme is isomorphic to G∨

k
.

(2) In addition to the category Pervsph(GrG,k), one can also consider the category
Perv(L+G)(GrG,k) of k-perverse sheaves on GrG whose restriction to each Grλ

G
(λ ∈ X∨

+) has constant cohomology sheaves. We then have a canonical forgetful
functor Pervsph(GrG,k) → Perv(L+G)(GrG,k), which by [MV1, Proposition 2.1]
is an equivalence of categories.

Once an equivalence as in Theorem 8.1 is fixed, the constructions in [MV1] pro-
vide a canonical embedding T∨

k
↪→ G∨

k
, where T∨

k
is the split k-torus which is Langlands

dual to T (i.e. whose character lattice is X∨). We will denote by B∨
k

the Borel subgroup of
G∨

k
containing (the image of) T∨

k
and whose roots are the negative coroots of G. For any

λ ∈ X∨
+ we can then consider the “induced representation”

N(λ) := Ind
G∨
k

B∨
k

(λ).

It is well known that N(λ) contains a unique simple submodule, denoted L(λ), and that
the assignment λ 	→ L(λ) induces a bijection between X∨

+ and the set of isomorphism
classes of simple G∨

k
-modules. It is well known also that for any λ ∈ X∨

+ we have

(8.1) S(IC λ) ∼= L(λ).

Below we will use an alternative geometric realization of Rep(G∨
k
), in terms of the

Iwahori–Whittaker derived category of Section 5.1, which was found in [BGMRR]. The
same construction as for the convolution product on Db

L+G(GrG,k) defines a right action
of the latter monoidal category on Db

IW(GrG,k). The corresponding bifunctor will also
be denoted �.

We will assume that there exists (and fix) an element ς ∈ X∨ such that 〈ς,α〉 = 1
for any α ∈ Rs. Then there exists no orbit in Gr+

G,ς � Gr+
G,ς which supports a nonzero

Iwahori–Whittaker local system. Therefore, the canonical map �IW
ς → ∇IW

ς is an iso-
morphism, and this object is a simple perverse sheaf.

The following theorem is the main result of [BGMRR].
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Theorem 8.3. — The functor sending F to �IW
ς � F induces an equivalence of abelian

categories

Pervsph(GrG,k)
∼−→ PervIW(GrG,k).

Remark 8.4. — Theorem 8.3 can also be used to give an alternative proof of
Lemma 5.2. Namely, we see as in the proof of this lemma that our functor is fully
faithful. If F belongs to PervIW(GrG,k), by Theorem 8.3 there exists an object F ′

in Pervsph(GrG,k) and an isomorphism

F ∼= �IW
ς � F ′.

By [MV1, Proposition 2.2], the perverse sheaf F ′ is equivariant for the group Gm�L+G.
Therefore the perverse sheaf �IW

ς � F ′ is the image of an object in PervIW,Gm(GrG,k),
and we deduce the same property for F .

8.2. The linkage principle. — We now come back to the setting where G is an arbi-
trary connected reductive algebraic group over F. Recall the actions ·� and �� of Waff on
X∨ defined in Section 4.1. The action which is relevant in Representation Theory is the
“dot action” defined by

(tλv) •� μ = v(μ + ρ∨) − ρ∨ + �λ

for λ ∈ ZR∨, v ∈ Wf and μ ∈ X∨, where ρ∨ is the halfsum of the positive coroots. It is
clear that for any w ∈ Waff and μ ∈ X∨ we have

(8.2) w •� μ = w��(μ + ρ∨) − ρ∨ = w∗ ·� (μ + ρ∨) − ρ∨,

where (tλv)∗ := t−λv for λ ∈ ZR∨ and v ∈ Wf.
The following statement is the first main result of this section.

Theorem 8.5. — For λ,μ ∈ X∨
+, if Extn

Pervsph(GrG,k)(IC λ,IC μ) = 0 for some n, then

Waff •� λ = Waff •� μ.

Proof. — Note that if Extn
Pervsph(GrG,k)(IC λ,IC μ) = 0 for some n, then the or-

bits Grλ
G and Gr

μ

G are contained in the same connected component of GrG. If Z de-
notes the center of G, then the natural morphism (GrG)red → (GrG/Z)red restricts, on each
connected component X of (GrG)red, to a universal homeomorphism onto a connected
component of (GrG/Z)red; see e.g. [BRR, Proof of Theorem 8.1] for references. By [SP,
Tag 03SI] and Remark 8.2(2) we then have a fully faithful functor Pervsph(X,k) →
Perv(G/Z)O(GrG/Z,k), which reduces the proof to the case G is semisimple of adjoint type,
which we assume from now on.
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In particular, under this assumption we can take ς = ρ∨, and apply Theorem 8.3.
This result implies that the simple objects in PervIW(GrG,k) are the perverse sheaves

IC IW
λ := �IW

ς � IC λ−ς

for λ ∈ X∨
++ = ς + X∨

+. In view of (8.2), this shows that to prove the lemma it suffices
to prove that for λ,μ ∈ X∨

++, if Extn
PervIW (GrG,k)(IC IW

λ ,IC IW
μ ) = 0 for some n, then

Waff ·� λ = Waff ·� μ.
In view of Theorem 7.4 (see also (5.2) and (7.1)) and the decomposition of (GrG)�

into its connected components (see Proposition 4.7), if λ,μ ∈ X∨
++ satisfy Waff ·� λ =

Waff ·� μ then we have

HomPervIW (GrG,k)(T
IW

λ ,T IW
μ ) = 0.

This implies that the category TiltIW(GrG,k) breaks canonically as a direct sum of full
subcategories parametrized by orbits of Waff on X∨ (for the action ·�), where the subcat-
egory corresponding to a given orbit has as objects the direct sums of indecomposable
tilting perverse sheaves labelled by elements in this orbit. Using (5.3) we deduce a similar
decomposition of DbPervIW(GrG,k) as a direct sum of full subcategories parametrized
by X∨/(Waff, ·�). For any λ ∈ X∨ the object IC IW

λ is indecomposable, hence belongs to
one of these subcategories; the existence of the nonzero maps

IC IW
λ � �IW

λ ↪→ T IW
λ

shows that this subcategory is the one attached to Waff ·� λ, which finishes the proof. �

In view of Theorem 8.1 and (8.1), Theorem 8.5 is equivalent to the statement that
if Extn

Rep(G∨
k
)
(L(λ),L(μ)) = 0 for some n ∈ Z, then Waff •� λ = Waff •� μ. This property is

of course well known, and called the Linkage Principle, see [J2, §II.6]. (This statement was
first conjectured by Verma, and proved by Andersen in full generality, after partial results
of Humphreys, Kac–Weisfeiler and Carter–Lusztig; see [A1] for more details.)

8.3. Antispherical �-canonical basis and parity complexes. — Let Haff be the Hecke al-
gebra of (Waff,Saff), and let Masph be its antispherical module, with “standard” basis
(Nw : w ∈ fWaff) parametrized by the subset fWaff ⊂ Waff of elements w which are mini-
mal in Wfw. (Here we follow the conventions of [Soe].) Let us consider

Fl◦G := Fl1,◦
a1

,

the connected component of the base point in the affine flag variety associated with LG.
We can then define, as for GrG, the Iwahori–Whittaker derived category Db

IW(Fl◦G,k),
and its full subcategory ParityIW(Fl◦G,k) of parity complexes. The Iw+

u -orbits on Fl◦G are
naturally parametrized by Waff, and those which support a nonzero Iwahori–Whittaker
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local system are the ones corresponding to elements in fWaff; we will denote by ∇IW
w

and E IW
w the costandard perverse sheaf and indecomposable parity complex attached to

w ∈ fWaff, respectively. (The latter object is characterized by properties similar to those
considered in Proposition 7.3, taking into account the dimension of the corresponding
orbit.) We then have a canonical isomorphism

ch : [ParityIW(Fl◦G,k)] ∼−→Masph

determined by

ch([F ]) =
∑

w∈fWaff
n∈Z

dimk HomDb
IW (Fl◦G,k)(F ,∇IW

w [n]) · vnNw,

where [ParityIW(Fl◦G,k)] is the split Grothendieck group of the additive category
ParityIW(Fl

◦
G,k).

In terms of this isomorphism, the �-canonical basis (�Nw : w ∈ fWaff) of Masph

(see [RW1, AR3]) can be characterized by

(8.3) �Nw := ch(E IW
w ).

The associated �-Kazhdan–Lusztig polynomials (�ny,w : y,w ∈ fWaff) are characterized by the
equality

�Nw =
∑

y∈fWaff

�ny,w · Ny.

Remark 8.6. — It is easily seen that the computation of the �-canonical basis and �-
Kazhdan–Lusztig polynomials can be reduced to the case G is quasi-simple. In this case,
the results of [RW1, Part III] show that this basis coincides with the basis with the same
name studied in [JW], for the Coxeter system (Waff,Saff) and the realization considered
in [RW1, Remark 10.7.2(2)]. In particular, these data can be computed algorithmically
using the procedure described in [JW, GJW].

These considerations have been stated for the ind-variety Fl1,◦
a1

, but in practice we
will rather use them for the isomorphic variety Fl

�,◦
a�

, with respect to the action of Iw+
u,�.

More generally we can consider a facet f ⊂ a�, and the basic connected component in
the associated partial affine flag variety Fl

�,◦
f ; see Section 4.3. Here again the Iwahori–

Whittaker derived category (with respect to the action of Iw+
u,�) makes sense, and so does

the notion of parity complexes. This derived category will be denoted Db
IW�

(Fl
�,◦
f ,k).

The indecomposable parity objects in Db
IW�

(Fl�,◦f ,k) can be described in terms of
those on Fl

�,◦
a�

as follows. As usual, the general theory of parity complexes ensures that
there exists at most one indecomposable parity complex on Fl

�,◦
f associated with each
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Iw+
u,�-orbit which supports a nonzero Iwahori–Whittaker local system, and that each in-

decomposable parity complex is isomorphic (up to cohomological shift) to such an object.
As explained in Remark 4.8(2), the Iw+

u,�-orbits on Fl�,◦f are parametrized in the natural
way by the quotient Waff/Wf

aff, or in other words by the elements w ∈ Waff which are
maximal in wWf

aff. If w ∈ Waff is maximal in wWf
aff, if the corresponding orbit supported

a nonzero Iwahori–Whittaker local system, and if the associated indecomposable parity
complex exists, we will denote it by E IW�

f,w .
In the following statement, the morphism

Fl
�,◦
a�

→ Fl
�,◦
f

induced by (4.3) will be denoted πf. We will also denote by Nf the length of the longest
element in Wf

aff.

Lemma 8.7. — If w ∈ Waff is maximal in wWf
aff, then the Iw+

u,�-orbit on Fl�,◦f associated

with w supports a nonzero Iwahori–Whittaker local system iff w is minimal in Wfw. Moreover, in this

case the indecomposable Iwahori–Whittaker parity complex E IW�

f,w on Fl�,◦f exists, and we have

π∗
f (E IW�

f,w )[Nf] ∼= E IW�

a�,w
.

Proof. — The proof is similar to that of its counterpart in the setting of Kac–Moody
flag varieties considered in [ACR, Appendix A]. �

Remark 8.8. — Under the identification of Db
IW(Fl◦G,k) with Db

IW�
(Fl�,◦a�

,k), the
object E IW

w corresponds to E IW�
a�,w

.

8.4. The tilting character formula. — Now we return to Representation Theory. Re-
call that a G∨

k
-module M in Rep(G∨

k
) is called tilting if both M and M∗ admit filtrations

with subquotients of the form N(λ) with λ ∈ X∨
+. It is well known (see [J2, §II.E]) that

the indecomposable tilting G∨
k

-modules are classified by their highest weight (a dominant
weight), and that any tilting module is a direct sum of indecomposable tilting modules.
The indecomposable tilting module of highest weight λ ∈ X∨

+ will be denoted T(λ).
The same considerations as in Section 4.1 show that a fundamental domain for

the action of Waff on X∨ via •� is given by the subset

C� := {λ ∈ X∨ | ∀α ∈ R
+, 0 � 〈λ + ρ∨, α〉� �}.

Below we will need to describe the subset (Waff •� λ) ∩ X∨
+ more explicitly for λ ∈ C�.

For this we set Iλ := {s ∈ Saff | s •� λ = λ}, so that the stabilizer in Waff of λ (for •�) is the
parabolic subgroup Wλ of Waff generated by Iλ. We set

W(λ)

aff := {w ∈ Waff | w is maximal in wWλ and minimal in Wfw}.
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Then it is known that the assignment w 	→ w •� λ induces a bijection

W(λ)

aff
∼−→ (Waff •� λ) ∩ X∨

+;
see [AR2, §10.1] for similar considerations. In view of these comments, the following
result gives an answer to the question of describing characters of all indecomposable
tilting G∨

k
-modules, without any restriction on �.

Theorem 8.9. — Let λ ∈ C�. Then for any w ∈ W(λ)

aff we have

[T(w •� λ)] =
∑

y∈W(λ)
aff

�ny,w(1) · [N(y •� λ)]

in the Grothendieck group of Rep(G∨
k
).

Remark 8.10.

(1) In the special case when � is bigger than the Coxeter number h of G, we
have W0 = {1}. In this case, the formula in Theorem 8.9 was conjectured, and
proved in the case of the group G = GL(n), in [RW1]. A proof of this formula
(again for � > h and λ = 0, but for a general reductive group) was later given
in [AMRW]. (Under the assumption that � � h, the formula of Theorem 8.9
in the special case λ = 0 is sufficient to deduce the formula for all values of λ;
see [RW1, Remark 1.4.4]. This property does not hold for smaller values of �.)
It was noticed in [RW1] that a similar formula could be stated for any block of
Rep(G∨

k
), see [RW1, Conjecture 1.4.3]. Theorem 8.9 confirms this formula in

full generality.
(2) Theorem 8.9 allows to make Theorem 8.5 a bit more precise.9 Namely, fix

λ ∈ C�. Our formula implies that if N(y•� λ) occurs in a costandard filtration of
T(w •� λ) then y � w in the Bruhat order. In view of [Co, §4.3.2], it follows that
if L(y•�λ) occurs as a composition factor of N(w•�λ) then y �w. (In particular,
the block of Rep(G∨

k
) associated with the orbit of λ is a highest weight category

with respect to the Bruhat order on W(λ)

aff .) Note that the condition that y � w

implies that y •� A0 ↑ w •� A0 in the notation of [J2, §II.6.5] (where A0 is the
fundamental alcove) by the results discussed in [H2], hence that y •� λ ↑ w •� λ

by [J2, Equation II.6.5(2)]. Hence this claim implies the case i = 0 (and w = 1)
of the Strong Linkage Principle as stated in [J2, Proposition II.6.13].

Theorem 8.9 implies Theorem 1.6 in the introduction thanks to Weyl’s character
formula (see [J2, Corollary II.5.11]). The main step of the proof of this theorem is the
following claim.

9 This remark was suggested to us by E. Zabeth.
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Proposition 8.11. — Assume that there exists ς ∈ X∨ such that 〈ς,α〉 = 1 for any α ∈ Rs.

For any λ ∈ C� and w, y ∈ W(λ)

aff , setting μ = λ + ς we have an isomorphism

HomRep(G∨
k
)

(
T(w •� λ),T(w′ •� λ)

) ∼= Hom•
Db
IW�

(Fl
�,◦
fμ

,k)
(E IW�

fμ,w ,E IW�

fμ,w′ ).

Proof. — By Theorem 8.1, Theorem 8.3 and (5.2) we have

HomRep(G∨
k
)

(
T(w •� λ),T(w′ •� λ)

) ∼= HomPervIW (GrG,k)(T
IW

w��μ
,T IW

w′��μ
)

∼= HomPervIW (GrG,k)(E
IW
w��μ

,E IW
w′��μ

).

Using Theorem 7.4 and (7.1), we deduce an isomorphism

HomRep(G∨
k
)

(
T(w •� λ),T(w′ •� λ)

)

∼= HomSmIW ((GrG)� ,k)(E
Sm,p(μ)

w��μ
,E Sm,p(μ)

w′��μ
),

where we use the notation of Section 7.3. The two parity objects in the right-hand side
are supported on GrG,(μ), and the corresponding orbits in Fl�,◦fμ under the identification
of Proposition 4.7 are those corresponding to w and w′; see Remark 4.8(2). In view of
Proposition 7.7 and Corollary 7.8 we deduce an isomorphism

HomRep(G∨
k
)

(
T(w •� λ),T(w′ •� λ)

) ∼=
Hom•

Db
IW�

(Fl
�,◦
fμ

,k)
(E IW�

fμ,w [−�(w) + Nfμ − p(μ)],

E IW�

fμ,w′ [−�(w′) + Nfμ − p(μ)]).
The desired isomorphism follows. �

Proof of Theorem 8.9. — Recall that if we denote (as in the proof of Theorem 8.5)
by Z the center of G, then the group (G/Z)∨

k
identifies with the simply-connected cover

of the derived subgroup of G∨
k

. In view of the results recalled in [J2, §II.E.7], this reduces
the proof to the case G is semisimple of adjoint type, which we will assume from now on.
In this case we can take ς = ρ∨ and apply Proposition 8.11.

Standard arguments show that the formula will follow provided we prove that for
any w,w′ ∈ W(λ)

aff we have

(8.4) dimk HomRep(G∨
k
)

(
T(w •� λ),T(w′ •� λ)

) =
∑

y∈W(λ)
aff

�ny,w(1) · �ny,w′(1).
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(In fact this formula will allow to prove that the multiplicity of N(y •� λ) in T(w •� λ) is
�ny,w(1) by induction on �(w) + �(y) using the arguments in [AR1, §6.2].) If μ = λ + ρ∨,
in view of Proposition 8.11 this amounts to proving that

dimk Hom•
Db
IW�

(Fl
�,◦
fμ

,k)
(E IW�

fμ,w ,E IW�

fμ,w′ ) =
∑

y∈W(λ)
aff

�ny,w(1) · �ny,w′(1).

Now the dimension in the left-hand side can be expressed in terms of dimensions
of (co)stalks of the involved parity complexes using [JMW, Proposition 2.6]. By (8.3),
Lemma 8.7 and Remark 8.8 these dimensions are computed by �-Kazhdan–Lusztig poly-
nomials. We deduce the desired formula using the fact that Wλ = Wfμ

aff (see (8.2)). �
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