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ABSTRACT

In this paper, we prove the Gan-Gross-Prasad conjecture and the Ichino-Ikeda conjecture for unitary groups
U, x U,4, in all the endoscopic cases. Our main technical innovation is the computation of the contributions of certain
cuspidal data, called *-regular, to the Jacquet-Rallis trace formula for linear groups. We offer two different computations
of these contributions: one, based on truncation, is expressed in terms of regularized Rankin-Selberg periods of Eisenstein
series and Flicker-Rallis intertwining periods introduced by Jacquet-Lapid-Rogawski. The other, built upon Zeta integrals,
is expressed in terms of functionals on the Whittaker model. A direct proof of the equality between the two expressions
is also given. Finally several useful auxiliary results about the spectral expansion of the Jacquet-Rallis trace formula are
provided.
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1. Introduction

1.1. The endoscopic cases of the Gan-Gross-Prasad conjecture

1.1.1. One of the main motivation of the paper is the obtention of the remaining
cases, the so-called “endoscopic cases”, of the Gan-Gross-Prasad and the Ichino-lkeda
conjectures for unitary groups. To begin with, we shall give the main statements we prove.

1.1.2. Let E/F be a quadratic extension of number fields and ¢ be the non-trivial
element of the Galois group Gal(E/F). Let A be the ring of adeles of F. Let n be the
quadratic idele class character associated to the extension E/F. Let n > 1 be an integer.
Let H, be the set of isomorphism classes of non-degenerate ¢-Hermitian spaces £ over E
of rank n. For any %, € H,, we identify 4, with a representative and we shall denote by
U(#,) its automorphisms group. Let &, € H; be the element of rank 1 given by the norm
NE/F-

We attach to any & € ‘H, the following algebraic groups over F:

e the unitary group U} of automorphisms of 7;
e the product of unitary groups U, = U(%) x U(h @ hy) where & @ hy denoted the
orthogonal sum.

We have an obvious diagonal embedding U} < U,

1.1.3. Arthur parameter. — Let G, be the group of automorphisms of the E-vector
space E". We view G, as an F-group by Weil restriction. By a Hermitian Arthur parameter' of
G,, we mean an irreducible automorphic representation IT for which there exists a par-
tition n; + - -+ +n, = n of n and for any 1 < ¢ < r a cuspidal automorphic representation
IT; of G,,(A) such that

! Strictly speaking, it is a generic discrete Arthur parameter. By simplicity, we shall omit the adjectives generic discrete.
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1. each TII; is conjugate self-dual and the Asai L-function L(s, IT;, As(_l)"ﬂ) has a
pole at s = 1;

2. the representations I1; are mutually non-isomorphic for 1 < < 7;

3. the representation IT is isomorphic to the full induced representation
IndS"(IT, X ... X I1,) where P is a parabolic subgroup of G, of Levi factor
Gy X% G, .

Remark 1.1.3.1. — It is well-known (see [F1i88]) that condition 1 above is equiva-
lent to the fact that IT; is (GL,, p, n"™')-distinguished in the sense of Section 4.1.2 below.

The integer r and the representations (I1;),<;<, are unique (up to a permutation).
We set Sp = (Z/2Z)".

Let G = G, x G,41. By a Hermatian Arthur parameter of G, we mean an automorphic
representation of the form IT = IT, X IT,,; where II; is a Hermitian Arthur parameter

of G; for i =n, n+ 1. For such a Hermitian Arthur parameter, we set Sy = Sp, X Spy,, .

1.1.4. Let/ € H, and o be a cuspidal automorphic representation of U,(A). We
say that a Hermitian Arthur parameter IT of G is a weak base-change of o if for almost all
places of F that split in E, the local component IT, is the split local base change of o,. If
this is the case, we write IT = BC(0).

Remark 1.1.4.1. — By the work of Mok [Mokl15] and Kaletha-Minguez-Shin-
White [KMSW], we know that if o admits a weak base-change then it admits a strong
base-change that is a Hermitian Arthur parameter IT of G, such that IT, is the base-change
of o, for every place v of I (where the local base-change of ramified representations is
also constructed in loc. ¢it. and characterized by certain local character relations). Besides,
a result of Ramakrishnan [Ram18] implies that a weak base-change is automatically
a strong base-change. Therefore, we could have used the notion of strong base-change
instead. However, we prefer to stick with the terminology of weak base-change in order
to keep the statement of the next theorem independent of [Mok15] and [KMSW].

1.1.5. Gan-Gross-Prasad conjecture. — Onr first main result is the global Gan-Gross-
Prasad conjecture [GGP12, Conjecture 24.1] in the case of U(n) x U(n4 1) and can be
stated as follows. In the following, for a reductive group H over F, we denote by [H]
the quotient H(F)\H(A) equipped with the quotient of a Haar measure on H(A) by the
counting measure on H(F).

Theorem 1.1.5.1. — Let T1 be a Hermatian Arthur parameter of G. The following two state-
ments are equivalent:
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1. The complete® Rankin-Selberg L-function of T1 satisfies
1
L(E’ IT) # 0;

2. There exists h € H,, and an wrreducible cuspidal automorphic subrepresentation o of U, such
that T1 is a weak base change of o and the period integral P, defined by

Pile) = / @ (h) dh
(U]
induces a non-zero linear form on the space of o .

Remark 1.1.5.2. — If the Arthur parameter is moreover simple (that is if IT is
cuspidal), the theorem is proved by Beuzart-Plessis-Liu-Zhang-Zhu (cf. [BPLZZ21, The-
orem 1.7]). Previous works had to assume extra local hypothesis on I, which implied
that IT was also simple (see [Zhal4b], [Xuel9], [BP21a] and [BP2Ic]) or only proved
the direction 2. = 1. of the theorem ([GJR09], [IY19], [JZ220]).

As observed in [Zhal4b, Theorem 1.2] and [BPLZZ21, Theorem 1.8] we can
deduce from Theorem 1.1.5.1 the following statement (whose proof'is word for word that
of [Zhal4b]):

Theorem 1.1.5.3. — Let T1,1 be a Hermutian Arthur parameter of G,y1. Then there exists
a simple Hermutian Arthur parameter T, of G, such that the Rankin-Selberg L-function satisfies:

1
L(§, [T, < ITp) # 0.

1.1.6. Ichino-Ikeda conjecture. — Let o = @) o, be an irreducible cuspidal auto-
morphic representation of U, that is tempered everywhere in the following sense: for
every place v, the local representation o, 1s tempered. By [Mokl5] and [KMSW], o
admits a weak (hence a strong) base-change IT to G. Set

n+1 . ; L(S, H)
L(s,0)= !;[L(H‘ t—1/2,n )L(s+ 1/2,0,Ad)

where L(s, ') is the completed Hecke L-function associated to ' and L(s, o, Ad) is the
completed adjoint L-function of o (defined using the local Langlands correspondence for

2 Currently known bounds towards the Ramanujan conjecture do not exclude the possibility of certain local
Rankin-Selberg L-factors of IT to have a pole at s = 1/2. Therefore, the non-vanishing of the central value could a priori
be affected if we replace L(s, IT) by a partial L-function and here we have to include all places (including Archimedean
ones).
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G from [Mok15], [KMSW]). We denote by L(s, 0,) the corresponding quotient of local
L-factors. For each place v of I, we define a local normalized period 73,5’% toy X o, = Cas
follows. It depends on the choice of a Haar measure on Uj(F,) as well as an invariant
inner product (., .), on o, and is given by

/z oy ((pv’ ¢v) = /C(_ Ov)_ f (av(hv)(pv9 (p;)vdhvv (2D (01/, € 0y,

Uj ()

where, thanks to the temperedness assumption, the integral is absolutely convergent

[Har14, Proposition 2.1] and the local factor L(s, 0,)) has no zero (nor pole) at s = %
Moreover, by [Har14, Theorem 2.12], if ¢ = ®/ ¢, € o, then for almost all places v we

have

(1.1.6.1) P o (@, 9) = vol(U(0)) @y, 1),

We also recall that the global representation o has a natural invariant inner product given

by
(§0, (p)Pel = f |(/)(g)|2dg, pEco.
[Ux]

Our second main result is the global Ichino-Ikeda conjecture for unitary groups
formulated in [Harl4, Conjecture 1.3] and can be stated as follows (this result can be
seen as a refinement of Theorem 1.1.5.1, the precise relation requiring the local Gan-
Gross-Prasad conjecture and Arthur’s multiplicity formula for unitary groups will not be
discussed here).

Theorem 1.1.6.1. — Assume that o is a cuspidal automorphic representation of U, that is
tempered everywhere and let T = T1, X I1,1 be the weak (hence the strong) base-change of o to G.
Suppose that we normalize the period integral Py, and the Petersson inner product (., .)pe, by choosing the
mvariant Tamagawa measures® dromh and dryymg on U, W(A) and U, (A) respectively. Assume also that
the local Haar measures dh,, on U)(F,) factorize the Yszagawa measure: dyymh =[], dhy. Then, for
every nonzero_factorizable vector ¢ = ®;g0v € 0, we have

1Pi@)? i P o, @0 00)
L _ v
( )Pet | H| ( )1_[ (wv’ (pv)v

where we recall that Sy denotes the finite group Sr, X Sp

nt+1°

Note that the product over all places in the theorem is well-defined by (1.1.6.1).
Moreover, once again, this theorem is proved in [BPLZZ21] under the extra assumption

¥ We warn the reader that our convention is to include the global normalizing L-values in the definition of Tama-
gawa measures, cf. Section 2.3 for precise definitions.
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that IT is cuspidal (in which case |Sp| = 4). Previous results in that direction includes
[Zhal4a], [BP21a], [BP21c] where some varying local assumptions on o entailing the
cuspidality of IT were imposed. In a slightly different direction, the paper [GL] estab-
lishes the above identity up to an unspecified algebraic number under some arithmetic
assumptions on o.

1.2, The spectral expansion of the Jacquet-Rallis trace formula for the linear groups

1.2.1. Motwations. — As in [Zhal4b], [Zhal4a], [Xuel9], [BP21a], [BP21c] and
[BPLZZ21], our proofs of Theorems 1.1.5.1 and 1.1.6.1 follow the strategy of Jacquet
and Rallis [JR11] and are thus based on a comparison of relative trace formulas on unitary
groups U, for & € H, and the group G. Let’s recall that these trace formulas have two
different expansions: one, called the geometric side, in terms of distributions indexed by
geometric classes and the other, called the spectral side, in terms of distributions indexed
by cuspidal data. As usual, the point is to get enough test functions to first compare the
geometric sides which gives a comparison of spectral sides.

For specific test functions, the trace formula boils down to a simple and quite easy
equality between a sum of relative regular orbital integrals and a sum of relative charac-
ters attached to cuspidal representations. This is the simple trace formula used by Zhang
in [Zhal4b] and [Zhal4a] to prove special cases of Theorems 1.1.5.1 and 1.1.6.1. In re-
turn one has to impose restrictive local conditions on the representations one considers.

In [Zyd16], [Zyd18], [Zyd20], Zydor established general Jacquet-Rallis trace for-
mulas. Besides, in [CZ21], Chaudouard-Zydor proved the comparison of all the geomet-
ric terms for matching test functions, that is functions with matching local orbital inte-
grals. Using these results, Beuzart-Plessis-Liu-Zhang-Zhu in [BPLZZ21] proved 1.1.5.1
and 1.1.6.1 when IT is cuspidal. Their main innovation is a construction of Schwartz
test functions only detecting certain cuspidal data. In this way, they were able to con-
struct matching test functions for which the spectral expansions reduce to some relative
characters attached to cuspidal representations.

1.2.2. In this paper, we also want to use the construction of Beuzart-Plessis-Liu-
Zhang-Zhu. But for this, we need two extra ingredients. First we need the slight extension
of Zydor’s work to the space of Schwartz test functions. For the geometric sides, this was
done in [CZ21]. For the test functions we need, the spectral side of the trace formulas
for unitary groups still reduces to relative characters attached to cuspidal representations
and we need nothing more. But, for the group G, we shall extend the spectral side of the
trace formula to the space of Schwartz functions. Second there is an even more serious
question: since the representation IT is no longer assumed to be cuspidal, the spectral
contribution associated to IT is much more involved. In this section, we shall explain
alternative and somewhat more tractable expressions for the spectral contributions in the
trace formula for G. For the specific cuspidal datum attached to IT, we get a precise result
as we shall see in Section 1.3 below.
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1.2.3. The spectral expansion for the Schwartz space. — Let X(G) be the set of cuspidal
data of G (see Section 2.9.1). To x 1is associated a direct invariant factor Li([G]) of
L*([G]) (see [MW89, Chap. II] or Section 2.9 for a review). Let / be a function in the
Schwartz space S(G(A)) (cf. Section 2.5.2 for a definition). Let Ky, resp. K, ,, be the
kernel associated to the action by right convolution of f on L?([G]), resp. Li (IGD.

Following [Zyd20] (see Section 3.2.3), we introduce the modified kernel K},x
depending on a parameter T in a certain real vector space. Set H = G, and G’ =
GL,r x GL,1, r both seen as subgroups of G (the embedding H < G being the “di-
agonal” one where the inclusion G, < G, 1s induced by the identification of E" with
the hyperplane of E"*! of vanishing last coordinate). The following theorem is an exten-
sion to Schwartz functions of [Zyd20, théoreme 0.1].

Theorem 1.2.3.1. — (see Theorem 3.2.4.1)

1. Forany T in a certain positive Weyl chamber, we have

> /f K} (h,g)|dg'dh < o0
[HIJIGT

x€X(G)

2. Let ng be the quadratic character of G'(A) defined in Section 3.1.6. For each x € X(G),
the integral

(1.2.3.1) / f K, (h &)ne:(g) de dh
[H] J[G']

cotncides with a polynomual-exponential function in "I whose purely polynomial part is con-

stant and denoted by 1, (f).
3. The distributions 1, are continuous, lefi H(A)-equivariant and right (G'(A), ng)-
equivariant. Moreover the sum

(1.2.3.2) 1) => L()

is absolutely convergent and defines a continuous distribution.

The (coarse) spectral expansion of the trace formula for G is precisely the expres-
sion (1.2.3.2).

1.2.4. The definition of I, given in Theorem 1.2.3.1 is convenient to relate the

spectral expansion to the geometric expansion. However, to get more explicit forms of
the distributions I, we shall use the following three expressions:

(1.2.4.3) / (A K ) (h g) ner(g) de'dh
[H] J[G']



190 RAPHAEL BEUZART-PLESSIS, PIERRE-HENRI CHAUDOUARD, AND MICHAL ZYDOR

1.2.4.4 / Fost (1) | Ky (hy ) (&) de'd
[H] [G']

1.2.4.5) / Frr (g T) | Ky (b)) dhme(¢)de
[G/] [H]

Essentially they are given by integration of the kernel K, , along [H] x [G']. However,
to have a convergent expression for a general x, one needs to use some truncation de-
pending on the same parameter T as above. We introduce the Ichino-Yamana truncation
operator, denoted by A", whose definition is recalled in Section 3.3.2. In (1.2.4.3), we ap-
ply it to the left-variable of K, ,. But one can also use the Arthur characteristic function
FC=+1 (-, T) whose definition is recalled in 3.3.4. In (1.2.4.4), this function is evaluated at
h € H(A) through the embedding H = G, < G,4,. In (1.2.4.5), it is evaluated at the
component g, of the variable ¢ = (g, g, |) € G'(A) = GL,(A) x GL,1,(A).

The link with the distribution I, is provided by the following theorem (which is
a combination of Propositions 3.3.3.1 and 3.3.5.1 and Theorem 3.3.9.1). Note that we
shall not need the full strength of the theorem in this paper. However it will be used in a
greater generality in a subsequent paper.

Theorem 1.2.4.1. — Let f € S(G(A)) and x € X(G).

1. For any T in some positive Weyl chamber, the expressions (1.2.4.3), (1.2.4.4) and (1.2.4.5)
are absolutely convergent.

2. Each of the three expressions ts asymptotically equal (in the technical sense of assertion 2 of
Theorem 3.3.9.1)) to a polynomial-exponential function of T whose purely polynomial term
is constant and equal to 1, (f).

1.2.5. Note that powerful estimates for modified kernels are introduced and used
in the proofs of Theorems 1.2.3.1 and 1.2.4.1. We refer the reader to Theorem 3.3.7.1
for a precise statement.

1.3. On the x-regular contribution for the Jacquet-Rallis trace formula for the linear groups

1.3.1. From now on we assume that the cuspidal datum y is relevant sx-regular
that 1s x 1is the class of a pair (M, 7) with the property that the normalized induction
IT:= Indg((:)) (7r), where we have fixed a parabolic subgroup P with Levi component M,
1s a Hermitian Arthur parameter of G. To Il we associate, following [Zhal4a, §3.4],
a relative character Iy. The precise definition of this object is recalled in Section 8.1.3.
Let us just say here that it is associated to two functionals A and B, on the Whittaker
model W(IT, ¥x) of I1, where ¥y is a certain generic automorphic character of the
standard maximal unipotent subgroup N of G, that naturally show up in integrals of
Rankin-Selberg type. More precisely, A is the value at s = % of a family of Zeta integrals,
studied by Jacquet-Piatetski-Shapiro-Shalika [JPSS83], representing the Rankin-Selberg
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L-function L(s, IT) whereas B, is essentially the pole at s = 1 of another family of Zeta in-
tegrals, first introduced by Flicker [F1i88], representing the (product of) Asai L-functions
L(s, IT, Asg) := L(s, H,Z,As(_l)nH)L(s, H,Z_H,AS(_I)"). The relative character I is then
given in terms of these functionals by

(1L3.1.1)  In() =) MIIIW,)B,W,), f€SGA)).

pell

where the sum runs over an orthonormal basis of IT (for the Petersson inner product) and
W, denotes the Whittaker function associated to the Eisenstein series E(g) (obtained, as
usual, by integrating E(¢) against 5" over [N]).

The following is our main technical result whose proof occupies most part of the
paper.

Theorem 1.3.1.1. — Let x be a cuspidal datum associated to a Hermitian Arthur parameter
1 as above. Then, for every function f € S(G(A)) we have

IX Qr) — 27dim(AM)In(f)

where Ay denotes the maximal central split torus of M.

Remark 1.3.1.2. — It is perhaps worth emphasizing that the contribution of x is
purely discrete in the Jacquet-Rallis trace formula. Such a phenomenon happens in Jacquet
relative trace formula, see [Lap06]. By contrast, the contribution of the same kind of
cuspidal datum x to the Arthur-Selberg trace formula is purely continuous (unless, of
course, if IT 1s cuspidal).

We shall provide two different proofs of Theorem 1.3.1.1, one based on trunca-
tions, the other using integral representations of Asai and Rankin-Selberg L-functions.
Let’s explain separately the main steps of each approach.

1.3.2. A journey through truncations. — We first begin with the approach based on
truncations. The first step is to get a spectral decomposition of the function

(1.3.2.2) - Ky (g &) (g)dg
of the variable g € [G].

The kernel itself K , has a well-known spectral decomposition based on the Lang-
lands decomposition. Then the problem is basically to invert an adelic integral and a
complex integral. It is solved by Lapid in [Lap06] (up to some non-explicit constants) but
we will use a slightly different method avoiding delicate Lapid’s contour moving. Instead
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we replace the integral (1.3.2.2) by its truncated version

(1.3.2.3) - Ky ) (8 & (€)de

where the mixed truncation operator A defined by Jacquet-Lapid-Rogawski [JLR99] is ap-
plied to the right variable of the kernel. We can recover (1.3.2.2) by taking the limit when
T — +o0. Itis easy to get the spectral decomposition of (1.3.2.3) (see Proposition 4.2.3.3).
Using an analog of the famous MaaB-Selberg relations due to Jacquet-Lapid-Rogawski
(see [JLR99] and Lemma 4.3.6.2 below), we get in Proposition 4.3.6.1 that (1.3.2.3) is
equal to a finite sum of contributions (up to an explicit constant) of the following type

(1.3.2.4) / 3 Josle a0 9 xp(= o)
05 GeP 0 ( )”)

Here it suffices to say that a5 is some space of unramified unitary characters and that
Jo,x(g, A, f) is a certain relative character built upon Flicker-Rallis intertwining peri-
ods (introduced by Jacquet-Lapid-Rogawski). The integrand is a familiar expression of
Arthur’s theory of (G, M)-families with quite standard notations. It turns out that the
family (Jo,, (g, A, /))oeraw 1s indeed an Arthur (G, M)-family of Schwartz functions in
the parameter A. Let’s emphasize that this Schwartz property relies in fact on deep esti-
mates introduced by Lapid in [Lap06] and [Lapl3]. By a standard argument, it is then
easy to get the limit of (1.3.2.4) when T — 400 which gives the spectral decomposition
of (1.3.2.2) (see Theorem 4.3.3.1). Note that the spectral decomposition we get is already
discrete at this stage.
From this result, one gets the equality

(1.3.2.5) / (ATK; ) (h g 1 (g) dhdg = 27 AT, ().
[H] J[G]

The left-hand side has been defined in Section 1.2.4 and the relative character Ip , is
defined as follows:

Y s -J, ()

pell

where the sum is over an orthonormal basis, Igs(¢) is the regularized Rankin-Selberg
period of the Eisenstein series E(¢) defined by Ichino-Yamana and J,(¢) is a Flicker-
Rallis intertwining period (for more detail we refer to Section 5.1.5).

In particular, the left-hand side of (1.3.2.5) does not depend on T. So Theorem
1.2.4.1 implies

Theorem 1.3.2.1. — (see Theorem 5.2.1.1 for a slightly more precise statement)
L) =27 T £ ().
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Remark 1.3.2.2. — As the reading of Section 10.2 should make it clear, this state-
ment suffices to prove the Gan-Gross-Prasad conjecture namely Theorem 1.1.5.1. How-
ever, to get the Ichino-Ikeda conjecture, namely Theorem 1.1.6.1, we will want to use
statements about comparison of local relative characters written in terms of Whittaker
functions. For this purpose, Theorem 1.3.1.1 will be more convenient.

The link between regularized Rankin-Selberg period of Eisenstein series and Whit-
taker functionals has been investigated by Ichino-Yamana (see [IY'15]). The following the-
orem relates the Flicker-Rallis intertwining periods to the functional 8, (W,) in (1.3.1.1).
It uses a local unfolding method inspired from [FLO12, Appendix A] (see Section 9).

Theorem 1.3.2.3. — For all ¢ € T1, we have
Jn(@) = By (W,)
In this way, one proves the following theorem which implies Theorem 1.3.1.1.

Theorem 1.3.2.4.

Ip’n = I]‘[.

1.3.3. Second proof: the use of Leta integrals. — The spectral decomposition of (1.3.2.2)
essentially boils down to a spectral expansion of the period integral

Po (@) = / (@ ne (¢)dd
[G]

for test functions ¢ € S, ([G]), where S, ([G]) denotes the Schwartz space of [G] consisting
of smooth functions rapidly decaying with all their derivatives that are “supported on x”
(see Section 2.5 for a precise definition). Choose a parabolic subgroup P = MNp with
Levi component M. By Langlands 1.? spectral decomposition and of the special form of
X, any ¢ € S, ([G]) admits a spectral decomposition

(1.3.3.6) (p:/ E(p)dA
iayy

where ¢ay; denotes the real vector space of unramified unitary characters of M(A) and
@, belongs to the normalized induction space Indg((:)) (mr ® A) and E(¢;) is the associated
Eisenstein series.

Theorem 1.3.3.1. — For every ¢ € S, ([G]), we have
PG’,n((p) = 2_dim(AM)ﬁr] (W(po)’

where W, stands for the Whittaker function of the Eisensten series E(gy).
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The proof of Theorem 1.3.3.1 is close to the computation by Flicker [F1i88] of the
Flicker-Rallis period of cusp forms in terms of an Asai L-function and local Zeta integrals.
More precisely, we first realize P, (¢) as the residue at s = 1 of the inner product of the
restriction @} with some Eisenstein series E(s, ¢) (where ¢ is an auxiliary Schwartz
function on A" @ A"*!). Mimicking the unfolding of loc. cit. we connect this inner product
with an Eulerian Zeta integral Z™ (s, W, ¢) involving the Whittaker function W, of ¢
(obtained as before by integration against ¥y '). We should emphasize here that, since
@ is not a cusp form, the unfolding gives us more terms but using the special nature of
the cuspidal datum x we are able to show that these extra terms do not contribute to
the residue at s = 1. The formation of Z™ (s, W,,, ¢) commutes with the spectral expan-
sion (1.3.3.6) when 9(s) > 1 and, as follows from the local theory, the Zeta integrals
7™ (5, W,,, @) for A € iaj; are essentially Asai L-functions whose meromorphic continu-
ations, poles and growths in vertical strips are known. Combining this with an application
of the Phragmen-Lindelof principle, we are then able to deduce Theorem 1.3.3.1.

Let us mention here that, as in the proof of (1.3.2.5), a key point is the fact (due to
Lapid ([Lap13] or [Lap06])) that the spectral transform A > ¢, is, in a suitable technical
sense, “Schwartz” that is rapidly decreasing together with all its derivatives.

The second step is to integrate (1.3.2.2) over g € [H]. To do so, we define a regular-
ization of the integral over [H] that doesn’t require truncation. More precisely, denoting
by T ([G]) the space of functions of uniform moderate growth on [G], we can define the “x -
part” T, ([G]) of T ([G]) (see Section 2.5) of which S, ([G]) is a dense subspace. More-
over, starting with ¢ € T ([G]) we can also form its Whittaker function W, and consider
the usual Rankin-Selberg integral Z*(s, W,,) that converges for R(s) 3> 1 and represents,
when ¢ is an automorphic form, the Rankin-Selberg L-function for G, x G,4,.

Theorem 1.3.3.2. — (see Theorem 7.1.5.1) The functional

peS(GD > [ oh)dh

[H]

extends by continuity to a_functional on T, ([G]) denoted by ¢ € T, ([G]) — / @ (h)dh. Moreover,
[H]
Jor every @ € T,(IG]), the Zeta function s +— ZX5(s, W,,) extends to an entire function on G and we

have

/* @(hydh = ZRS(é, W,).
[

H]

The proof of this theorem is similar to that of Theorem 1.3.3.1: we first show that,
for ¢ € S, ([G]) and N (s) > 1, we have

1
/ o(h)|deth|'dh=ZR5(s + =, W,)
[H] 2
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by mimicking the usual unfolding for the Rankin-Selberg integral. Once again, as ¢
is not necessarily a cusp form, we get extra terms in the course of the unfolding but,
thanks to the special nature of the cuspidal datum yx, we are able to show that they all
vanish. At this point, we use the spectral decomposition (1.3.3.6) to express ZXS(s, W)
as the integral of Z®(s, W,,) when R(s) > 1. By Rankin-Selberg theory, Z*(s, W,,)
is essentially a Rankin-Selberg L-function whose meromorphic continuation, location
of the poles, control in vertical strips and functional equation are known. Combining
this with another application of the Phragmen-Lindelof principle, we are able to bound
ZRS(é, W,) = / @(h)dh in terms of ZR5(s, W,) for R(s) > I and this readily gives the

[H]
theorem.

One direct consequence of Theorem 1.3.3.2 is that the regularized period
f[*H]E(/z, I1(f)¢)dh coincides with ZRS(%, II(HW,) = A(IT(/)W,). Thus by a combi-
nation of Theorems 1.3.3.1 and 1.3.3.2, we get

(1.3.3.7) f K (h, @ )ne (g)dg dh =2~ AT (f).
[H] J[G']
Finally we have to show that the left-hand side is equal to I, (f). In fact, we show
(see Theorem 8.1.4.1 and Section 8.2.3) that we have

f Ky (h e (¢)dg dh= / Ky (h, g) dhne (¢)dg
[H] J[G'] (G'] /[H]

where the right-hand side is (conditionally) convergent. We can conclude that it is equal
to L (f) by applying Theorem 1.2.4.1 to the expression (1.2.4.5).

1.4. Outline of the paper

We now give a quick outline of the content of the paper. Section 2 contains pre-
liminary material. Notably, we fix most notation to be used in the paper, we explain our
convention on normalization of measures, we introduce the various spaces of functions
we need and we discuss several properties of Langlands decomposition along cuspidal
data as well as kernel functions that are important for us. Section 3 contains the state-
ments and proofs concerning the spectral expansion of the Jacquet-Rallis trace formula
for G that were discussed in Section 1.2 above.

In Section 4, we introduce the Flicker-Rallis intertwining periods and prove the
spectral expansion of the Flicker-Rallis period of the kernel associated to *-regular cus-
pidal datum. In Section 5 we deduce from it Theorem 1.3.2.1 namely the spectral ex-
pansion for I, (f). Sections 6 and 7 are devoted to the proofs of Theorems 1.3.3.1 and
1.3.3.2 respectively. These two theorems are combined in Section 8 to give another proof
of the spectral expansion of I, (f) (Theorem 1.3.1.1). In Section 9, we relate the Flicker-
Rallis intertwining periods to the functional B,. From this, we deduce Theorem 1.3.2.3
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and Theorem 1.3.2.4. The final Section 10 explain the deduction of Theorems 1.1.5.1
and 1.1.6.1 from Theorem 1.3.1.1. Finally, we have gathered in Appendix A some useful
facts on topological vector spaces and holomorphic functions valued in them. It contains
in particular some variations on the theme of the Phragmen-Lindelof principle for such
functions that will be crucial for the proofs of Theorems 1.3.3.1 and 1.3.3.2.

2. Preliminaries

2.1. General notation

2.1.1. TFor f and g two positive functions on a set X, we way that f is essentially
bounded by g and we write

J () Lglv), x€X,

if there exists a constant C > 0 such that f(x) < Cg(x) for every x € X. If we want to
emphasize that the constant C depends on auxiliary parameters y, ..., %, we will write
S () K. g(x). We say that the functions / and g are equivalent and we write

S(x) ~g(x), xeX,
if /(%) K g(x) and g(x) K f(x).

2.1.2. Yor every C,D € RU {—o00} with D > C, we set H.c ={z€ C | R(2) >
C} and Hicp ={z2€ G| C < NR(2) < D}. A vertical strip 1s a subset of G which is the
closure of H,c p; for some C, D € R with D > C.

When f is a meromorphic function on some open subset U of C and 5, € U, we
denote by /*(sy) the leading term in the Laurent expansion of / at s.

2.1.3. When G is a group and we have a space of functions on it invariant by
right (resp. left) translation, we denote by R (resp. L)) the corresponding representation of
G. If G is a Lie group and the representation is differentiable, we will also denote by the
same letter the induced action of the Lie algebra or of its associated enveloping algebra.
If G is a topological group equipped with a bi-invariant Haar measure, we denote by *
the convolution product (whenever it is well-defined).

2.1.4. We refer the reader to Appendix A for reminders on relevant notions of
functional analysis that will be used without further comments in the core of the paper. In
particular, we will use the notation & to denote the projective completed tensor product
between two locally convex topological vector spaces (over G). Moreover, most of the
topological vector spaces we will consider are Banach, Hilbert, Fréchet or LE
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2.2. Algebraic groups and adelic points

2.2.1. Let F be a number field and A its adele ring. We write A, for the ring
of finite adeles and Fo, = F ®¢q R for the product of Archimedean completions of F
so that A =F,, x A;. Let Vi be the set of places of F and Vi o C Vi be the subset of
Archimedean places. For every v € Vi, we let I, be the local field obtained by completion
of F at v. We denote by | - | the morphism A* — R given by the product of normalized
absolute values | - |, on each F,. For any finite subset S C Vy \ V., we denote by (9%
the ring of S-integers in F.

2.2.2. Let G be an algebraic group defined over F. We denote by N¢ the unipo-
tent radical of G. Let X*(G) be the group of characters of G defined over F. Let
ar, = X"(G) ®z R and ag = Homz(X*(G), R). We have a canonical pairing

(2.2.2.1) (-,-)ra;, xagc = R.
We have also a canonical homomorphism
(2.2.2.2) H; : GA) — ag

such that (x, Hg(g)) =log|x (¢)| for any g € G(A). The kernel of Hg is denoted by
G(A)'. We define [G] = G(F)\G(A) and [G]' = G(F)\G(A)'.

We let g be the Lie algebra of G(F4) and U(gx) be the enveloping algebra of its
complexification and Z(gs,) C U (gxo) be its center.

2.2.3. TFrom now on we assume that G is also reductive. We will mainly use the
notations of Arthur’s works. For the convenience of the reader, we recall some of them.
Let Py be a parabolic subgroup of G defined over I and minimal for these properties. Let
M, be a Levi factor of Py defined over F.

We call a parabolic (resp. and semi-standard, resp. and standard) subgroup of G a
parabolic subgroup of G defined over I (resp. which contains My, resp. which contains
Py). For any semi-standard parabolic subgroup P, we have a Levi decomposition P =
MpNp where Mp contains My and we define [G]p = Mp(F)Np(A)\G(A). We call a Levi
subgroup of G (resp. semi-standard, resp. standard) a Levi factor defined over F of a
parabolic subgroup of G defined over F (resp. semi-standard, resp. standard).

2.2.4. Let K=[],o, Ky C G(A) be a “good” maximal compact subgroup in
good position relative to My. We write

K =KK*

where Koo =[]y, . Ky and K =], ., 1y, Ko. We let € be the Lie algebra of Ko
and U(E,) be the enveloping algebra of its complexification and Z(€4,) C U (£) be its

center.
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2.2.5. Let P be a semi-standard parabolic subgroup. We extend the homomor-
phism Hp : P(A) — ap (see (2.2.2.2)) into the Harish-Chandra map

Hp: GA) — ap

in such a way that for every g € G(A) we have Hp(g) = Hp(p) where p € P(A) is given by
the Iwasawa decomposition namely g € pK. Let Hy = Hp,.

2.2.6. Let A be a split torus over F. Then, A admits an unique split model over
Q (which is also the maximal Q-split subtorus of Resy/g(A)) and by abuse of notation
we denote by A(R) the group of R-points of this model. In the particular case of the
multiplicative group G,, r, we get an embedding R* C F C A*. We also write A* for
the neutral component of A(R). Let Ag be the maximal central F-split torus of G. We
define [G]y = AT G(F)\G(A).

Let P be a semi-standard parabolic subgroup of G. We define Ap = Ay, A =
Af, and [Glp o = AFPMp(F)Np(A)\G(A). The restrictions maps X*(P) — X*(Mp) —
X*(Ap) induce isomorphisms ap >~ ay; >~ ay . Let a5 = ap, dg = ap,, Ag = Ap, and
A =AR.

2.2.7. TYor any semi-standard parabolic subgroups P C Q of G, the restriction
map X*(Q) — X*(P) induces maps a;, = a3 and ap — aq. The first one is injective
whereas the kernel of the second one is denoted by a}(,l. The restriction map X*(Ap) —
X*(Ag) gives a surjective map ap — a¢, whose kernel is denoted by a}%*. We get also
an injective map dg —> dp. In this way, we get dual decompositions ap = ag @ ag and
ap = a%* @ ag,. Thus we have projections ag — ag and aj — a}%* which we will denote
by X > X%,

We denote by a%é and agc the G-vector spaces obtained by extension of scalars

from a(PS)" * and aPQ. We still denote by (-, -) the pairing (2.2.2.1) we get by extension of the

scalars to G. We have a decomposition
* % . k
a;(;)jc = a;l’ @D

where > = —1. We shall denote by ) and J the associated projections and call them real
and imaginary parts. The same holds for the dual spaces agc. In the obvious way, we

define the complex conjugate denoted by A of A € a%é.

2.2.8. Let AdpQ be the adjoint action of Mp on the Lie algebra of Mg N Np. Let
,OPQ be the unique element of apo"* such that for every m € Mp(A)

| det(Adp(m))| = exp((2055 Hp(m))).
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For every g € G(A), we set

85(g) = exp({2p5, Hp(9)))

so that, in particular, the restriction of SPQ to P(A) N Mg(A) coincides with the modular
character of the latter. For Q = G, the exponent G is omitted. Finally, we set py = pp, .

2.2.9. Let Pj = MyNp be a minimal semi-standard parabolic subgroup such
that Pj C P. Let AP(,J be the set of simple roots of Ag in Mp N P}. We denote this set by Af

if Py = Py. Let Ap be the image of Ap; \ A;) (viewed as a subset of ajj) by the projection
ag; — aj. It does not depend on the choice of P,. More generally one defines APQ. We
have also the set of coroots APQV C aPQ. By duality, we get a set of simple weights APQ The
sets APQ and AI% determine open cones in a, whose characteristic functions are denoted
respectively by 75> and 75~ We set

AR — {a €AY | (@, Hp(a)) = 0, Yo € AS} ,
a2t — {x cat] (ha') =0, Ya' € A%V} .

We define similarly a]9+ using roots instead of coroots. If Q) = G, the exponent G 1is
omitted and if P = Py, we replace the subscript P, by 0.

For A, u € aj, we will write A <p p to indicate that u — A is a nonnegative linear
combination of the simple roots A .

2.2.10. Weyl group. — Let W be the Weyl group of (G, Aj) that is the quotient
by My of the normalizer of Ay in G(F). For P = MpNp and Q = MuNg two standard
parabolic subgroups of G, we denote by W(P, Q) the set of w € W such that wA} = AOQ.
For w € W(P, Q), we have wMpw ™' = Mq. When P = Q, the group W(P, P) is simply
denoted by W(P). Sometimes, we shall also denote W(P, Q) by W(Mp, M) if we want
to emphasize the Levi components (and W(Mp) = W(P)). We will also write WM? for the
Weyl group of (Mp, Ay).

2.2.11. Let M be a standard Levi subgroup of G. We denote by P(M) the set

of semi-standard parabolic subgroups P of G such that Mp = M. There is an unique
element P € P(M) which is standard and the map

(2.2.11.3) Q,w) > w 'Quw

induces a bijection from the disjoint union UQW(P, Q) where Q runs over the set of
standard parabolic subgroups of G onto P(M).
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2.2.12. Truncation parameter. — We shall denote by T a point of a, such that («, T)
1s large enough for every o € A,. We do not want to be precise here. We just need that
Arthur’s formulas about truncation functions hold for the T’s we consider (see [Art78]
§89, 6). The point T plays the role of a truncation parameter.

For any semi-standard parabolic subgroup P, we define a point Tp € ap such that
for any w € W such that wP,w™" C P, the point Tp is the projection of w - T on ap (this
does not depend on the choice of w). The reader should be warned that it is not consistent
with the notation of Section 2.2.7 since there Tp denotes instead the projection of T onto
ap (of course, the two conventions coincide when P is standard).

2.2.13. Let wy C Py(A)! be a compact subset such that Py(A)! = Py(F)w,. Let P
be a standard parabolic subgroup. By a Siegel domain of [G]p we mean a subset of G(A) of
the form

sp=wo{a €AY | (a, Hy(a)) > (o, T_), Vo € A} K

where T_ € ay and such that G(A) = Mp(F)Np(A)sp. We henceforth fix a Siegel domain
sp of [G]p for every standard parabolic subgroup P and we assume that these Siegel
domains are all associated to the same T_ € ay. In particular, for P C Q we have s C sp.
Moreover, there exists a compact subset I C G(A) such that

sp C Np(A)APTTKC, for every P C G.

2.3. Haar measures

2.3.1. We equip ap with the Haar measure that gives a covolume 1 to the lattice
Hom(X*(P), Z). The space a is then equipped with the dual Haar measure so that we
have

/* ¢ (H) exp(=(A, H)) dHd) = ¢(0)

for all ¢ € C>(ap). Note that this implies that the covolume of :X*(P) in :af is given by
(2.3.1.1) vol(iap/iX*(P)) = (277~ dim(ar),

The group Ay’ is equipped with the Haar measure compatible with the isomor-
phism A% ~ ap induced by the map Hp. The groups a$ > ap/ag and iap™ ~ ia}/ia¥, are
provided with the quotient Haar measures. For any basis B of a§f we denote by Z(B) the
lattice generated by B and by vol(ag’ /Z(B)) the covolume of this lattice. We have on aj
the polynomial function:

Op(M) = vol(ag /Z(A)) ™ [T (. ")

aEAp
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2.3.2. Let H be a connected linear algebraic group over F (not necessarily reduc-
tive). In this paper, we will always equip H(A) with its right-invariant Tamagawa measure
simply denoted dh. Let us recall how it is defined in order to fix some notation. We choose
a right-invariant rational volume form wy on H as well as a non-trivial continuous ad-
ditive character ¥ : A/F — G*. For each place v € Vy, the local component ¥, of ¥’
induces an additive measure on F, which 1s the unique Haar measure autodual with
respect to ¥, . Then using local F-analytic charts, we associate to wy a right Haar mea-
sure dh, = |wuly, on H(F,) as in [Wei82, §2.2]. By [Gro97], there exists an Artin-Tate
L-function Ly (s) such that, denoting by Ly, (s) the corresponding local L-factor and set-
ting Ay, = Ly ,(0), for any model of H over OE for some finite set S € Vy \ Vp o, we
have

(2.3.2.2)  vol(H(O,)) = A},

for almost all v € Vy. Setting A}, = Lj;(0), where we recall that Lj;(0) stands for the
leading coeflicient in the Laurent expansion of Ly (s) at 0, the Tamagawa measure on
H(A) is defined as the product

(2.3.2.3) dh= (A T Anodho.

Although the local measures dk, depend on choices, the global measure @i doesn’t (by the
product formula).

2.3.3. Tor S C Vy a finite subset, we put AISH’* = LISH’*(O) where LIS{(S) stands for
the corresponding partial L-function and we equip H(Fs), H(A®) with the right Haar
measures dhs = [ [, dhy and di® = (AY) '], ¢s An.vdhy respectively. Note that we have
the decomposition

(2.3.3.4) dh = dhs x dii°.

In particular, setting S = {v}, this means that H(F,) is equipped with the right Haar
measure dh, for every v € V.

2.3.4. We have Ly(s) = Ly, (s) where H,.q = H/Ny denotes the quotient of H
by its unipotent radical. When H = N is unipotent we have vol([N]) = 1. For H = GL,,
the L-function Ly (s) 1s given by

LH(S) = ;F(S‘f— 1) N {F(S‘f‘ n)

where ¢ stands for the (completed) zeta function of the number field F. In this case, we
will take

o= (deth)™ /N di,

1<iy<n
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so that (2.3.2.2) 1s satisfied for every non-Archimedean place v where ¥, is unrami-
fied.

2.3.5. The homogeneous space [G] (resp. [G]' 2 [G]) is equipped with the quo-
tient of the Tamagawa measure on G(A) by the counting measure on G(F) (resp. by the
product of the counting measure on G(F) with the Haar measure we fixed on AY). For
P a standard parabolic subgroup, we equip similarly [G]p with the quotient of the Tam-
agawa measure on G(A) by the product of the counting measure on Mp(F) with the
Tamagawa measure on Np(A). Since the action by left translation of a € AF® on [G]p
multiplies the measure by p(a) !, taking the quotient by the Haar measure on Ay in-
duces a “semi-invariant” measure on [Glp o = A7°\[G]p that is a positive linear form on
the space of continuous functions ¢ : [G]p — G satistying ¢(ag) = dp(a)@(g) for a € AY’
and compactly supported modulo A7°.

2.4. Heghts, weights and Harish-Chandra & function

2.4.1. Heght on G. — We fix an embedding ¢ : G < GLy for some integer N > 0.
Using ¢, we define a height on G(A) by

lelh =TT ma (@l e,
Note that for another choice of embedding ¢’ yielding a height ||.||’, there exists 7y > 0
such that [|g]|'/" < |lg]l’ < llgll™ for g € G(A). We have
(2.4.1.1) L< gl llghll << llgl 1]l and llgll = llg™" I
for g, h € G(A). Let P C G be a standard parabolic subgroup. We set

x||p= inf x|l ~ inf ||yx|, op(x) =14log|x|p, for x € [G]p.
Iele = inf llyxl~ inf [y gl

Note that, for P C Q, we have

(2.4.1.2) lxllo < llxllp, for x € P)\G(A).

Letting sp be a Siegel domain as in Section 2.2.13, we have (see [MW94, Eq. 1.2.2(vii)])
(2.4.1.3) liglle ~ ligll, for g € sp.

If H C G is a reductive subgroup, we equip H(A) with the restriction of the height
|||l from which we deduce as above a function ||.|[p, on [H]p, for every parabolic sub-
group Py C H. For P C G a standard parabolic subgroup, we have

2.4.1.4)  [mlsg, ~ [l for me [M].
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More generally, if Py = P N H happens to be a parabolic subgroup of H with unipotent
radical Np, = HN Np (so that in particular [H]p,, C [G]p), we have

(2.4.1.5) Aoy ~ lAllp. for b€ [Hlp,.

Indeed, using a Siegel domain for [H]p,, we are reduced to show the above equivalence
for h = a € Af}; where Aoy C H is a maximal split torus. Up to conjugation, we may
assume that Ag g C A¢ and then it readily follows from (2.4.1.3) that ||a||p ~ ||al| ~ ||a]|py
for a € AfY.

We also have

(2.4.1.6) lall < |lax|lp, for (a, x) € Ay’ x [G]p such that Hp(x) = 0.
Indeed, by (2.4.1.4) we may assume that P = G. Then, up to conjugation, we may assume
that there exists distinct characters A, ..., A, € X*(Ag) and integers Ny, ..., N, > 1 such
that
(@),
t(a) = , foraeAg.
)“k(a)INk

Then, there exist homomorphisms ¢; : G — GLy,, for 1 < ¢ < £, such that ((g) =
19
for g € G. As |det t;(g)|s = | for every g € G(A)', we can now
L (9)
deduce (2.4.1.6) from the simple inequality

|det(9)]y" < [ [max(igil). for g € GLy,(A).

v

2.4.2. Heghts on vector spaces. — Let V be a vector space over I of finite dimension
andlet vy, ...,v;beabasisof V. For v =xv; + -+ x,v, € Vs =V Qr A, we set

lwllv =] [max(L, [xiu. .- lxlo)-
v

Note that another choice of basis would yield equivalent functions. A /eight on V will be
for us any positive function equivalent to ||.||y.

The above construction applies in particular to V = F” with its standard basis
e, ..., ¢ and we will denote by ||.|[a» the resulting norm. Note that we have

lxla = [ [max(1, |x1,). forxeA.
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2.4.3. Waeghts. — Let P C G be a standard parabolic subgroup. Following [Ber88,
§3.1] and [Fra98, §2.1], by a weight on [G]p we mean a positive measurable function w
on [G]p such that for every compact subset  C G(A) we have

w(xk) ~w(x), forxe[Glpandkeld.

We say that two weights w, wy are equivalent, and we will write w; ~ wq, if w, (x) ~ wy(x)
for x € [G]p. By (2.4.1.1), [|.|lp 1s a weight on [G]p.

If w 1s a weight on [G]p, we denote by wy its restriction to Ag°. It is a weight on the
latter group i.e. for every compact subset I C AP® we have wy (ak) < wa(a) for a € A

and £ € U. Conversely, if w, is a weight on A$° then we can view it as a weight on [G]p
exp

through composition with [G]p Hy ap — AP

Lemma 2.4.3.1. — Let w be a weight on [Glp. Then, there exists Ny > O such that
(2.4.3.7) w(xg) K w)|gl™, for (v, ) € [Glp x G(A).

Progf. — First we prove the existence of Nj; > 0 such that
(2.4.3.8) w(a) KwW|al™, for (x,a) € [Glp x AY.

Indeed, let Ky C AJ® be a compact neighborhood of 1. Then, K generates Aj° and we
have

(2.4.3.9) 1 +logllall ~min{rn > 1|ae }}.

Moreover, as w is a weight, there exists a constant C > 0 such that
w(xky) < Cw(x), for (x, ky) € [Glp X Ka.

By induction, this gives, for any n > 1,
w(vky) < C"w(x), for (x, ky) € [Glp x K.

Using (2.4.3.9), this readily gives (2.4.3.8) for some Nj; > 0.

We now prove the lemma. By the existence of Siegel domain, it suffices to show the
existence of Ny > 0 such that the estimate (2.4.3.7) holds for (x, g) € A>>"" x G(A). By the
Iwasawa decomposition G(A) = Py(A)K, any g € G(A) can be written g = pj(2)ao(2)k(g)
where pé (9) € Po(A)!, ap(9) € AZ and k(g) € K. Moreover, there exists a compact K C
G(A) such that

xPy(A)! C Py(F)Np(A) XK
for every x € ASO’H. Therefore, by (2.4.3.9), we have

w(xg) = w(xph(2)a(Dk(g)) <K w(xp(@)llar (@™ <« w(x)||ao(g) ||
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for every (x, g) € A(C;O’PJr X G(A). To conclude, it suffices to notice that there exists Ny > 0
such that

lao(g) 1IN0 < (g™

for every g € G(A). U

According to Franke [Fra98, Proposition 2.1], for every A € aj, there exists a weight
dp.;. on [G]p such that

dp ;. (x) ~ exp((A, Ho(x))), for x € sp.
These weights have the following elementary properties: for £ € R and A, . € a, we have
(2.4.3.10) dp.i ~ (dp ;) and dp 4, ~ dp s dp .
Moreover,
(2.4.3.11) If A <p p (see Section 2.2.9), then dp , K dp,.
Also,if A Cajisa Wr'=N ormyy,r) (Ag) /My (F)-invariant subset then
(2.4.3.12) max dp s (a) ~ max exp((A, Ho(@))), for a € Ay".

Let AT C ai™ is the set of maximal Aj-weights of the representation g >

diag(1(g), 't(g)~") for the partial order <p. It follows from (2.4.1.3) that

(2.4.3.13) |xllp ~ maxdp; (x), for x € [G]p.
reA?

Lemma 2.4.3.2. — Let . € &3 Then, we have

(2.4.3.14)  dp, (x) ~ sup 4 frx € [Glp.

yeP()

Proof. — As dp; (m) ~ dyp 5 (m) for m € [Mp], up to replacing G by Mp, we may
assume that P = G. Moreover, we can restrict to x € §g in which case the left-hand side is
clearly essentially bounded by the right-hand side (by definition of the weight g ;). Thus,
the lemma boils down to the inequality, where A € a3,

e<)”’H‘)(VX)> < g()\qu(x)), for ()/, x) c G(F) X 56,

which is a simple reformulation of [LW13, lemme 3.5.4]. U

We note the immediate corollary.
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Corollary 2.4.3.3. — Let Q C P be standard parabolic subgroups of G and A € a;’PJr.
Then, we have

(2.4.3.15) do,.(x) L dp ;. (x), for x € Q(F)\G(A).

2.4.4. Neighborhoods of infinity. — Let P C Q) be standard parabolic subgroups of G
and ZPQ be the set of roots of Ag in np/ng. We define the following weights:

2.4.4.16) &) = mindpo(x), x€[Glr,

aEeXy

and

(2.4.4.17) da(x) = mirédga (x), x€[Glg.

aEXS

Since for every B € ZPQ, there exist a family of nonnegative integers (1g),, 9 o»> nOt all
0 0

zero, such that ZaeAg\Ag nea <p B, we see that there exists n > 0 such that

(2.4.4.18)  dX(x) € min dpo(x) < max(d(x), dt(x)/"), for x € [Glp.

aeA\AL
For every C > 0, we set

wi> C]:= {x € P(FNGA\G(A) | dx(x) > C}.

Let JTPQ and 7'[5 be the two natural projections
P(F)Nq(AN\G(A)
N
P
[Glp [Glo

The next lemma summarizes some classical results from reduction theory.

Lemma 2.4.4.1.

1. There exists € > 0 such that 7'[& sends a)g[> €] onto [G]q.

2. Let € > 0. Then, for every A € af we have dp;(x) ~ dg,;(x) for x € a)PQ[> €l. In
particular,

dp(x) ~ dfy (x) and ||xllp ~ ||l . for x € wT> €].
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3. Ior every € > 0, the restriction of n(g lo a)PQ[> €] has unmiformly bounded fibers. More
precisely, there exist ¢ > 0 and r > O such that for every x € [Glg and 1 = € > 0, we have

#((15) ™ () Noopl> €]) e

4. For every € > 0, we can find C > 0 such that for all (x, ) € a)g[> €] x a)PQ[> Cl,
na(x) = Jtoli(y) implies x = y.

5. The map JT(S i a local homeomorphism which locally preserves measures. The map JTPQ i
proper and the pushforward of the invariant measure on P(F)Ng(A)\G(A) by it 15 the
wmoariant measure on [Glp.

Progf. — 1.1s just the existence of Siegel domains noting that if s and sp are Siegel
domains as in Section 2.2.13 for [G]qg and [G]p respectively, there exists € > 0 such that
the inverse image of w8[> €] in sp contains §q. Similarly, for any € > 0, this inverse image
is contained in another, perhaps bigger, Siegel domain s, for [G]q and this immediately
gives 2. (where for the last equivalence we have used (2.4.3.13)). Properties 3. and 4. are
Lemma 2.11 and Lemma 2.12 of [Lan76] respectively. Finally, 5. 1s clear. U

Note that, from points 1. and 2. of the above lemma, we immediately deduce that
(2.4.4.19) d(x) < d&(x), for x € PF)No(A\G(A).

Lemma 2.4.4.2. — Let H C G be a reductive subgroup such that Py =P N H and Qy =
QN H are parabolic subgroups of H with unipotent radicals Np,, = Np N H and Ng,, = No N H
respectively. Then, we have

(2.4.4.20)  dpX(h) K dp2 (W), for b€ [Hlp,.

If moreover, G = Resg r Hg, P = Resg /r(Pr)x and Q = Resg x(Qn)k for some finite extension
K/F, then

(2.4.4.21)  dpX(h) ~ dp' (h), for h € [H]p,.

Proof. — Let Aoy C Py be a maximal split torus. Up to conjugation by P(F), we
may assume that Ag g C Ay. By the existence of Siegel domains, and since dg, dp, are
weights, we just need to show (2.4.4.20) for x = a € Afy;. Since EPQ and E}%H are invariant
by the Weyl groups W* = Normyy, i) (Ag) /Mo (F) and Wt respectively, by (2.4.3.12), we
have

dsXa) ~ min exp({e, Hy(@)) and

aex
2.4.4.22) '
dp, (@) ~ mi&{ exp({a, Hy(a))), forae AS?H.

aEZPH
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By the assumption, we have np, /ng,, C np/ng so that the restriction of EI% to Aoy con-
tains E%{. With (2.4.4.22), this gives the inequality (2.4.4.20). We can deduce (2.4.4.21)
similarly noting that, in the case where G = Resg,s Hk, P = Resg/r(Pg)x and Q =
Resg/r(Qg)x, the restriction of 219 to Ao i 1s equal to EI%H. O

2.4.5. Xi function. — Let U € G(A) be a compact neighborhood of 1. We set
E"(x) = volig, ((U)?, x € [Glp.

Replacing U by another compact neighborhood of 1 would yield an equivalent function
which is why we dropped the subset ¢/ from the notation. We have

(2.4.5.23)  E'(x) ~ dp,, (v), for x € [Glp.

Indeed, there exists € > 0 such that, with the notation of Section 2.4.4, Po(F)Np(A)spld C
a)gn[> €]. Thus, by Lemma 2.4.4.1 3. and 5., we have

volig), (e) ~ volpmnpanca) (), for g € sp.

On the other hand, there exists a compact neighborhood U’ of 1 in G(A) such that
Py(F)No(A)glh C Py(F)Np(A)gld’ for every g € sp.

By Lemma 2.4.4.1 5., this gives
Vol[G]PO (gd) = volp,mn @) (No(A)gh) ~ volp,mnp@anca) (@), for g € sp.

Finally, as the left action of AJ° multiplies the invariant measure on [G]p, by the inverse
modular character 8}?01 , we obtain

voligy, (g) ~ voliay, (gU) ~ exp(—(2po, Ho(g))) for g € sp

which is another way to state (2.4.5.23).
By [Lapl13, §2, (9)], we also have*

2.4.5.24) There exists 4, > 0 such that 2" (0)?op(0) " do < o00;
( g
[Glp

From (2.4.5.23), we also deduce the existence of Ny > 1 such that

(2.4.5.25)  E'(9) < llglly", g €[Glp.

* Note that the definition of the & function in loc. cit. coincides, up to equivalence, with ours by (2.4.5.23).
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2.5. Spaces of functions

2.5.1. Let V be a Fréchet space. We say of a function f : G(A) — V that it
is smooth if it is right invariant by a compact-open subgroup J of G(A,) and for every
g € G(Ay) the function g, € G(Fy) > f(grg) € V is C. This definition applies in
particular for V= C and, for P C G a parabolic subgroup, we denote by C*([G]p) the
space of smooth complex-valued functions on [G]p.

We also denote by C,([G]p) (resp. L, ([Glp)) the spaces of complex-valued contin-

loc

uous compactly supported (resp. locally integrable) functions on [G]p.

2.5.2. Let C be a compact subset of G(Ay) and let J] C K* be a compact-open
subgroup. Let S(G(A), C,]) be the space of smooth functions f : G(A) — C which are
biinvariant by J, supported in the subset G(F) x C and such that the semi-norms

I/ lhxy = sup [lgl"[(REOLY)) ()]

£€G(A)

are finite for every integer r > 1 and X, Y € U(gx). This family of semi-norms defines
a topology on S(G(A), C,J) making it into a Fréchet space. The global Schwartz space
S(G(A)) is the locally convex topological direct limit over all pairs (C,]) of the spaces
S(G(A), C,)). Itis a strict LF space. Moreover, the Schwartz space S(G(A)) is an algebra
for the convolution product denoted by *. It contains the dense subspace C°(G(A)) of
smooth and compactly supported functions. For an integer r 2> 0, we will also consider the
space C’(G(A)) generated by products f.f > where f 1s a compactly supported function
on G(F ®g R) which admits derivatives up to the order » and /™ is a smooth compactly
supported function on G(Ay).

For every integer n > 1, we define similarly the global Schwartz space S(A") using
the norm ||.||a» (see Section 2.4.2).

2.5.3. In order to organize in some uniform way the different spaces of func-
tions that we are about to define, we now introduce, mostly following the terminology
of [BK14], some nice categories of complex linear representations of G(A). Recall from
[BK14, §2.3] that a Fréchet representation V of G(Fy) is said to be a F-representation
if there exists a family of semi-norms (||.||v,,), defining the topology of V such that the
G(Fx)-action is continuous with respect to each of them. Moreover, a F-representation V
of G(Fw) 1s called a SF-representation if for every vector v € V, themapg € G(Fy) = g-vis
smooth (that 1s C*°) and for every X € U (g ), the resulting linear operator v € V= X v
is continuous (cf. [BK14, §2.4.3]).

In a similar fashion, we say that a representation of G(A) on a Fréchet space V is
a F-representation if there exists a family of semi-norms (||.||v,,), defining the topology of V
such that the G(A)-action is continuous with respect to each of them. In particular, con-
tinuous representations of G(A) on Banach spaces are automatically F-representations.
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Let V be a F-representation of G(A). A vector v € V is smooth if the orbit map
g € G(A) — g - v is smooth. We denote by V* the subspace of smooth vectors. It is
a G(A)-invariant subspace and for every compact-open subgroup J € G(Ay), we equip
the subspace (V) of J-fixed vectors with the topology associated to the semi-norms
v = || Xv|ly where |.|ly runs over a family of semi-norms defining the topology of V,
X runs over (a basis of) U(gs) and Xv := R(X) (g F> gooV)|g=1. With this topology,
(V) becomes a Fréchet space and even a SF representation of G(F,,) in the sense
recalled above. Moreover, the inclusions (V®Y ¢ (V®Y' for J €J € G(Ay) are closed
embeddings and so V = UJ(V"Q)J has a structure of strict LF space.

For every v € V and f € S(G(A)), the integral

2.5.3.1)  fov=[ f(o)g-vde

G(A)

converges in V and this defines an action of the algebra (S(G(A)), *) on V. Moreover,
by the Dixmier-Malliavin theorem [DM78], we have

(2.5.3.2) V* =8(GA)) -V

where the right-hand side stands for the set of finite linear combinations ) _.f; - v; with
v; € Vand f € S(G(A)).

2.5.4. In this paper, by a SLF representation of G(A) we mean a G-vector space V
equipped with a linear action of G(A) and, for every compact-open subgroup J € G(A,),
the structure of a Fréchet space on W such that the following conditions are satisfied:

e Tor every J € G(Ay), W is a SF representation of G(Fy,) in the sense of [BK 14,
§2.4.3];

o V= UJ V) where J runs over all compact-open subgroups of G(Ay) (i.e. the
action of G(Ay) on V is smooth);

e For every ]’ CJ € G(Ay), the inclusion W C V' is a closed embedding.

By the second and third points above, a SLF representation of G(A) has a natural struc-
ture of strict LI space. If V is a F-representation of G(A), the subspace of smooth vectors
V® has a natural structure of SLF representation of G(A) by the previous paragraph.
Most of the function spaces that we are going to introduce carry natural structures of -
or SLF representations of G(A).

Let V be a SLF representation of G(A). Then, (2.5.3.1) still defines an action of
(S(G(A)), %) on V and the equality (2.5.3.2) holds with V instead of V*°.

The following lemma implies, by the open mapping theorem for LF spaces, that
equivariant morphisms of SLF representations with closed image are necessarily topo-
logical embeddings.
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Lemma 2.5.4.1. — Let V be a SLF representation of G(A) and W C'V be a closed G(A)-
invariant subspace. Then, equipping WY with the topology induced from N7 for every compact-open
subgroup J € G(Ay) gives W the structure of a SLF representation of G(A) and the corresponding LI
topology on W (given as the locally convex direct limit of the topologies on the WY’s) coincides with the
topology induced from V.

Proof. — It is immediate that W is a SLF representation of G(A) (as a closed in-
variant subspace of a SF representation is itself a SF representation). On the other hand,
to check that the LF topology on W is induced from V, it suffices to notice the decompo-

V=PV, w=PpWw,

peKy peKy

sitions

where Kf denotes the set of isomorphism classes of smooth irreducible representations of
K, and for § € Kj , V, and W,, stand for the corresponding isotypical subspaces. Indeed,

V, and W, have structures of Frechet spaces (these are closed subspaces of V) and W/ for
some compact-open subgroup J C G(Ay) respectively) and these decompositions identify
the LF spaces V, W with the topological direct sums of the families (V) pe (W,) pek;
respectively: this is because for every p, V, maps continuously into some W and con-
versely for every J, V) maps continuously into V,, @ --- @V, where py, ..., p, are the,
finitely many, irreducible representations of K, with a nonzero J-fixed vector (and simi-
larly for W). Therefore, the end of the lemma is a consequence of the following general
property of topological direct sums:

(2.5.4.3) Let (V;);er be a family of locally convex topological vector spaces and for each
¢ € I, let W; be a subspace of V; equipped with the induced topology. Then, the
locally convex topological direct sum @D, _; V; induces on its subspace €9, .; W
the locally convex direct sum topology. D

2.5.5. Let P be a semi-standard parabolic subgroup of G. We denote by L*([G]p)
the space of L?-measurable functions on [G]p. It is a Hilbert space when equipped with
the scalar product

(1, @2)p =f 01(9)pa(g)dg
[G]p

associated to the Tamagawa invariant measure on [Glp. We denote similarly by
L*([Glp,) the Hilbert space of measurable functions ¢ on [Glp satisfying ¢(ag) =

8p(a)'p(g) for almost all a € AP and such that / l¢(g)|*dg is convergent.
[Glp,0
More generally, if w is a weight on [G]p, we write Lfv([G]P) for the Hilbert space

of functions that are square-integrable with respect to the measure w(g)dg. This space is
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equipped with a continuous (non-unitary) representation of G(A) by right-translation. Its
subspace Li([G]p)OO of smooth vectors consists of smooth functions ¢ : [G]p — C such
that RX)p € qu([G]P) for every X € U(g«)- By the Sobolev inequality, see [Ber88, §3.4,
Key Lemmal, for every ¢ € Li([G]p)Oo we have

2554 o] < E'Que) " gelGly.
Moreover, from Riesz representation theorem, we have:

(2.5.5.5) For every continuous linear form T € (LQW([G]p)“’)’ and / € S(G(A)),
there exists ¢ € LQUJ,l([G]p)Oo such that T(R(/)Y¥) = (¢, ¢)p for every ¢ €
L ([Glp).

To save some space, for N € R, d > 0 and any weight w on [G]p, we will adopt the
following notation

12, (G =12 (Gl and L2, ((GI») = L2, (Glp).

Moreover, for w = 1 we will simply drop the index w. The following result is a conse-
quence of [Ber88, Theorem p. 688] as the composition of two Hilbert-Schmidt operators
1s nuclear.

Proposition 2.5.5.1. — There exists dy = 0 such that for every compact-open subgroup J C
G(Ay) and every weight w on [Glp the inclusion of Fréchet spaces

L2 o (Glp)™) C L2 ([G]p)™Y

is nuclear. In particular, any summable family in L2,  ([G1p)>® becomes absolutely summable in

o, dy, w
L2 ([G1p)™Y (see Lemma A.0.6.1). 0

2.5.6. We let S°([G]p) be the space of measurable complex-valued functions ¢
on [G]p such that

N
@l = sup [[x[lple(x)] < o0
x€[Glp

for every N > 0. We equip S°([G]p) with the topology associated to the family of semi-
norms (||.|lso.x)n=0- It is a Fréchet space. Note that S°([G]p) is not a F-representation of

G(A) (because the action by right translation is not continuous) but the closed subspace
SY([Glp) C S*([Glp) of continuous functions is so.

2.5.7. The Schwartz space S([Glp) of [G]p is defined as the space of smooth func-
tions ¢ : [G]p — G such that for every N > 0 and X € U(g~) we have

@llsonx = sup [} |RX)@)(x)] < o0.
x€[Glp
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Then, S([G]p) is a SLF representation of G(A) which is equal to S”([G]p)*. Moreover,
for every weight w on [Glp, S([G]p) is dense in L2 ([G]p)*™ (as S([G]p) is dense in
L2 ([Glp)). From (2.5.5.4) and the open mapping theorem, we have an equality of SLF
representations (where the right-hand side is equipped with the locally convex projective
limit topology)

(2.5.7.6) S(Glp) = ﬂ L3 ([G]p)™.

N>0

2.5.8. The Harish-Chandra Schwartz space C([G]p) of [G]p is defined as the space
of smooth functions ¢ : [G]p — G such that for every d > 0 and X € U(go,) we have

1@lloo.i0x = sup E(0) ™ op(0)|(RX)p) (x)] < 0.

x€[Glp

For J a compact-open subgroup of G(Ay), we equip C([G]p) with the topology induced
from the family of semi-norms (||.|/00.4.0.x)¢.x. This makes C([G]p) into a SLF represen-
tation of G(A) when equipped with the action by right translation. The Schwartz space
S([Glp) is dense in C([G]p). Moreover, by (2.5.5.4), we have the alternative description

(2.5.8.7)  C(Glp) =[ L., (GI»>.

d>0

2.5.9. Tor every weight w on [G]p, we let 7;?([G]P) be the space of complex
Radon measure ¢ on [G]p such that

l@ll,w-1 =/ w(x) (x| < oo.
[Glp

We equip 7.)([G]p) with the topology associated to the norm ||.|1 1. It is a continuous
Banach representation of G(A). For N > 0, we write 'TNO([G]p) for nOHN([G]P) and we set
-ip

TGl = | TRAG.
N>0
We equip this space with the corresponding (non-strict) LF topology. We have a sesquilin-
ear pairing
(@, ¥) € T'([Glp) x S"(IGIp) = (g, Yo = | ¥ (0p®)
[Glp

which identifies T°([G]p) with the topological dual of S™([G]p).
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2.5.10. For every weight w on [G]p, we define T, ([G]p) as the space of smooth
functions ¢ : [G]p — G such that for every X € U(go,) we have

[@lloo.wtx = sup w(x) ™ [(RX)g)(x)| < oo.
x€[Glp

We equip 7, ([GlpY, for ] a compact-open subgroup of G(Ay), with the topology induced
from the family of semi-norms (||.||s.w-1.x)x. This makes 7, ([G]p) a SLF representation
of G(A). For N > 0, we write Tx([Glp) and Ty, x(IG]p) for Ty s (IG]) and Ty ((G1p)
respectively.

The space of functions of uniform moderate growth on [G]p is defined as

T(Gly) = (Gl

N>0

We equip this space with the corresponding (non-strict) LF topology. The Schwartz space
S([Glp) is dense in T ([Glp) but we warn the reader that usually S([G]p) is not dense in
Tx([Glp) (unless [Gp is compact). By (2.5.5.4), we have the alternative descriptions (as a
LF space)

(2.5.10.8)  T(IGlp) = JL’(IGI»™ = [ TRAGI»™.

N>0 N=>0

2.5.11. More generally, for a weight w on [G]p and N > 0, we define S, x([G]p)
as the space of smooth functions ¢ : [G]p — G such that for every r > 0 and X € U(goo)
we have

I@lloo,—Nwrx = sup [lxllz™ w () [(RX)@) (0] < 00,

x€[Glp

We equip S, n([GlpY, for ] a compact-open subgroup of G(Ay), with the topology in-
duced from the family of semi-norms (||.|loo,—N,uw.x)x,,>0 and this makes S,, N([G]p) into
a SLF representation of G(A). We set

Su(Glp) = | Sux((Glp)
N>0

and we equip this space with the corresponding (non-strict) LF topology. Once again,
S([Glp) is dense in S,,([G]p) but in general not in S, x([G]p). Moreover, by (2.5.5.4),
we have the alternative description (as a LF space)

(2.5.11.9) S, ((Glp) = [ L. (Gl

N>0 730

We note the following lemma.
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Lemma 2.5.11.1. — Let ¢ € T°([Glp). If w is bounded from above on the support of ¢,
then R(f)p € S, ([Glp) for every | € S(G(A)).

Progf. — Indeed, if w is bounded from above on the support of ¢, then, as w is
a weight, it is also bounded from above on the support of R(f)¢ for f € C*(G(A)).
As R(f)¢ € T([G]p), it readily follows that R(C*(G(A)))¢ C S, ([Glp). Moreover, by
Dixmier-Malliavin we have S(G(A)) = S(G(A)) * C*(G(A)) and S,,([G]p) is stable by
right convolution by S(G(A)). The lemma follows. O
2.5.12. By [Ber88, end of Section 3.5] (see also [Cas89b, Corollary 2.6]) we have

(2.5.12.10) For every compact-open subgroup J C G(Ay), the Fréchet spaces S([GpY
and C([G]pY are nuclear.

Assume that G = G, X Gy where G| and Gy are two connected reductive groups
over F. Let J; C G1(Ay),Jo € Go(Ay) be two compact open subgroups and set ] = J; X Jo.
By (2.5.12.10), (A.0.7.8) and a reasoning similar to (the proof of) [BP20, Proposition 4.4.1
(v)] we obtain:

(2.5.12.11) There are topological isomorphisms
SAGY'BS(Galy* = S(G) and CAGH®C(Gal)* ~ CAGIY

sending a pure tensor ¢; ® @ to the function (g;, g) = ¢1(g1) @2 (g).

By the above, given two continuous linear forms L, Ly on C([G1]), C([Gy]) respectively,
the linear form L; ® Ly on C([G]) ® C([G,]) extends by continuity to a linear form on
C([G]) that we shall denote by L;®Li,.

2.5.13. Constant terms and pseudo-Eisenstein series. — Let () D P be another standard
parabolic subgroup. We have two continuous G(A)-equivariant linear maps

S°([Glp) = S°([Glg), ¢+ EX(g) and
ﬂ([G]Q) - TO([G]P), Q= @p

defined as the following compositions of pullbacks and pushforwards
Ef(p) = 18,5 (@). ¢ =iy (9)

where JT(S and JTPQ are as in Section 2.4.4. More concretely, we have

Ef@. 0= Y @y, forpeS"([Glp)andx€[Gly
yePM\Q(F)
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whereas the map ¢ — @p sends T ([G]g) into T ([Glp) and is given on this subspace by

the familiar formula

pp(x) = / @(ux)du, for ¢ € T([Glg) and x € [G]p.
[Np]

The pseudo-Eisenstein map ¢ +— E8(<p) sends S([G]p) continuously into S([G]g) and
the constant term map ¢ — ¢@p sends TN([G]Q) continuously into Ty([G]p) for every
N > 0 (as follows from (2.4.1.2)). We also have the adjunction

(2.5.13.12)  (gp, ¥)p = (@, EZ(¥))q for ¢ € T([Glo), ¥ € S°(IGlp).

Lemma 2.5.13.1. — There is a constant ¢ > 0 such that for every N > 0,

g > sup S )N IxN 19p(x)]
x€[G]p

is a continuous semi-norm on S 0([G]Q).

Proof. — Indeed, this follows from Corollary 2.4.3.3 and (2.4.3.13) noting that for

every A € a;’"" there exists ¢ > 0 such that A + 20,0}()2 € a;’QJr. 0J

2.5.14. Approximation by the constant term. — Recall that in Section 2.4.4, we have
introduced a weight dPQ on [G]p. The next proposition is a reformulation of the well-
known approximation property of the constant term (see [MW89, Lemma 1.2.10]).

Proposition 2.5.14.1.

1. LeeN > 0,720 and X € U(Goo). Then, there exists a continuous semi-norm ||.||x.x., on
IN(Glg) such that

(2.5.14.13)  [RX)9®) — R @p)| < 6N ds ) " @llnx.

Jor ¢ € TN([Glg) and x € P(F)No (A)\G(A).
2. Let w be a weight on [Glg and ¢ € Lfv([G]Q)OO. Then, there exists N > O such that for
every r = 0, we have

(2.5.14.14) |9 (ax) — @p(ax) P w(@)8q(a) " da <&, ||x]|Ndp(x) ™
Ay
Jor x € P(F)Ng (A)\G(A).

Proof — 1. Since ¢ € TN([G]Q) — ¢p € Tx([Glp) is continuous (as follows from
(2.4.1.2)), there exists at least a continuous semi-norm ||. || x on Tx([Glg) such that

IRX)p(x) — RX)pp ()] < I} l@llxx,
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for ¢ € Tx([Glo) and x € P(F)NG(A)\G(A).

By the above estimate, and with the notation of Section 2.4.4, it sufﬁces to find a contin-
uous semi-norm ||.||x x,, such that (2.5.14.13) is satisfied for x € wy [> C] where C > 0
1s some fixed but arbitrary constant. We can choose C > 0 such that wy P> Cl c P(F )50
and therefore, it suffices to show (2.5.14.13) for x € 5 only.

If P is a maximal parabolic subgroup of Q i.e. AQ\ Af = {a} for some root a, the
result 1s then a direct consequence of [MW89, Lemma 1.2.10]. To deduce the general
case, we choose a tower of parabolic subgroups P=P, C P, C --- C P, = Q with A\

Ag = {o;} for every 1 <7 < n. Then, we have AQ\ Ap =f{ay,...,a, and, for 1 <i<n,
$q is included in sp,. Therefore, by [MW89, Lemma 1.2.10], for every 1 <7< n, we can
find a continuous semi-norm ||.||; nx., on Tx([G]p,) such that
IR(X)¢p, (x) = R(X)gp,_, (0| < ||X||§ exp(—r{e;, Ho()) llep, [l xx.rs
for ¢ € Tn([Glg) and x € sq,.
Then, we get

IR (x) = RX)@p(0)] < Y IRK)gp, (x) = RX)gp,_, ()]

=1

< lxlly max exp(—r(et;, Ho())l@llxx.

\\

L N30 " N@llnx.s

for ¢ € Tn([Glg) and x € 5o where ||¢|Ixx, = Zill(ppiHLN,X,,. is a continuous semi-norm
on Tx([Glo).

2. Let N" > 0 that we will assume large enough. Then, for some N > 0, we have
continuous inclusions LQu)([(}]Q)OO - LQ_N,([G]Q)OO C Txy2([Glg). Thus, by 1., for every
r > 0 we can find elements X, ..., X; € U(gs) such that

Y0 = BOE < IREO” Y [ REOPOFDIZ S

1<ige ¥ [Gla
for Y € L2w([G]Q)°° and x € P(F)No(A)\G(A). Applying this inequality to the function

L,p(x) = ¢(ax) where a € Ag, we are reduced to show the convergence of

> [ [ ReOe@F@sa@ daoi
[Glo

o0
1<i<k AQ
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1

for N’ large enough. After the change of variable y > @'y, and since ¢ € L2 ([G]g)®,

this boils down to showing that
/ w(@lla ;Y da K w(y), fory € [Glo.
AQ
From Lemma 2.4.3.1 (applied to the weight w™!), there exists Ny > 0 such that w(a) <

w(ax) ||x||$) for (a, x) € AS x [G]q and there exists Ny > 0 such that/ ||(1_1y||§\]1 da < 1

A
Q
for y € [Glg. Then, by (2.4.1.6), any N" > Ny + N; works. O

2.5.15. The proof of the next result is partly inspired from [Fra98, §4, p. 204].

Proposition 2.5.13.1. — Let P C Q) be standard parabolic subgroups of G. For every weight
w on [Glq, there exist weights wy , wy on [Glp such that:

o The constant term ¢ > @p maps LQw([G]Q) continuously into L2_([Glp);
Wp

o The pseudo-Eisenstein map EI% extends to a continuous linear map from Li +([G]lp) wnto
;

L, ([Glo);
o [orevery € > 0, we have wy (x) ~ w(x) ~ wy (x)_for x € a)PQ[> €].

Progf. — First, we observe that it suffices to prove that for every weight w on [G]q,
there exists a weight w, on [G]p such that:

e The constant term ¢ — @p maps qu([G]Q) continuously into L>_([G]p);
Wp

e For every € > 0, we have w; (x) ~ w(x) for x € a)19[> €].

Indeed, if it were the case, by the adjunction (2.5.13.12), for every weight w on [G]q, Eg
would extend to a continuous linear map L2, ([G]p) — Li([G]Q) where
Wwp

wi = (™y)
1s a weight satisfying, for any given € > 0,
wi () ~ (wx) ' = wx), for x € o> €].
Let » > 0 and set

wy (1) = min(l, 470" inf w(m), x€[Glp.

Clearly, wp 1s a weight on [G]p and we will check that it has the desired properties
when 7 is sufficiently large. First, for € > 0, there exists a compact Ky C Np(A) such that
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P(F)Np(A)x C P(F)Ng(A)xKy for every x € a)I(,l[> €]. As w is a weight, this shows that
wy (x) ~ w(x), forx € wg> €.

On the other hand, for ¢ € L2 ([G]g) and by the Cauchy-Schwarz inequality we have

(2.5.15.15) f|<pp(x)|2w;(x)dx<f lo(x)]? Z wy (yx)dx

(Glp (Gl y €P(FN\Q(F)
<f lp)Pw) Y min(l, Xy x)) dx.
(Gl y €P(FN\Q(F)

By Lemma 2.4.4.1 3., if r is sufficiently large we have
Z min(1, d(yx))" < 1, for x € [Glq.
y €PI\Q(F)
For such a choice, (2.5.15.15) gives
| tePuswd< [ lpwPuma. oo e LiG1)
[Glp [Glg
which is exactly saying that the constant term ¢ > @p maps L2 ([G]g) continuously into

L2_(Gl). O

Recall that if w is a weight on [G]q, we denote by wy its restriction to Ag .

Corollary 2.5.15.2. — Let w and w'" be weights on [Glq such that wx ~ wy. Then,
1. Ifw' K w, the linear map
L, (IGlo)™ = [TL (GI)™ x L, (1G10)™.
(2.5.15.16) PCQ
¢ = ((gp)p, @)

is a closed embedding.
2. Dually, if w' > w, the linear map

[ 1L AGI™ x L, (Gl)™ — L, (Glo)™
pcQ

(2.5.15.17)
(@ @) > 9+ D> Efe")
rco

is an open surjection.
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Proof. — 1. By the open mapping theorem, it suffices to show that the image of
(2.5.15.16) is the closed subspace of tuples ((¢")p, @) € nPgQLlQU; ([Glp)>® x Li),([G]Q)oo

such that ¢* = @p for every P C Q. That the image is included in this subspace follows
from Proposition 2.5.15.1. Conversely, let ¢ € Li, ([Glg)® be such that ¢p € L2 ([G]p)™
Wp

for every P C Q. Then, we need to show that ¢ € L2 ([Glg) (as, applying the same rea-
soning to the derivatives of ¢, we can actually deduce ¢ € Li([G]Q)OO).

Let G(A)(ll C G(A) be the inverse image of 0 € ag by Hg. We equip G(A)é
with the unique measure dx such that, through the identification G(A) = Ag X G(A)él,

the invariant measure on G(A) decomposes as dadx. For every x € G(A), we set x' =
exp(—Hg(x))x € G(A)él. Let € > 0. For P € Q), we introduce the set

i, = {x € PENGA\GA) | di(x) > 12" [I5}.

First we show that

(2.5.15.18) / lo(0) 2w (x)dx < 00.
n&(wge)

Indeed, as a)PQ,6 - a)g[> C] for some C > 0, by Lemma 2.4.4.1 3. and 5. we can replace
the domain of integration by a)PQe. Moreover, since gp € L2 _([G]p) and wp (x) ~ w(x) for
\ wp

X € w§[> C] (cf. Proposition 2.5.15.1), the function x € w%s > @p(x) 1s square-integrable
with respect to the measure w(x)dx. Thus, it only remains to show that

/Q lo(x) — @p(x)|* w(x)dx < 0.
wP,e
But this follows from Proposition 2.5.14.1 2. as dPQ(x) ~ dPQ(xl) and there exists N > 0
such that / )l Ndx converges.
P(F)NQ(A)\G(A)}Q

From (2.5.15.18), it only remains to show that x > |¢(x)|?w(x) is integrable over
the complement

[Glo\ | (i),

PCQ

However, by Lemma 2.4.4.1 2., there exists ¢ > 0 such that this subset is contained in the
set of x € [G]q such that

doyo (x) < el

for every o € AOQ. We readily check that for € sufficiently small, the resulting domain is
compact modulo Ag. Thus, as ¢ € LQw,([G]Q) and w, ~ Wy, the claim follows.
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2. Again by the open mapping theorem, it suffices to show that the map (2.5.15.17)
is surjective. But this follows by duality from 1., (2.5.5.5) and the Dixmier-Malliavin the-
orem. 0J

2.6. Estimates on Founier coefficients

2.6.1. Let P C G be a standard parabolic subgroup, ¥ : A/F — C* be a non-
trivial character and Vp be the vector space of additive algebraic characters Np — G,.
Let £ € Vp(F) and set ¥, := ¢ o €5 : [Np] = C* where £, denotes the homomorphism
between adelic points Np(A) — A. For ¢ € C*([G]), we set

SONP,w(g):/ p(ug)e(w) ' du, g€ G(A).
[Np]

The adjoint action of Mp on Np induces one on Vp that we denote by Ad*. We fix a
height |||y, on Vp(A) as in Section 2.4.2.

Lemma 2.6.1.1.
1. There exists ¢ > O such that for every Ny, Ny > 0,

@r> sup [|Ad*(m LIV ImlINg Se ()2 @y, ()]
meMp(A)

is a continuous semi-norm on S([G]).
2. Let N > 0. Then, for every N| = 0,

@ > sup [IAD* (LIl @xp.y, ()]

meMp(A)

is a continuous semi-norm on Tn([G]).

Proof. — Bounding brutally under the integral sign, we have

oxpye (D1 < lolp(Q)

for ¢ € C*([G]) and g € G(A). Let N > 0 and J € G(A;) be a compact-open sub-
group. By Lemma 2.5.13.1 and (2.4.1.4), it suffices to show the existence of elements
Xy ..oy X € U(goo) such that

(2.6.1.1) o ()] < A (n DI D JRXD@) .y, ()|

for every ¢ € C*([G]Y and m € Mp(A). Let u € Np(A). By definition of ||. ||v,, we just
need to show the existence of X, ..., X; € U(gs) such that

2.6.1.2)  [@npp, ()] < 1EAdmMD 15" IRKDP) 5y ()]
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for every ¢ € C®([G]Y and m € Mp(A). This last claim is a consequence of the two
following facts whose proofs are elementary and left to the reader:

(2.6.1.3) Yor every non-Archimedean place v, there exists a constant C,, > 1, with C, =
1 for almost all v, such that [£(Ad(m,)u,)|, > C, implies ¢, y,(m) = 0 for
every ¢ € C®([G]Y and m € Mp(A).

(2.6.1.4) Let v be an Archimedean place and let X € g, be such that u, = ¢X. Then, we
have (R(X)@)np.y, (m) = dr, (L(Ad(m)u),) @y, y, (m) for all ¢ € C°([G]) and
m € Mp(A) where dy, : I, = R is the differential of v, at the origin. O

2.6.2. Let n > 1 be a positive integer. We let GL, acts on F* by right multipli-
cation and we denote by ¢, = (0, ..., 0, 1) the last element of the standard basis of I".
We also denote by P, the mirabolic subgroup of GL,, that is the stabilizer of ¢, in GL,.
We identify Agp, with G,,, and thus AZS’LW with R., in the usual way. The next lemma
will be used in conjunction with Lemma 2.6.1.1 to show the convergence of various Zeta
integrals.

Lemma 2.6.2.1. — Let C > 1. Then, for Ny 3>>¢ 1 and No > 1 the integral

—Ny

,lleglla” | det gl dadg

—N]
/ llagllcx
PiZ(F)\GL)I (A)xR>q

converges for s € Hyy ¢ uniformly on every (closed) vertical strip.

Proof. — The integral of the lemma can be rewritten as
2.6.2.5) / 1! [ 3 eaglldetagt dude
[GL.]

R-0 gepn\(0)

There exists N3 > 0 such that ||v]|a < ||vg||A5 gl for (v, g) € A” x GL,(A). Therefore,
the inner integral above is essentially bounded by

derg" ™ [ 3 1agl a0
R>U EEF"\{O}
hence, for 1 < N(s) < C, by
Il [ Y N s
R>0 %'EF"\{O}

for some N, > 0. However, since the inner integral in (2.6.2.5) is left invariant by GL,(F),
as a function of g, we may replace ||g|| in the estimate above by ||g[|cr,. As for N > 1 we
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have

—N
f lella de < oo
[GL,]

[BP21a, Proposition A.1.1 (vi)], it only remains to show that for N > 1 the integral
[ ¥ 1aidara
R.o EcFn\{0}

converges for 1 < N (s) < C uniformly in vertical strips. This is a consequence of the
following claim:

(2.6.2.6) Yor every k > n, if N is sufficiently large we have
3 el < lal ™, ae Ry
&el"\{0}

Indeed, we have
lal = max (|a&;|) < ||a ||ar
1<in

for (a,§) €e Ry x (F"\ {0}). Therefore, we just need to prove (2.6.2.6) when £ = n. Let
C C A" be a compact subset which surjects onto A" /F". We have

|a€ + av|lar K ||a ||a» max(l, |a]), max(l, |a]) <K ||a§[|ar
for (a,&,v) e Ry x (" \ {0}) x C. Hence,

Dl < | D> llag + avllyPdv

e\ {0) Cgepr\(0)

—N/2 — —-N/2
<<f Y llag + avlgPdv=lal ™" | vlle*dv
A}l /Fn s c I?" A}I

for a € R.. The last integral above is absolutely convergent when N > 1 [BP21a, Propo-
sition A.1.1 (v1)] and the claim (2.6.2.6) follows. UJ

2.7. Automorphic forms and representations

2.7.1. Let P be a standard parabolic subgroup of G. We define the space Ap(G)
of automorphic forms on [G]p as the subspace of Z(g.)-finite functions in 7 ([G]p). We
let Ap cusp(G) (resp. Ap aic (G)) be the subspace of cuspidal (resp. square-integrable) au-
tomorphic forms i.e. the space of forms ¢ € Ap(G) such that ¢ = 0 for every proper
parabolic subgroup Q C P (resp. such that |¢| € L*([G]p.)).
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For J C Z(gs) an ideal of finite codimension, we denote by Ap 7(G) the sub-
space of automorphic forms ¢ € Ap(G) such that R(z)¢ = 0 for every z € J and we
set

AP‘cusp,J(G) = AP,](G) N AP,cusp(G)y
Ap dise, 7(G) = Ap 7(G) N Ap 4is (G).

There exists N > 1 such that Ap, 7(G) is a closed subspace of Tx([G]p) and we equip
Ap 7(G) with the induced topology from 7x([G]p). This topology does not depend
on the choice of N by Lemma 2.5.4.1 and the open mapping theorem. The subspaces
Ap cusp, 7 (G) and Ap g, 7(G) of Ap 7(G) are closed and we equip them with the induced
topologies. Then, by Lemma 2.5.4.1, Ap cup, 7(G), Ap gise, 7(G) and Ap, 7(G) are all SLF
representations of G(A) (in the sense of Section 2.5.4) for the action by right translation.

For convenience, we also endow Ap(G) = (J;Ap7(G), Apcp(G) =
U 7 Ap cusp, 7 (G) and Ap 4. (G) = 7 Abp gise.7(G) with the corresponding locally con-
vex direct limit topologies. These spaces are not LI because the poset of ideals of finite
codimension in Z(g,) does not admit a countable cofinal subset. However, for every
maximal ideal m C Z(g), the subspaces

Ap(G)m = Apw(G), Apcup(G)m = | Ap.cup.mr(G) and
AP‘disc(G)m = U AP,disc,m”(G)

are strict LI spaces and we have decompositions as locally convex topological direct sums

AP(G) = @AP(G)m’ AP,cusp (G) = @ AP,Cusp(G)ma
Ap 4 (G) = €D Ap e (G

where m runs over all maximal ideals of Z(g.).
For P = G, we simply set A(G) = Ag(G), Agie(G) = Ag i (G) and .Acusp (G) =
AG,cusp (G)

2.7.2. By a cuspidal (vesp. discrete) automorphic representation w of Mp(A) we mean a
topologically irreducible subrepresentation of Acusp (Mp) (resp. Agisc Mp)). Let  be a cus-
pidal or discrete automorphic representation of Mp(A). We endow 7 with the topology
induced from Acusp(Mp) or Agi,.(Mp). With this topology, it becomes a SLF represen-
tation of Mp(A). Moreover, for every compact-open subgroup J C G(Ay), the subspace
ngKoo) of J-fixed and K-finite vectors is a Harish-Chandra (g, Ky )-module whose



THE GLOBAL GAN-GROSS-PRASAD CONJECTURE FOR UNITARY GROUPS. .. 225

smooth Fréchet globalization of moderate growth (which is unique by the Casselman-
Wallach globalization theorem [Cas89a], [Wal92, Chapter 11], [BK14]) is isomorphic to
) (the subspace of J-fixed vectors).

For every A € aj, ¢, we define the twist 77, = 7 ® A as the space of functions of the
form

m € [Mp] — exp((A, Hp(m)))p(m), for ¢ € m.

If 7 1s cuspidal (resp. discrete and A € ia}), 7, is again a cuspidal (resp. discrete) automor-
phic representation.

We denote by An,cmp (Mp) (resp. Ay.aic(Mp)) the m-isotypic component of
AcuspMp) (resp. Agise (Mp)) i.e. the sum of all cuspidal (resp. discrete) automorphic repre-

sentations of Mp(A) that are isomorphic to 7. Let [T = Indﬁg) () (resp. Ap z,cup(G) =

Indp) (Ar,cupMp)), Ap z.aic(G) = Indpy) (Ar.ai(Mp))) be the normalized smooth in-
duction of 7 (resp. Aﬂ,CUSp(MP), A gisieMp)) that we identify with the space of forms
¢ € Ap(G) such that

m € [Mp] = exp(—(pp, Hp(m)))p (mg)

belongs to 7 (resp. Az cupMp), Az aic(Mp)) for every g € G(A). Then, IT and
Ap 7 cusp(G) (resp. Ap 7 ais (G)) are closed subspaces of Ap cusp (G) (resp. Ap aisc (G)) if 7 is
cuspidal (resp. discrete) and with the induced topologies these become SLF representa-
tions of G(A). In particular, the algebra S(G(A)) acts on Ap 7 cusp(G) (resp. Ap 7 disc (G))
by right convolution. When the context is clear (that is when the automorphic represen-
tation 77 is fixed), for every A € af ¢, we will denote by I(1) the action on Ap x,cup (G)
we get by transport from the action of S(G(A)) on Ap, «p and the identification
Ap,n,cusp — Ap,nk,cusp given by ¢ — exp((A, Hp(.)))@. In the same way, we get an ac-
tion on Ap ; 4is.(G) also denoted by I(X).

If the central character of 7 is unitary, we equip IT = Indg((:)) () and Ap 7 cusp (G)
(resp. Ap r.4isc (G)) with the Petersson inner product

Il = (@) ) = f 0(@)d, ¢ € T1.
[Glp,0

2.7.3. Eisenstein series. — Let P be a standard parabolic subgroup of G. For every
¢ € Ap.aic (G), g € G(A) and A € af ¢, we denote by

Eg e, =) exp((r, He(3g))e(82)
SeP(IM\G(F)

the corresponding Eisenstein series which is absolutely convergent for 9i(A) in a suitable
cone. By [Lan76], [BL.19] it admits a meromorphic continuation to a; o whenever ¢ is
Ky-finite and this still holds without this assumption by [Lap08]. Let w be a discrete
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automorphic representation of Mp(A) and IT = Indg((:)) (1) € Ap 4i. (G) be the induced
representation of G(A). Then, for A € aj o where E(gp, 4) is regular for every ¢ € II,
¢ — E(p, 1) induces a continuous linear map IT — T ([G]) by [Lap08, Theorem 2.2]
that actually factors through 7x([G]) for some N > 0 giving a map IT — Tx([G]) that is
also continuous (by the closed graph theorem).

2.7.4. Let P and Q be standard parabolic subgroups of G. For any w € W(P, Q)
and X € a, ¢, we have the intertwining operator

M(w, 1) : Ap 4 (G) = Ag,aisc (G)
defined by analytic continuation from the integral
(M(w, M)¢)(9) = exp(—(wi, Hp(9)))

x f exp ({1, Hp(w™"1g)))g (w ™" ng) da.
(NonwNpw~1)(A)\Ng (A)

Once again, the K -finite case follows from [Lan76], [BL19] whereas the extension to

general smooth discrete automorphic forms is proved in [Lap08].

2.7.5. Assume that G = G; x Gy where G, and Gy are connected reductive
groups over . We have corresponding decompositions P = P; x Py and Mp = Mp, X Mp, .
Let © be a discrete automorphic representation of Mp(A) and set as before IT =
Indg((:)) (7r). Then, there exist two, uniquely determined, cuspidal automorphic repre-
sentations 77, 7wy of Mp, (A) and Mp, (A) respectively such that, setting I, = Indgll((:)) ()
and I, = Indgz((:)) (7r9), for every compact-open subgroups J; € Gi(Ay), Jo € Go(Ay)

(resp. J1 € Mp, (Ay), Jo € Mp,(A))), setting J = J; x Jo, there is a topological isomorphism
(2.7.5.1) 'R ~ IV (resp. ) @) ~ ')

sending ¢; ® ¢y € TH' ® 17 (resp. ¢; @ ¢, € 1" ® 7)) to the function (g1, g,) —
©1(g1)@a(g9). We will then write IT =TT, X I, and 7 = m; X 7y respectively.

2.7.6. Assume now that G is quasi-split. Let ¥y : No(A) — C* be a continuous
non-degenerate character which is trivial on Ny (F). If the representation IT is yry-generic,
i.e. if it admits a continuous nonzero linear form £ : [T — C such that £ o IT(x) = ¥ (u)£
for every u € N(A), it is (abstractly) isomorphic to its Whaittaker model

WL, ¥x) ={g € GA) > £(T1(9)¢) | ¢ € IT}.

We equip this last space with the topology coming from IT (thus it is a SLF representation
of G(A)).
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If we are moreover in the situation of Section 2.7.5, there are decompositions Ny =
No.1 X No.o, ¥n = ¥; K9 and the isomorphism (2.7.5.1) induces one between Whittaker
models

WL, Y ) @W (T, o) = WL, Y.

2.8. Relative characters

2.8.1. Let B a G(Fy)-invariant nondegenerate symmetric bilinear form on ge.
We assume that the restriction of B to £, is negative and the restriction of B to the or-
thogonal complement of €., is positive. Let (X;),e; be an orthonormal basis of €4, relative
to —B. Let Cx = — Y_,.; X?: this is a “Casimir element” of U (£,).

2.8.2. Let K, and K be respectively the sets of isomorphism classes of irre-
ducible unitary representations of K, and of K.

2.8.3. Let m be a discrete automorphic representation of Mp. In the following,
we denote by Ap ; either Ap  cusp OF Ap 7 dise. For any 7 € K, let Ap (G, 7) be the (finite
dimensional) subspace of functions in Ap , (G) which transform under K according to 7.
A K-basis Bp ; of Ap (G) is by definition the union over of T € K of orthonormal bases
Bp .. of Ap (G, 1) for the Petersson inner product.

2.8.4. Let
B: Ap,(G) x Ap,(G) — C
be a continuous sesquilinear form.

Proposition 2.8.4.1. — Let w be a compact subset of ag™*.
1. Letf € S(G(A)) and By, be a K-basis of Ap . (G). The sum

(2.8.4.1) Y (e

WEBP,T[

converges absolutely in the completed projective tensor product Ap  (G)®Ap  (G) uniformly
Jor € a(rs’”c* such that R(\) € w. In particular, the sum

2.8.4.2) ()= )Y BL:(.e. )

(pGBP,n

is absolutely convergent uniformly for A € aff”é such that R(X) € w. Moreover these sums
do not depend on the choice of Bp .
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2. The map

S = Js(f)

is a continuous linear form on S(G(A)). More precisely for C C G(Ay) a compact
subset and Ko C K> a compact-open subgroup, there exists a continuous semi-norm
| -l on S(G(A), C, Ky) such that for all A € aﬁ’(’; such that W(A) € w and f €
S(G(A), C,Ky) we have

Us DI < /-

Remark 2.8.4.2. — An examination of the proof below show that the assertion 2
also holds mutatis mutandis if f € C/(G(A)) with r large enough. The semi-norm is then
taken among the norms || - ||, x y for which the sum of the degrees of X and Y is less than
r.

Proof. — By definition of the projective tensor product topology; it suffices to show
the following: for every continuous semi-norm p on Ap _, (G), the series

Y 0L NeIp()

@EBPJ{

is absolutely convergent uniformly for A € a&’é such that (L) € w. Let Ky C K* be
a normal compact-open subgroup by which / is biinvariant. The series above can be
rewritten as

2.8.43) > > pLO.e)p(e),

ek 9€Bp 7

where only the representations T admitting Ky-invariant vectors actually contribute to
the sum. Note that, since K is normal in K*, for such representation 7 all the elements
¢ € Bp ., are automatically Ky-fixed. Moreover, by [Wal92] §10.1, there exist ¢ > 0 and
an integer 7 such that for every ¢ € Ap_, (G)* we have

p(@) < clR(1+ Ck)' @llper-

For any 7 € Ko or K, let A, > 0 be the eigenvalue of Ck acting on 7. Let us fix a large
enough N > 0. For every /' € S(G(A)), A € a3 ¢, T € Kand ¢ € Bp 5, we have

IR(1 + Cx)'Ip(X, H@llpee = Hp(A, LI + Cr)")) @l per
=1+ 1) M, £)@lpe

where f.x = R((1 + Cx)M)L((1 + Ck))'f. Let C C G(Ay) be a compact subset. Then,
there exists a continuous semi-norm || - || on S(G(A), C, Kg) (among those of Section
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2.5.2) such that for any f € S(G(A), C,Ky), ¢ € Ap ,(G) and 1 € ag’é such that R(L) €

w we have

ITe (2, frx)@llpx < I IHI@llpe

Thereby we are reduced to prove for large enough N the convergence of

(2.8.4.4) D (142 Ndim(AY, (G, Ky, 1))

€Ky

where Aii‘fn (G, Ky, 7) C Ap» (G) denotes the subspace of functions that transform under
Ky according to . However, there exist ¢; > 0 and m > 1 such that dim(A?ﬂ(G, Ko,
7)) < o1 4+ A;)™ (see e.g. the proof of [Miil00] Lemma 6.1). So the convergence of
(2.8.4.4) is reduced to that of ), ek, (I + X)) which is well-known. U

Proposition 2.8.4.3. — Let Ky C K be a normal open compact subgroup. For any integer
m =1 there exist 7. € U(goo), &1 € CP(G(A)) and g € C7(G(A)) such that

o 7, g and gy are invariant under K -conjugation;
o gy and gy are Ko-bunvarant;

o forany f € S(G(A)) that is Ko-biinvariant we have:
S=lxa+(x7)*g.
For large enough m, we have

s = D Be(h. ). Te(h g)e)

(pEBP,n

+ D BUr(hS ), Te(h )9

(ﬂEBPJZ
where the sums are absolutely convergent and g’ (x) = g(x~1).

Proof. — The first part of the proposition is lemma 4.1 and corollary 4.2 of [Art78].
Once we have noticed that the operators Ip(A, g) preserve the spaces Ap (G, T), the
second part results from an easy computation in a finite dimensional space. O

2.9. Cuspidal data and coarse Langlands decomposition
2.9.1. Cusprdal data. — Let X(G) be the set of pairs (Mp, ) where

e P is a standard parabolic subgroup of G;
e 7 is the isomorphism class of a cuspidal automorphic representations of Mp(A)
with central character trivial on A7°.
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The set of cuspidal data X(G) is the quotient of X(G) by the equivalence relation defined as
follows: (Mp, ) ~ (Mg, 7) if there exists w € W(P, Q) such that wr w~! 2~ 7. Note that
for every standard parabolic subgroup P of G, the inclusion X(Mp) C X(G) descends
to a finite-to-one map X(Mp) — X(G). For x € X(G) represented by a pair (Mp, ),
we denote by xV the cuspidal datum associated to (Mp, 7") where " stands for the
complex conjugate of 7.

2.9.2. Langlands decomposition. — For (Mp, ) € X(G), we let S;([Glp) be the
space of Schwartz functions ¢ € S([G]p) such that

@(x) :=/ exp(—(pp + A, Hp(a)))p(ax)da, x € [Glp,
AOO

h
belongs to Ap 7, cusp (G) for every A € ap g
Let P C G a standard parabolic subgroup, x € X(G) be a cuspidal datum and
{Mg,, ) |1 €]}

be the (possibly empty but finite) inverse image of x in X(Mp). Denote by Li ([G]p) the
closure in L*([G]p) of the subspace

O ==Y EF, (S, (IGlg)-

€l

More generally, for w a weight on A (see Section 2.4.3), we let L2 ,([G]p) be the clo-
sure of Di in L2 ([G]p) and we define similarly a subspace Li([G]p,o) C L*([Glp,0). By
Langlands (see e.g. [MW94, Proposition I1.2.4]), we have decompositions in orthogonal

direct sums
2.9.2.1) L (Gl = @ L (Gly) and L(Glro)= @ L;(Glp).
X€X(G) x€X(G)
For every subset X € X(G), we set
Ly, x(IGlp) :=EPL. , ((Glp), L (IGly) := P, , ([Glp)
XEX xexe

where X‘ denotes the complement of X in X(G). When w = 1, we will drop the index
w. We have

(2.9.2.2) For two weights w and w’ on Ay, the orthogonal projections L2 ([G]p) —
Li’x([G]P) and LQw,([G]P) — Li,,x([G]p) coincide on the intersection
L2 ([Glp) N L., ([G]p).
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Indeed, both of these projections coincide on LQw([G]p) N Li,([G]p) = Li,/([G]P), where
w” = max(w, w’) is again a weight on Ap°, with the orthogonal projection LQw,,([G]p) —
Li},/) +([G]p) as follows readily by looking at their restrictions to the dense subspace

> ob
)

xeX(G

We will denote by ¢ — ¢x the orthogonal projection LQw([G]p) — Li’x([(}]p).
By (2.9.2.2), this notation shouldn’t lead to any confusion. These projections are G(A)-
equivariant and so preserve the subspaces of smooth vectors.

2.9.3. Let X € X(G) be a subset. We set

Sx([Glp) = S(Glp) NLE([G]p) and
S*([Glp) = S([Glp) NL**([Gp).

By definition of L?{([G]p), Sx ([Glp) is the orthogonal to

Oh=) o

xexe
in S([Glp). In particular, for every weight w on AY°, we also have
Sx([Glp) = S([Glp) N L, +([Glp).

Let w be a weight on [G]p (not necessarily factoring through a weight of Ap°). For
Fef{ll,C,Tx, T,Sun, Sy} we define Fx([Glp) to be the orthogonal of Sx-([Glp) in
F([Glp). We will also write F*([G]p) for Fx([G]p).

Lemma 2.9.3.1. — Let X C X(G) be a subset and Q) C P be standard parabolic subgroups.

Then, we have
(2.9.3.3) Eg(Sx([G]Q)) C Sx([Glp) and Tx([Glp)g € Tx([Glo).

Progf. — The second inclusion follows from the first applied to X° by adjunc-
tion. It remains to prove the first inclusion. Since Sx([G]p) is also the orthogonal of
S*([Glp) in S([G]p), by adjunction again it suffices to establish that Sx([G]p)Q is or-
thogonal to Sx([Glg). From the definition, it is clear that Sx([G]p)Q is orthogonal to
OF Let k € C>(ag). Then, we readily check that 9% is stable by multiplication by
(k o Hy). Consequently, («k o HQ)Sx([G]P)Q is also orthogonal to D% but, by Lemma
2.5.13.1, we have (k o HQ)S%([G]p)Q C S([Glg). Therefore, by definition oszx([G]Q),
(k oHgp)S 36([G]p)Q 1s orthogonal to Lge([G]Q) and a fortiori to Sx([Glg). Letting (k,),
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be an increasing sequence of positive functions in CG°(ag) converging to 1 pointwise we
get, by dominated convergence,

(Pa: ¥)q = lim ((k, 0 Ho)pg, ¥)q =0

for every ¢ € S*([G]p) and ¥ € Sx([Glg). This shows that Sx([G]p)Q is indeed orthog-
onal to Sx([Glg) and this ends the proof of the lemma. ]

2.9.4. The following theorem is a variation on the well-known theme of “de-
composition along the cuspidal support” (see [MW94, III, 2.6] and [FFS98] for similar
result on the space of automorphic forms). We refer the reader to Section A.0.2 for a
reminder on summable and absolutely summable families in locally convex topological
vector spaces.

Theorem 2.9.4.1. — Let w be a weight on [Glp. Then

1. For every subset X C X(G), the orthogonal projection S([Glp) — L;([G]p) extends by
continuity to a projection

L2 ([Glp)™ = L, x([GIp)™, ¢ — ¢x.

Moreover, for every ¢ € LQw([G]p)OO the family (@) yex(G) i summable in LQw([G]p)OO
with sum .

2. For every subset X C X(G), the orthogonal projection 1? ([Glp) — ng([G]p) restricts to
a continuous projection

S(Glp) = Sx([Glp), ¢+ ¢x.

Moreover, for every @ € S([Glp), the family (¢, ) yex(c) i absolutely summable in S ([G])
with sum @.
3. For every subset X C X(G) and F € {C, T, S,}, the projection S([Glp) — Sx([Glp)

extends by continuily to a projection
F(Glp) = Fx(Glp), ¢ ¢x,
satisfying the adjunction
(2.9.4.4) (px, ¥)p = (@, ¥z, for (p,¥) € T(Glp) x SUGTp).

Moreover, there exists No > 0 such that for every N > 0 and every function ¢ € C([Glp)

(resp. @ € Ty([Glp), resp. ¢ € Sy nx(IGlp)) the family (@y),ex(c) s absolutely
summable in C([G1p) (resp. TN, ([Glp), resp. Su.ning ([Glp)) with sum ¢.

Progof — First, we note that point 1. implies points 2. and 3. Indeed, that
the orthogonal projection S([Glp) — Lge([G]p) induces continuous linear projections
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F(Glp) = Fx(Glp) for F € {S,C,T,S,} follows from the alternative descriptions
(2.5.7.6), (2.5.8.7), (2.5.10.8) and (2.5.11.9) in terms of weighted L* spaces. Let ] C G(Ay)
be a compact-open subgroup. Let ¢ € S([G]pY. Then, the first point of the theorem im-
plies that (¢, ) yex () 15 @ summable family in L‘f\~([G]p)c>OJ for every N > 0. On the other
hand, by Proposition 2.5.5.1, for every N > 0 and € > 0 the inclusion LIQWE([G]p)OOJ C
LIQ\v([G]p)OOJ is nuclear (note that 0{,10 & |I.1I$)- Therefore, by Lemma A.0.6.1, for every
N > 0, the family (¢,),exG) 1s actually absolutely summable LIQ\I([G]p)OOJ le. it is ab-
solutely summable in S([G]p) (by the presentation (2.5.7.6)). That it sums to ¢ is clear.
The statements on absolute summability in point 3. can be similarly deduced from point
1. noting that, by (2.5.5.4), there exists N; > 0 such that for every N > 0

Ll i, [GI)™ C Tux(Gle) C LYy, [GI)™

(resp. [ L2 xpx, 0 (G19)™ € Sy x([Glp) € [ L2 x_x,.r (GI0)™)

r=0 r=0

so that for Ny > 2N, the inclusion T, x([GlpY C Tynin, ([GlpY (resp. Sy n([GlpY C
Suning([GlpY) factors through the nuclear inclusion LQw—l,foNI ([G]p)>Y C

L2 v, e [GI)>T (resp. (M), L2nnywr ([GI0) ™ C )50 L2 xon, e, ([G1p)™Y) for
some € > 0. Finally, by density of S([Glp) in T ([G]p), the adjunction (2.9.4.4) can be
deduced from a similar adjunction for Schwartz functions.
We prove 1. by induction on ay — ap. For P = P, we have w ~ w, and the result
follows from (2.9.2.2). Assume now that 1. holds for every parabolic subgroup Q C P.
First we assume that w 3> w, (recall that w, stands for the restriction of w to Ay°).
By Corollary 2.5.15.2, in this case we have a closed embedding

(2.9.4.5) L (Gl =[] L (Gl)™ X L, (GI™, ¢~ (oo, ¢) -
QgCP

Moreover, by the induction hypothesis, for Q C P, we have projections L2 _([Glp)* —
U)Q

Li@ Gl 2 (pg‘ satisfying 1. To prove the existence of the continuous projection

@ € L2([Glp)® > ¢x € LlQU’ = ([G]p)™, it suffices to check that the continuous projection

(((pQ)Q, Q) > ((go%)Q, ¢x) of HQ,QP Li}é([G]Q)OO X Li)A([G]P)OO preserves the image of
(2.9.4.5). This readily follows from the identity

(2.9.4.6) (px)o = (pg)x, foreveryp e LiA([G]P)oo and Q C P.

We emphasize that in the above equation, ¢x 1s defined through the orthogonal projec-
tion LiA([G]p)C>O — Lfm’ +([Glp)™ whereas (@) x is given by the projection T ([Glg) —
Tx([Glg) from the third part of the theorem (and which exists by the induction hypoth-
esis).
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To show (2.9.4.6), we check that ((¢x)qo.V¥)o = ((9g)x, ¥)q for every ¢ €
S([Glg). By the induction hypothesis again, we have ¥ = ¥y + Y* where ¥y €
Sx([Glgp) and Yt e Sx([G]Q). Moreover, by Lemma 2.9.3.1, we have (¢x, EPQ(lﬁx))p =

(@, EPq(Wx))P and (@x, E]é(l//x))p = 0. Therefore,

((P) x> Vo = (9q, ¥x)q = (¢, Eg(lﬁx))? = (px, Ea(lﬁ))p
= ((px)a, ¥)a

and this proves (2.9.4.6).

Let g € LQw([G]p)oo. By induction, for every Q C P, ((¢g),)yex (@) Is a summable
family in LQWQ([G]Q)Oo with sum @q. Moreover, as wy 1s a weight on AR, (¢,)ex@) 13
a summable family in Liﬁ\([G]P)OO with sum ¢. Since (2.9.4.5) 1s a closed embedding, by
(2.9.4.6) we deduce that ((px) 4<x(G) 1s a summable family in L2 ([G]p)*® with sum ¢. This
ends the proof of 1. whenever w > wj.

Note that the weight w = ||.||} satisfies the condition w > wy (see (2.4.1.6)).
Therefore, we have already establish 1. for the spaces Ly ([G]p)*® (N > 0) and thus, by
(2.5.7.6) and the reasoning from the beginning, we can already deduce statement 2. for
Pp.

We now deal with the case of a general weight w. Set w’ = max(w, w,). Then,
w' > w), = w, and therefore the existence of the projections ¢ € LQw,([G]p)Oo > @x €
Li}/, 1 ([G]p)*™ has already been established. By Corollary 2.5.15.2 again, we have an open

surjection

[T (Gl)™ x L., (IG1p)™ — L., (IG1p)™,
ace  °

(2.9.4.7)
(¥ Dq¥) > D EGWY + .
Qcp

We now check that the projection ((lﬁQ)Q, 1//) > ((l”a%)q’ 1//33) descends to this quotient

1.e. that it preserves the kernel of (2.9.4.7). For this, it suffices to show that for every Q C P,
we have

(2.9.4.8) (EPQ(WxQ), Q)p = (EPQ(WQ), ox)p, for (Y% ) € LQwé([G]Q)OO x S([Glp).

By the density of S([G]g) in Li}+ ([Glp)™, we can restrict ourself to prove (2.9.4.8) when
Q

Yyle S ([Glg) in which case it readily follows from (2.9.4.6).
Let ¢ € Lij([G]p)oo — @x € Li([G]p)oo be the continuous projection descended

from ((wQ)Q, 1//) = ((W%)Q, 1//33) via the surjection (2.9.4.7). By (2.9.4.8), its image
lands in LQUJ’%([G]I:)oo and it extends the projection ¢ € S([Glp) — ¢x € Sx([Glp). Fi-
nally, let ¢ € L2 ([G]p)™ that we write ¢ = ZQQP Eg(iﬁq) + Y where ((wQ)Q, 1#) €
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HQQP L2+([G]Q)°° X LQw,([G]p)OO. Then, for every Q C P, (W)(Q)Xex(g) is a summable
we
family in L2, ([Glp)™ with sum ¥ 2 by the induction hypothesis whereas (V) )yex@) Is a
we

summable family in L2, ([G]p)™ with sum ¥ by the case already treated. Thus, from the
continuity of the map (2.9.4.7), we deduce that

X €XG) > g, =Y EGWD +y,
QCP

is a summable family in L2 ([G]p)™ with sum ¢. We have now completed the proof by
induction of 1. and hence of the theorem. 0J

2.9.5. Let X € X(G) be a subset. By the previous proposition, we have com-
patible continuous projections ¢ > ¢x from S([Glp), C([G]p) and LQ_N([G]p)OO onto
Sx([Glp), Cx([G]p) and LEN’%([G]p)Oo respectively. As S([Glp) is dense in both C([G]p)
and LEN([G]p)OO this entails that

(2.9.5.9) Sx([Glp) is dense in Cx ([Gp) and L2 1 ([G1p)™.

2.9.6. Assume that G = G| x Gy where G; and Gy are connected reductive
groups over I and write P = P, x Py accordingly. Then, we have a natural identifi-
cation X(G) = X(G;) x X(Gy). For subsets X; € X(G;) and compact-open subgroups
J: € Gi(Ap), i=1,2, setting X = X; x Xy and J =], X Jo, the projection S([G]p) —
Sx([GlpY (resp. C([GlpY — Cx([Glp)) corresponds via the isomorphism (2.5.12.11) to
the (completed) tensor product of the projections space S([G;]p, V' — Sx,([G;]p, V' (resp.
C([Gl’]pi)]i — Cxi([Gi]Pi)Jl) for 2 =1, 2 as can readily be seen by looking at pure tensors.
It follows that

Sz, ([G1])' ®Sx, ([G])? >~ Sx ([G]Y and
Cx, ([G1]Y'®Cx, ([GolY? =~ Cx (IG]Y

by restriction of the isomorphisms (2.5.12.11).

(2.9.6.10)

2.9.7. Regular cuspidal data. — We say that a cuspidal datum x € X(G) is regular if
it is represented by a pair (Mp, ) such that the only element w € W(P) satisfying wm >~
7 is w = 1. The next result can be deduced from Langlands spectral decomposition
[Lan76] but we prefer to give a direct proof.

Proposition 2.9.7.1. — Let x € X(G) be a regular cuspridal datum and P C G be a parabolic
subgroup. Then, for every ¢ € Li ([G)) we have pp € Li ([G]p).

Progf — By duality, it suffices to show that the pseudo-Eisenstein map ES extends
to a continuous application from Li([G]p) into L2([G]). Let {x; | - € I} be the inverse
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image of x in X(Mp). Then, we have an orthogonal decomposition

L2 ([Glp) = DL (G

el

where Li;([G]P) denotes the subspace of ¢ € L2([G]p) such that m > 8p(m)~"2¢(mg)
belongs to Li[([Mp]) for almost all g € G(A). Thus, it suffices to show that ES extends
to a continuous application from Lii([G]p) into L?([G]) for each ¢ € I. Fix 7 € I and
let (Mg, ) be a pair representing x; (where Q C P). Then, the inverse image of x; in
X(Mp) consists of the pairs (wMwal, w7) where w € WM? is such that wl\/IQw*1 is the
Levi component of some standard parabolic subgroup wQ). Therefore, by definition of

Lii([Mp]), Li;([G]P) is the closure of

(2.9.7.11) ) B! (Sur(Glug))

in L2([G]p) where w runs over elements w € WM? as before. Thus, we just need to check
that for every such w € WM, ¢ € S, ([Glg) and ¢’ € S, ([Glug), we have

(2.9.7.12)  {ES(9), ESo(@))6 = (E5 @), EL o (@),

since it will implies that the restriction of ES to the subspace (2.9.7.11) is an isometry.
By the calculation of the scalar product of two pseudo-Eisenstein series [MW94,
Proposition 11.2.1],” we have

(ES(@). ESo (@) Zf Mwwo)gs. ¢, ) rad

woeW(Q) ¥ 1900

where A € ag, belongs to the range of absolute convergence of the intertwining operators

M(wwo) . AQ,m,(:usp(G) - AwQ,(wwgn)wwok,cusp(G)-

As x 1s regular, for every wy € W(Q) different from 1, we have wwym 2% wm and there-
fore M(wwy)g;, is orthogonal to (p’_wwox for every A € iaa + Ag. It follows that the above
expression reduces to

(ES (), ESo (¢))o f M)gs. @', nucdh.

iaa+ko

A similar argument shows that (Eg(@» EEQW] (¢"))p is also equal to the right-hand side
above. This shows (2.9.7.12) hence the proposition. 0J

> Strictly speaking loc. cit. only applies to K, -finite pseudo-FEisenstein series. However, the proof, which ultimately
rests upon the computation of the constant terms of cuspidal Eisenstein series in their range of convergence, extends
verbatim to general smooth pseudo-Eisenstein series. The skeptical reader can also assume that both ¢ and ¢’ are K-
finite since, by density of the respective subspaces of Ko -finite vectors, it suffices to check (2.9.7.12) for such functions.
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Corollary 2.9.7.2. — Let x € X(G) be a regular cuspidal datum, P be a standard parabolic
subgroup of G and xy be the inverse image of x in X(Mp). Then, for every ¢ € S, ([G]) and
s € Hq, the function

¢r.tm € [Mp] = 8p ()™ p(m)
belongs to C,,, ([Mp]). Moreover, the family of linear maps

8)( ([G]) - CXM([MP])v @ = gDP,s

Jor s € H~ is holomorphic.

Proof — Let ¢ € S, (IG]). By Lemma 2.9.3.1, ¢p,, is orthogonal to S®([Mp]) for
all s € G. Hence, we just need to show that the map s+ ¢p, induces a holomorphic
function H.q — C([Mp]). Note that by Lemma 2.5.13.1, ¢p, € C([Mp]) for R(s) > 1.
Thus, by the previous proposition, it suffices to show:

(2.9.7.13) Ify € L*([Mp])™ is such that ¥, := 83y € C([Mp]) for R(s) > | then s > ¥,
induces a holomorphic function H.o — C([Mp]).

For X € m,, we have
RX) ¢, = (2s — D{pp, X) ¥, + (RX) V),

(where we consider pp as an element of the dual space m7 ) and it follows, by the equality
(2.5.8.7), that it suffices to check that for every d > 0 the map s — ¥, induces a holomor-
phic function H.o — L(QL ,([Mp]). By Holder inequality, for & > 0, :(s) > 0 and ¢ > 1
we have

1-9(s)/¢ R(s)/t
1z, < I " s

‘o,1d /N (s)

and this implies V¥, € Li,d([Mp]). The holomorphy of the map s € H.y = ¢, €
Lf, ,(IMp]) 1s equivalent to the holomorphy of s € H.¢ = (¥, @)\, for every ¢ €
Lé’_ ,([Mp]) but this follows from the usual criterion of analyticity for parameter inte-
gral and the domination

[Vl < 1 |+ 1, |
for every s € G and & > N(s) > ¢;. ]

Letn > 1. For G = GL,, regular cuspidal data admit the following explicit descrip-
tion. Let x € X(GL,) be represented by a pair (Mp, ) where

My, =GL, x---x GL,
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is a standard Levi subgroup of GL, and
r=mX... X

is a cuspidal automorphic representation of Mp(A) (with a central character trivial on
AY’). Then, x is regular if and only if 7r; % 7; for each 1 <1 <j < £.

2.9.8. We now assume that G is a product of the form Resg, , GL, x --- X
Resk, r GL,,, where Ky, ..., K, are finite extensions of F. Let x € X(G) be a regular cus-
pidal datum represented by a pair (Mp, 7) € X(G). Set IT = Indg((:)) (m) = Ap 7.cu5p(G)
for the normalized smooth induction of 7. Let By, be a K-basis of I as in Section 2.8.3.

For ¢ € S([G]) and A € iaj the series

(2.9.8.14)  on, = Y (9, E(, M)GE®W,2)

weBP,n

converges absolutely in Tx([G]) for some N (that may a priori depend on A). Indeed,
this follows from the continuity of the linear map ¥ € Ap ,(G) — E(¢, 1) € Tx([G])
for some N > 0 (see Section 2.7.3) together with Proposition 2.8.4.1 and the Dixmier-
Malliavin theorem. The next theorem is a slight restatement of (part of) the main result
of [Lap13].° We refer the reader to Section A.0.9 for the notion of Schwartz function
valued in a TVS.

Theorem 2.9.8.1 (Lapid). — There exists N > O such that for ¢ € C([G)), the series
(2.9.8.14) stll makes sense (that is the scalar products (¢, E(Y¥r, L)) are convergent) and converges
in IN([G]) for every A € ia}. Moreover, the function A € ia}y +— ¢, € IN([G]) is Schwartz, in
particular absolutely integrable, and if ¢ € C, ([G]) we have the equality

goz/ o, dA.
iap

Proof. — Note that G satisfies condition (HP) of [Lapl3]: it is proven in loc. cut.
that general linear groups satisfy (HP) and it is straightforward to check that prod-
ucts of groups satisfying (HP) again satisfy (HP). The first part of the theorem is then
a consequence of [Lapl3, Proposition 5.1]. Indeed, by Dixmier-Malliavin we may as-
sume that ¢ = R(f)¢" where ¢’ € C([G]) and [/ € C®(G(A)). By loc. cit. the scalar
product (¢, E(¥, 1))¢ converges for every ¥ € Bp, and there exists N > 0 such that
Y — E(, 1) factors through a continuous linear mapping IT — 7Tx([G]) for every
A €aj. As

<90’ E(W, A))G == <(P/’ E(R(f*)‘ﬁ’ )")>G7 (Y € BP,JT’

% Note that in /oc. ¢it. the Harish-Chandra Schwartz space C([G]) is denoted by S(G(F)\G(A))
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we deduce by Proposition 2.8.4.1 that the series (2.9.8.14) converges absolutely in
Tx([G)) for every A € iaj. That the function A € ia} > ¢, € Tx([G]) is Schwartz fol-
lows similarly from [Lap13, Corollary 5.7]. The last part of the theorem is a consequence
of [Lap13, Theorem 4.5] since x regular implies that Li ([G]) 1s included in the “induced
from cuspidal part” Lf([G]) of L2([G]), with the notation of loc. cit. ]

2.10. Automorphic kernels

2.10.1. Let P C G be a standard parabolic subgroup. The right convolution by
/ € S(G(A)) on each space of the decompositions (2.9.2.1) gives integral operators whose
kernels are respectively denoted by Ky p(x,7), Ky p ,(x,7), KY P(x, ) and K fP X(x )
where x, 7 € G(A). If the context is clear, we shall omit the subscrlpt / in the notation
as well as the subscript P when P = G. The kernels are related by the following equality
for all x, y € G(A)

K%, () = / Ky (x. 0)3p(a) "2 da

Recall that we write [G]ll, for the preimage of 0 by the map Hp : [G]p — ap.

Lemma 2.10.1.1. — There exists Ny > 0 such that for every weight w on [Glp (see Section
2.4.3) and every continuous semi-norm ||.|lw.x, 0n TN, ([Glp), there exists a continuous semi-norm

|l.lls on S(G(A)) such that for f € S(G(A))

22011 > [Kpp, ) < Il w@w) ™", .y € [Gl,

x€X(G)

2.10.1.2) Y K, )l < I sIxFw@w() !, vy € Gl

xeX(G)

and

2.10.1.3) > [Krp, C)llux, < Iflsw®) ™, y € [Gly.
X€X(G)

Proof. — Obviously, (2.10.1.3) implies (2.10.1.1) and (2.10.1.2) thus we will only
prove this last estimate.

First, we note that there exists Nj; > 0 such that, for every weight w and every
/€ S(G(A)) the operator R(f) of right convolution by f induces a continuous map
T2([Glp) — ﬂ,,N()([G]p). Let f € S(G(A)) and for x € X(G), let R, (f) be the compo-
sition of R(f) with the “x-projection” defined by Theorem 2.9.4.1. Then, from the third
point of this theorem, we deduce the existence of Ny > 0 such that, for every weight w,
R, (f) sends 7;?([(}];,) continuously into 7, n,([G]p) and for every ¢ € 7;?([(}][)), the
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family (R, (f)®) yex(c) is absolutely summable in 7T, , ([G]p). By the uniform bounded-
ness principle, this implies the existence of a constant C > 0 such that

(2.10.1.4) Z IR, (N@llwx, < Cllglh w1, forevery ¢ € T ([Glp)

X€X(G)

where we recall that ||.||1 -1 is the norm defining the Banach space 7.)([G]p) see Section
2.5.9 (we emphasize that the peculiar appearance of w™' as an index in the right hand
side 1s purely the effect of a slight inconsistency in our notation). Using the fact that
S = R, (f)¢ is continuous, we get, once again by the uniform boundedness principle,
the existence of a continuous semi-norm ||.||s on S(G(A)) such that for / € S(G(A)),

(2.10.1.5) Z IR, (N@llwx, < I lsl@liw-t,  for every ¢ € TU(Glp).

x€X(G)

Applying (2.10.1.5) to ¢ = §, the Dirac measure at y € [G]p gives the inequality
(2.10.1.3) (note that R, ()8, = K/ p , (., 9)). O

2.10.2. Let P be a standard parabolic subgroup of G and let M = Mp. Let x €
X(G) and A% +.disc (G) be the closed subspace of Ap i (G) generated by left AJy-invariant
functions whose class belongs to Li ([GIp.,0). We have a isotypical decomposition

0 (G) = éAP,n,dise (G)

P, x,disc

indexed by a set of discrete automorphic representations 7 of M(A). Let Bp, be a K-
basis of A% N i (G) that is the union U, Bp , over 7 as above of K-bases of Ap ; 4. (G)

(see Section 2.8.3). In the same way we define Bp , ; = U, Bp . for any 7 € K.
In the following, we add a subscript x or » to R(X) to indicate that this operator is

applied to the variable x or ». The next lemma is an extension to Schwartz functions of
results of Arthur, see [Art78, §4].

Lemma 2.10.2.1. — There exists a continuous semi-norm || - || on S(G(A)) and an integer
N such that for all X, Y € U(goo), all x,y € G(A)! and all f € S(G(A)) we have

3> P

YEX(G) PyCP

x / 201 D0 ROOE e e, R, (DEQ, 9. 1) dh

teR ¢€Bpy.r

< IR/ I
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Moreover for all x, y € G(A) and all x € X(G) we have

K] (6= [PMp)™ / LD B IO )e MEGL g R dhs

PycCP ap WEBP.X

Proof. — Let x € X(G) and 7 € K. Let P be a standard parabolic subgroup. For
f.2€S(G(A)), » €iay™* and x,y € G(A)! we define:

BP,X,‘L’()\" x’)}9f’ g) = Z E(X, IP()Hf)(p’ )‘)E(y’ IP()‘,g)(pa )‘)

WEBP.x,r

and

Ly Oux0. )= Y BlnTe(h, e, VEQ, ¢, 2).

WGBP,x,r

We denote by ¢; the measure supported on K given by deg(7) trace(z (k))dk where
dk 1s the Haar measure on K giving the total volume 1. We have ¢; * ¢, = ¢;. Let’s define
SV by fV(x) =f(x!) and let f; = ¢; * f * ¢;. We shall use the following properties one can
readily check:

(2.10.2.6)  R.(X)R,(Y)Lp o (A, 2,0, /) = Lp .o (A, %, 9, LXRY)S), X, Y € U(g0)
(2°10°2'7) BP,X,‘E(A" xa}yfa g) = /CP,X,‘[()\'v x,)/,f *gv)

(2.10.2.8) Lo, O, 2 ) =Bp O x,%,f,f) =0

<2'10'2'9) |‘CP,X,T()\" x?_y’f *gv)l < ‘CP,X,I()"a x’ xvf *fv)%‘CP,X,T()\'v_ya_yvg *gv)%
(2.10.2.10)  Lp, (A, x,0./) =Lp (A, x,0,/7)

(2.10.2.11) Ly, (A, x0./)=0,7 €K, ' #1.

From properties (2.10.2.6), we see that we are reduced to the case X =Y = 1. It suffices
to show that there exists an integer N and that, for any normal open compact subgroup
Ky C K™, there exists a continuous semi-norm || - || on the subspace S(G(A))X" of K-

bi-invariant Schwartz functions such that for all x, y € G(A)' and all / € S(G(A))* we
have

T e, ) < WIS IS

where we introduce

T N)= Y. Y IPMp)|™ / Lo Gy )] i,

x€X(G) PocP tap
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and
T )= Telxp.f).
reK

Indeed by the uniform boundedness principle and by (2.10.2.10) and (2.10.2.11) 1t is easy
to conclude. Note that 7, (x, 9, /) = T, (x,9, /7). Let m > 1 large enough and let Ky C K*
be a normal open compact subgroup. By a slight variant of Proposition 2.8.4.3, we can
find Z e U(9), &1 € C(G(A)) and g € C”(G(A)) such that

e 7 isinvariant under K, -conjugation;
e g, and gy are invariant under K-conjugation;

e for any f € S(G(A))® and any t € K we have:

JS=rxa+(*2)*g
ﬁ :ﬁ *Z1,t + (f*z)r *2r-

Thus the expression T (x, », /) is bounded by (the sums below are over T € K)
(2.10.2.12) O Trfex N QT4 %8

+OQ T (f )+ (P 2N O T 0y goe %))

Arthur shows in [Art78, p. 931 and corollary 4.6] that for every N > 0 large
enough there exists C > 0 such that

(2.10.2.13) > T (.0 %g%) < ClblI&

fori=1,2 and all y € G(A)'. At this point we are reduced to bound Yo T x, fr 1Y)
for any / € S(G(A)). Following [Art78, p. 931] (the compactness of the support of / plays
no essential role there), we get for any K-finite functions /' € S(G(A)):

(2.10.2.14) T (x, %,/ %/") <KJ, o (%, %).

Let N’ > 0 large enough. Using the weight w = || - ||}, we deduce from Lemma 2.10.1.1
that there exist N > N’ and a semi-norm || - || on §(G(A)) such that for all / € S(G(A))
and all x, y € G(A)' we have

K e) < ARSI IGY -

In particular, we deduce that for any N > 0 large enough there exists a continuous semi-

norm || - || on S(G(A)) such that for all f € S(G(A)) and all x € G(A)!

(2.10.2.15) Kﬁ*fv(x,x):f 1K (e ) [P dy < IIf 1PNl
[Glo
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We fix N, C > 0 and a continuous semi-norm || - || on S(G(A)) such that (2.10.2.13) and
(2.10.2.15) hold. Let’s define ||f]|2 = Y ek 2 1I? and

Al =17 Zllo + 1 1lo

for /' € S(G(A)). These are again continuous semi-norms on S(G(A)). Using the
majorization (2.10.2.14) for the K-finite function f; and the majorizations (2.10.2.12),
(2.10.2.13) and (2.10.2.15) we get

T /) < C2(xlle )N I/

for all x, y € G(A)! and f € S(G(A))*". Then we can deduce the first majorization.

To get the last equality, it is enough to observe that both members are defined and
continuous on S(G(A)) and that the equality holds on the dense subset of K-finite and
compactly supported functions (see [Art78, lemma 4.8]). UJ

3. The coarse spectral expansion of the Jacquet-Rallis trace formula for
Schwartz functions

This section has two goals. The first, accomplished in Theorem 3.2.4.1, is to ex-
tend the coarse spectral expansion 1=} s, I, of the Jacquet-Rallis trace formula for
linear groups G (as proved in [Zyd20]) to the Schwartz space. The second, given in The-
orem 3.3.9.1, is to provide spectral expressions more suitable for explicit calculations. An
asymptotic estimate of modified automorphic kernels (stated in Theorem 3.3.7.1) plays a
central role.

3.1. Notations

3.1.1. Let E/F be a quadratic extension of number fields. Let 1 be the quadratic
character of Aj attached to E/F. Let n > 1 be an integer. Let G/ = GL, y be the alge-
braic group of F-linear automorphisms of I". Let G, = Resgp(G/, x5 E) be the F-group
obtained by restriction of scalars from the algebraic group GL, 5 of E-linear automor-
phisms of E”. We denote by ¢ the Galois involution. We have a natural inclusion G/, C G,
which induces an inclusion Ag; C Ag, which is in fact an equality. The restriction map
X*(G,) = X*(G)) gives an isomorphism ag, ~ az‘};.

3.1.2. Let (B),'T) be a pair where B is the Borel subgroup of G/ of upper
triangular matrices and 1" is the maximal torus of G/, of diagonal matrices. Let (B,, T,)
be the pair deduced from (B, T") by extension of scalars to E and restriction to F: it is a
pair of a minimal parabolic subgroup of G, and its Levi factor.

Let K, C G,(A) and K/ =K, N G/ (A) C G/ (A) be the “standard” maximal com-

pact subgroups. Notice that we have K/ C K,.
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3.1.3. The map P’ P = Resyr(P" xy E) induces a bijection between the sets
of standard parabolic subgroups of G/ and G, whose inverse bijection is given by

P—P =PNG.

Let P be a standard parabolic subgroup of G,. The restriction map X*(P) — X*(P')
identifies X*(P) with a subgroup of X(P’) of index 2™ Tt also induces an isomorphism
apr — ap which fits into the commutative diagram:

Hpr

G.(A) —= ap

]

G.(A) —— @
For any standard parabohc subgroups P C Q, the restriction of the function 7:]9 to

ap coincides with the function ‘L’P, However we have for all x € G'(A)
(s Hp(0) = 2(pp, Hp ().

Remark 3.1.3.1. — The map ap — ap does not preserve Haar measures. In fact,
the pull-back on ap of the Haar measure on ap is 2™ times the Haar measure on ap.
In particular, although the groups Ay and Ap’ can be canonically identified, the Haar
measure on A is 29 times the Haar measure on A}

3.1.4. We shall use the natural embeddings G, C G/, and G, C G, where
the smaller group is identified with the subgroup of the bigger one that fixes ¢, and

preserves the space generated by (e, ..., ¢,) where (e, ..., ¢,) denotes the canonical
basis of F"*+!.

3.1.5. LetG=G, x G,y and G' =G| x G, |. Thus G’ is an F-subgroup of G.
Let

1:G, = G, x G,y

be the diagonal embedding. Let H be the image of ¢ (so H is isomorphic to G,).
For an element g € G(A) we will always write g, and g,y for its components in
G,(A) and G, (A) respectively.

3.1.6. Let det, (resp. det,;) be the morphism G’ +— G,, r given by the determi-
nant on the first (resp. second) component. Let 1 be the character G'(A) — {£1} given
by

ne (¢) = n(det, ()" n(det1(€)" ¢ €[G].
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3.1.7. Let K=K, x K,4: it is a maximal compact subgroup of G(A). We de-
fine pairs (Py, My) = (B, x B4, T, x T,4) and (P{, M) = B, x B, |, T, x T, ) of
minimal parabolic F-subgroups of G and G with their Levi components. As in Section

3.1.3, we have a bijection given by
P—P=PNG

between the sets of standard parabolic subgroups of G and G'.

3.1.8. Any parabolic subgroup P of G admits a decomposition P =P, x P, .
We introduce the “Rankin-Selberg set” Fgs as the set of F-parabolic subgroups of G of
the form P =P, x P,;; where P, is a standard parabolic subgroup of G, and P,;; is
a semi-standard parabolic subgroup of G, such that P,.; N G, = P, (here we use the
embedding G, = G,4)).
For P € Fgs, we set
Py=PNH,P=PNG,P,=P,NG,and P, =P, NG

n+1°

Let P, Q € Fgs be such that P C Q (from now on, when we write P C Q) € Fgs we

Q;H»l _ Qﬂ+ 1

; =
Pﬂ+1 Py

coincide with 7y, ,, Tp,,,, OI%T respectively.

always implicitly assume that both P and Q) are in Fgs). Then, we have a and

Q:1+l
w1 OP;+1
We will only use the latter set of functions for convenience. We let

the characteristic functions ff\p;H , Tp

. Qn+l
6;9 =(— 1)dlm(al)u+1 )_

We set 4,41 =ap,,, and a;,| = a;;H (see Section 2.2.9).

3.1.9. For P, Q € Fgs, we define two weights on [G]p by

Ap(g) = inf lg;" g ll - and

yeMp,, (DN, | (A)

ds*® (9) = min(dg*' (8.), 4t (g41))

n+1

for g € [G]p. Note that Ap(k) ~ 1 for 4 € [H]p,,. Moreover, by Lemma 2.4.4.2, we have
(3.1.9.1) A% (o) < dS(e), for g € [Glp.

From Lemma 2.4.3.1, we also deduce:

(3.1.9.2) Yor every weight w on [G,4]p,,,, there exists Ny > 0 such that

n+12

w(gn+l) << w(gn)AP(g)NOv fOl"g = (grz’gn+1) € [G]P
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3.1.10. We will throughout consider a parameter T € a,,, that we assume most

of the time to be “sufficiently positive”. More precisely, set
d(T)= imf a(T)
(XEAIH—I

where we write A,y for Ag, . Then, when we write “for T sufficiently positive”, we
mean “for T such that d(T) > max(e|T|, C)” where ||.|| is an arbitrary norm on the
real vector space a,4;, C > 0 is a large enough constant and ¢ > 0 is an arbitrary (but in
practice small enough) constant.

3.2. The coarse spectral expansion_for Schwartz_functions
3.2.1. Letf € S(G(A)) be a Schwartz test function (see Section 2.5.2).

3.2.2. Let P be a parabolic subgroup of G. The right convolution by f on
L*([G]p) gives an integral operator whose kernel is denoted by Kp s Let x € X(G).
Replacing L*([G]p) by its closed subspace Li([G]p) (see (2.9.2.1)), we get a kernel de-
noted by Kp , r. We have Kp y = erae(G) Ky, s. If P= G, we omit the subscript P. If the
context is clear, we will also omit the subscript /.

3.2.3. A modified kernel. — Yor h € H(A), ¢ € G'(A), x € X(G) and T € a,,; we
set

3.2.3.1) K;X(h,g’) =
Yo > >t (Hp,, (8,g) — Tp )Krp, (vh 8¢,

PeFrs y €P(F)\H(F) §eP'(H)\G/(F)
where

e we recall that § = (§,,6,11) and ¢ = (g, g,,,) according to the decomposition
G =G, x G

e in the notation Hp,, (d,g,), we consider §,g, as an element of G/_
embedding G, — G/, );

o Ty, is defined as in Section 2.2.12.

(A) (via the

Remark 3.2.3.1. — 'This is the kernel used in [Zyd20] for compactly supported
functions. Since we are considering a Schwartz function f, the sums over y and § are not
necessarily finite. However, the component §, may be taken in a finite set depending on g/
(see [Art78] Lemma 5.1) and we can check that the sum defining K} . 1s also absolutely
convergent. To see this, we can use the following majorization: for every N > 0 there
exists N' > 0 such that

3.2.3.2) D [Kpe, ()| <x I A1 g 115N o for (h.g) € [Hlp, x [G'lp-
X€X(G)
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This inequality is a simple consequence of Lemma 2.10.1.1 applied to the weight w =
ARG since llg e, < Ap(@) g Il (recall that [lgg'l| < lighllgI)-

3.2.4.

Theorem 3.2.4.1. — Let T e a.

n+1+

1. The map

feSGAaN- 3 f[H] /[G,1|K}X<h,g’)|dg’dh

X€X(G)

is given by a convergent integral and defines a continuous semi-norm on S(G(A)).
2. As a function of T, the integral

(3.2.4.3) L ()= / / K} (hg)nc(g) dg dh
[H] J[G']

cowncides with an exponential-polynomual function in ‘T whose purely polynomual part is con-
stant and denoted by 1, (f).

The distributions 1, are continuous, left H(A)-invariant and right (G’ (A), n¢')-equivariant.
4. The sum

©°

3.244)  I(N=> L(

is absolutely convergent and defines a continuous distribution 1.

Remark 3.2.4.2. — The last statement is the “coarse spectral expansion” of the
Jacquet-Rallis trace formula for G as introduced by Zydor in [Zyd20].

Progf. — All the statements but the continuity and the extension to Schwartz func-
tions are proved in [Zyd20, Theorems 3.1 and 3.9] for compactly supported functions.

The assertion 1 follows from the combination of majorization (3.3.7.10) of The-
orem 3.3.7.1 below and Proposition 3.3.5.1 for the map (3.3.5.6). Note that assertion 1
implies the continuity of I?. The assertion 2 can be proved as in [Zyd20, proof of Theo-
rems 3.7]. One only needs the slight extension of assertion 1 to modified kernels defined
in (3.7.4.2) associated to Levi subgroups (see comment above (3.7.4.2)). Continuity and
assertion 4 are then the result of the explicit formula of [Zyd20, Theorem 3.7 | which
also holds for Schwartz functions. Finally one proves assertion 3 as in [Zyd20, Theorems

3.9]. O
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3.3. Auxihary expressions for I,

3.3.1. The goal of this section is to provide new expressions for the distribution
I, defined in Theorem 3.2.4.1. In this paper, we will use these expressions to explicitly
compute I,. The main results are subsumed in Theorem 3.3.9.1. Before giving the state-
ments, we have to explain the main objects. Note that the proof of Theorem 3.3.9.1 relies
on two other results, namely Theorem 3.3.7.1 and Proposition 3.3.8.1 whose proofs will
be given in subsequent sections. On the other hand Theorem 3.3.7.1 was also used in the
proof of Theorem 3.2.4.1.

3.3.2. The Ichino-Yamana truncation operator. — Let T € a,4,. In [IY15], Ichino-
Yamana defined a truncation operator which transforms functions of uniform moderate
growth on [G,4,] into rapidly decreasing functions on [G,]. By applying it to the right
component of [G] = [G,] X [G,4], we get a truncation operator which we denote by A;F
(the subscript 7 is for right). It associates to any function ¢ on [G] the function on [H]
defined by the following formula: for any 4 € [H]:

(3.3.2.1) (A=Y e > F, (Hp, (5h) = Tp_ )gc,xp,., (8h)

PeFrs dePy (F)\H(I)

where we follow notations of Section 3.2.3. Note that in the expression Hp ,, (8%), we view
dh as an element of G4, (A) by the composition H < G — G, where the second map
is the second projection. We denote by ¢, «p,,, the constant term of ¢ along G, X P, ;.

For properties of A! we shall refer to [IY15]. However for our purposes it is con-
venient to state the following proposition.

Proposition 3.3.2.1. — For any positive integers N and N', any open compact subgroup Ky C
G(Ay), there is an integer r > 0 and a finite famuly (X;)icr of elements of U(gc) of degree < r such
that for any ¢ € C'(G(F)\G(A)/Ko) we have for all h € [H]

AT ® < AIFE D" (sup 1Y IRKD@)()])

o €G@A)

Progf. — The result, a variant of Arthur’s Lemma 1.4 of [Art80], is proven in
[IY15], Lemma 2.4. O

Let g € [G]. We shall apply the truncation operator A' to the map x € [G]
Ky ,(x,g). After evaluating at 2 € [H] we get an expression we shall simply denote by
ATKy y (h 9).

Proposition 3.3.2.2. — For every N > 0, there exists a continuous semi-norm ||.||s on

S(G(A)) such that for f € S(G(A))

(3.3.2.2) > IATK, 9l < I s Il gl

X€X(G)
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Jor h e [H] and g € [G].

Progf. — Using the weight w = || - |[¢ on G(A) we deduce from Lemma 2.10.1.1
that Ny > 0 and for all N > 0 a continuous semi-norm || - || on S(G(A)) such that:
(3.3.2.3) Y 1K G < W I,

XEX(G)

for all x, » € G(A). The right derivatives in the first variable of the kernel K, , (x, ») can
be expressed in terms of the kernel K, associated to left derivatives of f. Let K, be
a compact subgroup of G(A;). We deduce from (3.3.2.3) and Proposition 3.3.2.1 that
there is a continuous semi-norm || - || on S(G(A)) such that for any /' € S(G(A)) that is
left-invariant under K, we have

> AR, gl < I IR el
x€X(G)

for all 4 € [H] and g € [G]. This gives the proposition (a semi-norm on S(G(A)) is con-
tinuous if and only if its restriction to S(G(A))* is continuous for every compact-open
subgroup Ky C G(Ay)). U

3.3.3. Convergence of a furst integral. — It is given by the following proposition.

Proposition 3.3.3.1. — The map

(3.3.3.4) [eSGAY- Y. / IAYK,, (h, ¢)|dhdg .

XEX(G) [H]x[G']

is given by a convergent integral and defines a continuous semi-norm on S(G(A)).
Proof. — 1t is a straightforward consequence of Proposition 3.3.2.2. U

3.3.4. Arthur function ¥+ (-, T). — For T € a,,, sufficiently positive, we shall use
Arthur function Fé+1 (-, T) (see [Art78] §6). It is the characteristic function of the set
of x € G,y (A) for which there exists a § € §”+1(F) such that dx € si,,, (see Section
2.2.13) and (w, Hy(8x) — T) <O for all w € Ay, . Recall also that FO+1 (-, T) descends
to characteristic function of a compact subset of Z,;1(A)G,+1 (F)\G,+1(A). We will also

use the function FGm1 (+, T) defined relatively to G/, -

3.3.5. Two other convergent integrals.

Proposition 3.3.5.1. — The maps

(3.3.5.5) feSGAY~ Y / Fort (h, T)|K, (ks )| dhdg’
[H]x[G']

x€X(G)
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3356 [eSG@Y~ Y [ F DK ) didd
[H]x[G']

X€X(G)

are given by convergent integrals and define continuous semi-norms on S(G(A)), where as usual g =
@ 811) € G,A) x G, (A).

Proof. — Observe that the restriction of Fé+! (-, T) to [H] is compactly supported.
Then the convergence and the continuity of the integral (3.3.5.5) follow from the ma-
jorization (3.3.2.3).

Using Lemma 2.10.1.1, (see also comments on inequality (3.2.3.2)), we see that for

every N > 0 there exists N’ > 0 and a continuous semi-norm ||.|| on S(G(A)) such that
3357 Y [Kon, )| < IFILI 1A I 5 -
XEX(G)

for (7, g') € [H] x [G'] and f € S(G(A)).
The convergence and continuity of the integral (3.3.5.6) result from the above in-
equality and the fact that the restriction of F¢+1 (-, T) to [G'] is compactly supported. [J

3.3.6. A second modified kernel. — Let f € S(G(A)). For T € a,,1, x € X(G) and
(h,g") € [H] x [G'], we set

(3.3.6.8)  «  (he)=D e Y T, (He,(rh) —Te K p,(rh 5g).

PeFRrs y €Pu(F)\H(F)
8eP' (F)\G'(F)

Remark 3.3.6.1. — Here the expression Hp, (%) is understood as the value at
he HA) = G,(A) C G,4(A) of the map Hp,, . The expression defining Kj}:x 1s absolutely
convergent as the sum over y € Py(F)\H(F) is finite (see [Art78, Lemma 5.1]) and K/ p ,
1s rapidly decaying in the second variable, see (3.3.2.3).

3.3.7. Asymptotics of the modified kernels. — We find that the modified kernels
(3.2.3.1) and (3.3.6.8) are asymptotic for large parameters T to the kernels truncated
by Arthur’s characteristic function. More precisely we have:

Theorem 3.3.7.1.

1. For every N > 0, there exists a continuous semi-norm |.||s.x on S(G(A)) such that

(3.3.7.9) > )K},X(h,g’>—F‘“’l’zﬂcg,;,T)Kf,X(/z,g’) < e NMAN G IGN I s
XeX(G)
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Jor f € S(G(A)), (h,g) € [H] X [G'] and T € a,1, sufficiently positive. In particular,
Jor every N > 0, there exists a continuous semi-norm ||.||s.x on S(G(A)) such that

(3.3.7.10) > f[H] [G/]‘K./’T,x(h’ &) —Foi (g, DK, (h.g)| dhdg

n’
xX€X(G)

<M s

forf € S(G(A)).

2. For every N > 0, there exists a continuous semi-norm ||.||s.x on S(G(A)) such that
(3.3.7.11) >~ ]K},X (h &) = ¥ (b, DKy (b )| < e NTAIT NG I s
X€X(G)

Jor f € S(G(A)), (h,g) € [H] X [G'] and T € a,1, sufficiently positive. In particular,
Jor every N > 0, there exists a continuous semi-norm ||.|| s x on S(G(A)) such that

(3.3.7.12) > /
[H]x[G']

x€X(G)

—N|T
< NS lls N

i} (b, g) = FO1 (h, TYK (b, &) | dhdg

forf € S(G(A)).

Progf. — The proof of 3.3.7.1 will be given in Section 3.6 after some preparation
provided by Sections 3.4 and 3.5. Note that the asymptotics (3.3.7.10), resp. (3.3.7.12), is
an obvious consequence of (3.3.7.9), resp. (3.3.7.11). 0J

3.3.8. Recall that we have built distributions I, in Theorem 3.2.4.1 from the
kernel K. The following Proposition shows that one could have defined I, using the
kernel KTX

x*

Proposition 3.3.8.1. — Let x € X(G)
1. The integral
() = / K" (h g0 (¢ de .
[HIx[G']
us absolutely convergent for T € a,41 sufficiently positive.
2. The map T — zg(f ), when T s sufficiently positive, concides with an exponential-

polynomial whose purely polynomial part is constant and equal to 1, (f).

Progf. — 'The first assertion follows from Proposition 3.3.5.1 and the asymptotics
(3.3.7.11) of Theorem 3.3.7.1. The second assertion will be proved in Section 3.7. UJ
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3.3.9. We can now state the final theorem of the section.

Theorem 3.3.9.1. — Let x € X(G) and [ € S(G(A)). For T € a,1 sufficiently positive
T . . . .
let P, (f) and IXT (f) be one of the following pairs of expressions:

(3.3.9.13)  I1'(/) and / Fo (g, K, (h, &) 16 (¢) dhde'

[H]x[G']

(3.3.9.149 () and / Fo' (h, T)K, (h, &) 16 (¢) dhde’

[H]x[G']

(3.3.9.15) (/) and f ATK, (h, &) N () dhde .
]

[HIx[G'

1. The integral defining IXT (f) s absolutely convergent and the map T +— PI (f) coincides

Jor T € a,4\ sufficiently positive with an exponential-polynomial whose constant term equals

L ().

2. For every N > 0, there exists a continuous semi-norm ||.||s.x on S(G(A)) such that

Ze () =P DI S s ne™™M
Jor T € a,41 sufficiently positive and | € S(G(A)).

Progff — Tor assertion 1, the statement about P;(f ) 1s just the statement about
IE(f ) and zf(f ) that has been given in Theorem 3.2.4.1 and Proposition 3.3.8.1. The
three integrals are absolutely convergent by Propositions 3.3.3.1 and 3.3.5.1. Let’s prove
assertion 2. The asymptotics for the first pair, resp. second, is a direct consequence of the
asymptotics (3.3.7.10), resp. (3.3.7.12), of Theorem 3.3.7.1. So it remains to prove the
third asymptotics. In fact, for every N > 0, there exists a continuous semi-norm ||.[|s.N

on S(G(A)) such that
/ f ATK, (b g) — F (b, TIK, (h, ) | dhdg < [ s.xe 1™
[H] /[G]

for f € S(G(A)) and T sufficiently positive. This can be proved as in [IY15, proof of
Proposition 3.8] and is left to the reader. So the third asymptotics follows from the second
one. 0J

3.4. Auxiliary function spaces and smoothed constant terms

3.4.1. ForGe{G, G, G, G, H, G}, welet Tr,(G) be the space of tuples

n’ 410

(e@rers € || TGl

PeFrs
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such that for every P C Q € Fgs, we have
rp — (QP)p € 5919([G]P)
where we have set P=PN G, Q = Q N G, the weight 919 is defined by

A ifGelG, G,

n+1

0 =1 4% iGe{G,, Gl

Pn+1

¥ ifGe{H, G},

and we refer the reader to Section 2.5.11 for the definition of the function spaces
8919([G]p). By Lemma 2.4.4.2, in every case we have 919 < df} and therefore, by Propo-
sition 2.5.14.1, the above condition is equivalent to the following: there exists Ny > 0
such that for every r > 0 and X € U(Gw) (where we denote by G, the Lie algebra of
G(F ®q R)), we have

(3.4.1.1) |(RX)pp)(9) — (R(X)9)(9)] <.x llgllp 05 " for g € P(F)\G(A).

Note that, by Lemma 2.4.4.2 again, for every P C Q € Fgs, we have di*(h) ~ d]%:l (k) for
h € [H]p, so that under the identification H = G, we have

(3.4.1.2) Tres ([HD = Tr 1G]
We define similarly 7}_-ARS ([G]) as the space of tuples

(e@)reris € [ | Sar((Glp)

PeFrs

such that for every P C Q € Fgs, we have

rp — (Q@)p € Sdlgl-A([G]P)

where the weights Ap and d](} ® have been defined in Section 3.1.9. Similarly, using
(3.1.9.1) and Proposition 2.5.14.1, the condition above is equivalent to: there exists
Ny > 0 such that for every » > 0 and X € U(g~), we have

(3.4.1.3)  |RX)p0) () — RXDo9)(9)] x IglNd™ ()7, for g € P\G(A).

3.4.2. Obviously, Tr ([G]) (resp. 7}ARS ([G])) embeds as a closed subspace of

[[ 7@ x [] Sedc

PeFrs PCQeFrs
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(resp. 1_[ Sap([Glp) x 1_[ Sdlg,A([G]P))

PeFRrs PCQeFRrs

and as such it inherits a LF topology. More precisely, for every N > 0, the inverse im-

age Trs N(IG]) (resp. T NUGD) of [ [pe 5 TN(IGIp) X nPchng SdPQ’N([G]p) (resp. of
[Toeris Sarx(UGIP) X [Tpcqer S2o x(GIp)) in Trs ([GD) (resp. in T ([G])) inher-
its a strict LF topology (by Lemma 2.5.4.1) and we endow 7 £, ([G]) (resp. in T}éRS([G]))
with the locally convex direct limit of these topologies. By Theorem 2.9.4.1, we have

(3.4.2.4) For every ¢ = (p@)pcrys € Tr ([G]) (resp. ¢ = (p@)perys € fARs([G]»’ the
family

X €X(G) > ¢ = (ppy)reris

is absolutely summable in 75, ([G]) (resp. in fAR J([GD) with sum ¢.

For the purpose of the next proposition, we recall that 7°([G]) denotes the space
of Radon measures of moderate growth on [G] (see Section 2.5.9).

Proposition 3.4.2.1.
1. For every € T°([H]) and f € S(G(A)), the family

Pe Frs— R{)ppy,

belongs to 7}ARS ([GD.
2. Let G € {G,11, G}. Then, for every ¢ € T°([G']) and f € S(G(A)), the family

P e Frs = R()pp,

where we have set P =P N G/, belongs to T, ([G]).
3' FOT every (Gl ) GQ) € {(Gna G;Z)a (G’ H)} and every (PgD)PE]:Rs € 7.-7'—1{5([(;1])) theﬁm_
ily of restrictions

Pe Frs— pp |[G2]p27

where we have set Py =P N Gy, belongs to Tr, ([Goal).
4. Forevery (p@)perys € }éks ([G]) and (¥ ) perus € Tres ([Gri1]), the family of products

P € FRS = ((gﬂagn+l) € [G]P = P(p(gnagn+l) Pw(grﬁl))
belongs to T]%S([G]).

Proof — 1. By Lemma 2.5.11.1, it suffices to prove that for every P C Q € Fgs,

we have:
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e Ap is bounded on the support of @p,,;
° dPQA is bounded on the support of gp,, — (@g;,)p-

The first requirement is clear as ¢p, is supported on [H]p, C [G]p and Ap is bounded
on [H]p,,. For the second one, we need to show the existence of C > 0 such that ¢p,, and
(90y)p coincide on {g € [Glp | 4" (g) > C}. By adjunction, for every ¥ € S([Glp), we
have

(e ¥ p = (@0 By (W) and ((@ou)p, ¥)p = (905, EF () g

Thus, it suffices to show that for C > 0 sufficiently large, for every function ¥ € S*([G]p)
supported in {g € [G]p | dgA(g) > C} we have

EF (W) Ity = Ex ().
With the notation of Section 2.4.4, this is in turn equivalent to:

(3.4.2.5) There exists C > 0 such that for every g € P(F)Ng(A)\G(A) with dg’A(g) > C,
na(g) € [H]q,, implies g € Py(F)Ng, (A)\H(A).

Writing ¢ = (g,, g..1), the condition ds>* (¢) > C is equivalent to (g,, g.41) € w2 [> C]2

Pyt

whereas n&(g) € [Hlg;, (resp. g € Pu(F)Ng,(A)\H(A)) is equivalent to Jta’:l () =

n(g::‘l (g4+1) (resp. g, = gu+1)- Thus, the claim follows directly from Lemma 2.4.4.1.4.

2. LetPCQeFrsandset P=PNG, Q=0NG,P=PNG,Q=0QNG".
Since G € {G,, G}, we have 91?' = dl?'. Thus, by a similar argument, we are reduced to
show:

(3.4.2.6) There exists C > 0 such that for every g € P(F)Ng(A)\G(A) with dlg'(g) > C,
n&(g) € [G']g implies ¢ € P'(F)Ng (A)\G'(A).

By Lemma 2.4.4.1 1. and Lemma 2.4.4.2, there exists € > 0 such that the set
{¢ e P(HNgA\G'A) | & (¢) > €}

surjects onto [G']g/. Moreover, by Lemma 2.4.4.1 4., there exists C > 0 such that for
g, ¢ € P(F)Ng(A)\G(A) with dlg'(g) > C and dg(g’) > €, na(g) = n&(g’) implies g = ¢
The claim follows.

3. follows from the characterization (3.4.1.1) since, by Lemma 2.4.4.2, for PC Q €
Frs we have 9%1 ~ 91(322 . Similarly, 4. follows readily from the characterizations (3.4.1.1),
(3.4.1.3) as, by definition of ds>*, we have ds** (g) < d"' (g,4,) for g € [Glp. O

Pyt
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3.4.3. YorP e Frs, ¢ € Sp,([Glp) and ¢ € TO([G,,H]PM), we define a function
<§0, W) € T([Gn]P,,) bY

«0’ ])h)(gn) :/ Qo(gn’ gn+1)l//(gn+1)v & € [Gn]}’ﬂ-
[Gutilp,

Note that the integral is absolutely convergent and the resulting function of uniform
moderate growth by (3.1.9.2) applied to the weight w = ||. ||§"Jrl for N sufficiently large.

Proposition 3.4.3.1. — Let (p@)pcrs € T]:ARS([G]) and r € TO([G;H]). Then, the fam-
iy
PeFrs (e, ¥p )
belongs to T r ([G,]).
Progf. — By Dixmier-Malliavin, we may assume that (p@)pers = (R(F)p@")perps
for some (p¢ )perys € ]%{S([G]) and / € C*(G,4,(A)).” Then, we have (pp, lﬁp;m) =

(p¢’, R(fv)l/f}):“_l) where fV(g) = f(g™"). Therefore, by Proposition 3.4.2.1 2. and 4., up
to replacing pg by the product

g€ (Gl ¢ (9) R(fv)l/fP;ﬁ] (&1
it suffices to prove that:

(3.4.3.7) The family of functions

P S -FRS = pn*(l’w) :gn S [(}n]l’,Z = / P‘p(gn’ gn+l)dgn+1
(G

(’n+1 ]Pn+1

belongs to Tr ([G,]).

Let P C Q € Fgs. By the characterization (3.4.1.1), we need to show the existence of
Nj > 0 such that for every X € U(g,.o0) and 7 > 0, we have

f RX)vr@ (g, Zi+1) 4211 — f RX) @ (i gr1)dgus1
[Gn+l]P

1 [Gn+1 ]Qn-%—l

& x gl dg (g) ™

Pn+ 1

for g, € P,(F)Ng, (A)\G,(A). For notational simplicity, we will prove this for X = 1 but
it will be clear from the argument that we can choose the same exponent N for every
X eU(gno0)-

7 More precisely, this follows from applying the Dixmier-Malliavin theorem to the continuous smooth Fréchet
representation TfARS.N([G])J for suitable N > 0 and compact-open subgroup ] C G(Ay).
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Let C > 0 and set w = w%’:ll [> C] (see Section 2.4.4 for the notation). Since pgp €

Sap([Glp), by (3.1.9.2) applied to the weights w = (d**)~" and |.|lp,,,, there exists

Pyt w1
N, > 0 such that for every N > 0 and r > 0, we have
3.43.8)  [r0@)] <n gl Nl 5N 42 (@) A (@) 7. forg € [Glr.

Similarly, up to enlarging N, and since ||.|o, <. |lp,, dfc,“)”“ < d&:} on P,(F)Ng, (A\G,(A)

n+1

(see (2.4.1.2), (2.4.4.19)), for every N > 0 and r > 0, we have

(3.4.3.9) 00| <o gy N lguillgY doy () det! (g7
for g € P(F)No (A)\G(A).

By Lemma 2.4.4.1 1. and 2., "'

i1

and n}%i“ (w) respectively. Thus, from (3.4.3.8) and (3.4.3.9) we deduce that there exists

1
Ny > 0 such that for every » > 0, the two functions

and a’PQ”“ are bounded from above outside 71(1;';“ (w)
n+1 +1

> f Q, pY (gna 8n+1 )dg’l+1 and
[Gut1 ]P"+1 \nl’":rll (@)

En g Q(p(gnv gn+1)dgn+l

Pyt
[(Gut1lg, \J'fojl+l (w)

are essentially bounded by ||g,1||§]2 A (g) " for g, € P,(F)Ng, (A)\G,(A). Thus, it only

3 Pn+l
remains to estimate the difference

n

70,4 (@)

[TQ’+1 Pgo(gna gn+l)dgn+l - /P " Q@(gn, gn+l)dgn+1
which, by Lemma 2.4.4.1 and provided C is sufficiently large, is equal to

<3.4.3.10) /Pw(gn’ gn+1) - Q_(p(gm ng—l)dgn-l—l-

As g™ ~ dg ' and |.llg,., ~ Illlp,., on @ (see Lemma 2.4.4.1 2.), by (3.4.3.8), (3.4.3.9),

Pn+ 1

for every » > 0 and N > 0, we have

p0(@) — 00 (@)| <x Iy Nllget 15X, A6 (ga) dpe ()™

n+1

for g € P,(F)Ng, (A)\G,(A) x w. Combining this with the characterization (3.4.1.3) and
the equality

45" (9) max(1, dp>* (g)dg> " (gi1) ™) = dp*' (g,) for g € [Glp,

Pn+ 1 Pn+ 1 Pn+ 1
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it readily follows that there exists N3 > 0 such that for every N > 0 and r > 0, we have

p0(©) — 00(@)| <x Iguly Mg 15N, A5 (87"

This in turn implies that for some Ny > 0 the integral (3.4.3.10) 1s essentially bounded
by ||gn||§,;‘d19n”:1‘(gn)_r for every » > 0 and this ends the proof of (3.4.3.7) hence of the
proposition. O

3.5. A relative truncation operator

3.5.1. LetGe{H,G),G,}. Yor ¢ = (p¢)peris € Trs([G]) and T € a,11, we set

A Cp@=) & Y T He, 09 = Tr,)re(2)

PeFrs seP(H\G(F)
for g € [G]. We also set
FCui (g, T)ge(e) if G =G’

n’

HT,Gg(g) —
FGn-H (g, T)G(p(g) lfG S {H, Gﬂ}'

Recall that S°([G]) stands for the space of functions of rapid decay on [G] (see
Section 2.5.6).

Theorem 3.5.1.1. — For T sufficiently positive, we have AT’GQ € S ([G]). More precisely,
Jor every ¢ > 0 and N > 0, there exists a continuous semi-norm ||.|| Fs.c.x 00 Tres ([G]) such that

(3.5.1.1) AT G0 — T C9llcon <T@l Fig e

Jorg € Tr([G]) and T € a, sufficiently positive (where the semi-norms (||.||oo.N)Ns0 are as in
Section 2.5.6).

Progf. — Note that, by the identification (3.4.1.2), the statement of the theorem for
G = H is exactly equivalent to the statement for G = G, which itself can be obtained
from the case G = G/ by a change of base-field from F to E. Therefore, we shall content
ourself to give the proof when G = G,

As the restriction of F¥~+1 (., T) to [G,] is compactly supported, we have I[T1%¢ €
S°([G,]) and the first assertion of the theorem follows from the second. Now, as in the
beginning of the proof of [Zyd20, proposition 2.8], using [Zyd20, lemme 2.1], for T
sufficiently positive we obtain

A= Y > F(seT)

PCQeFrs $€P,(N\G,(F)

X O_I(;jitl (HP71+I (Sg) - TPrH—l ) P,Q§0 (Sg)
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where we have set
paP@ = ) egrelg), forgeP,()\G,A),
PCRcCQ

Gn+l

the sum running over parabolic subgroups R € Fgs such that PC R C Q, Since 0" =
1 and olfn’fll =0for P C G (see [Art78, §6, p. 940]), it follows that

AT g(g) =TT (g)

= Z Z F 1 (8g, T)aﬁﬁ1 (Hp,,,(89) — T»,,,) r.oe(52)
PCQeFRrs 0€P,(IN\G,(F)

for g € [G,].

Let us fix P C Q € Fgs. Since E;’"” sends SY([G,]p,) into S°([G,]) continuously,
it suffices to show that for every ¢ > 0 and N > 0, there exists a continuous semi-norm
1| Fes.en 00 T ([GL]) such that

(3.5.1.2) p.09(@)| < e MglpNM el Fes.cx

for g € T ([G.]), T € a,,; sufficiently positive and g € P,(F)\G,(A) such that

FP,1+I (g’ T)O,P’Qn:—-:-l (HPnJrl (g) — TP,;+1) # 0.

Up to conjugacy, we may assume that P and Q) are standard. We will need the following
lemma which summarizes part of the analysis performed in [Art78, §6, §7].

Lemma 3.5.1.2. — There exists r > O such that

T« min dp,, 1 .a(g) and
a€A

Q1 A Put1
\Ag

||g||P,, << ( (max 5 dPrH»lva(g))

OlEA[) n+1 \A()nJrl
Jor every T € a4\ sufficiently positive and g € P,(F)\G, (A) satisfying
F' (g, Doy’ (He, (@) = Tr,.,) #0.

Proof — Writing g as zg' where z € Az, and g' € G,11(A)" we have dp,,, o(g) ~
dp, +1,(,{(gl) and there exists 7y > 0 such that [|g||p, < |lg' ||;9ﬂ+l. Thus, it suffices to prove
that the same statement holds for g € P, (F)\G,11(A)'. Moreover, we may assume that
g belongs to some Siegel domain sp,,, for [G,41]p,,,. Then, by [Art78, Eq. (7.7)],

1

FP1 (g, o> (Hy,,, (g) — Tp,,,) #0

n+1
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implies (&, Hy(g)) > (o, T) for every o € AOQ”“ \ Ag”“ and therefore, as T is sufficiently
positive, also

(3.5.1.3) min  (a, Ho(g)) > €| T

P,
C(GAOQ"H \AOrH-l

for some constant € > 0. The first inequality of the lemma follows for » > 0 large enough.

For the second inequality, by [Art78, Corollary 6.2], the condition ‘71%:1 (Hp,,, (@) —

Ty, ) # 0 implies
(3.5.1.4) IHp,., (@) — T, Il < [ 1+ max (@, Hy(g) = T)

whereas the condition F'+! (g, T) # 0 implies
(3.5.1.5) = (@) | < al|T]

for suitable constants ¢y, ¢, > 0 and where H"+!(g) denotes the projection of Hy(g) to
artt. As A s the restriction of AZT\ AU to ap,,, from (3.5.1.4) and (3.5.1.5) we

Prt nt+12
get

IIHo(g)||<Cs(1+|ITII+ max (Ol,Ho(g))>

Qut1 1
DZEAO i+ \A0n+

for some constant ¢5 > 0. Combining this with (3.5.1.3), we finally obtain

IIHo(g)||<04(l+ max (Ot,Ho(g))>

+1\ A Pnt1
a€A| \4

for some ¢; > 0. Exponentiating then gives the second inequality of the lemma. 0J

We are now in position to prove (3.5.1.2). Let @ € A" \ A", For every
parabolic subgroup P C R C Q such that R € Frg and o € AOR”“, there exists a
unique parabolic subgroup P C R* C Q with R* € Frg and Ag”“ = Ay {a). As
(p@)peFis € Tris ([GL]), by the inequality (3.4.1.1), there exists Ny > 0 such that for every
r 2 0 we can find a continuous semi-norm ||. || £i..¢ 0N Tr ([G,]) with

N, _
ro? @< D [ke©@ — re@| < gl @l Fisra D (@)
PCRCQ PCRCQ
aeAORn+1 aeA}){nH

for ¢ € Tr([G,]) and g € P,(F)\G,(A). Now, if FPei (g, T)OQ”+1 (Hp,,, (@ —Tp,,,)#0

Pyt
for a 'l € a,, that is sufficiently positive, the first inequality of the above lemma implies
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that g € a)Q”+1 [> C] for some fixed constant C > 0. In particular, by Lemma 2.4.4.1.2,®

we have dRﬂ +1,ot(g) ~dp,., «(g) for every P C R C Q) and the above estimate becomes

lp.0# (@) K, llgllp! b, .o (@) Nl Fs.rar

Taking the minimum of the right hand side over & € A" \ A{"' and using Lemma
3.5.1.2 once again, we deduce the estimates (3.5.1.2) and this ends the proof of the theo-
rem. U

3.6. Proof of Theorem 3.3.7.1

3.6.1. We prove 1., the proof of 2. being similar and left to the reader. Set /" (g) =
f(g™) for g € G(A). For T € a1, we consider the two operators

L5 PT(HD @ T'(G,,, ) — S™(G,)
defined as the following compositions

RA(FV)®Id
_

L - T°(H) ® T°(G,,, 1) A, [GD @ T (G,,])

Res

—> T_FRg([Gn]) — ,ERS([G:I])

A Sqa
and

RA(/V)®1d
—_

PI: T°(HD © T'(IG.., ) 2 (G) ® TG, )

Res

SR TfRSqG D) 55 T (GLD
Y S(G)

respectively. Here, R* (") ) and Res denote the operators ¢ = (R(f")@p, ) pe s (s€€
Proposition 3.4.2.1 1.), (Pgo)PefRS R Vv — ({pp, 1//p"+1))p€]:RS (see Proposition 3.4.3.1) and
(P@)perrs > (P9 |[G;I]P;[)pe Fs (see Proposition 3.4.2.1 3.) respectively whereas AT and
IT"C: are the truncation operators defined in the previous section.

By the closed graph theorem (which is valid for linear maps between LF spaces
see [Gro55, théoréeme B p. 17]), each of the operators R*(f"), Res, ATG and TITG
is readily seen to be continuous: indeed, it suffices to check that the compositions of
these operators with the linear maps corresponding to the “pointwise evaluations” are

% Note that a)o‘”+I [>ClCawp” NN =]
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continuous which, in each case, is straightforward to check. Similarly, the operator (., .) is
separately continuous. In particular, LJJT and Pj? are separately continuous bilinear maps.

We claim that the functions KJT and FOm1 (., T)K are the kernels of the operators
LjT- and PjT- respectively that is: for every ¢ ® ¥ € T°([H]) ® W([G;+1]) and g € [G],

we have

(3.6.1.1) L (0 ®¥)(g) = / K; (5 8, & DWW (g

[HIX[G, ]

and

3.6.1.2)  Ploei)) = / FOr (g, TYK (s g 0D (&),

[HIX[G, ]

Let us show (3.6.1.1), the proof of (3.6.1.2) being similar (and actually easier). Un-
folding the definitions, for ¢ ® ¥ € T°([H]) ® T°([G, 1) and g, € [G]], we have

(3.6.1.3)  Li@®@¥)g)= Y e > T (Hp, (6g)—Tr.)

PeFrs 8,€P,(H\G) (F)
X (R(™) e Y, ) (8:2)-

Moreover,

(R(fv)%)ﬂ, Yp )(8ng;,)

n+1

= / ROy (8.8, & ) Ve, (€41)
[G

;H— 1pr
n+1

2/ KfV,P((Sng,/,,g,/lH;ﬁ)GOPH(}l)I/ij,+1(g;+1)
[G;Hrl]P \ [Hlpy

/
n+

- f Ky 00k 8,88, )0rn (D (&)
(Gl Tp 41 x[Hlpy

/
n

_ f Y KWk 8,8 88 )WV (L)
(G, ]1x[H]

y€PH(F)\H(F)
Sur1€P (D\G, ., (F)

and plugging this back into (3.6.1.3) gives (3.6.1.1).

3.6.2. For y € X(G), we introduce variants L . P/T , of the previous op-
erators by replacing in their definitions the operator R2(fY) by Rfv ) o —>
R, (1) @py ) peres Where R, v(fY) denotes the composition of R(f") with the “projec-
tion to the x-component” defined in Theorem 2.9.4.1. We show similarly that Lf1 e Pf1 X



THE GLOBAL GAN-GROSS-PRASAD CONJECTURE FOR UNITARY GROUPS. .. 263

are separately continuous and that for ¢ ® ¥ € T°([H]) ® T°([G, D) and g € [G]], we
have

3624 L (99 = /[H] KT DY)
X n+1
and
3625 P (99 = f FO1 (g T O gl oD ).
[HIXIG., ]

Let N > 0. Note that, by (3.4.2.4), Theorem 3.5.1.1 and the continuity of (., .) and
Res, for every ¢ @ ¥ € T°([H]) ® T°([G/, 1), we have

YL @@ Y) =P (@ @Y loen Kngy e

x€X(G)

for T € a,, sufficiently positive. Moreover, by continuity of Lf1 , and Pf1 4» cach of the
semi-norms @ Q@ ¥ > ||LjT~’X((p QR Y) — P;X(qo ® V)|~ 18 bounded on 7;?([H]) ®
7?\?([(}/“]) by a constant multiple of [|¢||1 —x[|¥ [|1 -~ where we recall that |||, —x is the

n

norm on the Banach spaces 7Y ([H]), TNO([G; +1]) (and the peculiar transition from the
index N to —N is again due to a slight inconsistency of notation). Thus, by the uniform
boundedness principle, we have

S I, @@ ) — P (@ ® Wllaon <x e N @l x ¥ -x

x€X(G)

forp @ ¢ € 7;?([H]) ® TNO([G;H]) and T € a,, sufficiently positive. By (3.6.2.4) and
(3.6.2.5), applying the above inequality to the Dirac measures ¢ =4, and ¢ =34y,
where 2 € [H] and g, | € [G], ], gives

> K, (g gyy) = FO (g TRy (B g gl )
XeX(G)

—NIIT| “Ny./ =N ;./-N
< e TR g 6N gy,

for (A, g,.g,,,) € [H] x[G]] x [G],]. This inequality is precisely the content of Theorem
3.3.7.1 1. except that we still have to argue that the implicit constant can be taken to be
a continuous semi-norm on S(G(A)). Using the uniform boundedness principle once
again, it suffices to check that, for every (%, g') € [H] x [G'], the functional

feSGA) K] (hg)—Fm(g, Ky, (hg)
=Ly, =P )G®5;,)(@)
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1s continuous. However, this just follows from the continuity of f R?v (f)8, €
T;AR S([G]) which can be readily inferred from the continuity of right convolution as well
as of the “x V-projection” of Theorem 2.9.4.1.

3.7. Proof of Proposition 3.3.8.1
3.7.1. Set

Pp=Pr, — Pp, € Ay

for P € Frs and note that Py = 0 if and only if P = G.

3.7.2. By [Art81, §2], there exist functions I', | on aP’:’ll X a?’jl, for P € Fgs,
that are compactly supported in the first variable when the second variable stays in a
compact and such that

(3.7.2.1) T, H-X)= Y ST (T (H,X)
PCQeFrs

for every P € Fgrg and H,X € ap . Then, by [Zyd20, lemme 3.5] for every Q € Fgs,

the function

nt1°

Xedq,, = po(X) = / LTy (H,X)dH

n+1

Qi1

1s an exponential-polynomial.
3.7.3. Weset
Jo(my =Pt o (Ho, | (m,))fo(m)
for Q € Frs and m € [Mq] where
Jo(m) = ¢tPa-Halm) / S Gkmuk”Yne (K dudk dky.
K xK' JNq(A)
We note that f;, € S(Mq(A)).

3.7.4. Dustributions attached to Levi subgroups. — Let Q € Frs. We now recall the
variant of [Zyd20, Théoreme 3.8] for the Levi M. For T € a4, and /" € S(M(A)), we

set

M T ,
S mm) = Y & > T2t (Hy,,, (8,m1)

QDPeFRrs ye@Pa@)NMqy (F)\Mqgy (F)
8&(P ()M cy () \My ()

—Tp,,, )Kf/,PﬂMQ,X (ymy, 8m')
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for (my, m') € [Mpu] x [M']. Then, it can be shown in the same way as part 1. of Theorem
3.3.7.1 that, for T sufficiently positive, the following expression converges

VIQ T

M T
(3.7.4.2) @l = / K
A \IMi]x[M]

(my, m Yne (m')dm! dmy,

where ASH = Aa N Ag is embedded diagonally in My (A) x M'(A). Moreover, by the
same proof as [Zyd20, Théoreme 3.7] (see also [Zyd20, Remarque 3.8], [Zyd18, Remar-
)y

que 4.9]), the function T > I Q’T(f ") is an exponential-polynomial with exponents in
the set {p, — p, Q | Q D P e Fgrs} (but not necessarily with a constant purely polynomial

part). Note that the Composition of the embedding ag n = ag, N ag <> ag,,, with the

n+1 : : . n+1 .
projection dq,,, — Aq, ¢, yields an isomorphism agu =~ a," whose Jacobian we denote

by ¢q.
3.7.5. Proof of Proposition 3.3.8.1. — It follows from the next lemma, the fact that
L (fo) = L, (f) and the shape of the exponents of Lo (/o) recalled below.

Lemma 3.7.5.1. — For T € a,,, sufficiently positive, we have

(3.7.5.3) 2= wLY ).

QeFrs

Progf. — From the definition (3.3.6.8) of Kg . together with the identity (3.7.2.1)
applied to H=Hp, (8,g) — Tp,,, and X =Hp,, (,g,) — Hp,, (yh), we obtain

n+1

k! (hg)= Z Z Iy, (Ho,, (8,g) — T, . Ho,,, (5,2)
QeFRrs yeQuIM\H(EF)
seQ/(F\G'(F)
— Ho,,, (Y ))KZ (yh, 8¢)
for (4, g") € [H] x [G'], where we have set

K= Y e Y Brl'(Hp,6p)

QDoPeFrs y €Pu()\Qu(F)
SeP (H\Q/(F)

- TPH])Kf,P,X (yx,8y)
for (x,) € [Hlg, x [G'lq. It follows that

HOEEY f K% (b )TG,, (o, (€) = Tau.,
OeFrs ¥ Moy x[6ly

Hq,,, () — Hq,., (W)ne (g)dg dh.
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By the Iwasawa decompositions H(A) = Qy(A)Ky and G'(A) = Q/(A)K’, the summand
corresponding to () can be rewritten as

/ f K2, (myski, m KTy, | (Ho,,, (m) — Toy,,.
My 1My ] Y K xK/

Ho,,, (m,) — Hq,,, (mn))
Ner (m’/{’)e—ﬂpq,HQ(M’)>€—2(POH Hoy (mH»dk/d/fHdm/de.
We readily check that, for all (my, m') € [My] x [M'], we have

Mq.T

/ K32, Omighig, m'K Y (K ) dikyy = el Mer0 QO Gy ).
KuxK'

Using that pq = 2pq and (pq, Ho(min)) — 2{poy,, Hoy (min)) = {p . Ha,,, (min)), we fi-
nally obtain

. Mo, T (p~,H (mp))
= f Koo (myg, m)nee ()P
QeFrs ¥ ManxMq/]
X F/Qnﬂ (HQnH (m;) - TQnH > HQHA (m;z) - HQzH (mH))dm/de

A\iQ, T

Ky (g, m)ne ()

QeFrs /A&O,H\[MQH]X Mg]

X e<£Q_’HQn+1 Omi)—Ha, | (m,)

(,0 H (am, )
x f - e Qut1 (HQL+1 (amn) TQ)Jrl N
A(OQO,H
HQn+1 (m:z) - HQn+1 (my)) dadm’ dmg
P Mo, T
N Z et / KfQ%( (muz, m)ne (m')
QeFRrs AT \Moy1x[Mq]

« e(gow,HQ,,+1 (m)—Hq, | (m))
X pQ(H(2ﬂ+1 (m:’l) - HQﬁ+l (mr))dm dimys.

To conclude, it suffices to remark that

Mo, T (p,Ha, ,  m)—Hgq, . | (m)))
Kﬁfx (1myg, m') e P it T Qi T proMo,,, (m) —Hq,,, (nu1))
_ Ma.T ,
fl X (mH’ m)

for (my, m') € [Myg] x [M']. O
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4. Flicker-Rallis period of some spectral kernels

The goal of this section is to get the spectral expansion of the Flicker-Rallis integral
of the automorphic kernel attached to a linear group and a specific cuspidal datum (called
in Section 4.3.2 *-regular). This is achieved in Theorem 4.3.3.1. It turns out that the
decomposition is discrete and is expressed in terms of some relative characters.

4.1. Flicker-Rallis intertwining periods and related distributions

4.1.1. Notations. — In all this section, we will fix an integer n > 1 and we will use
notations of Sections 3.1.1 to 3.1.3. Since n will be fixed, we will drop the subscript »
from the notation: G = G,,, B = B, etc. So we do not follow notations of Section 3.1.5:
we hope that it will cause no confusion.

4.1.2. Flicker-Rallis periods. — Let m be a cuspidal automorphic representation of
G(A) with central character trivial on AZ. We shall denote by 7* the conjugate-dual
representation of G(A). We shall say that 7 is self conjugate-dual if # >~ 7* and that 7 is
G'-distinguished, resp. (G', n)-distinguished, if the linear form (called the Flicker-Rallis
period)

(4.1.2.1) IS o(h) dh, resp. f @ ()n(det(h)) dh

[G'lo [G'lo

does not vanish identically on A, (G). Then 7 is self conjugate-dual if and only if 7
is either G’-distinguished or (G’, n)-distinguished. However it cannot be both. This is
related to the well-known factorisation of the Rankin-Selberg factorisation L(s, w X 7 o¢)
where ¢ is the Galois involution of G(A) in terms of Asai L-functions and to the fact that
the residue at s = 1 of the Asai L-functions is expressed in terms of Flicker-Rallis periods
(see [FLi88]).

4.1.3. In thissection, we will focus on the period in (4.1.2.1) related to distinction.
However it is clear that all the results hold mutatis mutandis for the period related to n-
distinction.

4.1.4. Let P = MNp be a standard parabolic subgroup (with its standard decom-
position). Let 7 be an irreducible cuspidal automorphic representation of M with central
character trivial on Agy.

It will be convenient to write M =G,, x --- x G, with n; + -+ 4+ n, = n. Accord-
ingly we have m = o, X ... X o0, where o; is an irreducible cuspidal representation of

G,.
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4.1.5. Let ¢ € Ap,(G). The parabolic subgroup P"=P N G’ of G’ has the fol-
lowing Levi decomposition M'Np where M’ = M N G’. We then define the following

integral which is a specific example of a Flicker-Rallis intertwining period introduced by
Jacquet-Lapid-Rogawski (see [JLR99] section VII, note that our definition of Ap , (G) is
slightly different from theirs),

J) = / @(9) dg
AK?, M (F)NP/ (A)\G'(A)

Clearly we get a G'(A)-invariant continuous linear form on Ap ,(G). Note that J does
not vanish identically if and only if each component o; is G;i(F)-distinguished. In this
case, we have m = ™.

4.1.6. Let Q € P(M). As recalled in Section 2.2.11, there is a unique pair
(Q/, w) such that the conditions are satisfied:

e Q' =wQuw!is the standard parabolic subgroup in the G-conjugacy class of Q;
e weW(P; Q).

Let A € ag” o We have M(w, Mg € AMQ/,M (G) 1if A 1s outside the singular hyperplanes of
the intertwining operator. We shall define

4.1.6.2)  Jo(p, ») =J(M(w, 1)g)

as a meromorphic function of A.

4.1.7. Letge G(A). Let’s define for ¢, ¢ € Ap . (G)
(4.1.7.3) Bo(g, ¢, ¥, 4) =E(g, 0, 1) - Jo(¥, —4),

as a meromorphic function of A € ag’c*. In fact, by the basic properties of Eisenstein
series and intertwining operators, there exists an open subset w, C a;{’c* which is the
complement of a union of hyperplanes of aﬁ’é such that:

e w, contains iay"*.
e forall , ¥ € Ap . (G), the map A > Bq(g, ¢, ¥, A) is holomorphic on w, and
gives for each A € w,; a continuous sesquilinear form in ¢ and V.

4.1.8. Letf € S(G(A)), g € G(A) and Q € P(M). Let’s introduce the distribu-

tion

(4.1.8.4)  Jo.(@ )= Y Bole(t./)e. 0. 1)

WEBP,H
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where Bp, is a K-basis of Ap,(G) (see Section 2.8.3 and A € w, (see Section 4.1.7
for the notation wy). It follows from Proposition 2.8.4.1 that Jq » (g, A) is a continuous
distribution on S(G(A)).

4.1.9. 4 (G, M)-fanuly.

Proposition 4.1.9.1. — The family (Jo, (g, A, f))aeran 15 a (G, M)-family in the sense
of Arthur (see [Art81]): namely each map

reay = Jor(g A )

is smooth on iay;™ (and even holomorphic on wy ) and for adjacent elements Q,, Q, € P (M) we have

(4.1.9.5) Joix (@A) =Jar(g A f)

on the hyperplane of ia;™ defined by (X, ) = 0 where o is the unique element in Ag, N(=Ag,).

Proof. — Let’s prove the holomorphy of Jo (g, A, f) on w;. Let C C G(Ay) be
a compact subset and let Ky C K* be a compact-open normal subgroup such that
J € S(GA), C,Ky). Let  C w, be a compact subset with a non-empty interior de-

noted by w°. According to Proposition 2.8.4.1, there is a continuous semi-norm on
S(G(A), C, Ky) such that for A € w and any ¢ € S(G(A), C, K;) we have:

4.1.9.6)  Ugx(g 2 ®) <9Il

On the other hand, we have Jo - (g, A, /) =) .k Jo,= (g, A, fz) where f; = ¢; % f % ¢; asin
the proof of Lemma 2.10.2.1. Indeed we have

Jor@h )= ) Bole (., 0, 1).

WEBP,N,I

Since the sum on the right-hand side is finite, the map A = Jq (g, A, f¢) is holomorphic
on . Using (4.1.9.6), we get for all A € w

Y Uan(e 2l < Y Ikl < o0,

rek rek

Thus on @°, we observe that Jg (g, A, f) is a normally convergent series whose general
term, namely Jo » (g, A, fz), is holomorphic. In this way A — Jo » (g, A, f) itself is holo-
morphic on @° and on w,.

Then let’s prove the second condition. Let Q;, Qy € P(M) be such that Ag, N
(—Aq,) isasingleton {a}. Let A € iag”* such (A, a") = 0. Fori=1, 2let Q! be a standard
parabolic subgroup and w; € W(M, Q) be such that Q; = wiini_l. Let B =wia € Ag,
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and let s the “elementary symmetry” associated to B. Then we have wy = sgw;. Let
@, ¥ € Ap ;(G). Clearly it suffices to check the equality:

E(g. ¢, ) - J(M(w, M)¥) = E(g, 0, 1) - JM(wy, M) V).

Using the functional equations of intertwining operators and Eisentein series, we have
M(wsy, A) = M(sg, wiA)M(w;, A) and E(g, ¢, 1) = E(g, M(w;, )@, w;A). Thus up to a
change of notations (replace P by Q), we may assume that Q, =P and thus w; =1 and
a = B. We are reduced to prove

(4.1.9.7) E(g. ¢.2) - J() =E(g, @, ) - JM(se, DY)

on the hyperplane (A, @") = 0. The symmetry s, acts on M as a transposition of two

consecutive blocks of M say G,, and G, ,. Note that M(s,, A) = M(sy, 0). Then we have

it *
even a stronger property:

JW) =J(M(sa, 0)9)

if n; 7 iy or if n; = niyy but 0; 2 07, (see lemma 8.1 case 1 of [Lap06]). Assume that
n; = niy1 and 0; > 0% . The case where 0; % 0" is trivial (] is zero) so we shall also assume
that 0; >~ 0,*. Then M(s,, 0)yy = —¢ ([KS88] proposition 6.3) and since s, (1) = A we

have E(g, ¢, A) =00 (4.1.9.7) 1s clear. 0J

*

4.1.10. Majorization. — We will use the following proposition which results from
Lapid’s majorization of Eisenstein series (see [Lap06] proposition 6.1 and section 7). For
the convenience of the reader, we sketch a proof.

Proposition 4.1.10.1. — Let | € S(G(A)). The map L +— Jo (g, A, [) belongs to the
Schwartz space S (za}(:’*) Moreover

f HJQ,n(gv af)

is a continuous map from S(G(A)) to S(iay™) equipped with ils usual topology.

Progf. — Let C € G(Ay) be a compact subset and K, C K be an open-compact
subgroup such that f € S(G(A), C, K,). For any «, 8 > 0, we define an open subset wq g
G,* . . . G,x
of ap'¢ which contains za,’g by

wap =11 €ang IR < a1+ [SMD ).

By the arguments in the proof of proposition 6.1 of [Lap06], one sees that there exist
a, B > 0 such that @ g is included in the open set w, of Section 4.1.7. In particular,
A+ Jo,x (g, A, f) is holomorphic on @, g. Using Cauchy formula to control derivatives,
it suffices to prove the following majorization: there exists a continuous semi-norm || - ||
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on S(G(A), C, Ky) and an open subset wy g C @, such that for any integer N > 1 there
exists ¢ > 0 so that for all /' € S(G(A), C, Ky) and all A € w, g

Al

4.1.10.8 (g, A, < .
( ) Uax(g 2.l TRV

Let m > 1 be a large enough integer. Following the notations of Proposition 2.8.4.3, we
can write f =f x g + (f % Z) * go; we get

Jax(@ ) =Y E@ T, Ne. WoTe(—1. &g, A)

(pEBP,n

+ Y B (/% Z2)g, WIo(e(—1, &)@, 1)

‘/)EBP,T[

By a slight extension to Schwartz functions of Lapid’s majorization (see [FLO12]
remark C.2 about [Lap06] proposition 6.1), the expression

( Z |E(g, IP()"af)QD, )\‘)|2)1/2

WGBP,I{

and the same expression where / is replaced by f * Z satisfy a bound like (4.1.10.8). Using
Cauchy-Schwartz inequality, we are reduced to bound in A (recall that g; is independent

of f)

(4.1.10.9) () Uo(e(=1.g)0. MH'.

‘/JEBP,rz

Let w be such that wQw ™" is standard and w € W(P, wQw™"). At this point we
will use the notations of the proof of Proposition 2.8.4.1. There exists ¢ > 0 and an integer
r such that for all ¢’ € Ap_ (G)* we have

Uae(=2, g)e, M| = JMw, M)Ip(=2, g )e)]

where ||¢||, = [[R(1 4+ Cx)"@||per. Then we need to bound the operator norm of the inter-
twining operator M(w, A). Using the normalization of intertwining operators, the bounds
of normalizing factors [Lap06] lemma 5.1 and Miiller-Speh’s bound on the norm of
normalized intertwining operators (see [MS04] proposition 4.2 and the proof of propo-
sition 0.2), we get ¢; > 0, N € N and «, B > 0 such that for all T € Kw, A € Wy p and
¢ € Ap . (G, Ky, ) we have

IM(w, MIp(—=1, 20k, < ar(1 + AN (=2, gl
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Using the same kind of arguments as in the proof of Proposition 2.8.4.1 (see also
remark (2.8.4.2)), one shows that there exist o, 8 > 0 such that (4.1.10.9) is bounded
independently of A € w, 4. 0J

4.2. A spectral expansion of a truncated integral

4.2.1. Let x € X(G) be a cuspidal datum. We shall use the notation of Section
2.10.2. In particular, / € S(G(A)) and K?( is the attached kernel.

4.2.2. Let’s consider a parameter T' as in Section 2.2.12. Following Jacquet-
Lapid-Rogawski (see [JLR99]), we introduce the truncation operator A} that associates
to a function ¢ on [G] the following function of the variable # € [G']:

(4.2.2.1) (Ah@)(h) =Y (=D)H™E® 3™ £(Hp(8h) — Tr)@p(8h)
P

5P (F)\G'(F)
where the sum is over standard parabolic subgroup of G (those containing B) and ¢p is

the constant term along P. Recall that P'= G’ N P.

4.2.3. We shall define the mixed truncated kernel K?(AZ: the notation means
that the mixed truncation is applied to the second variable. This is a function on G(A) x

G'(A). To begin with we have:

Lemma 4.2.3.1. — For (x,9) € G(A) x G'(A), we have:

(KGA,) (x.0)
=) PO / 2 B ()¢ MATEG. ¢, 2) dA.
BCP 9" peBp,,

Proof — As y € G'(A), the mixed truncation is defined by a finite sum of constant
terms of K?( (x, ) (in the second variable). The only point is to permute the sum over
@ and the operator A}. In fact using the continuity properties of Eisenstein series (see
[Lap08, theorem 2.2]) and properties of mixed truncation operator (in particular a vari-
ant of lemma 1.4 of [Art80]), we can conclude as in the proof of Proposition 2.8.4.1. [J

Lemma 4.2.3.2. — For any integer N, there exists a continuous semi-norm || - || on S(G(A))
and an integer N' such that for all X € U(gso), all x € G(A)! and y € G'(A)', all f € S(G(A))
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we have

(4.2.3.2) D D PO

x€X(G) BCP

x / L2012 ROOB) G LG )e. HATEG, ¢, )| dh

ek 9EBpy .«
N’ —N
< ||L(X)f||||x||[(}]”y”[(}]

Progf. — By the basic properties of the mixed truncation operator (see lemma 1.4
of [Art80] and also [LRO3] proof of lemma 8.2.1), for any N, N’ > 0 there exists a finite
family (Y,);e1 of elements of U (g« ) such the expression (4.2.3.2) is majorized by the sum
overi €1l of |[y||[_(§ times the supremum over g € G'(A)! of

el D > IPMp)| ™ / 20D REOE) e Te( e, 4)

x€X BcP PreR 9eBpy«

x R(Y)E(g, ¢, A)| dA.

Then the lemma is a straightforward consequence of Lemma 2.10.2.1. U

Proposition 4.2.3.3. — For all x € G(A) and x € X(G), we have

[IRCISERYED SENEIRY D DR A OWaraN
(Gl ap”

BcP 9P geBp,

X f ATE(, ¢, L) dydi.
[G']o

Progf. — First one decomposes the sum over Bp, as a sum over T € K of finite
sums over Bp , .. Then, by the majorization of Lemma 4.2.3.2 we can permute the in-
tegration over [G']y (which amounts to integrating over [G']') and the other sums or
integrations in the expression we get in Lemma 4.2.3.1. UJ

4.3. The case of x-regular cuspidal data

4.3.1. We shall use the notations of Section 4.2.

4.3.2. *-Regular cuspidal datum. — We shall say that a cuspidal datum x € X(G) is
x-regular if for any representative (M, 7) of x and w € W(M) such that wr is isomor-
phic to w or m* we have w = 1. Let’s denote by X*(G) the subset of *-regular cuspidal
data.
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With the notations of 4.1.4, we see that (M, 7) is *-regular if and only if for all
1 <i,5 < rsuch that n; = n; one of the equalities 0; = 0; or 0; = ;" implies that 1 =,

4.3.3. The next theorem is the main result of the section.

Theorem 4.3.3.1. — Let f € S(G(A)), let x € X(G) and let K, be the associated kernel.
For any g € G(A), one has:

1. We have

1
(4.3.3.1) K, (g, h) dh= 2 K?( (g, h) dh
[G'] [G'lo
where both integrals are absolutely convergent.
2. If moreover x € X*(G), we have, for any representative (Mp, 7w) of x (where P is a
standard parabolic subgroup of G),

K, (g, b dh =2~y - (g.f)
1

G/

where one defines (see (4.1.8.4))

Jox (@) =Jpx(g. 0./).

In particular, the integral vanishes unless 7w s self conjugate dual and My -distinguished
where P = G' N P.

The assertion 1 follows readily from Lemma 2.10.1.1, Fubini’s theorem and the
fact that the Haar measure on AZ is twice the Haar measure on Ajy (see Remark 3.1.3.1).
The rest of the section is devoted to the proof of assertion 2 of Theorem 4.3.3.1. The main
steps are Propositions 4.3.4.1 and 4.3.7.1.

4.3.4. A bt formula. — We shall use the notation limy_, , o, f(T) to denote the
limit of /(1) when (o, T) — +o00 for all & € Ag.

Proposition 4.3.4.1. — Under the assumptions of Theorem 4.3.3.1 (but with no regularity
condution on X ), we have

lim (KSAD @ D dh=2 | K, (g h)dh.
[G']

T—+4o00 Gl "

Proof. — Let’s denote FE' (-, T) the function defined by Arthur relative to G’ and
its maximal compact subgroup K’ (see [Art78, §6] and [Art85, lemma 2.1]). It is the char-
acteristic function of a compact of [G']y. Using the fact that & — K?( (g, h) 1s of uniform
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moderate growth (see Lemma 2.10.1.1), we can conclude by a variant of [Art85] theorem
3.1 (see also in the same spirit [IY15] proposition 3.8) that

lim (FY(h, DK (g. &) — (KO A1) (g, b)) dh = 0.

Tt Jien,

We have limy_, ;o F¢ (£, T) = 1. Thus we deduce by Lebesgue’s theorem and the abso-
lute convergence of the right-hand side of (4.3.3.1).

lim F¢ (h, DK (g, ) dh = K (g, h) dh
Tt Jien [G')o
The proposition follows by (4.3.3.1). 0J

4.3.5. Let x € X*(G). Let P, be the set of standard parabolic subgroups such
that there exists a cuspidal automorphic representation w of Mp such that (Mp, 77) in
the equivalence class defined by x. In Section 2.10.2, we defined the space A% s (G)-
Since x € X*(G), it is non-zero only if P € P, . Let P be a standard parabolic subgroup
and let (Mp, ) be a pair in x. For any P, € P,, by multiplicity-one theorem, we have

P1 X dlsc(G) @ API,UNT (G)

weW(P,P))

In the following we set M; = Mp,.
Let P, € P, and g € G(A). With the notations of Section 4.1 (see eq. (4.1.8.4)), for
all Q € P(M)), all 1 € iay g we define

JQ;X(g’)"f): Z Jan(g,)\,f)-

weW(P,P)

It’s a continuous linear form on S(G(A)).

4.3.6.

Proposition 4.3.6.1. — For all x € X*(G) and all g € G(A), we have

(4.3.6.2) / (KAL) (g, by dh
[G'lo

9—dim(af) / exp(—(A, Tq))
== Jox (g A ) ——————=dx
|73(MP)|P; oG QE;M) x o (—2)

Progf. — This is an obvious consequence of the definitions, Proposition 4.2.3.3 and
Lemma 4.3.6.2 below. O
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Lemma 4.3.6.2. — Let x € X*(G). Let Py € P, and ¢ € Ap, . We have for all A € iag’1

exp((A, To))

ATEQ, ¢, 1) dy = 2~ @) Jolg. %)
/[G’]o Z “ 0o (A)

QeP(M))

Proof. — This is simply a rephrasing in our particular situation of a key result of
Jacquet-Lapid-Rogawski (see [JLR99] theorem 40). Indeed, because x is *-regular, The-
orem 40 of ibid. can be stated as:

exp({((wh)g, T))

/ ATEQ, . ) dy=2""" N JM(w, V)
[G']o

o O (wA)
where the sum is over pair (Q, w) where () is a standard parabolic subgroup and w €
WP, Q). 0J
4.3.7.

Proposition 4.3.7.1. — Let x € X*(G) and let (Mp, 1) be a representative where P is a
standard parabolic subgroup of G. We have:

lim [ (KOAD)(g, b dh= 2], (g,/)
]

T—+o00 G/
where one defines
(4.3.7.3) Jox(g.f) =Jpx(g.0,/).

Progf. — We start from the expansion (4.3.6.2) of Proposition 4.3.6.1. For each
P, € Py, let My = Mp,. The family (Jo,, (g, A, /))oerary is a (G, M,)-family of Schwartz
functions on iag’l’*: this 1s a straightforward consequence of Propositions 4.1.9.1 and
4.1.10.1. By [Lapl1] Lemma 8, we have:

—(,T
TET&[(¥* Z JQX(g’)"f)e)(p;gé——)\)Q))d)L =Jrxle 0.7

9 QeP(M))

By definition and Lemma 4.3.7.2 below, one has:

@ 0= Jpur(g.0./)

weW(P,P))
= |W(P’ PI)UP,TL’ (g’ O’f)'
Since |P(Mp)| = ZPIEPX IW(P, P,)| we get the expected limit. ]
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Lemma 4.3.7.2 (Lapid). — For any w € W(P, Py), we have

JPl,wrr(g, O,f) :JP,T[ (gv O9f)
Proof. — By definition, we have

Jrar@0.)= > E@L0./)¢.0)J(@)

(PEBPI Wi

where J; is the linear form on Ap, ,,, defined in Section 4.1.5 and Bp, ., is any K-basis
of Ap, wz. Now, the intertwining operator M(w), 0) induces a unitary isomorphism from
Ap z to Ap, wr, which sends K-bases to K-bases. Thus one has

Joun(@.0.)= > E(g. Mw, 0)Ip(0. /)¢, 0) - J;(M(w, 0)p)

(pEBP,n
:JP,H (gs Oaf)
The last equality results from the two equalities:

e E(g, M(w, 0)Ip(0, /)¢, 0) = E(g, Ip(0, /)¢, 0);
e Ji(M(w, 0)p) =](®) where ] is the linear form on Ap , defined in Section 4.1.5.

The first one is the functional equation of Eisenstein series and the second one is a con-
sequence of case 1 of lemma 8.1 of [Lap06]. U

5. The *-regular contribution in the Jacquet-Rallis trace formula

The goal of this section is to compute the contribution I, of the Jacquet-Rallis
trace formula for *-regular cuspidal data y. This is achieved in Theorem 5.2.1.1 below.
It turns out that for such x the contribution I, is discrete and equal (up to an explicit
constant) to a relative character define in Section 5.1 built upon Rankin-Selberg periods
of Eisenstein series and Flicker-Rallis intertwining periods.

5.1. Relative characters
5.1.1. We will use the notations of Section 3.1. We emphasize that unlike Section

4 the group G denotes G, x G, and so on.

5.1.2. Let x € X(G) be a cuspidal datum and (M, 7) be a representative where
M is the standard Levi factor of the standard parabolic subgroup P of G. Recall that we
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have introduced a character ng of G'(A) (see Section 3.1.6). On Ap . (G), we introduce
the linear form J,, defined by

5.1.2.1)  J0)= f P@Ne (@) de, Yo € Apa(G)
A% M/(F)Np (A)\G(4)

where M =M N G’ and P =P N G’. This is a slight variation of that defined in Section
4.1.5.
We shall say that 7 is (M, n¢/)-distinguished if ], does not vanish identically.

5.1.3. Relevant and regular cuspidal data. — We shall say that x is relevant if 7 i3
(M, ng)-distinguished.

Let X*(G) = X*(G,) x X*(G,41) (cf. Section 4.3.2). We shall say that x is x-regular
if it belongs to the subset X*(G). In particular, if x is both relevant and regular (see
Section 2.9.7) then it is *-regular.

5.1.4. Rankin-Selberg period of certain Eisenstein series. — Let T € af, |. Recall that we
have introduced in Section 3.3.2 the truncation operator A .

Proposition 5.1.4.1. — Let Q be a parabolic subgroup of G and Q' = Q N G'. Let T be
an irreducible cuspidal representation of Mg which is My, ne/)-distinguished. Let ¢ € Ag -(G).
Then for a regular point A € ag’* of the Eisenstein series E(g, @, L) (see Section 2.7.3), the integral

(5.1.4.2) I(p, 1) =f A'E(h, @, 1) dh
[H]

is convergent and does not depend on T

Remark 5.1.4.2. — The expression I(¢, A) is nothing else but the regularized
Rankin-Selberg period of E(g, 1) as defined by Ichino-Yamana in [IY15].

Proof. — The convergence follows from Proposition 3.3.2.1 and the fact that Ei-
seinstein series are of moderate growth. It remains to prove that the integral does not
depend on T. Recall that ¢ induces an isomorphism from G, onto H. In the proof; it will
be more convenient to work with G, instead of H. However, by abuse of notations, for
any g € G,(A) and any function ¢ on G(A) we shall write ¢(g) instead of ¢ (t(g)).

Let T’ € a, . By lemma 2.2 of [IY15], we have

A;l“i’vl‘/E(g’ (p, )\') == Z Z A'fr’PEGnXPnJrI (Sg’ (’0’ )\‘)

PeFrs $€(PNH)(F)\H(F)

X F{)H—l (HP71+1 (8g) - TP T/)

n+17
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where the notations are those of Sections 3.2.3 and 3.3.2. The other notations are bor-
rowed from [Zyd18, eq. (4.4)]; the operator A" is the obvious variant of A" and T}, is
an Arthur function whose precise definition is irrelevant here. We denote by E¢ «p,,, the
constant term of E along G, x P,1,. Thus, we have

n+1

f AR, 0, M) dg =
[H]

> f (A Eqxr, P) @ @, MT (He,, () = T,y T de.
(PNH)(F)\H(A)

PeFrs

Let P € Fgs be such that P C G. It suffices to show that the terms corresponding to P
vanish. We identify H with G,. Then P N H is identified with P,. Let M, = Mj,. For an
appropriate choice of a Haar measure on K,, such a term can be written as

f / exp(—(2pp,, Hp, (m))) (A" Ep) (mk, @, 1)
v, UK,

x Ty (Hp,, (m) —Tp,,, T") dkdm,

n+1

where Ep denotes the constant term of E along P =P, x P,;,. At this point, we may
and shall assume that P is standard (if not, we may change B, by a conjugate for the
arguments). We have the usual formula for the constant term

Ep(m, 0. 0) = Y EP(m, M(w, )¢, wh),
weW(Q;P)

where W(Q); P) is the set of elements w € W that are of minimal length in double cosets
WPwW®, Let w € W(Q; P). Notice that the representation wr is also (wMg w ! ne)-
distinguished. For the argument, we may and shall assume w =1 (that is we assume that
Q) C P). Thus it suffices to show for all £ € K the integral

(5.1.4.3) / APYEF (mk, @, 1) dm
[M,]!

vanishes.
The group M,.;; = Mp,,, has a decomposition G, x --- X G4 with d, +---+d, =
n+ 1. Each factor corresponds to a subset of the canonical basis (e, ..., ¢,+1). We may

assume that the factor G, corresponds to a subset which does not contain ¢,;;. As a
consequence Gy, is also a factor of M. We view G, x G, as a subgroup of M,, x M,,4,.
Let Q) x Qo = (G, x G4) NQ C G, x G,yy. The representation 7 restricts to Mg, (A)
and Mg, (A): this gives representations respectively denoted by 7, and 7y. As a factor of
(5.1.4.3), we get

(5.1.4.4) f E(g, 91, M) ATE(g, @2, ) dg
[Gy ]!
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where ¢; € Ag, ».(G,,). Here the truncation is the usual Arthur’s truncation operator on
the group G, . It is clear from Langlands’ formula for the integral (5.1.4.4) (see [Art82])
that (5.1.4.4) vanishes unless there exists w € W (Q,, Qy) such that the contragredient
of my 1s isomorphic to wir,. But then 9 would be both (M% , (ng)")-distinguished and
Mg, (n4,)"")-distinguished with 7, = 1 o det,, and Mg, = Mg, N Gy, . This is not
possible. O

5.1.5. Relatwe characters. — Let (P, ) be a pair for which P be a standard
parabolic subgroup of G and m be a cuspidal automorphic representation of its stan-
dard Levi factor Mp. Building upon the truncation operator A and the linear form J,,
we define the relative character Ig’ﬂ for any / € S(G(A)) by

=3 / ATE(h 1p(0, ), 0) di T, (@)

peByp, 7 M

where the K-basis Bp ,; is defined in Section 2.8.3. Using Proposition 5.1.4.1, we have
L () =T (f)

where we define:

ZWGBPJ; I(Ip(0, /), 0) - J, (@) if w is (Mp/, n¢)-distinguished;
0 otherwise.

IP,U (f) = {

Proposition 3.1.3.1. — Let x € X*(G). Let (P, 1) be a representative. The map f +—
Ig’n (f) (and thus f > Ip (f)) is well-defined and gives a continuous linear form on S(G(A)). It
depends only on x and not on the chowe of (P, 7).

Proof. — First we claim that ¢ > f[H] ATE(h, ¢, 0) dh is a continuous map: this is
an easy consequence of properties of Eisenstein series and the truncation operator A} (see
Proposition 3.3.2.1). On the other hand ¢ + J,(¢) is also continuous (see Section 4.1).
Thus the first assertion results from an application of Proposition 2.8.4.1. The arguments
of the proof of Lemma 4.3.7.2 give the independence on the choice of (P, ). 0J

5.2. The x-regular contribution

5.2.1. Let x € X(G). Recall that we defined in Theorem 3.2.4.1 a distribution
I, on S(G(A)). Let (M, ) be a representative of x where M is the standard Levi factor
of the standard parabolic subgroup P of G. The following theorem is the main result of
this section.

Theorem 5.2.1.1. — Assume moreover x € X*(G). We have

[, =2 mey,
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In particular, we have 1, = O unless x 1is relevant.
The theorem is a direct consequence of the following proposition.

Proposition 5.2.1.2. — Assume moreover x € X*(G) We have for T € af, |

(5.2.1.1) / / A;FKX (x,9) ner (n)dxdy = Q_dim(aP)IP’n f),
[H] J[G']

where the lefl-hand side 1s absolutely convergent (see Proposition 3.3.3.1). In particular, the lefi-hand
side does not depend on 'T'.

Indeed, by Theorem 3.3.9.1, I, is the constant term in the asymptotic expansion
in T of the left-hand side of (5.2.1.1) hence I, = 2~ dm@nT,
The rest of the section is devoted to the proof of Proposition 5.2.1.2.

5.2.2. Proof of Proposition 5.2.1.2. — We assume that x € X*(G). The proof is a
straightforward consequence of Theorem 4.3.3.1 and some permutations between in-
tegrals, summations and the truncation. These permutations are provided by Lemmas

5.2.2.1 and 5.2.2.3 below.
Lemma 5.2.2.1. — For all x € [H], we have

f (ATK,) (e 0)ne () dy= AT ( f KX<-,y>nt(y>dy) (x).
[G] [G]

Remark 5.2.2.2. — On the left-hand side we apply the truncation operator A}
to the function K, (-,») (where y is fixed) and then we evaluate at x whereas on the
right-hand side we apply the same operator to the function we get by integration of
K, (-.0)ne (») over y € [G'] and then we evaluate at x.

Progf — Since « is fixed, the operator A} is a finite sum of constant terms (see
[Art78] lemma 5.1 for the finiteness). Then the lemma follows from Fubini’s theorem
which holds because we have

f f |K, (nx, )| dndy < 00
[Nol Y [G']

for all parabolic subgroups Q of G, containing B,. Here we identify N with the sub-
group {1} x Ng of G =G, x G,4;. The convergence of the integral results from the
bound (3.3.2.3) above. U

Lemma 5.2.2.3. — We have

f A} ( K, ()16 () dy) (h) dh= 27T, (f).
[H] [G']
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Proof. — First, by Theorem 4.3.3.1, we have for any x € [G]:

K, (e )ne () dy= 274" " E(x, 1p(0, )¢, 0) dh - J, ()

[ @€Bp

where the notations are borrowed from Section 5.1.5. Then we want to apply the trunca-
tion operator A;F and evaluate at 2 € [H]. We want to show that this operation commutes
with the summation over the orthonormal basis. As in the proof of Lemma 5.2.2.1, it
suffices to prove

> [ I3 0 00 @) < o0
eBp 7 (Nal

for any parabolic subgroups Q of G,4, containing B,, which is an easy consequence of
continuity properties of Eisenstein series.
In this way, we get for £ € [H]:

A} ( K, ()16 () @) (h)
[G]

— 9—dim(ap) Z (ATE) (5, Tp(0, /)@, 0) - ], (@).

9eBp 7

By integration over £ € [H], we have:

/ A} ( K Co)ne () dy) (h) dh
[H] (']

=o7dmen N[ (ATE) (, 1p(0, /), 0) dh - ], (@).

peBp
The right-hand side is nothing else but 2~ 4™, (£). Still we have to justify the change
of order of the integration and the summation. But it is easy to show that

> | IAE®RI0./)e. 0)] dh- [],(@)] < oo. O

geByp ¥ H

6. Spectral decomposition of the Flicker-Rallis period for *-regular
cuspidal data

The goal of this section 1s to give another proof of the spectral decomposition of
the Flicker-Rallis period for the same cuspidal data as in Section 4.3.2. The main result
of this section (obtained as a combination of Theorem 6.2.5.1 and Theorem 6.2.6.1) can
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be used to get another version of Theorem 4.3.3.1 with a seemingly different relative
character than Jp, (this will actually be done in Section 8.2.4). Of course, these two
relative characters are the same. A direct proof of this fact will be given in Section 9.

6.1. MNotation

6.1.1. In this section we adopt the set of notation introduced in Section 3.1:
E/F is a quadratic extension of number fields, G, = GL, ¢, G, = Resg/y GL, g, (B], T),
(B,, T,) are the standard Borel pairs of G/, G, and K/, K, the standard maximal com-
pact subgroups of G/ (A), G,(A) respectively. Besides, we denote by N/, N, the unipotent

radicals of B/, B, and we set

1
w, = e e G/ (F).
1
We write ¢, = (0, ...,0, 1) for the last element in the standard basis of F* and we let
P, = ( 0 * 0 T , P =P, N G be the mirabolic subgroups of G,, G/ respectively

(that is the stabilizers of ¢, for the natural right actions). The unipotent radicals of P,, P/

will be denoted by U, and U/, respectively. For nonnegative integers m < n, we embed G,,

g

in G, (resp. G/ in G/) in the “upper left corner” by g ( ) Thus, in particular,

we have P, =G,_,U, and P, =G/ _,U..

The entries of a matrix g € G,(A) are written as g;;, 1 < 1,7 < n, and the diagonal
entries of an element t € T,(A) as ¢;, ] <1< n.

In—m

6.1.2. Wefixa nontAriVial additive character ¢ : A/F — C*. For ¢ € S(A"), we
define its Fourier transform ¢ € S(A") by

PGt x) = | SO1 - )V G+ -+ X9y -y,
An

the Haar measure on A" being chosen such that a (x) = p(—x).

We denote by ¢ the nontrivial Galois involution of E over F. Then, ¢ acts naturally
on G,(A) and thus on cuspidal automorphic representations of the latter. We denote this
action by 7 > 7‘. We fix T € E* such that t° = —7 and we define y : Ag/E — C* by
Y (2) =¥’ (Tryr(12)), 2 € A, where Ay, denotes the adele ring of E and Trgp : Ap — A
the trace map. We also define a generic character ¥, : [N,] = C* by

n—1
V() = ¢ ((—l)ﬂ Zui,i—l-l) , u€[N,].
i=1
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(The appearance of the sign (—1)" is only a convention that will be justified a posteriori
in Section 7.) Note that v is trivial on A and therefore ¥, is trivial on N/ (A). To any
S € T(G,]), we associate its Whattaker function W, defined by

Wf(%’)=/ S )V, (w) " du, g€ G,(A).
[N.]

6.2. Statements of the main results
6.2.1. Letn> 1 be a nonnegative integer. For f € T ([G,]), ¢ € S(A”) and s € C

we set

25 f ) = / Wi ()¢ (e,h)|det k|’ dh

N, (AN\G,A)

provided this expression converges absolutely.

6.2.2. Let x € X*(G,) be a *-regular cuspidal datum (see Section 4.3.2 for the
definition of *-regular) represented by a pair (Mp, ) and set IT = Ind}(,’(’ji?) (r). We can
write

1\/[}):(},,1 X"'XG,%

where ny, ..., n; are positive integers such that n; + --- + n, = n. Then, 7 decomposes
accordingly as a tensor product

r=mX... X

where for each 1 < ¢ < £, 7; is a cuspidal automorphic representation of G,,(A).

6.2.3. Let L(s, IT, As) be the Shahidi’s completed Asai L-function of TT [Sha90],
[Gol94]. We have the decomposition

k

L(s, IT, As) = HL(S, i, As) X 1_[ L(s, 7t x 717).

=1 I<ig<k

(We emphasize that since L(s, m; X JTJ") = L(s, m; x 7}), this decomposition does not
depend on the order of the 7;’s.) As x is *-regular, the Rankin-Selberg L-functions
L(s, r; X 7r{) are entire and non-vanishing at s = 1 [JS81b], [JS81a], [Sha81] whereas by
[F1i88], L(s, r;, As) has at most a simple pole at s = 1. Therefore, L(s, IT, As) has a pole
of order at most £ at s = 1 and this happens if and only if L(s, 77;, As) has a pole at s =1
for every 1 <:< k.

We say that the cuspidal datum y is distinguished it L(s, IT, As) has a pole of order £
at s = 1. By [F1i88], it is equivalent to ask 7 to be Mp = Mp N G/ -distinguished.
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6.2.4. Tor f € C([G,]), we set Wy = W, where f is defined as in Section
2.9.8. Then, W, i belongs to the Whittaker model W(IT, ¥,) of IT with respect to .

We define a continuous linear form g, on W(IT, v¥,) as follows. For S a finite set
of places of F and W € W(I1, ¥,), we set

Brs(W) = / Wi(ps)dps
N, (Fs)\ P (Fs)

the integral being convergent by (the same proof as) [BP21b, Proposition 2.6.1, Lemma
3.3.1] and the Jacquet-Shalika bound [JS81b]. By [F1i88, Proposition 3] and (2.3.2.3),
for a given W € W(II, ¥,), the quantity

B.W) = (AG)'L3*(1, T, As) B, 5 (W)

is independent of S as long as it is sufficiently large (i.e. it contains all the Archimedean
places as well as the non-Archimedean places where the situation is “ramified”) where
we recall that following our general convention of Section 2.1, L5*(1, I, As) stands for
the leading coefficient of the Laurent expansion of the partial L-function L3(s, IT, As) at
s =1 and we refer the reader to Section 2.3.3 for the definition of AZ’/*. This defines the
linear form g,. '

6.2.5. Forevery f € C([G,]), we set

flo=| [flag)da, g€lG,l.

o0
Ag,

Theorem 6.2.5.1.

1. Let N > 0. There exists cx > O such that for every f € TN([G,]) and ¢ € S(A"), the
expression defining ZFI//R(S, S @) is absolutely convergent for s € H.- . and the function s €
Heon ZiR (s,.f's @) 1s holomorphic and bounded in vertical strips. Moreover, for every s €
Hews (f @) = ZiR(s,f, @) is a (separately) continuous bilinear form on Tx([G,]) X
S(AY).

2. Let x € X*(G,). For every | € C,(IG,]) and ¢ € S(A"), the function s +— (s —
I)Zf/;R(s, Of, @) admits an analytic continuation to H-, with a imit at s = 1. Moreover,
we have

7y (L @) = lim (5= DZy(5, Y ¢)
214G (0)B,(W,.r1) if x is distinguished,

0 otherwise.
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6.2.6.

Theorem 6.2.6.1. — Let x € X*(G,). The linear form

Po, . f€CUGD = | f(W)dh
[G]
is well-defined (i.e. the integral converges) and continuous. Moreover, for every f € S, ([G,]) and ¢ €
S(A") we have
-~ L
(6.2.6.1) #(0)Pg, (f) = §Z¢ (1, S, 9.

6.2.7. A direct consequence of Theorem 6.2.5.1 and Theorem 6.2.6.1 is the
following corollary.

Corollary 6.2.7.1. — Let x € X*(G,) be represented by a pair (Mp, ) and set I1 =
Ind;,’(';i?) (7). Then, for every f € S, ([G,]) we have

2 dmAR B (W, i) if X is distinguished,
P, (/) =

0 otherwse.

6.3. Proof of Theorem 6.2.5.1.2

Part 1. of Theorem 6.2.5.1 will be established in Section 6.5. Here, we give the
proof of part 2. of this theorem. Let f € C,([G,]), ¢ € S(A") and (Mp, ) be a pair
representing the cuspidal datum x as in Section 6.2. We make the identification

ia;, >~ (IR)"
such that for every x = (x1, ..., x;) € ((R)* we have
(6.3.0.1) 7, :=m|detly W... Ko |det|y.

Let ia3; , be the subspace of x € zay; such that njx + -+ - + my = 0. We equip ay; , with
the unique Haar measure such that the quotient measure on

nyxy + - Xy

iy /iay o =R, x>

’ n

is (27r)~" times the Lebesgue measure. For every x € iaf;, we set IT, = Indg(’i?) (7,) and
Jx« =Jn, following the definition of Section 2.9.8 (so that in particular I1y = IT and /) = /n

with notation from the previous section).
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o]

We have an isomorphism Ay ~ R, a > |detalg, sending the Haar measure on

AZ to ‘”{7“ where dt is the Lebesgue measure. Therefore, by Theorem 2.9.8.1 and Fourier

inversion, we have

ny x|ty
(6.3.0.2) °f=/ / a-fidgda:f / detaly, * fdvda= | fdx
A?fn a¥ A?f”

M 1oy 1OL0

where the right-hand side is an absolutely convergent integral in 7x([G,]) for some N >
0. Therefore, by the first part of Theorem 6.2.5.1, there exists ¢ > 0 such that for every
s € H.., we have

(6.3.0.3) 2R, f ) = f RRZACVALOLES
o

Let Sy be a finite set of places of I including the Archimedean ones and outside of which
7 is unramified and let Sy r C Sy be the subset of finite places. Let I € {1, ..., k} be the
subset of 1 < ¢ < £ such that L(s, 7r;, As) has a pole at s = 1. We choose, for each 1 <
t < kand v €S, polynomials Q;(T), Q;,(T) € C[T] with roots in H,;; and H]qvfl’][
respectively such that s = Q;(s) L (s, 75, As) and s = Q); ,(¢,”) Ly (s, ;, As) have no pole
in Hjo, ;. Finally, we set

PG, x)=[J6+20)6—1+2%) [] QG+2% [ Qulg, ™ and

iel 1<i<k 1<i<k
UGSOJ

L@ =£¢g™
for every x € Ay, s € C and g € G,(A). We will now check that the functions

(6.3.0.4) (5,x) €Cx Ay~ P(s+ é,&)zr,),R(SJF éfl ®)
and
(6.3.0.5) (s,2) € C x Ay > P(% -, g)zfjil(% — 5 )0 @)

satisty the conditions of Corollary A.0.11.1.

From the first part of Theorem 6.2.5.1, Theorem 2.9.8.1 and Lemma A.0.9.1, we
deduce that these functions satisfy the first condition of Corollary A.0.11.1. To check that
they also satisfy the second condition of Corollary A.0.11.1, we need to analyze more
carefully the function s — ZiR (8,.fy» @) for a fixed x € Ay.

For S a sufficiently large finite set of places of F, that we assume to contain
Archimedean places as well as the places where 7, ¥' or ¥ are ramified (thus Sy C S),
we have decompositions

¢ =¢s¢” and Wy =Ws W
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for every x € Ay, where ¢s € S(F2), ¢° is the characteristic function of (C/)\%)”, Ws, €
W(I1,s, ¥,s) (that is the Whittaker model of the representation IT, s with respect to the

character ¥, s = ¥,ne)) and Wi € W(Hi, lﬁﬂs)Ki 1s such that Wi(l) = 1. By [F1i88,
Proposition 3] and (2.3.3.4), we then have

ZiR (57 WS,{» ¢S)
Ls (s, T, As)

6.3.0.6)  ZIG. /i ¢) = (AZ) 'Lis 1, As)
for s € H., where we have set

fo (s, W s, ¢ps) = f W (k) ps (e,hs) |det hg | dhs.

N, (FO\G,, (Fs)

Moreover, by [BP21b, Theorem 3.5.1] the function Zf/;R(s, Ws ., ¢s) extends meromor-
phically to the complex plane and satisfies the functional equation

ZZIEI (1 -, WS,Z’ ¢S) _ E(S H As) ZFI/;R(S’ WS,X’ d)b)

(6.3.0.7)
Ls(1 — s, (T1)", As) Ls(s, T, As)

where \/\zz(g) =Ws, (w,/'g7h), ¢s is the (normalized) Fourier transform of ¢s with respect
to the bicharacter (u, v) = ¥'(uyv; + -+ + w,v,) and €(s, I1,, As) denotes the global
epsilon factor of the Asai L-function L(s, IT,, As).

By (6.3.0.6), (6.3.0.7) as well as the meromorphic continuation and functional
equation of L(s, IT,, As) [Sha90, Theorem 3.5(4)], we conclude that Zf/;R(s, Ji. @) has a
meromorphic continuation to G satisfying the functional equation

(6.3.0.8) ZIR (=5, fu ) =205 fo 8).
On the other hand, we have the decomposition

k
L(s, IT,, As) = HL(S + 2x;, 7;, As) X 1_[ L(s 4% + x;, 71; X njc)’

=1 I<ig<k

and, as x € X*(G,), the Rankin-Selberg L-functions L(s, ; x JTJ-‘) are entire and bounded
in vertical strips [Cog08, Theorem 4.1]. By the Jacquet-Shalika bound [JS81b] and the
fact that the gamma function is of exponential decay in vertical strips, Q;(s) Ly (s, 77;, As)
and Q; , (¢, )L, (s, 7;, As) are holomorphic and bounded in vertical strips of H . for each
l<i<kand v €Sy, By [FL17, Lemma 5.2], s+ (s — LS (s, ;, As), for 7 € I, and
s> L3(s, 7;, As), for i ¢ 1, are also holomorphic and of finite order in vertical strips of
H.o. Therefore, by the definition of P and the functional equation, P(s, x) L(s, IT,, As) is
entire and of finite order in vertical strips. By (6.3.0.6), (6.3.0.8) and [BP21b, Theorem
3.5.2], it follows that the functions (6.3.0.4), (6.3.0.5) are entire and of finite order in
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vertical strips in the first variable i.e. they also satisfy the second condition of Corollary
A.0.11.1.
Thus, the conclusion of this corollary is valid and in particular the map

s> (g > l_[(s -1+ QXi)ZiR(S,fy ¢)>

i€l

induces a holomorphic function H.,_. — S(A,) for some € > 0. By (6.3.0.3) and
[BP21c, Lemma 3.1.1, Proposition 3.1.2],” it follows that s — ZgR(s, f, ¢) extends ana-
lytically to H-, and that

21—k11£rf(s — DR (s o, ) I T={1, ..., K},

0 otherwise

(6.3.0.9) Tim (s = DZ 6 9) = {

Recall that I = {1, ..., &} if and only if L(s, IT, As) has a pole of order £ = 7k(Ap)
at s = 1. Moreover, by [BP21b, Lemma 3.3.1] and the Jacquet-Shalika bound [JS81b],
the integral defining ZiR(s, Wy o, ¢s) 1s absolutely convergent in H-,_, for some & > 0.
Combining this with [BP21c, Lemma 2.16.3] and (6.3.0.6), in the case I = {1,..., k}
identity (6.3.0.9) can be rewritten as

lim (s = DZIRG L #) = 27HATD 1 (1L TL A9 ZER (1, W 0, )
= 2" KA 'L (1, T1, As) B,.s(Ws.0) s (0)
=276 (0),(W/.n)
and this ends the proof of Theorem 6.2.5.1.2.

6.4. Proof of Theorem 6.2.6.1

By (2.4.5.23), since any Siegel domain of [G/] is contained in a Siegel domain of
[G,] and pg, = 2pp, we have 6 (h) <« S (h)? for h € [G!]. Hence, by (2.4.5.24), the
linear form Pg, is well-defined and continuous on C([G,]). This shows the first part of
Theorem 6.2.6.1.

Let f € S, (IG,]). Recall that Ag = Ag but the Haar measure on AC(?,, 1s twice the
Haar measure on Agy (see Remark 3.1.3.1). Therefore, we have

1
Pg, (f) = 2 °F (h)dh.

[Grlo

9 More precisely, with the notation of Proposition 3.12 of loc. ¢it. we have an isomorphism ia}; , ~ (R), x> &

given by x, = n;x; and which sends the measure on ia}; , to —— (27)'~* times the measure on (iR)¢ used in loc. cit.
1 M,0 ny ..y 0
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Let ¢ € S(A”"). We form the Epstein-Eisenstein series

E(h, ¢, 5) = > ¢layabldetah)'da, he[G),seC.

A, yePLNG)(F)

This expression converges absolutely for fi(s) > 1 and the map s E(¢, 5) extends to
a meromorphic function valued in 7 ([G,]) with simple poles at s = 0, 1 of respective
residues ¢ (0) and $(0) (cf. [JS81b, Lemma 4.2]).

Consequently, the function

s> 2R, ¢) = Of (WE(h, ¢, 5)dh
[G}]o

is well-defined for s € G\ {0, 1}, meromorphic on G with a simple pole at s = 1 whose
residue 1s

(6.4.0.1) Res—; ZR (s, °f, ¢) = 20(0) P, (f).

Unfolding the definition, we arrive at the identity

(6.4.0.2) 2R f ¢) = f Of (h)ep (e,hr) | det bl dh
PLIN\G),(A)
valid for N(s) > 1.
More generally, for every 1 < 7 < n,let N, , be the unipotent radical of the standard
parabolic subgroup of G, with Levi component G, x (G;)"", N :” be its intersection with
G/ and set

Fowv@= | LV 'du, g€ GA),
[N;.4]
7% ) = f Ry (WP (el)|deth'dh, s € C,
PN, ,(A\G(A)

provided the last expression above is convergent. The proof of the next lemma will be
given in Section 6.5.

Lemma 6.4.0.1. — For every 1 < r < n, there exists ¢, > O such that the expression defining
2R (s, F , @) converges absolutely for R(s) > c,.

When » = 1, we have N, , = N, and %1,»»1// = Wo, so that ZfR(s, O, ) =
ZI?R(;, Of, ¢). Therefore, by (6.4.0.1) and (6.4.0.2), the second part of Theorem 6.2.6.1 is
a consequence of the following proposition.
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Proposition 6.4.0.2. — For every 1 < r < n, the function s — (s — l)ZrFR(s, O, @) extends
to a holomorphic function on {s € G | R(s) > 1} admtting a limit at s = 1. Moreover, we have

lim (s — DZR(s, . ) = lim (s = DZR (5, §).
s—1 s—1

Proof. — By descending induction on 7, it suffices to establish the following:

(6.4.0.3) Let | <7< n— 1. There exists a function F, holomorphic on H._, for some
€ > 0 such that

275G 8) =255, ) + E ()

for all s € G satisfying N (s) > max(c,, ¢, 41).

Indeed, as P/, = G, U, we have

(6.4.0.4) 2 ) = f UKo mw () dudp (e, ) | det A dh.
G(F)N; ,(A\G;A) J[U

7,n

’
r+1]

By Fourier inversion on the locally compact abelian group U, (F)U,_, (A)\U,,(A), we
have

<6'4"0'5) %rﬁ,nﬂ//(uh)du = Z (?fNrH,nJ/f)UrﬁJ//(yh) + (%7+1.na1//)U1+1 (}l)

(U] Y P/D\G)(F)

for all 2 € G| (A) where we have set

CRor )0 g (B) = Ry @Y, " du="R, 4 (),

(Urt1]

((?fNrJrl,n,I//)UH»l (}l) = (\)fNrJrl,n,I// (uk)du'

[Ur+1]

By (6.4.0.4) and (6.4.0.5), we obtain
2756 ) =25 U ) 4+ Fo(s)
for all s € G such that M (s) > max(c,, ¢,41) and where we have set

F.(s) = f CRosr) U (DB (e,h) | det il dh.
GL(F)N],,,(A\G,(A)

It only remains to check that F,(s) extends to a holomorphic function on H._, for some
€ > 0.
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Let P, be the standard parabolic subgroup of G, with Levi component M, = G, x
G,-, and set P/ =P, N G/. We readily check that

RtV (D) = / %((I’ u) W ()" du
n—r]

N
Ir -1
= Jo.( ah)da\yr,(u)~ " du.
N1 JAZ, U

Therefore, by the Iwasawa decomposition G/ (A) = P/(A)K/ and since

1/2
SP:.(/“ h)=5P,(”" h) — |deth, " "|deth,_, |

for all 4, € G/(A), &,—, € G/ _ (A), we have (for % (s) > max(c,, ¢,+1) and a suitable choice
of Haar measure on K))

waos o= [ Al )
K}, x[G/IxN,_,(A\G/_,(A) J[N,—] JAY Uny,—,

W, ()~ duldet o, |* 07
X ¢/{, n—r (61177’hﬂ*7) dhﬂ*?‘th dk

where fp 1, = 8p VRO (R (B)f)p, |w, ) and @y, stands for the composition of R (k)¢
with the inclusion A" — A", x > (0, x). Let x™ be the inverse image of x in X(M,). By
Corollary 2.9.7.2, we have fp, 1., € C,m([M,]) for every (£, s) € K, X H., and the map

(k,s) e Ky, x Hog = fp, 15 € CXM([M,])

is continuous, holomorphic in the second variable. In particular, for R (s) > 0 the integral

/ / / S ks (a (a b )) dadd
A% JiN, 1Ay uh,_,

is absolutely convergent and equals, by the obvious change of variable, to

n ah,
/ / Joo ks < ' ) dadd .
=1 Jax JiNneaJag Ualn—r
.

It follows that (6.4.0.6) can be rewritten, for R(s) > 1, as

n h
/ / f / fi’hk,s ( T }l > da
n—= T JK;, JIGIxN,_ (ANG,_, (&) J[N,-,] JA¥ Ualty—r

n—r

S wrz (u) - du| det hnfr | Wl ¢k, n—r (enfr/lnfr) dhnfrd}lrdk

(6.4.0.7) F,(s) =
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= " (P(;/ ZFR(—))% ks®¢/cn 7)dk

n—r K/
where ZnFE,(s) stands for the bilinear form

(f",9) € CUG,- D) x SA"™") > 7,1 (5, ¢).
On the other hand, by (2.9.6.10) we have

Cor(IM,]) = = Cy, (G D&Cy, ([G,-])

(X1, x) €XM)=X(G) X X(Gyp—r)> X

and, as x € X*(G,), for every (x1, x2) € X(G,) x X(G,—,) mapping to x € X(G,), we also
have xo € X*(G,—,). Therefore, by the first part of Theorem 6.2.6.1, Theorem 6.2.5.1
and (A.0.5.5), s = Pg ®ZR (5) extends to an analytic family of (separately) continuous
bilinear forms on C, ([M,]) x S(A"™") for s € H.;. Thus, by the first part of Theorem
6.2.6.1, (A.0.5.4) and the equality (6.4.0.7), F,(s) has an analytic continuation to {M(s) >
1 — r/n}. This ends the proof of the proposition and hence of Theorem 6.2.6.1. O

6.5. Convergence of Leta integrals
6.5.1.

Proof of Lemma 6.4.0.1. — We only treat the case 1 <7< n— 1. The case r =n can
be dealt with in a similar manner, and is in fact easier.

Let Q, be the standard parabolic subgroup of G, with Levi component G, x G}’
and set Q) = Q, N G/. Recall that N, , is the unipotent radical of Q),. Identifying A%~
R. , by the Iwasawa decomposition G/ (A) = Q/(A)K!, we need to show the convergence
of

(6.5.1.1)

1) |

RN, ,.0 (“h dt)

/K’ xPIFNG.(A)XT,_,(A) xR

-1
|det|’|det ]'8¢y (h zf) dadtdhdk
for M(s) > 1. We now apply Lemma 2.6.1.1. For this we note that ¥, |n, 1= ¥’ o £ where

¢:N,,— G,sends u € N, , to Trgp(t Zl . Ui ;41) and T € E* is the unique trace-zero
element such that ¥ (z) = ¥'(Trg/p(72)). We readily check that

IA* () Lllve, ~ 16 e Allar l_[ 1463 1as
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fi _(" G A xT _(A
or m= ; € G (A) xT,_(A).

Therefore, by Lemma 2.6.1.1.1, we can find ¢ > 0 such that for every N, Ny > 0 we have

(6.5.1.2) ‘(R(k)f N, (ah at)

—£N2
_ h
< llahll g ey el H [ ||AN‘6Q,< ¢>

for (k, h, t,a) € K/ x G/(A) x T’

n—r

(A) x R.(. On the other hand, for every N, > 0, we
have

IR (te,)| < N2, (k1) €K, x A

and it is easy to check that for some Ny > 0 we have

n—r—1

N —1
||eyh||A71_[||z||A<< [N T v H [E7AIN

(ht) € G.(A) x T’

n—r

A).

As 8¢y (ﬁ t) = |det/z|”_’l—[|ti|"+l_2(’+i) for every (h,1) € G.(A) x T/_,
=1

this with (6.5.1.2), we deduce the existence of ¢ > 0 such that for every N;, Ny > 0,

(6.5.1.1) 1s essentially bounded by the product of

(A), combining

<6.5.1.3> / ||d}l||7Nr)||€y}l”;er |deth|.r—(25N2+1)(n—r)dadh
PIING;(A) xR

and

(6.5.1.4) e o)~ QN D1 =2040) gy
A><

for1 <i<n—r.
Let Cl, Cy > 0. By Lemma 2.6.2.1, for N, sufficiently large the integral (6.5.1.4)
converges absolutely in the range

1+ @2cNo+1)(n4+1-20412) <N(s) < C+2cNo+1)(n4+1—-2(r+1))
and for Ny, Ny sufficiently large the integral (6.5.1.3) converges absolutely in the range

14+ (2eNy 4+ 1) (n — 1) < R(s) < Cy + (26N + 1) (n— 7).
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Since n 4+ 1 —2(r+12) <n—r for every 1 <: < n—r, by taking Cy =2 and C, >
24+ 2Ny + 1)(r+2:—1) for every 1 << n—r, it follows thatif Ny > 1 and N; >y, 1
the integrals (6.5.1.3) and (6.5.1.4) are convergent in the range

1+ @QNo+D(n—71) <R(G) <2+ 2Ny + D(n—7).

The union of these open intervals for Ny sufficiently large as above is of the form ]¢,, 400
which shows that Z,F R(s,°f, ¢) converges absolutely in the range R(s) > ¢, for a suitable
¢ > 0. ]

6.5.2.

Proof of Theorem 6.2.5.1.1. — Applying Lemma 2.6.1.1.2, the same manipulations
as in the proof of Lemma 6.4.0.1 reduce us to showing the existence of ¢y > 0 such that
for every C > ¢y there exists N’ > 0 satisfying that the integral

(6.5.2.5) / [0 ey, ss, (0" |detef'de
(A)

=1

converges in the range s € H, ¢ uniformly on compact subsets. But this follows again
from Lemma 2.6.2.1 as there exists M > 0 such that

11,8, (0" < [ | max(lal, 1617, e [T). O

1<isn

7. Canonical extension of the Rankin-Selberg period for H-regular
cuspidal data

This section 1s a continuation of Section 6 and we shall use the notation introduced
there. The main goal is to show the existence of a canonical extension of corank one
Rankin-Selberg periods to the space of uniform moderate growth functions for certain
cuspidal data (see Theorem 7.1.3.1). Combining this with the results of Section 6, this
will enable us to give an alternative proof of the spectral expansion of the Jacquet-Rallis
trace formula for certain cuspidal data in Section 8.

7.1. Statements of the main results

7.1.1. Letn > 1 be a positive integer. We set G = G, x G, and H = G, that we
consider as an algebraic subgroup of G via the diagonal inclusion H < G. We also set
w=(w,, w,y) € GEF), K=K, xK,;;, N=N, x N,;; and Ny =N,. Put yy =, X
Y¥,4+1 (a generic character of [N]). We note that ¥y is trivial on [Ng] (see the convention
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in the definition of ¥, in Section 6.1.2). To any function / € T ([G]), we associate its
Whittaker function

W9 =/ Sug)¥n@) ' du, g€ G(A).
NI

For f € T([G]), we set
lezs(s,f) = / W (h)|dethlydh
Nu(A)\H(A)

for every s € G for which the above expression converges absolutely. We postpone the
proof of the following lemma to Section 7.3.

Lemma 7.1.1.1. — Let N > 0. There exists e > O such that:

o Forevery [ € Tn([G]) and s € H.-. ., the expression defining Zﬁs (s,.f) converges absolutely;

o Forevery s € H ., the functional f € Ty([G]) — Zﬁs (s,.f) s continuous;

o Forevery f € Tx([G]), the function s € H- , —> ng (s,.f) us holomorphic and bounded in
vertical strips.

7.1.2. H-regular cuspidal datum. — Let x € X(G) be a cuspidal datum represented
by a pair (Mp, 7) where P="P, x P, is a standard parabolic subgroup of G and w =
m, X, a cuspidal automorphic representation of Mp(A) (with central character trivial
on Ap®). We have decompositions

Mpn:Gan'--XGﬂk, Mp :Gle---XGm,

n+1

and m,, 7,4, decompose accordingly as tensor products
T, =TT, X...X Tnks Tpr1 = Tpt1,1 X...X TTpt1,re

We say that x is H-regular if it satisfies the following condition:

(7.1.2.1) Forevery | <i<kand 1 <j<r,wehaver,; #m,, ..

7.1.3.

Theorem 7.1.3.1. — Let x € X(G) be a H-regular cuspidal datum. Then,

1. For every | € T, ([G]), the function s — Zf}s(s, ), a priort defined on some right half-
plane, extends to an entire function on G;
2. The restriction of the linear form

Pu:f eSUG) — | fhdh

[H]
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to S, ([G]) extends by continuity to T, ([G]) and moreover for every f € T, (IG1), we have
(7.1.3.2) Pyu(f) =7,°(0. ).

7.2. Proof of Theorem 7.1.3.1

Let f € S, (IG]). For 1l <r<mletN,, and N, be the unipotent radicals of the

standard parabolic subgroups of G, and G,1, with Levi components G, x (G;)"™" and
G, x (G))""'™" respectively and set

NyG = Nr,n X Nr,n+lv NH = Nf} NH= N’v"’

st.‘aw(g)=/ Sug)¥x(w) " du, for g € G(A).
[NS]

For 1 <r<nandse G, we also set, whenever this expression converges,

785G, f) = f NGy (B)|det il dh.
P,(ONHA)\H(A)

Note that we have leas (s,.f) = Z};S (s,.f). The proof of the next lemma will be given in
Section 7.3.

Lemma 7.2.0.1. — For every 1 < v < n, there exists ¢, > 0 such that the expression defining
785 (s, f) converges absolutely for s € H..,,.

For r=n+ 1 and every s € G, we also set

2,53, (. ) = / S (h)|dethl;;dh.
[(HI]

Note that the above expression is absolutely convergent and defines an entire function

of 5 € C which is bounded in vertical strips, satisfying Py (/) = Z*% (0, /). The following

n+1
proposition is the crux to the proof of Theorem 7.1.3.1.

Proposition 7.2.0.2. — For every 1 < r < n, we have
(7.2.0.1) L8 (5. ) =Z (s, f)
Jor R(s) sufficeently large.

Progf — Let1 <r<n—1.AsPy; =G,U, andN, ,=UN,;, ,, forse H.,, we
have

7202 7)) = / e (k) duldet L dh
G, (FHNH(&)\H(A) J [ s

r+l]



298 RAPHAEL BEUZART-PLESSIS, PIERRE-HENRI CHAUDOUARD, AND MICHAL ZYDOR

where we have set Uﬂ_l = U,;; viewed as a subgroup of H = G, (as always via
the embedding in “the upper-left corner”). Similarly, we set U%, = U,y x U,

viewed as a subgroup of G. By Fourier inversion on the compact abelian group
U%  (F)UR  (A)\US | (A), we have

r+1 r+1

(7.2.0.3) S COTE Yo Re e (VD + (e, s, (B
U

U y€P,(\G,(F)

for every # € H(A), where we have set

(fNﬁrl,l/f)Uf;l,x//(/Z) = /[UG ]f\ffil,w(uh)‘ﬁl\‘(u)ildu = /n¢ .y (1),
r+1

e, ypue, () = NG,y (uh)du.
]

U5
By (7.2.0.2) and (7.2.0.3), we obtain
(7.2.0.4) Z8 (5. ) =Z5(s, /) + F.(5)

for every s € G such that R(s) > max(c,, ¢,+1) and where we have set

F.(5) = / (Ae, yue, (B)]dethlydh.
G, (F)NH(A)\H(A)

By a similar argument, (7.2.0.4) still holds when n = r if we set

fU;;+1 (W=  f(uh)duand F,(s) = f fUi’ll (h)|dethlydh
s, [H]
where US+1 =1xU,,.
From (7.2.0.4), we are reduced to showing that F,(s) = 0 identically for every
I <7< nand %(s) sufficiently large. To uniformize notation, we set fyo 4 =f. Let
P, be the standard parabolic subgroup of G with Levi component L, = (G, x G,_,) X
(G, x G,41_,) and set Pf{ = P, N H. Then, we readily check that

L L
U‘Nglvv’)Ugl (;Z) - ‘/[N,Z,.]X[Ny,ﬂr]‘fl)r <<< u) ’ ( u/)) h)

X Y, ()™ Y1 ()™ did du
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for every 4 € H(A) and 1 < r < n. Therefore, by the Iwasawa decomposition H(A) =
P? (AK,, we have

h,
h= / / / o (( 7 uh g
Ky J1G XN, AN\, (A) SN, 1IN 1] =

~1
h, _ Nl g hy
( y hn_,> k) V()™ Y (@)~ did dupn ( /z,,_,.>

x |det b, % |det by, & dh,_,dh,dk.

By a painless calculation, left to the reader, we have

-1
5P;I<h’ , ) \det b, [}, |det A, |}

— 2o, (s)
_ SP,V ((}lr p ) ’ (/Zr /l )) |det}ln_y AS’Q?O(,(J)

4’12_&"1:,12. Let x" be the inverse image of x in X(L,). By Corollary 2.9.7.2,
Lo

for R(a,(s)) > 0 and every k € K, the function fi, 4, := 8, ““R(k)f, |, belongs to

C,.([L,]). On the other hand, as L, = G, x G,_, x G, x G,41_,, by (2.9.6.10) we have

the decomposition

where o, (s) =

Co(L]) = & Cu (G, x G])

(X1, X)) €X(GHX X (G X G 1-)> X

®CX2([G7!—T X Gn-l—l—r])

and the above equality can be rewritten as
(7.2.0.5) F,(s) = f (Pea®Z8 (s 4 2r0,(5))) (fo, 1., dk
K,

where Pga denotes the period integral over the diagonal subgroup of G, x G, and ZRS(5)
stands for the continuous linear form

f/ € C([Grh?' X Gn+177]) = Zfl/i?fl)’ (Syf/)'
Since y is H-regular, by (7.1.2.1) for every preimage (X1, x2) € X(G?) x X(G,—, X G,11-,)
of x with x; = (x, x/) € X(G,)* we have x| # (x;)”. Hence, by definition of C,, ([G, x
G,]), Pga vanishes identically on C,, (IG, x G,]). This implies that F,(s) = 0 whenever
I (s) > 1 and this ends the proof of the proposition. UJ
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We can now finish the proof of Theorem 7.1.3.1. From the proposition, we deduce
that

(7.2.0.6) 2,>(s.f) = " f(B)|det h|*dh

for R(s) > 1 and every / € S, ([G]). In particular, it follows from this equality that s
Zﬁs (s,f) extends to an entire function on G that is bounded in vertical strips and satisfies
the functional equation

25 (=s. ) =285 (5. f)

where f(g) =f('g™"). By Corollary A.0.11.2, we can now deduce the first part of the
theorem from the above functional equation, (2.5.10.8), (2.9.5.9), Lemma 7.1.1.1. This
corollary also entails that the linear map f € T, ([G]) = Z,(0, /) is continuous. As, by
(7.2.0.6), this functional coincides with Py on S, ([G]), this proves the second part of the
theorem.

7.3. Convergence of Zela integrals

Proof of Lemma 7.2.0.1. — The argument is very similar to the proof of Lemma
6.4.0.1 so we only sketch it. Let 1 <7 < nand QF be the standard parabolic subgroup of
G with Levi component (G, x (G)"™) x (G, x (G)""'™") so that NS is the unipotent
radical of Qf Set QH = QG N H. By the Iwasawa decomposition H(A) = QH (AK,, we
need to show the convergence of

(7.3.0.1)

RO xsy (ﬁ t)‘

/Kn X P, (F\G,(A) xT,—,(A)
}l -1
X |det Al}|det [ 8on ( t) didhdk

for M(s) > 1. We apply Lemma 2.6.1.1.1 to ¢y = ¢ and

¢:N¢ > G,

n—1 n
(u, 1) > Trp <<—1>"r D i+ (=1 u;,i+1> :

We readily check that there exists Ny > 0 such that

n—r

<
(7.3.0.2) lle/]| ar l_[”ti”AE < ||Ad < t) ZHSZ,(;’ for (4, ¢) € G,(A) x T,_,(A).
=1 ¥



THE GLOBAL GAN-GROSS-PRASAD CONJECTURE FOR UNITARY GROUPS. .. 301

Therefore, from (7.3.0.2) and Lemma 2.6.1.1, there exists ¢ > 0 such that for every
N, Ny > 0, (7.3.0.1) is essentially bounded by

n—r —cNQ
—No —N; —Nj }l
Il el T Tilel A SQ_G( ,:>
=1

'/;)T(F)\G?‘(A)XTﬂ—?‘(A)
}l —1
X S ( t) \det 4]}, det ¢, dicdh.

Now, the convergence of the above expression for R (s) > 1, Ny >, l and N} >, , | can
be shown as in the end of the proof of Lemma 6.4.0.1 using Lemma 2.6.2.1. U

Proof of Lemma 7.1.1.1. — Applying Lemma 2.6.1.1.2 in a similar way, we are re-
duced to showing the existence of ¢x > 0 such that for every C > ¢y there exists N' > 0
satisfying that the integral

n
-N N -1 ]
/ [ el 1211y, 85, (1)~ [ det ol dt
T,(A)

=1

converges in the range s € ‘H,, ¢ uniformly on any compact subsets. This is exactly what
was established in the proof of Theorem 6.2.5.1.1 (up to replacing the base field I by
E). 0

8. Contributions of #-regular cuspidal data to the Jacquet-Rallis trace
formula: second proof

In this section, we adopt the set of notation introduced in Section 5. In particular,
n > 1is a positive integer, G =G, x G4, G' =G, x G}, |, H= G, with its diagonal
embeddingin G, K=K, xK,;; and K’ =K x K| . | are the standard maximal compact
subgroups of G(A) and G'(A) respectively and n¢ : [G'] = {£1} is the automorphic
character defined in Section 3.1.6. We will also use notation from Sections 6 and 7:
N =N, X N,;; and Ny =N, are the standard maximal unipotent subgroups of G and
H, Y = ¢, X ¥4 1s a generic character of [N] (where v, and v, are defined as in
Section 6.1.2). We also set P =P, x P, (resp. P’ =P, x P, ) where P, and P, (resp.
P, and P, ) stand for the mirabolic subgroups of G, and G4, (resp. of G, and G/, ),
T =T, x T,y for the standard maximal torus of G and N’ =N/ x N/ | for the standard
maximal unipotent subgroup of G’. Finally, as in Section 7.1.1, for every / € T ([G]) we

set

Wi = | fu¥x@)'du, geGA).

[N]
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8.1. Man result

8.1.1. Let x € X*(G) be a *-regular cuspidal datum (see Section 5.1.3) repre-
sented by a pair (Mp, 7). We set [1 = Indg&) (7r). We have decompositions P=P, x P,
m=m,Xm, and [1 =11, X IT,;; where: P,, P,.| are standard parabolic subgroups of

G,, G, respectively with standard Levi components of the form

Mp, =G, x---xG,, Mp,, =G, x---xG,,,

n+1

7, and 7,4, are cuspidal automorphic representations of Mp (A), Mp, , (A) decomposing

n+
into tensor products

my=m,, X N,y T =m0 X Xy,

. Gpr1 (A .
respectively and we have set I, = Indgl”&)) (m,), M,y = IndPn:]l((A)) (7,i1). We write x, €

X*(G,) and x,+1 € X*(G,4,) for the cuspidal data determined by the pairs (Mp,, 7,) and
(Mp

41> g 1) TEspectively.
The representation IT is generic and we denote by W(IT ) its Whittaker model
with respect to the character ¥n. Also, for every ¢ € I1 we define

Wy (g) :=Wr (9) =/

E(ug, 9)Un(w)~'du, g€ G(A).
N]

Note that Wy € W(IT, ¥y).

8.1.2. We now define two continuous linear forms A and B, as well as a contin-
uous invariant scalar product (., .)wni on W(II, ¥x). Let W € W(TT, ¥n).

e By [JPSS83] [Jac09], the Zeta integral (already encountered in Section 7)

7855, W) = / W(h)|dethly dh,

Nu(A)\H(A)

converges for M (s) > 0 and extends to a meromorphic function on G with no
pole at s = 0. We set

A(W) = ZR5(0, W).

e For S a sufficiently large finite set of places of F, we put

By(W) = (ASHTILS*(1, 11, As) W(ps)ne (ps)dps
N/ (Fs)\'P'(Fs)

where we have set L(s, IT, Asg) = L(s, I, AS(_I)"H)L(S, .1, As©"),
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e Similarly, for S a sufficiently large finite set of places of I, we put

(W, W)wiie = (AZHT'L3*(1, T, Ad) IW(ps)|*dps
N(Fs)\P(Fs)

where we have set L(s, IT, Ad) = L(s, IT, x IT/)L(s, T4, x I}, ).

That the above expressions converge and are independent of S as soon as it is chosen suf-
ficiently large (depending on the level of W) follow from [F1i88] and [JS81b]. Moreover,
the inner form (., .)wni 18 G(A)-invariant by [Ber84] and [Bar03].

The next result follows from works of Jacquet-Shalika [JS81b], Shahidi [Sha81]
and Lapid-Offen [FLO12, Appendix A]. For completeness, we explain the deduction
(see Section 2.7.2 for our normalization of the Petersson inner product).

Theorem 8.1.2.1 (Jacquet-Shalika, Shahidi, Lapid-Offen). — We have

<¢’ ¢>Pet = (W(/n W¢>W’hitt
Jor every ¢ € I1.

Proof. — Let ¢ € I1. By the Iwasawa decomposition, for a suitable Haar measure
on K we have

@ 0= [ [ 16 i
K J[Mp]o
Set N' =N N M; and
Pney (9) = / . ¢ (ug)x(w)~'du, g€ G(A).
(NF]
Let P be the product of mirabolic groups 1_[;;1 P, x ]_[J'f:1 P, It is a subgroup of Mp.

According to Jacquet-Shalika [JS81b, §4] (see also [FLO12, p. 265] or [Zhal4a, Propo-
sition 3.1]'Y), for S a sufficiently large finite set of places of F we have

(8.1.2.1) f | (mk)| 28 (m) ™ dim
[Mplo

k r
S,k —1 S S
= (A [ [Resmt LG s x 1)) [ [ Resici LG5, gy x 1, )

=1 J=1

X / |¢NP,w(Psk)|25P(Ps)fldﬁs
NP (Fs)\ PP (Fs)

10 Note that our normalization of the Petterson inner product if different from loc. cit.
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for every £ € K. On the other hand, by [FLO12, Proposition A.2] we have

8.1.2.2) / / (xny (s 280 (ps) ™~ dpsck
K J NP (Fs)\ PP (Fs)

. VOlG(AS) (KS)
VOIMP(AS) (KS N MP(AS))

X/ / |¢>NP,1//(Psgs)|25p(ﬁs)_ldﬁsdgs
P(Fs)\G(Fs) J NP (Fs)\PP(Fs)

= (A(S;’*)_IAE/ IWs (ps, dxe.y) | dps,

N(Fs)\P(Fs)

where Wy : Indg((kzs))(W(ng, ¥ns)) = W(Ids, ¥ns) stands for the Facquet functional, de-
fined as the value at s = 0 of the holomorphic continuation of

Wy (g5, 9") = / ¢ (wp usgs)Sp(wy usgs) Yn (us) ™" dus,

(w§)~I'NP(Fs)wg \N(Fs)

N(s) > 1

for gs € G(Fs) and ¢’ € Indp OV (s, Yns)) where w§ = ww® with w? (resp. w®)
the permutation matrix representing the longest element in the Weyl group of T' in Mp
(resp. in G). Finally, by [Sha81, Sect. 4], we have

(8.1.2.3) Ws(one ) = 1_[ (1, 7, x 7)) l_[ L3, i X 705, YWy loas)

1<i<j<k 1<i<<r

where Wy |G, stands for the restriction of the Whittaker function Wy to the subgroup
G(Fs) C G(A). (Note that, as x is regular, the Rankin-Selberg L-functions L(s, 7, ; X JTHVJ)

and L(s, 7,41, X nr:/+lJ) are all regular at s = 1.) As, for every s € R,

k r
S \Y S \Y S \Y
L3(s, TT x I1 ):HL (5, 0 X ))) X HL (5 Tty X )y )
i=1 j=1

2

S \
X 1_[ L>(s, 7w, X 70,
1<i<j<k

2

S \%
X 1_[ L (S, Tlnt1,i X nn+1g') )

1<i<<r

we deduce from (8.1.2.1), (8.1.2.2) and (8.1.2.3) the identity of the Theorem. 0J
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8.1.3. Relative characters. — Let Bp, be a K-basis of IT as in Section 2.8.3. We
define the relative character Iy of T as the following functional on S(G(A)):

o AR(OWB,W,)
In(f) = Z (We, W) whin

, [ €S(GA)),
peBp,x

where the series converges, and does not depend on the choice of Bp ., by Proposition
2.8.4.1.

8.1.4. TForeveryf € S(G(A)), we set

K},x(g) = [H]Kf,x(/l,g)dh and

sz,x @)= f[G/] Kr,(g. e (@)dd, g<€[Gl,

where the above expressions are absolutely convergent by Lemma 2.10.1.1.3.
Recall that the notion of relevant *-regular cuspidal datum has been defined in

Section 5.1.3 and that we have defined for any x € X a distribution I, (see Theorem
3.2.4.1).

Theorem 8.1.4.1. — Let f € S(G(A)) and x € X*(G). Then,
1. If x s not relevant, we have K}% (&) = 0 for every g € [G] and moreover
L) =0.

2. If x s relevant, we have

L= [ KL @ne@
[G']
where the night-hand side converges absolutely and moreover

L (f) = 27" 1(f).

The rest of this section is devoted to the proof of Theorem 8.1.4.1. Until the end,
we fix a function f/ € S, (G(A)).

8.2. Proof of Theorem 8.1.4.1

8.2.1. We fix a character n¢ of [G] whose restriction to [G'] is equal to ng (such
a character exists as the idéle class group of I is a closed subgroup of the idéle class group
of E) and we set X =g ® x € X*(G). We can write X as (X,, X.+1) where x; € X*(Gy)
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for k =n,n+ 1. For every g € [G], we denote by Kﬂx(g’ .) the function ngK; , (g, .). By
Lemma 2.10.1.1.2 and (2.9.6.10), we have

(8.2.1.1) K/, (g..) € S3([G]) = 83, ([G,))®Sy,,, ([Gsi])
for all g € [G]. Moreover, with the notation of Theorem 6.2.6.1, we have

8.2.1.2)  K! (9 =P;,®Pc, (K, ().

8.2.2. The non-relevant case. — Assume that x is not relevant. By definition of a
relevant cuspidal data (see Section 5.1.3), at least one of X,, X, is not distinguished
(see Section 6.2.3 for the definition of distinguished). Hence, by Theorem 6.2.5.1 and
Theorem 6.2.6.1, PGZ vanishes identically on Sy, ([G;]) for £ =n or k=n+ 1. Thus, by
(8.2.1.1) and (8.2.1.2), the function K; , vanishes identically. By Theorem 3.3.9.1 applied
to the expression (3.3.5.5), this implies I, (/) = 0. This proves part 1. of Theorem 8.1.4.1.

8.2.3. Regularized Rankin-Selberg period and convergence. — From now on, we assume
that x is relevant. By Lemma 2.10.1.1.2, for every g € [G] the function K , (., g) belongs
to S, ([G]). Since x is relevant, it is H-regular in the sense of Section 7.1.2 (this follows
from the dichotomy of Section 4.1.2). Therefore, by Theorem 7.1.3.1, Py extends to
a continuous linear form on 7, ([G]) that we shall denote by Pj;. By definition of this
extension and of the linear form A (see Section 8.1.2), for every ¢ € Il we have

(8.2.3.3) P (E($)) = A(Wy).
By Lemma 2.10.1.1.3 there exists N > 0 such that the function
2 elGl— K, (., ¢) e Tx(G]

is absolutely integrable. As

K} (9) = Pu(K; (. ) = P5(K,, (.. 9),

combined with Theorem 3.3.9.1 applied to the expression (3.3.5.6), this shows at once
that the expression

(8.2.3.4) K! (e (@)dd
[G']

converges absolutely, is equal to I, () and that

(8.2.3.5) L (f) =P} ( Ky, (. e (g/)dg/) =PL(K7 ).

[G']

Let us point out here that the absolute convergence of (8.2.3.4), together with Theorem
3.3.7.1.1, implies that the exponential-polynomial T I)l((f ) of Theorem 3.2.4.1.2 1s
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actually constant (but we caution the reader that this is not necessarily true for cuspidal
data that aren’t *-regular and relevant).

8.2.4. Spectral expression of Kjf L oet N=n"e nG. We may write I as a tensor
product I, X I1,,, and we let

B =B.8B.s1 : WL, ) = WL, Y )@W(IL,41, ¥,11) — C

be the (completed) tensor product of the linear forms B,, B, defined in Section 6.2.4.
Fix g € [G] and set £, =K, , (g, .). Since x is relevant, X, and ), are both distinguished.
Note that the linear map

fe S(IG) > Wi := We. € W(TT, y)

is the (completed) tensor product of the continuous linear maps f € SGi) = Weq, €
Wy, ¥) for k=n,n+ 1 (as can be checked directly on pure tensors). Therefore, by
(8.2.1.1), (8.2.1.2), Theorem 6.2.5.1 and Theorem 6.2.6.1 we have

(8.2.4.6) K} (9) =2 "4 B(W, 7).

Let Bp ; be a K-basis IT as in Section 2.8.3. Then, we have f, = Z (£, n6E@))6ncE(@)
¢EBP,TI
where the sum converges absolutely in Tx([G]) for some N > 0. Hence,

We= D (£ 1cE@)encW,
¢€BP,7[

n W(ﬁ, ¥n). On the other hand, we easily check that ,3(77GW_¢) = B,(Wy) and
(£, ncE@))c = (K, (g, ). E@))e = ER(NHP)(9)

for every ¢ € Bp . Therefore, by (8.2.4.6), we obtain

(8.2.4.7) K (9=2""" Y ER()P)(9)B,(Wy).

¢€BP,7{

Note that by Proposition 2.8.4.1, the series above is actually absolutely convergent in
Tx([G]) for some N > 0 (and not just pointwise).

8.2.5. End of the proof. — By (8.2.3.5), (8.2.3.3) and (8.2.4.7), we obtain

L () =274 N A R(HW) B, (Wo).

¢EBP,7[
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Using Theorem 8.1.2.1 and since Bp ; is an orthonormal basis of 1, this can be rewritten
as

| AR(HWy) B, (W |
L, (f) = 2~ dman {° (<V%i V@‘i:i{ﬁ’):2—dlm<AP>1n(f)

¢€BP,7[

and this ends the proof of Theorem 8.1.4.1 in the relevant case.

9. Flicker-Rallis functional computation

The goal of this section is to prove Theorem 1.3.2.3 of the introduction that states
that two natural functionals are equal. This is established in Theorem 9.2.5.1. The bulk of
the work is in proving its local avatar. The case of split algebra E/F amounts to comparing
scalar products which was done in Appendix A of [FLO12], which is an inspiration for
this section.

9.1. Local comparison

9.1.1. Let E/F be an etale quadratic algebra over a local field F. Let Trgp :
E — F be the trace map. As in Section 6.1.2, let ' : F — C* be a non-trivial additive
character, T € E* an element of trace 0 and we set ¥ : E — C* to be ¥ (x) = ¢¥'(Tr(zx)).
We use ¥’ and ¢ to define autodual Haar measures on I and E respectively. The duality
F x E/F — C* given by (x, ) = ¥ (xp) defines a unique Haar measure on E/F dual to
the one on F. This measure on E/F coincides with the quotient measure.

9.1.2. Let k=E or F. Let S be a closed subgroup of GL, (k) equipped with a
right-invariant Haar measure denoted by ds. We denote by ds the modular character
such that 85(s) ™' ds is a left-invariant Haar measure on S. Let R C S be a closed subgroup
equipped with a right-invariant Haar measure dr. We denote by fR\S the right S-invariant

linear form on the space of left (R, 8gd5')-equivariant functions on S such that

/ /f(rzf)Ss(r)c‘SR(r)1 drdt = /f(s)ds
R\S JR S

for all continuous and compactly supported functions f on S.
We normalize the measures on GL, (k) and its subgroups as follows:

e On GL,(k) we set

de‘

X =
| det x|}

where x = (x;).
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e On standard Levi subgroups of GL,(k) we set the product measure using the
measure defined above.

e On (semi) standard unipotent subgroups N(k) C GL,(k) we set the additive
measure dn; where n; run through coordinates of N.

e Let Pis astandard parabolic subgroup of GL, (k) with the standard Levi decom-
position NM. We have the right-invariant measure dp := dndm on P(k) and the
left invariant measure 8;; dp where 8p, : P(k) — RZ, is the Jacobian homomor-
phism for the adjoint action of P(£) on N(%).

With this normalization, we have for all / € C*(GL, (%))

J (@) dg = f L (oSn,(p)" dpin,

GL, (k) P(k) v N(k)

where N is the unipotent radical of the opposite parabolic to P. The linear form fP( I\GL,(b)

is given in this case by the integration over either N(k) or the standard maximal compact
subgroup for a suitable Haar measure. Assume P is moreover maximal of type (n — 1, 1).
Let P C P be the mirabolic subgroup (see Section 9.1.5 below). We have P(k) = P (k) x
GL, (k) and this gives the normalization of the measure on P (k). Moreover the modular
character §p( coincides with | det|; on P (k).

9.1.3. We will use the notation introduced in Section 4 with some changes. All
groups considered in this section are subgroups of G, = Resg/r GL,. We write simply
G for G,, Py for the fixed minimal parabolic subgroup of G and Ny for its unipotent
radical. In order to be as compatible with Appendix A of [FLO12] as possible, instead of
G’ = GL, (defined over F) we write Gy = GL, and for any subgroup H of G we write Hp
for HN Gy. We will often identify a group with its I points in this section.

9.1.4. We define the character ¥ : Ny — C* as follows. Write n € Ny as

1 nmg mg ... nyy
0 1 Nos e oy,
n=1]0 ngy, |, n;€L
0 . . 1 My—1n
0O ... O 0 1

and set ¥ (n) = ¥ ((—1)"(nyo + nos + - - - + n,_1,)). This is the same character as the one
from 6.1.2. By restriction, ¥ defines a character of Ny MM for all standard Levi subgroups
M.

9.1.5. We denote by P =P, the mirabolic subgroup of G defined as the stabi-
lizer of the row vector (0 ... 0 1).



310 RAPHAEL BEUZART-PLESSIS, PIERRE-HENRI CHAUDOUARD, AND MICHAL ZYDOR

For ¢ an element of C*(No\P, ¥) = {f € C*(P) | f(nx) = ¥ (n)f (x), n€ Ny, x €
P} we define

B@) = Bulg) = f o(p) dp

No.r\Pr

when it is absolutely convergent. Note that ¥ is trivial on N r. In the same way, we define
Pum for all standard Levi subgroups M of G.

9.1.6. Let IT,,(G) be the set of irreducible generic complex representations of
G = GL,(E). Let W(rr) = WY (1) be the space of the Whittaker model of 7 € I1,,,(G)
with respect to the character ¥. Let 8;’ =4, : W(mr) — C be the evaluation at g € G.
The group G acts on W(rr) by right multiplication.

Fix P = MN e FY(P,). Let wy be the element in the Weyl group of G such
that wyMwy, is a standard Levi subgroup and the longest for this property. Let P¥ =
N*M" € FG(Py) be the parabolic subgroup whose Levi component is M = wyMuwy,'.

For o € I1,,(M) let Indg (W(0)) be the normalized (smooth) induction to G, from
W(o), seen as a representation of P via the natural map P — M. As in Section 8.1.2 we
define for ¢ € Indg (W(0)) the Jacquet’s integral.

W0 = [ 87ty dgyy i
Nw
We have then that W,(¢) := W(e, ¢) is a Whittaker functional on Indg W(0)).

9.1.7. Leto €Il,,(M)andgp € Indg (W(0)). We assume that o is unitary. Then
Bc(W(p)) and By (¢(g)) are given by absolutely convergent integrals (cf. [F1i88, Lemma
4] and [BP21b, Proposition 2.6.1, proof of Lemma 3.3.1]). We shall say that o is distin-
guished if o admits a non-zero continuous linear form invariant under Gy. From now on
we assume that o is distinguished.

Theorem 9.1.7.1. — Under the assumptions above, the linear map Byy s My-invariant and
we have

(9.1.7.1) Bc(W(p)) = B'(¢)

where

9172 o) = f Au(0(©) .
Pp\Gp

Remark 9.1.7.2. — The integral (9.1.7.2) makes sense since By is invariant and
since &p restricted to Py equals S%F. This latter observation pertains also to similar integrals
in the proof below.
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Proof. — If E is split then the theorem follows from [Bar(03, corollary 10.4] and
[FLO12, proposition A.2]. We assume from now on that E/F 1s a field extension. Let’s
prove the first assertion. Working on factors of M we are reduced to the case M = G.
If F 1s p-adic, the result follows from [GJRO]1, proposition 2]. More precisely, according
to this proposition, any non zero Gp-invariant continuous linear form on (the Whittaker
model of) a distinguished unitary generic representation of G should be (up to a non zero
constant) B. We claim that the result also holds for I = R. Indeed, following the proof
of [GJROI, proposition 2] and using multiplicity one property [AG09, theorem 8.2.5],
we see that it suffices to show that any Z(g)-finite distribution on the symmetric space
G /Gy left-invariant by Py is also left-invariant by Gy. But this is a variant of [Bar03,
theorem 10.4] where the adjoint action of Gy on itself is replaced by the action of Gy on
G/Gy. It can be proved as in [Bar03, section 9]: indeed the bulk of the argument there
is a descent to the centralizer of semi-simple elements where the use of the exponential
reduces everything to an analogous theorem for the adjoint action of Gy on gy. In fact
such a descent can be performed for G/Gy. The main observation is that the tangent
space of G/Gy at the origin can be identified as a Gp-representation to the adjoint action
of Gy on gp.

Once we have the first assertion, we observe that B’ is a non-zero Gp-invariant
linear form on Indg’(W(G)) (since By 1s non-zero as a consequence of [GK72], [Jacl0,
Proposition 5] and [Kem15]). Still by the same argument as before we deduce that the
equality (9.1.7.1) holds up to a non zero constant. We have to show that this constant is
1. Thus it suffices to prove (9.1.7.1) for one specific ¢ such that B'(¢) # 0.

There is an easy reduction to the case where P is maximal. Let Q =LV D P be
maximal and suppose the assertion holds for M = Mp. Then

B'(p) = Pulp(9) dg = / / 80y (9 Bu(9(4g)) dgdg.
Pr\Gr Qp\Gr J Pr\Qy
The inner integral on the RHS by induction hypothesis equals

,BL(g.WL((p)).

Ifwe let ¢'(g) = . W"(¢) € W(Ind;,,(W(0))) then ¢ € Indg; (W (Indy,(W(0)))) and
so by assumption and transitivity of Jacquet’s integral we obtain

/ B W (@) dg = B (W(p)).
Qr\Gr
From now on we assume that P = MN is maximal of type (n;, n9). In [FLO12], the

authors use U instead of N. We will consequently use N in place of U here. Write M =
M, x My with M; = Resg,r GL,,, M, being in the upper and M, in the lower diagonal.

Let
_1 0 I,
w=wy = | 0 )
ny
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Let P"=M'N’ be of type (n9,n;) so that M' = M;, x M| with M = Resgr GL,;, M},
being in the upper and M in the lower diagonal. Let P! be the mirabolic subgroup of
M. Let N’ be the maximal upper triangular unipotent of M, similarly without . Note
that P; = wP/w™" etc. We identify N with the group of ny x 7; matrices. We write
o =0 ® 0y where 0} and 0y are respectively viewed as representations of M; and Mj.

We view 09 as a representation of M, as well.
Let

C;={I,+ & | & column vector of size ny in the i-th column} C N/,

t=ng+1,...,n
Let

R, ={I,+ & | &£ row vector of size ny in the i-th row} C Nl,

i=ng+1,...,n

We can identify C; and R; with E™ which induces a pairing between C; and R;_; that we
will denote (-, -};.
We note some obvious facts

e The groups R; (resp. C;) commute with each other and are normalized by M.
e The commutator set [C;, R;] is contained in N/ for j < z.

We define the following groups

. X;=0C -+ - C,. It is normalized by N7.

. Y;=R,41---Ri_;. It is normalized by N.

. V; =N/|X,Y;. This is a unipotent group.

. Vi=N|X,.1Y; D V.. This is a unipotent group.

O 0N

A i > ny,
PINN,  i=n

i

6. S; =M,V for i > ny.
Note that

o S\ =C;S; fori>nyaswellas S; =R,_,S,_, fori>ny + 1.

e Let §; and 8 be modular characters of S; and S! respectively. It follows that
(60)s, = | det|gd; and (8))s, , = | det |h7181-_1 in the above range.

e Letd;yand 5; ¢ be modular characters of S; p and S;’ p respectively.

+ng—2i41 .
e We have §; = |det| ™ ™" for i > ny.
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Let us define
Pn ;
Aizlndsi W(0o9) ® ¥;), i=m+1,...,n
Pu N
A; =Indy! ¥, 1= ny.

Here, ¥; 1s the character of V, - the unipotent radical of S, - whose restriction to X;Y; is
trivial and that coincides with ¥ on N7.
Explicitly, for ¢ > ny we have

3;(m)
| det mlg

1/2
Ai={p:P— Wl(o) | p(mvg) = ( ) Vi(v)oy(m)e(9),

geP, meM,, veV}.
We also denote A? the L*-induction version of the above as in [FLO12]. Note that
o A;=IndL(IndJ(W(ow) ® ) for i > ny.
o A = Indg(lndif_l (OV(09) @ ¥, 1)) for i > ny + 1.
o A, = Indézﬁl (Indf\?g“ V).

For any ¢ > ny the restriction map to C; identifies Indii((W(Gg) ® ;) with
C>(C;, W(0oy)) because S!/S; = C;. Let us denote ¢ — ¢|¢, the restriction map and

tc, the map in the reverse order. Similarly, restriction to R;_; identifies Ind;_1 (W(09) ®
Y1) with C*(R,_;, W(0y)). Let us denote ¢ = g, , the restriction map and tg, , the
map in the reverse order.

Given that C; and R,_; are in duality we have a Fourier transform

Fi 1 LA(C;, W(0)) = LA(Ri-1, W(02))
where W(ay) is the L> completion of W(ay).
Lemma 9.1.7.3. — Fori=mn, ..., ng + 2, the above Fourier transform induces a map
B, : A? = Indf)(Indg, (W(02) ® 1)) — AL,
s,
= Ind{(Inds,_, (W(02) ® ¥1))

induced from the equivalence Inde((W(GQ) ® ;) — Indzil (W(0o2) ® ¥ri_1)) given by ¢ —
R, (FI(@lc,)). It is an equivalence of unitary representations.

Similarly, we have the map

S:zt + S/WQ
Frper 1 Indg” 7 (W (02) ® 11)) = Indy " o

1
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given by
1/2 ~ / / / N/
Fur1@(vm) =y (v)|detmly "@(x,.)(m), meM,, veV, ., =N|N

where
X i Copr1 = €7, xu(0) =Y (mem™),  ¢(x) =/ () x (c) de.
Cr12+1

Lemma 9.1.7.4. — The above Fourier transform induces the equivalence of unitary represen-
tations

S,
Bt Al =Indg  (Indg? T (W(02) ® ¥1,41))

Sn2+1
2 P Siy+1
_ n
— A, = IndS;2+1 (Indy." V).

From now on we take ¢ € Ind(P} W(o1 ® 09)) supported on the big cell PwP’". We
shall show (9.1.7.1) for such functions which suffices to conclude.

For m € My, let 8! : W(o, ® 09) = W(0,) be the evaluation map in the first vari-
able. Define for p € P

@.(p) =8 p(wp) € A,
We have then

2 2
/P @ 00 6= o,

8;
| det |g
Thus for ¢ € A, the map p € Py > ,BM(Z (@) 18 (Sir, Si’F(S;;)—equivariant. We may
introduce (at least formally)

1/2
Letz € {n,...,ny + 1}. The restriction of ( ) to S,y 1s equal to 8i,p87§;.

Bi(@) = / B, (1) dp.
S; F\Pr

Lemma 9.1.7.5. — We have
B' (@) = B.(¢,).

Progf: — Indeed by various changes of variables we get the equality of absolutely
convergent integrals:

B'(p) = Bu(p(9)) dg = f Bum(p(gw)) dg

Pp\Gy Pp\Gy



THE GLOBAL GAN-GROSS-PRASAD CONJECTURE FOR UNITARY GROUPS. .. 315

=/,3m(</>(uw))du= Bu(p(wi)) dd
Ny

Np

Z// B, (8, (@(wi))) dmydid
N Y N1 p\P1r

= f f Baty (81 (@ (mywid )8 % (m)) dimy did
¢ YNILF\PLF

= f / B, (8! (@ (wm o)),/ () i) dd
N AP

:/ ,31\/1’2(551 (p(wp))) dp. U
SII.F\PF

Define recursively ¢, = Bi(¢;) for i =n, ..., ny + 1. As shown at the end of the
Appendix A.3 of [FLO12], we have

(9.1.7.3) @, =W(p).
Lemma 9.1.7.6. — Fori=mn, ..., ny + 2 we have

Bi(@i) = Bi—1(@i—1).

Proof. — Observe that the map

9.1.7.4) g€Pr— / B, (@i-1 (1)) dr
N

i—1,F

is (S, 52’»’F87_,}1,)—equivariant. We have

Bi-1 (i) = / / P, (@i-1(rg)) drdg.
Si\Pr IR,

—1,F

Let g € Pr. By construction we have:

<,0i—1(7g)=/ @i (ca) ¥ ({c, r);)de.
Ci

Since the duality (-, -); between C; and R;_; restricts to a duality between C;/C;y and
R, r we get that (9.1.7.4) is equal to

/ B, (9i(cg)) de.
Cir
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But we have
Bi(p) = / / P, (@i(cg)) dedg.
S:p\Pr J Cip

Note that the inner function in ¢ is compactly supported and the convergence of the
integrals we have considered follows. U

Lemma 9.1.7.7. — We have
Buy+1(@ny11) = B (W(@)).
Progf. — Recall that W(p) = ¢,, = B,,+1(¢,,+1), see (9.1.7.3). Thus the right-hand

side 1s

/ Bng+1 (‘Pnﬁl)(ﬁ) dl? = / f Bﬂ2+l (‘Pngﬂ)(mﬁ) dmd[)
No,r\Pr Shp+1,0\PE NG p\Mj

Let us fix p € Pr and let us work on the inner integral. By definition of B,,, it is equal
to

/ / Pup1 (¢p) ()Y (mem™ ") de| detm|y dm
Ny p\Mj & Cug1

We denote by P, the standard mirabolic subgroup of M. Let P, C Q C M be the

maximal parabolic subgroup of type (ny — I, 1). Let Ng the unipotent radical of the
opposite parabolic subgroup. The integral above is also equal to

/ / / / us1 (D) (@AY (ghine(ghn)~ ) dgde| I did
GL1r YNo,F ¥ Cpy41 N,Q,F\P;/zg,k‘

where we identify A with the diagonal matrix diag(1, ..., 1, 1) € M. A first observation
1s that we have

¥ (ghiic(gan)™") = ¥ Quiic(A) ).
Hence the inner integral over ¢ is:

/ Puy+1(cp) (gAn)dg = B, (@1 (cp) (-An))
Ny e\ Py

= By (@11 (cp))-

For the latter equality, we use the fact that o 1s distinguished and thus By, 1s left M -
mvariant. By a change of variables we get

/ / Bty (@u1 ()Y (he(mh) ™" dgde| | drd .
GL1r YNq,r ¥ Cpy41
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Now [A[;dA is the additive measure. We can identify ¢ € C,,1; with an element X € E"
and 7\ with an element Y € F*~! x F* C E in such a way that we have

Y (re(@) ™) =¥ (X, Y))

where (X,Y) is the obvious pairing. By Fourier inversion, we deduce that the previous
integral is

f B, (@11 (¢p)) e
Cg+1,F

Hence

B (W(g)) = f
S

’
* n2+l,F\7)F

/ B, (@41 (cp)) dedp
Cg+1,F

- /3”2+1 (§0n2+1)-

Note that the last integrals are absolutely convergent and our computations are justified.

O

Theorem 9.1.7.1 then follows from Lemmas 9.1.7.5, 9.1.7.7, 9.1.7.6 for our spe-
cific functions ¢ and thus holds in general. UJ

9.2. Global comparison

9.2.1. We go back to the global setting and notation introduced in Section 3.1.

9.2.2. We normalize all local and global measures as in Section 2.3, with respect
to a fixed character ' : F\A — C*. We have the quadratic character n : F*\A* — C*
associated to E/F and the associated character ng of G'(A) as defined in Paragraph
3.1.6.

9.2.3. As in Section 6.1.2, we also fix a non-trivial additive character ¥ :
E\A; — C*, trivial on A which is then used to define a non-degenerate character ¥y
of the maximal unipotent subgroup of G(A) as in the beginning of Section 8.

9.2.4. Let x € X*(G) be a relevant x-regular cuspidal datum (cf. Section 5.1.3)
and let (M, 7) represent x. Set I1 = Ind;,’((:)) ().
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9.2.5. The comparison.
Theorem 9.2.5.1. — For all ¢ € T1 we have
Jn(¢) = ﬁn(w¢)

where

o J, s definedin 5.1.2.1;
o B, is defined in 8.1.2.
o W, e W(II, ¥) is defined in 8.1.1.

Proof. — 'The proof is essentially the same as of Theorem 8.1.2.1. The only differ-
ence is that the natural analogue of (8.1.2.1) is provided by Proposition 3.2 of [Zhal4a]
and the analogue of (8.1.2.2) is established invoking Theorem 9.1.7.1. UJ

Corollary 9.2.5.2. — We have the equality of distributions on S(G(A))

IP,n = I1'[
where

1. Ip, s defined in Section 5.1.5.
2. I s defined in Section 8.1.5.

Proof. — Looking at definitions of Ip , and I, taking into consideration Theorem
8.1.2.1 and Theorem 9.2.5.1 above, we see that we need to establish for all ¢ € T1

A(Wy) =1(¢,0)

where A = Z®5(0, -) is defined in Section 8.1.2 and I(¢, 0) is given by Proposition 5.1.4.1.
This equality is precisely Theorem 1.1 of [IY15]. O

10. Proofs of the Gan-Gross-Prasad and Ichino-Ikeda conjectures

10.1. Identities among some global relative characters
10.1.1. Besides notation of Sections 2 and 3, we shall use notation of Section 1.

We fix an integer # > 1 and we will omit the subscript n: we will write H for H,,.

10.1.2. Relatie characters for unitary groups. — Let h € H be a Hermitian form. Let
o be an irreducible cuspidal automorphic subrepresentation of the group U,. We define
the relative character J* by

JLN =D Pur(N)Pi(e). Vf € S(ULA))
¢
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where ¢ runs over a K,-basis (see 2.8.3) for some maximal compact subgroup K, C
U,(A). The periods P,, are those defined in 1.1.5. For any subset Xy C X(U,) of cuspidal
data which do not come from proper Levi subgroups (that is they are represented by pairs
(Uy, T) where 7 is a cuspidal automorphic representation) we define more generally

(10.1.2.1)  JL (D= > J ()

X€Xo o

where the inner sum is over the set of the constituents o of some decomposition of
Li([Uh]) (see Section 2.9.2.1) into irreducible subrepresentations. One can show that
the double sum is absolutely convergent (see e.g. [BP21a, Proposition A.1.2]).

10.1.3. Let Vyo C Sy C Vi be a finite set of places containing all the places that
are ramified in E. For every v € Vy, we set E, = E ®y I, and when v ¢ Vy o we denote
by Oy, C E, its ring of integers. Let H° C H be the (finite) subset of Hermitian spaces of
rank 7 over E that admits a selfdual O, -lattice for every v ¢ Sy.

For each & € H°, the group U, is naturally defined over O} and we fix a
choice of such a model. Since we are going to consider invariant distribution, this
choice is irrelevant. We define the open compact subgroups K7 = l_[u¢so U,(0,) and
K° = l_[u¢S() G(O,) respectively of U,(A>) and G(A>).

Let v ¢ So. We denote by S°(U,(F,)), resp. S°(G(F,)), the spherical Hecke alge-
bra'! of complex functions on U,(F,) (resp. G(F,)) that are U,(O,)-bi-invariant (resp.
G(O,)-bi-invariant) and compactly supported.

We have the base change homomorphism

BC),, : SY(G(F,)) = S°(Uy(Fy)).

We denote by S°(U,(A™)), resp. S°(G(A™)), the restricted tensor product of S°(U,(F,)),
resp. S°(G(F,)), for v ¢ Sy. We have also a global base change homomorphism given by
BCEO = ®Rugs,BC .

We also denote by S°(G(A)) C S(G(A)) and S°(U,(A)) C S(U,(A)), for he He,

the subspaces of functions that are respectively bi-K°-invariant and bi-K?-invariant.

10.1.4. Trangfer. — Let h € H°. We shall say that f5, € S(G(Fs))) and fI €
S(U,(Fs,)) are transfers if the functions f5, and fb}g have matching regular orbital inte-
grals in the sense of Definition 4.4 of [BPLZZ21]. The Haar measures on the Fg -points
of the involved groups are those defined in Section 2.3.3.

' The product structure is given by the convolution where the Haar measure is normalized so that the characteristic
functions of U,(O,) and G(O,) are units.
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10.1.5. Let P be a standard parabolic subgroup of G and 7 be a cuspidal auto-
morphic representation of Mp. Let x € X(G) be the class of the pair (Mp, 7). We assume
henceforth that x is a regular relevant cuspidal datum in the sense of Section 5.1.3.

Set IT = Ind{ (7r) for the corresponding parabolically induced representation. The
assumption that y is regular and relevant means exactly that IT is a Hermitian Arthur
parameter (see Section 1.1.3). Moreover, we assume, as we may, that Sy has been chosen
such that IT admits K°-fixed vectors.

Attached to these data, we have three distributions denoted by I, , Ip , and Iy. The
first 1s constructed as a contribution of the Jacquet-Rallis trace formula and it is defined
in Theorem 3.2.4.1. The second and third are relative characters built respectively in
Section 5.1.5 and Section 8.1.3. The bulk of the paper was devoted to the proof of the
following identities (see Theorem 5.2.1.1, Theorem 8.1.4.1 and Corollary 9.2.5.2)

(10.1.5.2) L= g-dim@r)p, = — g-dmany

10.1.6. Let S| be the union of Sy \ V5, and the set of all finite places of I that
are inert in E.

We define .'f}(’) C X(U,) as the set of equivalence classes of pairs (U, o) where o is
a cuspidal automorphic representation of U,(A) that satisfies the following conditions:

e o is Kj-unramified;
e forall v ¢ S{ U Vy o the (split) base change of o, is IT,.

Proposition 10.1.6.1. — Let f € S°(G(A)) and f* € S°(U,(A)) for every h € H°. As-
sume that the following properties are satisfied for every h € H°:

1. f= (ASHO’*A‘ZO,’*)fSU ® 50 with fs, € S(G(Fs,)) and > € S°(G(A™M)).

2. fi= (A%)%’g ® /"% with f € S(U,(Fs,)) and f> € S°(U,(A™)).

3. The functions fs, and s}f) are transfers.

4. fhS0 = BCY(f).

5. The function £ is a product of a smooth compactly supported function on the restricted
product [T, ¢s, G(¥0) by the characteristic function of I, esps, G(Ow).

Then we have:

(10.1.6.3) Z J’;g (") = 27 (f) = 27T, (F).

heHe

Remark 10.1.6.2. — If the assumptions hold for the set S, they also hold for any
large enough finite set containing Sy: this follows from the Jacquet-Rallis fundamental
lemma (see [Yunll] and [BP]) and the simple expression of the transfer at split places
(see [Zhal4b, proposition 2.5]). We leave it to the reader to keep track of the different
choices of Haar measures in these references.
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Proof. — The proof follows the same lines as the proof of [BPLZZ21, Theorem
1.7]. For the convenience of the reader, we recall the main steps.

In Theorem 3.2.4.1 we defined a distribution I on S(G(A)): this is the “Jacquet-
Rallis trace formula” for G. We have an analogous distribution J* on S(U,(A)) for each
h € H: it is defined in [Zyd20, théoréme 0.3] for compactly supported functions and
extended to the Schwartz space in [CZ21, §1.1.3 and théoréme 15.2.3.1]. Note that, by
the Jacquet-Rallis fundamental lemma [Yunl1], [BP], for every 2 € H \ H° there exists
a place v € S \ Sy such that the characteristic function 1¢(,, admits the zero function
on U,(F,) as a transfer. Therefore, by [CZ21, théoréme 1.6.1.1], the hypotheses of the
proposition imply:

(10.1.6.4)  1(H=>_J'(".

heHe

We will denote by M3 (G(A)), resp. M5 (U,(A)), the algebra of Sj-multipliers
defined in [BPLZZ21, definition 3.5] relatively to the subgroup [], s, G(O,), resp.
]_[v¢% U,(O,). Any multiplier 1 € M%(G(A)), resp. u € M3 (U,(A)), gives rise to a
linear operator p* of the algebra S°(G(A)), resp. S°(U,(A)) and for every admissible
irreducible representation 7w of G(A), resp. of U,(A), there exists a constant u(w) € G
such that w(u * /) = u(w)w (f) for all / € S°(G(A)), resp. / € S°(U,(A)).

Let &n be the infinitesimal character of I1. By [BPLZZ21, Theorem 4.12 (4)], for
every h€ H° and (U,,0) € %g, the base-change of the infinitesimal character of o is &p.
However, the universal enveloping algebras of the complexified Lie algebras of U, are
all canonically identified for 2 € H (since these are inner forms of each other) and base-
change is injective at the level of infinitesimal characters. As, by [GRS11], there exists at
least one / € H° such that the set X* is nonempty (we may even take for / any quasi-split
Hermitian form unramified outside Sy), there exists a common infinitesimal character &
of all (U, o) € X%, for h € H°, whose base-change is .

By the strong multiplicity one theorem of Ramakrishnan (see [Ram18]) and The-
orem 3.17 of [BPLZZ21], one can find a multiplier n € M50 (G(A)) such that

LI =1;
. Yorall x’ € X(G) represented by a pair (M, ;) such that the central character
of my is trivial on Ag and x’ # x we have

0 _
Ku*f X 0
where the kernel K° 1s defined as in Section 2.10.1.

wif s x!
By Theorem 3.6 and Theorem 4.12 (3) of [BPLZZ21], for every & € H° there exists
a multiplier u" € M%(U,(A)) such that

iii. u'(o)=1"forall (U, 0)e Xl
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iv. For all x’ € X(U,) such that x’' ¢ X} and for all parabolic subgroups P of U,
we have
U
KP,};L/'*f/lyX/ = 0

where the left-hand side is the kernel of the operator given by the right convo-
lution of " * /* on Lf( ([U,lp) (see (2.9.2.1)).

Moreover, by [BPLZZ21, Proposition 4.8, Lemma 4.10], we may choose p and
w" such that the functions w * f and u" * f*, for h € H°, still satisfy the assumptions
of the proposition. So, in particular, from (10.1.6.4) applied to the functions p * / and

(1" % f") e instead of £ and () e300, we get

(10.1.6.5)  T(ux/) =) J'(u'xsf".

heHe

Note that by conditions 1. and 111. we have:

In(u /) =In(), Ipx(u*f) =1pz(f) and

(10.1.6.6) o - .
Jx(h)(ﬂ *f):‘]xg(f), for every h € H°.

Let x' € X(G) be such that x # x'. It’s easy to see that the integral (3.3.3.4) at-
tached to x’ vanishes for any / € S(G(A) if x" does not satisfy the hypothesis in condition
ii. If it does, the integral (3.3.3.4) attached to x’ and w * f/ vanishes by condition ii. Thus
we can conclude by Theorem 3.3.9.1 that I,/ (u * /) = 0 in any case. By Theorem 3.2.4.1
assertion 4 and by the equality (10.1.5.2), we see that the left-hand side of (10.1.6.5) re-
duces to

L (ot f) = 27 I o f) = 27Ty ().

On the other hand, by iv. and the very definition of J* given in [Zyd20], the right-hand
side of (10.1.6.5) reduces to

R
heHe

Therefore, (10.1.6.5) and (10.1.6.6) give the identity of the proposition. 0J

10.2. Proof of Theorem 1.1.5.1

10.2.1. Let [T = Indy () be a Hermitian Arthur parameter of G. Note that by
properties 1 and 2 of Section 1.1.3, the cuspidal datum x associated to the pair (Mp, )
is regular and relevant in the sense of Section 4.3.2. For £ € ‘H and o a cuspidal auto-
morphic representation of U,(A), it is readily seen that the linear form P, is nonzero on
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o if and only if J* is not identically zero. On the other hand, the linear form J, or B, is
always nonzero (this follows either from the fact that x is relevant or is an easy conse-
quence of [GK72], [Jacl0, Proposition 5] and [Kem15]) whereas the linear form I, from
Proposition 5.1.4.1, or A, from Section 8.1.2, is nonzero if and only if L(L, IT) # 0 (as fol-
lows either from the work of Ichino and Yamana, see [IY15, corollary 5.7], or of Jacquet,
Piatetski-Shapiro and Shalika [JPSS83], [Jac04]). Therefore, we similarly deduce that the
distribution Ip , or I is non-zero if and only if L(%, IT) # 0.

As a consequence, Theorem 1.1.5.1 amounts to the equivalence between the two
assertions:

(A) The distribution Ip , or Iy is non-zero.
(B) There exist 2 € H, f € S(U,(A)) and a cuspidal subrepresentation o of U,
such that BC(o) =11 andjﬁ (f) #0.

10.2.2. Proof of (A) = (B). — We choose the Sy of Section 10.1.3 such that I
is not identically zero on f; € S°(G(A)). Then Assertion (B) above is a consequence of
Proposition 10.1.6.1: it suffices to take functions f and f* for 4 € H° satisfying the hy-
potheses of that theorem and such that Ig(f) # 0. That it is possible is implied by a
combination of a result of [Xuel9] and the existence of p-adic transfer [Zhal4b].

10.2.3. Proof of (B) = (A). — We may choose the set Sy so that there exist 4 €
He, 0}[0 € §°(Uy,(A)) and a cuspidal representation oy of U, such that for v ¢ S| (see
Section 10.1.6) BC(o0y,) = I1, andjﬁ%(]%ho) # 0. For any other & € H° we set fJ' = 0. Up
to enlarging S;, we may assume that the family (jf)h);,eq.[o satisfies conditions 2. and 5. of
Proposition 10.1.6.1. Moreover, we have (see [Zhal4b, §2.5]) Ji (/I % £°) > 0 for every
oeXy and J¥ 70 % %) > 0. In particular, the left hand side of (10.1.6.3) for the family
(! % f)jene is nonzero. Once again by [Xuel9] and the existence of p-adic transfer
[Zhal4b], this implies that we can find test functions f € S°(G(A)) and f* € S°(U,(A)),
for h € H°, satistying all the conditions of Proposition 10.1.6.1 and such that the left
hand side of (10.1.6.3) is still nonzero. The conclusion of this proposition immediately
gives Assertion (A).

10.3. Proof of Theorem 1.1.6.1

10.3.1. Let # € H and o be a cuspidal automorphic representation of U,(A)
which is tempered everywhere. By [Mokl15], [KMSW], o admits a weak base-change I1
to G. Moreover, by these references IT is also a strong base-change of o': for every place v
of F, the local base-change of 0, (defined in [Mok15] and [KMSW]) coincides with IT,.
In particular, it follows that IT is also tempered everywhere.

We choose a finite set of places Sy as in Section 10.1.3 such that # € H°® and o as
well as the additive character ¥’ used to normalize local Haar measures in Section 2.3
are unramified outside of Sy.
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For each place v of F, we define a distribution J,, on S(U,(F,)) by
Jo (f1 = / Trace(o, (h,) o, (f")dh,, fI€ S(ULEF,)),
U, (Fy)

where

oy (]:,h) = ﬁh(gv)av (gv)dgv
Uy (Fy)
and the Haar measures are the one defined in Section 2.3.3. Moreover by [Harl4], and
since the representations o, are all tempered, the expression defining J,, is absolutely
convergent and for every v ¢ S, we have

. L, 10,)
o 1 = A_/Z 27.
J v( U/t(OU)) Uy L(lv Oy, Ad)

10.3.2. By [Zhal4a, Lemma 1.7] and our choice of local Haar measures, The-
orem 1.1.6.1 is equivalent to the followmg assertion: for all factorizable test function

e 8(U, (A)) of the form f* = (AU/ HUESth l_[v¢so 1y,0,), we have

S()(I’

(10.3.2.1)  Jo () =1ISnl" 5

mHJoLU)

10.3.3. Tor every place v of I, we define a local relative character I, on G(F,)
by

Z )"U(Hv%)wv)ﬂn,v(wv)
<Wv s Wv )Whitt,v

In, (h) = , Jo € S(G(F)),

W, eW(Iy, ¥N,0)

where the sum runs over a K, -basis of the Whittaker model W(I1,, ¥x.,) (in the sense of
Section 2.8.3) and A, B,.v, (., -)whiw,v are local analogs of the forms introduced in Section
8.1.2 given by

Ao(Wy) = / W (hy)dhy,
Ni(F)\H(F,)

IBn,v(Wv) = / Wv(pv)nG’,v(pv)dpva
N/ (F)\ P’ (Fy)

and (Wv’ Wv)\/\r’hitt,v = / |Wv(pv)|2dpv
NE)\P(Fy)

Note that the above expressions, and in particular A,(W,), are all absolutely convergent
due to the fact that IT, is tempered (see [JPSS83, Proposition 8.4]). The above defini-
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tion also implicitly depends on the choice of an additive character ¥ of Ag/E trivial on
A (through which the generic character ¥y is defined, see beginning of Section 8 and
Section 6.1.2) and up to enlarging Sy, we may assume that ¥ is unramified outside of
Sop. Then, it follows from the definition of I that for every factorizable test function
f €S(GA)) of the form f = AF AL [Tyes, /o X [ogs, L., We have

So(l

10.33.2)  In()={5q7 Ac)]_[ln(ﬁ

where we have set L (s, TT, Asg) = L (s, TT,, AsT V)L (s, T4, AsCDh,

10.3.4. Let /" be a test function as in Section 10.3.2. Then, as both sides of
(10.3.2.1) are continuous functionals in /" for v € Vy o, by the main result of [Xuel9] we
may assume that for every v € Vy  the function Jff‘ admits a transfer f, € S(G(F,)). On
the other hand, by [Zhal4b], for every v € Sy \ Vo0, the function f{ admits a transfer f, €
S(G(F,)). Moreover, by the results of those references we may also choose the transfers
such that for every /' € H° with /& # h, the zero function on Uy (Fs,) is a transfer of
Jso = [oes, for We set f = ASO *A T, X Hu¢s 1¢0,). Then, setting /" = 0 for every
K € H°\ {h}, the functions / and (/") ;ex- satisfy the assumptions of Proposition 10.1.6.1.
Therefore, we have

(10.3.4.3) Y JL¢") =2 "),

’ h
o'eX;

10.3.5. If there exists a place v € Sy such that o, does not support any nonzero
continuous U (F,)-invariant functional, both sides of (10.3.2.1) are automatically zero.

Assume now that for every v € Sy, the local representation o, supports a nonzero
continuous U (F,)-invariant functional. By the local Gan-Gross-Prasad conjecture
[BP20], and the classification of cuspidal automorphic representations of U, in terms
of local L-packets [Mok15], [KMSW], it follows that all the terms except possibly J% ()
in the left hand side of (10.3.4.3) are zero. Moreover, by [BP21c, Theorem 5.4.1] and
since IT, is the local base-change of o,, there are explicit constants k, € G* for v € Sy
satisfying [ [, kv = 1 and such that

(10.3.5.4) In, (;) = &Jo, (1)
for every v € Sy. Combining this with (10.3.3.2), we get

JZ gp/l) — Q—dim(ap):[ngr) — 2_dim(up)IP,n (Jr)

4 L% (3, T0)
— Q—dlm(ap) : 1 )
LS (1, T1, As;) ULIO . ()
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L% (1, 1)
LSo(1, 1, Asg)

=9~ dim(ap)

[1Jo. 0D

UES[)

As L5, T1, Asgy) = L% (s, 0, Ad) and |Sp| = 27 9m@)  this exactly gives (10.3.2.1) and
ends the proof of Theorem 1.1.6.1.
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Appendix A: Topological vector spaces

A.0.1 In this paper, by a locally convex topological vector space (LC'TVS) we mean a
Hausdorff locally convex vector space over G. Most LCTVS encountered in this paper
will be Fréchet or LF (that is a countable inductive limit of Fréchet spaces) or even strict
LF (that is countable inductive limit li_r)nn V,, of Fréchet spaces with closed embeddings
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V, = V,1, as connecting maps) spaces. Let V.and W be LCTVS. We denote by V' the
topological dual of V and by Hom(V, W) the space of continuous linear mappings V —
W both equipped with their weak topologies (i.e. topologies of pointwise convergence).
Recall that a total subspace H C V' is a subspace such that (1), 4; Ker(X) = 0. A bounded
subset B € V is one that is absorbed by any neighborhood of 0. If B € V is bounded and
absolutely convex,'?> we denote by Vy the subspace generated by B equipped with the
norm ||v||g = inf{A > 0| v € AB}. Then, the natural inclusion Vg — V is continuous.
The space V is said to be quasi-complete if every closed bounded subset of it is complete.
Fréchet spaces and strict LF spaces are quasi-complete.

A.0.2 We recall the notion of integral valued in a LCTVS in the form we use it
in the core of the paper. Let X be a o-compact locally compact topological space, dx be
a Radon measure on X and V be a LCTVS. Let f : X — V be a continuous function.

We say that f is absolutely integrable if for every continuous semi-norm p on V the integral

/ p(f (x))u(x) converges. If / is absolutely integrable and V is quasi-complete, there
X

exists an unique element f S (@) (x) in V such that
X

(?»,/f(x)u(x»=f(?»,f(X)>M(x)
X X

for every A € V. This notion applies in particular to series ) . ;v; valued in a quasi-
complete LC'TVS V in which case we will rather use the terminology absolutely summable:
a family (v;)e1 of vectors in 'V is absolutely summable if for every continuous semi-norm p
on V, the series ) . p(v;) converges.

We will also use the following weaker notion: a family (v;),e; of vectors in a LC'TVS
V is said to be summable if for every continuous semi-norm p on V and every € > 0, there
exists a finite subset ] C I such that

p(Z V) <€

€K
for every finite subset K C I\ J. If (v))jer 1s @ summable family in V and V is quasi-
complete then the partial sums ZZ-EJ v; converge to some limit v € V along the filter
associated to the inclusion order on finite subsets of 1. In this case, we call v the sum of
the famlly (Uz')iel-

Note that absolutely summable families are automatically summable but the con-
verse is not true e.g. if V is a Hilbert space with a Hilbert decomposition V = &, V, and
v € V then the family of orthogonal projections (v;);c; of v to the subspaces V; is always
summable but not always absolutely summable.

12 Recall that a subset S €V is said to be absolutely convex is it is convex and circled i.e. AS C S for every complex
number A with [A| < 1.
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A.0.3 We will also freely use the notions of smooth or holomorphic functions val-
ued in a LCTVS. For basic references on these subjects, we refer the reader to [Bou67,
§2, §3], [Grod3, §2], [Gro73, Chap. 3, §8]. There are actually two ways to define smooth
and holomorphic maps valued in V: either scalarly (that is after composition with any ele-
ment of V) or by directly requiring the functions to be infinitely (complex) differentiable.
These two definitions coincide when the space V is quasi-complete and, fortunately for
us, we will only consider smooth/holomorphic functions valued in such spaces so that we
don’t have to distinguish.

Let M be a connected complex analytic manifold. A function /' : M — V is holo-
morphic if and only if for every relatively compact open subset €2 € M, there exists a
bounded absolutely convex subset B € V such that f | factorizes through a holomor-
phic map € — Vj see [Grod3, §2, Remarque 2]. We also record the following convenient
criterion of holomorphicity [Bou67, §3.3.1]:

(A.0.3.1) Assume that V is quasi-complete. A function ¢ : M — V is holomorphic if
and only if it is continuous and for some total subspace H € V', the functions
s € M+ (¢(s), A) are holomorphic for every A € H.

A.0.4 Assume that V is a LF space. As LI spaces are barreled [1re67, Corol-
lary 33.3] they satisfy the Banach-Steinhaus theorem [ITre67, Theorem 33.1] hence
any bounded subset of Hom(V, W) is equicontinuous (as Hom(V, W) is equipped
with the weak topology, a subset B € Hom(V, W) is bounded if and only if for every
veV, {T(w)| T e B} is a bounded subset of W). This implies in particular that for
every bounded subset B € Hom(V, W), the restriction of the canonical bilinear map
Hom(V, W) x V— W to B x V is continuous. Also, by [1r¢67, §34.3 Corollary 2], if W
1s quasi-complete then so is Hom(V, W). In particular, we get:

(A.0.4.2) Assume that V is L, W is quasi-complete and let K be a topological space. Let
se M T, € Hom(V, W) be holomorphic and (5, £) e M x K+ v, , € V be
a continuous map which is holomorphic in the first variable. Then, the map
(s,k) e M x K+ T,(v,;) € W is continuous and holomorphic in the first
variable.

Indeed, T has locally its image in a bounded set. Hence, by the above discussion,
the map (5,5, k) € M x M x K+ T,(vy;) € W is continuous. Moreover, this map is
separately holomorphic in the variables s, 5. Thus, by Hartog’s theorem, this map is
holomorphic in the variables (s, s') which immediately implies the claim by “restriction
to the diagonal”.

(A.0.4.3) Assume that Vis LF and W is quasi-complete. Let U € M be a nonempty open
subset and s € U = T, € Hom(V, W) be a holomorphic map. If; for every v €
V the map s — T,(v) € W extends analytically to M then T, € Hom(V, W)
for every s € M and moreover s € M = T, € Hom(V, W) is holomorphic.
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Indeed, the hypothesis implies that s — T’ induces a holomorphic map M —
Hom(V, W) where Hom(V, W) stands for the space of a// linear maps V— W (not nec-
essarily continuous) equipped with the topology of pointwise convergence. Hence, for
every relatively compact connected open subset 2 € M such that  N'U # @ there exists
a bounded subset B € Hom(V, W) such that s = T factorizes through a holomorphic
map Q2 — Hom(V, W)g. By the Banach-Steinhaus theorem, Hom(V, W) NHom(V, W)g
is closed in Hom(V, W)p and it follows that s € Q +— T factors through a holomorphic
map Q2 — Hom(V, W) N Hom(V, W)g. Indeed, by the Hahn-Banach theorem it suf-
fices to show that for every continuous linear form A : Hom(V, W)y — C vanishing on
Hom(V, W) N Hom(V, W)y we have A(T,) = 0 for every s € Q. Since T, € Hom(V, W)
for s € U the equality A(T;) = 0 holds at least for s € QN U. As s € Q = A(T)) 1s holo-
morphic € is connected and U N € non-empty, the claim follows.

A.0.5 LetBil(V, W) =Hom(V, Hom(W, C)) be the space of separately contin-
uous bilinear mappings V x W — G equipped with the topology of pointwise conver-
gence. Applying (A.0.4.2) and (A.0.4.3) twice, we get:

(A.0.5.4) Assume that V and W are LF. Let s € M — B, € Bil,(V, W) be holomorphic
and (s5,k) e M x K= v, €V, (5,k) e M x K= w,; € W be continuous
maps which are holomorphic in the first variable. Then, the function (s, k) €
M x K+ B,(v, 4, w; ) is continuous and holomorphic in the first variable.

(A.0.5.5) Assume that both V. and W are LE. Let U € M be a nonempty open subset and
s € U B, € Bil;(V, W) be a holomorphic map. If for every (v, w) € Vx W
the function s — B,(v, w) extends analytically to M then B, € Bil;(V, W) for
every s € M and moreover s € M = B, € Bil;(V, W) is holomorphic.

A.0.6 We refer the reader to [1re67, Definitions 47.2, 47.3] for the definition of
nuclear mappings between LCTVS. The following lemma will be useful in proving that
certain families are absolutely summable.

Lemma A.0.6.1. — Let T : V — W be a nuclear mapping between LCTVS. Then, for every
summable family (v;)ier in 'V, the family (T (v;));e1 ts absolutely summable in W.

Proof. — First, by the very definition, T is a nuclear mapping if and only if it factor-
izes through a nuclear mapping between Banach spaces. Thus, we may assume without
loss in generality that V and W are Banach spaces. Recall [Tre67, Definition 47.2] that
this means that T belongs to the image of the natural map V;@W — Hom,(V, W) where
V' (resp. Hom,(V, W)) is the topological dual of V (resp. the space of continuous linear
maps V — W) equipped with the strong topology (aka norm topology) and ® stands for
the completed projective tensor product. Let (v;);e; be a summable family in V and set

M = sup| Y villv < o0
€]



330 RAPHAEL BEUZART-PLESSIS, PIERRE-HENRI CHAUDOUARD, AND MICHAL ZYDOR

where the sup runs over all finite subsets J C I. It follows from the next elementary lemma
that for (£, w) € V' x W, the family (£(v;)w),e 1s absolutely summable in W and more-
over

(A.0.6.6) Y llL@)wllw = llwllw Y _[€@)] < 4M|€llv [[wllw

el el
where ||.||w (resp. ||.]lv) denotes the norm on W (resp. dual norm on V).

Lemma A.0.6.2. — Let (2;)ie1 be a summable family in G. Then, (2;)ic1 ts absolutely
summable and moreover

A.0.6.7) D |zl <4supl)_zl
J

el €]
where the sup runs over all finite subsets of 1.

Let £'(I, W) be the vector space of absolutely summable families indexed by I in
W. We equip £' (I, W) with the norm

l(w)ierll e = Z”wi”W-

el

It then becomes a Banach space. By (A.0.6.6), the bilinear map V. x W — £'(I, W),
€, w) = (£(v))w);e, 1s continuous hence induces a continuous linear map Vi@W —
2 (I, W). Obviously, this map is the composite of the natural morphism Vi@W —
Hom,(V, W) and of Hom,(V, W) = W!, T — (T(v;)),c1. The lemma follows. ]

A.0.7 We denote by V®W the completed projective tensor product [Tre67,
Chap. 43]. It admits a canonical linear map V ® W — V®W satisfying the following
universal property: for every complete LCTVS U, precomposition yields an isomorphism

Hom(V®W, U) ~ Bil(V, W; U)

where Bil(V, W; U) denotes the space of all continuous bilinear mappings Vx W — U. In
particular, if U;, Uy are two other LCTVS and T : V — U,, S: W — U, are continuous
linear mapping, there is an unique continuous linear map T®S : VW — U, ®U, which
on V® W is given by v @ w = T(v) @ S(w).

Assume now that Vand W are spaces of (complex valued) functions on two sets X,
Y and that their topologies are finer than the topology of pointwise convergence. When
V is moreover a complete nuclear LF space, the following result of Grothendieck [Gro55,
Théoréme 13, Chap. I, §3 n. 3] generally allows to describe V®W explicitly as a space
of functions on X x Y.
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(A.0.7.8) Let F(X xY) be the space of all complex valued functions on X X Y equipped
with the topology of pointwise convergence. Then the linear map V@ W —
FXxY), v®wr ((x,9 — v(x)w(y)), extends continuously to a linear
embedding V®W < F(X x Y) with image the space of functions f : X x
Y — C satisfying the two conditions:

e lor every x € X, the function y € Y — f(x, ») belongs to the comple-
tion of W;
e For every A € W/, the function x € X (f(x, .), A) belongs to V.

A.0.8 LetCeRU{—o00}andf:H.c— V be a holomorphic function. We say
that f is of order at most d in vertical strips if for every d’ > d the function z — e“z‘d/f(z) 18
bounded in vertical strips of H.c. We say that f is of finite order in vertical strips if it is of order at
most d in vertical strips for some ¢ > 0. Finally, we say that /" is rapidly decreasing in vertical
strips if for every d > 0 the function z |2|“F(2) is bounded in vertical strips.

A.0.9 Let Abe areal vector space. Denote by Diff((A) the space of complex poly-
nomial differential operators on A (which can be identified with Sym(Ag) ®c Sym(Ag)).
When V is quasi-complete, we define the space of Schwartz functions on A valued in 'V,
denoted by S(A, V), as the space of smooth functions f : A — V such that for ev-
ery D € Diff(A), the function Df has bounded image. Note that if W is also quasi-
complete and T : V— W is a continuous linear map then for every / € S(A, V), we
have To f € S(A, W). When V = C, we simply set S(A) = S(A, C) that we equip with
its standard Fréchet topology.

Lemma A.0.9.1. — Assume that V s quasi-complete and barreled (e.g. a strict LF space). Let
C>0,d>0andseH.cr> Z; €V beamap such that such that for every v € V, s € Hoc >
7.,(v) ts a holomorphic_function of order at most d in vertical strips. Then, for every f € S(A, V), the
map

(A.0.9.9) s€Hocr> (he A Z,(f)) € S(A)

is holomorphic and of finite order in vertical strips.

Proof. — Indeed, by the Banach-Steinhaus theorem, for every d’ > d, every vertical
strip S € H. ¢ and every bounded subset B C V the set

pﬂwzwnse&ueB}gc

is bounded and, by [Tre67, Corollary 33.1], for every sy € H.c, Z, converges uniformly
on compact subsets to Z,, as s = 5. Let f € S(A, V). Moreover, for every D € Diff(A),
as the function A € A+ Df; is continuous and converges to 0 as A — 00, the subset

{Df. | 2 e A} U{0}
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of V is compact. Therefore, for every sy € H-¢, Z,(Df,) converges to Z,,(Df,) as s = s
uniformly in A € A and {eilsld/Zs(Dfx) |s€eS, A e A} is bounded for every d’ > d and

every vertical strip S € H.¢. This shows that the map (A.0.9.9) is continuous and of
finite order in vertical strips. To conclude we apply the holomorphicity criterion (A.0.3.1)
to the subspace H € S(A)’ generated by “evaluations at a point of .A4”. U

A.0.10

Lemma A.0.10.1. — Assume that V s quasi-complete. Let 7., 7, : H-c — V be holo-
morphic functions of finite order in vertical strips for some G > 0. Assume that there exists a total
subspace H C V' such that for every . e H, Z, 5 ;= Ao Zy and Z._ ; := X o Z._ extend lo holo-
monphic functions on G of finite order in vertical strips satisfying 7.4 5 (s) = Z._ ;(—s) for every s € G.
Then, 7., and 7. extend to holomorphic functions G — V of finite order in vertical strips satisfying
2.,.(s) =7Z_(—s) for every s € G.

Proof — Let d > 0 be such that Z, and Z_ are of order at most ¢ in vertical
strips of H.¢. Then, by their functional equation and the classical Phragmen-Lindelof
principle, for every A € H, the holomorphic continuations of Z, ; and Z_ ; are also of
order at most ¢ in vertical strips. Therefore, up to multiplying Z; and Z_ by z e
for some n > 0, we may assume that all these functions are rapidly decreasing in vertical

strips. Let D > C. Then, for every s € H)_p p; and € € {£}, we set

1 toZ D+ to7Z D+t
O, (5) = — f Qa’t—/ ﬂdt )
2 \J_oo D4t —s oo DHut+s

Note that, since Z;, and Z_ are rapidly decreasing in vertical strips and V is quasi-
complete, the above integrals converge absolutely and define elements of V. By the usual
holomorphicity criterion for parameter integrals, we readily check that the functions @,
®_ are holomorphic. Moreover, by the uniform boundedness principle, ®, and ®_ are
bounded in vertical strips. Finally, by Cauchy’s integration formula and the fact that the
functions Z ;, Z_ , are rapidly decreasing in vertical strips, for every € € {&=} and A € H
the functions A o @, and Z, ; coincide on H)_p p;. Therefore, as H is total, ®. and Z,
coincide on H¢ p;. This shows that Z, and Z_ admit holomorphic extensions bounded
in vertical strips to H._p for every D > C hence to C. That the functional equation
7., (s) =7Z_(—s) holds for these extensions easily follows from the assumption. ]

A.0.11 Let A be a real vector space. Specializing the previous lemma to V =
S(A) and H the total subspace of V' given by “evaluations at a point of .A” yields the
following corollary:.

Corollary A.0.11.1. — Let 7., 7. : A x C — G be two_functions such that:
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1. There exists C > 0 such that for every s € H~c, the function 7., (., 5), Z._(., s) belong to
S(A) and the maps

s€Hocr>7Z.(.,5) €S(A), €ec{t],

are holomorphic functions of finite order in vertical strips;
2. Forevery h€ A, s€ Q> Z,(X,s) and s € C+> Z_(X, 5) are holomorphic_functions
of finite order in vertical strips satisfying the functional equation

Zo(A,s5)=2Z_(A,—s)

Then, _for every s € C the functions 7., (., s), Z._(., s) belong to S(A) the maps s € G+ Z.(., s) €
S(A), € € {£}, are holomorphic.

Assume now that W is a LF space. As W is barreled, W’ is quasi-complete [Tre67,
§34.3 Corollary 2]. Specializing Lemma A.0.10.1 to V=W’ and H a dense subset of
V'=W, we obtain the following.

Corollary A.0.11.2. — Let W be a LF space, C> 0 and 2., 7 : H.c Xx W — C be

two functions. Assume that:

1. Forevery s € Hoc, Z4(s,.) and Z._(s, .) are continuous functionals on W;

2. There exists d > O such that for every w € W and € € {£}, s € Hoc > Ze(s,w) s a
holomorphic function of order at most d wn vertical strips;

3. For every f € H and € € {£}, s> Z(s,f) extends to a holomorphic_function on G of
finute order in vertical strips satisfying

7)) =7 (=s.)).

Then, 7. and Z._ extend to holomorphic functions G — W' of finite order in vertical strips satisfying
2i(s,w)=7Z_(—s,w) forevery s € G and every w € W.
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