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ABSTRACT

In this paper, we prove the Gan-Gross-Prasad conjecture and the Ichino-Ikeda conjecture for unitary groups
Un ×Un+1 in all the endoscopic cases. Our main technical innovation is the computation of the contributions of certain
cuspidal data, called ∗-regular, to the Jacquet-Rallis trace formula for linear groups. We offer two different computations
of these contributions: one, based on truncation, is expressed in terms of regularized Rankin-Selberg periods of Eisenstein
series and Flicker-Rallis intertwining periods introduced by Jacquet-Lapid-Rogawski. The other, built upon Zeta integrals,
is expressed in terms of functionals on the Whittaker model. A direct proof of the equality between the two expressions
is also given. Finally several useful auxiliary results about the spectral expansion of the Jacquet-Rallis trace formula are
provided.
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1. Introduction

1.1. The endoscopic cases of the Gan-Gross-Prasad conjecture

1.1.1. One of the main motivation of the paper is the obtention of the remaining
cases, the so-called “endoscopic cases”, of the Gan-Gross-Prasad and the Ichino-Ikeda
conjectures for unitary groups. To begin with, we shall give the main statements we prove.

1.1.2. Let E/F be a quadratic extension of number fields and c be the non-trivial
element of the Galois group Gal(E/F). Let A be the ring of adèles of F. Let η be the
quadratic idele class character associated to the extension E/F. Let n � 1 be an integer.
Let Hn be the set of isomorphism classes of non-degenerate c-Hermitian spaces h over E
of rank n. For any hn ∈Hn, we identify hn with a representative and we shall denote by
U(hn) its automorphisms group. Let h0 ∈H1 be the element of rank 1 given by the norm
NE/F.

We attach to any h ∈Hn the following algebraic groups over F:

• the unitary group U′
h of automorphisms of h;

• the product of unitary groups Uh =U(h)×U(h⊕ h0) where h⊕ h0 denoted the
orthogonal sum.

We have an obvious diagonal embedding U′
h ↪→Uh.

1.1.3. Arthur parameter. — Let Gn be the group of automorphisms of the E-vector
space En. We view Gn as an F-group by Weil restriction. By a Hermitian Arthur parameter1 of
Gn, we mean an irreducible automorphic representation � for which there exists a par-
tition n1 + · · · + nr = n of n and for any 1 � i � r a cuspidal automorphic representation
�i of Gni

(A) such that

1 Strictly speaking, it is a generic discrete Arthur parameter. By simplicity, we shall omit the adjectives generic discrete.
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1. each �i is conjugate self-dual and the Asai L-function L(s,�i,As(−1)n+1
) has a

pole at s= 1;
2. the representations �i are mutually non-isomorphic for 1 � i � r;
3. the representation � is isomorphic to the full induced representation

IndGn

P (�1 � . . . � �r) where P is a parabolic subgroup of Gn of Levi factor
Gn1 × · · · ×Gnr

.

Remark 1.1.3.1. — It is well-known (see [Fli88]) that condition 1 above is equiva-
lent to the fact that �i is (GLni,F, η

n+1)-distinguished in the sense of Section 4.1.2 below.

The integer r and the representations (�i)1�i�r are unique (up to a permutation).
We set S� = (Z/2Z)r .

Let G=Gn×Gn+1. By a Hermitian Arthur parameter of G, we mean an automorphic
representation of the form � =�n ��n+1 where �i is a Hermitian Arthur parameter
of Gi for i = n, n+ 1. For such a Hermitian Arthur parameter, we set S� = S�n

× S�n+1 .

1.1.4. Let h ∈Hn and σ be a cuspidal automorphic representation of Uh(A). We
say that a Hermitian Arthur parameter � of G is a weak base-change of σ if for almost all
places of F that split in E, the local component �v is the split local base change of σv . If
this is the case, we write �= BC(σ ).

Remark 1.1.4.1. — By the work of Mok [Mok15] and Kaletha-Minguez-Shin-
White [KMSW], we know that if σ admits a weak base-change then it admits a strong

base-change that is a Hermitian Arthur parameter� of Gn such that�v is the base-change
of σv for every place v of F (where the local base-change of ramified representations is
also constructed in loc. cit. and characterized by certain local character relations). Besides,
a result of Ramakrishnan [Ram18] implies that a weak base-change is automatically
a strong base-change. Therefore, we could have used the notion of strong base-change
instead. However, we prefer to stick with the terminology of weak base-change in order
to keep the statement of the next theorem independent of [Mok15] and [KMSW].

1.1.5. Gan-Gross-Prasad conjecture. — Our first main result is the global Gan-Gross-
Prasad conjecture [GGP12, Conjecture 24.1] in the case of U(n)×U(n+ 1) and can be
stated as follows. In the following, for a reductive group H over F, we denote by [H]
the quotient H(F)\H(A) equipped with the quotient of a Haar measure on H(A) by the
counting measure on H(F).

Theorem 1.1.5.1. — Let � be a Hermitian Arthur parameter of G. The following two state-

ments are equivalent:
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1. The complete2 Rankin-Selberg L-function of � satisfies

L(
1
2
,�) �= 0;

2. There exists h ∈Hn and an irreducible cuspidal automorphic subrepresentation σ of Uh such

that � is a weak base change of σ and the period integral Ph defined by

Ph(ϕ)=
∫
[U′h]
ϕ(h) dh

induces a non-zero linear form on the space of σ .

Remark 1.1.5.2. — If the Arthur parameter is moreover simple (that is if � is
cuspidal), the theorem is proved by Beuzart-Plessis-Liu-Zhang-Zhu (cf. [BPLZZ21, The-
orem 1.7]). Previous works had to assume extra local hypothesis on �, which implied
that � was also simple (see [Zha14b], [Xue19], [BP21a] and [BP21c]) or only proved
the direction 2.⇒ 1. of the theorem ([GJR09], [IY19], [JZ20]).

As observed in [Zha14b, Theorem 1.2] and [BPLZZ21, Theorem 1.8] we can
deduce from Theorem 1.1.5.1 the following statement (whose proof is word for word that
of [Zha14b]):

Theorem 1.1.5.3. — Let �n+1 be a Hermitian Arthur parameter of Gn+1. Then there exists

a simple Hermitian Arthur parameter �n of Gn such that the Rankin-Selberg L-function satisfies:

L(
1
2
,�n ×�n+1) �= 0.

1.1.6. Ichino-Ikeda conjecture. — Let σ =⊗′
v σv be an irreducible cuspidal auto-

morphic representation of Uh that is tempered everywhere in the following sense: for
every place v, the local representation σv is tempered. By [Mok15] and [KMSW], σ
admits a weak (hence a strong) base-change � to G. Set

L(s, σ )=
n+1∏
i=1

L(s+ i− 1/2, ηi)
L(s,�)

L(s+ 1/2, σ,Ad)

where L(s, ηi) is the completed Hecke L-function associated to ηi and L(s, σ,Ad) is the
completed adjoint L-function of σ (defined using the local Langlands correspondence for

2 Currently known bounds towards the Ramanujan conjecture do not exclude the possibility of certain local
Rankin-Selberg L-factors of � to have a pole at s = 1/2. Therefore, the non-vanishing of the central value could a priori
be affected if we replace L(s,�) by a partial L-function and here we have to include all places (including Archimedean
ones).
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G from [Mok15], [KMSW]). We denote by L(s, σv) the corresponding quotient of local
L-factors. For each place v of F, we define a local normalized period P 	h,σv : σv × σv→C as
follows. It depends on the choice of a Haar measure on U′

h(Fv) as well as an invariant
inner product (., .)v on σv and is given by

P 	h,σv (ϕv, ϕ
′
v)=L(1

2
, σv)

−1

∫
U′h(Fv)

(σv(hv)ϕv, ϕ
′
v)vdhv, ϕv, ϕ

′
v ∈ σv,

where, thanks to the temperedness assumption, the integral is absolutely convergent
[Har14, Proposition 2.1] and the local factor L(s, σv) has no zero (nor pole) at s = 1

2 .
Moreover, by [Har14, Theorem 2.12], if ϕ =⊗′vϕv ∈ σ , then for almost all places v we
have

P 	h,σv (ϕv, ϕv)= vol(U′
h(Ov))(ϕv, ϕv)v.(1.1.6.1)

We also recall that the global representation σ has a natural invariant inner product given
by

(ϕ,ϕ)Pet =
∫
[Uh]
|ϕ(g)|2dg, ϕ ∈ σ.

Our second main result is the global Ichino-Ikeda conjecture for unitary groups
formulated in [Har14, Conjecture 1.3] and can be stated as follows (this result can be
seen as a refinement of Theorem 1.1.5.1, the precise relation requiring the local Gan-
Gross-Prasad conjecture and Arthur’s multiplicity formula for unitary groups will not be
discussed here).

Theorem 1.1.6.1. — Assume that σ is a cuspidal automorphic representation of Uh that is

tempered everywhere and let � =�n ��n+1 be the weak (hence the strong) base-change of σ to G.

Suppose that we normalize the period integral Ph and the Petersson inner product (., .)Pet by choosing the

invariant Tamagawa measures3 dTamh and dTamg on U′
h(A) and Uh(A) respectively. Assume also that

the local Haar measures dhv on U′
h(Fv) factorize the Tamagawa measure: dTamh=∏

v dhv . Then, for

every nonzero factorizable vector ϕ =⊗′vϕv ∈ σ , we have

|Ph(ϕ)|2
(ϕ,ϕ)Pet

= |S�|−1L(1
2
, σ )

∏
v

P 	h,σv (ϕv, ϕv)
(ϕv,ϕv)v

where we recall that S� denotes the finite group S�n
× S�n+1 .

Note that the product over all places in the theorem is well-defined by (1.1.6.1).
Moreover, once again, this theorem is proved in [BPLZZ21] under the extra assumption

3 We warn the reader that our convention is to include the global normalizing L-values in the definition of Tama-
gawa measures, cf. Section 2.3 for precise definitions.
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that � is cuspidal (in which case |S�| = 4). Previous results in that direction includes
[Zha14a], [BP21a], [BP21c] where some varying local assumptions on σ entailing the
cuspidality of � were imposed. In a slightly different direction, the paper [GL] estab-
lishes the above identity up to an unspecified algebraic number under some arithmetic
assumptions on σ .

1.2. The spectral expansion of the Jacquet-Rallis trace formula for the linear groups

1.2.1. Motivations. — As in [Zha14b], [Zha14a], [Xue19], [BP21a], [BP21c] and
[BPLZZ21], our proofs of Theorems 1.1.5.1 and 1.1.6.1 follow the strategy of Jacquet
and Rallis [JR11] and are thus based on a comparison of relative trace formulas on unitary
groups Uh for h ∈Hn and the group G. Let’s recall that these trace formulas have two
different expansions: one, called the geometric side, in terms of distributions indexed by
geometric classes and the other, called the spectral side, in terms of distributions indexed
by cuspidal data. As usual, the point is to get enough test functions to first compare the
geometric sides which gives a comparison of spectral sides.

For specific test functions, the trace formula boils down to a simple and quite easy
equality between a sum of relative regular orbital integrals and a sum of relative charac-
ters attached to cuspidal representations. This is the simple trace formula used by Zhang
in [Zha14b] and [Zha14a] to prove special cases of Theorems 1.1.5.1 and 1.1.6.1. In re-
turn one has to impose restrictive local conditions on the representations one considers.

In [Zyd16], [Zyd18], [Zyd20], Zydor established general Jacquet-Rallis trace for-
mulas. Besides, in [CZ21], Chaudouard-Zydor proved the comparison of all the geomet-
ric terms for matching test functions, that is functions with matching local orbital inte-
grals. Using these results, Beuzart-Plessis-Liu-Zhang-Zhu in [BPLZZ21] proved 1.1.5.1
and 1.1.6.1 when � is cuspidal. Their main innovation is a construction of Schwartz
test functions only detecting certain cuspidal data. In this way, they were able to con-
struct matching test functions for which the spectral expansions reduce to some relative
characters attached to cuspidal representations.

1.2.2. In this paper, we also want to use the construction of Beuzart-Plessis-Liu-
Zhang-Zhu. But for this, we need two extra ingredients. First we need the slight extension
of Zydor’s work to the space of Schwartz test functions. For the geometric sides, this was
done in [CZ21]. For the test functions we need, the spectral side of the trace formulas
for unitary groups still reduces to relative characters attached to cuspidal representations
and we need nothing more. But, for the group G, we shall extend the spectral side of the
trace formula to the space of Schwartz functions. Second there is an even more serious
question: since the representation � is no longer assumed to be cuspidal, the spectral
contribution associated to � is much more involved. In this section, we shall explain
alternative and somewhat more tractable expressions for the spectral contributions in the
trace formula for G. For the specific cuspidal datum attached to�, we get a precise result
as we shall see in Section 1.3 below.
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1.2.3. The spectral expansion for the Schwartz space. — Let X(G) be the set of cuspidal
data of G (see Section 2.9.1). To χ is associated a direct invariant factor L2

χ([G]) of
L2([G]) (see [MW89, Chap. II] or Section 2.9 for a review). Let f be a function in the
Schwartz space S(G(A)) (cf. Section 2.5.2 for a definition). Let Kf , resp. Kf ,χ , be the
kernel associated to the action by right convolution of f on L2([G]), resp. L2

χ([G]).
Following [Zyd20] (see Section 3.2.3), we introduce the modified kernel KT

f ,χ

depending on a parameter T in a certain real vector space. Set H = Gn and G′ =
GLn,F × GLn+1,F both seen as subgroups of G (the embedding H ↪→ G being the “di-
agonal” one where the inclusion Gn ↪→ Gn+1 is induced by the identification of En with
the hyperplane of En+1 of vanishing last coordinate). The following theorem is an exten-
sion to Schwartz functions of [Zyd20, théorème 0.1].

Theorem 1.2.3.1. — (see Theorem 3.2.4.1)

1. For any T in a certain positive Weyl chamber, we have

∑
χ∈X(G)

∫
[H]

∫
[G′]
|KT

f ,χ (h, g
′)| dg′dh<∞

2. Let ηG′ be the quadratic character of G′(A) defined in Section 3.1.6. For each χ ∈ X(G),
the integral

∫
[H]

∫
[G′]

KT
f ,χ (h, g

′)ηG′(g
′) dg′dh(1.2.3.1)

coincides with a polynomial-exponential function in T whose purely polynomial part is con-

stant and denoted by Iχ(f ).
3. The distributions Iχ are continuous, left H(A)-equivariant and right (G′(A), ηG′)-

equivariant. Moreover the sum

I(f )=
∑
χ

Iχ(f )(1.2.3.2)

is absolutely convergent and defines a continuous distribution.

The (coarse) spectral expansion of the trace formula for G is precisely the expres-
sion (1.2.3.2).

1.2.4. The definition of Iχ given in Theorem 1.2.3.1 is convenient to relate the
spectral expansion to the geometric expansion. However, to get more explicit forms of
the distributions Iχ , we shall use the following three expressions:

∫
[H]

∫
[G′]
(
T

r Kf ,χ )(h, g
′) ηG′(g

′) dg′dh(1.2.4.3)



190 RAPHAËL BEUZART-PLESSIS, PIERRE-HENRI CHAUDOUARD, AND MICHAŁ ZYDOR∫
[H]

FGn+1(h,T)
∫
[G′]

Kf ,χ (h, g
′) ηG′(g

′) dg′dh(1.2.4.4)

∫
[G′]

FGn+1(g′n,T)
∫
[H]

Kf ,χ (h, g
′) dhηG′(g

′)dg′(1.2.4.5)

Essentially they are given by integration of the kernel Kf ,χ along [H] × [G′]. However,
to have a convergent expression for a general χ , one needs to use some truncation de-
pending on the same parameter T as above. We introduce the Ichino-Yamana truncation
operator, denoted by
T

r , whose definition is recalled in Section 3.3.2. In (1.2.4.3), we ap-
ply it to the left-variable of Kf ,χ . But one can also use the Arthur characteristic function
FGn+1(·,T) whose definition is recalled in 3.3.4. In (1.2.4.4), this function is evaluated at
h ∈ H(A) through the embedding H = Gn ↪→ Gn+1. In (1.2.4.5), it is evaluated at the
component g′n of the variable g′ = (g′n, g′n+1) ∈G′(A)=GLn(A)×GLn+1(A).

The link with the distribution Iχ is provided by the following theorem (which is
a combination of Propositions 3.3.3.1 and 3.3.5.1 and Theorem 3.3.9.1). Note that we
shall not need the full strength of the theorem in this paper. However it will be used in a
greater generality in a subsequent paper.

Theorem 1.2.4.1. — Let f ∈ S(G(A)) and χ ∈X(G).

1. For any T in some positive Weyl chamber, the expressions (1.2.4.3), (1.2.4.4) and (1.2.4.5)
are absolutely convergent.

2. Each of the three expressions is asymptotically equal (in the technical sense of assertion 2 of

Theorem 3.3.9.1)) to a polynomial-exponential function of T whose purely polynomial term

is constant and equal to Iχ(f ).

1.2.5. Note that powerful estimates for modified kernels are introduced and used
in the proofs of Theorems 1.2.3.1 and 1.2.4.1. We refer the reader to Theorem 3.3.7.1
for a precise statement.

1.3. On the ∗-regular contribution for the Jacquet-Rallis trace formula for the linear groups

1.3.1. From now on we assume that the cuspidal datum χ is relevant ∗-regular
that is χ is the class of a pair (M,π) with the property that the normalized induction
� := IndG(A)

P(A) (π), where we have fixed a parabolic subgroup P with Levi component M,
is a Hermitian Arthur parameter of G. To � we associate, following [Zha14a, §3.4],
a relative character I�. The precise definition of this object is recalled in Section 8.1.3.
Let us just say here that it is associated to two functionals λ and βη on the Whittaker
model W(�,ψN) of �, where ψN is a certain generic automorphic character of the
standard maximal unipotent subgroup N of G, that naturally show up in integrals of
Rankin-Selberg type. More precisely, λ is the value at s= 1

2 of a family of Zeta integrals,
studied by Jacquet-Piatetski-Shapiro-Shalika [JPSS83], representing the Rankin-Selberg
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L-function L(s,�) whereas βη is essentially the pole at s= 1 of another family of Zeta in-
tegrals, first introduced by Flicker [Fli88], representing the (product of) Asai L-functions
L(s,�,AsG) := L(s,�n,As(−1)n+1

)L(s,�n+1,As(−1)n). The relative character I� is then
given in terms of these functionals by

I�(f )=
∑
ϕ∈�
λ(�(f )Wϕ)βη(Wϕ), f ∈ S(G(A)),(1.3.1.1)

where the sum runs over an orthonormal basis of� (for the Petersson inner product) and
Wϕ denotes the Whittaker function associated to the Eisenstein series E(ϕ) (obtained, as
usual, by integrating E(ϕ) against ψ−1

N over [N]).
The following is our main technical result whose proof occupies most part of the

paper.

Theorem 1.3.1.1. — Let χ be a cuspidal datum associated to a Hermitian Arthur parameter

� as above. Then, for every function f ∈ S(G(A)) we have

Iχ(f )= 2−dim(AM)I�(f )

where AM denotes the maximal central split torus of M.

Remark 1.3.1.2. — It is perhaps worth emphasizing that the contribution of χ is
purely discrete in the Jacquet-Rallis trace formula. Such a phenomenon happens in Jacquet
relative trace formula, see [Lap06]. By contrast, the contribution of the same kind of
cuspidal datum χ to the Arthur-Selberg trace formula is purely continuous (unless, of
course, if � is cuspidal).

We shall provide two different proofs of Theorem 1.3.1.1, one based on trunca-
tions, the other using integral representations of Asai and Rankin-Selberg L-functions.
Let’s explain separately the main steps of each approach.

1.3.2. A journey through truncations. — We first begin with the approach based on
truncations. The first step is to get a spectral decomposition of the function

∫
[G′]

Kf ,χ (g, g
′)ηG′(g

′)dg′,(1.3.2.2)

of the variable g ∈ [G].
The kernel itself Kf ,χ has a well-known spectral decomposition based on the Lang-

lands decomposition. Then the problem is basically to invert an adelic integral and a
complex integral. It is solved by Lapid in [Lap06] (up to some non-explicit constants) but
we will use a slightly different method avoiding delicate Lapid’s contour moving. Instead
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we replace the integral (1.3.2.2) by its truncated version∫
[G′]
(Kf ,χ


T
m)(g, g

′)ηG′(g
′)dg′,(1.3.2.3)

where the mixed truncation operator 
T
m defined by Jacquet-Lapid-Rogawski [JLR99] is ap-

plied to the right variable of the kernel. We can recover (1.3.2.2) by taking the limit when
T→+∞. It is easy to get the spectral decomposition of (1.3.2.3) (see Proposition 4.2.3.3).
Using an analog of the famous Maaß-Selberg relations due to Jacquet-Lapid-Rogawski
(see [JLR99] and Lemma 4.3.6.2 below), we get in Proposition 4.3.6.1 that (1.3.2.3) is
equal to a finite sum of contributions (up to an explicit constant) of the following type∫

ia
G,∗
P

∑
Q∈P(M)

JQ,χ (g, λ, f )
exp(−〈λ,TQ〉)
θQ(−λ) dλ.(1.3.2.4)

Here it suffices to say that ia
G,∗
P is some space of unramified unitary characters and that

JQ,χ (g, λ, f ) is a certain relative character built upon Flicker-Rallis intertwining peri-
ods (introduced by Jacquet-Lapid-Rogawski). The integrand is a familiar expression of
Arthur’s theory of (G,M)-families with quite standard notations. It turns out that the
family (JQ,χ (g, λ, f ))Q∈P(M) is indeed an Arthur (G,M)-family of Schwartz functions in
the parameter λ. Let’s emphasize that this Schwartz property relies in fact on deep esti-
mates introduced by Lapid in [Lap06] and [Lap13]. By a standard argument, it is then
easy to get the limit of (1.3.2.4) when T→+∞ which gives the spectral decomposition
of (1.3.2.2) (see Theorem 4.3.3.1). Note that the spectral decomposition we get is already
discrete at this stage.

From this result, one gets the equality∫
[H]

∫
[G′]
(
T

r Kf ,χ )(h, g
′) ηG′(g

′) dhdg′ = 2−dim(AM)IP,π (f ).(1.3.2.5)

The left-hand side has been defined in Section 1.2.4 and the relative character IP,π is
defined as follows:∑

ϕ∈�
IRS(�(f )ϕ) · Jη(ϕ)

where the sum is over an orthonormal basis, IRS(ϕ) is the regularized Rankin-Selberg
period of the Eisenstein series E(ϕ) defined by Ichino-Yamana and Jη(ϕ) is a Flicker-
Rallis intertwining period (for more detail we refer to Section 5.1.5).

In particular, the left-hand side of (1.3.2.5) does not depend on T. So Theorem
1.2.4.1 implies

Theorem 1.3.2.1. — (see Theorem 5.2.1.1 for a slightly more precise statement)

Iχ(f )= 2−dim(AM)IP,π (f ).
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Remark 1.3.2.2. — As the reading of Section 10.2 should make it clear, this state-
ment suffices to prove the Gan-Gross-Prasad conjecture namely Theorem 1.1.5.1. How-
ever, to get the Ichino-Ikeda conjecture, namely Theorem 1.1.6.1, we will want to use
statements about comparison of local relative characters written in terms of Whittaker
functions. For this purpose, Theorem 1.3.1.1 will be more convenient.

The link between regularized Rankin-Selberg period of Eisenstein series and Whit-
taker functionals has been investigated by Ichino-Yamana (see [IY15]). The following the-
orem relates the Flicker-Rallis intertwining periods to the functional βη(Wϕ) in (1.3.1.1).
It uses a local unfolding method inspired from [FLO12, Appendix A] (see Section 9).

Theorem 1.3.2.3. — For all ϕ ∈�, we have

Jη(ϕ)= βη(Wϕ)

In this way, one proves the following theorem which implies Theorem 1.3.1.1.

Theorem 1.3.2.4.

IP,π = I�.

1.3.3. Second proof: the use of Zeta integrals. — The spectral decomposition of (1.3.2.2)
essentially boils down to a spectral expansion of the period integral

PG′,η(ϕ) :=
∫
[G′]
ϕ(g′)ηG′(g

′)dg′

for test functions ϕ ∈ Sχ([G]), where Sχ([G]) denotes the Schwartz space of [G] consisting
of smooth functions rapidly decaying with all their derivatives that are “supported on χ”
(see Section 2.5 for a precise definition). Choose a parabolic subgroup P = MNP with
Levi component M. By Langlands L2 spectral decomposition and of the special form of
χ , any ϕ ∈ Sχ([G]) admits a spectral decomposition

ϕ =
∫

ia∗M
E(ϕλ)dλ(1.3.3.6)

where ia∗M denotes the real vector space of unramified unitary characters of M(A) and
ϕλ belongs to the normalized induction space IndG(A)

P(A) (π ⊗ λ) and E(ϕλ) is the associated
Eisenstein series.

Theorem 1.3.3.1. — For every ϕ ∈ Sχ([G]), we have

PG′,η(ϕ)= 2−dim(AM)βη(Wϕ0),

where Wϕ0 stands for the Whittaker function of the Eisenstein series E(ϕ0).
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The proof of Theorem 1.3.3.1 is close to the computation by Flicker [Fli88] of the
Flicker-Rallis period of cusp forms in terms of an Asai L-function and local Zeta integrals.
More precisely, we first realize PG′,η(ϕ) as the residue at s= 1 of the inner product of the
restriction ϕ|[G′] with some Eisenstein series E(s, φ) (where φ is an auxiliary Schwartz
function on An⊕An+1). Mimicking the unfolding of loc. cit. we connect this inner product
with an Eulerian Zeta integral ZFR(s,Wϕ,φ) involving the Whittaker function Wϕ of ϕ
(obtained as before by integration against ψ−1

N ). We should emphasize here that, since
ϕ is not a cusp form, the unfolding gives us more terms but using the special nature of
the cuspidal datum χ we are able to show that these extra terms do not contribute to
the residue at s= 1. The formation of ZFR(s,Wϕ,φ) commutes with the spectral expan-
sion (1.3.3.6) when 
(s)� 1 and, as follows from the local theory, the Zeta integrals
ZFR(s,Wϕλ, φ) for λ ∈ ia∗M are essentially Asai L-functions whose meromorphic continu-
ations, poles and growths in vertical strips are known. Combining this with an application
of the Phragmen-Lindelöf principle, we are then able to deduce Theorem 1.3.3.1.

Let us mention here that, as in the proof of (1.3.2.5), a key point is the fact (due to
Lapid ([Lap13] or [Lap06])) that the spectral transform λ �→ ϕλ is, in a suitable technical
sense, “Schwartz” that is rapidly decreasing together with all its derivatives.

The second step is to integrate (1.3.2.2) over g ∈ [H]. To do so, we define a regular-
ization of the integral over [H] that doesn’t require truncation. More precisely, denoting
by T ([G]) the space of functions of uniform moderate growth on [G], we can define the “χ -
part” Tχ([G]) of T ([G]) (see Section 2.5) of which Sχ([G]) is a dense subspace. More-
over, starting with ϕ ∈ T ([G]) we can also form its Whittaker function Wϕ and consider
the usual Rankin-Selberg integral ZRS(s,Wϕ) that converges for
(s)� 1 and represents,
when ϕ is an automorphic form, the Rankin-Selberg L-function for Gn ×Gn+1.

Theorem 1.3.3.2. — (see Theorem 7.1.3.1) The functional

ϕ ∈ Sχ([G]) �→
∫
[H]
ϕ(h)dh

extends by continuity to a functional on Tχ([G]) denoted by ϕ ∈ Tχ([G]) �→
∫ ∗

[H]
ϕ(h)dh. Moreover,

for every ϕ ∈ Tχ([G]), the Zeta function s �→ ZRS(s,Wϕ) extends to an entire function on C and we

have ∫ ∗

[H]
ϕ(h)dh= ZRS(

1
2
,Wϕ).

The proof of this theorem is similar to that of Theorem 1.3.3.1: we first show that,
for ϕ ∈ Sχ([G]) and 
(s)� 1, we have

∫
[H]
ϕ(h)|det h|sdh= ZRS(s+ 1

2
,Wϕ)
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by mimicking the usual unfolding for the Rankin-Selberg integral. Once again, as ϕ
is not necessarily a cusp form, we get extra terms in the course of the unfolding but,
thanks to the special nature of the cuspidal datum χ , we are able to show that they all
vanish. At this point, we use the spectral decomposition (1.3.3.6) to express ZRS(s,Wϕ)

as the integral of ZRS(s,Wϕλ) when 
(s)� 1. By Rankin-Selberg theory, ZRS(s,Wϕλ)

is essentially a Rankin-Selberg L-function whose meromorphic continuation, location
of the poles, control in vertical strips and functional equation are known. Combining
this with another application of the Phragmen-Lindelöf principle, we are able to bound

ZRS(
1
2
,Wϕ)=

∫
[H]
ϕ(h)dh in terms of ZRS(s,Wϕ) for 
(s)� 1 and this readily gives the

theorem.
One direct consequence of Theorem 1.3.3.2 is that the regularized period∫ ∗

[H]E(h,�(f )ϕ)dh coincides with ZRS( 1
2 ,�(f )Wϕ) = λ(�(f )Wϕ). Thus by a combi-

nation of Theorems 1.3.3.1 and 1.3.3.2, we get
∫ ∗

[H]

∫
[G′]

Kf ,χ (h, g
′)ηG′(g

′)dg′ dh= 2−dim(AM)I�(f ).(1.3.3.7)

Finally we have to show that the left-hand side is equal to Iχ(f ). In fact, we show
(see Theorem 8.1.4.1 and Section 8.2.3) that we have

∫ ∗

[H]

∫
[G′]

Kf ,χ (h, g
′)ηG′(g

′)dg′ dh=
∫
[G′]

∫
[H]

Kf ,χ (h, g
′) dhηG′(g

′)dg′

where the right-hand side is (conditionally) convergent. We can conclude that it is equal
to Iχ(f ) by applying Theorem 1.2.4.1 to the expression (1.2.4.5).

1.4. Outline of the paper

We now give a quick outline of the content of the paper. Section 2 contains pre-
liminary material. Notably, we fix most notation to be used in the paper, we explain our
convention on normalization of measures, we introduce the various spaces of functions
we need and we discuss several properties of Langlands decomposition along cuspidal
data as well as kernel functions that are important for us. Section 3 contains the state-
ments and proofs concerning the spectral expansion of the Jacquet-Rallis trace formula
for G that were discussed in Section 1.2 above.

In Section 4, we introduce the Flicker-Rallis intertwining periods and prove the
spectral expansion of the Flicker-Rallis period of the kernel associated to ∗-regular cus-
pidal datum. In Section 5 we deduce from it Theorem 1.3.2.1 namely the spectral ex-
pansion for Iχ(f ). Sections 6 and 7 are devoted to the proofs of Theorems 1.3.3.1 and
1.3.3.2 respectively. These two theorems are combined in Section 8 to give another proof
of the spectral expansion of Iχ(f ) (Theorem 1.3.1.1). In Section 9, we relate the Flicker-
Rallis intertwining periods to the functional βη. From this, we deduce Theorem 1.3.2.3
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and Theorem 1.3.2.4. The final Section 10 explain the deduction of Theorems 1.1.5.1
and 1.1.6.1 from Theorem 1.3.1.1. Finally, we have gathered in Appendix A some useful
facts on topological vector spaces and holomorphic functions valued in them. It contains
in particular some variations on the theme of the Phragmen-Lindelöf principle for such
functions that will be crucial for the proofs of Theorems 1.3.3.1 and 1.3.3.2.

2. Preliminaries

2.1. General notation

2.1.1. For f and g two positive functions on a set X, we way that f is essentially

bounded by g and we write

f (x)� g(x), x ∈X,

if there exists a constant C > 0 such that f (x) � Cg(x) for every x ∈ X. If we want to
emphasize that the constant C depends on auxiliary parameters y1, . . . , yk , we will write
f (x)�y1,...,yk

g(x). We say that the functions f and g are equivalent and we write

f (x)∼ g(x), x ∈X,

if f (x)� g(x) and g(x)� f (x).

2.1.2. For every C,D ∈ R ∪ {−∞} with D> C, we set H>C = {z ∈ C | 
(z) >
C} and H]C,D[ = {z ∈ C | C < 
(z) < D}. A vertical strip is a subset of C which is the
closure of H]C,D[ for some C,D ∈R with D>C.

When f is a meromorphic function on some open subset U of C and s0 ∈ U, we
denote by f ∗(s0) the leading term in the Laurent expansion of f at s0.

2.1.3. When G is a group and we have a space of functions on it invariant by
right (resp. left) translation, we denote by R (resp. L) the corresponding representation of
G. If G is a Lie group and the representation is differentiable, we will also denote by the
same letter the induced action of the Lie algebra or of its associated enveloping algebra.
If G is a topological group equipped with a bi-invariant Haar measure, we denote by ∗
the convolution product (whenever it is well-defined).

2.1.4. We refer the reader to Appendix A for reminders on relevant notions of
functional analysis that will be used without further comments in the core of the paper. In
particular, we will use the notation ⊗̂ to denote the projective completed tensor product
between two locally convex topological vector spaces (over C). Moreover, most of the
topological vector spaces we will consider are Banach, Hilbert, Fréchet or LF.
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2.2. Algebraic groups and adelic points

2.2.1. Let F be a number field and A its adele ring. We write Af for the ring
of finite adeles and F∞ = F ⊗Q R for the product of Archimedean completions of F
so that A = F∞ × Af . Let VF be the set of places of F and VF,∞ ⊂ VF be the subset of
Archimedean places. For every v ∈VF, we let Fv be the local field obtained by completion
of F at v. We denote by | · | the morphism A× →R×

+ given by the product of normalized
absolute values | · |v on each Fv . For any finite subset S ⊂ VF \ VF,∞, we denote by OS

F
the ring of S-integers in F.

2.2.2. Let G be an algebraic group defined over F. We denote by NG the unipo-
tent radical of G. Let X∗(G) be the group of characters of G defined over F. Let
a∗G =X∗(G)⊗Z R and aG =HomZ(X∗(G),R). We have a canonical pairing

〈·, ·〉 : a∗G × aG →R.(2.2.2.1)

We have also a canonical homomorphism

HG :G(A)→ aG(2.2.2.2)

such that 〈χ,HG(g)〉 = log |χ(g)| for any g ∈ G(A). The kernel of HG is denoted by
G(A)1. We define [G] =G(F)\G(A) and [G]1 =G(F)\G(A)1.

We let g∞ be the Lie algebra of G(F∞) and U(g∞) be the enveloping algebra of its
complexification and Z(g∞)⊂ U(g∞) be its center.

2.2.3. From now on we assume that G is also reductive. We will mainly use the
notations of Arthur’s works. For the convenience of the reader, we recall some of them.
Let P0 be a parabolic subgroup of G defined over F and minimal for these properties. Let
M0 be a Levi factor of P0 defined over F.

We call a parabolic (resp. and semi-standard, resp. and standard) subgroup of G a
parabolic subgroup of G defined over F (resp. which contains M0, resp. which contains
P0). For any semi-standard parabolic subgroup P, we have a Levi decomposition P =
MPNP where MP contains M0 and we define [G]P =MP(F)NP(A)\G(A). We call a Levi
subgroup of G (resp. semi-standard, resp. standard) a Levi factor defined over F of a
parabolic subgroup of G defined over F (resp. semi-standard, resp. standard).

2.2.4. Let K =∏
v∈VF

Kv ⊂ G(A) be a “good” maximal compact subgroup in
good position relative to M0. We write

K=K∞K∞

where K∞ =∏
v∈VF,∞ Kv and K∞ =∏

v∈VF\VF,∞ Kv . We let k∞ be the Lie algebra of K∞
and U(k∞) be the enveloping algebra of its complexification and Z(k∞)⊂ U(k∞) be its
center.
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2.2.5. Let P be a semi-standard parabolic subgroup. We extend the homomor-
phism HP : P(A)→ aP (see (2.2.2.2)) into the Harish-Chandra map

HP :G(A)→ aP

in such a way that for every g ∈G(A) we have HP(g)=HP(p) where p ∈ P(A) is given by
the Iwasawa decomposition namely g ∈ pK. Let H0 =HP0.

2.2.6. Let A be a split torus over F. Then, A admits an unique split model over
Q (which is also the maximal Q-split subtorus of ResF/Q(A)) and by abuse of notation
we denote by A(R) the group of R-points of this model. In the particular case of the
multiplicative group Gm,F, we get an embedding R× ⊂ F×∞ ⊂ A×. We also write A∞ for
the neutral component of A(R). Let AG be the maximal central F-split torus of G. We
define [G]0 = A∞

G G(F)\G(A).
Let P be a semi-standard parabolic subgroup of G. We define AP = AMP , A∞

P =
A∞

MP
and [G]P,0 = A∞

P MP(F)NP(A)\G(A). The restrictions maps X∗(P)→ X∗(MP)→
X∗(AP) induce isomorphisms a∗P � a∗MP

� a∗AP
. Let a∗0 = a∗P0

, a0 = aP0 , A0 = AP0 and
A∞

0 = A∞
P0

.

2.2.7. For any semi-standard parabolic subgroups P ⊂ Q of G, the restriction
map X∗(Q)→ X∗(P) induces maps a∗Q → a∗P and aP → aQ. The first one is injective

whereas the kernel of the second one is denoted by a
Q
P . The restriction map X∗(AP)→

X∗(AQ) gives a surjective map a∗P → a∗Q whose kernel is denoted by a
Q,∗
P . We get also

an injective map aQ → aP. In this way, we get dual decompositions aP = a
Q
P ⊕ aQ and

a∗P = a
Q,∗
P ⊕ a∗Q. Thus we have projections a0 → a

Q
P and a∗0 → a

Q,∗
P which we will denote

by X �→XQ
P .

We denote by a
Q,∗
P,C and a

Q
P,C the C-vector spaces obtained by extension of scalars

from a
Q,∗
P and a

Q
P . We still denote by 〈·, ·〉 the pairing (2.2.2.1) we get by extension of the

scalars to C. We have a decomposition

a
Q,∗
P,C = a

Q,∗
P ⊕ ia

Q,∗
P

where i2 =−1. We shall denote by 
 and � the associated projections and call them real
and imaginary parts. The same holds for the dual spaces aQ

P,C. In the obvious way, we
define the complex conjugate denoted by λ̄ of λ ∈ a

Q,∗
P,C.

2.2.8. Let AdQ
P be the adjoint action of MP on the Lie algebra of MQ ∩NP. Let

ρ
Q
P be the unique element of aQ,∗

P such that for every m ∈MP(A)

|det(AdQ
P (m))| = exp(〈2ρQ

P ,HP(m)〉).
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For every g ∈G(A), we set

δ
Q
P (g)= exp(〈2ρQ

P ,HP(g)〉)
so that, in particular, the restriction of δQ

P to P(A) ∩MQ(A) coincides with the modular
character of the latter. For Q=G, the exponent G is omitted. Finally, we set ρ0 = ρP0 .

2.2.9. Let P′0 = M0NP′0 be a minimal semi-standard parabolic subgroup such
that P′0 ⊂ P. Let�P

P′0
be the set of simple roots of A0 in MP ∩P′0. We denote this set by �P

0

if P′0 = P0. Let �P be the image of �P′0 \�P
P′0

(viewed as a subset of a∗0) by the projection

a∗0 → a∗P. It does not depend on the choice of P′0. More generally one defines �Q
P . We

have also the set of coroots�Q,∨
P ⊂ a

Q
P . By duality, we get a set of simple weights �̂Q

P . The
sets �Q

P and �̂Q
P determine open cones in a0 whose characteristic functions are denoted

respectively by τQ
P and τ̂Q

P . We set

A∞,Q+
P =

{
a ∈ A∞

P | 〈α,HP(a)〉� 0, ∀α ∈�Q
P

}
,

a
∗,Q+
P =

{
λ ∈ a

∗
P | 〈λ,α∨〉� 0, ∀α∨ ∈�Q,∨

P

}
.

We define similarly a
Q+
P using roots instead of coroots. If Q = G, the exponent G is

omitted and if P= P0, we replace the subscript P0 by 0.
For λ,μ ∈ a∗0, we will write λ ≺P μ to indicate that μ− λ is a nonnegative linear

combination of the simple roots �P
0 .

2.2.10. Weyl group. — Let W be the Weyl group of (G,A0) that is the quotient
by M0 of the normalizer of A0 in G(F). For P =MPNP and Q =MQNQ two standard
parabolic subgroups of G, we denote by W(P,Q) the set of w ∈W such that w�P

0 =�Q
0 .

For w ∈W(P,Q), we have wMPw
−1 =MQ. When P=Q, the group W(P,P) is simply

denoted by W(P). Sometimes, we shall also denote W(P,Q) by W(MP,MQ) if we want
to emphasize the Levi components (and W(MP)=W(P)). We will also write WMP for the
Weyl group of (MP,A0).

2.2.11. Let M be a standard Levi subgroup of G. We denote by P(M) the set
of semi-standard parabolic subgroups P of G such that MP = M. There is an unique
element P ∈P(M) which is standard and the map

(Q,w) �→w−1Qw(2.2.11.3)

induces a bijection from the disjoint union
⋃

Q W(P,Q) where Q runs over the set of
standard parabolic subgroups of G onto P(M).



200 RAPHAËL BEUZART-PLESSIS, PIERRE-HENRI CHAUDOUARD, AND MICHAŁ ZYDOR

2.2.12. Truncation parameter. — We shall denote by T a point of a0 such that 〈α,T〉
is large enough for every α ∈�0. We do not want to be precise here. We just need that
Arthur’s formulas about truncation functions hold for the T′s we consider (see [Art78]
§§5, 6). The point T plays the role of a truncation parameter.

For any semi-standard parabolic subgroup P, we define a point TP ∈ aP such that
for any w ∈W such that wP0w

−1 ⊂ P, the point TP is the projection of w ·T on aP (this
does not depend on the choice ofw). The reader should be warned that it is not consistent
with the notation of Section 2.2.7 since there TP denotes instead the projection of T onto
aP (of course, the two conventions coincide when P is standard).

2.2.13. Let ω0 ⊂ P0(A)1 be a compact subset such that P0(A)1 = P0(F)ω0. Let P
be a standard parabolic subgroup. By a Siegel domain of [G]P we mean a subset of G(A) of
the form

sP = ω0

{
a ∈ A∞

0 | 〈α,H0(a)〉� 〈α,T−〉, ∀α ∈�P
0

}
K

where T− ∈ a0 and such that G(A)=MP(F)NP(A)sP. We henceforth fix a Siegel domain
sP of [G]P for every standard parabolic subgroup P and we assume that these Siegel
domains are all associated to the same T− ∈ a0. In particular, for P⊂Q we have sQ ⊂ sP.
Moreover, there exists a compact subset K⊂G(A) such that

sP ⊂NP(A)A
∞,P+
0 K, for every P⊂G.

2.3. Haar measures

2.3.1. We equip aP with the Haar measure that gives a covolume 1 to the lattice
Hom(X∗(P),Z). The space ia∗P is then equipped with the dual Haar measure so that we
have ∫

ia∗P

∫
aP

φ(H) exp(−〈λ,H〉) dHdλ= φ(0)

for all φ ∈C∞
c (aP). Note that this implies that the covolume of iX∗(P) in ia∗P is given by

vol(ia∗P/iX
∗(P))= (2π)−dim(aP).(2.3.1.1)

The group A∞
P is equipped with the Haar measure compatible with the isomor-

phism A∞
P � aP induced by the map HP. The groups aG

P � aP/aG and ia
G,∗
P � ia∗P/ia

∗
G are

provided with the quotient Haar measures. For any basis B of aG
P we denote by Z(B) the

lattice generated by B and by vol(aG
P /Z(B)) the covolume of this lattice. We have on a∗0

the polynomial function:

θP(λ)= vol(aG
P /Z(�

∨
P ))

−1
∏
α∈�P

〈λ,α∨〉.
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2.3.2. Let H be a connected linear algebraic group over F (not necessarily reduc-
tive). In this paper, we will always equip H(A) with its right-invariant Tamagawa measure
simply denoted dh. Let us recall how it is defined in order to fix some notation. We choose
a right-invariant rational volume form ωH on H as well as a non-trivial continuous ad-
ditive character ψ ′ : A/F→ C×. For each place v ∈ VF, the local component ψ ′v of ψ ′

induces an additive measure on Fv which is the unique Haar measure autodual with
respect to ψ ′v . Then using local F-analytic charts, we associate to ωH a right Haar mea-
sure dhv = |ωH|ψ ′v on H(Fv) as in [Wei82, §2.2]. By [Gro97], there exists an Artin-Tate
L-function LH(s) such that, denoting by LH,v(s) the corresponding local L-factor and set-
ting �H,v = LH,v(0), for any model of H over OS

F for some finite set S⊆ VF \ VF,∞, we
have

(2.3.2.2) vol(H(Ov))=�−1
H,v

for almost all v ∈ VF. Setting �∗H = L∗H(0), where we recall that L∗H(0) stands for the
leading coefficient in the Laurent expansion of LH(s) at 0, the Tamagawa measure on
H(A) is defined as the product

(2.3.2.3) dh= (�∗H)−1
∏
v

�H,vdhv.

Although the local measures dhv depend on choices, the global measure dh doesn’t (by the
product formula).

2.3.3. For S⊆ VF a finite subset, we put �S,∗
H = LS,∗

H (0) where LS
H(s) stands for

the corresponding partial L-function and we equip H(FS), H(AS) with the right Haar
measures dhS =∏

v∈S dhv and dhS = (�S,∗
H )

−1
∏
v /∈S�H,vdhv respectively. Note that we have

the decomposition

(2.3.3.4) dh= dhS × dhS.

In particular, setting S = {v}, this means that H(Fv) is equipped with the right Haar
measure dhv for every v ∈VF.

2.3.4. We have LH(s)= LHred(s) where Hred =H/NH denotes the quotient of H
by its unipotent radical. When H=N is unipotent we have vol([N])= 1. For H=GLn,
the L-function LH(s) is given by

LH(s)= ζF(s+ 1) . . . ζF(s+ n)

where ζF stands for the (completed) zeta function of the number field F. In this case, we
will take

ωH = (det h)−1
∧

1�i,j�n

dhi,j
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so that (2.3.2.2) is satisfied for every non-Archimedean place v where ψv is unrami-
fied.

2.3.5. The homogeneous space [G] (resp. [G]1 � [G]0) is equipped with the quo-
tient of the Tamagawa measure on G(A) by the counting measure on G(F) (resp. by the
product of the counting measure on G(F) with the Haar measure we fixed on A∞

G ). For
P a standard parabolic subgroup, we equip similarly [G]P with the quotient of the Tam-
agawa measure on G(A) by the product of the counting measure on MP(F) with the
Tamagawa measure on NP(A). Since the action by left translation of a ∈ A∞

P on [G]P
multiplies the measure by δP(a)

−1, taking the quotient by the Haar measure on A∞
P in-

duces a “semi-invariant” measure on [G]P,0 = A∞
P \[G]P that is a positive linear form on

the space of continuous functions ϕ : [G]P → C satisfying ϕ(ag)= δP(a)ϕ(g) for a ∈ A∞
P

and compactly supported modulo A∞
P .

2.4. Heights, weights and Harish-Chandra � function

2.4.1. Height on G. — We fix an embedding ι :G ↪→GLN for some integer N> 0.
Using ι, we define a height on G(A) by

‖g‖ =
∏
v

max
1�i,j�N

(|ι(g)i,j|v, |ι(g−1)i,j|v).

Note that for another choice of embedding ι′ yielding a height ‖.‖′, there exists r0 > 0
such that ‖g‖1/r0 �‖g‖′ � ‖g‖r0 for g ∈G(A). We have

(2.4.1.1) 1�‖g‖, ‖gh‖� ‖g‖‖h‖ and ‖g‖ = ‖g−1‖
for g, h ∈G(A). Let P⊂G be a standard parabolic subgroup. We set

‖x‖P = inf
γ∈MP(F)NP(A)

‖γ x‖ ∼ inf
γ∈P(F)

‖γ x‖, σP(x)= 1+ log‖x‖P, for x ∈ [G]P.

Note that, for P⊂Q, we have

(2.4.1.2) ‖x‖Q �‖x‖P, for x ∈ P(F)\G(A).
Letting sP be a Siegel domain as in Section 2.2.13, we have (see [MW94, Eq. I.2.2(vii)])

(2.4.1.3) ‖g‖P ∼ ‖g‖, for g ∈ sP.

If H⊂G is a reductive subgroup, we equip H(A) with the restriction of the height
‖.‖ from which we deduce as above a function ‖.‖PH on [H]PH for every parabolic sub-
group PH ⊂H. For P⊂G a standard parabolic subgroup, we have

(2.4.1.4) ‖m‖MP ∼ ‖m‖P, for m ∈ [MP].
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More generally, if PH = P ∩H happens to be a parabolic subgroup of H with unipotent
radical NPH =H∩NP (so that in particular [H]PH ⊂ [G]P), we have

(2.4.1.5) ‖h‖PH ∼ ‖h‖P, for h ∈ [H]PH .

Indeed, using a Siegel domain for [H]PH we are reduced to show the above equivalence
for h = a ∈ A∞

0,H where A0,H ⊂ H is a maximal split torus. Up to conjugation, we may
assume that A0,H ⊂ A0 and then it readily follows from (2.4.1.3) that ‖a‖P ∼ ‖a‖ ∼ ‖a‖PH

for a ∈ A∞
0,H.

We also have

(2.4.1.6) ‖a‖� ‖ax‖P, for (a, x) ∈ A∞
P × [G]P such that HP(x)= 0.

Indeed, by (2.4.1.4) we may assume that P=G. Then, up to conjugation, we may assume
that there exists distinct characters λ1, . . . , λk ∈X∗(AG) and integers N1, . . . ,Nk � 1 such
that

ι(a)=
⎛
⎜⎝
λ1(a)IN1

. . .

λk(a)INk

⎞
⎟⎠ , for a ∈ AG.

Then, there exist homomorphisms ιi : G → GLNi
, for 1 � i � k, such that ι(g) =⎛

⎜⎝
ι1(g)

. . .

ιk(g)

⎞
⎟⎠ for g ∈ G. As |det ιi(g)|A = 1 for every g ∈ G(A)1, we can now

deduce (2.4.1.6) from the simple inequality

|det(g)|1/nA �
∏
v

max(|gi,j|v), for g ∈GLNi
(A).

2.4.2. Heights on vector spaces. — Let V be a vector space over F of finite dimension
and let v1, . . . , vd be a basis of V. For v = x1v1 + · · · + xdvd ∈VA =V⊗F A, we set

‖v‖V =
∏
v

max(1, |x1|v, . . . , |xd |v).

Note that another choice of basis would yield equivalent functions. A height on VA will be
for us any positive function equivalent to ‖.‖V.

The above construction applies in particular to V = Fn with its standard basis
e1, . . . , en and we will denote by ‖.‖An the resulting norm. Note that we have

‖x‖A =
∏
v

max(1, |x|v), for x ∈ A.
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2.4.3. Weights. — Let P⊂G be a standard parabolic subgroup. Following [Ber88,
§3.1] and [Fra98, §2.1], by a weight on [G]P we mean a positive measurable function w
on [G]P such that for every compact subset U ⊂G(A) we have

w(xk)∼w(x), for x ∈ [G]P and k ∈ U .

We say that two weights w1, w2 are equivalent, and we will write w1 ∼w2, if w1(x)∼w2(x)

for x ∈ [G]P. By (2.4.1.1), ‖.‖P is a weight on [G]P.
If w is a weight on [G]P, we denote by wA its restriction to A∞

P . It is a weight on the
latter group i.e. for every compact subset U ⊂ A∞

P we have wA(ak)� wA(a) for a ∈ A∞
P

and k ∈ U . Conversely, if wA is a weight on A∞
P then we can view it as a weight on [G]P

through composition with [G]P HP−→ aP
exp−→ A∞

P .

Lemma 2.4.3.1. — Let w be a weight on [G]P. Then, there exists N0 > 0 such that

(2.4.3.7) w(xg)�w(x)‖g‖N0, for (x, g) ∈ [G]P ×G(A).

Proof. — First we prove the existence of N′
0 > 0 such that

(2.4.3.8) w(xa)�w(x)‖a‖N′0, for (x, a) ∈ [G]P ×A∞
0 .

Indeed, let KA ⊂ A∞
0 be a compact neighborhood of 1. Then, KA generates A∞

0 and we
have

(2.4.3.9) 1+ log‖a‖ ∼min{n � 1 | a ∈Kn
A}.

Moreover, as w is a weight, there exists a constant C> 0 such that

w(xkA)� Cw(x), for (x, kA) ∈ [G]P ×KA.

By induction, this gives, for any n � 1,

w(xkA)� Cnw(x), for (x, kA) ∈ [G]P ×Kn
A.

Using (2.4.3.9), this readily gives (2.4.3.8) for some N′
0 > 0.

We now prove the lemma. By the existence of Siegel domain, it suffices to show the
existence of N0 > 0 such that the estimate (2.4.3.7) holds for (x, g) ∈ A∞,P+

0 ×G(A). By the
Iwasawa decomposition G(A)= P0(A)K, any g ∈G(A) can be written g = p1

0(g)a0(g)k(g)

where p1
0(g) ∈ P0(A)1, a0(g) ∈ A∞

0 and k(g) ∈ K. Moreover, there exists a compact K ⊂
G(A) such that

xP0(A)1 ⊂ P0(F)NP(A)xK

for every x ∈ A∞,P+
0 . Therefore, by (2.4.3.9), we have

w(xg)=w(xp1
0(g)a0(g)k(g))�w(xp1

0(g))‖a0(g)‖N′0 �w(x)‖a0(g)‖N′0
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for every (x, g) ∈ A∞,P+
0 ×G(A). To conclude, it suffices to notice that there exists N0 > 0

such that

‖a0(g)‖N′0 �‖g‖N0

for every g ∈G(A). �

According to Franke [Fra98, Proposition 2.1], for every λ ∈ a∗0 there exists a weight
dP,λ on [G]P such that

dP,λ(x)∼ exp(〈λ,H0(x)〉), for x ∈ sP.

These weights have the following elementary properties: for t ∈R and λ,μ ∈ a∗0, we have

(2.4.3.10) dP,tλ ∼ (dP,λ)
t and dP,λ+μ ∼ dP,λdP,μ.

Moreover,

(2.4.3.11) If λ≺P μ (see Section 2.2.9), then dP,λ� dP,μ.

Also, if 
⊂ a∗0 is a WP =NormMP(F)(A0)/M0(F)-invariant subset then

(2.4.3.12) max
λ∈


dP,λ(a)∼max
λ∈


exp(〈λ,H0(a)〉), for a ∈ A∞
0 .

Let 
P
ι ⊂ a

∗,P+
0 is the set of maximal A0-weights of the representation g �→

diag(ι(g), tι(g)−1) for the partial order ≺P. It follows from (2.4.1.3) that

(2.4.3.13) ‖x‖P ∼max
λ∈
P

ι

dP,λ(x), for x ∈ [G]P.

Lemma 2.4.3.2. — Let λ ∈ a
∗,P+
0 . Then, we have

(2.4.3.14) dP,λ(x)∼ sup
γ∈P(F)

e〈λ,H0(γ x)〉, for x ∈ [G]P.

Proof. — As dP,λ(m) ∼ dMP,λ(m) for m ∈ [MP], up to replacing G by MP, we may
assume that P=G. Moreover, we can restrict to x ∈ sG in which case the left-hand side is
clearly essentially bounded by the right-hand side (by definition of the weight dG,λ). Thus,
the lemma boils down to the inequality, where λ ∈ a

∗,+
0 ,

e〈λ,H0(γ x)〉 � e〈λ,H0(x)〉, for (γ, x) ∈G(F)× sG,

which is a simple reformulation of [LW13, lemme 3.5.4]. �

We note the immediate corollary.
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Corollary 2.4.3.3. — Let Q ⊂ P be standard parabolic subgroups of G and λ ∈ a
∗,P+
0 .

Then, we have

(2.4.3.15) dQ,λ(x)� dP,λ(x), for x ∈Q(F)\G(A).

2.4.4. Neighborhoods of infinity. — Let P⊂Q be standard parabolic subgroups of G
and �Q

P be the set of roots of A0 in nP/nQ. We define the following weights:

(2.4.4.16) d
Q
P (x)= min

α∈�Q
P

dP,α(x), x ∈ [G]P,

and

(2.4.4.17) dP
Q(x)= min

α∈�Q
P

dQ,α(x), x ∈ [G]Q.

Since for every β ∈�Q
P , there exist a family of nonnegative integers (nα)α∈�Q

0 \�P
0
, not all

zero, such that
∑
α∈�Q

0 \�P
0

nαα ≺P β , we see that there exists n> 0 such that

(2.4.4.18) d
Q
P (x)� min

α∈�Q
0 \�P

0

dP,α(x)�max(dQ
P (x), d

Q
P (x)

1/n), for x ∈ [G]P.

For every C> 0, we set

ω
Q
P [>C] := {x ∈ P(F)NQ(A)\G(A) | dQ

P (x) >C}.

Let πQ
P and πP

Q be the two natural projections

P(F)NQ(A)\G(A)

π
Q
P

πP
Q

[G]P [G]Q

The next lemma summarizes some classical results from reduction theory.

Lemma 2.4.4.1.

1. There exists ε > 0 such that πP
Q sends ω

Q
P [> ε] onto [G]Q.

2. Let ε > 0. Then, for every λ ∈ a∗0 we have dP,λ(x) ∼ dQ,λ(x) for x ∈ ωQ
P [> ε]. In

particular,

d
Q
P (x)∼ dP

Q(x) and ‖x‖P ∼ ‖x‖Q, for x ∈ ωQ
P [> ε].
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3. For every ε > 0, the restriction of πP
Q to ω

Q
P [> ε] has uniformly bounded fibers. More

precisely, there exist c> 0 and r > 0 such that for every x ∈ [G]Q and 1 � ε > 0, we have

#((πP
Q)
−1(x)∩ωQ

P [> ε])� cε−r

4. For every ε > 0, we can find C > 0 such that for all (x, y) ∈ ωQ
P [> ε] × ωQ

P [> C],
πP

Q(x)= πP
Q(y) implies x= y.

5. The map πP
Q is a local homeomorphism which locally preserves measures. The map π

Q
P is

proper and the pushforward of the invariant measure on P(F)NQ(A)\G(A) by it is the

invariant measure on [G]P.

Proof. — 1. is just the existence of Siegel domains noting that if sQ and sP are Siegel
domains as in Section 2.2.13 for [G]Q and [G]P respectively, there exists ε > 0 such that
the inverse image of ωQ

P [> ε] in sP contains sQ. Similarly, for any ε > 0, this inverse image
is contained in another, perhaps bigger, Siegel domain s′Q for [G]Q and this immediately
gives 2. (where for the last equivalence we have used (2.4.3.13)). Properties 3. and 4. are
Lemma 2.11 and Lemma 2.12 of [Lan76] respectively. Finally, 5. is clear. �

Note that, from points 1. and 2. of the above lemma, we immediately deduce that

(2.4.4.19) d
Q
P (x)� dP

Q(x), for x ∈ P(F)NQ(A)\G(A).
Lemma 2.4.4.2. — Let H⊂G be a reductive subgroup such that PH = P ∩H and QH =

Q ∩H are parabolic subgroups of H with unipotent radicals NPH =NP ∩H and NQH =NQ ∩H
respectively. Then, we have

(2.4.4.20) d
Q
P (h)� d

QH
PH
(h), for h ∈ [H]PH .

If moreover, G= ResK/F HK, P= ResK/F(PH)K and Q= ResK/F(QH)K for some finite extension

K/F, then

(2.4.4.21) d
Q
P (h)∼ d

QH
PH
(h), for h ∈ [H]PH .

Proof. — Let A0,H ⊂ PH be a maximal split torus. Up to conjugation by P(F), we
may assume that A0,H ⊂ A0. By the existence of Siegel domains, and since d

Q
P , d

QH
PH

are
weights, we just need to show (2.4.4.20) for x= a ∈ A∞

0,H. Since�Q
P and�QH

PH
are invariant

by the Weyl groups WP =NormMP(F)(A0)/M0(F) and WPH respectively, by (2.4.3.12), we
have

(2.4.4.22)

d
Q
P (a)∼ min

α∈�Q
P

exp(〈α,H0(a)〉) and

d
QH
PH
(a)∼ min

α∈�QH
PH

exp(〈α,H0(a)〉), for a ∈ A∞
0,H.
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By the assumption, we have nPH/nQH ⊂ nP/nQ so that the restriction of �Q
P to A0,H con-

tains �QH
PH

. With (2.4.4.22), this gives the inequality (2.4.4.20). We can deduce (2.4.4.21)
similarly noting that, in the case where G = ResK/F HK, P = ResK/F(PH)K and Q =
ResK/F(QH)K, the restriction of �Q

P to A0,H is equal to �
QH
PH

. �

2.4.5. Xi function. — Let U ⊆G(A) be a compact neighborhood of 1. We set

�P(x)= vol[G]P(xU)−1/2, x ∈ [G]P.
Replacing U by another compact neighborhood of 1 would yield an equivalent function
which is why we dropped the subset U from the notation. We have

(2.4.5.23) �P(x)∼ dP,ρ0(x), for x ∈ [G]P.
Indeed, there exists ε > 0 such that, with the notation of Section 2.4.4, P0(F)NP(A)sPU ⊂
ωP

P0
[> ε]. Thus, by Lemma 2.4.4.1 3. and 5., we have

vol[G]P(gU)∼ volP0(F)NP(A)\G(A)(gU), for g ∈ sP.

On the other hand, there exists a compact neighborhood U ′ of 1 in G(A) such that

P0(F)N0(A)gU ⊆ P0(F)NP(A)gU ′ for every g ∈ sP.

By Lemma 2.4.4.1 5., this gives

vol[G]P0
(gU)= volP0(F)\G(A)(N0(A)gU)∼ volP0(F)NP(A)\G(A)(gU), for g ∈ sP.

Finally, as the left action of A∞
0 multiplies the invariant measure on [G]P0 by the inverse

modular character δ−1
P0

, we obtain

vol[G]P(gU)∼ vol[G]P0
(gU)∼ exp(−〈2ρ0,H0(g)〉) for g ∈ sP

which is another way to state (2.4.5.23).
By [Lap13, §2, (9)], we also have4

(2.4.5.24) There exists d0 > 0 such that
∫
[G]P
�P(g)2σP(g)

−d0dg <∞;

From (2.4.5.23), we also deduce the existence of N0 � 1 such that

(2.4.5.25) �P(g)�‖g‖N0
P , g ∈ [G]P.

4 Note that the definition of the � function in loc. cit. coincides, up to equivalence, with ours by (2.4.5.23).
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2.5. Spaces of functions

2.5.1. Let V be a Fréchet space. We say of a function f : G(A)→ V that it
is smooth if it is right invariant by a compact-open subgroup J of G(Af ) and for every
gf ∈ G(Af ) the function g∞ ∈ G(F∞) �→ f (gf g∞) ∈ V is C∞. This definition applies in
particular for V= C and, for P⊂G a parabolic subgroup, we denote by C∞([G]P) the
space of smooth complex-valued functions on [G]P.

We also denote by Cc([G]P) (resp. L1
loc([G]P)) the spaces of complex-valued contin-

uous compactly supported (resp. locally integrable) functions on [G]P.

2.5.2. Let C be a compact subset of G(Af ) and let J⊂K∞ be a compact-open
subgroup. Let S(G(A),C, J) be the space of smooth functions f :G(A)→ C which are
biinvariant by J, supported in the subset G(F∞)×C and such that the semi-norms

‖f ‖r,X,Y = sup
g∈G(A)

‖g‖r|(R(X)L(Y)f )(g)|

are finite for every integer r � 1 and X,Y ∈ U(g∞). This family of semi-norms defines
a topology on S(G(A),C, J) making it into a Fréchet space. The global Schwartz space

S(G(A)) is the locally convex topological direct limit over all pairs (C, J) of the spaces
S(G(A),C, J). It is a strict LF space. Moreover, the Schwartz space S(G(A)) is an algebra
for the convolution product denoted by ∗. It contains the dense subspace C∞

c (G(A)) of
smooth and compactly supported functions. For an integer r � 0, we will also consider the
space Cr

c(G(A)) generated by products f∞f ∞ where f∞ is a compactly supported function
on G(F⊗Q R) which admits derivatives up to the order r and f ∞ is a smooth compactly
supported function on G(Af ).

For every integer n � 1, we define similarly the global Schwartz space S(An) using
the norm ‖.‖An (see Section 2.4.2).

2.5.3. In order to organize in some uniform way the different spaces of func-
tions that we are about to define, we now introduce, mostly following the terminology
of [BK14], some nice categories of complex linear representations of G(A). Recall from
[BK14, §2.3] that a Fréchet representation V of G(F∞) is said to be a F-representation

if there exists a family of semi-norms (‖.‖V,n)n defining the topology of V such that the
G(F∞)-action is continuous with respect to each of them. Moreover, a F-representation V
of G(F∞) is called a SF-representation if for every vector v ∈V, the map g ∈G(F∞) �→ g ·v is
smooth (that is C∞) and for every X ∈ U(g∞), the resulting linear operator v ∈V �→X ·v
is continuous (cf. [BK14, §2.4.3]).

In a similar fashion, we say that a representation of G(A) on a Fréchet space V is
a F-representation if there exists a family of semi-norms (‖.‖V,n)n defining the topology of V
such that the G(A)-action is continuous with respect to each of them. In particular, con-
tinuous representations of G(A) on Banach spaces are automatically F-representations.
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Let V be a F-representation of G(A). A vector v ∈ V is smooth if the orbit map
g ∈ G(A) �→ g · v is smooth. We denote by V∞ the subspace of smooth vectors. It is
a G(A)-invariant subspace and for every compact-open subgroup J ⊆ G(Af ), we equip
the subspace (V∞)J of J-fixed vectors with the topology associated to the semi-norms
v �→ ‖Xv‖V where ‖.‖V runs over a family of semi-norms defining the topology of V,
X runs over (a basis of) U(g∞) and Xv := R(X)(g∞ �→ g∞v)|g∞=1. With this topology,
(V∞)J becomes a Fréchet space and even a SF representation of G(F∞) in the sense
recalled above. Moreover, the inclusions (V∞)J ⊂ (V∞)J′ for J′ ⊆ J ⊆ G(Af ) are closed
embeddings and so V∞ =⋃

J(V
∞)J has a structure of strict LF space.

For every v ∈V and f ∈ S(G(A)), the integral

(2.5.3.1) f · v =
∫

G(A)
f (g)g · vdg

converges in V and this defines an action of the algebra (S(G(A)),∗) on V. Moreover,
by the Dixmier-Malliavin theorem [DM78], we have

(2.5.3.2) V∞ = S(G(A)) ·V
where the right-hand side stands for the set of finite linear combinations

∑
i fi · vi with

vi ∈V and fi ∈ S(G(A)).

2.5.4. In this paper, by a SLF representation of G(A) we mean a C-vector space V
equipped with a linear action of G(A) and, for every compact-open subgroup J⊆G(Af ),
the structure of a Fréchet space on VJ such that the following conditions are satisfied:

• For every J⊆G(Af ), VJ is a SF representation of G(F∞) in the sense of [BK14,
§2.4.3];

• V =⋃
J VJ where J runs over all compact-open subgroups of G(Af ) (i.e. the

action of G(Af ) on V is smooth);
• For every J′ ⊆ J⊆G(Af ), the inclusion VJ ⊆VJ′ is a closed embedding.

By the second and third points above, a SLF representation of G(A) has a natural struc-
ture of strict LF space. If V is a F-representation of G(A), the subspace of smooth vectors
V∞ has a natural structure of SLF representation of G(A) by the previous paragraph.
Most of the function spaces that we are going to introduce carry natural structures of F-
or SLF representations of G(A).

Let V be a SLF representation of G(A). Then, (2.5.3.1) still defines an action of
(S(G(A)),∗) on V and the equality (2.5.3.2) holds with V instead of V∞.

The following lemma implies, by the open mapping theorem for LF spaces, that
equivariant morphisms of SLF representations with closed image are necessarily topo-
logical embeddings.
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Lemma 2.5.4.1. — Let V be a SLF representation of G(A) and W⊂V be a closed G(A)-
invariant subspace. Then, equipping WJ with the topology induced from VJ for every compact-open

subgroup J⊆G(Af ) gives W the structure of a SLF representation of G(A) and the corresponding LF

topology on W (given as the locally convex direct limit of the topologies on the WJ’s) coincides with the

topology induced from V.

Proof. — It is immediate that W is a SLF representation of G(A) (as a closed in-
variant subspace of a SF representation is itself a SF representation). On the other hand,
to check that the LF topology on W is induced from V, it suffices to notice the decompo-
sitions

V=
⊕
ρ∈K̂f

Vρ, W=
⊕
ρ∈K̂f

Wρ

where K̂f denotes the set of isomorphism classes of smooth irreducible representations of
Kf and for δ ∈ K̂f , Vρ and Wρ stand for the corresponding isotypical subspaces. Indeed,
Vρ and Wρ have structures of Fréchet spaces (these are closed subspaces of VJ and WJ for
some compact-open subgroup J⊂G(Af ) respectively) and these decompositions identify
the LF spaces V, W with the topological direct sums of the families (Vρ)ρ∈K̂f

, (Wρ)ρ∈K̂f

respectively: this is because for every ρ, Vρ maps continuously into some VJ and con-
versely for every J, VJ maps continuously into Vρ1 ⊕ · · · ⊕Vρn

where ρ1, . . . , ρn are the,
finitely many, irreducible representations of Kf with a nonzero J-fixed vector (and simi-
larly for W). Therefore, the end of the lemma is a consequence of the following general
property of topological direct sums:

(2.5.4.3) Let (Vi)i∈I be a family of locally convex topological vector spaces and for each
i ∈ I, let Wi be a subspace of Vi equipped with the induced topology. Then, the
locally convex topological direct sum

⊕
i∈I Vi induces on its subspace

⊕
i∈I Wi

the locally convex direct sum topology. �

2.5.5. Let P be a semi-standard parabolic subgroup of G. We denote by L2([G]P)
the space of L2-measurable functions on [G]P. It is a Hilbert space when equipped with
the scalar product

〈ϕ1, ϕ2〉P =
∫
[G]P
ϕ1(g)ϕ2(g)dg

associated to the Tamagawa invariant measure on [G]P. We denote similarly by
L2([G]P,0) the Hilbert space of measurable functions ϕ on [G]P satisfying ϕ(ag) =
δP(a)

1/2ϕ(g) for almost all a ∈ A∞
P and such that

∫
[G]P,0

|ϕ(g)|2dg is convergent.

More generally, if w is a weight on [G]P, we write L2
w([G]P) for the Hilbert space

of functions that are square-integrable with respect to the measure w(g)dg. This space is



212 RAPHAËL BEUZART-PLESSIS, PIERRE-HENRI CHAUDOUARD, AND MICHAŁ ZYDOR

equipped with a continuous (non-unitary) representation of G(A) by right-translation. Its
subspace L2

w([G]P)∞ of smooth vectors consists of smooth functions ϕ : [G]P → C such
that R(X)ϕ ∈ L2

w([G]P) for every X ∈ U(g∞). By the Sobolev inequality, see [Ber88, §3.4,
Key Lemma], for every ϕ ∈ L2

w([G]P)∞ we have

(2.5.5.4) |ϕ(g)| ��P(g)w(g)−1/2, g ∈ [G]P.
Moreover, from Riesz representation theorem, we have:

(2.5.5.5) For every continuous linear form T ∈ (L2
w([G]P)∞)′ and f ∈ S(G(A)),

there exists ϕ ∈ L2
w−1([G]P)∞ such that T(R(f )ψ) = 〈ψ,ϕ〉P for every ψ ∈

L2
w([G]P).

To save some space, for N ∈R, d � 0 and any weight w on [G]P, we will adopt the
following notation

L2
N,w([G]P)= L2

‖.‖N
Pw
([G]P) and L2

σ,d,w([G]P)= L2
σ d

Pw
([G]P).

Moreover, for w = 1 we will simply drop the index w. The following result is a conse-
quence of [Ber88, Theorem p. 688] as the composition of two Hilbert-Schmidt operators
is nuclear.

Proposition 2.5.5.1. — There exists d0 � 0 such that for every compact-open subgroup J ⊂
G(Af ) and every weight w on [G]P the inclusion of Fréchet spaces

L2
σ,d0,w

([G]P)∞,J ⊂ L2
w([G]P)∞,J

is nuclear. In particular, any summable family in L2
σ,d0,w

([G]P)∞,J becomes absolutely summable in

L2
w([G]P)∞,J (see Lemma A.0.6.1).

2.5.6. We let S0([G]P) be the space of measurable complex-valued functions ϕ
on [G]P such that

‖ϕ‖∞,N = sup
x∈[G]P

‖x‖N
P |ϕ(x)|<∞

for every N> 0. We equip S0([G]P) with the topology associated to the family of semi-
norms (‖.‖∞,N)N>0. It is a Fréchet space. Note that S0([G]P) is not a F-representation of
G(A) (because the action by right translation is not continuous) but the closed subspace
S00([G]P)⊂ S0([G]P) of continuous functions is so.

2.5.7. The Schwartz space S([G]P) of [G]P is defined as the space of smooth func-
tions ϕ : [G]P →C such that for every N> 0 and X ∈ U(g∞) we have

‖ϕ‖∞,N,X = sup
x∈[G]P

‖x‖N
P |(R(X)ϕ)(x)|<∞.
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Then, S([G]P) is a SLF representation of G(A) which is equal to S00([G]P)∞. Moreover,
for every weight w on [G]P, S([G]P) is dense in L2

w([G]P)∞ (as S00([G]P) is dense in
L2
w([G]P)). From (2.5.5.4) and the open mapping theorem, we have an equality of SLF

representations (where the right-hand side is equipped with the locally convex projective
limit topology)

(2.5.7.6) S([G]P)=
⋂
N>0

L2
N([G]P)∞.

2.5.8. The Harish-Chandra Schwartz space C([G]P) of [G]P is defined as the space
of smooth functions ϕ : [G]P →C such that for every d > 0 and X ∈ U(g∞) we have

‖ϕ‖∞,d,σ,X = sup
x∈[G]P

�P(x)−1σP(x)
d |(R(X)ϕ)(x)|<∞.

For J a compact-open subgroup of G(Af ), we equip C([G]P)J with the topology induced
from the family of semi-norms (‖.‖∞,d,σ,X)d,X. This makes C([G]P) into a SLF represen-
tation of G(A) when equipped with the action by right translation. The Schwartz space
S([G]P) is dense in C([G]P). Moreover, by (2.5.5.4), we have the alternative description

(2.5.8.7) C([G]P)=
⋂
d>0

L2
σ,d([G]P)∞.

2.5.9. For every weight w on [G]P, we let T 0
w ([G]P) be the space of complex

Radon measure ϕ on [G]P such that

‖ϕ‖1,w−1 =
∫
[G]P
w(x)−1|ϕ(x)|<∞.

We equip T 0
w ([G]P) with the topology associated to the norm ‖.‖1,w−1 . It is a continuous

Banach representation of G(A). For N> 0, we write T 0
N ([G]P) for T 0

‖.‖N
P
([G]P) and we set

T 0([G]P)=
⋃
N>0

T 0
N ([G]P).

We equip this space with the corresponding (non-strict) LF topology. We have a sesquilin-
ear pairing

(ϕ,ψ) ∈ T 0([G]P)× S0([G]P) �→ 〈ϕ,ψ〉P =
∫
[G]P
ψ(x)ϕ(x)

which identifies T 0([G]P) with the topological dual of S00([G]P).
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2.5.10. For every weight w on [G]P, we define Tw([G]P) as the space of smooth
functions ϕ : [G]P →C such that for every X ∈ U(g∞) we have

‖ϕ‖∞,w−1,X = sup
x∈[G]P

w(x)−1|(R(X)ϕ)(x)|<∞.

We equip Tw([G]P)J, for J a compact-open subgroup of G(Af ), with the topology induced
from the family of semi-norms (‖.‖∞,w−1,X)X. This makes Tw([G]P) a SLF representation
of G(A). For N> 0, we write TN([G]P) and Tw,N([G]P) for T‖.‖N

P
([G]P) and Tw‖.‖N

P
([G]P)

respectively.
The space of functions of uniform moderate growth on [G]P is defined as

T ([G]P)=
⋃
N>0

TN([G]P).

We equip this space with the corresponding (non-strict) LF topology. The Schwartz space
S([G]P) is dense in T ([G]P) but we warn the reader that usually S([G]P) is not dense in
TN([G]P) (unless [G]P is compact). By (2.5.5.4), we have the alternative descriptions (as a
LF space)

(2.5.10.8) T ([G]P)=
⋃
N>0

L2
−N([G]P)∞ =

⋃
N>0

T 0
N ([G]P)∞.

2.5.11. More generally, for a weight w on [G]P and N> 0, we define Sw,N([G]P)
as the space of smooth functions ϕ : [G]P →C such that for every r � 0 and X ∈ U(g∞)
we have

‖ϕ‖∞,−N,wr ,X = sup
x∈[G]P

‖x‖−N
P w(x)

r|(R(X)ϕ)(x)|<∞.

We equip Sw,N([G]P)J, for J a compact-open subgroup of G(Af ), with the topology in-
duced from the family of semi-norms (‖.‖∞,−N,wr ,X)X,r�0 and this makes Sw,N([G]P) into
a SLF representation of G(A). We set

Sw([G]P)=
⋃
N>0

Sw,N([G]P)

and we equip this space with the corresponding (non-strict) LF topology. Once again,
S([G]P) is dense in Sw([G]P) but in general not in Sw,N([G]P). Moreover, by (2.5.5.4),
we have the alternative description (as a LF space)

(2.5.11.9) Sw([G]P)=
⋃
N>0

⋂
r�0

L2
−N,wr ([G]P)∞.

We note the following lemma.
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Lemma 2.5.11.1. — Let ϕ ∈ T 0([G]P). If w is bounded from above on the support of ϕ,

then R(f )ϕ ∈ Sw([G]P) for every f ∈ S(G(A)).

Proof. — Indeed, if w is bounded from above on the support of ϕ, then, as w is
a weight, it is also bounded from above on the support of R(f )ϕ for f ∈ C∞

c (G(A)).
As R(f )ϕ ∈ T ([G]P), it readily follows that R(C∞

c (G(A)))ϕ ⊂ Sw([G]P). Moreover, by
Dixmier-Malliavin we have S(G(A))= S(G(A)) ∗C∞

c (G(A)) and Sw([G]P) is stable by
right convolution by S(G(A)). The lemma follows. �

2.5.12. By [Ber88, end of Section 3.5] (see also [Cas89b, Corollary 2.6]) we have

(2.5.12.10) For every compact-open subgroup J⊂ G(Af ), the Fréchet spaces S([G]P)J
and C([G]P)J are nuclear.

Assume that G=G1 ×G2 where G1 and G2 are two connected reductive groups
over F. Let J1 ⊂G1(Af ), J2 ⊆G2(Af ) be two compact open subgroups and set J= J1× J2.
By (2.5.12.10), (A.0.7.8) and a reasoning similar to (the proof of) [BP20, Proposition 4.4.1
(v)] we obtain:

(2.5.12.11) There are topological isomorphisms

S([G1])J1⊗̂S([G2])J2 � S([G])J and C([G1])J1⊗̂C([G2])J2 � C([G])J

sending a pure tensor ϕ1 ⊗ ϕ2 to the function (g1, g2) �→ ϕ1(g1)ϕ2(g2).

By the above, given two continuous linear forms L1, L2 on C([G1]), C([G2]) respectively,
the linear form L1 ⊗ L2 on C([G1])⊗ C([G2]) extends by continuity to a linear form on
C([G]) that we shall denote by L1⊗̂L2.

2.5.13. Constant terms and pseudo-Eisenstein series. — Let Q⊃ P be another standard
parabolic subgroup. We have two continuous G(A)-equivariant linear maps

S0([G]P)→ S0([G]Q), ϕ �→ EQ
P (ϕ) and

T 0([G]Q)→ T 0([G]P), ϕ �→ ϕP

defined as the following compositions of pullbacks and pushforwards

EQ
P (ϕ)= πP

Q∗π
Q∗
P (ϕ), ϕP = πQ

P∗π
P∗
Q (ϕ)

where πP
Q and πQ

P are as in Section 2.4.4. More concretely, we have

EQ
P (ϕ, x)=

∑
γ∈P(F)\Q(F)

ϕ(γ x), for ϕ ∈ S0([G]P) and x ∈ [G]Q
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whereas the map ϕ �→ ϕP sends T ([G]Q) into T ([G]P) and is given on this subspace by
the familiar formula

ϕP(x)=
∫
[NP]
ϕ(ux)du, for ϕ ∈ T ([G]Q) and x ∈ [G]P.

The pseudo-Eisenstein map ϕ �→ EQ
P (ϕ) sends S([G]P) continuously into S([G]Q) and

the constant term map ϕ �→ ϕP sends TN([G]Q) continuously into TN([G]P) for every
N> 0 (as follows from (2.4.1.2)). We also have the adjunction

(2.5.13.12) 〈ϕP,ψ〉P = 〈ϕ,EQ
P (ψ)〉Q for ϕ ∈ T 0([G]Q), ψ ∈ S0([G]P).

Lemma 2.5.13.1. — There is a constant c> 0 such that for every N � 0,

ϕ �→ sup
x∈[G]P

δ
Q
P (x)

cN‖x‖N
P |ϕP(x)|

is a continuous semi-norm on S0([G]Q).
Proof. — Indeed, this follows from Corollary 2.4.3.3 and (2.4.3.13) noting that for

every λ ∈ a
∗,P+
0 there exists c> 0 such that λ+ 2cρ

Q
P ∈ a

∗,Q+
0 . �

2.5.14. Approximation by the constant term. — Recall that in Section 2.4.4, we have
introduced a weight d

Q
P on [G]P. The next proposition is a reformulation of the well-

known approximation property of the constant term (see [MW89, Lemma I.2.10]).

Proposition 2.5.14.1.

1. Let N> 0, r � 0 and X ∈ U(g∞). Then, there exists a continuous semi-norm ‖.‖N,X,r on

TN([G]Q) such that

(2.5.14.13) |R(X)ϕ(x)−R(X)ϕP(x)|� ‖x‖N
P d

Q
P (x)

−r‖ϕ‖N,X,r

for ϕ ∈ TN([G]Q) and x ∈ P(F)NQ(A)\G(A).
2. Let w be a weight on [G]Q and ϕ ∈ L2

w([G]Q)∞. Then, there exists N> 0 such that for

every r � 0, we have

(2.5.14.14)
∫

A∞Q
|ϕ(ax)− ϕP(ax)|2w(a)δQ(a)

−1da�r ‖x‖N
P d

Q
P (x)

−r

for x ∈ P(F)NQ(A)\G(A).
Proof. — 1. Since ϕ ∈ TN([G]Q) �→ ϕP ∈ TN([G]P) is continuous (as follows from

(2.4.1.2)), there exists at least a continuous semi-norm ‖.‖N,X on TN([G]Q) such that

|R(X)ϕ(x)−R(X)ϕP(x)|� ‖x‖N
P ‖ϕ‖N,X,
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for ϕ ∈ TN([G]Q) and x ∈ P(F)NQ(A)\G(A).

By the above estimate, and with the notation of Section 2.4.4, it suffices to find a contin-
uous semi-norm ‖.‖N,X,r such that (2.5.14.13) is satisfied for x ∈ ωQ

P [> C] where C > 0
is some fixed but arbitrary constant. We can choose C> 0 such that ωQ

P [>C] ⊂ P(F)sQ

and therefore, it suffices to show (2.5.14.13) for x ∈ sQ only.
If P is a maximal parabolic subgroup of Q i.e. �Q

0 \�P
0 = {α} for some root α, the

result is then a direct consequence of [MW89, Lemma I.2.10]. To deduce the general
case, we choose a tower of parabolic subgroups P= P0 ⊂ P1 ⊂ · · · ⊂ Pn =Q with �Pi

0 \
�

Pi−1
0 = {αi} for every 1 � i � n. Then, we have�Q

0 \�P
0 = {α1, . . . , αn} and, for 1 � i � n,

sQ is included in sPi
. Therefore, by [MW89, Lemma I.2.10], for every 1 � i � n, we can

find a continuous semi-norm ‖.‖i,N,X,r on TN([G]Pi
) such that

|R(X)ϕPi
(x)−R(X)ϕPi−1(x)|� ‖x‖N

P exp(−r〈αi,H0(x)〉)‖ϕPi
‖i,N,X,r,

for ϕ ∈ TN([G]Q) and x ∈ sQ.

Then, we get

|R(X)ϕ(x)−R(X)ϕP(x)|�
n∑

i=1

|R(X)ϕPi
(x)−R(X)ϕPi−1(x)|

� ‖x‖N
P max

1�i�n
exp(−r〈αi,H0(x)〉)‖ϕ‖N,X,r

�‖x‖N
P d

Q
P (x)

−r‖ϕ‖N,X,r

for ϕ ∈ TN([G]Q) and x ∈ sQ where ‖ϕ‖N,X,r =∑
i‖ϕPi

‖i,N,X,r is a continuous semi-norm
on TN([G]Q).

2. Let N′ > 0 that we will assume large enough. Then, for some N > 0, we have
continuous inclusions L2

w([G]Q)∞ ⊂ L2
−N′([G]Q)∞ ⊂ TN/2([G]Q). Thus, by 1., for every

r � 0 we can find elements X1, . . . ,Xk ∈ U(g∞) such that

|ψ(x)−ψP(x)|2 � ‖x‖N
P d

Q
P (x)

−r
∑

1�i��

∫
[G]Q
|R(Xi)ψ(y)|2‖y‖−N′

Q dy

for ψ ∈ L2
w([G]Q)∞ and x ∈ P(F)NQ(A)\G(A). Applying this inequality to the function

Laϕ(x)= ϕ(ax) where a ∈ A∞
Q , we are reduced to show the convergence of

∑
1�i�k

∫
[G]Q

∫
A∞Q
|R(Xi)ϕ(ay)|2w(a)δQ(a)

−1da‖y‖−N′
Q dy
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for N′ large enough. After the change of variable y �→ a−1y, and since ϕ ∈ L2
w([G]Q)∞,

this boils down to showing that
∫

A∞Q
w(a)‖a−1y‖−N′

Q da�w(y), for y ∈ [G]Q.

From Lemma 2.4.3.1 (applied to the weight w−1), there exists N0 > 0 such that w(a)�
w(ax)‖x‖N0

Q for (a, x) ∈ A∞
Q ×[G]Q and there exists N1 > 0 such that

∫
A∞Q
‖a−1y‖−N1

Q da� 1

for y ∈ [G]Q. Then, by (2.4.1.6), any N′ � N0 +N1 works. �

2.5.15. The proof of the next result is partly inspired from [Fra98, §4, p. 204].

Proposition 2.5.15.1. — Let P⊂Q be standard parabolic subgroups of G. For every weight

w on [G]Q, there exist weights w−P , w+P on [G]P such that:

• The constant term ϕ �→ ϕP maps L2
w([G]Q) continuously into L2

w−P
([G]P);

• The pseudo-Eisenstein map EQ
P extends to a continuous linear map from L2

w+P
([G]P) into

L2
w([G]Q);

• For every ε > 0, we have w+P (x)∼w(x)∼w−P (x) for x ∈ ωQ
P [> ε].

Proof. — First, we observe that it suffices to prove that for every weight w on [G]Q,
there exists a weight w−P on [G]P such that:

• The constant term ϕ �→ ϕP maps L2
w([G]Q) continuously into L2

w−P
([G]P);

• For every ε > 0, we have w−P (x)∼w(x) for x ∈ ωQ
P [> ε].

Indeed, if it were the case, by the adjunction (2.5.13.12), for every weight w on [G]Q, EQ
P

would extend to a continuous linear map L2
w+P
([G]P)→ L2

w([G]Q) where

w+P =
(
(w−1)−P

)−1

is a weight satisfying, for any given ε > 0,

w+P (x)∼ (w(x)−1)−1 =w(x), for x ∈ ωQ
P [> ε].

Let r > 0 and set

w−P (x)=min(1, dQ
P (x))

r inf
u∈[NP]

w(ux), x ∈ [G]P.

Clearly, w−P is a weight on [G]P and we will check that it has the desired properties
when r is sufficiently large. First, for ε > 0, there exists a compact KN ⊂NP(A) such that
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P(F)NP(A)x⊂ P(F)NQ(A)xKN for every x ∈ ωQ
P [> ε]. As w is a weight, this shows that

w−P (x)∼w(x), for x ∈ ωQ
P [> ε].

On the other hand, for ϕ ∈ L2
w([G]Q) and by the Cauchy-Schwarz inequality we have

∫
[G]P
|ϕP(x)|2w−P (x)dx �

∫
[G]Q
|ϕ(x)|2

∑
γ∈P(F)\Q(F)

w−P (γ x)dx(2.5.15.15)

�
∫
[G]Q
|ϕ(x)|2w(x)

∑
γ∈P(F)\Q(F)

min(1, dQ
P (γ x))rdx.

By Lemma 2.4.4.1 3., if r is sufficiently large we have
∑

γ∈P(F)\Q(F)
min(1, dQ

P (γ x))r � 1, for x ∈ [G]Q.

For such a choice, (2.5.15.15) gives
∫
[G]P
|ϕP(x)|2w−P (x)dx�

∫
[G]Q
|ϕ(x)|2w(x)dx, for ϕ ∈ L2

w([G]Q)

which is exactly saying that the constant term ϕ �→ ϕP maps L2
w([G]Q) continuously into

L2
w−P
([G]P). �

Recall that if w is a weight on [G]Q, we denote by wA its restriction to A∞
Q .

Corollary 2.5.15.2. — Let w and w′ be weights on [G]Q such that wA ∼w′A. Then,

1. If w′ �w, the linear map

(2.5.15.16)
L2
w([G]Q)∞→

∏
P�Q

L2
w−P
([G]P)∞ × L2

w′([G]Q)∞,

ϕ �→ ((ϕP)P, ϕ)

is a closed embedding.

2. Dually, if w′ �w, the linear map

(2.5.15.17)

∏
P�Q

L2
w+P
([G]P)∞ × L2

w′([G]Q)∞→ L2
w([G]Q)∞

(
(ϕP)P, ϕ

) �→ ϕ +
∑
P�Q

EQ
P (ϕ

P)

is an open surjection.
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Proof. — 1. By the open mapping theorem, it suffices to show that the image of
(2.5.15.16) is the closed subspace of tuples ((ϕP)P, ϕ) ∈∏P�Q L2

w−P
([G]P)∞×L2

w′([G]Q)∞
such that ϕP = ϕP for every P � Q. That the image is included in this subspace follows
from Proposition 2.5.15.1. Conversely, let ϕ ∈ L2

w′([G]Q)∞ be such that ϕP ∈ L2
w−P
([G]P)∞

for every P � Q. Then, we need to show that ϕ ∈ L2
w([G]Q) (as, applying the same rea-

soning to the derivatives of ϕ, we can actually deduce ϕ ∈ L2
w([G]Q)∞).

Let G(A)1Q ⊂ G(A) be the inverse image of 0 ∈ aQ by HQ. We equip G(A)1Q
with the unique measure dx such that, through the identification G(A)= A∞

Q ×G(A)1Q,
the invariant measure on G(A) decomposes as dadx. For every x ∈ G(A), we set x1 =
exp(−HQ(x))x ∈G(A)1Q. Let ε > 0. For P � Q, we introduce the set

ω
Q
P,ε = {x ∈ P(F)NQ(A)\G(A) | dQ

P (x) > ‖x1‖εP}.
First we show that

(2.5.15.18)
∫
πP

Q(ω
Q
P,ε )

|ϕ(x)|2w(x)dx<∞.

Indeed, as ωQ
P,ε ⊆ ωQ

P [> C] for some C> 0, by Lemma 2.4.4.1 3. and 5. we can replace
the domain of integration by ωQ

P,ε . Moreover, since ϕP ∈ L2
w−P
([G]P) and w−P (x)∼w(x) for

x ∈ ωQ
P [>C] (cf. Proposition 2.5.15.1), the function x ∈ ωQ

P,ε �→ ϕP(x) is square-integrable
with respect to the measure w(x)dx. Thus, it only remains to show that

∫
ω

Q
P,ε

|ϕ(x)− ϕP(x)|2w(x)dx<∞.

But this follows from Proposition 2.5.14.1 2. as d
Q
P (x) ∼ d

Q
P (x

1) and there exists N > 0

such that
∫

P(F)NQ(A)\G(A)1Q
‖x‖−Ndx converges.

From (2.5.15.18), it only remains to show that x �→ |ϕ(x)|2w(x) is integrable over
the complement

[G]Q \
⋃
P�Q

πP
Q(ω

Q
P,ε).

However, by Lemma 2.4.4.1 2., there exists c> 0 such that this subset is contained in the
set of x ∈ [G]Q such that

dQ,α(x)� c‖x1‖ε

for every α ∈�Q
0 . We readily check that for ε sufficiently small, the resulting domain is

compact modulo A∞
Q . Thus, as ϕ ∈ L2

w′([G]Q) and w′A ∼wA, the claim follows.
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2. Again by the open mapping theorem, it suffices to show that the map (2.5.15.17)
is surjective. But this follows by duality from 1., (2.5.5.5) and the Dixmier-Malliavin the-
orem. �

2.6. Estimates on Fourier coefficients

2.6.1. Let P ⊂ G be a standard parabolic subgroup, ψ : A/F→ C× be a non-
trivial character and VP be the vector space of additive algebraic characters NP → Ga.
Let � ∈ VP(F) and set ψ� := ψ ◦ �A : [NP] → C× where �A denotes the homomorphism
between adelic points NP(A)→ A. For ϕ ∈C∞([G]), we set

ϕNP,ψ�(g)=
∫
[NP]
ϕ(ug)ψ�(u)

−1du, g ∈G(A).

The adjoint action of MP on NP induces one on VP that we denote by Ad∗. We fix a
height ‖.‖VP on VP(A) as in Section 2.4.2.

Lemma 2.6.1.1.

1. There exists c> 0 such that for every N1,N2 � 0,

ϕ �→ sup
m∈MP(A)

‖Ad∗(m−1)�‖N1
VP
‖m‖N2

MP
δP(m)

cN2|ϕNP,ψ�(m)|

is a continuous semi-norm on S([G]).
2. Let N> 0. Then, for every N1 � 0,

ϕ �→ sup
m∈MP(A)

‖Ad∗(m−1)�‖N1
VP
‖m‖−N

MP
|ϕNP,ψ�(m)|

is a continuous semi-norm on TN([G]).
Proof. — Bounding brutally under the integral sign, we have

|ϕNP,ψ�(g)|� |ϕ|P(g)
for ϕ ∈ C∞([G]) and g ∈ G(A). Let N � 0 and J ⊆ G(Af ) be a compact-open sub-
group. By Lemma 2.5.13.1 and (2.4.1.4), it suffices to show the existence of elements
X1, . . . ,Xk ∈ U(g∞) such that

|ϕNP,ψ�(m)|� ‖Ad∗(m−1)�‖−1
VP

∑
i

∣∣(R(Xi)ϕ)NP,ψ�(m)
∣∣(2.6.1.1)

for every ϕ ∈ C∞([G])J and m ∈MP(A). Let u ∈ NP(A). By definition of ‖.‖VP, we just
need to show the existence of X1, . . . ,Xk ∈ U(g∞) such that

|ϕNP,ψ�(m)|� ‖�(Ad(m)u)‖−1
A

∑
i

|(R(Xi)ϕ)NP,ψ�(m)|(2.6.1.2)
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for every ϕ ∈ C∞([G])J and m ∈ MP(A). This last claim is a consequence of the two
following facts whose proofs are elementary and left to the reader:

(2.6.1.3) For every non-Archimedean place v, there exists a constant Cv � 1, with Cv =
1 for almost all v, such that |�(Ad(mv)uv)|v > Cv implies ϕNP,ψ�(m) = 0 for
every ϕ ∈C∞([G])J and m ∈MP(A).

(2.6.1.4) Let v be an Archimedean place and let X ∈ gv be such that uv = eX. Then, we
have (R(X)ϕ)NP,ψ�(m) = dψv(�(Ad(m)u)v)ϕNP,ψ�(m) for all ϕ ∈ C∞([G]) and
m ∈MP(A) where dψv : Fv→ iR is the differential of ψv at the origin. �

2.6.2. Let n � 1 be a positive integer. We let GLn acts on Fn by right multipli-
cation and we denote by en = (0, . . . ,0,1) the last element of the standard basis of Fn.
We also denote by Pn the mirabolic subgroup of GLn, that is the stabilizer of en in GLn.
We identify AGLn

with Gm, and thus A∞
GLn

with R>0, in the usual way. The next lemma
will be used in conjunction with Lemma 2.6.1.1 to show the convergence of various Zeta
integrals.

Lemma 2.6.2.1. — Let C> 1. Then, for N1 �C 1 and N2 �C 1 the integral

∫
Pn(F)\GLn(A)×R>0

‖ag‖−N1
GLn
‖eng‖−N2

An |det g|sdadg

converges for s ∈H]1,C[ uniformly on every (closed) vertical strip.

Proof. — The integral of the lemma can be rewritten as

(2.6.2.5)
∫
[GLn]

‖g‖−N1
GLn

∫
R>0

∑
ξ∈Fn\{0}

‖ξag‖−N2
An |det ag|sdadg.

There exists N3 > 0 such that ‖v‖An �‖vg‖N3
An ‖g‖N3 for (v, g) ∈ An×GLn(A). Therefore,

the inner integral above is essentially bounded by

|det g|
(s)‖g‖N2

∫
R>0

∑
ξ∈Fn\{0}

‖aξ‖−N2/N3
An |a|n
(s)da

hence, for 1<
(s) <C, by

‖g‖N2+N4

∫
R>0

∑
ξ∈Fn\{0}

‖aξ‖−N2/N3
An |a|n
(s)da

for some N4 > 0. However, since the inner integral in (2.6.2.5) is left invariant by GLn(F),
as a function of g, we may replace ‖g‖ in the estimate above by ‖g‖GLn

. As for N� 1 we
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have ∫
[GLn]

‖g‖−N
GLn

dg <∞

[BP21a, Proposition A.1.1 (vi)], it only remains to show that for N� 1 the integral
∫

R>0

∑
ξ∈Fn\{0}

‖aξ‖−N
An |a|nsda

converges for 1 < 
(s) < C uniformly in vertical strips. This is a consequence of the
following claim:

(2.6.2.6) For every k � n, if N is sufficiently large we have
∑

ξ∈Fn\{0}
‖aξ‖−N

An � |a|−k, a ∈R>0.

Indeed, we have

|a| = max
1�i�n

(|aξi|)�‖aξ‖An

for (a, ξ) ∈ R>0 × (Fn \ {0}). Therefore, we just need to prove (2.6.2.6) when k = n. Let
C⊂ An be a compact subset which surjects onto An/Fn. We have

‖aξ + av‖An �‖aξ‖An max(1, |a|), max(1, |a|)�‖aξ‖An

for (a, ξ, v) ∈R>0 × (Fn \ {0})×C. Hence,

∑
ξ∈Fn\{0}

‖aξ‖−N
An �

∫
C

∑
ξ∈Fn\{0}

‖aξ + av‖−N/2
An dv

�
∫

An/Fn

∑
ξ∈Fn

‖aξ + av‖−N/2
An dv = |a|−n

∫
An

‖v‖−N/2
An dv

for a ∈R>0. The last integral above is absolutely convergent when N� 1 [BP21a, Propo-
sition A.1.1 (vi)] and the claim (2.6.2.6) follows. �

2.7. Automorphic forms and representations

2.7.1. Let P be a standard parabolic subgroup of G. We define the space AP(G)
of automorphic forms on [G]P as the subspace of Z(g∞)-finite functions in T ([G]P). We
let AP,cusp(G) (resp. AP,disc(G)) be the subspace of cuspidal (resp. square-integrable) au-
tomorphic forms i.e. the space of forms ϕ ∈ AP(G) such that ϕQ = 0 for every proper
parabolic subgroup Q � P (resp. such that |ϕ| ∈ L2([G]P,0)).
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For J ⊂ Z(g∞) an ideal of finite codimension, we denote by AP,J (G) the sub-
space of automorphic forms ϕ ∈ AP(G) such that R(z)ϕ = 0 for every z ∈ J and we
set

AP,cusp,J (G)=AP,J (G)∩AP,cusp(G),

AP,disc,J (G)=AP,J (G)∩AP,disc(G).

There exists N � 1 such that AP,J (G) is a closed subspace of TN([G]P) and we equip
AP,J (G) with the induced topology from TN([G]P). This topology does not depend
on the choice of N by Lemma 2.5.4.1 and the open mapping theorem. The subspaces
AP,cusp,J (G) and AP,disc,J (G) of AP,J (G) are closed and we equip them with the induced
topologies. Then, by Lemma 2.5.4.1, AP,cusp,J (G), AP,disc,J (G) and AP,J (G) are all SLF
representations of G(A) (in the sense of Section 2.5.4) for the action by right translation.

For convenience, we also endow AP(G) = ⋃
J AP,J (G), AP,cusp(G) =⋃

J AP,cusp,J (G) and AP,disc(G) =⋃
J AP,disc,J (G) with the corresponding locally con-

vex direct limit topologies. These spaces are not LF because the poset of ideals of finite
codimension in Z(g∞) does not admit a countable cofinal subset. However, for every
maximal ideal m⊂Z(g∞), the subspaces

AP(G)m =
⋃

n

AP,mn(G), AP,cusp(G)m =
⋃

n

AP,cusp,mn(G) and

AP,disc(G)m =
⋃

n

AP,disc,mn(G)

are strict LF spaces and we have decompositions as locally convex topological direct sums

AP(G)=
⊕
m

AP(G)m, AP,cusp(G)=
⊕
m

AP,cusp(G)m,

AP,disc(G)=
⊕
m

AP,disc(G)m

where m runs over all maximal ideals of Z(g∞).
For P=G, we simply set A(G)=AG(G), Adisc(G)=AG,disc(G) and Acusp(G)=

AG,cusp(G).

2.7.2. By a cuspidal (resp. discrete) automorphic representation π of MP(A) we mean a
topologically irreducible subrepresentation of Acusp(MP) (resp. Adisc(MP)). Let π be a cus-
pidal or discrete automorphic representation of MP(A). We endow π with the topology
induced from Acusp(MP) or Adisc(MP). With this topology, it becomes a SLF represen-
tation of MP(A). Moreover, for every compact-open subgroup J ⊂ G(Af ), the subspace
π

J
(K∞) of J-fixed and K∞-finite vectors is a Harish-Chandra (g∞,K∞)-module whose
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smooth Fréchet globalization of moderate growth (which is unique by the Casselman-
Wallach globalization theorem [Cas89a], [Wal92, Chapter 11], [BK14]) is isomorphic to
π J (the subspace of J-fixed vectors).

For every λ ∈ a∗P,C, we define the twist πλ = π ⊗ λ as the space of functions of the
form

m ∈ [MP] �→ exp(〈λ,HP(m)〉)ϕ(m), for ϕ ∈ π.
If π is cuspidal (resp. discrete and λ ∈ ia∗P), πλ is again a cuspidal (resp. discrete) automor-
phic representation.

We denote by Aπ,cusp(MP) (resp. Aπ,disc(MP)) the π -isotypic component of
Acusp(MP) (resp. Adisc(MP)) i.e. the sum of all cuspidal (resp. discrete) automorphic repre-
sentations of MP(A) that are isomorphic to π . Let �= IndG(A)

P(A) (π) (resp. AP,π,cusp(G)=
IndG(A)

P(A) (Aπ,cusp(MP)), AP,π,disc(G) = IndG(A)
P(A) (Aπ,disc(MP))) be the normalized smooth in-

duction of π (resp. Aπ,cusp(MP), Aπ,disc(MP)) that we identify with the space of forms
ϕ ∈AP(G) such that

m ∈ [MP] �→ exp(−〈ρP,HP(m)〉)ϕ(mg)

belongs to π (resp. Aπ,cusp(MP), Aπ,disc(MP)) for every g ∈ G(A). Then, � and
AP,π,cusp(G) (resp. AP,π,disc(G)) are closed subspaces of AP,cusp(G) (resp. AP,disc(G)) if π is
cuspidal (resp. discrete) and with the induced topologies these become SLF representa-
tions of G(A). In particular, the algebra S(G(A)) acts on AP,π,cusp(G) (resp. AP,π,disc(G))
by right convolution. When the context is clear (that is when the automorphic represen-
tation π is fixed), for every λ ∈ a∗P,C, we will denote by I(λ) the action on AP,π,cusp(G)
we get by transport from the action of S(G(A)) on AP,πλ,cusp and the identification
AP,π,cusp → AP,πλ,cusp given by ϕ �→ exp(〈λ,HP(.)〉)ϕ. In the same way, we get an ac-
tion on AP,π,disc(G) also denoted by I(λ).

If the central character of π is unitary, we equip �= IndG(A)
P(A) (π) and AP,π,cusp(G)

(resp. AP,π,disc(G)) with the Petersson inner product

‖ϕ‖2
Pet = 〈ϕ,ϕ〉Pet =

∫
[G]P,0

|ϕ(g)|2dg, ϕ ∈�.

2.7.3. Eisenstein series. — Let P be a standard parabolic subgroup of G. For every
ϕ ∈AP,disc(G), g ∈G(A) and λ ∈ a∗P,C, we denote by

E(g, ϕ,λ)=
∑

δ∈P(F)\G(F)
exp(〈λ,HP(δg)〉ϕ(δg)

the corresponding Eisenstein series which is absolutely convergent for 
(λ) in a suitable
cone. By [Lan76], [BL19] it admits a meromorphic continuation to a∗P,C whenever ϕ is
K∞-finite and this still holds without this assumption by [Lap08]. Let π be a discrete
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automorphic representation of MP(A) and �= IndG(A)
P(A) (π)⊆AP,disc(G) be the induced

representation of G(A). Then, for λ ∈ a∗P,C where E(ϕ,λ) is regular for every ϕ ∈ �,
ϕ �→ E(ϕ,λ) induces a continuous linear map �→ T ([G]) by [Lap08, Theorem 2.2]
that actually factors through TN([G]) for some N> 0 giving a map �→ TN([G]) that is
also continuous (by the closed graph theorem).

2.7.4. Let P and Q be standard parabolic subgroups of G. For any w ∈W(P,Q)
and λ ∈ a∗P,C, we have the intertwining operator

M(w,λ) :AP,disc(G)→AQ,disc(G)

defined by analytic continuation from the integral

(M(w,λ)ϕ)(g)= exp(−〈wλ,HP(g)〉)

×
∫
(NQ∩wNPw−1)(A)\NQ(A)

exp(〈λ,HP(w
−1ng)〉)ϕ(w−1ng) dn.

Once again, the K∞-finite case follows from [Lan76], [BL19] whereas the extension to
general smooth discrete automorphic forms is proved in [Lap08].

2.7.5. Assume that G = G1 × G2 where G1 and G2 are connected reductive
groups over F. We have corresponding decompositions P= P1×P2 and MP =MP1×MP2.
Let π be a discrete automorphic representation of MP(A) and set as before � =
IndG(A)

P(A) (π). Then, there exist two, uniquely determined, cuspidal automorphic repre-
sentations π1, π2 of MP1(A) and MP2(A) respectively such that, setting�1 = IndG1(A)

P1(A) (π1)

and �2 = IndG2(A)
P2(A) (π2), for every compact-open subgroups J1 ⊆ G1(Af ), J2 ⊆ G2(Af )

(resp. J1 ⊆MP1(Af ), J2 ⊆MP2(Af )), setting J= J1× J2, there is a topological isomorphism

�
J1
1 ⊗̂�J2

2 ��J (resp. π J1
1 ⊗̂π J2

2 � π J)(2.7.5.1)

sending ϕ1 ⊗ ϕ2 ∈ �J1
1 ⊗ �J2

2 (resp. ϕ1 ⊗ ϕ2 ∈ π J1
1 ⊗ π J2

2 ) to the function (g1, g2) �→
ϕ1(g1)ϕ2(g2). We will then write �=�1 ��2 and π = π1 � π2 respectively.

2.7.6. Assume now that G is quasi-split. Let ψN :N0(A)→C× be a continuous
non-degenerate character which is trivial on N0(F). If the representation� isψN-generic,
i.e. if it admits a continuous nonzero linear form � :�→C such that � ◦�(u)=ψN(u)�

for every u ∈N(A), it is (abstractly) isomorphic to its Whittaker model

W(�,ψN)= {g ∈G(A) �→ �(�(g)ϕ) | ϕ ∈�}.
We equip this last space with the topology coming from� (thus it is a SLF representation
of G(A)).
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If we are moreover in the situation of Section 2.7.5, there are decompositions N0 =
N0,1×N0,2, ψN =ψ1 �ψ2 and the isomorphism (2.7.5.1) induces one between Whittaker
models

W(�1,ψ1)
J1⊗̂W(�2,ψ2)

J2 �W(�,ψN)
J.

2.8. Relative characters

2.8.1. Let B a G(F∞)-invariant nondegenerate symmetric bilinear form on g∞.
We assume that the restriction of B to k∞ is negative and the restriction of B to the or-
thogonal complement of k∞ is positive. Let (Xi)i∈I be an orthonormal basis of k∞ relative
to −B. Let CK =−∑

i∈I X2
i : this is a “Casimir element” of U(k∞).

2.8.2. Let K̂∞ and K̂ be respectively the sets of isomorphism classes of irre-
ducible unitary representations of K∞ and of K.

2.8.3. Let π be a discrete automorphic representation of MP. In the following,
we denote by AP,π either AP,π,cusp or AP,π,disc. For any τ ∈ K̂, let AP,π (G, τ ) be the (finite
dimensional) subspace of functions in AP,π (G) which transform under K according to τ .
A K-basis BP,π of AP,π (G) is by definition the union over of τ ∈ K̂ of orthonormal bases
BP,π,τ of AP,π (G, τ ) for the Petersson inner product.

2.8.4. Let

B :AP,π (G)×AP,π (G)→C

be a continuous sesquilinear form.

Proposition 2.8.4.1. — Let ω be a compact subset of a
G,∗
P .

1. Let f ∈ S(G(A)) and BP,π be a K-basis of AP,π (G). The sum

∑
ϕ∈BP,π

IP(λ, f )ϕ ⊗ ϕ(2.8.4.1)

converges absolutely in the completed projective tensor product AP,π (G)⊗̂AP,π (G) uniformly

for λ ∈ a
G,∗
P,C such that 
(λ) ∈ ω. In particular, the sum

JB(λ, f )=
∑
ϕ∈BP,π

B(IP(λ, f )ϕ,ϕ)(2.8.4.2)

is absolutely convergent uniformly for λ ∈ a
G,∗
P,C such that 
(λ) ∈ ω. Moreover these sums

do not depend on the choice of BP,π .
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2. The map

f �→ JB(λ, f )

is a continuous linear form on S(G(A)). More precisely for C ⊂ G(Af ) a compact

subset and K0 ⊂ K∞ a compact-open subgroup, there exists a continuous semi-norm

‖ · ‖ on S(G(A),C,K0) such that for all λ ∈ a
G,∗
P,C such that 
(λ) ∈ ω and f ∈

S(G(A),C,K0) we have

|JB(λ, f )|� ‖f ‖.

Remark 2.8.4.2. — An examination of the proof below show that the assertion 2
also holds mutatis mutandis if f ∈ Cr

c(G(A)) with r large enough. The semi-norm is then
taken among the norms ‖ · ‖r,X,Y for which the sum of the degrees of X and Y is less than
r.

Proof. — By definition of the projective tensor product topology, it suffices to show
the following: for every continuous semi-norm p on AP,π (G), the series

∑
ϕ∈BP,π

p(IP(λ, f )ϕ)p(ϕ)

is absolutely convergent uniformly for λ ∈ a
G,∗
P,C such that 
(λ) ∈ ω. Let K0 ⊂ K∞ be

a normal compact-open subgroup by which f is biinvariant. The series above can be
rewritten as ∑

τ∈K̂

∑
ϕ∈BP,π,τ

p(IP(λ, f )ϕ)p(ϕ),(2.8.4.3)

where only the representations τ admitting K0-invariant vectors actually contribute to
the sum. Note that, since K0 is normal in K∞, for such representation τ all the elements
ϕ ∈ BP,π,τ are automatically K0-fixed. Moreover, by [Wal92] §10.1, there exist c> 0 and
an integer r such that for every ϕ ∈AP,π (G)K0 we have

p(ϕ)� c‖R(1+CK)
rϕ‖Pet.

For any τ ∈ K̂∞ or K̂, let λτ � 0 be the eigenvalue of CK acting on τ . Let us fix a large
enough N> 0. For every f ∈ S(G(A)), λ ∈ a∗P,C, τ ∈ K̂ and ϕ ∈ BP,π,τ , we have

‖R(1+CK)
rIP(λ, f )ϕ‖Pet = ‖IP(λ,L((1+CK)

r)f )ϕ‖Pet

= (1+ λτ )−N‖IP(λ, fr,N)ϕ‖Pet

where fr,N = R((1+ CK)
N)L((1+ CK))

r f . Let C ⊂ G(Af ) be a compact subset. Then,
there exists a continuous semi-norm ‖ · ‖ on S(G(A),C,K0) (among those of Section
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2.5.2) such that for any f ∈ S(G(A),C,K0), ϕ ∈AP,π (G) and λ ∈ a
G,∗
P,C such that 
(λ) ∈

ω we have

‖IP(λ, fr,N)ϕ‖P,π � ‖f ‖‖ϕ‖Pet.

Thereby we are reduced to prove for large enough N the convergence of
∑
τ∈K̂∞

(1+ λτ )r−N dim(A∞
P,π (G,K0, τ ))(2.8.4.4)

where A∞
P,π (G,K0, τ )⊂AP,π (G) denotes the subspace of functions that transform under

K∞ according to τ . However, there exist c2 > 0 and m � 1 such that dim(A∞
P,π (G,K0,

τ )) � c2(1 + λτ )m (see e.g. the proof of [Mül00] Lemma 6.1). So the convergence of
(2.8.4.4) is reduced to that of

∑
τ∈K̂∞(1+ λτ )−N which is well-known. �

Proposition 2.8.4.3. — Let K0 ⊂ K∞ be a normal open compact subgroup. For any integer

m � 1 there exist Z ∈ U(g∞), g1 ∈C∞
c (G(A)) and g2 ∈Cm

c (G(A)) such that

• Z, g1 and g2 are invariant under K∞-conjugation;

• g1 and g2 are K0-biinvariant;

• for any f ∈ S(G(A)) that is K0-biinvariant we have:

f = f ∗ g1 + (f ∗ Z) ∗ g2.

For large enough m, we have

JB(λ, f )=
∑
ϕ∈BP,π

B(IP(λ, f )ϕ, IP(λ̄, g
∨
1 )ϕ)

+
∑
ϕ∈BP,π

B(IP(λ, f ∗ Z)ϕ, IP(λ̄, g
∨
2 )ϕ)

where the sums are absolutely convergent and g∨i (x)= gi(x−1).

Proof. — The first part of the proposition is lemma 4.1 and corollary 4.2 of [Art78].
Once we have noticed that the operators IP(λ, gi) preserve the spaces AP,π (G, τ ), the
second part results from an easy computation in a finite dimensional space. �

2.9. Cuspidal data and coarse Langlands decomposition

2.9.1. Cuspidal data. — Let X(G) be the set of pairs (MP,π) where

• P is a standard parabolic subgroup of G;
• π is the isomorphism class of a cuspidal automorphic representations of MP(A)

with central character trivial on A∞
P .
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The set of cuspidal data X(G) is the quotient of X(G) by the equivalence relation defined as
follows: (MP,π)∼ (MQ, τ ) if there exists w ∈W(P,Q) such that wπw−1 � τ . Note that
for every standard parabolic subgroup P of G, the inclusion X(MP) ⊂ X(G) descends
to a finite-to-one map X(MP)→ X(G). For χ ∈ X(G) represented by a pair (MP,π),
we denote by χ∨ the cuspidal datum associated to (MP,π

∨) where π∨ stands for the
complex conjugate of π .

2.9.2. Langlands decomposition. — For (MP,π) ∈ X(G), we let Sπ([G]P) be the
space of Schwartz functions ϕ ∈ S([G]P) such that

ϕλ(x) :=
∫

A∞P
exp(−〈ρP + λ,HP(a)〉)ϕ(ax)da, x ∈ [G]P,

belongs to AP,πλ,cusp(G) for every λ ∈ a∗P,C.
Let P⊂G a standard parabolic subgroup, χ ∈X(G) be a cuspidal datum and

{(MQi
,πi) | i ∈ I}

be the (possibly empty but finite) inverse image of χ in X(MP). Denote by L2
χ([G]P) the

closure in L2([G]P) of the subspace

O
P
χ :=

∑
i∈I

EP
Qi
(Sπi
([G]Qi

)).

More generally, for w a weight on A∞
P (see Section 2.4.3), we let L2

w,χ([G]P) be the clo-
sure of OP

χ in L2
w([G]P) and we define similarly a subspace L2

χ([G]P,0)⊂ L2([G]P,0). By
Langlands (see e.g. [MW94, Proposition II.2.4]), we have decompositions in orthogonal
direct sums

L2
w([G]P)=

⊕̂
χ∈X(G)

L2
w,χ([G]P) and L2([G]P,0)=

⊕̂
χ∈X(G)

L2
χ([G]P,0).(2.9.2.1)

For every subset X⊆X(G), we set

L2
w,X([G]P) :=

⊕̂
χ∈X

L2
w,χ([G]P), L2,X

w ([G]P) :=
⊕̂
χ∈Xc

L2
w,χ([G]P)

where Xc denotes the complement of X in X(G). When w = 1, we will drop the index
w. We have

(2.9.2.2) For two weights w and w′ on A∞
P , the orthogonal projections L2

w([G]P)→
L2
w,X([G]P) and L2

w′([G]P) → L2
w′,X([G]P) coincide on the intersection

L2
w([G]P)∩ L2

w′([G]P).
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Indeed, both of these projections coincide on L2
w([G]P)∩ L2

w′([G]P)= L2
w′′([G]P), where

w′′ =max(w,w′) is again a weight on A∞
P , with the orthogonal projection L2

w′′([G]P)→
L2
w′′,X([G]P) as follows readily by looking at their restrictions to the dense subspace

∑
χ∈X(G)

O
P
χ .

We will denote by ϕ �→ ϕX the orthogonal projection L2
w([G]P)→ L2

w,X([G]P).
By (2.9.2.2), this notation shouldn’t lead to any confusion. These projections are G(A)-
equivariant and so preserve the subspaces of smooth vectors.

2.9.3. Let X⊆X(G) be a subset. We set

SX([G]P)= S([G]P)∩ L2
X
([G]P) and

SX([G]P)= S([G]P)∩ L2,X([G]P).
By definition of L2

X
([G]P), SX([G]P) is the orthogonal to

O
P
Xc :=

∑
χ∈Xc

O
P
χ

in S([G]P). In particular, for every weight w on A∞
P , we also have

SX([G]P)= S([G]P)∩ L2
w,X([G]P).

Let w be a weight on [G]P (not necessarily factoring through a weight of A∞
P ). For

F ∈ {L2
w,C,TN,T ,Sw,N,Sw} we define FX([G]P) to be the orthogonal of SXc([G]P) in

F([G]P). We will also write FX([G]P) for FXc([G]P).
Lemma 2.9.3.1. — Let X⊆X(G) be a subset and Q⊆ P be standard parabolic subgroups.

Then, we have

(2.9.3.3) EP
Q(SX([G]Q))⊆ SX([G]P) and TX([G]P)Q ⊆ TX([G]Q).

Proof. — The second inclusion follows from the first applied to Xc by adjunc-
tion. It remains to prove the first inclusion. Since SX([G]P) is also the orthogonal of
SX([G]P) in S([G]P), by adjunction again it suffices to establish that SX([G]P)Q is or-
thogonal to SX([G]Q). From the definition, it is clear that SX([G]P)Q is orthogonal to
O

Q
X

. Let κ ∈ C∞
c (aQ). Then, we readily check that OQ

X
is stable by multiplication by

(κ ◦HQ). Consequently, (κ ◦HQ)SX([G]P)Q is also orthogonal to O
Q
X

but, by Lemma
2.5.13.1, we have (κ ◦HQ)SX([G]P)Q ⊆ S([G]Q). Therefore, by definition of L2

X
([G]Q),

(κ ◦HQ)SX([G]P)Q is orthogonal to L2
X
([G]Q) and a fortiori to SX([G]Q). Letting (κn)n
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be an increasing sequence of positive functions in C∞
c (aQ) converging to 1 pointwise we

get, by dominated convergence,

〈ϕQ,ψ〉Q = lim
n→∞〈(κn ◦HQ)ϕQ,ψ〉Q = 0

for every ϕ ∈ SX([G]P) and ψ ∈ SX([G]Q). This shows that SX([G]P)Q is indeed orthog-
onal to SX([G]Q) and this ends the proof of the lemma. �

2.9.4. The following theorem is a variation on the well-known theme of “de-
composition along the cuspidal support” (see [MW94, III, 2.6] and [FS98] for similar
result on the space of automorphic forms). We refer the reader to Section A.0.2 for a
reminder on summable and absolutely summable families in locally convex topological
vector spaces.

Theorem 2.9.4.1. — Let w be a weight on [G]P. Then

1. For every subset X⊂ X(G), the orthogonal projection S([G]P)→ L2
X
([G]P) extends by

continuity to a projection

L2
w([G]P)∞→ L2

w,X([G]P)∞, ϕ �→ ϕX.

Moreover, for every ϕ ∈ L2
w([G]P)∞ the family (ϕχ)χ∈X(G) is summable in L2

w([G]P)∞
with sum ϕ.

2. For every subset X⊂ X(G), the orthogonal projection L2([G]P)→ L2
X
([G]P) restricts to

a continuous projection

S([G]P)→ SX([G]P), ϕ �→ ϕX.

Moreover, for every ϕ ∈ S([G]P), the family (ϕχ)χ∈X(G) is absolutely summable in S([G])
with sum ϕ.

3. For every subset X⊂X(G) and F ∈ {C,T ,Sw}, the projection S([G]P)→ SX([G]P)
extends by continuity to a projection

F([G]P)→FX([G]P), ϕ �→ ϕX,

satisfying the adjunction

(2.9.4.4) 〈ϕX,ψ〉P = 〈ϕ,ψX〉P, for (ϕ,ψ) ∈ T ([G]P)× S([G]P).
Moreover, there exists N0 > 0 such that for every N> 0 and every function ϕ ∈ C([G]P)
(resp. ϕ ∈ Tw([G]P), resp. ϕ ∈ Sw,N([G]P)) the family (ϕχ)χ∈X(G) is absolutely

summable in C([G]P) (resp. Tw,N0([G]P), resp. Sw,N+N0([G]P)) with sum ϕ.

Proof. — First, we note that point 1. implies points 2. and 3. Indeed, that
the orthogonal projection S([G]P)→ L2

X
([G]P) induces continuous linear projections
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F([G]P)→ FX([G]P) for F ∈ {S,C,T ,Sw} follows from the alternative descriptions
(2.5.7.6), (2.5.8.7), (2.5.10.8) and (2.5.11.9) in terms of weighted L2 spaces. Let J⊂G(Af )

be a compact-open subgroup. Let ϕ ∈ S([G]P)J. Then, the first point of the theorem im-
plies that (ϕχ)χ∈X(G) is a summable family in L2

N([G]P)∞,J for every N> 0. On the other
hand, by Proposition 2.5.5.1, for every N> 0 and ε > 0 the inclusion L2

N+ε([G]P)∞,J ⊂
L2

N([G]P)∞,J is nuclear (note that σ d0
P � ‖.‖εP). Therefore, by Lemma A.0.6.1, for every

N > 0, the family (ϕχ)χ∈X(G) is actually absolutely summable L2
N([G]P)∞,J i.e. it is ab-

solutely summable in S([G]P)J (by the presentation (2.5.7.6)). That it sums to ϕ is clear.
The statements on absolute summability in point 3. can be similarly deduced from point
1. noting that, by (2.5.5.4), there exists N1 > 0 such that for every N> 0

L2
w−1,−N+N1

([G]P)∞ ⊂ Tw,N([G]P)⊂ L2
w−1,−N−N1

([G]P)∞

(resp.
⋂
r�0

L2
−N+N1,wr ([G]P)∞ ⊂ Sw,N([G]P)⊂

⋂
r�0

L2
−N−N1,wr ([G]P)∞)

so that for N0 > 2N1, the inclusion Tw,N([G]P)J ⊂ Tw,N+N0([G]P)J (resp. Sw,N([G]P)J ⊂
Sw,N+N0([G]P)J) factors through the nuclear inclusion L2

w−1,−N−N1
([G]P)∞,J ⊂

L2
w−1,−N−N1−ε([G]P)∞,J (resp.

⋂
r�0 L2

−N−N1,wr ([G]P)∞,J ⊂⋂
r�0 L2

−N−N1−ε,wr([G]P)∞,J) for
some ε > 0. Finally, by density of S([G]P) in T ([G]P), the adjunction (2.9.4.4) can be
deduced from a similar adjunction for Schwartz functions.

We prove 1. by induction on a0 − aP. For P= P0, we have w ∼ wA and the result
follows from (2.9.2.2). Assume now that 1. holds for every parabolic subgroup Q � P.

First we assume that w�wA (recall that wA stands for the restriction of w to A∞
P ).

By Corollary 2.5.15.2, in this case we have a closed embedding

(2.9.4.5) L2
w([G]P)∞→

∏
Q�P

L2
w−Q
([G]Q)∞ × L2

wA
([G]P)∞, ϕ �→

(
(ϕQ)Q, ϕ

)
.

Moreover, by the induction hypothesis, for Q � P, we have projections L2
w−Q
([G]Q)∞ →

L2
w−Q,X

([G]Q)∞, ϕQ �→ ϕ
Q
X

satisfying 1. To prove the existence of the continuous projection

ϕ ∈ L2
w([G]P)∞ �→ ϕX ∈ L2

w,X([G]P)∞, it suffices to check that the continuous projection
((ϕQ)Q, ϕ) �→ ((ϕ

Q
X
)Q, ϕX) of

∏
Q�P L2

w−Q
([G]Q)∞ × L2

wA
([G]P)∞ preserves the image of

(2.9.4.5). This readily follows from the identity

(2.9.4.6) (ϕX)Q = (ϕQ)X, for every ϕ ∈ L2
wA
([G]P)∞ and Q � P.

We emphasize that in the above equation, ϕX is defined through the orthogonal projec-
tion L2

wA
([G]P)∞→ L2

wA,X
([G]P)∞ whereas (ϕQ)X is given by the projection T ([G]Q)→

TX([G]Q) from the third part of the theorem (and which exists by the induction hypoth-
esis).
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To show (2.9.4.6), we check that 〈(ϕX)Q,ψ〉Q = 〈(ϕQ)X,ψ〉Q for every ψ ∈
S([G]Q). By the induction hypothesis again, we have ψ = ψX + ψX where ψX ∈
SX([G]Q) and ψX ∈ SX([G]Q). Moreover, by Lemma 2.9.3.1, we have 〈ϕX,EP

Q(ψX)〉P =
〈ϕ,EP

Q(ψX)〉P and 〈ϕX,EP
Q(ψ

X)〉P = 0. Therefore,

〈(ϕQ)X,ψ〉Q = 〈ϕQ,ψX〉Q = 〈ϕ,EP
Q(ψX)〉P = 〈ϕX,EP

Q(ψ)〉P
= 〈(ϕX)Q,ψ〉Q

and this proves (2.9.4.6).
Let ϕ ∈ L2

w([G]P)∞. By induction, for every Q � P, ((ϕQ)χ)χ∈X(G) is a summable
family in L2

w−Q
([G]Q)∞ with sum ϕQ. Moreover, as wA is a weight on A∞

P , (ϕχ)χ∈X(G) is

a summable family in L2
wA
([G]P)∞ with sum ϕ. Since (2.9.4.5) is a closed embedding, by

(2.9.4.6) we deduce that (ϕχ)χ∈X(G) is a summable family in L2
w([G]P)∞ with sum ϕ. This

ends the proof of 1. whenever w�wA.
Note that the weight w = ‖.‖N

P satisfies the condition w � wA (see (2.4.1.6)).
Therefore, we have already establish 1. for the spaces L2

N([G]P)∞ (N > 0) and thus, by
(2.5.7.6) and the reasoning from the beginning, we can already deduce statement 2. for
P.

We now deal with the case of a general weight w. Set w′ = max(w,wA). Then,
w′ � w′A = wA and therefore the existence of the projections ϕ ∈ L2

w′([G]P)∞ �→ ϕX ∈
L2
w′,X([G]P)∞ has already been established. By Corollary 2.5.15.2 again, we have an open

surjection

(2.9.4.7)

∏
Q�P

L2
w+Q
([G]Q)∞ × L2

w′([G]P)∞→ L2
w([G]P)∞,

(
(ψQ)Q,ψ

) �→∑
Q�P

EP
Q(ψ

Q)+ψ.

We now check that the projection
(
(ψQ)Q,ψ

) �→ (
(ψ

Q
X
)Q,ψX

)
descends to this quotient

i.e. that it preserves the kernel of (2.9.4.7). For this, it suffices to show that for every Q � P,
we have

(2.9.4.8) 〈EP
Q(ψ

Q
X
), ϕ〉P = 〈EP

Q(ψ
Q), ϕX〉P, for (ψQ, ϕ) ∈ L2

w+Q
([G]Q)∞ ×S([G]P).

By the density of S([G]Q) in L2
w+Q
([G]Q)∞, we can restrict ourself to prove (2.9.4.8) when

ψQ ∈ S([G]Q) in which case it readily follows from (2.9.4.6).
Let ϕ ∈ L2

w([G]P)∞ �→ ϕX ∈ L2
w([G]P)∞ be the continuous projection descended

from
(
(ψQ)Q,ψ

) �→ (
(ψ

Q
X
)Q,ψX

)
via the surjection (2.9.4.7). By (2.9.4.8), its image

lands in L2
w,X([G]P)∞ and it extends the projection ϕ ∈ S([G]P) �→ ϕX ∈ SX([G]P). Fi-

nally, let ϕ ∈ L2
w([G]P)∞ that we write ϕ =∑

Q�P EP
Q(ψ

Q) + ψ where
(
(ψQ)Q,ψ

) ∈
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∏
Q�P L2

w+Q
([G]Q)∞ × L2

w′([G]P)∞. Then, for every Q � P, (ψQ
χ )χ∈X(G) is a summable

family in L2
w+Q
([G]Q)∞ with sum ψQ by the induction hypothesis whereas (ψχ)χ∈X(G) is a

summable family in L2
w′([G]P)∞ with sum ψ by the case already treated. Thus, from the

continuity of the map (2.9.4.7), we deduce that

χ ∈X(G) �→ ϕχ =
∑
Q�P

EP
Q(ψ

Q
χ )+ψχ

is a summable family in L2
w([G]P)∞ with sum ϕ. We have now completed the proof by

induction of 1. and hence of the theorem. �

2.9.5. Let X ⊆ X(G) be a subset. By the previous proposition, we have com-
patible continuous projections ϕ �→ ϕX from S([G]P), C([G]P) and L2

−N([G]P)∞ onto
SX([G]P), CX([G]P) and L2

−N,X([G]P)∞ respectively. As S([G]P) is dense in both C([G]P)
and L2

−N([G]P)∞ this entails that

(2.9.5.9) SX([G]P) is dense in CX([G]P) and L2
−N,X([G]P)∞.

2.9.6. Assume that G = G1 × G2 where G1 and G2 are connected reductive
groups over F and write P = P1 × P2 accordingly. Then, we have a natural identifi-
cation X(G) = X(G1) × X(G2). For subsets Xi ⊆ X(Gi) and compact-open subgroups
Ji ⊆ Gi(Af ), i = 1,2, setting X = X1 × X2 and J = J1 × J2, the projection S([G]P)J →
SX([G]P)J (resp. C([G]P)J → CX([G]P)J) corresponds via the isomorphism (2.5.12.11) to
the (completed) tensor product of the projections space S([Gi]Pi

)Ji → SXi
([Gi]Pi

)Ji (resp.
C([Gi]Pi

)Ji → CXi
([Gi]Pi

)Ji ) for i = 1,2 as can readily be seen by looking at pure tensors.
It follows that

(2.9.6.10)
SX1([G1])J1⊗̂SX2([G2])J2 � SX([G])J and

CX1([G1])J1⊗̂CX2([G2])J2 � CX([G])J

by restriction of the isomorphisms (2.5.12.11).

2.9.7. Regular cuspidal data. — We say that a cuspidal datum χ ∈X(G) is regular if
it is represented by a pair (MP,π) such that the only element w ∈W(P) satisfying wπ �
π is w = 1. The next result can be deduced from Langlands spectral decomposition
[Lan76] but we prefer to give a direct proof.

Proposition 2.9.7.1. — Let χ ∈X(G) be a regular cuspidal datum and P⊂G be a parabolic

subgroup. Then, for every ϕ ∈ L2
χ([G]) we have ϕP ∈ L2

χ([G]P).

Proof. — By duality, it suffices to show that the pseudo-Eisenstein map EG
P extends

to a continuous application from L2
χ([G]P) into L2([G]). Let {χi | i ∈ I} be the inverse
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image of χ in X(MP). Then, we have an orthogonal decomposition

L2
χ([G]P)=

⊕
i∈I

L2
χi
([G]P)

where L2
χi
([G]P) denotes the subspace of ϕ ∈ L2([G]P) such that m �→ δP(m)

−1/2ϕ(mg)

belongs to L2
χi
([MP]) for almost all g ∈ G(A). Thus, it suffices to show that EG

P extends
to a continuous application from L2

χi
([G]P) into L2([G]) for each i ∈ I. Fix i ∈ I and

let (MQ,π) be a pair representing χi (where Q ⊂ P). Then, the inverse image of χi in
X(MP) consists of the pairs (wMQw

−1,wπ) where w ∈WMP is such that wMQw
−1 is the

Levi component of some standard parabolic subgroup wQ. Therefore, by definition of
L2
χi
([MP]), L2

χi
([G]P) is the closure of

(2.9.7.11)
∑
w

EP
wQ(Swπ([G]wQ))

in L2([G]P) where w runs over elements w ∈WMP as before. Thus, we just need to check
that for every such w ∈WMP, ϕ ∈ Sπ([G]Q) and ϕ′ ∈ Swπ([G]wQ), we have

(2.9.7.12) 〈EG
Q(ϕ),E

G
wQ(ϕ

′)〉G = 〈EP
Q(ϕ),E

P
wQ(ϕ

′)〉P,
since it will implies that the restriction of EG

P to the subspace (2.9.7.11) is an isometry.
By the calculation of the scalar product of two pseudo-Eisenstein series [MW94,

Proposition II.2.1],5 we have

〈EG
Q(ϕ),E

G
wQ(ϕ

′)〉G =
∑

w0∈W(Q)

∫
ia∗Q+λ0

〈M(ww0)ϕλ,ϕ
′
−ww0λ

〉Petdλ

where λ0 ∈ a∗Q belongs to the range of absolute convergence of the intertwining operators

M(ww0) :AQ,πλ,cusp(G)→AwQ,(ww0π)ww0λ,cusp(G).

As χ is regular, for every w0 ∈W(Q) different from 1, we have ww0π ��wπ and there-
fore M(ww0)ϕλ is orthogonal to ϕ′−ww0λ

for every λ ∈ ia∗Q + λ0. It follows that the above
expression reduces to

〈EG
Q(ϕ),E

G
wQ(ϕ

′)〉G =
∫

ia∗Q+λ0

〈M(w)ϕλ,ϕ′−wλ〉Petdλ.

A similar argument shows that 〈EP
Q(ϕ),E

P
wQw−1(ϕ

′)〉P is also equal to the right-hand side
above. This shows (2.9.7.12) hence the proposition. �

5 Strictly speaking loc. cit. only applies to K∞-finite pseudo-Eisenstein series. However, the proof, which ultimately
rests upon the computation of the constant terms of cuspidal Eisenstein series in their range of convergence, extends
verbatim to general smooth pseudo-Eisenstein series. The skeptical reader can also assume that both ϕ and ϕ′ are K∞-
finite since, by density of the respective subspaces of K∞-finite vectors, it suffices to check (2.9.7.12) for such functions.
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Corollary 2.9.7.2. — Let χ ∈X(G) be a regular cuspidal datum, P be a standard parabolic

subgroup of G and χM be the inverse image of χ in X(MP). Then, for every ϕ ∈ Sχ([G]) and

s ∈H>0, the function

ϕP,s : m ∈ [MP] �→ δP(m)
s−1/2ϕP(m)

belongs to CχM([MP]). Moreover, the family of linear maps

Sχ([G])→ CχM([MP]), ϕ �→ ϕP,s

for s ∈H>0 is holomorphic.

Proof. — Let ϕ ∈ Sχ([G]). By Lemma 2.9.3.1, ϕP,s is orthogonal to SχM([MP]) for
all s ∈ C. Hence, we just need to show that the map s �→ ϕP,s induces a holomorphic
function H>0 → C([MP]). Note that by Lemma 2.5.13.1, ϕP,s ∈ C([MP]) for 
(s)� 1.
Thus, by the previous proposition, it suffices to show:

(2.9.7.13) Ifψ ∈ L2([MP])∞ is such thatψs := δs
Pψ ∈ C([MP]) for
(s)� 1 then s �→ψs

induces a holomorphic function H>0 → C([MP]).
For X ∈m∞, we have

R(X)ψs = (2s− 1)〈ρP,X〉ψs + (R(X)ψ)s
(where we consider ρP as an element of the dual space m∗

∞) and it follows, by the equality
(2.5.8.7), that it suffices to check that for every d > 0 the map s �→ψs induces a holomor-
phic function H>0 → L2

σ,d([MP]). By Hölder inequality, for d > 0, 
(s) > 0 and t � 1
we have

‖ψs‖L2
σ,d

� ‖ψ‖1−
(s)/t
L2 ‖ψt‖
(s)/tL2

σ,td/
(s)

and this implies ψs ∈ L2
σ,d([MP]). The holomorphy of the map s ∈ H>0 �→ ψs ∈

L2
σ,d([MP]) is equivalent to the holomorphy of s ∈ H>0 �→ 〈ψs, φ〉MP for every φ ∈

L2
σ,−d([MP]) but this follows from the usual criterion of analyticity for parameter inte-

gral and the domination

|ψs|� |ψt1| + |ψt2 |
for every s ∈C and t2 >
(s) > t1. �

Let n � 1. For G=GLn, regular cuspidal data admit the following explicit descrip-
tion. Let χ ∈X(GLn) be represented by a pair (MP,π) where

MP =GLn1 × · · · ×GLnk
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is a standard Levi subgroup of GLn and

π = π1 � . . .� πk

is a cuspidal automorphic representation of MP(A) (with a central character trivial on
A∞

P ). Then, χ is regular if and only if πi �= πj for each 1 � i < j � k.

2.9.8. We now assume that G is a product of the form ResK1/F GLn1 × · · · ×
ResKr/F GLnr

, where K1, . . . ,Kr are finite extensions of F. Let χ ∈X(G) be a regular cus-
pidal datum represented by a pair (MP,π) ∈ X(G). Set � = IndG(A)

P(A) (π) =AP,π,cusp(G)
for the normalized smooth induction of π . Let BP,π be a K-basis of� as in Section 2.8.3.
For ϕ ∈ S([G]) and λ ∈ ia∗P the series

(2.9.8.14) ϕ�λ =
∑
ψ∈BP,π

〈ϕ,E(ψ,λ)〉GE(ψ,λ)

converges absolutely in TN([G]) for some N (that may a priori depend on λ). Indeed,
this follows from the continuity of the linear map ψ ∈ AP,π (G) �→ E(ψ,λ) ∈ TN([G])
for some N > 0 (see Section 2.7.3) together with Proposition 2.8.4.1 and the Dixmier-
Malliavin theorem. The next theorem is a slight restatement of (part of) the main result
of [Lap13].6 We refer the reader to Section A.0.9 for the notion of Schwartz function
valued in a TVS.

Theorem 2.9.8.1 (Lapid). — There exists N > 0 such that for ϕ ∈ C([G]), the series

(2.9.8.14) still makes sense (that is the scalar products 〈ϕ,E(ψ,λ)〉G are convergent) and converges

in TN([G]) for every λ ∈ ia∗P. Moreover, the function λ ∈ ia∗P �→ ϕ�λ ∈ TN([G]) is Schwartz, in

particular absolutely integrable, and if ϕ ∈ Cχ([G]) we have the equality

ϕ =
∫

ia∗P
ϕ�λdλ.

Proof. — Note that G satisfies condition (HP) of [Lap13]: it is proven in loc. cit.

that general linear groups satisfy (HP) and it is straightforward to check that prod-
ucts of groups satisfying (HP) again satisfy (HP). The first part of the theorem is then
a consequence of [Lap13, Proposition 5.1]. Indeed, by Dixmier-Malliavin we may as-
sume that ϕ = R(f )ϕ′ where ϕ′ ∈ C([G]) and f ∈ C∞

c (G(A)). By loc. cit. the scalar
product 〈ϕ,E(ψ,λ)〉G converges for every ψ ∈ BP,π and there exists N > 0 such that
ψ �→ E(ψ,λ) factors through a continuous linear mapping �→ TN([G]) for every
λ ∈ ia∗P. As

〈ϕ,E(ψ,λ)〉G = 〈ϕ′,E(R(f ∗)ψ,λ)〉G, ϕ ∈ BP,π ,

6 Note that in loc. cit. the Harish-Chandra Schwartz space C([G]) is denoted by S(G(F)\G(A))
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we deduce by Proposition 2.8.4.1 that the series (2.9.8.14) converges absolutely in
TN([G]) for every λ ∈ ia∗P. That the function λ ∈ ia∗P �→ ϕ�λ ∈ TN([G]) is Schwartz fol-
lows similarly from [Lap13, Corollary 5.7]. The last part of the theorem is a consequence
of [Lap13, Theorem 4.5] since χ regular implies that L2

χ([G]) is included in the “induced
from cuspidal part” L2

c ([G]) of L2([G]), with the notation of loc. cit. �

2.10. Automorphic kernels

2.10.1. Let P⊂G be a standard parabolic subgroup. The right convolution by
f ∈ S(G(A)) on each space of the decompositions (2.9.2.1) gives integral operators whose
kernels are respectively denoted by Kf ,P(x, y), Kf ,P,χ (x, y), K0

f ,P(x, y) and K0
f ,P,χ (x, y)

where x, y ∈ G(A). If the context is clear, we shall omit the subscript f in the notation
as well as the subscript P when P=G. The kernels are related by the following equality
for all x, y ∈G(A)

K0
f ,P,χ (x, y)=

∫
A∞P

Kf ,P,χ (x, ay)δP(a)
−1/2da.

Recall that we write [G]1P for the preimage of 0 by the map HP : [G]P → aP.

Lemma 2.10.1.1. — There exists N0 > 0 such that for every weight w on [G]P (see Section

2.4.3) and every continuous semi-norm ‖.‖w,N0 on Tw,N0([G]P), there exists a continuous semi-norm

‖.‖S on S(G(A)) such that for f ∈ S(G(A))
∑
χ∈X(G)

|Kf ,P,χ (x, y)|� ‖f ‖S‖x‖N0
P w(x)w(y)

−1, x, y ∈ [G]P,(2.10.1.1)

∑
χ∈X(G)

|K0
f ,P,χ (x, y)|� ‖f ‖S‖x‖N0

P w(x)w(y)
−1, x, y ∈ [G]1P,(2.10.1.2)

and ∑
χ∈X(G)

‖Kf ,P,χ (., y)‖w,N0 � ‖f ‖Sw(y)−1, y ∈ [G]P.(2.10.1.3)

Proof. — Obviously, (2.10.1.3) implies (2.10.1.1) and (2.10.1.2) thus we will only
prove this last estimate.

First, we note that there exists N′
0 > 0 such that, for every weight w and every

f ∈ S(G(A)) the operator R(f ) of right convolution by f induces a continuous map
T 0
w ([G]P)→ Tw,N′0([G]P). Let f ∈ S(G(A)) and for χ ∈ X(G), let Rχ(f ) be the compo-

sition of R(f ) with the “χ -projection” defined by Theorem 2.9.4.1. Then, from the third
point of this theorem, we deduce the existence of N0 > 0 such that, for every weight w,
Rχ(f ) sends T 0

w ([G]P) continuously into Tw,N0([G]P) and for every ϕ ∈ T 0
w ([G]P), the



240 RAPHAËL BEUZART-PLESSIS, PIERRE-HENRI CHAUDOUARD, AND MICHAŁ ZYDOR

family (Rχ(f )ϕ)χ∈X(G) is absolutely summable in Tw,N0([G]P). By the uniform bounded-
ness principle, this implies the existence of a constant C> 0 such that

(2.10.1.4)
∑
χ∈X(G)

‖Rχ(f )ϕ‖w,N0 � C‖ϕ‖1,w−1, for every ϕ ∈ T 0
w ([G]P)

where we recall that ‖.‖1,w−1 is the norm defining the Banach space T 0
w ([G]P) see Section

2.5.9 (we emphasize that the peculiar appearance of w−1 as an index in the right hand
side is purely the effect of a slight inconsistency in our notation). Using the fact that
f �→ Rχ(f )ϕ is continuous, we get, once again by the uniform boundedness principle,
the existence of a continuous semi-norm ‖.‖S on S(G(A)) such that for f ∈ S(G(A)),

(2.10.1.5)
∑
χ∈X(G)

‖Rχ(f )ϕ‖w,N0 � ‖f ‖S‖ϕ‖1,w−1, for every ϕ ∈ T 0
w ([G]P).

Applying (2.10.1.5) to ϕ = δy the Dirac measure at y ∈ [G]P gives the inequality
(2.10.1.3) (note that Rχ(f )δy =Kf ,P,χ (., y)). �

2.10.2. Let P be a standard parabolic subgroup of G and let M=MP. Let χ ∈
X(G) and A0

P,χ,disc(G) be the closed subspace of AP,disc(G) generated by left A∞
M -invariant

functions whose class belongs to L2
χ([G]P,0). We have a isotypical decomposition

A0
P,χ,disc(G)= ⊕̂AP,π,disc(G)

indexed by a set of discrete automorphic representations π of M(A). Let BP,χ be a K-
basis of A0

P,χ,disc(G) that is the union ∪πBP,π over π as above of K-bases of AP,π,disc(G)
(see Section 2.8.3). In the same way we define BP,χ,τ =∪πBP,π,τ for any τ ∈ K̂.

In the following, we add a subscript x or y to R(X) to indicate that this operator is
applied to the variable x or y. The next lemma is an extension to Schwartz functions of
results of Arthur, see [Art78, §4].

Lemma 2.10.2.1. — There exists a continuous semi-norm ‖ · ‖ on S(G(A)) and an integer

N such that for all X,Y ∈ U(g∞), all x, y ∈G(A)1 and all f ∈ S(G(A)) we have

∑
χ∈X(G)

∑
P0⊂P

|P(MP)|−1

×
∫

ia
G,∗
P

∑
τ∈K̂

|
∑

ϕ∈BP,χ,τ

Rx(X)E(x, IP(λ, f )ϕ,λ)Ry(Y)E(y, ϕ,λ)| dλ

� ‖L(X)R(Y)f ‖‖x‖N
G‖y‖N

G.
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Moreover for all x, y ∈G(A) and all χ ∈X(G) we have

K0
f ,χ (x, y)=

∑
P0⊂P

|P(MP)|−1

∫
ia

G,∗
P

∑
ϕ∈BP,χ

E(x, IP(λ, f )ϕ,λ)E(y, ϕ,λ) dλ.

Proof. — Let χ ∈ X(G) and τ ∈ K̂. Let P be a standard parabolic subgroup. For
f , g ∈ S(G(A)), λ ∈ ia

G,∗
P and x, y ∈G(A)1 we define:

BP,χ,τ (λ, x, y, f , g)=
∑

ϕ∈BP,χ,τ

E(x, IP(λ, f )ϕ,λ)E(y, IP(λ, g)ϕ,λ)

and

LP,χ,τ (λ, x, y, f )=
∑

ϕ∈BP,χ,τ

E(x, IP(λ, f )ϕ,λ)E(y, ϕ,λ).

We denote by eτ the measure supported on K given by deg(τ ) trace(τ (k))dk where
dk is the Haar measure on K giving the total volume 1. We have eτ ∗ eτ = eτ . Let’s define
f ∨ by f ∨(x)= f (x−1) and let fτ = eτ ∗ f ∗ eτ . We shall use the following properties one can
readily check:

Rx(X)Ry(Y)LP,χ,τ (λ, x, y, f )=LP,χ,τ (λ, x, y,L(X)R(Y)f ),X,Y ∈ U(g∞)(2.10.2.6)

BP,χ,τ (λ, x, y, f , g)=LP,χ,τ (λ, x, y, f ∗ g∨)(2.10.2.7)

LP,χ,τ (λ, x, x, f ∗ f ∨)= BP,χ,τ (λ, x, x, f , f )� 0(2.10.2.8)

|LP,χ,τ (λ, x, y, f ∗ g∨)|�LP,χ,τ (λ, x, x, f ∗ f ∨)
1
2LP,χ,τ (λ, y, y, g ∗ g∨)

1
2(2.10.2.9)

LP,χ,τ (λ, x, y, f )=LP,χ,τ (λ, x, y, fτ )(2.10.2.10)

LP,χ,τ (λ, x, y, fτ ′)= 0, τ ′ ∈ K̂, τ ′ �= τ.(2.10.2.11)

From properties (2.10.2.6), we see that we are reduced to the case X= Y= 1. It suffices
to show that there exists an integer N and that, for any normal open compact subgroup
K0 ⊂K∞, there exists a continuous semi-norm ‖ · ‖ on the subspace S(G(A))K0 of K0-
bi-invariant Schwartz functions such that for all x, y ∈ G(A)1 and all f ∈ S(G(A))K0 we
have

T (x, y, f )� ‖f ‖‖x‖N
G‖y‖N

G

where we introduce

Tτ (x, y, f )=
∑
χ∈X(G)

∑
P0⊂P

|P(MP)|−1

∫
ia

G,∗
P

|LP,χ,τ (λ, x, y, fτ )| dλ,
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and

T (x, y, f )=
∑
τ∈K̂

Tτ (x, y, f ).

Indeed by the uniform boundedness principle and by (2.10.2.10) and (2.10.2.11) it is easy
to conclude. Note that Tτ (x, y, f )= Tτ (x, y, fτ ). Let m � 1 large enough and let K0 ⊂K∞

be a normal open compact subgroup. By a slight variant of Proposition 2.8.4.3, we can
find Z ∈ U(g∞), g1 ∈C∞

c (G(A)) and g2 ∈Cm
c (G(A)) such that

• Z is invariant under K∞-conjugation;
• g1 and g2 are invariant under K-conjugation;
• for any f ∈ S(G(A))K0 and any τ ∈ K̂ we have:

f = f ∗ g1 + (f ∗ Z) ∗ g2

fτ = fτ ∗ g1,τ + (f ∗ Z)τ ∗ g2,τ .

Thus the expression T (x, y, f ) is bounded by (the sums below are over τ ∈ K̂)

(
∑
τ

Tτ (x, x, fτ ∗ f ∨τ ))
1
2 (
∑
τ

Tτ (y, y, g1,τ ∗ g∨1,τ )
1
2(2.10.2.12)

+(
∑
τ

Tτ (x, x, (f ∗ Z)τ ∗ (f ∗ Z)∨τ ))
1
2 (
∑
τ

Tτ (y, y, g2,τ ∗ g∨2,τ )
1
2 .

Arthur shows in [Art78, p. 931 and corollary 4.6] that for every N > 0 large
enough there exists C> 0 such that

∑
τ

Tτ (y, y, gi,τ ∗ g∨i,τ )� C‖y‖2N
G(2.10.2.13)

for i = 1,2 and all y ∈G(A)1. At this point we are reduced to bound
∑
τ Tτ (x, x, fτ ∗ f ∨τ )

for any f ∈ S(G(A)). Following [Art78, p. 931] (the compactness of the support of f plays
no essential role there), we get for any K-finite functions f ∈ S(G(A)):

T (x, x, f ∗ f ∨)� K0
f ∗f ∨(x, x).(2.10.2.14)

Let N′ > 0 large enough. Using the weight w = ‖ · ‖N
G, we deduce from Lemma 2.10.1.1

that there exist N>N′ and a semi-norm ‖ · ‖ on S(G(A)) such that for all f ∈ S(G(A))
and all x, y ∈G(A)1 we have

K0
f (x, y)� ‖f ‖‖x‖N

G‖y‖−N′
G .

In particular, we deduce that for any N> 0 large enough there exists a continuous semi-
norm ‖ · ‖ on S(G(A)) such that for all f ∈ S(G(A)) and all x ∈G(A)1

K0
f ∗f ∨(x, x)=

∫
[G]0
|K0

f (x, y)|2 dy � ‖f ‖2‖x‖2N
G .(2.10.2.15)
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We fix N,C> 0 and a continuous semi-norm ‖ · ‖ on S(G(A)) such that (2.10.2.13) and
(2.10.2.15) hold. Let’s define ‖f ‖2

0 =
∑
τ∈K̂ ‖fτ‖2 and

‖f ‖1 = ‖f ∗ Z‖0 + ‖f ‖0

for f ∈ S(G(A)). These are again continuous semi-norms on S(G(A)). Using the
majorization (2.10.2.14) for the K-finite function fτ and the majorizations (2.10.2.12),
(2.10.2.13) and (2.10.2.15) we get

T (x, y, f )� C
1
2 (‖x‖G‖y‖G)

N‖f ‖1

for all x, y ∈G(A)1 and f ∈ S(G(A))K0. Then we can deduce the first majorization.
To get the last equality, it is enough to observe that both members are defined and

continuous on S(G(A)) and that the equality holds on the dense subset of K-finite and
compactly supported functions (see [Art78, lemma 4.8]). �

3. The coarse spectral expansion of the Jacquet-Rallis trace formula for
Schwartz functions

This section has two goals. The first, accomplished in Theorem 3.2.4.1, is to ex-
tend the coarse spectral expansion I=∑

χ∈X(G) Iχ of the Jacquet-Rallis trace formula for
linear groups G (as proved in [Zyd20]) to the Schwartz space. The second, given in The-
orem 3.3.9.1, is to provide spectral expressions more suitable for explicit calculations. An
asymptotic estimate of modified automorphic kernels (stated in Theorem 3.3.7.1) plays a
central role.

3.1. Notations

3.1.1. Let E/F be a quadratic extension of number fields. Let η be the quadratic
character of A×F attached to E/F. Let n � 1 be an integer. Let G′

n = GLn,F be the alge-
braic group of F-linear automorphisms of Fn. Let Gn = ResE/F(G′

n ×F E) be the F-group
obtained by restriction of scalars from the algebraic group GLn,E of E-linear automor-
phisms of En. We denote by c the Galois involution. We have a natural inclusion G′

n ⊂Gn

which induces an inclusion AG′n ⊂ AGn
which is in fact an equality. The restriction map

X∗(Gn)→X∗(G′
n) gives an isomorphism a∗Gn

� a∗G′n .

3.1.2. Let (B′n,T
′
n) be a pair where B′n is the Borel subgroup of G′

n of upper
triangular matrices and T′

n is the maximal torus of G′
n of diagonal matrices. Let (Bn,Tn)

be the pair deduced from (B′n,T
′
n) by extension of scalars to E and restriction to F: it is a

pair of a minimal parabolic subgroup of Gn and its Levi factor.
Let Kn ⊂Gn(A) and K′

n =Kn ∩G′
n(A)⊂G′

n(A) be the “standard” maximal com-
pact subgroups. Notice that we have K′

n ⊂Kn.
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3.1.3. The map P′ �→ P= ResE/F(P′ ×F E) induces a bijection between the sets
of standard parabolic subgroups of G′

n and Gn whose inverse bijection is given by

P �→ P′ = P∩G′
n.

Let P be a standard parabolic subgroup of Gn. The restriction map X∗(P)→ X∗(P′)
identifies X∗(P)with a subgroup of X(P′) of index 2dim(aP). It also induces an isomorphism
aP′ → aP which fits into the commutative diagram:

G′
n(A)

HP′
aP′

Gn(A)
HP

aP

For any standard parabolic subgroups P⊂Q, the restriction of the function τQ
P to

aP′ coincides with the function τQ′
P′ . However we have for all x ∈G′(A)

〈ρQ
P ,HP(x)〉 = 2〈ρQ′

P′ ,HP′(x)〉.
Remark 3.1.3.1. — The map aP′ → aP does not preserve Haar measures. In fact,

the pull-back on aP′ of the Haar measure on aP is 2dim(aP) times the Haar measure on aP′ .
In particular, although the groups A∞

P and A∞
P′ can be canonically identified, the Haar

measure on A∞
P is 2dim(aP) times the Haar measure on A∞

P′ .

3.1.4. We shall use the natural embeddings G′
n ⊂ G′

n+1 and Gn ⊂ Gn+1 where
the smaller group is identified with the subgroup of the bigger one that fixes en+1 and
preserves the space generated by (e1, . . . , en) where (e1, . . . , en+1) denotes the canonical
basis of Fn+1.

3.1.5. Let G=Gn ×Gn+1 and G′ =G′
n ×G′

n+1. Thus G′ is an F-subgroup of G.
Let

ι :Gn ↪→Gn ×Gn+1

be the diagonal embedding. Let H be the image of ι (so H is isomorphic to Gn).
For an element g ∈ G(A) we will always write gn and gn+1 for its components in

Gn(A) and Gn+1(A) respectively.

3.1.6. Let detn (resp. detn+1) be the morphism G′ �→Gm,F given by the determi-
nant on the first (resp. second) component. Let ηG′ be the character G′(A)→{±1} given
by

ηG′(g
′)= η(detn(g

′))n+1η(detn+1(g
′))n g′ ∈ [G′].
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3.1.7. Let K = Kn ×Kn+1: it is a maximal compact subgroup of G(A). We de-
fine pairs (P0,M0) = (Bn × Bn+1,Tn × Tn+1) and (P′0,M

′
0) = (B′n × B′n+1,T

′
n × T′

n+1) of
minimal parabolic F-subgroups of G and G′ with their Levi components. As in Section
3.1.3, we have a bijection given by

P �→ P′ = P∩G′

between the sets of standard parabolic subgroups of G and G′.

3.1.8. Any parabolic subgroup P of G admits a decomposition P = Pn × Pn+1.
We introduce the “Rankin-Selberg set” FRS as the set of F-parabolic subgroups of G of
the form P = Pn × Pn+1 where Pn is a standard parabolic subgroup of Gn and Pn+1 is
a semi-standard parabolic subgroup of Gn+1 such that Pn+1 ∩Gn = Pn (here we use the
embedding Gn ↪→Gn+1).

For P ∈FRS, we set

PH = P∩H,P′ = P∩G′,P′n = Pn ∩G′
n and P′n+1 = Pn+1 ∩G′

n+1.

Let P,Q ∈FRS be such that P⊂Q (from now on, when we write P⊂Q ∈FRS we

always implicitly assume that both P and Q are in FRS). Then, we have a
Q′

n+1
P′n+1

= a
Qn+1
Pn+1

and

the characteristic functions τ̂P′n+1
, τP′n+1

, σ
Q′

n+1
P′n+1

coincide with τ̂Pn+1 , τPn+1 , σQn+1
Pn+1

respectively.
We will only use the latter set of functions for convenience. We let

ε
Q
P = (−1)dim(a

Qn+1
Pn+1

)
.

We set an+1 = aBn+1 and a
+
n+1 = a

+
Bn+1

(see Section 2.2.9).

3.1.9. For P,Q ∈FRS, we define two weights on [G]P by

�P(g)= inf
γ∈MPn+1 (F)NPn+1 (A)

‖g−1
n γ gn+1‖ and

d
Q,�
P (g)=min(dQn+1

Pn+1
(gn), d

Qn+1
Pn+1
(gn+1))

for g ∈ [G]P. Note that �P(h)∼ 1 for h ∈ [H]PH. Moreover, by Lemma 2.4.4.2, we have

(3.1.9.1) d
Q,�
P (g)� d

Q
P (g), for g ∈ [G]P.

From Lemma 2.4.3.1, we also deduce:

(3.1.9.2) For every weight w on [Gn+1]Pn+1 , there exists N0 > 0 such that

w(gn+1)�w(gn)�P(g)
N0, for g = (gn, gn+1) ∈ [G]P.
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3.1.10. We will throughout consider a parameter T ∈ an+1 that we assume most
of the time to be “sufficiently positive”. More precisely, set

d(T)= inf
α∈�n+1

α(T)

where we write �n+1 for �Bn+1 . Then, when we write “for T sufficiently positive”, we
mean “for T such that d(T) � max(ε‖T‖,C)” where ‖.‖ is an arbitrary norm on the
real vector space an+1, C> 0 is a large enough constant and ε > 0 is an arbitrary (but in
practice small enough) constant.

3.2. The coarse spectral expansion for Schwartz functions

3.2.1. Let f ∈ S(G(A)) be a Schwartz test function (see Section 2.5.2).

3.2.2. Let P be a parabolic subgroup of G. The right convolution by f on
L2([G]P) gives an integral operator whose kernel is denoted by KP,f . Let χ ∈ X(G).
Replacing L2([G]P) by its closed subspace L2

χ([G]P) (see (2.9.2.1)), we get a kernel de-
noted by KP,χ,f . We have KP,f =∑

χ∈X(G)KP,χ,f . If P=G, we omit the subscript P. If the
context is clear, we will also omit the subscript f .

3.2.3. A modified kernel. — For h ∈ H(A), g′ ∈ G′(A), χ ∈ X(G) and T ∈ an+1 we
set

KT
f ,χ (h, g

′)=(3.2.3.1)
∑

P∈FRS

εG
P

∑
γ∈PH(F)\H(F)

∑
δ∈P′(F)\G′(F)

τ̂Pn+1(HPn+1(δng
′
n)−TPn+1)Kf ,P,χ (γ h, δg′),

where

• we recall that δ = (δn, δn+1) and g′ = (g′n, g′n+1) according to the decomposition
G′ =G′

n ×G′
n+1;

• in the notation HPn+1(δng
′
n), we consider δng

′
n as an element of G′

n+1(A) (via the
embedding G′

n ↪→G′
n+1);

• TPn+1 is defined as in Section 2.2.12.

Remark 3.2.3.1. — This is the kernel used in [Zyd20] for compactly supported
functions. Since we are considering a Schwartz function f , the sums over γ and δ are not
necessarily finite. However, the component δn may be taken in a finite set depending on g′n
(see [Art78] Lemma 5.1) and we can check that the sum defining KT

f ,χ is also absolutely
convergent. To see this, we can use the following majorization: for every N > 0 there
exists N′ > 0 such that

(3.2.3.2)
∑
χ∈X(G)

∣∣Kf ,P,χ (h, g
′)
∣∣�N ‖g′n‖N′

P′n ‖h‖−N
PH
‖g′n+1‖−N

P′n+1
, for (h, g′) ∈ [H]PH×[G′]P′ .
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This inequality is a simple consequence of Lemma 2.10.1.1 applied to the weight w =
�2N

P ‖.‖−N
P since ‖g′n+1‖P′n+1

��P(g
′)‖g′n‖P′n (recall that ‖gg′‖ � ‖g‖‖g′‖).

3.2.4.

Theorem 3.2.4.1. — Let T ∈ a
+
n+1.

1. The map

f ∈ S(G(A)) �→
∑
χ∈X(G)

∫
[H]

∫
[G′]
|KT

f ,χ (h, g
′)| dg′dh

is given by a convergent integral and defines a continuous semi-norm on S(G(A)).
2. As a function of T, the integral

IT
χ (f )=

∫
[H]

∫
[G′]

KT
f ,χ (h, g

′)ηG′(g
′) dg′dh(3.2.4.3)

coincides with an exponential-polynomial function in T whose purely polynomial part is con-

stant and denoted by Iχ(f ).
3. The distributions Iχ are continuous, left H(A)-invariant and right (G′(A), ηG′)-equivariant.

4. The sum

I(f )=
∑
χ

Iχ(f )(3.2.4.4)

is absolutely convergent and defines a continuous distribution I.

Remark 3.2.4.2. — The last statement is the “coarse spectral expansion” of the
Jacquet-Rallis trace formula for G as introduced by Zydor in [Zyd20].

Proof. — All the statements but the continuity and the extension to Schwartz func-
tions are proved in [Zyd20, Theorems 3.1 and 3.9] for compactly supported functions.

The assertion 1 follows from the combination of majorization (3.3.7.10) of The-
orem 3.3.7.1 below and Proposition 3.3.5.1 for the map (3.3.5.6). Note that assertion 1
implies the continuity of IT

χ . The assertion 2 can be proved as in [Zyd20, proof of Theo-
rems 3.7]. One only needs the slight extension of assertion 1 to modified kernels defined
in (3.7.4.2) associated to Levi subgroups (see comment above (3.7.4.2)). Continuity and
assertion 4 are then the result of the explicit formula of [Zyd20, Theorem 3.7 ] which
also holds for Schwartz functions. Finally one proves assertion 3 as in [Zyd20, Theorems
3.9]. �
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3.3. Auxiliary expressions for Iχ

3.3.1. The goal of this section is to provide new expressions for the distribution
Iχ defined in Theorem 3.2.4.1. In this paper, we will use these expressions to explicitly
compute Iχ . The main results are subsumed in Theorem 3.3.9.1. Before giving the state-
ments, we have to explain the main objects. Note that the proof of Theorem 3.3.9.1 relies
on two other results, namely Theorem 3.3.7.1 and Proposition 3.3.8.1 whose proofs will
be given in subsequent sections. On the other hand Theorem 3.3.7.1 was also used in the
proof of Theorem 3.2.4.1.

3.3.2. The Ichino-Yamana truncation operator. — Let T ∈ an+1. In [IY15], Ichino-
Yamana defined a truncation operator which transforms functions of uniform moderate
growth on [Gn+1] into rapidly decreasing functions on [Gn]. By applying it to the right

component of [G] = [Gn]× [Gn+1], we get a truncation operator which we denote by
T
r

(the subscript r is for right). It associates to any function ϕ on [G] the function on [H]
defined by the following formula: for any h ∈ [H]:

(
T
r ϕ)(h)=

∑
P∈FRS

εG
P

∑
δ∈PH(F)\H(F)

τ̂Pn+1(HPn+1(δh)−TPn+1)ϕGn×Pn+1(δh)(3.3.2.1)

where we follow notations of Section 3.2.3. Note that in the expression HPn+1(δh), we view
δh as an element of Gn+1(A) by the composition H ↪→G→Gn+1 where the second map
is the second projection. We denote by ϕGn×Pn+1 the constant term of ϕ along Gn × Pn+1.

For properties of 
T
r we shall refer to [IY15]. However for our purposes it is con-

venient to state the following proposition.

Proposition 3.3.2.1. — For any positive integers N and N′, any open compact subgroup K0 ⊂
G(Af ), there is an integer r > 0 and a finite family (Xi)i∈I of elements of U(gC) of degree � r such

that for any ϕ ∈Cr(G(F)\G(A)/K0) we have for all h ∈ [H]
(
T

r ϕ)(h)� ‖h‖−N
H

∑
i∈I

(
sup

x∈G(A)
‖x‖−N′

G |(R(Xi)ϕ)(x)|
)

Proof. — The result, a variant of Arthur’s Lemma 1.4 of [Art80], is proven in
[IY15], Lemma 2.4. �

Let g ∈ [G]. We shall apply the truncation operator 
T
r to the map x ∈ [G] �→

Kf ,χ (x, g). After evaluating at h ∈ [H] we get an expression we shall simply denote by

T

r Kf ,χ (h, g).

Proposition 3.3.2.2. — For every N � 0, there exists a continuous semi-norm ‖.‖S on

S(G(A)) such that for f ∈ S(G(A))
∑
χ∈X(G)

|
T
r Kf ,χ (h, g)|� ‖f ‖S‖h‖−N

H ‖g‖−N
G(3.3.2.2)
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for h ∈ [H] and g ∈ [G].
Proof. — Using the weight w = ‖ · ‖G on G(A) we deduce from Lemma 2.10.1.1

that N0 > 0 and for all N � 0 a continuous semi-norm ‖ · ‖ on S(G(A)) such that:∑
χ∈X(G)

|Kf ,χ (x, y)|� ‖f ‖‖x‖N0+N
G ‖y‖−N

G ,(3.3.2.3)

for all x, y ∈G(A). The right derivatives in the first variable of the kernel Kf ,χ (x, y) can
be expressed in terms of the kernel Kf ,χ associated to left derivatives of f . Let K0 be
a compact subgroup of G(Af ). We deduce from (3.3.2.3) and Proposition 3.3.2.1 that
there is a continuous semi-norm ‖ · ‖ on S(G(A)) such that for any f ∈ S(G(A)) that is
left-invariant under K0 we have∑

χ∈X(G)
|
T

r Kf ,χ (h, g)|� ‖f ‖‖h‖−N
H ‖g‖−N

G

for all h ∈ [H] and g ∈ [G]. This gives the proposition (a semi-norm on S(G(A)) is con-
tinuous if and only if its restriction to S(G(A))K0 is continuous for every compact-open
subgroup K0 ⊂G(Af )). �

3.3.3. Convergence of a first integral. — It is given by the following proposition.

Proposition 3.3.3.1. — The map

f ∈ S(G(A)) �→
∑
χ∈X(G)

∫
[H]×[G′]

|
T
r Kf ,χ (h, g

′)|dhdg′,(3.3.3.4)

is given by a convergent integral and defines a continuous semi-norm on S(G(A)).

Proof. — It is a straightforward consequence of Proposition 3.3.2.2. �

3.3.4. Arthur function FGn+1(·,T). — For T ∈ an+1 sufficiently positive, we shall use
Arthur function FGn+1(·,T) (see [Art78] §6). It is the characteristic function of the set
of x ∈ Gn+1(A) for which there exists a δ ∈ Gn+1(F) such that δx ∈ sGn+1 (see Section
2.2.13) and 〈 ,H0(δx)−T〉 ≤ 0 for all  ∈ �̂Bn+1 . Recall also that FGn+1(·,T) descends
to characteristic function of a compact subset of Zn+1(A)Gn+1(F)\Gn+1(A). We will also
use the function FG′n+1(·,T) defined relatively to G′

n+1.

3.3.5. Two other convergent integrals.

Proposition 3.3.5.1. — The maps

f ∈ S(G(A)) �→
∑
χ∈X(G)

∫
[H]×[G′]

FGn+1(h,T)|Kf ,χ (h, g
′)| dhdg′(3.3.5.5)
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f ∈ S(G(A)) �→
∑
χ∈X(G)

∫
[H]×[G′]

FG′n+1(g′n,T)|Kf ,χ (h, g
′)| dhdg′(3.3.5.6)

are given by convergent integrals and define continuous semi-norms on S(G(A)), where as usual g′ =
(g′n, g

′
n+1) ∈G′

n(A)×G′
n+1(A).

Proof. — Observe that the restriction of FGn+1(·,T) to [H] is compactly supported.
Then the convergence and the continuity of the integral (3.3.5.5) follow from the ma-
jorization (3.3.2.3).

Using Lemma 2.10.1.1, (see also comments on inequality (3.2.3.2)), we see that for
every N> 0 there exists N′ > 0 and a continuous semi-norm ‖.‖ on S(G(A)) such that

(3.3.5.7)
∑
χ∈X(G)

∣∣Kf ,P,χ (h, g
′)
∣∣� ‖f ‖‖g′n‖N′

G′n ‖h‖−N
H ‖g′n+1‖−N

G′n+1
,

for (h, g′) ∈ [H] × [G′] and f ∈ S(G(A)).
The convergence and continuity of the integral (3.3.5.6) result from the above in-

equality and the fact that the restriction of FG′n+1(·,T) to [G′
n] is compactly supported. �

3.3.6. A second modified kernel. — Let f ∈ S(G(A)). For T ∈ an+1, χ ∈ X(G) and
(h, g′) ∈ [H] × [G′], we set

(3.3.6.8) κT
f ,χ (h, g

′)=
∑

P∈FRS

εG
P

∑
γ∈PH(F)\H(F)
δ∈P′(F)\G′(F)

τ̂Pn+1(HPn+1(γ h)−TPn+1)Kf ,P,χ (γ h, δg′).

Remark 3.3.6.1. — Here the expression HPn+1(h) is understood as the value at
h ∈H(A)=Gn(A)⊂Gn+1(A) of the map HPn+1 . The expression defining κT

f ,χ is absolutely
convergent as the sum over γ ∈ PH(F)\H(F) is finite (see [Art78, Lemma 5.1]) and Kf ,P,χ

is rapidly decaying in the second variable, see (3.3.2.3).

3.3.7. Asymptotics of the modified kernels. — We find that the modified kernels
(3.2.3.1) and (3.3.6.8) are asymptotic for large parameters T to the kernels truncated
by Arthur’s characteristic function. More precisely we have:

Theorem 3.3.7.1.

1. For every N> 0, there exists a continuous semi-norm ‖.‖S,N on S(G(A)) such that

(3.3.7.9)
∑
χ∈X(G)

∣∣∣KT
f ,χ (h, g

′)− FG′n+1(g′n,T)Kf ,χ (h, g
′)
∣∣∣� e−N‖T‖‖h‖−N

H ‖g′‖−N
G′ ‖f ‖S,N
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for f ∈ S(G(A)), (h, g′) ∈ [H] × [G′] and T ∈ an+1 sufficiently positive. In particular,

for every N> 0, there exists a continuous semi-norm ‖.‖S,N on S(G(A)) such that

∑
χ∈X(G)

∫
[H]×[G′]

∣∣∣KT
f ,χ (h, g

′)− FG′n+1(g′n,T)Kf ,χ (h, g
′)
∣∣∣ dhdg′(3.3.7.10)

� e−N‖T‖ ‖f ‖S,N
for f ∈ S(G(A)).

2. For every N> 0, there exists a continuous semi-norm ‖.‖S,N on S(G(A)) such that

(3.3.7.11)
∑
χ∈X(G)

∣∣∣κT
f ,χ (h, g

′)− FGn+1(h,T)Kf ,χ (h, g
′)
∣∣∣� e−N‖T‖‖h‖−N

H ‖g′‖−N
G′ ‖f ‖S,N

for f ∈ S(G(A)), (h, g′) ∈ [H] × [G′] and T ∈ an+1 sufficiently positive. In particular,

for every N> 0, there exists a continuous semi-norm ‖.‖S,N on S(G(A)) such that

∑
χ∈X(G)

∫
[H]×[G′]

∣∣∣κT
f ,χ (h, g

′)− FGn+1(h,T)Kf ,χ (h, g
′)
∣∣∣ dhdg′(3.3.7.12)

� e−N‖T‖ ‖f ‖S,N
for f ∈ S(G(A)).

Proof. — The proof of 3.3.7.1 will be given in Section 3.6 after some preparation
provided by Sections 3.4 and 3.5. Note that the asymptotics (3.3.7.10), resp. (3.3.7.12), is
an obvious consequence of (3.3.7.9), resp. (3.3.7.11). �

3.3.8. Recall that we have built distributions Iχ in Theorem 3.2.4.1 from the
kernel KT

χ . The following Proposition shows that one could have defined Iχ using the
kernel κT

χ .

Proposition 3.3.8.1. — Let χ ∈X(G)

1. The integral

iT
χ (f )=

∫
[H]×[G′]

κT
f ,χ (h, g

′)ηG′(g
′)dg′dh,

is absolutely convergent for T ∈ an+1 sufficiently positive.

2. The map T �→ iT
χ (f ), when T is sufficiently positive, coincides with an exponential-

polynomial whose purely polynomial part is constant and equal to Iχ(f ).

Proof. — The first assertion follows from Proposition 3.3.5.1 and the asymptotics
(3.3.7.11) of Theorem 3.3.7.1. The second assertion will be proved in Section 3.7. �
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3.3.9. We can now state the final theorem of the section.

Theorem 3.3.9.1. — Let χ ∈ X(G) and f ∈ S(G(A)). For T ∈ an+1 sufficiently positive

let PT
χ (f ) and IT

χ (f ) be one of the following pairs of expressions:

IT
χ (f ) and

∫
[H]×[G′]

FG′n+1(g′n,T)Kχ(h, g
′) ηG′(g

′) dhdg′ ;(3.3.9.13)

iT
χ (f ) and

∫
[H]×[G′]

FGn+1(h,T)Kχ(h, g
′) ηG′(g

′) dhdg′ ;(3.3.9.14)

iT
χ (f ) and

∫
[H]×[G′]


T
r Kχ(h, g

′) ηG′(g
′)dhdg′.(3.3.9.15)

1. The integral defining IT
χ (f ) is absolutely convergent and the map T �→ PT

χ (f ) coincides

for T ∈ an+1 sufficiently positive with an exponential-polynomial whose constant term equals

Iχ(f ).
2. For every N> 0, there exists a continuous semi-norm ‖.‖S,N on S(G(A)) such that

|IT
χ (f )− PT

χ (f )|� ‖f ‖S,Ne−N‖T‖

for T ∈ an+1 sufficiently positive and f ∈ S(G(A)).

Proof. — For assertion 1, the statement about PT
χ (f ) is just the statement about

IT
χ (f ) and iT

χ (f ) that has been given in Theorem 3.2.4.1 and Proposition 3.3.8.1. The
three integrals are absolutely convergent by Propositions 3.3.3.1 and 3.3.5.1. Let’s prove
assertion 2. The asymptotics for the first pair, resp. second, is a direct consequence of the
asymptotics (3.3.7.10), resp. (3.3.7.12), of Theorem 3.3.7.1. So it remains to prove the
third asymptotics. In fact, for every N > 0, there exists a continuous semi-norm ‖.‖S,N
on S(G(A)) such that∫

[H]

∫
[G′]

∣∣
T
r Kχ(h, g

′)− FGn+1(h,T)Kχ(h, g
′)
∣∣ dhdg′ � ‖f ‖S,Ne−N‖T‖

for f ∈ S(G(A)) and T sufficiently positive. This can be proved as in [IY15, proof of
Proposition 3.8] and is left to the reader. So the third asymptotics follows from the second
one. �

3.4. Auxiliary function spaces and smoothed constant terms

3.4.1. For G ∈ {G′
n,G

′
n+1,Gn,Gn+1,H,G}, we let TFRS(G) be the space of tuples

(Pϕ)P∈FRS ∈
∏

P∈FRS

T ([G]P)
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such that for every P⊂Q ∈FRS, we have

Pϕ − (Qϕ)P ∈ S
θ

Q
P
([G]P)

where we have set P= P∩G, Q=Q∩G, the weight θQ
P is defined by

θ
Q
P =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d
Q′

n+1
P′n+1

if G ∈ {G′
n,G

′
n+1},

d
Qn+1
Pn+1

if G ∈ {Gn,Gn+1},

d
Q
P if G ∈ {H,G},

and we refer the reader to Section 2.5.11 for the definition of the function spaces
S
θ

Q
P
([G]P). By Lemma 2.4.4.2, in every case we have θQ

P � d
Q
P and therefore, by Propo-

sition 2.5.14.1, the above condition is equivalent to the following: there exists N0 > 0
such that for every r � 0 and X ∈ U(G∞) (where we denote by G∞ the Lie algebra of
G(F⊗Q R)), we have

(3.4.1.1)
∣∣(R(X)Pϕ)(g)− (R(X)Qϕ)(g)∣∣�r,X ‖g‖N0

P θ
Q
P (g)

−r, for g ∈ P(F)\G(A).
Note that, by Lemma 2.4.4.2 again, for every P⊂Q ∈FRS, we have d

Q
P (h)∼ d

Qn+1
Pn+1
(h) for

h ∈ [H]PH so that under the identification H=Gn, we have

(3.4.1.2) TFRS([H])= TFRS([Gn]).
We define similarly T �

FRS
([G]) as the space of tuples

(Pϕ)P∈FRS ∈
∏

P∈FRS

S�P([G]P)

such that for every P⊂Q ∈FRS, we have

Pϕ − (Qϕ)P ∈ S
d

Q,�
P
([G]P)

where the weights �P and d
Q,�
P have been defined in Section 3.1.9. Similarly, using

(3.1.9.1) and Proposition 2.5.14.1, the condition above is equivalent to: there exists
N0 > 0 such that for every r � 0 and X ∈ U(g∞), we have

(3.4.1.3)
∣∣(R(X)Pϕ)(g)− (R(X)Qϕ)(g)∣∣�r,X ‖g‖N0

P d
Q,�
P (g)−r, for g ∈ P(F)\G(A).

3.4.2. Obviously, TFRS([G]) (resp. T �
FRS
([G])) embeds as a closed subspace of

∏
P∈FRS

T ([G]P)×
∏

P⊂Q∈FRS

S
d

Q
P
([G]P)
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(resp.
∏

P∈FRS

S�P([G]P)×
∏

P⊂Q∈FRS

S
d

Q,�
P
([G]P))

and as such it inherits a LF topology. More precisely, for every N > 0, the inverse im-
age TFRS,N([G]) (resp. T �

FRS,N
([G])) of

∏
P∈FRS

TN([G]P)×∏
P⊂Q∈FRS

S
d

Q
P ,N
([G]P) (resp. of∏

P∈FRS
S�P,N([G]P)×

∏
P⊂Q∈FRS

S
d

Q,�
P ,N([G]P))) in TFRS([G]) (resp. in T �

FRS
([G])) inher-

its a strict LF topology (by Lemma 2.5.4.1) and we endow TFRS([G]) (resp. in T �
FRS
([G]))

with the locally convex direct limit of these topologies. By Theorem 2.9.4.1, we have

(3.4.2.4) For every ϕ = (Pϕ)P∈FRS ∈ TFRS([G]) (resp. ϕ = (Pϕ)P∈FRS ∈ T �
FRS
([G])), the

family

χ ∈X(G) �→ ϕ
χ
:= (Pϕχ)P∈FRS

is absolutely summable in TFRS([G]) (resp. in T �
FRS
([G])) with sum ϕ.

For the purpose of the next proposition, we recall that T 0([G]) denotes the space
of Radon measures of moderate growth on [G] (see Section 2.5.9).

Proposition 3.4.2.1.

1. For every ϕ ∈ T 0([H]) and f ∈ S(G(A)), the family

P ∈FRS �→R(f )ϕPH

belongs to T �
FRS
([G]).

2. Let G ∈ {Gn+1,G}. Then, for every ϕ ∈ T 0([G′]) and f ∈ S(G(A)), the family

P ∈FRS �→R(f )ϕP′,

where we have set P′ = P∩G′, belongs to TFRS([G]).
3. For every (G1,G2) ∈ {(Gn,G′

n), (G,H)} and every (Pϕ)P∈FRS ∈ TFRS([G1]), the fam-

ily of restrictions

P ∈FRS �→ Pϕ |[G2]P2
,

where we have set P2 = P∩G2, belongs to TFRS([G2]).
4. For every (Pϕ)P∈FRS ∈ T �

FRS
([G]) and (Pψ)P∈FRS ∈ TFRS([Gn+1]), the family of products

P ∈FRS �→
(
(gn, gn+1) ∈ [G]P �→ Pϕ(gn, gn+1) Pψ(gn+1)

)

belongs to T �
FRS
([G]).

Proof. — 1. By Lemma 2.5.11.1, it suffices to prove that for every P ⊂ Q ∈ FRS,
we have:
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• �P is bounded on the support of ϕPH;
• d

Q,�
P is bounded on the support of ϕPH − (ϕQH)P.

The first requirement is clear as ϕPH is supported on [H]PH ⊂ [G]P and �P is bounded
on [H]PH. For the second one, we need to show the existence of C> 0 such that ϕPH and
(ϕQH)P coincide on {g ∈ [G]P | d

Q,�
P (g) > C}. By adjunction, for every ψ ∈ S0([G]P), we

have

〈ϕPH,ψ〉P = 〈ϕQH,E
QH
PH
(ψ)〉QH and 〈(ϕQH)P,ψ〉P = 〈ϕQH,E

Q
P (ψ)〉QH .

Thus, it suffices to show that for C> 0 sufficiently large, for every function ψ ∈ S0([G]P)
supported in {g ∈ [G]P | dQ,�

P (g) >C} we have

EQ
P (ψ) |[H]QH

= EQH
PH
(ψ).

With the notation of Section 2.4.4, this is in turn equivalent to:

(3.4.2.5) There exists C> 0 such that for every g ∈ P(F)NQ(A)\G(A) with d
Q,�
P (g) >C,

πP
Q(g) ∈ [H]QH implies g ∈ PH(F)NQH(A)\H(A).

Writing g = (gn, gn+1), the condition d
Q,�
P (g) >C is equivalent to (gn, gn+1) ∈ ωQn+1

Pn+1
[>C]2

whereas πP
Q(g) ∈ [H]QH (resp. g ∈ PH(F)NQH(A)\H(A)) is equivalent to πPn+1

Qn+1
(gn) =

π
Pn+1
Qn+1
(gn+1) (resp. gn = gn+1). Thus, the claim follows directly from Lemma 2.4.4.1.4.

2. Let P⊂Q ∈ FRS and set P = P ∩G, Q =Q ∩G, P′ = P ∩G′, Q′ =Q ∩G′.
Since G ∈ {Gn+1,G}, we have θQ

P = d
Q
P . Thus, by a similar argument, we are reduced to

show:

(3.4.2.6) There exists C> 0 such that for every g ∈ P(F)NQ(A)\G(A) with d
Q
P (g) > C,

πP
Q(g) ∈ [G′]Q′ implies g ∈ P′(F)NQ′(A)\G′(A).

By Lemma 2.4.4.1 1. and Lemma 2.4.4.2, there exists ε > 0 such that the set

{g′ ∈ P′(F)NQ′(A)\G′(A) | dQ
P (g

′) > ε}

surjects onto [G′]Q′ . Moreover, by Lemma 2.4.4.1 4., there exists C > 0 such that for
g, g′ ∈ P(F)NQ(A)\G(A) with d

Q
P (g) > C and d

Q
P (g

′) > ε, πP
Q(g)= πP

Q(g
′) implies g = g′.

The claim follows.

3. follows from the characterization (3.4.1.1) since, by Lemma 2.4.4.2, for P⊂Q ∈
FRS we have θQ1

P1
∼ θQ2

P2
. Similarly, 4. follows readily from the characterizations (3.4.1.1),

(3.4.1.3) as, by definition of d
Q,�
P , we have d

Q,�
P (g)� d

Qn+1
Pn+1
(gn+1) for g ∈ [G]P. �
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3.4.3. For P ∈FRS, ϕ ∈ S�P([G]P) and ψ ∈ T 0([Gn+1]Pn+1), we define a function
〈ϕ,ψ〉 ∈ T ([Gn]Pn

) by

〈ϕ,ψ〉(gn)=
∫
[Gn+1]Pn+1

ϕ(gn, gn+1)ψ(gn+1), gn ∈ [Gn]Pn
.

Note that the integral is absolutely convergent and the resulting function of uniform
moderate growth by (3.1.9.2) applied to the weight w = ‖.‖N

Pn+1
for N sufficiently large.

Proposition 3.4.3.1. — Let (Pϕ)P∈FRS ∈ T �
FRS
([G]) andψ ∈ T 0([G′

n+1]). Then, the fam-

ily

P ∈FRS �→ 〈Pϕ,ψP′n+1
〉

belongs to TFRS([Gn]).
Proof. — By Dixmier-Malliavin, we may assume that (Pϕ)P∈FRS = (R(f )Pϕ′)P∈FRS

for some (Pϕ′)P∈FRS ∈ T �
FRS
([G]) and f ∈ C∞

c (Gn+1(A)).7 Then, we have 〈Pϕ,ψP′n+1
〉 =

〈Pϕ′,R(f ∨)ψP′n+1
〉 where f ∨(g)= f (g−1). Therefore, by Proposition 3.4.2.1 2. and 4., up

to replacing Pϕ by the product

g ∈ [G]P �→ Pϕ
′(g)R(f ∨)ψP′n+1

(gn+1),

it suffices to prove that:

(3.4.3.7) The family of functions

P ∈FRS �→ pn∗(Pϕ) : gn ∈ [Gn]Pn
�→

∫
[Gn+1]Pn+1

Pϕ(gn, gn+1)dgn+1

belongs to TFRS([Gn]).
Let P ⊂ Q ∈ FRS. By the characterization (3.4.1.1), we need to show the existence of
N0 > 0 such that for every X ∈ U(gn,∞) and r � 0, we have

∣∣∣∣∣
∫
[Gn+1]Pn+1

R(X)Pϕ(gn, gn+1)dgn+1 −
∫
[Gn+1]Qn+1

R(X)Qϕ(gn, gn+1)dgn+1

∣∣∣∣∣
�r,X ‖gn‖N0

Pn
d

Qn+1
Pn+1
(gn)

−r

for gn ∈ Pn(F)NQn
(A)\Gn(A). For notational simplicity, we will prove this for X = 1 but

it will be clear from the argument that we can choose the same exponent N0 for every
X ∈ U(gn,∞).

7 More precisely, this follows from applying the Dixmier-Malliavin theorem to the continuous smooth Fréchet
representation T �

FRS,N
([G])J for suitable N> 0 and compact-open subgroup J⊂G(Af ).
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Let C> 0 and set ω = ωQn+1
Pn+1

[>C] (see Section 2.4.4 for the notation). Since Pϕ ∈
S�P([G]P), by (3.1.9.2) applied to the weights w = (dQn+1

Pn+1
)−1 and ‖.‖Pn+1 , there exists

N1 > 0 such that for every N> 0 and r � 0, we have

(3.4.3.8)
∣∣
Pϕ(g)

∣∣�N,r ‖gn‖N1+N
Pn

‖gn+1‖−N
Pn+1

d
Qn+1
Pn+1
(gn+1)

rd
Qn+1
Pn+1
(gn)

−r, for g ∈ [G]P.

Similarly, up to enlarging N1 and since ‖.‖Qn
�‖.‖Pn

, d
Qn+1
Pn+1

�d
Pn+1
Qn+1

on Pn(F)NQn
(A)\Gn(A)

(see (2.4.1.2), (2.4.4.19)), for every N> 0 and r � 0, we have
∣∣

Qϕ(g)
∣∣�N,r ‖gn‖N1+N

Pn
‖gn+1‖−N

Qn+1
d

Pn+1
Qn+1
(gn+1)

rd
Qn+1
Pn+1
(gn)

−r,(3.4.3.9)

for g ∈ P(F)NQ(A)\G(A).

By Lemma 2.4.4.1 1. and 2., d
Pn+1
Qn+1

and d
Qn+1
Pn+1

are bounded from above outside πPn+1
Qn+1
(ω)

and πQn+1
Pn+1
(ω) respectively. Thus, from (3.4.3.8) and (3.4.3.9) we deduce that there exists

N2 > 0 such that for every r � 0, the two functions

gn �→
∫
[Gn+1]Pn+1\π

Qn+1
Pn+1

(ω)

Pϕ(gn, gn+1)dgn+1 and

gn �→
∫
[Gn+1]Qn+1\π

Pn+1
Qn+1

(ω)

Qϕ(gn, gn+1)dgn+1

are essentially bounded by ‖gn‖N2
Pn

d
Qn+1
Pn+1
(gn)

−r for gn ∈ Pn(F)NQn
(A)\Gn(A). Thus, it only

remains to estimate the difference∫
π

Qn+1
Pn+1

(ω)

Pϕ(gn, gn+1)dgn+1 −
∫
π

Pn+1
Qn+1

(ω)

Qϕ(gn, gn+1)dgn+1

which, by Lemma 2.4.4.1 and provided C is sufficiently large, is equal to

(3.4.3.10)
∫
ω

Pϕ(gn, gn+1)− Qϕ(gn, gn+1)dgn+1.

As d
Pn+1
Qn+1

∼ d
Qn+1
Pn+1

and ‖.‖Qn+1 ∼ ‖.‖Pn+1 on ω (see Lemma 2.4.4.1 2.), by (3.4.3.8), (3.4.3.9),
for every r � 0 and N> 0, we have

∣∣
Pϕ(g)− Qϕ(g)

∣∣�N,r ‖gn‖N1+N
Pn

‖gn+1‖−N
Pn+1

d
Qn+1
Pn+1
(gn+1)

rd
Qn+1
Pn+1
(gn)

−r

for g ∈ Pn(F)NQn
(A)\Gn(A)× ω. Combining this with the characterization (3.4.1.3) and

the equality

d
Q,�
P (g)max(1, dQn+1

Pn+1
(gn)d

Qn+1
Pn+1
(gn+1)

−1)= d
Qn+1
Pn+1
(gn) for g ∈ [G]P,
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it readily follows that there exists N3 > 0 such that for every N> 0 and r � 0, we have∣∣
Pϕ(g)− Qϕ(g)

∣∣�N,r ‖gn‖N3+N
Pn

‖gn+1‖−N
Pn+1

d
Qn+1
Pn+1
(gn)

−r.

This in turn implies that for some N4 > 0 the integral (3.4.3.10) is essentially bounded
by ‖gn‖N4

Pn
d

Qn+1
Pn+1
(gn)

−r for every r � 0 and this ends the proof of (3.4.3.7) hence of the
proposition. �

3.5. A relative truncation operator

3.5.1. Let G ∈ {H,G′
n,Gn}. For ϕ = (Pϕ)P∈FRS ∈ TFRS([G]) and T ∈ an+1, we set


T,Gϕ(g)=
∑

P∈FRS

εG
P

∑
δ∈P(F)\G(F)

τ̂Pn+1(HPn+1(δg)−TPn+1) Pϕ(δg)

for g ∈ [G]. We also set

�T,Gϕ(g)=
⎧⎨
⎩

FG′n+1(g,T)Gϕ(g) if G=G′
n,

FGn+1(g,T)Gϕ(g) if G ∈ {H,Gn}.
Recall that S0([G]) stands for the space of functions of rapid decay on [G] (see

Section 2.5.6).

Theorem 3.5.1.1. — For T sufficiently positive, we have 
T,Gϕ ∈ S0([G]). More precisely,

for every c> 0 and N> 0, there exists a continuous semi-norm ‖.‖FRS,c,N on TFRS([G]) such that

(3.5.1.1) ‖
T,Gϕ −�T,Gϕ‖∞,N � e−c‖T‖‖ϕ‖FRS,c,N

for ϕ ∈ TFRS([G]) and T ∈ an+1 sufficiently positive (where the semi-norms (‖.‖∞,N)N>0 are as in

Section 2.5.6).

Proof. — Note that, by the identification (3.4.1.2), the statement of the theorem for
G = H is exactly equivalent to the statement for G = Gn which itself can be obtained
from the case G=G′

n by a change of base-field from F to E. Therefore, we shall content
ourself to give the proof when G=Gn.

As the restriction of FGn+1(.,T) to [Gn] is compactly supported, we have �T,Gnϕ ∈
S0([Gn]) and the first assertion of the theorem follows from the second. Now, as in the
beginning of the proof of [Zyd20, proposition 2.8], using [Zyd20, lemme 2.1], for T
sufficiently positive we obtain


T,Gnϕ(g)=
∑

P⊂Q∈FRS

∑
δ∈Pn(F)\Gn(F)

FPn+1(δg,T)

× σQn+1
Pn+1
(HPn+1(δg)−TPn+1) P,Qϕ(δg)
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where we have set

P,Qϕ(g)=
∑

P⊂R⊂Q

εG
R Rϕ(g), for g ∈ Pn(F)\Gn(A),

the sum running over parabolic subgroups R ∈FRS such that P⊂R⊂Q. Since σGn+1
Gn+1

=
1 and σ Pn+1

Pn+1
= 0 for P � G (see [Art78, §6, p. 940]), it follows that


T,Gnϕ(g)−�T,Gnϕ(g)

=
∑

P�Q∈FRS

∑
δ∈Pn(F)\Gn(F)

FPn+1(δg,T)σQn+1
Pn+1
(HPn+1(δg)−TPn+1) P,Qϕ(δg)

for g ∈ [Gn].
Let us fix P � Q ∈ FRS. Since EGn

Pn
sends S0([Gn]Pn

) into S0([Gn]) continuously,
it suffices to show that for every c > 0 and N > 0, there exists a continuous semi-norm
‖.‖FRS,c,N on TFRS([Gn]) such that

(3.5.1.2)
∣∣
P,Qϕ(g)

∣∣� e−c‖T‖‖g‖−N
Pn
‖ϕ‖FRS,c,N

for ϕ ∈ TFRS([Gn]), T ∈ an+1 sufficiently positive and g ∈ Pn(F)\Gn(A) such that

FPn+1(g,T)σQn+1
Pn+1
(HPn+1(g)−TPn+1) �= 0.

Up to conjugacy, we may assume that P and Q are standard. We will need the following
lemma which summarizes part of the analysis performed in [Art78, §6, §7].

Lemma 3.5.1.2. — There exists r > 0 such that

e‖T‖ �
(

min
α∈�Qn+1

0 \�Pn+1
0

dPn+1,α(g)

)r

and

‖g‖Pn
�

(
max

α∈�Qn+1
0 \�Pn+1

0

dPn+1,α(g)

)r

for every T ∈ an+1 sufficiently positive and g ∈ Pn(F)\Gn(A) satisfying

FPn+1(g,T)σQn+1
Pn+1
(HPn+1(g)−TPn+1) �= 0.

Proof. — Writing g as zg1 where z ∈ A∞
Gn+1

and g1 ∈Gn+1(A)1 we have dPn+1,α(g)∼
dPn+1,α(g

1) and there exists r0 > 0 such that ‖g‖Pn
� ‖g1‖r0

Pn+1
. Thus, it suffices to prove

that the same statement holds for g ∈ Pn+1(F)\Gn+1(A)1. Moreover, we may assume that
g belongs to some Siegel domain sPn+1 for [Gn+1]Pn+1 . Then, by [Art78, Eq. (7.7)],

FPn+1(g,T)σQn+1
Pn+1
(HPn+1(g)−TPn+1) �= 0
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implies 〈α,H0(g)〉> 〈α,T〉 for every α ∈�Qn+1
0 \�Pn+1

0 and therefore, as T is sufficiently
positive, also

(3.5.1.3) min
α∈�Qn+1

0 \�Pn+1
0

〈α,H0(g)〉> ε‖T‖

for some constant ε > 0. The first inequality of the lemma follows for r > 0 large enough.
For the second inequality, by [Art78, Corollary 6.2], the condition σQn+1

Pn+1
(HPn+1(g) −

TPn+1) �= 0 implies

(3.5.1.4) ‖HPn+1(g)−TPn+1‖� c0

⎛
⎝1+ max

α∈�Qn+1
Pn+1

〈α,H0(g)−T〉
⎞
⎠

whereas the condition FPn+1(g,T) �= 0 implies

(3.5.1.5) ‖HPn+1(g)‖� c1‖T‖
for suitable constants c0, c1 > 0 and where HPn+1(g) denotes the projection of H0(g) to
a

Pn+1
0 . As �Qn+1

Pn+1
is the restriction of �Qn+1

0 \�Pn+1
0 to aPn+1 , from (3.5.1.4) and (3.5.1.5) we

get

‖H0(g)‖� c3

(
1+ ‖T‖ + max

α∈�Qn+1
0 \�Pn+1

0

〈α,H0(g)〉
)

for some constant c3 > 0. Combining this with (3.5.1.3), we finally obtain

‖H0(g)‖� c4

(
1+ max

α∈�Qn+1
0 \�Pn+1

0

〈α,H0(g)〉
)

for some c4 > 0. Exponentiating then gives the second inequality of the lemma. �

We are now in position to prove (3.5.1.2). Let α ∈ �Qn+1
0 \ �Pn+1

0 . For every
parabolic subgroup P ⊂ R ⊂ Q such that R ∈ FRS and α ∈ �Rn+1

0 , there exists a
unique parabolic subgroup P ⊂ Rα ⊂ Q with Rα ∈ FRS and �

Rαn+1
0 = �Rn+1

0 \ {α}. As
(Pϕ)P∈FRS ∈ TFRS([Gn]), by the inequality (3.4.1.1), there exists N0 > 0 such that for every
r � 0 we can find a continuous semi-norm ‖.‖FRS,r,α on TFRS([Gn]) with

|P,Qϕ(g)|�
∑

P⊂R⊂Q

α∈�Rn+1
0

|Rϕ(g)− Rαϕ(g)|� ‖g‖N0
Pn
‖ϕ‖FRS,r,α

∑
P⊂R⊂Q

α∈�Rn+1
0

dRn+1,α(g)
−r

for ϕ ∈ TFRS([Gn]) and g ∈ Pn(F)\Gn(A). Now, if FPn+1(g,T)σQn+1
Pn+1
(HPn+1(g)− TPn+1) �= 0

for a T ∈ an+1 that is sufficiently positive, the first inequality of the above lemma implies
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that g ∈ ωQn+1
Pn+1

[> C] for some fixed constant C> 0. In particular, by Lemma 2.4.4.1.2,8

we have dRn+1,α(g)∼ dPn+1,α(g) for every P⊂R⊂Q and the above estimate becomes

|P,Qϕ(g)| �r ‖g‖N0
Pn

dPn+1,α(g)
−r‖ϕ‖FRS,r,α.

Taking the minimum of the right hand side over α ∈ �Qn+1
0 \ �Pn+1

0 and using Lemma
3.5.1.2 once again, we deduce the estimates (3.5.1.2) and this ends the proof of the theo-
rem. �

3.6. Proof of Theorem 3.3.7.1

3.6.1. We prove 1., the proof of 2. being similar and left to the reader. Set f ∨(g)=
f (g−1) for g ∈G(A). For T ∈ an+1, we consider the two operators

LT
f ,P

T
f : T 0([H])⊗ T 0([G′

n+1])→ S0([G′
n])

defined as the following compositions

LT
f : T 0([H])⊗ T 0([G′

n+1])
R�(f ∨)⊗Id−−−−−→ T �

FRS
([G])⊗ T 0([G′

n+1])
〈.,.〉−→ TFRS([Gn]) Res−→ TFRS([G′

n])

T,G′n−−−→ S0([G′

n])
and

PT
f : T 0([H])⊗ T 0([G′

n+1])
R�(f ∨)⊗Id−−−−−→ T �

FRS
([G])⊗ T 0([G′

n+1])
〈.,.〉−→ TFRS([Gn]) Res−→ TFRS([G′

n])
�T,G′n−−−→ S0([G′

n])
respectively. Here, R�(f ∨), 〈., .〉 and Res denote the operators ϕ �→ (R(f ∨)ϕPH)P∈FRS (see
Proposition 3.4.2.1 1.), (Pϕ)P∈FRS ⊗ψ �→ (〈Pϕ,ψP′n+1

〉)P∈FRS (see Proposition 3.4.3.1) and
(Pϕ)P∈FRS �→ (Pϕ |[G′n]P′n )P∈FRS (see Proposition 3.4.2.1 3.) respectively whereas 
T,G′n and

�T,G′n are the truncation operators defined in the previous section.
By the closed graph theorem (which is valid for linear maps between LF spaces

see [Gro55, théorème B p. 17]), each of the operators R�(f ∨), Res, 
T,G′n and �T,G′n

is readily seen to be continuous: indeed, it suffices to check that the compositions of
these operators with the linear maps corresponding to the “pointwise evaluations” are

8 Note that ω
Qn+1
Pn+1

[>C] ⊂ ωRn+1
Pn+1

[>C]
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continuous which, in each case, is straightforward to check. Similarly, the operator 〈., .〉 is
separately continuous. In particular, LT

f and PT
f are separately continuous bilinear maps.

We claim that the functions KT
f and FG′n+1(.,T)Kf are the kernels of the operators

LT
f and PT

f respectively that is: for every ϕ ⊗ ψ ∈ T 0([H])⊗ T 0([G′
n+1]) and g′n ∈ [G′

n],
we have

(3.6.1.1) LT
f (ϕ ⊗ψ)(g′n)=

∫
[H]×[G′n+1]

KT
f (h; g′n, g′n+1)ϕ(h)ψ(g

′
n+1)

and

(3.6.1.2) PT
f (ϕ ⊗ψ)(g′n)=

∫
[H]×[G′n+1]

FG′n+1(g′n,T)Kf (h; g′n, g′n+1)ϕ(h)ψ(g
′
n+1).

Let us show (3.6.1.1), the proof of (3.6.1.2) being similar (and actually easier). Un-
folding the definitions, for ϕ ⊗ψ ∈ T 0([H])⊗ T 0([G′

n+1]) and g′n ∈ [G′
n], we have

LT
f (ϕ ⊗ψ)(g′n)=

∑
P∈FRS

εG
P

∑
δn∈P′n(F)\G′n(F)

τ̂Pn+1(HPn+1(δng
′
n)−TPn+1)(3.6.1.3)

× 〈R(f ∨)ϕPH,ψP′n+1
〉(δng

′
n).

Moreover,

〈R(f ∨)ϕPH,ψP′n+1
〉(δng

′
n)

=
∫
[G′n+1]P′

n+1

R(f ∨)ϕPH(δng
′
n, g

′
n+1)ψP′n+1

(g′n+1)

=
∫
[G′n+1]P′

n+1

∫
[H]PH

Kf ∨,P(δng
′
n, g

′
n+1; h)ϕPH(h)ψP′n+1

(g′n+1)

=
∫
[G′n+1]P′

n+1
×[H]PH

Kf ,P(h; δng
′
n, g

′
n+1)ϕPH(h)ψP′n+1

(g′n+1)

=
∫
[G′n+1]×[H]

∑
γ∈PH(F)\H(F)

δn+1∈P′n+1(F)\G′n+1(F)

Kf ,P(γ h; δng
′
n, δn+1g′n+1)ϕ(h)ψ(g

′
n+1)

and plugging this back into (3.6.1.3) gives (3.6.1.1).

3.6.2. For χ ∈ X(G), we introduce variants LT
f ,χ , PT

f ,χ of the previous op-
erators by replacing in their definitions the operator R�(f ∨) by R�χ∨(f

∨) : ϕ �→
(Rχ∨(f ∨)ϕPH)P∈FRS where Rχ∨(f ∨) denotes the composition of R(f ∨) with the “projec-
tion to the χ∨-component” defined in Theorem 2.9.4.1. We show similarly that LT

f ,χ , PT
f ,χ
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are separately continuous and that for ϕ⊗ψ ∈ T 0([H])⊗ T 0([G′
n+1]) and g′n ∈ [G′

n], we
have

(3.6.2.4) LT
f ,χ (ϕ ⊗ψ)(g′n)=

∫
[H]×[G′n+1]

KT
f ,χ (h; g′n, g′n+1)ϕ(h)ψ(g

′
n+1)

and

(3.6.2.5) PT
f ,χ (ϕ ⊗ψ)(g′n)=

∫
[H]×[G′n+1]

FG′n+1(g′n,T)Kf ,χ (h; g′n, g′n+1)ϕ(h)ψ(g
′
n+1).

Let N> 0. Note that, by (3.4.2.4), Theorem 3.5.1.1 and the continuity of 〈., .〉 and
Res, for every ϕ ⊗ψ ∈ T 0([H])⊗ T 0([G′

n+1]), we have
∑
χ∈X(G)

‖LT
f ,χ (ϕ ⊗ψ)− PT

f ,χ (ϕ ⊗ψ)‖∞,N �N,ϕ,ψ e−N‖T‖

for T ∈ an+1 sufficiently positive. Moreover, by continuity of LT
f ,χ and PT

f ,χ , each of the
semi-norms ϕ ⊗ ψ �→ ‖LT

f ,χ (ϕ ⊗ ψ) − PT
f ,χ (ϕ ⊗ ψ)‖∞,N is bounded on T 0

N ([H]) ⊗
T 0

N ([G′
n+1]) by a constant multiple of ‖ϕ‖1,−N‖ψ‖1,−N where we recall that ‖.‖1,−N is the

norm on the Banach spaces T 0
N ([H]), T 0

N ([G′
n+1]) (and the peculiar transition from the

index N to −N is again due to a slight inconsistency of notation). Thus, by the uniform
boundedness principle, we have

∑
χ∈X(G)

‖LT
f ,χ (ϕ ⊗ψ)− PT

f ,χ (ϕ ⊗ψ)‖∞,N �N e−N‖T‖‖ϕ‖1,−N‖ψ‖1,−N

for ϕ ⊗ ψ ∈ T 0
N ([H]) ⊗ T 0

N ([G′
n+1]) and T ∈ an+1 sufficiently positive. By (3.6.2.4) and

(3.6.2.5), applying the above inequality to the Dirac measures ϕ = δh and ψ = δg′n+1
,

where h ∈ [H] and g′n+1 ∈ [G′
n+1], gives

∑
χ∈X(G)

|KT
f ,χ (h; g′n, g′n+1)− FG′n+1(g′n,T)Kf ,χ (h; g′n, g′n+1)|

�N e−N‖T‖‖h‖−N
H ‖g′n+1‖−N

G′n+1
‖g′n‖−N

G′n+1

for (h, g′n, g
′
n+1) ∈ [H]×[G′

n]×[G′
n+1]. This inequality is precisely the content of Theorem

3.3.7.1 1. except that we still have to argue that the implicit constant can be taken to be
a continuous semi-norm on S(G(A)). Using the uniform boundedness principle once
again, it suffices to check that, for every (h, g′) ∈ [H] × [G′], the functional

f ∈ S(G(A)) �→KT
f ,χ (h, g

′)− FG′n+1(g′n,T)Kf ,χ (h, g
′)

= (LT
f ,χ − PT

f ,χ )(δh ⊗ δg′n+1
)(g′n)
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is continuous. However, this just follows from the continuity of f �→ R�χ∨(f
∨)δh ∈

T �
FRS
([G]) which can be readily inferred from the continuity of right convolution as well

as of the “χ∨-projection” of Theorem 2.9.4.1.

3.7. Proof of Proposition 3.3.8.1

3.7.1. Set

ρ
P
= ρPn+1 − ρPn

∈ an+1

for P ∈FRS and note that ρ
P
= 0 if and only if P=G.

3.7.2. By [Art81, §2], there exist functions !′Pn+1
on a

Gn+1
Pn+1

× a
Gn+1
Pn+1

, for P ∈ FRS,
that are compactly supported in the first variable when the second variable stays in a
compact and such that

(3.7.2.1) τ̂Pn+1(H−X)=
∑

P⊂Q∈FRS

εG
Qτ̂

Qn+1
Pn+1
(H)!′Qn+1

(H,X)

for every P ∈ FRS and H,X ∈ aPn+1 . Then, by [Zyd20, lemme 3.5] for every Q ∈ FRS,
the function

X ∈ aQn+1 �→ pQ(X) :=
∫
a

Gn+1
Qn+1

e
ρ

Q
(H)
!′Qn+1

(H,X)dH

is an exponential-polynomial.

3.7.3. We set

f̃Q(m)= e
−〈ρQ,HQn+1 (mn)〉pQ(HQn+1(mn))fQ(m)

for Q ∈FRS and m ∈ [MQ] where

fQ(m)= e〈ρQ,HQ(m)〉
∫

KH×K′

∫
NQ(A)

f (kHmuk′)ηG′(k
′)dudk′dkH.

We note that f̃Q ∈ S(MQ(A)).

3.7.4. Distributions attached to Levi subgroups. — Let Q ∈ FRS. We now recall the
variant of [Zyd20, Théorème 3.8] for the Levi MQ. For T ∈ an+1 and f ′ ∈ S(MQ(A)), we
set

K
MQ,T
f ′,χ (mH,m

′)=
∑

Q⊃P∈FRS

ε
Q
P

∑
γ∈(PH(F)∩MQH (F))\MQH (F)
δ∈(P′(F)∩MQ′ (F))\MQ′ (F)

τ̂
Qn+1
Pn+1
(HPn+1(δnm

′
n)

−TPn+1)Kf ′,P∩MQ,χ (γmH, δm
′)
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for (mH,m
′) ∈ [MH]×[M′]. Then, it can be shown in the same way as part 1. of Theorem

3.3.7.1 that, for T sufficiently positive, the following expression converges

I
MQ,T
χ (f ′)=

∫
A∞Q,H\[MH]×[M′]

K
MQ,T
f ′,χ (mH,m

′)ηG′(m
′)dm′dmH,(3.7.4.2)

where A∞
Q,H = A∞

QH
∩ A∞

Q is embedded diagonally in MH(A)×M′(A). Moreover, by the
same proof as [Zyd20, Théorème 3.7] (see also [Zyd20, Remarque 3.8], [Zyd18, Remar-
que 4.9]), the function T �→ I

MQ,T
χ (f ′) is an exponential-polynomial with exponents in

the set {ρ
P
− ρ

Q
|Q⊃ P ∈ FRS} (but not necessarily with a constant purely polynomial

part). Note that the composition of the embedding aQ,H = aQH ∩ aQ ↪→ aQn+1 with the
projection aQn+1 � a

Gn+1
Qn+1

yields an isomorphism aQ,H � a
Gn+1
Qn+1

whose Jacobian we denote
by cQ.

3.7.5. Proof of Proposition 3.3.8.1. — It follows from the next lemma, the fact that
IT
χ (̃fG)= IT

χ (f ) and the shape of the exponents of I
MQ,T
χ (̃fQ) recalled below.

Lemma 3.7.5.1. — For T ∈ an+1 sufficiently positive, we have

(3.7.5.3) iT
χ (f )=

∑
Q∈FRS

cQe
ρ

Q
(T)I

MQ,T
χ (̃fQ).

Proof. — From the definition (3.3.6.8) of κT
f ,χ together with the identity (3.7.2.1)

applied to H=HPn+1(δng
′
n)−TPn+1 and X=HPn+1(δng

′
n)−HPn+1(γ h), we obtain

κT
f ,χ (h, g

′)=
∑

Q∈FRS

∑
γ∈QH(F)\H(F)
δ∈Q′(F)\G′(F)

!′Qn+1
(HQn+1(δng

′
n)−TQn+1,HQn+1(δng

′
n)

−HQn+1(γ h))KQ,T
f ,χ (γ h, δg′)

for (h, g′) ∈ [H] × [G′], where we have set

KQ,T
f ,χ (x, y)=

∑
Q⊃P∈FRS

ε
Q
P

∑
γ∈PH(F)\QH(F)
δ∈P′(F)\Q′(F)

τ̂
Qn+1
Pn+1
(HPn+1(δnyn)

−TPn+1)Kf ,P,χ (γ x, δy)

for (x, y) ∈ [H]QH × [G′]Q′ . It follows that

iT
χ (f )=

∑
Q∈FRS

∫
[H]QH×[G′]Q′

KQ,T
f ,χ (h, g

′)!′Qn+1
(HQn+1(g

′
n)−TQn+1,

HQn+1(g
′
n)−HQn+1(h))ηG′(g

′)dg′dh.
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By the Iwasawa decompositions H(A)=QH(A)KH and G′(A)=Q′(A)K′, the summand
corresponding to Q can be rewritten as

∫
[MQH ]×[MQ′ ]

∫
KH×K′

KQ,T
f ,χ (mHkH,m

′k′)!′Qn+1
(HQn+1(m

′
n)−TQn+1,

HQn+1(m
′
n)−HQn+1(mH))

ηG′(m
′k′)e−2〈ρQ′ ,HQ(m

′)〉e−2〈ρQH ,HQH (mH)〉dk′dkHdm′dmH.

We readily check that, for all (mH,m
′) ∈ [MH] × [M′], we have

∫
KH×K′

KQ,T
f ,χ (mHkH,m

′k′)ηG′(k
′)dk′dkH = e〈ρQ,HQ(m

′)+HQ(mH)〉KMQ,T
fQ,χ

(mH,m
′).

Using that ρQ = 2ρQ′ and 〈ρQ,HQ(mH)〉 − 2〈ρQH,HQH(mH)〉 = 〈ρQ
,HQn+1(mH)〉, we fi-

nally obtain

iT
χ (f )=

∑
Q∈FRS

∫
[MQH ]×[MQ′ ]

K
MQ,T
fQ,χ

(mH,m
′)ηG′(m

′)e〈ρQ
,HQn+1 (mH)〉

× !′Qn+1
(HQn+1(m

′
n)−TQn+1,HQn+1(m

′
n)−HQn+1(mH))dm′dmH

=
∑

Q∈FRS

∫
A∞Q,H\[MQH ]×[MQ′ ]

K
MQ,T
fQ,χ

(mH,m
′)ηG′(m

′)

× e
〈ρ

Q
,HQn+1 (mH)−HQn+1 (m

′
n)〉

×
∫

A∞Q,H
e
〈ρ

Q
,HQn+1 (am′n)〉!′Qn+1

(HQn+1(am′n)−TQn+1,

HQn+1(m
′
n)−HQn+1(mH))dadm′dmH

=
∑

Q∈FRS

cQe
ρ

Q
(T)

∫
A∞Q,H\[MQH ]×[MQ′ ]

K
MQ,T
fQ,χ

(mH,m
′)ηG′(m

′)

× e
〈ρ

Q
,HQn+1 (mH)−HQn+1 (m

′
n)〉

× pQ(HQn+1(m
′
n)−HQn+1(mH))dm′dmH.

To conclude, it suffices to remark that

K
MQ,T
fQ,χ

(mH,m
′)e〈ρQ

,HQn+1 (mH)−HQn+1 (m
′
n)〉pQ(HQn+1(m

′
n)−HQn+1(mH))

=K
MQ,T

f̃Q,χ
(mH,m

′)

for (mH,m
′) ∈ [MH] × [M′]. �
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4. Flicker-Rallis period of some spectral kernels

The goal of this section is to get the spectral expansion of the Flicker-Rallis integral
of the automorphic kernel attached to a linear group and a specific cuspidal datum (called
in Section 4.3.2 ∗-regular). This is achieved in Theorem 4.3.3.1. It turns out that the
decomposition is discrete and is expressed in terms of some relative characters.

4.1. Flicker-Rallis intertwining periods and related distributions

4.1.1. Notations. — In all this section, we will fix an integer n � 1 and we will use
notations of Sections 3.1.1 to 3.1.3. Since n will be fixed, we will drop the subscript n

from the notation: G = Gn, B = Bn etc. So we do not follow notations of Section 3.1.5:
we hope that it will cause no confusion.

4.1.2. Flicker-Rallis periods. — Let π be a cuspidal automorphic representation of
G(A) with central character trivial on A∞

G . We shall denote by π∗ the conjugate-dual
representation of G(A). We shall say that π is self conjugate-dual if π � π∗ and that π is
G′-distinguished, resp. (G′, η)-distinguished, if the linear form (called the Flicker-Rallis
period)

ϕ �→
∫
[G′]0
ϕ(h) dh, resp.

∫
[G′]0
ϕ(h)η(det(h)) dh(4.1.2.1)

does not vanish identically on Aπ(G). Then π is self conjugate-dual if and only if π
is either G′-distinguished or (G′, η)-distinguished. However it cannot be both. This is
related to the well-known factorisation of the Rankin-Selberg factorisation L(s,π×π ◦ c)

where c is the Galois involution of G(A) in terms of Asai L-functions and to the fact that
the residue at s= 1 of the Asai L-functions is expressed in terms of Flicker-Rallis periods
(see [Fli88]).

4.1.3. In this section, we will focus on the period in (4.1.2.1) related to distinction.
However it is clear that all the results hold mutatis mutandis for the period related to η-
distinction.

4.1.4. Let P=MNP be a standard parabolic subgroup (with its standard decom-
position). Let π be an irreducible cuspidal automorphic representation of M with central
character trivial on A∞

M .
It will be convenient to write M=Gn1 × · · · ×Gnr

with n1 + · · · + nr = n. Accord-
ingly we have π = σ1 � . . . � σr where σi is an irreducible cuspidal representation of
Gni

.
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4.1.5. Let ϕ ∈AP,π (G). The parabolic subgroup P′ = P ∩G′ of G′ has the fol-
lowing Levi decomposition M′NP′ where M′ = M ∩ G′. We then define the following
integral which is a specific example of a Flicker-Rallis intertwining period introduced by
Jacquet-Lapid-Rogawski (see [JLR99] section VII, note that our definition of AP,π (G) is
slightly different from theirs),

J(ϕ)=
∫

A∞
M′M

′(F)NP′ (A)\G′(A)
ϕ(g) dg

Clearly we get a G′(A)-invariant continuous linear form on AP,π (G). Note that J does
not vanish identically if and only if each component σi is G′

ni
(F)-distinguished. In this

case, we have π = π∗.

4.1.6. Let Q ∈ P(M). As recalled in Section 2.2.11, there is a unique pair
(Q′,w) such that the conditions are satisfied:

• Q′ =wQw−1 is the standard parabolic subgroup in the G-conjugacy class of Q;
• w ∈W(P;Q′).

Let λ ∈ a
G,∗
P,C. We have M(w,λ)ϕ ∈AMQ′ ,wπ(G) if λ is outside the singular hyperplanes of

the intertwining operator. We shall define

JQ(ϕ,λ)= J(M(w,λ)ϕ)(4.1.6.2)

as a meromorphic function of λ.

4.1.7. Let g ∈G(A). Let’s define for ϕ,ψ ∈AP,π (G)

BQ(g, ϕ,ψ,λ)= E(g, ϕ,λ) · JQ(ψ̄,−λ),(4.1.7.3)

as a meromorphic function of λ ∈ a
G,∗
P,C. In fact, by the basic properties of Eisenstein

series and intertwining operators, there exists an open subset ωπ ⊂ a
G,∗
P,C which is the

complement of a union of hyperplanes of aG,∗
P,C such that:

• ωπ contains ia
G,∗
P .

• for all ϕ,ψ ∈AP,π (G), the map λ �→ BQ(g, ϕ,ψ,λ) is holomorphic on ωπ and
gives for each λ ∈ ωπ a continuous sesquilinear form in ϕ and ψ .

4.1.8. Let f ∈ S(G(A)), g ∈G(A) and Q ∈ P(M). Let’s introduce the distribu-
tion

JQ,π (g, λ, f )=
∑
ϕ∈BP,π

BQ(g, IP(λ, f )ϕ,ϕ,λ)(4.1.8.4)
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where BP,π is a K-basis of AP,π (G) (see Section 2.8.3 and λ ∈ ωπ (see Section 4.1.7
for the notation ωπ ). It follows from Proposition 2.8.4.1 that JQ,π (g, λ) is a continuous
distribution on S(G(A)).

4.1.9. A (G,M)-family.

Proposition 4.1.9.1. — The family (JQ,π (g, λ, f ))Q∈P(M) is a (G,M)-family in the sense

of Arthur (see [Art81]): namely each map

λ ∈ a
G,∗
M �→ JQ,π (g, λ, f )

is smooth on ia
G,∗
M (and even holomorphic on ωπ ) and for adjacent elements Q1,Q2 ∈P(M) we have

JQ1,π (g, λ, f )= JQ2,π (g, λ, f )(4.1.9.5)

on the hyperplane of ia
G,∗
M defined by 〈λ,α∨〉 = 0 where α is the unique element in �Q1 ∩ (−�Q2).

Proof. — Let’s prove the holomorphy of JQ,π (g, λ, f ) on ωπ . Let C ⊂ G(Af ) be
a compact subset and let K0 ⊂ K∞ be a compact-open normal subgroup such that
f ∈ S(G(A),C,K0). Let ω ⊂ ωπ be a compact subset with a non-empty interior de-
noted by ω◦. According to Proposition 2.8.4.1, there is a continuous semi-norm on
S(G(A),C,K0) such that for λ ∈ ω and any φ ∈ S(G(A),C,K0) we have:

|JQ,π (g, λ,φ)|� ‖φ‖.(4.1.9.6)

On the other hand, we have JQ,π (g, λ, f )=∑
τ∈K̂ JQ,π (g, λ, fτ ) where fτ = eτ ∗ f ∗ eτ as in

the proof of Lemma 2.10.2.1. Indeed we have

JQ,π (g, λ, fτ )=
∑

ϕ∈BP,π,τ

BQ(g, IP(λ, f )ϕ,ϕ,λ).

Since the sum on the right-hand side is finite, the map λ �→ JQ,π (g, λ, fτ ) is holomorphic
on ωπ . Using (4.1.9.6), we get for all λ ∈ ω

∑
τ∈K̂

|JQ,π (g, λ, fτ )|�
∑
τ∈K̂

‖fτ‖<∞.

Thus on ω◦, we observe that JQ,π (g, λ, f ) is a normally convergent series whose general
term, namely JQ,π (g, λ, fτ ), is holomorphic. In this way λ �→ JQ,π (g, λ, f ) itself is holo-
morphic on ω◦ and on ωπ .

Then let’s prove the second condition. Let Q1,Q2 ∈ P(M) be such that �Q1 ∩
(−�Q2) is a singleton {α}. Let λ ∈ ia

G,∗
P such 〈λ,α∨〉 = 0. For i = 1,2 let Q′

i be a standard
parabolic subgroup and wi ∈W(M,Q′

i) be such that Q′
i =wiQiw

−1
i . Let β =w1α ∈�Q′

1
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and let sβ the “elementary symmetry” associated to β . Then we have w2 = sβw1. Let
ϕ,ψ ∈AP,π (G). Clearly it suffices to check the equality:

E(g, ϕ,λ) · (J(M(w1, λ)ψ)= E(g, ϕ,λ) · J(M(w2, λ)ψ).

Using the functional equations of intertwining operators and Eisentein series, we have
M(w2, λ)=M(sβ,w1λ)M(w1, λ) and E(g, ϕ,λ)= E(g,M(w1, λ)ϕ,w1λ). Thus up to a
change of notations (replace P by Q′

1), we may assume that Q1 = P and thus w1 = 1 and
α = β . We are reduced to prove

E(g, ϕ,λ) · J(ψ)= E(g, ϕ,λ) · J(M(sα, λ)ψ)(4.1.9.7)

on the hyperplane 〈λ,α∨〉 = 0. The symmetry sα acts on M as a transposition of two
consecutive blocks of M say Gni

and Gni+1 . Note that M(sα, λ)=M(sα,0). Then we have
even a stronger property:

J(ψ)= J(M(sα,0)ψ)

if ni �= ni+1 or if ni = ni+1 but σi �� σ ∗i+1 (see lemma 8.1 case 1 of [Lap06]). Assume that
ni = ni+1 and σi � σ ∗i+1. The case where σi �� σ ∗i is trivial (J is zero) so we shall also assume
that σi � σ ∗i . Then M(sα,0)ψ = −ψ ([KS88] proposition 6.3) and since sα(λ) = λ we
have E(g, ϕ,λ)= 0 so (4.1.9.7) is clear. �

4.1.10. Majorization. — We will use the following proposition which results from
Lapid’s majorization of Eisenstein series (see [Lap06] proposition 6.1 and section 7). For
the convenience of the reader, we sketch a proof.

Proposition 4.1.10.1. — Let f ∈ S(G(A)). The map λ �→ JQ,π (g, λ, f ) belongs to the

Schwartz space S(iaG,∗
P ). Moreover

f �→ JQ,π (g, ·, f )
is a continuous map from S(G(A)) to S(iaG,∗

P ) equipped with its usual topology.

Proof. — Let C ∈G(Af ) be a compact subset and K0 ⊂K∞ be an open-compact
subgroup such that f ∈ S(G(A),C,K0). For any α,β > 0, we define an open subset ωα,β
of aG,∗

P,C which contains ia
G,∗
P,R by

ωα,β = {λ ∈ a
G,∗
P,C | ‖
(λ)‖< α(1+ ‖�(λ)‖)−β}.

By the arguments in the proof of proposition 6.1 of [Lap06], one sees that there exist
α,β > 0 such that ωα,β is included in the open set ωπ of Section 4.1.7. In particular,
λ �→ JQ,π (g, λ, f ) is holomorphic on ωα,β . Using Cauchy formula to control derivatives,
it suffices to prove the following majorization: there exists a continuous semi-norm ‖ · ‖
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on S(G(A),C,K0) and an open subset ωα,β ⊂ ωπ such that for any integer N � 1 there
exists c> 0 so that for all f ∈ S(G(A),C,K0) and all λ ∈ ωα,β

|JQ,π (g, λ, f )|� c
‖f ‖

(1+ ‖λ‖)N .(4.1.10.8)

Let m � 1 be a large enough integer. Following the notations of Proposition 2.8.4.3, we
can write f = f ∗ g1 + (f ∗ Z) ∗ g2; we get

JQ,π (g, λ, f )=
∑
ϕ∈BP,π

E(g, IP(λ, f )ϕ,λ)JQ(IP(−λ, g∨1 )ϕ,λ)

+
∑
ϕ∈BP,π

E(g, IP(λ, f ∗ Z)ϕ,λ)JQ(IP(−λ, g∨2 )ϕ,λ)

By a slight extension to Schwartz functions of Lapid’s majorization (see [FLO12]
remark C.2 about [Lap06] proposition 6.1), the expression

(
∑
ϕ∈BP,π

|E(g, IP(λ, f )ϕ,λ)|2)1/2

and the same expression where f is replaced by f ∗Z satisfy a bound like (4.1.10.8). Using
Cauchy-Schwartz inequality, we are reduced to bound in λ (recall that gi is independent
of f )

(
∑
ϕ∈BP,π

|JQ(IP(−λ, g∨i )ϕ,λ)|2)1/2.(4.1.10.9)

Let w be such that wQw−1 is standard and w ∈W(P,wQw−1). At this point we
will use the notations of the proof of Proposition 2.8.4.1. There exists c> 0 and an integer
r such that for all ϕ′ ∈AP,π (G)K0 we have

|JQ(IP(−λ, g∨i )ϕ,λ)| = |J(M(w,λ)IP(−λ, g∨i )ϕ)|
� c‖M(w,λ)IP(−λ, g∨i )ϕ‖r

where ‖ϕ‖r = ‖R(1+CK)
rϕ‖Pet. Then we need to bound the operator norm of the inter-

twining operator M(w,λ). Using the normalization of intertwining operators, the bounds
of normalizing factors [Lap06] lemma 5.1 and Müller-Speh’s bound on the norm of
normalized intertwining operators (see [MS04] proposition 4.2 and the proof of propo-
sition 0.2), we get c1 > 0, N ∈ N and α,β > 0 such that for all τ ∈ K̂∞, λ ∈ ωα,β and
ϕ ∈AP,π (G,K0, τ ) we have

‖M(w,λ)IP(−λ, g∨i )ϕ‖K0,r � c1(1+ λτ )N‖IP(−λ, g∨i )ϕ‖r.
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Using the same kind of arguments as in the proof of Proposition 2.8.4.1 (see also
remark (2.8.4.2)), one shows that there exist α,β > 0 such that (4.1.10.9) is bounded
independently of λ ∈ ωα,β . �

4.2. A spectral expansion of a truncated integral

4.2.1. Let χ ∈ X(G) be a cuspidal datum. We shall use the notation of Section
2.10.2. In particular, f ∈ S(G(A)) and K0

χ is the attached kernel.

4.2.2. Let’s consider a parameter T as in Section 2.2.12. Following Jacquet-
Lapid-Rogawski (see [JLR99]), we introduce the truncation operator 
T

m that associates
to a function ϕ on [G] the following function of the variable h ∈ [G′]:

(
T
mϕ)(h)=

∑
P

(−1)dim(aG
P )

∑
δ∈P′(F)\G′(F)

τ̂P(HP(δh)−TP)ϕP(δh)(4.2.2.1)

where the sum is over standard parabolic subgroup of G (those containing B) and ϕP is
the constant term along P. Recall that P′ =G′ ∩ P.

4.2.3. We shall define the mixed truncated kernel K0
χ


T
m : the notation means

that the mixed truncation is applied to the second variable. This is a function on G(A)×
G′(A). To begin with we have:

Lemma 4.2.3.1. — For (x, y) ∈G(A)×G′(A), we have:

(K0
χ


T
m)(x, y)

=
∑
B⊂P

|P(MP)|−1

∫
ia

G,∗
P

∑
ϕ∈BP,χ

E(x, IP(λ, f )ϕ,λ)
T
mE(y, ϕ,λ) dλ.

Proof. — As y ∈G′(A), the mixed truncation is defined by a finite sum of constant
terms of K0

χ(x, ·) (in the second variable). The only point is to permute the sum over
ϕ and the operator 
T

m . In fact using the continuity properties of Eisenstein series (see
[Lap08, theorem 2.2]) and properties of mixed truncation operator (in particular a vari-
ant of lemma 1.4 of [Art80]), we can conclude as in the proof of Proposition 2.8.4.1. �

Lemma 4.2.3.2. — For any integer N, there exists a continuous semi-norm ‖ · ‖ on S(G(A))
and an integer N′ such that for all X ∈ U(g∞), all x ∈G(A)1 and y ∈G′(A)1, all f ∈ S(G(A))
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we have ∑
χ∈X(G)

∑
B⊂P

|P(MP)|−1(4.2.3.2)

×
∫

ia
G,∗
P

∑
τ∈K̂

|
∑

ϕ∈BP,χ,τ

(R(X)E)(x, IP(λ, f )ϕ,λ)
T
mE(y, ϕ,λ)| dλ

� ‖L(X)f ‖‖x‖N′
[G]‖y‖−N

[G] .

Proof. — By the basic properties of the mixed truncation operator (see lemma 1.4
of [Art80] and also [LR03] proof of lemma 8.2.1), for any N,N′ > 0 there exists a finite
family (Yi)i∈I of elements of U(g∞) such the expression (4.2.3.2) is majorized by the sum
over i ∈ I of ‖y‖−N

[G] times the supremum over g ∈G′(A)1 of

‖g‖−N′
[G]

∑
χ∈X

∑
B⊂P

|P(MP)|−1

∫
ia

G,∗
P

∑
τ∈K̂

|
∑

ϕ∈BP,χ,τ

(R(X)E)(x, IP(λ, f )ϕ,λ)

×R(Yi)E(g, ϕ,λ)| dλ.
Then the lemma is a straightforward consequence of Lemma 2.10.2.1. �

Proposition 4.2.3.3. — For all x ∈G(A) and χ ∈X(G), we have

∫
[G′]0
(K0

χ

T
m)(x, y) dy=

∑
B⊂P

|P(MP)|−1

∫
ia

G,∗
P

∑
ϕ∈BP,χ

E(x, IP(λ, f )ϕ,λ)

×
∫
[G′]0

T

mE(y, ϕ,λ) dy dλ.

Proof. — First one decomposes the sum over BP,χ as a sum over τ ∈ K̂ of finite
sums over BP,χ,τ . Then, by the majorization of Lemma 4.2.3.2 we can permute the in-
tegration over [G′]0 (which amounts to integrating over [G′]1) and the other sums or
integrations in the expression we get in Lemma 4.2.3.1. �

4.3. The case of ∗-regular cuspidal data

4.3.1. We shall use the notations of Section 4.2.

4.3.2. ∗-Regular cuspidal datum. — We shall say that a cuspidal datum χ ∈X(G) is
∗-regular if for any representative (M,π) of χ and w ∈W(M) such that wπ is isomor-
phic to π or π∗ we have w = 1. Let’s denote by X∗(G) the subset of ∗-regular cuspidal
data.
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With the notations of 4.1.4, we see that (M,π) is ∗-regular if and only if for all
1 � i, j � r such that ni = nj one of the equalities σi = σj or σi = σ ∗j implies that i = j.

4.3.3. The next theorem is the main result of the section.

Theorem 4.3.3.1. — Let f ∈ S(G(A)), let χ ∈X(G) and let Kχ be the associated kernel.

For any g ∈G(A), one has:

1. We have ∫
[G′]

Kχ(g, h) dh= 1
2

∫
[G′]0

K0
χ(g, h) dh(4.3.3.1)

where both integrals are absolutely convergent.

2. If moreover χ ∈ X∗(G), we have, for any representative (MP,π) of χ (where P is a

standard parabolic subgroup of G),

∫
[G′]

Kχ(g, h) dh= 2−dim(aP)JP,π (g, f )

where one defines (see (4.1.8.4))

JP,π (g, f )= JP,π (g,0, f ).

In particular, the integral vanishes unless π is self conjugate dual and MP′-distinguished

where P′ =G′ ∩ P.

The assertion 1 follows readily from Lemma 2.10.1.1, Fubini’s theorem and the
fact that the Haar measure on A∞

G is twice the Haar measure on A∞
G′ (see Remark 3.1.3.1).

The rest of the section is devoted to the proof of assertion 2 of Theorem 4.3.3.1. The main
steps are Propositions 4.3.4.1 and 4.3.7.1.

4.3.4. A limit formula. — We shall use the notation limT→+∞ f (T) to denote the
limit of f (T) when 〈α,T〉→+∞ for all α ∈�B.

Proposition 4.3.4.1. — Under the assumptions of Theorem 4.3.3.1 (but with no regularity

condition on χ ), we have

lim
T→+∞

∫
[G′]0
(K0

χ

T
m)(g, h) dh= 2

∫
[G′]

Kχ(g, h) dh.

Proof. — Let’s denote FG′(·,T) the function defined by Arthur relative to G′ and
its maximal compact subgroup K′ (see [Art78, §6] and [Art85, lemma 2.1]). It is the char-
acteristic function of a compact of [G′]0. Using the fact that h �→K0

χ(g, h) is of uniform
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moderate growth (see Lemma 2.10.1.1), we can conclude by a variant of [Art85] theorem
3.1 (see also in the same spirit [IY15] proposition 3.8) that

lim
T→+∞

∫
[G′]0

(
FG′(h,T)K0

χ(g, h)− (K0
χ


T
m)(g, h)

)
dh= 0.

We have limT→+∞ FG′(h,T)= 1. Thus we deduce by Lebesgue’s theorem and the abso-
lute convergence of the right-hand side of (4.3.3.1).

lim
T→+∞

∫
[G′]0

FG′(h,T)K0
χ(g, h) dh=

∫
[G′]0

K0
χ(g, h) dh

The proposition follows by (4.3.3.1). �

4.3.5. Let χ ∈ X∗(G). Let Pχ be the set of standard parabolic subgroups such
that there exists a cuspidal automorphic representation π of MP such that (MP,π) in
the equivalence class defined by χ . In Section 2.10.2, we defined the space A0

P,χ,disc(G).
Since χ ∈ X∗(G), it is non-zero only if P ∈ Pχ . Let P be a standard parabolic subgroup
and let (MP,π) be a pair in χ . For any P1 ∈Pχ , by multiplicity-one theorem, we have

A0
P1,χ,disc(G)=

⊕
w∈W(P,P1)

AP1,wπ(G).

In the following we set M1 =MP1.
Let P1 ∈Pχ and g ∈G(A). With the notations of Section 4.1 (see eq. (4.1.8.4)), for

all Q ∈P(M1), all λ ∈ ia
G,∗
P1,R we define

JQ,χ (g, λ, f )=
∑

w∈W(P,P1)

JQ,wπ(g, λ, f ).

It’s a continuous linear form on S(G(A)).

4.3.6.

Proposition 4.3.6.1. — For all χ ∈X∗(G) and all g ∈G(A), we have

∫
[G′]0
(K0

χ

T
m)(g, h) dh(4.3.6.2)

= 2−dim(aG
P )

|P(MP)|
∑

P1∈Pχ

∫
ia

G,∗
P1

∑
Q∈P(M1)

JQ,χ (g, λ, f )
exp(−〈λ,TQ〉)
θQ(−λ) dλ.

Proof. — This is an obvious consequence of the definitions, Proposition 4.2.3.3 and
Lemma 4.3.6.2 below. �
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Lemma 4.3.6.2. — Let χ ∈X∗(G). Let P1 ∈Pχ and ϕ ∈AP1,χ . We have for all λ ∈ iaG
P1∫

[G′]0

T

mE(y, ϕ,λ) dy= 2−dim(aG
P1
)

∑
Q∈P(M1)

JQ(ϕ,λ)
exp(〈λ,TQ〉)
θQ(λ)

.

Proof. — This is simply a rephrasing in our particular situation of a key result of
Jacquet-Lapid-Rogawski (see [JLR99] theorem 40). Indeed, because χ is ∗-regular, The-
orem 40 of ibid. can be stated as:∫

[G′]0

T

mE(y, ϕ,λ) dy= 2−dim(aG
P1
)
∑
(Q,w)

J(M(w,λ)ϕ)
exp(〈(wλ)Q,T〉)

θQ(wλ)

where the sum is over pair (Q,w) where Q is a standard parabolic subgroup and w ∈
W(P1,Q). �

4.3.7.

Proposition 4.3.7.1. — Let χ ∈ X∗(G) and let (MP,π) be a representative where P is a

standard parabolic subgroup of G. We have:

lim
T→+∞

∫
[G′]
(K0

χ

T
m)(g, h) dh= 2−dim(aG

P )JP,π (g, f )

where one defines

JP,π (g, f )= JP,π (g,0, f ).(4.3.7.3)

Proof. — We start from the expansion (4.3.6.2) of Proposition 4.3.6.1. For each
P1 ∈Pχ , let M1 =MP1. The family (JQ,χ (g, λ, f ))Q∈P(M1) is a (G,M1)-family of Schwartz
functions on ia

G,∗
P1

: this is a straightforward consequence of Propositions 4.1.9.1 and
4.1.10.1. By [Lap11] Lemma 8, we have:

lim
T→+∞

∫
ia

G,∗
P1

∑
Q∈P(M1)

JQ,χ (g, λ, f )
exp(−〈λ,TQ〉)
θQ(−λ) dλ= JP1,χ (g,0, f )

By definition and Lemma 4.3.7.2 below, one has:

JP1,χ (g,0, f )=
∑

w∈W(P,P1)

JP1,wπ(g,0, f )

= |W(P,P1)|JP,π (g,0, f ).

Since |P(MP)| =∑
P1∈Pχ |W(P,P1)| we get the expected limit. �



THE GLOBAL GAN-GROSS-PRASAD CONJECTURE FOR UNITARY GROUPS. . . 277

Lemma 4.3.7.2 (Lapid). — For any w ∈W(P,P1), we have

JP1,wπ(g,0, f )= JP,π (g,0, f ).

Proof. — By definition, we have

JP1,wπ(g,0, f )=
∑

ϕ∈BP1,wπ

E(g, IP1(0, f )ϕ,0) · J1(ϕ)

where J1 is the linear form on AP1,wπ defined in Section 4.1.5 and BP1,wπ is any K-basis
of AP1,wπ . Now, the intertwining operator M(w,0) induces a unitary isomorphism from
AP,π to AP1,wπ , which sends K-bases to K-bases. Thus one has

JP1,wπ(g,0, f )=
∑
ϕ∈BP,π

E(g,M(w,0)IP(0, f )ϕ,0) · J1(M(w,0)ϕ)

= JP,π (g,0, f ).

The last equality results from the two equalities:

• E(g,M(w,0)IP(0, f )ϕ,0)= E(g, IP(0, f )ϕ,0);
• J1(M(w,0)ϕ)= J(ϕ) where J is the linear form on AP,π defined in Section 4.1.5.

The first one is the functional equation of Eisenstein series and the second one is a con-
sequence of case 1 of lemma 8.1 of [Lap06]. �

5. The ∗-regular contribution in the Jacquet-Rallis trace formula

The goal of this section is to compute the contribution Iχ of the Jacquet-Rallis
trace formula for ∗-regular cuspidal data χ . This is achieved in Theorem 5.2.1.1 below.
It turns out that for such χ the contribution Iχ is discrete and equal (up to an explicit
constant) to a relative character define in Section 5.1 built upon Rankin-Selberg periods
of Eisenstein series and Flicker-Rallis intertwining periods.

5.1. Relative characters

5.1.1. We will use the notations of Section 3.1. We emphasize that unlike Section
4 the group G denotes Gn ×Gn+1 and so on.

5.1.2. Let χ ∈X(G) be a cuspidal datum and (M,π) be a representative where
M is the standard Levi factor of the standard parabolic subgroup P of G. Recall that we
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have introduced a character ηG′ of G′(A) (see Section 3.1.6). On AP,π (G), we introduce
the linear form Jη defined by

Jη(ϕ)=
∫

A∞
M′M

′(F)NP′ (A)\G(A)
ϕ(g)ηG′(g) dg, ∀ϕ ∈AP,π (G)(5.1.2.1)

where M′ =M∩G′ and P′ = P∩G′. This is a slight variation of that defined in Section
4.1.5.

We shall say that π is (M′, ηG′)-distinguished if Jη does not vanish identically.

5.1.3. Relevant and regular cuspidal data. — We shall say that χ is relevant if π is
(M′, ηG′)-distinguished.

Let X∗(G)=X∗(Gn)×X∗(Gn+1) (cf. Section 4.3.2). We shall say that χ is ∗-regular
if it belongs to the subset X∗(G). In particular, if χ is both relevant and regular (see
Section 2.9.7) then it is ∗-regular.

5.1.4. Rankin-Selberg period of certain Eisenstein series. — Let T ∈ a
+
n+1. Recall that we

have introduced in Section 3.3.2 the truncation operator 
T
r .

Proposition 5.1.4.1. — Let Q be a parabolic subgroup of G and Q′ =Q ∩G′. Let π be

an irreducible cuspidal representation of MQ which is (MQ′, ηG′)-distinguished. Let ϕ ∈AQ,π (G).
Then for a regular point λ ∈ a

G,∗
Q of the Eisenstein series E(g, ϕ,λ) (see Section 2.7.3), the integral

I(ϕ,λ)=
∫
[H]

T

r E(h, ϕ,λ) dh(5.1.4.2)

is convergent and does not depend on T.

Remark 5.1.4.2. — The expression I(ϕ,λ) is nothing else but the regularized
Rankin-Selberg period of E(ϕ,λ) as defined by Ichino-Yamana in [IY15].

Proof. — The convergence follows from Proposition 3.3.2.1 and the fact that Ei-
seinstein series are of moderate growth. It remains to prove that the integral does not
depend on T. Recall that ι induces an isomorphism from Gn onto H. In the proof, it will
be more convenient to work with Gn instead of H. However, by abuse of notations, for
any g ∈Gn(A) and any function ϕ on G(A) we shall write ϕ(g) instead of ϕ(ι(g)).

Let T′ ∈ a
+
n+1. By lemma 2.2 of [IY15], we have


T+T′
r E(g, ϕ,λ)=

∑
P∈FRS

∑
δ∈(P∩H)(F)\H(F)


T,P
r EGn×Pn+1(δg, ϕ,λ)

× !′Pn+1
(HPn+1(δg)−TPn+1,T

′)
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where the notations are those of Sections 3.2.3 and 3.3.2. The other notations are bor-
rowed from [Zyd18, eq. (4.4)]; the operator 
T,P

r is the obvious variant of 
T
r and !′P is

an Arthur function whose precise definition is irrelevant here. We denote by EGn×Pn+1 the
constant term of E along Gn × Pn+1. Thus, we have ∫

[H]

T+T′

r E(g, ϕ,λ) dg =
∑

P∈FRS

∫
(P∩H)(F)\H(A)

(
T,P
r EGn×Pn+1P)(g, ϕ,λ)!

′
Pn+1
(HPn+1(g)−TPn+1,T

′) dg.

Let P ∈ FRS be such that P � G. It suffices to show that the terms corresponding to P
vanish. We identify H with Gn. Then P ∩H is identified with Pn. Let Mn =MPn

. For an
appropriate choice of a Haar measure on Kn, such a term can be written as∫

[Mn]

∫
Kn

exp(−〈2ρPn
,HPn

(m)〉)(
T,P
r EP)(mk, ϕ,λ)

× !′Pn+1
(HPn+1(m)−TPn+1,T

′) dkdm,

where EP denotes the constant term of E along P = Pn × Pn+1. At this point, we may
and shall assume that P is standard (if not, we may change Bn by a conjugate for the
arguments). We have the usual formula for the constant term

EP(m, ϕ,λ)=
∑

w∈W(Q;P)
EP(m,M(w,λ)ϕ,wλ),

where W(Q;P) is the set of elements w ∈W that are of minimal length in double cosets
WPwWQ. Let w ∈W(Q;P). Notice that the representation wπ is also (wMQ′w−1, ηG′)-
distinguished. For the argument, we may and shall assume w = 1 (that is we assume that
Q⊂ P). Thus it suffices to show for all k ∈K the integral∫

[Mn]1

T,P

r EP(mk, ϕ,λ) dm(5.1.4.3)

vanishes.
The group Mn+1 =MPn+1 has a decomposition Gd1 × · · ·×Gdr

with d1+ · · ·+ dr =
n+ 1. Each factor corresponds to a subset of the canonical basis (e1, . . . , en+1). We may
assume that the factor Gd1 corresponds to a subset which does not contain en+1. As a
consequence Gd1 is also a factor of Mn. We view Gd1 ×Gd1 as a subgroup of Mn ×Mn+1.
Let Q1 ×Q2 = (Gd1 ×Gd1)∩Q⊂Gn ×Gn+1. The representation π restricts to MQ1(A)
and MQ2(A): this gives representations respectively denoted by π1 and π2. As a factor of
(5.1.4.3), we get∫

[Gd1 ]1
E(g, ϕ1, λ1)


TE(g, ϕ2, λ2) dg(5.1.4.4)
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where ϕi ∈AQi,πi
(Gd1). Here the truncation is the usual Arthur’s truncation operator on

the group Gd1 . It is clear from Langlands’ formula for the integral (5.1.4.4) (see [Art82])
that (5.1.4.4) vanishes unless there exists w ∈WGd1 (Q1,Q2) such that the contragredient
of π2 is isomorphic to wπ1. But then π2 would be both (MQ′

2
, (ηd1)

n)-distinguished and
(MQ′

2
, (ηd1)

n+1)-distinguished with ηd1 = η ◦ detd1 and MQ′
2
= MQ2 ∩ G′

d1
. This is not

possible. �

5.1.5. Relative characters. — Let (P,π) be a pair for which P be a standard
parabolic subgroup of G and π be a cuspidal automorphic representation of its stan-
dard Levi factor MP. Building upon the truncation operator 
T

r and the linear form Jη,
we define the relative character IT

P,π for any f ∈ S(G(A)) by

IT
P,π (f )=

∑
ϕ∈BP,π

∫
[H]

T

r E(h, IP(0, f )ϕ,0) dh · Jη(ϕ)

where the K-basis BP,π is defined in Section 2.8.3. Using Proposition 5.1.4.1, we have

IT
P,π (f )= IP,π (f )

where we define:

IP,π (f )=
{∑

ϕ∈BP,π
I(IP(0, f )ϕ,0) · Jη(ϕ) if π is (MP′, ηG′)-distinguished;

0 otherwise.

Proposition 5.1.5.1. — Let χ ∈ X∗(G). Let (P,π) be a representative. The map f �→
IT

P,π (f ) (and thus f �→ IP,π (f )) is well-defined and gives a continuous linear form on S(G(A)). It

depends only on χ and not on the choice of (P,π).

Proof. — First we claim that ϕ �→ ∫
[H]


T
r E(h, ϕ,0) dh is a continuous map: this is

an easy consequence of properties of Eisenstein series and the truncation operator
T
r (see

Proposition 3.3.2.1). On the other hand ϕ �→ Jη(ϕ) is also continuous (see Section 4.1).
Thus the first assertion results from an application of Proposition 2.8.4.1. The arguments
of the proof of Lemma 4.3.7.2 give the independence on the choice of (P,π). �

5.2. The ∗-regular contribution

5.2.1. Let χ ∈ X(G). Recall that we defined in Theorem 3.2.4.1 a distribution
Iχ on S(G(A)). Let (M,π) be a representative of χ where M is the standard Levi factor
of the standard parabolic subgroup P of G. The following theorem is the main result of
this section.

Theorem 5.2.1.1. — Assume moreover χ ∈X∗(G). We have

Iχ = 2−dim(aP)IP,π .
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In particular, we have Iχ = 0 unless χ is relevant.

The theorem is a direct consequence of the following proposition.

Proposition 5.2.1.2. — Assume moreover χ ∈X∗(G)We have for T ∈ a
+
n+1∫

[H]

∫
[G′]

T

r Kχ(x, y) ηG′(y)dxdy= 2−dim(aP)IP,π (f ),(5.2.1.1)

where the left-hand side is absolutely convergent (see Proposition 3.3.3.1). In particular, the left-hand

side does not depend on T.

Indeed, by Theorem 3.3.9.1, Iχ is the constant term in the asymptotic expansion
in T of the left-hand side of (5.2.1.1) hence Iχ = 2−dim(aP)IP,π .

The rest of the section is devoted to the proof of Proposition 5.2.1.2.

5.2.2. Proof of Proposition 5.2.1.2. — We assume that χ ∈ X∗(G). The proof is a
straightforward consequence of Theorem 4.3.3.1 and some permutations between in-
tegrals, summations and the truncation. These permutations are provided by Lemmas
5.2.2.1 and 5.2.2.3 below.

Lemma 5.2.2.1. — For all x ∈ [H], we have∫
[G′]
(
T

r Kχ)(x, y)ηG′(y) dy=
T
r

(∫
[G′]

Kχ(·, y)ηG′(y) dy

)
(x).

Remark 5.2.2.2. — On the left-hand side we apply the truncation operator 
T
r

to the function Kχ(·, y) (where y is fixed) and then we evaluate at x whereas on the
right-hand side we apply the same operator to the function we get by integration of
Kχ(·, y)ηG′(y) over y ∈ [G′] and then we evaluate at x.

Proof. — Since x is fixed, the operator 
T
r is a finite sum of constant terms (see

[Art78] lemma 5.1 for the finiteness). Then the lemma follows from Fubini’s theorem
which holds because we have∫

[NQ]

∫
[G′]
|Kχ(nx, y)| dndy<∞

for all parabolic subgroups Q of Gn+1 containing Bn. Here we identify NQ with the sub-
group {1} × NQ of G = Gn × Gn+1. The convergence of the integral results from the
bound (3.3.2.3) above. �

Lemma 5.2.2.3. — We have∫
[H]

T

r

(∫
[G′]

Kχ(·, y)ηG′(y) dy

)
(h) dh= 2−dim(aP)IP,π (f ).
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Proof. — First, by Theorem 4.3.3.1, we have for any x ∈ [G]:
∫
[G′]

Kχ(x, y)ηG′(y) dy= 2−dim(aP)
∑
ϕ∈BP,π

E(x, IP(0, f )ϕ,0) dh · Jη(ϕ)

where the notations are borrowed from Section 5.1.5. Then we want to apply the trunca-
tion operator
T

r and evaluate at h ∈ [H]. We want to show that this operation commutes
with the summation over the orthonormal basis. As in the proof of Lemma 5.2.2.1, it
suffices to prove

∑
ϕ∈BP,π

∫
[NQ]

|E(ng, IP(0, f )ϕ,0)| dn · |Jη(ϕ)|<∞

for any parabolic subgroups Q of Gn+1 containing Bn, which is an easy consequence of
continuity properties of Eisenstein series.

In this way, we get for h ∈ [H]:


T
r

(∫
[G′]

Kχ(·, y)ηG′(y) dy

)
(h)

= 2−dim(aP)
∑
ϕ∈BP,π

(
T
r E)(h, IP(0, f )ϕ,0) · Jη(ϕ).

By integration over h ∈ [H], we have:
∫
[H]

T

r

(∫
[G′]

Kχ(·, y)ηG′(y) dy

)
(h) dh

= 2−dim(aP)
∑
ϕ∈BP,π

∫
[H]
(
T

r E)(h, IP(0, f )ϕ,0) dh · Jη(ϕ).

The right-hand side is nothing else but 2−dim(aP)IP,π (f ). Still we have to justify the change
of order of the integration and the summation. But it is easy to show that

∑
ϕ∈BP,π

∫
[H]
|
T

r E(h, IP(0, f )ϕ,0)| dh · |Jη(ϕ)|<∞. �

6. Spectral decomposition of the Flicker-Rallis period for ∗-regular
cuspidal data

The goal of this section is to give another proof of the spectral decomposition of
the Flicker-Rallis period for the same cuspidal data as in Section 4.3.2. The main result
of this section (obtained as a combination of Theorem 6.2.5.1 and Theorem 6.2.6.1) can
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be used to get another version of Theorem 4.3.3.1 with a seemingly different relative
character than JP,π (this will actually be done in Section 8.2.4). Of course, these two
relative characters are the same. A direct proof of this fact will be given in Section 9.

6.1. Notation

6.1.1. In this section we adopt the set of notation introduced in Section 3.1:
E/F is a quadratic extension of number fields, G′

n =GLn,F, Gn = ResE/F GLn,E, (B′n,T
′
n),

(Bn,Tn) are the standard Borel pairs of G′
n, Gn and K′

n, Kn the standard maximal com-
pact subgroups of G′

n(A), Gn(A) respectively. Besides, we denote by N′
n, Nn the unipotent

radicals of B′n, Bn and we set

wn =
⎛
⎜⎝

1

. .
.

1

⎞
⎟⎠ ∈G′

n(F).

We write en = (0, . . . ,0,1) for the last element in the standard basis of Fn and we let

Pn =
(

" "

0 . . .0 1

)
, P ′

n = Pn ∩ G′
n be the mirabolic subgroups of Gn, G′

n respectively

(that is the stabilizers of en for the natural right actions). The unipotent radicals of Pn, P ′
n

will be denoted by Un and U′
n respectively. For nonnegative integers m � n, we embed Gm

in Gn (resp. G′
m in G′

n) in the “upper left corner” by g �→
(

g

In−m

)
. Thus, in particular,

we have Pn =Gn−1Un and P ′
n =G′

n−1U′
n.

The entries of a matrix g ∈Gn(A) are written as gi,j , 1 � i, j � n, and the diagonal
entries of an element t ∈Tn(A) as ti , 1 � i � n.

6.1.2. We fix a nontrivial additive character ψ ′ : A/F→C×. For φ ∈ S(An), we
define its Fourier transform φ̂ ∈ S(An) by

φ̂(x1, . . . , xn)=
∫

An

φ(y1, . . . , yn)ψ
′(x1y1 + · · · + xnyn)dy1 . . . dyn

the Haar measure on An being chosen such that ̂̂φ(x)= φ(−x).
We denote by c the nontrivial Galois involution of E over F. Then, c acts naturally

on Gn(A) and thus on cuspidal automorphic representations of the latter. We denote this
action by π �→ π c. We fix τ ∈ E× such that τ c =−τ and we define ψ : AE/E→ C× by
ψ(z)= ψ ′(TrE/F(τz)), z ∈ AE, where AE denotes the adèle ring of E and TrE/F : AE → A
the trace map. We also define a generic character ψn : [Nn]→C× by

ψn(u)=ψ
(
(−1)n

n−1∑
i=1

ui,i+1

)
, u ∈ [Nn].
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(The appearance of the sign (−1)n is only a convention that will be justified a posteriori
in Section 7.) Note that ψ is trivial on A and therefore ψn is trivial on N′

n(A). To any
f ∈ T ([Gn]), we associate its Whittaker function Wf defined by

Wf (g)=
∫
[Nn]

f (ug)ψn(u)
−1du, g ∈Gn(A).

6.2. Statements of the main results

6.2.1. Let n � 1 be a nonnegative integer. For f ∈ T ([Gn]), φ ∈ S(An) and s ∈C
we set

ZFR
ψ (s, f , φ)=

∫
N′n(A)\G′n(A)

Wf (h)φ(enh)|det h|sdh

provided this expression converges absolutely.

6.2.2. Let χ ∈ X∗(Gn) be a ∗-regular cuspidal datum (see Section 4.3.2 for the
definition of ∗-regular) represented by a pair (MP,π) and set �= IndGn(A)

P(A) (π). We can
write

MP =Gn1 × · · · ×Gnk

where n1, . . . , nk are positive integers such that n1 + · · · + nk = n. Then, π decomposes
accordingly as a tensor product

π = π1 � . . .� πk

where for each 1 � i � k, πi is a cuspidal automorphic representation of Gni
(A).

6.2.3. Let L(s,�,As) be the Shahidi’s completed Asai L-function of� [Sha90],
[Gol94]. We have the decomposition

L(s,�,As)=
k∏

i=1

L(s,πi,As)×
∏

1�i<j�k

L(s,πi × π c
j ).

(We emphasize that since L(s,πi × π c
j ) = L(s,πj × π c

i ), this decomposition does not
depend on the order of the πi’s.) As χ is ∗-regular, the Rankin-Selberg L-functions
L(s,πi×π c

j ) are entire and non-vanishing at s= 1 [JS81b], [JS81a], [Sha81] whereas by
[Fli88], L(s,πi,As) has at most a simple pole at s= 1. Therefore, L(s,�,As) has a pole
of order at most k at s = 1 and this happens if and only if L(s,πi,As) has a pole at s = 1
for every 1 � i � k.

We say that the cuspidal datum χ is distinguished if L(s,�,As) has a pole of order k

at s= 1. By [Fli88], it is equivalent to ask π to be MP′ =MP ∩G′
n-distinguished.
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6.2.4. For f ∈ C([Gn]), we set Wf ,� = Wf� where f� is defined as in Section
2.9.8. Then, Wf ,� belongs to the Whittaker model W(�,ψn) of � with respect to ψn.

We define a continuous linear form βn on W(�,ψn) as follows. For S a finite set
of places of F and W ∈W(�,ψn), we set

βn,S(W)=
∫

N′n(FS)\P ′n(FS)

W(pS)dpS

the integral being convergent by (the same proof as) [BP21b, Proposition 2.6.1, Lemma
3.3.1] and the Jacquet-Shalika bound [JS81b]. By [Fli88, Proposition 3] and (2.3.2.3),
for a given W ∈W(�,ψn), the quantity

βn(W)= (�S,∗
G′n )

−1LS,∗(1,�,As)βn,S(W)

is independent of S as long as it is sufficiently large (i.e. it contains all the Archimedean
places as well as the non-Archimedean places where the situation is “ramified”) where
we recall that following our general convention of Section 2.1, LS,∗(1,�,As) stands for
the leading coefficient of the Laurent expansion of the partial L-function LS(s,�,As) at
s = 1 and we refer the reader to Section 2.3.3 for the definition of �S,∗

G′n . This defines the
linear form βn.

6.2.5. For every f ∈ C([Gn]), we set

0f (g)=
∫

A∞Gn

f (ag)da, g ∈ [Gn].

Theorem 6.2.5.1.

1. Let N � 0. There exists cN > 0 such that for every f ∈ TN([Gn]) and φ ∈ S(An), the

expression defining ZFR
ψ (s, f , φ) is absolutely convergent for s ∈H>cN and the function s ∈

H>cN �→ ZFR
ψ (s, f , φ) is holomorphic and bounded in vertical strips. Moreover, for every s ∈

H>cN , (f , φ) �→ ZFR
ψ (s, f , φ) is a (separately) continuous bilinear form on TN([Gn])×

S(An).

2. Let χ ∈ X∗(Gn). For every f ∈ Cχ([Gn]) and φ ∈ S(An), the function s �→ (s −
1)ZFR

ψ (s,
0f , φ) admits an analytic continuation to H>1 with a limit at s = 1. Moreover,

we have

ZFR,∗
ψ (1, 0f , φ) := lim

s→1+
(s− 1)ZFR

ψ (s,
0f , φ)

=
⎧⎨
⎩

21−kφ̂(0)βn(Wf ,�) if χ is distinguished,

0 otherwise.
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6.2.6.

Theorem 6.2.6.1. — Let χ ∈X∗(Gn). The linear form

PG′n : f ∈ C([Gn]) �→
∫
[G′n]

f (h)dh

is well-defined (i.e. the integral converges) and continuous. Moreover, for every f ∈ Sχ([Gn]) and φ ∈
S(An) we have

(6.2.6.1) φ̂(0)PG′n(f )=
1
2

ZFR,∗
ψ (1, 0f , φ).

6.2.7. A direct consequence of Theorem 6.2.5.1 and Theorem 6.2.6.1 is the
following corollary.

Corollary 6.2.7.1. — Let χ ∈ X∗(Gn) be represented by a pair (MP,π) and set � =
IndGn(A)

P(A) (π). Then, for every f ∈ Sχ([Gn]) we have

PG′n(f )=
⎧⎨
⎩

2−dim(AP)βn(Wf ,�) if χ is distinguished,

0 otherwise.

6.3. Proof of Theorem 6.2.5.1.2

Part 1. of Theorem 6.2.5.1 will be established in Section 6.5. Here, we give the
proof of part 2. of this theorem. Let f ∈ Cχ([Gn]), φ ∈ S(An) and (MP,π) be a pair
representing the cuspidal datum χ as in Section 6.2. We make the identification

ia∗M � (iR)k

such that for every x= (x1, . . . , xk) ∈ (iR)k we have

(6.3.0.1) πx := π1|det|x1
E � . . .� πk|det|xk

E .

Let ia∗M,0 be the subspace of x ∈ ia∗M such that n1x1 + · · · + nkxk = 0. We equip ia∗M,0 with
the unique Haar measure such that the quotient measure on

ia∗M/ia
∗
M,0 � iR, x �→ n1x1 + · · · + nkxk

n

is (2π)−1 times the Lebesgue measure. For every x ∈ ia∗M, we set �x = IndGn(A)
P(A) (πx) and

fx = f�x
following the definition of Section 2.9.8 (so that in particular�0 =� and f0 = f�

with notation from the previous section).
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We have an isomorphism A∞
Gn
� R∗

+, a �→ |det a|E, sending the Haar measure on
A∞

Gn
to dt

|t| where dt is the Lebesgue measure. Therefore, by Theorem 2.9.8.1 and Fourier
inversion, we have

0f =
∫

A∞Gn

∫
ia∗M

a · fxdxda=
∫

A∞Gn

∫
ia∗M
|det a|

n1x1+···+nk xk
n

E fxdxda=
∫

ia∗M,0
fxdx(6.3.0.2)

where the right-hand side is an absolutely convergent integral in TN([Gn]) for some N>
0. Therefore, by the first part of Theorem 6.2.5.1, there exists c > 0 such that for every
s ∈H>c we have

(6.3.0.3) ZFR
ψ (s,

0f , φ)=
∫

ia∗M,0
ZFR
ψ (s, fx, φ)dx.

Let S0 be a finite set of places of F including the Archimedean ones and outside of which
π is unramified and let S0,f ⊂ S0 be the subset of finite places. Let I⊆ {1, . . . , k} be the
subset of 1 � i � k such that L(s,πi,As) has a pole at s = 1. We choose, for each 1 �
i � k and v ∈ S0,f , polynomials Qi(T),Qi,v(T) ∈ C[T] with roots in H]0,1[ and H]q−1

v ,1[
respectively such that s �→Qi(s)L∞(s,πi,As) and s �→Qi,v(q

−s
v )Lv(s,πi,As) have no pole

in H]0,1[. Finally, we set

P(s, x)=
∏
i∈I

(s+ 2xi)(s− 1+ 2xi)
∏

1�i�k

Qi(s+ 2xi)
∏

1�i�k
v∈S0,f

Qi,v(q
−s−2xi
v ) and

f̃x(g)= fx(
tg−1)

for every x ∈A0, s ∈C and g ∈Gn(A). We will now check that the functions

(6.3.0.4) (s, x) ∈C×A0 �→ P(s+ 1
2
, x)ZFR

ψ (s+
1
2
, fx, φ)

and

(6.3.0.5) (s, x) ∈C×A0 �→ P(
1
2
− s, x)ZFR

ψ−1(
1
2
− s, f̃x, φ̂)

satisfy the conditions of Corollary A.0.11.1.
From the first part of Theorem 6.2.5.1, Theorem 2.9.8.1 and Lemma A.0.9.1, we

deduce that these functions satisfy the first condition of Corollary A.0.11.1. To check that
they also satisfy the second condition of Corollary A.0.11.1, we need to analyze more
carefully the function s �→ ZFR

ψ (s, fx, φ) for a fixed x ∈A0.
For S a sufficiently large finite set of places of F, that we assume to contain

Archimedean places as well as the places where π , ψ ′ or ψ are ramified (thus S0 ⊂ S),
we have decompositions

φ = φSφ
S and Wfx =WS,xWS

x



288 RAPHAËL BEUZART-PLESSIS, PIERRE-HENRI CHAUDOUARD, AND MICHAŁ ZYDOR

for every x ∈ A0, where φS ∈ S(Fn
S), φ

S is the characteristic function of (ÔS
F)

n, WS,x ∈
W(�x,S,ψn,S) (that is the Whittaker model of the representation �x,S with respect to the
character ψn,S = ψn|N(FS)) and WS

x ∈W(�S
x ,ψ

S
n )

KS
n is such that WS

x (1) = 1. By [Fli88,
Proposition 3] and (2.3.3.4), we then have

(6.3.0.6) ZFR
ψ (s, fx, φ)= (�S,∗

G′n )
−1L(s,�x,As)

ZFR
ψ (s,WS,x, φS)

LS(s,�x,As)

for s ∈H>c where we have set

ZFR
ψ (s,WS,x, φS)=

∫
N′n(FS)\G′n(FS)

WS,x(hS)φS(enhS)|det hS|sdhS.

Moreover, by [BP21b, Theorem 3.5.1] the function ZFR
ψ (s,WS,x, φS) extends meromor-

phically to the complex plane and satisfies the functional equation

(6.3.0.7)
ZFR
ψ−1(1− s,W̃S,x, φ̂S)

LS(1− s, (�x)∨,As)
= ε(s,�x,As)

ZFR
ψ (s,WS,x, φS)

LS(s,�x,As)

where W̃S,x(g)=WS,x(wn
tg−1), φ̂S is the (normalized) Fourier transform of φS with respect

to the bicharacter (u, v) �→ ψ ′(u1v1 + · · · + unvn) and ε(s,�x,As) denotes the global
epsilon factor of the Asai L-function L(s,�x,As).

By (6.3.0.6), (6.3.0.7) as well as the meromorphic continuation and functional
equation of L(s,�x,As) [Sha90, Theorem 3.5(4)], we conclude that ZFR

ψ (s, fx, φ) has a
meromorphic continuation to C satisfying the functional equation

(6.3.0.8) ZFR
ψ−1(1− s, f̃x, φ̂)= ZFR

ψ (s, fx, φ).

On the other hand, we have the decomposition

L(s,�x,As)=
k∏

i=1

L(s+ 2xi,πi,As)×
∏

1�i<j�k

L(s+ xi + xj,πi × π c
j ),

and, as χ ∈X∗(Gn), the Rankin-Selberg L-functions L(s,πi×π c
j ) are entire and bounded

in vertical strips [Cog08, Theorem 4.1]. By the Jacquet-Shalika bound [JS81b] and the
fact that the gamma function is of exponential decay in vertical strips, Qi(s)L∞(s,πi,As)
and Qi,v(q

−s
v )Lv(s,πi,As) are holomorphic and bounded in vertical strips of H>0 for each

1 � i � k and v ∈ S0,f . By [FL17, Lemma 5.2], s �→ (s − 1)LS0(s,πi,As), for i ∈ I, and
s �→ LS0(s,πi,As), for i /∈ I, are also holomorphic and of finite order in vertical strips of
H>0. Therefore, by the definition of P and the functional equation, P(s, x)L(s,�x,As) is
entire and of finite order in vertical strips. By (6.3.0.6), (6.3.0.8) and [BP21b, Theorem
3.5.2], it follows that the functions (6.3.0.4), (6.3.0.5) are entire and of finite order in
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vertical strips in the first variable i.e. they also satisfy the second condition of Corollary
A.0.11.1.

Thus, the conclusion of this corollary is valid and in particular the map

s �→
(

x �→
∏
i∈I

(s− 1+ 2xi)ZFR
ψ (s, fx, φ)

)

induces a holomorphic function H>1−ε → S(A0) for some ε > 0. By (6.3.0.3) and
[BP21c, Lemma 3.1.1, Proposition 3.1.2],9 it follows that s �→ ZFR

ψ (s,
0f , φ) extends ana-

lytically to H>1 and that

lim
s→1+

(s− 1)ZFR
ψ (s,

0f , φ)=
{

21−k lim
s→1
(s− 1)kZFR

ψ (s, f0, φ) if I= {1, . . . , k},
0 otherwise

(6.3.0.9)

Recall that I= {1, . . . , k} if and only if L(s,�,As) has a pole of order k = rk(AP)

at s = 1. Moreover, by [BP21b, Lemma 3.3.1] and the Jacquet-Shalika bound [JS81b],
the integral defining ZFR

ψ (s,WS,0, φS) is absolutely convergent in H>1−ε for some ε > 0.
Combining this with [BP21c, Lemma 2.16.3] and (6.3.0.6), in the case I = {1, . . . , k}
identity (6.3.0.9) can be rewritten as

lim
s→1+

(s− 1)ZFR
ψ (s,

0f , φ)= 21−k(�
S,∗
G′n )

−1LS,∗(1,�,As)ZFR
ψ (1,WS,0, φS)

= 21−k(�
S,∗
G′n )

−1LS,∗(1,�,As)βn,S(WS,0)φ̂S(0)

= 21−kφ̂(0)βn(Wf ,�)

and this ends the proof of Theorem 6.2.5.1.2.

6.4. Proof of Theorem 6.2.6.1

By (2.4.5.23), since any Siegel domain of [G′
n] is contained in a Siegel domain of

[Gn] and ρBn
= 2ρB′n , we have �Gn(h)� �G′n(h)2 for h ∈ [G′

n]. Hence, by (2.4.5.24), the
linear form PG′n is well-defined and continuous on C([Gn]). This shows the first part of
Theorem 6.2.6.1.

Let f ∈ Sχ([Gn]). Recall that A∞
Gn
= A∞

G′n but the Haar measure on A∞
Gn

is twice the
Haar measure on A∞

G′n (see Remark 3.1.3.1). Therefore, we have

PG′n(f )=
1
2

∫
[G′n]0

0f (h)dh.

9 More precisely, with the notation of Proposition 3.12 of loc. cit. we have an isomorphism ia∗M,0 � (iR)k0, x �→ x′

given by x′i = nixi and which sends the measure on ia∗M,0 to n

n1 ...nk
(2π)1−k times the measure on (iR)k0 used in loc. cit.
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Let φ ∈ S(An). We form the Epstein-Eisenstein series

E(h, φ, s)=
∫

A∞
G′n

∑
γ∈P ′n(F)\G′n(F)

φ(enγ ah)|det(ah)|sda, h ∈ [G′
n], s ∈C.

This expression converges absolutely for 
(s) > 1 and the map s �→ E(φ, s) extends to
a meromorphic function valued in T ([G′

n]) with simple poles at s = 0, 1 of respective
residues φ(0) and φ̂(0) (cf. [JS81b, Lemma 4.2]).

Consequently, the function

s �→ ZFR
n (s,

0f , φ) :=
∫
[G′n]0

0f (h)E(h, φ, s)dh

is well-defined for s ∈ C \ {0,1}, meromorphic on C with a simple pole at s = 1 whose
residue is

(6.4.0.1) Ress=1 ZFR
n (s,

0f , φ)= 2φ̂(0)PG′n(f ).

Unfolding the definition, we arrive at the identity

ZFR
n (s,

0f , φ)=
∫
P ′n(F)\G′n(A)

0f (h)φ(enh)|det h|sdh(6.4.0.2)

valid for 
(s) > 1.
More generally, for every 1 � r � n, let Nr,n be the unipotent radical of the standard

parabolic subgroup of Gn with Levi component Gr× (G1)
n−r , N′

r,n be its intersection with
G′

n and set

0fNr,n,ψ(g)=
∫
[Nr,n]

0f (ug)ψn(u)
−1du, g ∈G(A),

ZFR
r (s,

0f , φ)=
∫
P ′r (F)N′r,n(A)\G′n(A)

0fNr,n,ψ(h)φ(enh)|det h|sdh, s ∈C,

provided the last expression above is convergent. The proof of the next lemma will be
given in Section 6.5.

Lemma 6.4.0.1. — For every 1 � r � n, there exists cr > 0 such that the expression defining

ZFR
r (s,

0f , φ) converges absolutely for 
(s) > cr .

When r = 1, we have N1,n = Nn and 0fN1,n,ψ = W0f so that ZFR
1 (s,

0f , φ) =
ZFR
ψ (s,

0f , φ). Therefore, by (6.4.0.1) and (6.4.0.2), the second part of Theorem 6.2.6.1 is
a consequence of the following proposition.
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Proposition 6.4.0.2. — For every 1 � r � n, the function s �→ (s−1)ZFR
r (s,

0f , φ) extends

to a holomorphic function on {s ∈C | 
(s) > 1} admitting a limit at s= 1. Moreover, we have

lim
s→1+

(s− 1)ZFR
n (s,

0f , φ)= lim
s→1+

(s− 1)ZFR
r (s,

0f , φ).

Proof. — By descending induction on r, it suffices to establish the following:

(6.4.0.3) Let 1 � r � n− 1. There exists a function Fr holomorphic on H>1−ε for some
ε > 0 such that

ZFR
r+1(s,

0f , φ)= ZFR
r (s,

0f , φ)+ Fr(s)

for all s ∈C satisfying 
(s) >max(cr, cr+1).

Indeed, as P ′
r+1 =G′

rU
′
r , we have

ZFR
r+1(s,

0f , φ)=
∫

G′r(F)N′r,n(A)\G′n(A)

∫
[U′r+1]

0fNr+1,n,ψ(uh)duφ(enh)|det h|sdh.(6.4.0.4)

By Fourier inversion on the locally compact abelian group Ur+1(F)U′
r+1(A)\Ur+1(A), we

have

(6.4.0.5)
∫
[U′r+1]

0fNr+1,n,ψ(uh)du=
∑

γ∈P ′r (F)\G′r(F)
(0fNr+1,n,ψ)Ur+1,ψ(γ h)+ (0fNr+1,n,ψ)Ur+1(h)

for all h ∈G′
n(A) where we have set

(0fNr+1,n,ψ)Ur+1,ψ(h)=
∫
[Ur+1]

0fNr+1,n,ψ(uh)ψn(u)
−1du= 0fNr,n,ψ(h),

(0fNr+1,n,ψ)Ur+1(h)=
∫
[Ur+1]

0fNr+1,n,ψ(uh)du.

By (6.4.0.4) and (6.4.0.5), we obtain

ZFR
r+1(s,

0f , φ)= ZFR
r (s,

0f , φ)+ Fr(s)

for all s ∈C such that 
(s) >max(cr, cr+1) and where we have set

Fr(s)=
∫

G′r(F)N′r,n(A)\G′n(A)
(0fNr+1,n,ψ)Ur+1(h)φ(enh)|det h|sdh.

It only remains to check that Fr(s) extends to a holomorphic function on H>1−ε for some
ε > 0.
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Let Pr be the standard parabolic subgroup of Gn with Levi component Mr =Gr ×
Gn−r and set P′r = Pr ∩G′

n. We readily check that

(0fNr+1,n,ψ)Ur+1(h)=
∫
[Nn−r ]

0fPr
(

(
Ir

u

)
h)ψn(u)

−1du

=
∫
[Nn−r ]

∫
A∞Gn

fPr
(

(
Ir

u

)
ah)daψn(u)

−1du.

Therefore, by the Iwasawa decomposition G′
n(A)= P′r(A)K

′
n and since

δP′r

(
hr

hn−r

)
= δPr

(
hr

hn−r

)1/2

= |det hr|n−r|det hn−r|−r

for all hr ∈G′
r(A), hn−r ∈G′

n−r(A), we have (for 
(s) >max(cr, cr+1) and a suitable choice
of Haar measure on K′

n)

Fr(s)=
∫

K′n×[G′r ]×N′n−r(A)\G′n−r(A)

∫
[Nn−r ]

∫
A∞Gn

fPr ,k,s

(
a

(
hr

uhn−r

))
da(6.4.0.6)

ψn(u)
−1du|det hn−r|ns/(n−r)

× φk,n−r(en−rhn−r)dhn−rdhrdk

where fPr ,k,s = δ−1/2+s/2(n−r)

Pr
(R(k)f )Pr

|Mr(A) and φk,n−r stands for the composition of R(k)φ
with the inclusion An−r → An, x �→ (0, x). Let χM be the inverse image of χ in X(Mr). By
Corollary 2.9.7.2, we have fPr ,k,s ∈ CχM([Mr]) for every (k, s) ∈Kn ×H>0 and the map

(k, s) ∈Kn ×H>0 �→ fPr ,k,s ∈ CχM([Mr])
is continuous, holomorphic in the second variable. In particular, for 
(s) > 0 the integral

∫
A∞

G′r

∫
[Nn−r ]

∫
A∞Gn

fPr ,k,s

(
a

(
a′hr

uhn−r

))
dada′

is absolutely convergent and equals, by the obvious change of variable, to

n

n− r

∫
A∞

G′r

∫
[Nn−r ]

∫
A∞Gn−r

fPr ,k,s

(
a′hr

uahn−r

)
dada′.

It follows that (6.4.0.6) can be rewritten, for 
(s)� 1, as

Fr(s)= n

n− r

∫
K′n

∫
[G′r ]×N′n−r(A)\G′n−r(A)

∫
[Nn−r ]

∫
A∞Gr

fPr ,k,s

(
hr

uahn−r

)
da(6.4.0.7)

×ψn(u)
−1du|det hn−r|ns/(n−r)φk,n−r(en−rhn−r)dhn−rdhrdk
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= n

n− r

∫
K′n
(PG′r⊗̂ZFR

n−r(
ns

n− r
))(fPr ,k,s ⊗ φk,n−r)dk

where ZFR
n−r(s) stands for the bilinear form

(f ′, φ′) ∈ C([Gn−r])× S(An−r) �→ ZFR
ψ(−1)r (s,

0f ′, φ′).

On the other hand, by (2.9.6.10) we have

CχM([Mr])=
⊕

(χ1,χ2)∈X(Mr)=X(Gr)×X(Gn−r)�→χ
Cχ1([Gr])⊗̂Cχ2([Gn−r])

and, as χ ∈X∗(Gn), for every (χ1, χ2) ∈X(Gr)×X(Gn−r)mapping to χ ∈X(Gn), we also
have χ2 ∈ X∗(Gn−r). Therefore, by the first part of Theorem 6.2.6.1, Theorem 6.2.5.1
and (A.0.5.5), s �→ PG′r⊗̂ZFR

n−r(s) extends to an analytic family of (separately) continuous
bilinear forms on Cχ([Mr]) × S(An−r) for s ∈H>1. Thus, by the first part of Theorem
6.2.6.1, (A.0.5.4) and the equality (6.4.0.7), Fr(s) has an analytic continuation to {
(s) >
1− r/n}. This ends the proof of the proposition and hence of Theorem 6.2.6.1. �

6.5. Convergence of Zeta integrals

6.5.1.

Proof of Lemma 6.4.0.1. — We only treat the case 1 � r � n− 1. The case r = n can
be dealt with in a similar manner, and is in fact easier.

Let Qr be the standard parabolic subgroup of Gn with Levi component Gr ×Gn−r
1

and set Q′
r =Qr ∩G′

n. Recall that Nr,n is the unipotent radical of Qr . Identifying A∞
Gn
�

R>0, by the Iwasawa decomposition G′
n(A)=Q′

r(A)K
′
n, we need to show the convergence

of
∫

K′n×P ′r (F)\G′r(A)×T′n−r(A)×R>0

∣∣∣∣(R(k)f )Nr,n,ψ

(
ah

at

)∣∣∣∣ |R(k)φ(tn−r en)|(6.5.1.1)

|det h|s|det t|sδQ′
r

(
h

t

)−1

dadtdhdk

for 
(s)� 1. We now apply Lemma 2.6.1.1. For this we note that ψn |[Nr,n]=ψ ′ ◦� where
� : Nr,n →Ga sends u ∈ Nr,n to TrE/F(τ

∑n−1
i=r ui,i+1) and τ ∈ E× is the unique trace-zero

element such that ψ(z)=ψ ′(TrE/F(τz)). We readily check that

‖Ad∗(m)�‖VQr
∼ ‖t−1

1 erh‖Ar

n−r−1∏
i=1

‖ti t−1
i+1‖A,



294 RAPHAËL BEUZART-PLESSIS, PIERRE-HENRI CHAUDOUARD, AND MICHAŁ ZYDOR

for m=
(

h

t

)
∈G′

r(A)×T′
n−r(A).

Therefore, by Lemma 2.6.1.1.1, we can find c> 0 such that for every N1,N2 > 0 we have
∣∣∣∣(R(k)f )Nr,n,ψ

(
ah

at

)∣∣∣∣(6.5.1.2)

�‖ah‖−N2
G′r ‖t−1

1 erh‖−N1
Ar

n−r−1∏
i=1

‖ti t−1
i+1‖−N1

A δQr

(
h

t

)−cN2

for (k, h, t, a) ∈K′
n ×G′

r(A)× T′
n−r(A)×R>0. On the other hand, for every N1 > 0, we

have

|R(k)φ(ten)| � ‖t‖−N1
A , (k, t) ∈K′

n × A

and it is easy to check that for some N2 > 0 we have

‖erh‖Ar

n−r∏
i=1

‖ti‖A �‖tn−r‖N2
A ‖t−1

1 erh‖N2
Ar

n−r−1∏
i=1

‖ti t−1
i+1‖N2

A ,

(h, t) ∈G′
r(A)×T′

n−r(A).

As δQ′
r

(
h

t

)
= |det h|n−r

n−r∏
i=1

|ti|n+1−2(r+i) for every (h, t) ∈ G′
r(A)× T′

n−r(A), combining

this with (6.5.1.2), we deduce the existence of c > 0 such that for every N1,N2 > 0,
(6.5.1.1) is essentially bounded by the product of

(6.5.1.3)
∫
P ′r (F)\G′r(A)×R>0

‖ah‖−N2
G′r ‖erh‖−N1

Ar |det h|s−(2cN2+1)(n−r)dadh

and

(6.5.1.4)
∫

A×
‖t‖−N1

A |t|s−(2cN2+1)(n+1−2(r+i))dt

for 1 � i � n− r.
Let C1,C2 > 0. By Lemma 2.6.2.1, for N1 sufficiently large the integral (6.5.1.4)

converges absolutely in the range

1+(2cN2+1)(n+1−2(r+ i)) <
(s) <C1+(2cN2+1)(n+1−2(r+ i))

and for N1, N2 sufficiently large the integral (6.5.1.3) converges absolutely in the range

1+ (2cN2 + 1)(n− r) <
(s) <C2 + (2cN2 + 1)(n− r).
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Since n + 1 − 2(r + i) < n − r for every 1 � i � n − r, by taking C2 = 2 and C1 �
2+ (2cN2+ 1)(r+ 2i− 1) for every 1 � i � n− r, it follows that if N2 � 1 and N1 �N2 1
the integrals (6.5.1.3) and (6.5.1.4) are convergent in the range

1+ (2cN2 + 1)(n− r) <
(s) < 2+ (2cN2 + 1)(n− r).

The union of these open intervals for N2 sufficiently large as above is of the form ]cr,+∞[
which shows that ZFR

r (s,
0f , φ) converges absolutely in the range 
(s) > cr for a suitable

cr > 0. �

6.5.2.

Proof of Theorem 6.2.5.1.1. — Applying Lemma 2.6.1.1.2, the same manipulations
as in the proof of Lemma 6.4.0.1 reduce us to showing the existence of cN > 0 such that
for every C> cN there exists N′ > 0 satisfying that the integral

(6.5.2.5)
∫

T′n(A)

n∏
i=1

‖ti‖−N′
A ‖t‖N

T′nδB′n(t)
−1|det t|sdt

converges in the range s ∈H]cn,C[ uniformly on compact subsets. But this follows again
from Lemma 2.6.2.1 as there exists M> 0 such that

‖t‖N
T′nδB′n(t)

−1 �
∏

1�i�n

max(|ti|, |ti|−1)M, t ∈ [T′
n]. �

7. Canonical extension of the Rankin-Selberg period for H-regular
cuspidal data

This section is a continuation of Section 6 and we shall use the notation introduced
there. The main goal is to show the existence of a canonical extension of corank one
Rankin-Selberg periods to the space of uniform moderate growth functions for certain
cuspidal data (see Theorem 7.1.3.1). Combining this with the results of Section 6, this
will enable us to give an alternative proof of the spectral expansion of the Jacquet-Rallis
trace formula for certain cuspidal data in Section 8.

7.1. Statements of the main results

7.1.1. Let n � 1 be a positive integer. We set G=Gn×Gn+1 and H=Gn that we
consider as an algebraic subgroup of G via the diagonal inclusion H ↪→ G. We also set
w = (wn,wn+1) ∈G(F), K=Kn ×Kn+1, N= Nn ×Nn+1 and NH = Nn. Put ψN = ψn �
ψn+1 (a generic character of [N]). We note that ψN is trivial on [NH] (see the convention
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in the definition of ψn in Section 6.1.2). To any function f ∈ T ([G]), we associate its
Whittaker function

Wf (g)=
∫
[N]

f (ug)ψN(u)
−1du, g ∈G(A).

For f ∈ T ([G]), we set

ZRS
ψ (s, f )=

∫
NH(A)\H(A)

Wf (h)|det h|sEdh

for every s ∈ C for which the above expression converges absolutely. We postpone the
proof of the following lemma to Section 7.3.

Lemma 7.1.1.1. — Let N � 0. There exists cN > 0 such that:

• For every f ∈ TN([G]) and s ∈H>cN , the expression defining ZRS
ψ (s, f ) converges absolutely;

• For every s ∈H>cN , the functional f ∈ TN([G]) �→ ZRS
ψ (s, f ) is continuous;

• For every f ∈ TN([G]), the function s ∈H>cN �→ ZRS
ψ (s, f ) is holomorphic and bounded in

vertical strips.

7.1.2. H-regular cuspidal datum. — Let χ ∈X(G) be a cuspidal datum represented
by a pair (MP,π) where P= Pn × Pn+1 is a standard parabolic subgroup of G and π =
πn �πn+1 a cuspidal automorphic representation of MP(A) (with central character trivial
on A∞

P ). We have decompositions

MPn
=Gn1 × · · · ×Gnk

, MPn+1 =Gm1 × · · · ×Gmr

and πn, πn+1 decompose accordingly as tensor products

πn = πn,1 � . . .� πn,k, πn+1 = πn+1,1 � . . .� πn+1,r.

We say that χ is H-regular if it satisfies the following condition:

(7.1.2.1) For every 1 � i � k and 1 � j � r, we have πn,i �= π∨n+1,j .

7.1.3.

Theorem 7.1.3.1. — Let χ ∈X(G) be a H-regular cuspidal datum. Then,

1. For every f ∈ Tχ([G]), the function s �→ ZRS
ψ (s, f ), a priori defined on some right half-

plane, extends to an entire function on C;

2. The restriction of the linear form

PH : f ∈ S([G]) �→
∫
[H]

f (h)dh
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to Sχ([G]) extends by continuity to Tχ([G]) and moreover for every f ∈ Tχ([G]), we have

(7.1.3.2) PH(f )= ZRS
ψ (0, f ).

7.2. Proof of Theorem 7.1.3.1

Let f ∈ Sχ([G]). For 1 � r � n, let Nr,n and Nr,n+1 be the unipotent radicals of the
standard parabolic subgroups of Gn and Gn+1 with Levi components Gr × (G1)

n−r and
Gr × (G1)

n+1−r respectively and set

NG
r =Nr,n ×Nr,n+1, NH

r =NG
r ∩H=Nr,n,

fNG
r ,ψ
(g)=

∫
[NG

r ]
f (ug)ψN(u)

−1du, for g ∈G(A).

For 1 � r � n and s ∈C, we also set, whenever this expression converges,

ZRS
r (s, f )=

∫
Pr(F)NH

r (A)\H(A)
fNG

r ,ψ
(h)|det h|sEdh.

Note that we have ZRS
1 (s, f ) = ZRS

ψ (s, f ). The proof of the next lemma will be given in
Section 7.3.

Lemma 7.2.0.1. — For every 1 � r � n, there exists cr > 0 such that the expression defining

ZRS
r (s, f ) converges absolutely for s ∈H>cr

.

For r = n+ 1 and every s ∈C, we also set

ZRS
n+1(s, f )=

∫
[H]

f (h)|det h|sEdh.

Note that the above expression is absolutely convergent and defines an entire function
of s ∈C which is bounded in vertical strips, satisfying PH(f )= ZRS

n+1(0, f ). The following
proposition is the crux to the proof of Theorem 7.1.3.1.

Proposition 7.2.0.2. — For every 1 � r � n, we have

(7.2.0.1) ZRS
r+1(s, f )= ZRS

r (s, f )

for 
(s) sufficiently large.

Proof. — Let 1 � r � n− 1. As Pr+1 =GrUr and Nr,n =UrNr+1,n, for s ∈H>cr+1 we
have

ZRS
r+1(s, f )=

∫
Gr(F)NH

r (A)\H(A)

∫
[UH

r+1]
fNG

r+1,ψ
(uh)du|det h|sEdh(7.2.0.2)
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where we have set UH
r+1 = Ur+1 viewed as a subgroup of H = Gn (as always via

the embedding in “the upper-left corner”). Similarly, we set UG
r+1 = Ur+1 × Ur+1

viewed as a subgroup of G. By Fourier inversion on the compact abelian group
UG

r+1(F)U
H
r+1(A)\UG

r+1(A), we have

(7.2.0.3)
∫
[UH

r+1]
fNG

r+1,ψ
(uh)du=

∑
γ∈Pr(F)\Gr(F)

(fNG
r+1,ψ
)UG

r+1,ψ
(γ h)+ (fNG

r+1,ψ
)UG

r+1
(h)

for every h ∈H(A), where we have set

(fNG
r+1,ψ
)UG

r+1,ψ
(h)=

∫
[UG

r+1]
fNG

r+1,ψ
(uh)ψN(u)

−1du= fNG
r ,ψ
(h),

(fNG
r+1,ψ
)UG

r+1
(h)=

∫
[UG

r+1]
fNG

r+1,ψ
(uh)du.

By (7.2.0.2) and (7.2.0.3), we obtain

(7.2.0.4) ZRS
r+1(s, f )= ZRS

r (s, f )+ Fr(s)

for every s ∈C such that 
(s) >max(cr, cr+1) and where we have set

Fr(s)=
∫

Gr(F)NH
r (A)\H(A)

(fNG
r+1,ψ
)UG

r+1
(h)|det h|sEdh.

By a similar argument, (7.2.0.4) still holds when n= r if we set

fUG
n+1
(h)=

∫
[UG

n+1]
f (uh)du and Fn(s)=

∫
[H]

fUG
n+1
(h)|det h|sEdh

where UG
n+1 = 1×Un+1.

From (7.2.0.4), we are reduced to showing that Fr(s) = 0 identically for every
1 � r � n and 
(s) sufficiently large. To uniformize notation, we set fNG

n+1,ψ
= f . Let

Pr be the standard parabolic subgroup of G with Levi component Lr = (Gr ×Gn−r) ×
(Gr ×Gn+1−r) and set PH

r = Pr ∩H. Then, we readily check that

(fNG
r+1,ψ
)UG

r+1
(h)=

∫
[Nn−r ]×[Nn+1−r ]

fPr

(((
Ir

u

)
,

(
Ir

u′

))
h

)

×ψn(u)
−1ψn+1(u

′)−1du′du
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for every h ∈ H(A) and 1 � r � n. Therefore, by the Iwasawa decomposition H(A) =
PH

r (A)Kn, we have

Fr(s)=
∫

Kn

∫
[Gr ]×Nn−r(A)\Gn−r(A)

∫
[Nn−r ]×[Nn+1−r ]

fPr

((
hr

uhn−r

)
k,

(
hr

u′hn−r

)
k

)
ψn(u)

−1ψn+1(u
′)−1du′duδPH

r

(
hr

hn−r

)−1

× |det hr|sE|det hn−r|sEdhn−rdhrdk.

By a painless calculation, left to the reader, we have

δPH
r

(
hr

hn−r

)−1

|det hr|sE|det hn−r|sE

= δPr

((
hr

hn−r

)
,

(
hr

hn−r

))− 1
2+αr(s)

|det hn−r|s+2rαr(s)
E

where αr(s)= 2s+1
4n−4r+2 . Let χL be the inverse image of χ in X(Lr). By Corollary 2.9.7.2,

for 
(αr(s)) > 0 and every k ∈ Kn the function fPr ,k,s := δ−
1
2+αr(s)

Pr
R(k)fPr

|[Lr ] belongs to
CχL([Lr]). On the other hand, as Lr = Gr ×Gn−r ×Gr ×Gn+1−r , by (2.9.6.10) we have
the decomposition

CχL([Lr])=
⊕

(χ1,χ2)∈X(G2
r )×X(Gn−r×Gn+1−r)�→χ

Cχ1([Gr ×Gr])

⊗̂Cχ2([Gn−r ×Gn+1−r])
and the above equality can be rewritten as

(7.2.0.5) Fr(s)=
∫

Kn

(
PG�r ⊗̂ZRS

n−r(s+ 2rαr(s))
)
(fPr ,k,s)dk

where PG�r denotes the period integral over the diagonal subgroup of Gr×Gr and ZRS
n−r(s)

stands for the continuous linear form

f ′ ∈ C([Gn−r ×Gn+1−r]) �→ ZRS
ψ(−1)r (s, f

′).

Since χ is H-regular, by (7.1.2.1) for every preimage (χ1, χ2) ∈X(G2
r )×X(Gn−r×Gn+1−r)

of χ with χ1 = (χ ′1, χ ′′1 ) ∈X(Gr)
2 we have χ ′′1 �= (χ ′1)∨. Hence, by definition of Cχ1([Gr ×

Gr]), PG�r vanishes identically on Cχ1([Gr ×Gr]). This implies that Fr(s) = 0 whenever

(s)� 1 and this ends the proof of the proposition. �
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We can now finish the proof of Theorem 7.1.3.1. From the proposition, we deduce
that

(7.2.0.6) ZRS
ψ (s, f )=

∫
[H]

f (h)|det h|sdh

for 
(s)� 1 and every f ∈ Sχ([G]). In particular, it follows from this equality that s �→
ZRS
ψ (s, f ) extends to an entire function on C that is bounded in vertical strips and satisfies

the functional equation

ZRS
ψ (−s, f̃ )= ZRS

ψ (s, f )

where f̃ (g) = f (tg−1). By Corollary A.0.11.2, we can now deduce the first part of the
theorem from the above functional equation, (2.5.10.8), (2.9.5.9), Lemma 7.1.1.1. This
corollary also entails that the linear map f ∈ Tχ([G]) �→ Zψ(0, f ) is continuous. As, by
(7.2.0.6), this functional coincides with PH on Sχ([G]), this proves the second part of the
theorem.

7.3. Convergence of Zeta integrals

Proof of Lemma 7.2.0.1. — The argument is very similar to the proof of Lemma
6.4.0.1 so we only sketch it. Let 1 � r � n and QG

r be the standard parabolic subgroup of
G with Levi component (Gr × (G1)

n−r)× (Gr × (G1)
n+1−r) so that NG

r is the unipotent
radical of QG

r . Set QH
r =QG

r ∩H. By the Iwasawa decomposition H(A)=QH
r (A)Kn, we

need to show the convergence of
∫

Kn×Pr(F)\Gr(A)×Tn−r(A)

∣∣∣∣(R(k)f )NG
r ,ψ

(
h

t

)∣∣∣∣(7.3.0.1)

× |det h|sE|det t|sEδQH
r

(
h

t

)−1

dtdhdk

for 
(s)� 1. We apply Lemma 2.6.1.1.1 to ψF =ψ ′ and

� :NG
r →Ga,

(u, u′) �→TrE/F

(
(−1)nτ

n−1∑
i=r

ui,i+1 + (−1)n+1τ

n∑
i=r

u′i,i+1

)
.

We readily check that there exists N0 > 0 such that

(7.3.0.2) ‖erh‖Ar
E

n−r∏
i=1

‖ti‖AE �‖Ad∗
(

h

t

)
�‖N0

VQG
r

, for (h, t) ∈Gr(A)×Tn−r(A).
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Therefore, from (7.3.0.2) and Lemma 2.6.1.1, there exists c > 0 such that for every
N1,N2 > 0, (7.3.0.1) is essentially bounded by

∫
Pr(F)\Gr(A)×Tn−r(A)

‖h‖−N2
Gr
‖erh‖−N1

Ar
E

n−r∏
i=1

‖ti‖−N1
AE
δQG

r

(
h

t

)−cN2

× δQH
r

(
h

t

)−1

|det h|sE|det t|sEdtdh.

Now, the convergence of the above expression for 
(s)� 1, N2 �s 1 and N1 �s,N2 1 can
be shown as in the end of the proof of Lemma 6.4.0.1 using Lemma 2.6.2.1. �

Proof of Lemma 7.1.1.1. — Applying Lemma 2.6.1.1.2 in a similar way, we are re-
duced to showing the existence of cN > 0 such that for every C> cN there exists N′ > 0
satisfying that the integral

∫
Tn(A)

n∏
i=1

‖ti‖−N′
AE
‖t‖N

Tn
δBn
(t)−1|det t|sEdt

converges in the range s ∈H]cn,C[ uniformly on any compact subsets. This is exactly what
was established in the proof of Theorem 6.2.5.1.1 (up to replacing the base field F by
E). �

8. Contributions of ∗-regular cuspidal data to the Jacquet-Rallis trace
formula: second proof

In this section, we adopt the set of notation introduced in Section 5. In particular,
n � 1 is a positive integer, G = Gn × Gn+1, G′ = G′

n × G′
n+1, H = Gn with its diagonal

embedding in G, K=Kn×Kn+1 and K′ =K′
n×K′

n+1 are the standard maximal compact
subgroups of G(A) and G′(A) respectively and ηG′ : [G′] → {±1} is the automorphic
character defined in Section 3.1.6. We will also use notation from Sections 6 and 7:
N = Nn ×Nn+1 and NH = Nn are the standard maximal unipotent subgroups of G and
H, ψN = ψn � ψn+1 is a generic character of [N] (where ψn and ψn+1 are defined as in
Section 6.1.2). We also set P =Pn×Pn+1 (resp. P ′ =P ′

n×P ′
n+1) where Pn and Pn+1 (resp.

P ′
n and P ′

n+1) stand for the mirabolic subgroups of Gn and Gn+1 (resp. of G′
n and G′

n+1),
T=Tn×Tn+1 for the standard maximal torus of G and N′ =N′

n×N′
n+1 for the standard

maximal unipotent subgroup of G′. Finally, as in Section 7.1.1, for every f ∈ T ([G]) we
set

Wf (g)=
∫
[N]

f (ug)ψN(u)
−1du, g ∈G(A).
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8.1. Main result

8.1.1. Let χ ∈ X∗(G) be a ∗-regular cuspidal datum (see Section 5.1.3) repre-
sented by a pair (MP,π). We set�= IndG(A)

P(A) (π). We have decompositions P= Pn×Pn+1,
π = πn � πn+1 and �=�n ��n+1 where: Pn, Pn+1 are standard parabolic subgroups of
Gn, Gn+1 respectively with standard Levi components of the form

MPn
=Gn1 × · · · ×Gnk

, MPn+1 =Gm1 × · · · ×Gmr
,

πn and πn+1 are cuspidal automorphic representations of MPn
(A), MPn+1(A) decomposing

into tensor products

πn = πn,1 � . . .� πn,k, πn+1 = πn+1,1 � . . .� πn+1,r

respectively and we have set �n = IndGn(A)
Pn(A) (πn), �n+1 = IndGn+1(A)

Pn+1(A) (πn+1). We write χn ∈
X∗(Gn) and χn+1 ∈X∗(Gn+1) for the cuspidal data determined by the pairs (MPn

,πn) and
(MPn+1,πn+1) respectively.

The representation � is generic and we denote by W(�,ψN) its Whittaker model
with respect to the character ψN. Also, for every φ ∈� we define

Wφ(g) :=WE(φ)(g)=
∫
[N]

E(ug, φ)ψN(u)
−1du, g ∈G(A).

Note that Wφ ∈W(�,ψN).

8.1.2. We now define two continuous linear forms λ and βη as well as a contin-
uous invariant scalar product 〈., .〉Whitt on W(�,ψN). Let W ∈W(�,ψN).

• By [JPSS83] [Jac09], the Zeta integral (already encountered in Section 7)

ZRS(s,W)=
∫

NH(A)\H(A)
W(h)|det h|sAE

dh,

converges for 
(s)� 0 and extends to a meromorphic function on C with no
pole at s= 0. We set

λ(W)= ZRS(0,W).

• For S a sufficiently large finite set of places of F, we put

βη(W)= (�S,∗
G′ )

−1LS,∗(1,�,AsG)

∫
N′(FS)\P ′(FS)

W(pS)ηG′(pS)dpS

where we have set L(s,�,AsG)= L(s,�n,As(−1)n+1
)L(s,�n+1,As(−1)n).
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• Similarly, for S a sufficiently large finite set of places of F, we put

〈W,W〉Whitt = (�S,∗
G )

−1LS,∗(1,�,Ad)
∫

N(FS)\P(FS)

|W(pS)|2dpS

where we have set L(s,�,Ad)= L(s,�n ×�∨
n )L(s,�n+1 ×�∨

n+1).

That the above expressions converge and are independent of S as soon as it is chosen suf-
ficiently large (depending on the level of W) follow from [Fli88] and [JS81b]. Moreover,
the inner form 〈., .〉Whitt is G(A)-invariant by [Ber84] and [Bar03].

The next result follows from works of Jacquet-Shalika [JS81b], Shahidi [Sha81]
and Lapid-Offen [FLO12, Appendix A]. For completeness, we explain the deduction
(see Section 2.7.2 for our normalization of the Petersson inner product).

Theorem 8.1.2.1 (Jacquet-Shalika, Shahidi, Lapid-Offen). — We have

〈φ,φ〉Pet = 〈Wφ,Wφ〉Whitt

for every φ ∈�.

Proof. — Let φ ∈�. By the Iwasawa decomposition, for a suitable Haar measure
on K we have

〈φ,φ〉Pet =
∫

K

∫
[MP]0

|φ(mk)|2δP(m)
−1dmdk.

Set NP =N∩MP and

φNP,ψ(g)=
∫
[NP]
φ(ug)ψN(u)

−1du, g ∈G(A).

Let PP be the product of mirabolic groups
∏k

i=1 Pni
×∏r

j=1 Pmj
. It is a subgroup of MP.

According to Jacquet-Shalika [JS81b, §4] (see also [FLO12, p. 265] or [Zha14a, Propo-
sition 3.1]10), for S a sufficiently large finite set of places of F we have

∫
[MP]0

|φ(mk)|2δP(m)
−1dm(8.1.2.1)

= (�S,∗
MP
)−1

k∏
i=1

Ress=1 LS(s,πn,i × π∨n,i)
r∏

j=1

Ress=1 LS(s,πn+1,j × π∨n+1,j)

×
∫

NP(FS)\PP(FS)

|φNP,ψ(pSk)|2δP(pS)
−1dpS

10 Note that our normalization of the Petterson inner product if different from loc. cit.
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for every k ∈K. On the other hand, by [FLO12, Proposition A.2] we have
∫

K

∫
NP(FS)\PP(FS)

|φNP,ψ(pSk)|2δP(pS)
−1dpSdk(8.1.2.2)

= volG(AS)(KS)

volMP(AS)(KS ∩MP(AS))

×
∫

P(FS)\G(FS)

∫
NP(FS)\PP(FS)

|φNP,ψ(pSgS)|2δP(pS)
−1dpSdgS

= (�S,∗
G )

−1�
S,∗
MP

∫
N(FS)\P(FS)

|WS(pS, φNP,ψ)|2dpS,

where WS : IndG(FS)

P(FS)
(W(πS,ψN,S))→W(�S,ψN,S) stands for the Jacquet functional, de-

fined as the value at s= 0 of the holomorphic continuation of

WS,s(gS, φ
′)=

∫
(wG

P )
−1NP(FS)w

G
P \N(FS)

φ′(wG
P uSgS)δP(w

G
P uSgS)

sψN(uS)
−1duS,


(s)� 1

for gS ∈ G(FS) and φ′ ∈ IndG(FS)

P(FS)
(W(πS,ψN,S)) where wG

P = wPwG with wP (resp. wG)
the permutation matrix representing the longest element in the Weyl group of T in MP

(resp. in G). Finally, by [Sha81, Sect. 4], we have

(8.1.2.3) WS(φNP,ψ)=
∏

1�i<j�k

LS(1,πn,i × π∨n,j)
∏

1�i<j�r

LS(1,πn+1,i × π∨n+1,j)Wφ |G(FS)

where Wφ |G(FS) stands for the restriction of the Whittaker function Wφ to the subgroup
G(FS)⊂G(A). (Note that, as χ is regular, the Rankin-Selberg L-functions L(s,πn,i×π∨n,j)
and L(s,πn+1,i × π∨n+1,j) are all regular at s= 1.) As, for every s ∈R,

LS(s,�×�∨)=
k∏

i=1

LS(s,πn,i × π∨n,i)×
r∏

j=1

LS(s,πn+1,j × π∨n+1,j)

×
∣∣∣∣∣∣
∏

1�i<j�k

LS(s,πn,i × π∨n,j)
∣∣∣∣∣∣
2

×
∣∣∣∣∣∣
∏

1�i<j�r

LS(s,πn+1,i × π∨n+1,j)

∣∣∣∣∣∣
2

,

we deduce from (8.1.2.1), (8.1.2.2) and (8.1.2.3) the identity of the Theorem. �
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8.1.3. Relative characters. — Let BP,π be a K-basis of � as in Section 2.8.3. We
define the relative character I� of � as the following functional on S(G(A)):

I�(f )=
∑
φ∈BP,π

λ(R(f )Wφ)βη(Wφ)

〈Wφ,Wφ〉Whitt
, f ∈ S(G(A)),

where the series converges, and does not depend on the choice of BP,π , by Proposition
2.8.4.1.

8.1.4. For every f ∈ S(G(A)), we set

K1
f ,χ (g)=

∫
[H]

Kf ,χ (h, g)dh and

K2
f ,χ (g)=

∫
[G′]

Kf ,χ (g, g
′)ηG′(g

′)dg′, g ∈ [G],

where the above expressions are absolutely convergent by Lemma 2.10.1.1.3.
Recall that the notion of relevant ∗-regular cuspidal datum has been defined in

Section 5.1.3 and that we have defined for any χ ∈ X a distribution Iχ (see Theorem
3.2.4.1).

Theorem 8.1.4.1. — Let f ∈ S(G(A)) and χ ∈X∗(G). Then,

1. If χ is not relevant, we have K2
f ,χ (g)= 0 for every g ∈ [G] and moreover

Iχ(f )= 0.

2. If χ is relevant, we have

Iχ(f )=
∫
[G′]

K1
f ,χ (g

′)ηG′(g
′)dg′

where the right-hand side converges absolutely and moreover

Iχ(f )= 2−dim(AP)I�(f ).

The rest of this section is devoted to the proof of Theorem 8.1.4.1. Until the end,
we fix a function f ∈ Sχ(G(A)).

8.2. Proof of Theorem 8.1.4.1

8.2.1. We fix a character ηG of [G] whose restriction to [G′] is equal to ηG′ (such
a character exists as the idèle class group of F is a closed subgroup of the idèle class group
of E) and we set χ̃ = ηG⊗ χ∨ ∈X∗(G). We can write χ̃ as (χ̃n, χ̃n+1) where χ̃k ∈X∗(Gk)
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for k = n, n+ 1. For every g ∈ [G], we denote by K̃f ,χ (g, .) the function ηGKf ,χ (g, .). By
Lemma 2.10.1.1.2 and (2.9.6.10), we have

(8.2.1.1) K̃f ,χ (g, .) ∈ Sχ̃ ([G])= Sχ̃n
([Gn])⊗̂Sχ̃n+1([Gn+1])

for all g ∈ [G]. Moreover, with the notation of Theorem 6.2.6.1, we have

(8.2.1.2) K2
f ,χ (g)= PG′n⊗̂PG′n+1

(K̃f ,χ (g, .)).

8.2.2. The non-relevant case. — Assume that χ is not relevant. By definition of a
relevant cuspidal data (see Section 5.1.3), at least one of χ̃n, χ̃n+1 is not distinguished
(see Section 6.2.3 for the definition of distinguished). Hence, by Theorem 6.2.5.1 and
Theorem 6.2.6.1, PG′k vanishes identically on Sχ̃k

([Gk]) for k = n or k = n+ 1. Thus, by
(8.2.1.1) and (8.2.1.2), the function K2

f ,χ vanishes identically. By Theorem 3.3.9.1 applied
to the expression (3.3.5.5), this implies Iχ(f )= 0. This proves part 1. of Theorem 8.1.4.1.

8.2.3. Regularized Rankin-Selberg period and convergence. — From now on, we assume
that χ is relevant. By Lemma 2.10.1.1.2, for every g ∈ [G] the function Kf ,χ (., g) belongs
to Sχ([G]). Since χ is relevant, it is H-regular in the sense of Section 7.1.2 (this follows
from the dichotomy of Section 4.1.2). Therefore, by Theorem 7.1.3.1, PH extends to
a continuous linear form on Tχ([G]) that we shall denote by P∗H. By definition of this
extension and of the linear form λ (see Section 8.1.2), for every φ ∈� we have

(8.2.3.3) P∗H(E(φ))= λ(Wφ).

By Lemma 2.10.1.1.3 there exists N � 0 such that the function

g′ ∈ [G′] �→Kf ,χ (., g
′) ∈ TN([G])

is absolutely integrable. As

K1
f ,χ (g)= PH(Kf ,χ (., g))= P∗H(Kf ,χ (., g)),

combined with Theorem 3.3.9.1 applied to the expression (3.3.5.6), this shows at once
that the expression

(8.2.3.4)
∫
[G′]

K1
f ,χ (g

′)ηG′(g
′)dg′

converges absolutely, is equal to Iχ(f ) and that

(8.2.3.5) Iχ(f )= P∗H

(∫
[G′]

Kf ,χ (., g
′)η[G′](g′)dg′

)
= P∗H(K

2
f ,χ ).

Let us point out here that the absolute convergence of (8.2.3.4), together with Theorem
3.3.7.1.1, implies that the exponential-polynomial T �→ IT

χ (f ) of Theorem 3.2.4.1.2 is
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actually constant (but we caution the reader that this is not necessarily true for cuspidal
data that aren’t ∗-regular and relevant).

8.2.4. Spectral expression of K2
f ,χ . — Set �̃=�∨ ⊗ ηG. We may write �̃ as a tensor

product �̃n � �̃n+1 and we let

β = βn⊗̂βn+1 :W(�̃,ψN)=W(�̃n,ψn)⊗̂W(�̃n+1,ψn+1)→C

be the (completed) tensor product of the linear forms βn, βn+1 defined in Section 6.2.4.
Fix g ∈ [G] and set fg = K̃f ,χ (g, .). Since χ is relevant, χ̃n and χ̃n+1 are both distinguished.
Note that the linear map

f ∈ S([G]) �→Wf,�̃ :=Wf�̃ ∈W(�̃,ψN)

is the (completed) tensor product of the continuous linear maps f ∈ S([Gk]) �→Wf,�̃k
∈

W(�̃k,ψk) for k = n, n+ 1 (as can be checked directly on pure tensors). Therefore, by
(8.2.1.1), (8.2.1.2), Theorem 6.2.5.1 and Theorem 6.2.6.1 we have

(8.2.4.6) K2
f ,χ (g)= 2−dim(AP)β(Wfg ,�̃).

Let BP,π be a K-basis� as in Section 2.8.3. Then, we have fg,�̃=
∑
φ∈BP,π

〈fg,ηGE(φ)〉GηGE(φ)

where the sum converges absolutely in TN([G]) for some N � 0. Hence,

Wfg ,�̃ =
∑
φ∈BP,π

〈fg, ηGE(φ)〉GηGWφ

in W(�̃,ψN). On the other hand, we easily check that β(ηGWφ)= βη(Wφ) and

〈fg, ηGE(φ)〉G = 〈Kf ,χ (g, .),E(φ)〉G = E(R(f )φ)(g)

for every φ ∈ BP,π . Therefore, by (8.2.4.6), we obtain

(8.2.4.7) K2
f ,χ (g)= 2−dim(AP)

∑
φ∈BP,π

E(R(f )φ)(g)βη(Wφ).

Note that by Proposition 2.8.4.1, the series above is actually absolutely convergent in
TN([G]) for some N � 0 (and not just pointwise).

8.2.5. End of the proof. — By (8.2.3.5), (8.2.3.3) and (8.2.4.7), we obtain

Iχ(f )= 2−dim(AP)
∑
φ∈BP,π

λ(R(f )Wφ)βη(Wφ).
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Using Theorem 8.1.2.1 and since BP,π is an orthonormal basis of�, this can be rewritten
as

Iχ(f )= 2−dim(AP)
∑
φ∈BP,π

λ(R(f )Wφ)βη(Wφ)

〈Wφ,Wφ〉Whitt
= 2−dim(AP)I�(f )

and this ends the proof of Theorem 8.1.4.1 in the relevant case.

9. Flicker-Rallis functional computation

The goal of this section is to prove Theorem 1.3.2.3 of the introduction that states
that two natural functionals are equal. This is established in Theorem 9.2.5.1. The bulk of
the work is in proving its local avatar. The case of split algebra E/F amounts to comparing
scalar products which was done in Appendix A of [FLO12], which is an inspiration for
this section.

9.1. Local comparison

9.1.1. Let E/F be an etale quadratic algebra over a local field F. Let TrE/F :
E→ F be the trace map. As in Section 6.1.2, let ψ ′ : F→ C× be a non-trivial additive
character, τ ∈ E× an element of trace 0 and we set ψ : E→C× to be ψ(x)=ψ ′(Tr(τx)).
We use ψ ′ and ψ to define autodual Haar measures on F and E respectively. The duality
F× E/F→C× given by (x, y) �→ ψ(xy) defines a unique Haar measure on E/F dual to
the one on F. This measure on E/F coincides with the quotient measure.

9.1.2. Let k = E or F. Let S be a closed subgroup of GLn(k) equipped with a
right-invariant Haar measure denoted by ds. We denote by δS the modular character
such that δS(s)

−1ds is a left-invariant Haar measure on S. Let R⊂ S be a closed subgroup
equipped with a right-invariant Haar measure dr. We denote by

∫
R\S the right S-invariant

linear form on the space of left (R, δRδ
−1
S )-equivariant functions on S such that

∫
R\S

∫
R

f (rt)δS(r)δR(r)
−1 drdt =

∫
S

f (s)ds

for all continuous and compactly supported functions f on S.
We normalize the measures on GLn(k) and its subgroups as follows:

• On GLn(k) we set

dx= dxij

|det x|nk
where x= (xij).
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• On standard Levi subgroups of GLn(k) we set the product measure using the
measure defined above.

• On (semi) standard unipotent subgroups N(k) ⊂ GLn(k) we set the additive
measure dnij where nij run through coordinates of N.

• Let P is a standard parabolic subgroup of GLn(k) with the standard Levi decom-
position NM. We have the right-invariant measure dp := dndm on P(k) and the
left invariant measure δ−1

Pk
dp where δPk

: P(k)→R×
>0 is the Jacobian homomor-

phism for the adjoint action of P(k) on N(k).

With this normalization, we have for all f ∈C∞
c (GLn(k))∫

GLn(k)

f (g) dg =
∫

P(k)

∫
N̄(k)

f (pn)δPk
(p)−1 dpdn,

where N is the unipotent radical of the opposite parabolic to P. The linear form
∫

P(k)\GLn(k)

is given in this case by the integration over either N̄(k) or the standard maximal compact
subgroup for a suitable Haar measure. Assume P is moreover maximal of type (n− 1,1).
Let P ⊂ P be the mirabolic subgroup (see Section 9.1.5 below). We have P(k)= P(k)×
GL1(k) and this gives the normalization of the measure on P(k). Moreover the modular
character δP(k) coincides with |det |k on P(k).

9.1.3. We will use the notation introduced in Section 4 with some changes. All
groups considered in this section are subgroups of Gn = ResE/F GLn. We write simply
G for Gn, P0 for the fixed minimal parabolic subgroup of G and N0 for its unipotent
radical. In order to be as compatible with Appendix A of [FLO12] as possible, instead of
G′ =GLn (defined over F) we write GF =GLn and for any subgroup H of G we write HF

for H∩GF. We will often identify a group with its F points in this section.

9.1.4. We define the character ψ :N0 →C× as follows. Write n ∈N0 as

n=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 n12 n13 . . . n1n

0 1 n23 . . . n2n

0
. . .

. . .
. . . n2n

0
. . .

. . . 1 nn−1n

0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
, nij ∈ E

and set ψ(n)= ψ((−1)n(n12 + n23 + · · · + nn−1n)). This is the same character as the one
from 6.1.2. By restriction,ψ defines a character of N0∩M for all standard Levi subgroups
M.

9.1.5. We denote by P = Pn the mirabolic subgroup of G defined as the stabi-
lizer of the row vector

(
0 . . . 0 1

)
.
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For ϕ an element of C∞(N0\P,ψ)= {f ∈C∞(P) | f (nx)=ψ(n)f (x), n ∈N0, x ∈
P} we define

β(ϕ)= βG(ϕ)=
∫

N0,F\PF

ϕ(p) dp

when it is absolutely convergent. Note that ψ is trivial on N0,F. In the same way, we define
βM for all standard Levi subgroups M of G.

9.1.6. Let �gen(G) be the set of irreducible generic complex representations of
G=GLn(E). Let W(π)=Wψ(π) be the space of the Whittaker model of π ∈�gen(G)
with respect to the character ψ . Let δπg = δg :W(π)→ C be the evaluation at g ∈ G.
The group G acts on W(π) by right multiplication.

Fix P = MN ∈ FG(P0). Let wM be the element in the Weyl group of G such
that wMMw−1

M is a standard Levi subgroup and the longest for this property. Let Pw =
NwMw ∈FG(P0) be the parabolic subgroup whose Levi component is Mw =wMMw−1

M .
For σ ∈�gen(M) let IndG

P (W(σ )) be the normalized (smooth) induction to G, from
W(σ ), seen as a representation of P via the natural map P→M. As in Section 8.1.2 we
define for ϕ ∈ IndG

P (W(σ )) the Jacquet’s integral.

W(g, ϕ)=
∫

Nw
δσe (ϕ(w

−1
M u′g))ψ−1(u′) du′.

We have then that We(ϕ) :=W(e, ϕ) is a Whittaker functional on IndG
P (W(σ )).

9.1.7. Let σ ∈�gen(M) and ϕ ∈ IndG
P (W(σ )). We assume that σ is unitary. Then

βG(W(ϕ)) and βM(ϕ(g)) are given by absolutely convergent integrals (cf. [Fli88, Lemma
4] and [BP21b, Proposition 2.6.1, proof of Lemma 3.3.1]). We shall say that σ is distin-
guished if σ admits a non-zero continuous linear form invariant under GF. From now on
we assume that σ is distinguished.

Theorem 9.1.7.1. — Under the assumptions above, the linear map βM is MF-invariant and

we have

βG(W(ϕ))= β ′(ϕ)(9.1.7.1)

where

β ′(ϕ)=
∫

PF\GF

βM(ϕ(g)) dg.(9.1.7.2)

Remark 9.1.7.2. — The integral (9.1.7.2) makes sense since βM is invariant and
since δP restricted to PF equals δ2

PF
. This latter observation pertains also to similar integrals

in the proof below.



THE GLOBAL GAN-GROSS-PRASAD CONJECTURE FOR UNITARY GROUPS. . . 311

Proof. — If E is split then the theorem follows from [Bar03, corollary 10.4] and
[FLO12, proposition A.2]. We assume from now on that E/F is a field extension. Let’s
prove the first assertion. Working on factors of M we are reduced to the case M = G.
If F is p-adic, the result follows from [GJR01, proposition 2]. More precisely, according
to this proposition, any non zero GF-invariant continuous linear form on (the Whittaker
model of) a distinguished unitary generic representation of G should be (up to a non zero
constant) β . We claim that the result also holds for F = R. Indeed, following the proof
of [GJR01, proposition 2] and using multiplicity one property [AG09, theorem 8.2.5],
we see that it suffices to show that any Z(g)-finite distribution on the symmetric space
G/GF left-invariant by PF is also left-invariant by GF. But this is a variant of [Bar03,
theorem 10.4] where the adjoint action of GF on itself is replaced by the action of GF on
G/GF. It can be proved as in [Bar03, section 9]: indeed the bulk of the argument there
is a descent to the centralizer of semi-simple elements where the use of the exponential
reduces everything to an analogous theorem for the adjoint action of GF on gF. In fact
such a descent can be performed for G/GF. The main observation is that the tangent
space of G/GF at the origin can be identified as a GF-representation to the adjoint action
of GF on gF.

Once we have the first assertion, we observe that β ′ is a non-zero GF-invariant
linear form on IndG

P (W(σ )) (since βM is non-zero as a consequence of [GK72], [Jac10,
Proposition 5] and [Kem15]). Still by the same argument as before we deduce that the
equality (9.1.7.1) holds up to a non zero constant. We have to show that this constant is
1. Thus it suffices to prove (9.1.7.1) for one specific ϕ such that β ′(ϕ) �= 0.

There is an easy reduction to the case where P is maximal. Let Q = LV ⊃ P be
maximal and suppose the assertion holds for M=MP. Then

β ′(ϕ)=
∫

PF\GF

βM(ϕ(g)) dg =
∫

QF\GF

∫
PF\QF

δ−1
QF
(q)βM(ϕ(qg)) dqdg.

The inner integral on the RHS by induction hypothesis equals

βL(g.WL(ϕ)).

If we let ϕ′(g)= g.WL(ϕ) ∈W(IndL
L∩P(W(σ ))) then ϕ′ ∈ IndG

Q(W(IndL
L∩P(W(σ )))) and

so by assumption and transitivity of Jacquet’s integral we obtain∫
QF\GF

βL(g.WL(ϕ)) dg = βG(W(ϕ)).

From now on we assume that P=MN is maximal of type (n1, n2). In [FLO12], the
authors use U instead of N. We will consequently use N in place of U here. Write M=
M1 ×M2 with Mi

∼=ResE/F GLni
, M1 being in the upper and M2 in the lower diagonal.

Let

w =w−1
M =

(
0 In1

In2 0

)
.
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Let P′ = M′N′ be of type (n2, n1) so that M′ = M′
2 × M′

1 with M′
i
∼= ResE/F GLni

, M′
2

being in the upper and M′
1 in the lower diagonal. Let P ′

i be the mirabolic subgroup of
M′

i . Let N′
i be the maximal upper triangular unipotent of M′

i , similarly without ′. Note
that Pi = wP ′

iw
−1 etc. We identify N′ with the group of n2 × n1 matrices. We write

σ = σ1 ⊗ σ2 where σ1 and σ2 are respectively viewed as representations of M1 and M2.
We view σ2 as a representation of M′

2 as well.
Let

Ci = {In + ξ | ξ column vector of size n2 in the i-th column} ⊂N′,

i = n2 + 1, . . . , n.

Let

Ri = {In + ξ | ξ row vector of size n2 in the i-th row} ⊂N
′
,

i = n2 + 1, . . . , n.

We can identify Ci and Rj with En2 which induces a pairing between Ci and Ri−1 that we
will denote 〈·, ·〉i .

We note some obvious facts

• The groups Ri (resp. Ci ) commute with each other and are normalized by M′
2.

• The commutator set [Ci,Rj] is contained in N′
1 for j < i.

We define the following groups

1. Xi =Ci+1 · · ·Cn. It is normalized by N′
1.

2. Yi =Rn2+1 · · ·Ri−1. It is normalized by N′
1.

3. Vi =N′
1XiYi . This is a unipotent group.

4. V′
i =N′

1Xi−1Yi ⊃Vi . This is a unipotent group.
5.

Si =
{

M′
2Vi, i > n2,

P ′
2N′

1N′, i = n2

6. S′i =M′
2V′

i for i > n2.

Note that

• S′i =CiSi for i > n2 as well as S′i =Ri−1Si−1 for i > n2 + 1.
• Let δi and δ′i be modular characters of Si and S′i respectively. It follows that
(δ′i)|Si

= |det |Eδi and (δ′i)|Si−1 = |det |−1
E δi−1 in the above range.

• Let δi,F and δ′i,F be modular characters of Si,F and S′i,F respectively.
• We have δi = |det |n+n2−2i+1

E for i ≥ n2.
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Let us define{
Ai = IndPn

Si
(W(σ2)⊗ψi), i = n2 + 1, . . . , n.

Ai = IndPn

N0
ψ, i = n2.

Here, ψi is the character of Vi - the unipotent radical of Si - whose restriction to XiYi is
trivial and that coincides with ψ on N′

1.
Explicitly, for i > n2 we have

Ai = {ϕ :P→W(σ2) | ϕ(mvg)=
(
δi(m)

|det m|E
)1/2

ψi(v)σ2(m)ϕ(g),

g ∈P, m ∈M′
2, v ∈Vi}.

We also denote A2
i the L2-induction version of the above as in [FLO12]. Note that

• Ai = IndP
S′i
(Ind

S′i
Si
((W(σ2)⊗ψi))) for i > n2.

• Ai−1 = IndP
S′i
(Ind

S′i
Si−1
((W(σ2)⊗ψi−1))) for i > n2 + 1.

• An2 = IndP
S′n2+1
(Ind

S′n2+1

N0
ψ).

For any i > n2 the restriction map to Ci identifies Ind
S′i
Si
((W(σ2) ⊗ ψi)) with

C∞(Ci,W(σ2)) because S′i/Si = Ci . Let us denote ϕ �→ ϕ|Ci
the restriction map and

ιCi
the map in the reverse order. Similarly, restriction to Ri−1 identifies Ind

S′i
Si−1
((W(σ2)⊗

ψi−1)) with C∞(Ri−1,W(σ2)). Let us denote ϕ �→ ϕRi−1 the restriction map and ιRi−1 the
map in the reverse order.

Given that Ci and Ri−1 are in duality we have a Fourier transform

F ′
i : L2(Ci,W(σ2))→ L2(Ri−1,W(σ2))

where W(σ2) is the L2 completion of W(σ2).

Lemma 9.1.7.3. — For i = n, . . . , n2 + 2, the above Fourier transform induces a map

Bi :A2
i = IndP

S′i
(Ind

S′i
Si
((W(σ2)⊗ψi)))→A2

i−1

= IndP
S′i
(Ind

S′i
Si−1
((W(σ2)⊗ψi)))

induced from the equivalence Ind
S′i
Si
((W(σ2)⊗ ψi))→ Ind

S′i
Si−1
((W(σ2)⊗ ψi−1)) given by ϕ �→

ιRi−1(F ′
i (ϕ|Ci

)). It is an equivalence of unitary representations.

Similarly, we have the map

Fn2+1 : Ind
S′n2+1

Sn2+1
((W(σ2)⊗ψn2+1))→ Ind

S′n2+1

N0
ψ
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given by

Fn2+1ϕ(vm)=ψ(v)|det m|1/2E ϕ̂(χm)(m), m ∈M′
2, v ∈V′

n2+1 =N′
1N′

where

χm :Cn2+1 →C×, χm(c)=ψ(mcm−1), ϕ̂(χ)=
∫

Cn2+1

ϕ(c)χ(c) dc.

Lemma 9.1.7.4. — The above Fourier transform induces the equivalence of unitary represen-

tations

Bn2+1 :A2
n2+1 = IndP

S′n2+1
(Ind

S′n2+1

Sn2+1
((W(σ2)⊗ψn2+1)))

→A2
n2
= IndP

S′n2+1
(Ind

S′n2+1

N0
ψ).

From now on we take ϕ ∈ IndG
P (W(σ1 ⊗ σ2)) supported on the big cell PwP′. We

shall show (9.1.7.1) for such functions which suffices to conclude.
For m ∈M1, let δ1

m :W(σ1 ⊗ σ2)→W(σ2) be the evaluation map in the first vari-
able. Define for p ∈P

ϕn(p)= δ1
e ϕ(wp) ∈An.

We have then ∫
P\G
‖ϕ(g)‖2

L2(W(σ1⊗σ2))
dg = ‖ϕn‖2

An
.

Let i ∈ {n, . . . , n2 + 1}. The restriction of
(

δi

|det |E
)1/2

to Si,F is equal to δi,Fδ
−1
PF

.

Thus for φ ∈ Ai , the map p ∈ PF �→ βM′
2
(φ(p)) is (Si,F, δi,Fδ

−1
PF
)-equivariant. We may

introduce (at least formally)

βi(φ)=
∫

Si,F\PF

βM′
2
(φ(p)) dp.

Lemma 9.1.7.5. — We have

β ′(ϕ)= βn(ϕn).

Proof. — Indeed by various changes of variables we get the equality of absolutely
convergent integrals:

β ′(ϕ)=
∫

PF\GF

βM(ϕ(g)) dg =
∫

PF\GF

βM(ϕ(gw)) dg
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=
∫

NF

βM(ϕ(uw)) du=
∫

N′F
βM(ϕ(wu′)) du′

=
∫

N′F

∫
N1,F\P1,F

βM2(δ
1
m1
(ϕ(wu′))) dm1du′

=
∫

N′F

∫
N1,F\P1,F

βM2(δ
1
e (ϕ(m1wu′)))δ−1/2

P (m1) dm1du′

=
∫

N′F

∫
N′1,F\P ′1,F

βM′
2
(δ1

e (ϕ(wm′1u′)))δ1/2
P′ (m

′
1) dm′1du′

=
∫

Sn,F\PF

βM′
2
(δ1

e (ϕ(wp))) dp. �

Define recursively ϕi−1 = Bi(ϕi) for i = n, . . . , n2 + 1. As shown at the end of the
Appendix A.3 of [FLO12], we have

(9.1.7.3) ϕn2 =W(ϕ).

Lemma 9.1.7.6. — For i = n, . . . , n2 + 2 we have

βi(ϕi)= βi−1(ϕi−1).

Proof. — Observe that the map

g ∈PF �→
∫

Ri−1,F

βM′
2
(ϕi−1(rg)) dr(9.1.7.4)

is (S′i, δ
′
i,Fδ

−1
PF
)-equivariant. We have

βi−1(ϕi−1)=
∫

S′i,F\PF

∫
Ri−1,F

βM′
2
(ϕi−1(rg)) drdg.

Let g ∈PF. By construction we have:

ϕi−1(rg)=
∫

Ci

ϕi(cg)ψ(〈c, r〉i)dc.

Since the duality 〈·, ·〉i between Ci and Ri−1 restricts to a duality between Ci/Ci,F and
Ri−1,F we get that (9.1.7.4) is equal to

∫
Ci,F

βM′
2
(ϕi(cg)) dc.
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But we have

βi(ϕi)=
∫

S′i,F\PF

∫
Ci,F

βM′
2
(ϕi(cg)) dcdg.

Note that the inner function in c is compactly supported and the convergence of the
integrals we have considered follows. �

Lemma 9.1.7.7. — We have

βn2+1(ϕn2+1)= βG(W(ϕ)).

Proof. — Recall that W(ϕ)= ϕn2 = Bn2+1(ϕn2+1), see (9.1.7.3). Thus the right-hand
side is ∫

N0,F\PF

Bn2+1(ϕn2+1)(p) dp=
∫

S′n2+1,F\PF

∫
N′2,F\M′

2,F

Bn2+1(ϕn2+1)(mp) dmdp.

Let us fix p ∈ PF and let us work on the inner integral. By definition of Bn2+1, it is equal
to ∫

N′2,F\M′
2,F

∫
Cn2+1

ϕn2+1(cp)(m)ψ(mcm−1)dc|det m|F dm

We denote by P ′
n2

the standard mirabolic subgroup of M′
2. Let P ′

n2
⊂ Q ⊂ M′

2 be the
maximal parabolic subgroup of type (n2 − 1,1). Let N̄Q the unipotent radical of the
opposite parabolic subgroup. The integral above is also equal to∫

GL1,F

∫
N̄Q,F

∫
Cn2+1

∫
N′2,F\P ′n2,F

ϕn2+1(cp)(qλn̄)ψ(qλn̄c(qλn̄)−1)dqdc|λ|n2
F dn̄dλ

where we identify λ with the diagonal matrix diag(1, . . . ,1, λ) ∈M′
2. A first observation

is that we have

ψ(qλn̄c(qλn̄)−1)=ψ(λn̄c(λn̄)−1).

Hence the inner integral over q is:∫
N′2,F\P ′n2,F

ϕn2+1(cp)(qλn̄)dq= βM′
2
(ϕn2+1(cp)(·λn̄))

= βM′
2
(ϕn2+1(cp)).

For the latter equality, we use the fact that σ2 is distinguished and thus βM′
2

is left M′
2,F-

invariant. By a change of variables we get∫
GL1,F

∫
N̄Q,F

∫
Cn2+1

βM′
2
(ϕn2+1(cp))ψ(n̄λc(n̄λ)−1)dqdc|λ|F dn̄dλ.
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Now |λ|F dλ is the additive measure. We can identify c ∈ Cn2+1 with an element X ∈ En

and n̄λ with an element Y ∈ Fn−1 × F× ⊂ E in such a way that we have

ψ(n̄λc(n̄λ)−1)=ψ(〈X,Y〉)

where 〈X,Y〉 is the obvious pairing. By Fourier inversion, we deduce that the previous
integral is

∫
Cn2+1,F

βM′
2
(ϕn2+1(cp))dc.

Hence

βG(W(ϕ))=
∫

S′n2+1,F\PF

∫
Cn2+1,F

βM′
2
(ϕn2+1(cp))dcdp

= βn2+1(ϕn2+1).

Note that the last integrals are absolutely convergent and our computations are justified.
�

Theorem 9.1.7.1 then follows from Lemmas 9.1.7.5, 9.1.7.7, 9.1.7.6 for our spe-
cific functions ϕ and thus holds in general. �

9.2. Global comparison

9.2.1. We go back to the global setting and notation introduced in Section 3.1.

9.2.2. We normalize all local and global measures as in Section 2.3, with respect
to a fixed character ψ ′ : F\A→ C×. We have the quadratic character η : F×\A× → C×

associated to E/F and the associated character ηG′ of G′(A) as defined in Paragraph
3.1.6.

9.2.3. As in Section 6.1.2, we also fix a non-trivial additive character ψ :
E\AE → C×, trivial on A which is then used to define a non-degenerate character ψN

of the maximal unipotent subgroup of G(A) as in the beginning of Section 8.

9.2.4. Let χ ∈ X∗(G) be a relevant ∗-regular cuspidal datum (cf. Section 5.1.3)
and let (M,π) represent χ . Set �= IndG(A)

P(A) (π).
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9.2.5. The comparison.

Theorem 9.2.5.1. — For all φ ∈� we have

Jη(φ)= βη(Wφ)

where

• Jη is defined in 5.1.2.1;

• βη is defined in 8.1.2.

• Wφ ∈W(�,ψN) is defined in 8.1.1.

Proof. — The proof is essentially the same as of Theorem 8.1.2.1. The only differ-
ence is that the natural analogue of (8.1.2.1) is provided by Proposition 3.2 of [Zha14a]
and the analogue of (8.1.2.2) is established invoking Theorem 9.1.7.1. �

Corollary 9.2.5.2. — We have the equality of distributions on S(G(A))

IP,π = I�

where

1. IP,π is defined in Section 5.1.5.

2. I� is defined in Section 8.1.3.

Proof. — Looking at definitions of IP,π and I�, taking into consideration Theorem
8.1.2.1 and Theorem 9.2.5.1 above, we see that we need to establish for all φ ∈�

λ(Wφ)= I(φ,0)

where λ= ZRS(0, ·) is defined in Section 8.1.2 and I(φ,0) is given by Proposition 5.1.4.1.
This equality is precisely Theorem 1.1 of [IY15]. �

10. Proofs of the Gan-Gross-Prasad and Ichino-Ikeda conjectures

10.1. Identities among some global relative characters

10.1.1. Besides notation of Sections 2 and 3, we shall use notation of Section 1.
We fix an integer n � 1 and we will omit the subscript n: we will write H for Hn.

10.1.2. Relative characters for unitary groups. — Let h ∈H be a Hermitian form. Let
σ be an irreducible cuspidal automorphic subrepresentation of the group Uh. We define
the relative character Jh

σ by

Jh
σ (f )=

∑
ϕ

Ph(π(f )ϕ)Ph(ϕ), ∀f ∈ S(Uh(A))
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where ϕ runs over a Kh-basis (see 2.8.3) for some maximal compact subgroup Kh ⊂
Uh(A). The periods Ph are those defined in 1.1.5. For any subset X0 ⊂X(Uh) of cuspidal
data which do not come from proper Levi subgroups (that is they are represented by pairs
(Uh, τ ) where τ is a cuspidal automorphic representation) we define more generally

Jh
X0
(f )=

∑
χ∈X0

∑
σ

Jh
σ (f )(10.1.2.1)

where the inner sum is over the set of the constituents σ of some decomposition of
L2
χ([Uh]) (see Section 2.9.2.1) into irreducible subrepresentations. One can show that

the double sum is absolutely convergent (see e.g. [BP21a, Proposition A.1.2]).

10.1.3. Let VF,∞ ⊂ S0 ⊂VF be a finite set of places containing all the places that
are ramified in E. For every v ∈ VF, we set Ev = E⊗F Fv and when v /∈VF,∞ we denote
by OEv ⊂ Ev its ring of integers. Let H◦ ⊂H be the (finite) subset of Hermitian spaces of
rank n over E that admits a selfdual OEv -lattice for every v /∈ S0.

For each h ∈ H◦, the group Uh is naturally defined over OS0
F and we fix a

choice of such a model. Since we are going to consider invariant distribution, this
choice is irrelevant. We define the open compact subgroups K◦

h =
∏
v /∈S0

Uh(Ov) and
K◦ =∏

v /∈S0
G(Ov) respectively of Uh(AS0) and G(AS0).

Let v /∈ S0. We denote by S◦(Uh(Fv)), resp. S◦(G(Fv)), the spherical Hecke alge-
bra11 of complex functions on Uh(Fv) (resp. G(Fv)) that are Uh(Ov)-bi-invariant (resp.
G(Ov)-bi-invariant) and compactly supported.

We have the base change homomorphism

BCh,v : S◦(G(Fv))→ S◦(Uh(Fv)).

We denote by S◦(Uh(AS0)), resp. S◦(G(AS0)), the restricted tensor product of S◦(Uh(Fv)),
resp. S◦(G(Fv)), for v /∈ S0. We have also a global base change homomorphism given by
BCS0

h =⊗v /∈S0BCh,v .
We also denote by S◦(G(A))⊂ S(G(A)) and S◦(Uh(A))⊂ S(Uh(A)), for h ∈H◦,

the subspaces of functions that are respectively bi-K◦-invariant and bi-K◦
h -invariant.

10.1.4. Transfer. — Let h ∈ H◦. We shall say that fS0 ∈ S(G(FS0)) and f h
S0
∈

S(Uh(FS0)) are transfers if the functions fS0 and f h
S0

have matching regular orbital inte-
grals in the sense of Definition 4.4 of [BPLZZ21]. The Haar measures on the FS0-points
of the involved groups are those defined in Section 2.3.3.

11 The product structure is given by the convolution where the Haar measure is normalized so that the characteristic
functions of Uh(Ov) and G(Ov) are units.
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10.1.5. Let P be a standard parabolic subgroup of G and π be a cuspidal auto-
morphic representation of MP. Let χ ∈X(G) be the class of the pair (MP,π). We assume
henceforth that χ is a regular relevant cuspidal datum in the sense of Section 5.1.3.

Set�= IndG
P (π) for the corresponding parabolically induced representation. The

assumption that χ is regular and relevant means exactly that � is a Hermitian Arthur
parameter (see Section 1.1.3). Moreover, we assume, as we may, that S0 has been chosen
such that � admits K◦-fixed vectors.

Attached to these data, we have three distributions denoted by Iχ , IP,π and I�. The
first is constructed as a contribution of the Jacquet-Rallis trace formula and it is defined
in Theorem 3.2.4.1. The second and third are relative characters built respectively in
Section 5.1.5 and Section 8.1.3. The bulk of the paper was devoted to the proof of the
following identities (see Theorem 5.2.1.1, Theorem 8.1.4.1 and Corollary 9.2.5.2)

(10.1.5.2) Iχ = 2−dim(aP)IP,π = 2−dim(aP)I�.

10.1.6. Let S′0 be the union of S0 \VF,∞ and the set of all finite places of F that
are inert in E.

We define Xh
0 ⊂X(Uh) as the set of equivalence classes of pairs (Uh, σ ) where σ is

a cuspidal automorphic representation of Uh(A) that satisfies the following conditions:

• σ is K◦
h -unramified;

• for all v /∈ S′0 ∪VF,∞ the (split) base change of σv is �v .

Proposition 10.1.6.1. — Let f ∈ S◦(G(A)) and f h ∈ S◦(Uh(A)) for every h ∈H◦. As-

sume that the following properties are satisfied for every h ∈H◦:

1. f = (�S0,∗
H �

S0,∗
G′ )fS0 ⊗ f S0 with fS0 ∈ S(G(FS0)) and f S0 ∈ S◦(G(AS0)).

2. f h = (�S0
U′h
)2f h

S0
⊗ f h,S0 with f h

S0
∈ S(Uh(FS0)) and f h,S0 ∈ S◦(Uh(AS0)).

3. The functions fS0 and f h
S0

are transfers.

4. f h,S0 = BCS0
h (f

S0).

5. The function f S0 is a product of a smooth compactly supported function on the restricted

product
∏′
v /∈S′0

G(Fv) by the characteristic function of
∏
v∈S′0\S0

G(Ov).

Then we have:

∑
h∈H◦

Jh

Xh
0
(f h)= 2−dim(aP)I�(f )= 2−dim(aP)IP,π (f ).(10.1.6.3)

Remark 10.1.6.2. — If the assumptions hold for the set S0, they also hold for any
large enough finite set containing S0: this follows from the Jacquet-Rallis fundamental
lemma (see [Yun11] and [BP]) and the simple expression of the transfer at split places
(see [Zha14b, proposition 2.5]). We leave it to the reader to keep track of the different
choices of Haar measures in these references.
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Proof. — The proof follows the same lines as the proof of [BPLZZ21, Theorem
1.7]. For the convenience of the reader, we recall the main steps.

In Theorem 3.2.4.1 we defined a distribution I on S(G(A)): this is the “Jacquet-
Rallis trace formula” for G. We have an analogous distribution Jh on S(Uh(A)) for each
h ∈ H: it is defined in [Zyd20, théorème 0.3] for compactly supported functions and
extended to the Schwartz space in [CZ21, §1.1.3 and théorème 15.2.3.1]. Note that, by
the Jacquet-Rallis fundamental lemma [Yun11], [BP], for every h ∈H \H◦ there exists
a place v ∈ S′0 \ S0 such that the characteristic function 1G(Ov) admits the zero function
on Uh(Fv) as a transfer. Therefore, by [CZ21, théorème 1.6.1.1], the hypotheses of the
proposition imply:

I(f )=
∑
h∈H◦

Jh(f h).(10.1.6.4)

We will denote by MS′0(G(A)), resp. MS′0(Uh(A)), the algebra of S′0-multipliers
defined in [BPLZZ21, definition 3.5] relatively to the subgroup

∏
v /∈S′0

G(Ov), resp.∏
v /∈S′0

Uh(Ov). Any multiplier μ ∈MS′0(G(A)), resp. μ ∈MS′0(Uh(A)), gives rise to a
linear operator μ∗ of the algebra S◦(G(A)), resp. S◦(Uh(A)) and for every admissible
irreducible representation π of G(A), resp. of Uh(A), there exists a constant μ(π) ∈ C
such that π(μ ∗ f )= μ(π)π(f ) for all f ∈ S◦(G(A)), resp. f ∈ S◦(Uh(A)).

Let ξ� be the infinitesimal character of �. By [BPLZZ21, Theorem 4.12 (4)], for
every h ∈H◦ and (Uh, σ ) ∈Xh

0, the base-change of the infinitesimal character of σ is ξ�.
However, the universal enveloping algebras of the complexified Lie algebras of Uh are
all canonically identified for h ∈H (since these are inner forms of each other) and base-
change is injective at the level of infinitesimal characters. As, by [GRS11], there exists at
least one h ∈H◦ such that the set Xh

π is nonempty (we may even take for h any quasi-split
Hermitian form unramified outside S0), there exists a common infinitesimal character ξ
of all (Uh, σ ) ∈Xh

0, for h ∈H◦, whose base-change is ξ�.
By the strong multiplicity one theorem of Ramakrishnan (see [Ram18]) and The-

orem 3.17 of [BPLZZ21], one can find a multiplier μ ∈MS′0(G(A)) such that

i. μ(�)= 1;
ii. For all χ ′ ∈X(G) represented by a pair (M1,π1) such that the central character

of π1 is trivial on AG and χ ′ �= χ we have

K0
μ∗f ,χ ′ = 0

where the kernel K0
μ∗f ,χ ′ is defined as in Section 2.10.1.

By Theorem 3.6 and Theorem 4.12 (3) of [BPLZZ21], for every h ∈H◦ there exists
a multiplier μh ∈MS′0(Uh(A)) such that

iii. μh(σ )= 1 for all (Uh, σ ) ∈Xh
0;
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iv. For all χ ′ ∈ X(Uh) such that χ ′ /∈ Xh
0 and for all parabolic subgroups P of Uh,

we have

KUh

P,μh∗f h,χ ′ = 0

where the left-hand side is the kernel of the operator given by the right convo-
lution of μh ∗ f h on L2

χ([Uh]P) (see (2.9.2.1)).

Moreover, by [BPLZZ21, Proposition 4.8, Lemma 4.10], we may choose μ and
μh such that the functions μ ∗ f and μh ∗ f h, for h ∈ H◦, still satisfy the assumptions
of the proposition. So, in particular, from (10.1.6.4) applied to the functions μ ∗ f and
(μh ∗ f h)h∈H◦ instead of f and (f h)h∈H◦ , we get

I(μ ∗ f )=
∑
h∈H◦

Jh(μh ∗ f h).(10.1.6.5)

Note that by conditions i. and iii. we have:

I�(μ ∗ f )= I�(f ), IP,π (μ ∗ f )= IP,π (f ) and

Jh

Xh
0
(μh ∗ f h)= Jh

Xh
0
(f h), for every h ∈H◦.

(10.1.6.6)

Let χ ′ ∈ X(G) be such that χ �= χ ′. It’s easy to see that the integral (3.3.3.4) at-
tached to χ ′ vanishes for any f ∈ S(G(A) if χ ′ does not satisfy the hypothesis in condition
ii. If it does, the integral (3.3.3.4) attached to χ ′ and μ ∗ f vanishes by condition ii. Thus
we can conclude by Theorem 3.3.9.1 that Iχ ′(μ∗ f )= 0 in any case. By Theorem 3.2.4.1
assertion 4 and by the equality (10.1.5.2), we see that the left-hand side of (10.1.6.5) re-
duces to

Iχ(μ ∗ f )= 2−dim(aP)I�(μ ∗ f )= 2−dim(aP)IP,π (μ ∗ f ).

On the other hand, by iv. and the very definition of Jh given in [Zyd20], the right-hand
side of (10.1.6.5) reduces to

∑
h∈H◦

Jh

Xh
0
(μh ∗ f h).

Therefore, (10.1.6.5) and (10.1.6.6) give the identity of the proposition. �

10.2. Proof of Theorem 1.1.5.1

10.2.1. Let �= IndG
P (π) be a Hermitian Arthur parameter of G. Note that by

properties 1 and 2 of Section 1.1.3, the cuspidal datum χ associated to the pair (MP,π)

is regular and relevant in the sense of Section 4.3.2. For h ∈H and σ a cuspidal auto-
morphic representation of Uh(A), it is readily seen that the linear form Ph is nonzero on
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σ if and only if Jh
σ is not identically zero. On the other hand, the linear form Jη or βη is

always nonzero (this follows either from the fact that χ is relevant or is an easy conse-
quence of [GK72], [Jac10, Proposition 5] and [Kem15]) whereas the linear form I, from
Proposition 5.1.4.1, or λ, from Section 8.1.2, is nonzero if and only if L( 1

2 ,�) �= 0 (as fol-
lows either from the work of Ichino and Yamana, see [IY15, corollary 5.7], or of Jacquet,
Piatetski-Shapiro and Shalika [JPSS83], [Jac04]). Therefore, we similarly deduce that the
distribution IP,π or I� is non-zero if and only if L( 1

2 ,�) �= 0.
As a consequence, Theorem 1.1.5.1 amounts to the equivalence between the two

assertions:

(A) The distribution IP,π or I� is non-zero.
(B) There exist h ∈ H, f ∈ S(Uh(A)) and a cuspidal subrepresentation σ of Uh

such that BC(σ )=� and Jh
σ (f ) �= 0.

10.2.2. Proof of (A)⇒ (B). — We choose the S0 of Section 10.1.3 such that I�
is not identically zero on f1 ∈ S◦(G(A)). Then Assertion (B) above is a consequence of
Proposition 10.1.6.1: it suffices to take functions f and f h for h ∈H◦ satisfying the hy-
potheses of that theorem and such that I�(f ) �= 0. That it is possible is implied by a
combination of a result of [Xue19] and the existence of p-adic transfer [Zha14b].

10.2.3. Proof of (B)⇒ (A). — We may choose the set S0 so that there exist h0 ∈
H◦, f

h0
0 ∈ S◦(Uh0(A)) and a cuspidal representation σ0 of Uh such that for v /∈ S′0 (see

Section 10.1.6) BC(σ0,v)=�v and Jh0
σ0
(f

h0
0 ) �= 0. For any other h ∈H◦ we set f h

0 = 0. Up
to enlarging S0, we may assume that the family (f h

0 )h∈H◦ satisfies conditions 2. and 5. of
Proposition 10.1.6.1. Moreover, we have (see [Zha14b, §2.5]) Jh0

σ (f
h0

0 ∗ f
h0

0 )� 0 for every
σ ∈X

h0
0 and Jh0

σ0
(f

h0
0 ∗ f

h0
0 ) > 0. In particular, the left hand side of (10.1.6.3) for the family

(f h
0 ∗ f h

0 )h∈H◦ is nonzero. Once again by [Xue19] and the existence of p-adic transfer
[Zha14b], this implies that we can find test functions f ∈ S◦(G(A)) and f h ∈ S◦(Uh(A)),
for h ∈ H◦, satisfying all the conditions of Proposition 10.1.6.1 and such that the left
hand side of (10.1.6.3) is still nonzero. The conclusion of this proposition immediately
gives Assertion (A).

10.3. Proof of Theorem 1.1.6.1

10.3.1. Let h ∈ H and σ be a cuspidal automorphic representation of Uh(A)
which is tempered everywhere. By [Mok15], [KMSW], σ admits a weak base-change �
to G. Moreover, by these references� is also a strong base-change of σ : for every place v
of F, the local base-change of σv (defined in [Mok15] and [KMSW]) coincides with �v .
In particular, it follows that � is also tempered everywhere.

We choose a finite set of places S0 as in Section 10.1.3 such that h ∈H◦ and σ as
well as the additive character ψ ′ used to normalize local Haar measures in Section 2.3
are unramified outside of S0.
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For each place v of F, we define a distribution Jσv on S(Uh(Fv)) by

Jσv (f
h
v )=

∫
U′h(Fv)

Trace(σv(hv)σv(f h
v ))dhv, f h

v ∈ S(Uh(Fv)),

where

σv(f
h
v )=

∫
Uh(Fv)

f h
v (gv)σv(gv)dgv

and the Haar measures are the one defined in Section 2.3.3. Moreover by [Har14], and
since the representations σv are all tempered, the expression defining Jσv is absolutely
convergent and for every v /∈ S0 we have

Jσv (1Uh(Ov))=�−2
U′h,v

L( 1
2 ,�v)

L(1, σv,Ad)
.

10.3.2. By [Zha14a, Lemma 1.7] and our choice of local Haar measures, The-
orem 1.1.6.1 is equivalent to the following assertion: for all factorizable test function
f h ∈ S(Uh0(A)) of the form f h = (�S0

U′h
)2
∏
v∈S0

f h
v ×

∏
v /∈S0

1Uh(Ov), we have

Jh
σ (f

h)= |S�|−1
LS0( 1

2 ,�)

LS0(1, σ,Ad)

∏
v∈S0

Jσv (f
h
v ).(10.3.2.1)

10.3.3. For every place v of F, we define a local relative character I�v on G(Fv)
by

I�v(fv)=
∑

Wv∈W(�v,ψN,v)

λv(�v(fv)Wv)βη,v(Wv)

〈Wv,Wv〉Whitt,v
, fv ∈ S(G(Fv)),

where the sum runs over a Kv-basis of the Whittaker model W(�v,ψN,v) (in the sense of
Section 2.8.3) and λv , βη,v , 〈., .〉Whitt,v are local analogs of the forms introduced in Section
8.1.2 given by

λv(Wv)=
∫

NH(Fv)\H(Fv)
Wv(hv)dhv,

βη,v(Wv)=
∫

N′(Fv)\P ′(Fv)
Wv(pv)ηG′,v(pv)dpv,

and 〈Wv,Wv〉Whitt,v =
∫

N(Fv)\P(Fv)
|Wv(pv)|2dpv.

Note that the above expressions, and in particular λv(Wv), are all absolutely convergent
due to the fact that �v is tempered (see [JPSS83, Proposition 8.4]). The above defini-
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tion also implicitly depends on the choice of an additive character ψ of AE/E trivial on
A (through which the generic character ψN is defined, see beginning of Section 8 and
Section 6.1.2) and up to enlarging S0, we may assume that ψ is unramified outside of
S0. Then, it follows from the definition of I� that for every factorizable test function
f ∈ S(G(A)) of the form f =�S0,∗

H �
S0,∗
G′

∏
v∈S0

fv ×∏
v /∈S0

1G(Ov), we have

I�(f )=
LS0( 1

2 ,�)

LS0(1,�,As−G)

∏
v∈S0

I�v(fv)(10.3.3.2)

where we have set LS0(s,�,As−G)= LS0(s,�n,As(−1)n)LS0(s,�n+1,As(−1)n+1
).

10.3.4. Let f h be a test function as in Section 10.3.2. Then, as both sides of
(10.3.2.1) are continuous functionals in f h

v for v ∈VF,∞, by the main result of [Xue19] we
may assume that for every v ∈VF,∞ the function f h

v admits a transfer fv ∈ S(G(Fv)). On
the other hand, by [Zha14b], for every v ∈ S0\VF,∞, the function f h

v admits a transfer fv ∈
S(G(Fv)). Moreover, by the results of those references we may also choose the transfers
such that for every h′ ∈ H◦ with h′ �= h, the zero function on Uh′(FS0) is a transfer of
fS0 =

∏
v∈S0

fv . We set f = �S0,∗
H �

S0,∗
G′ fS0 ×

∏
v /∈S0

1G(Ov). Then, setting f h′ = 0 for every
h′ ∈H◦ \{h}, the functions f and (f h′)h′∈H◦ satisfy the assumptions of Proposition 10.1.6.1.
Therefore, we have

∑
σ ′∈Xh

0

Jh
σ ′(f

h)= 2−dim(aP)I�(f ).(10.3.4.3)

10.3.5. If there exists a place v ∈ S0 such that σv does not support any nonzero
continuous U′

h(Fv)-invariant functional, both sides of (10.3.2.1) are automatically zero.
Assume now that for every v ∈ S0, the local representation σv supports a nonzero

continuous U′
h(Fv)-invariant functional. By the local Gan-Gross-Prasad conjecture

[BP20], and the classification of cuspidal automorphic representations of Uh in terms
of local L-packets [Mok15], [KMSW], it follows that all the terms except possibly Jh

σ (f
h)

in the left hand side of (10.3.4.3) are zero. Moreover, by [BP21c, Theorem 5.4.1] and
since �v is the local base-change of σv , there are explicit constants κv ∈ C× for v ∈ S0

satisfying
∏
v∈S0
κv = 1 and such that

I�v(fv)= κvJσv (f h
v )(10.3.5.4)

for every v ∈ S0. Combining this with (10.3.3.2), we get

Jh
σ (f

h)= 2−dim(aP)I�(f )= 2−dim(aP)IP,π (f )

= 2−dim(aP)
LS0( 1

2 ,�)

LS0(1,�,As−G)

∏
v∈S0

I�v(fv)
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= 2−dim(aP)
LS0( 1

2 ,�)

LS0(1,�,As−G)

∏
v∈S0

Jσv (f
h
v ).

As LS0(s,�,As−G) = LS0(s, σ,Ad) and |S�| = 2−dim(aP), this exactly gives (10.3.2.1) and
ends the proof of Theorem 1.1.6.1.
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Appendix A: Topological vector spaces

A.0.1 In this paper, by a locally convex topological vector space (LCTVS) we mean a
Hausdorff locally convex vector space over C. Most LCTVS encountered in this paper
will be Fréchet or LF (that is a countable inductive limit of Fréchet spaces) or even strict
LF (that is countable inductive limit lim−→n

Vn of Fréchet spaces with closed embeddings
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Vn → Vn+1 as connecting maps) spaces. Let V and W be LCTVS. We denote by V′ the
topological dual of V and by Hom(V,W) the space of continuous linear mappings V→
W both equipped with their weak topologies (i.e. topologies of pointwise convergence).
Recall that a total subspace H ⊂ V′ is a subspace such that

⋂
λ∈H Ker(λ) = 0. A bounded

subset B⊆V is one that is absorbed by any neighborhood of 0. If B⊆V is bounded and
absolutely convex,12 we denote by VB the subspace generated by B equipped with the
norm ‖v‖B = inf {λ� 0 | v ∈ λB}. Then, the natural inclusion VB → V is continuous.
The space V is said to be quasi-complete if every closed bounded subset of it is complete.
Fréchet spaces and strict LF spaces are quasi-complete.

A.0.2 We recall the notion of integral valued in a LCTVS in the form we use it
in the core of the paper. Let X be a σ -compact locally compact topological space, dx be
a Radon measure on X and V be a LCTVS. Let f : X→ V be a continuous function.
We say that f is absolutely integrable if for every continuous semi-norm p on V the integral∫

X
p(f (x))μ(x) converges. If f is absolutely integrable and V is quasi-complete, there

exists an unique element
∫

X
f (x)μ(x) in V such that

〈λ,
∫

X
f (x)μ(x)〉 =

∫
X
〈λ, f (x)〉μ(x)

for every λ ∈ V′. This notion applies in particular to series
∑

i∈I vi valued in a quasi-
complete LCTVS V in which case we will rather use the terminology absolutely summable:
a family (vi)i∈I of vectors in V is absolutely summable if for every continuous semi-norm p

on V, the series
∑

i∈I p(vi) converges.
We will also use the following weaker notion: a family (vi)i∈I of vectors in a LCTVS

V is said to be summable if for every continuous semi-norm p on V and every ε > 0, there
exists a finite subset J⊆ I such that

p(
∑
i∈K

vi) < ε

for every finite subset K ⊆ I \ J. If (vi)i∈I is a summable family in V and V is quasi-
complete then the partial sums

∑
i∈J vi converge to some limit v ∈ V along the filter

associated to the inclusion order on finite subsets of I. In this case, we call v the sum of
the family (vi)i∈I.

Note that absolutely summable families are automatically summable but the con-
verse is not true e.g. if V is a Hilbert space with a Hilbert decomposition V= ⊕̂

i∈IVi and
v ∈V then the family of orthogonal projections (vi)i∈I of v to the subspaces Vi is always
summable but not always absolutely summable.

12 Recall that a subset S ⊆ V is said to be absolutely convex is it is convex and circled i.e. λS ⊆ S for every complex
number λ with |λ|� 1.
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A.0.3 We will also freely use the notions of smooth or holomorphic functions val-
ued in a LCTVS. For basic references on these subjects, we refer the reader to [Bou67,
§2, §3], [Gro53, §2], [Gro73, Chap. 3, §8]. There are actually two ways to define smooth
and holomorphic maps valued in V: either scalarly (that is after composition with any ele-
ment of V′) or by directly requiring the functions to be infinitely (complex) differentiable.
These two definitions coincide when the space V is quasi-complete and, fortunately for
us, we will only consider smooth/holomorphic functions valued in such spaces so that we
don’t have to distinguish.

Let M be a connected complex analytic manifold. A function f :M→ V is holo-
morphic if and only if for every relatively compact open subset # ⊆ M, there exists a
bounded absolutely convex subset B ⊆ V such that f |# factorizes through a holomor-
phic map#→VB see [Gro53, §2, Remarque 2]. We also record the following convenient
criterion of holomorphicity [Bou67, §3.3.1]:

(A.0.3.1) Assume that V is quasi-complete. A function ϕ : M → V is holomorphic if
and only if it is continuous and for some total subspace H⊆V′, the functions
s ∈M �→ 〈ϕ(s), λ〉 are holomorphic for every λ ∈H.

A.0.4 Assume that V is a LF space. As LF spaces are barreled [Trè67, Corol-
lary 33.3] they satisfy the Banach-Steinhaus theorem [Trè67, Theorem 33.1] hence
any bounded subset of Hom(V,W) is equicontinuous (as Hom(V,W) is equipped
with the weak topology, a subset B ⊆ Hom(V,W) is bounded if and only if for every
v ∈ V, {T(v) | T ∈ B} is a bounded subset of W). This implies in particular that for
every bounded subset B ⊆ Hom(V,W), the restriction of the canonical bilinear map
Hom(V,W)×V→W to B×V is continuous. Also, by [Trè67, §34.3 Corollary 2], if W
is quasi-complete then so is Hom(V,W). In particular, we get:

(A.0.4.2) Assume that V is LF, W is quasi-complete and let K be a topological space. Let
s ∈M �→Ts ∈Hom(V,W) be holomorphic and (s, k) ∈M×K �→ vs,k ∈V be
a continuous map which is holomorphic in the first variable. Then, the map
(s, k) ∈ M × K �→ Ts(vs,k) ∈ W is continuous and holomorphic in the first
variable.

Indeed, T has locally its image in a bounded set. Hence, by the above discussion,
the map (s, s′, k) ∈ M × M × K �→ Ts(vs′,k) ∈ W is continuous. Moreover, this map is
separately holomorphic in the variables s, s′. Thus, by Hartog’s theorem, this map is
holomorphic in the variables (s, s′) which immediately implies the claim by “restriction
to the diagonal”.

(A.0.4.3) Assume that V is LF and W is quasi-complete. Let U⊆M be a nonempty open
subset and s ∈U �→Ts ∈Hom(V,W) be a holomorphic map. If, for every v ∈
V the map s �→ Ts(v) ∈W extends analytically to M then Ts ∈ Hom(V,W)
for every s ∈M and moreover s ∈M �→Ts ∈Hom(V,W) is holomorphic.
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Indeed, the hypothesis implies that s �→ Ts induces a holomorphic map M →
Hom(V,W) where Hom(V,W) stands for the space of all linear maps V→W (not nec-
essarily continuous) equipped with the topology of pointwise convergence. Hence, for
every relatively compact connected open subset #⊆M such that #∩U �= ∅ there exists
a bounded subset B ⊆Hom(V,W) such that s �→ Ts factorizes through a holomorphic
map#→Hom(V,W)B. By the Banach-Steinhaus theorem, Hom(V,W)∩Hom(V,W)B
is closed in Hom(V,W)B and it follows that s ∈# �→ Ts factors through a holomorphic
map #→ Hom(V,W) ∩ Hom(V,W)B. Indeed, by the Hahn-Banach theorem it suf-
fices to show that for every continuous linear form λ :Hom(V,W)B → C vanishing on
Hom(V,W)∩Hom(V,W)B we have λ(Ts)= 0 for every s ∈#. Since Ts ∈Hom(V,W)
for s ∈U the equality λ(Ts)= 0 holds at least for s ∈# ∩U. As s ∈# �→ λ(Ts) is holo-
morphic # is connected and U∩# non-empty, the claim follows.

A.0.5 Let Bils(V,W)=Hom(V,Hom(W,C)) be the space of separately contin-
uous bilinear mappings V ×W → C equipped with the topology of pointwise conver-
gence. Applying (A.0.4.2) and (A.0.4.3) twice, we get:

(A.0.5.4) Assume that V and W are LF. Let s ∈M �→ Bs ∈ Bils(V,W) be holomorphic
and (s, k) ∈ M × K �→ vs,k ∈ V, (s, k) ∈ M × K �→ ws,k ∈ W be continuous
maps which are holomorphic in the first variable. Then, the function (s, k) ∈
M×K �→ Bs(vs,k,ws,k) is continuous and holomorphic in the first variable.

(A.0.5.5) Assume that both V and W are LF. Let U⊆M be a nonempty open subset and
s ∈U �→ Bs ∈ Bils(V,W) be a holomorphic map. If for every (v,w) ∈V×W
the function s �→ Bs(v,w) extends analytically to M then Bs ∈ Bils(V,W) for
every s ∈M and moreover s ∈M �→ Bs ∈ Bils(V,W) is holomorphic.

A.0.6 We refer the reader to [Trè67, Definitions 47.2, 47.3] for the definition of
nuclear mappings between LCTVS. The following lemma will be useful in proving that
certain families are absolutely summable.

Lemma A.0.6.1. — Let T :V→W be a nuclear mapping between LCTVS. Then, for every

summable family (vi)i∈I in V, the family (T(vi))i∈I is absolutely summable in W.

Proof. — First, by the very definition, T is a nuclear mapping if and only if it factor-
izes through a nuclear mapping between Banach spaces. Thus, we may assume without
loss in generality that V and W are Banach spaces. Recall [Trè67, Definition 47.2] that
this means that T belongs to the image of the natural map V′

s⊗̂W→Homs(V,W) where
V′

s (resp. Homs(V,W)) is the topological dual of V (resp. the space of continuous linear
maps V→W) equipped with the strong topology (aka norm topology) and ⊗̂ stands for
the completed projective tensor product. Let (vi)i∈I be a summable family in V and set

M= sup
J
‖
∑
i∈J

vi‖V <∞
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where the sup runs over all finite subsets J⊆ I. It follows from the next elementary lemma
that for (�,w) ∈V′ ×W, the family (�(vi)w)i∈I is absolutely summable in W and more-
over

(A.0.6.6)
∑
i∈I

‖�(vi)w‖W = ‖w‖W

∑
i∈I

|�(vi)|� 4M‖�‖V′‖w‖W

where ‖.‖W (resp. ‖.‖V′ ) denotes the norm on W (resp. dual norm on V′).

Lemma A.0.6.2. — Let (zi)i∈I be a summable family in C. Then, (zi)i∈I is absolutely

summable and moreover

(A.0.6.7)
∑
i∈I

|zi|� 4 sup
J
|
∑
i∈J

zi|

where the sup runs over all finite subsets of I.

Let �1(I,W) be the vector space of absolutely summable families indexed by I in
W. We equip �1(I,W) with the norm

‖(wi)i∈I‖�1 =
∑
i∈I

‖wi‖W.

It then becomes a Banach space. By (A.0.6.6), the bilinear map V′
s × W → �1(I,W),

(�,w) �→ (�(vi)w)i∈I, is continuous hence induces a continuous linear map V′
s⊗̂W →

�1(I,W). Obviously, this map is the composite of the natural morphism V′
s⊗̂W →

Homs(V,W) and of Homs(V,W)→WI, T �→ (T(vi))i∈I. The lemma follows. �

A.0.7 We denote by V⊗̂W the completed projective tensor product [Trè67,
Chap. 43]. It admits a canonical linear map V ⊗W → V⊗̂W satisfying the following
universal property: for every complete LCTVS U, precomposition yields an isomorphism

Hom(V⊗̂W,U)� Bil(V,W;U)
where Bil(V,W;U) denotes the space of all continuous bilinear mappings V×W→U. In
particular, if U1, U2 are two other LCTVS and T :V→U1, S :W→U2 are continuous
linear mapping, there is an unique continuous linear map T⊗̂S :V⊗̂W→U1⊗̂U2 which
on V⊗W is given by v⊗w �→T(v)⊗ S(w).

Assume now that V and W are spaces of (complex valued) functions on two sets X,
Y and that their topologies are finer than the topology of pointwise convergence. When
V is moreover a complete nuclear LF space, the following result of Grothendieck [Gro55,
Théorème 13, Chap. II, §3 n. 3] generally allows to describe V⊗̂W explicitly as a space
of functions on X×Y.
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(A.0.7.8) Let F(X×Y) be the space of all complex valued functions on X×Y equipped
with the topology of pointwise convergence. Then the linear map V⊗W→
F(X × Y), v ⊗ w �→ ((x, y) �→ v(x)w(y)), extends continuously to a linear
embedding V⊗̂W ↪→ F(X × Y) with image the space of functions f : X ×
Y→C satisfying the two conditions:

• For every x ∈X, the function y ∈ Y �→ f (x, y) belongs to the comple-
tion of W;

• For every λ ∈W′, the function x ∈X �→ 〈f (x, .), λ〉 belongs to V.

A.0.8 Let C ∈R ∪ {−∞} and f :H>C →V be a holomorphic function. We say
that f is of order at most d in vertical strips if for every d ′ > d the function z �→ e−|z|d

′
f (z) is

bounded in vertical strips of H>C. We say that f is of finite order in vertical strips if it is of order at
most d in vertical strips for some d > 0. Finally, we say that f is rapidly decreasing in vertical

strips if for every d > 0 the function z �→ |z|dF(z) is bounded in vertical strips.

A.0.9 Let A be a real vector space. Denote by Diff(A) the space of complex poly-
nomial differential operators on A (which can be identified with Sym(A∗

C)⊗C Sym(AC)).
When V is quasi-complete, we define the space of Schwartz functions on A valued in V,
denoted by S(A,V), as the space of smooth functions f : A→ V such that for ev-
ery D ∈ Diff(A), the function Df has bounded image. Note that if W is also quasi-
complete and T : V → W is a continuous linear map then for every f ∈ S(A,V), we
have T ◦ f ∈ S(A,W). When V=C, we simply set S(A)= S(A,C) that we equip with
its standard Fréchet topology.

Lemma A.0.9.1. — Assume that V is quasi-complete and barreled (e.g. a strict LF space). Let

C> 0, d > 0 and s ∈H>C �→ Zs ∈V′ be a map such that such that for every v ∈V, s ∈H>C �→
Zs(v) is a holomorphic function of order at most d in vertical strips. Then, for every f ∈ S(A,V), the

map

(A.0.9.9) s ∈H>C �→
(
λ ∈A �→ Zs(fλ)

) ∈ S(A)

is holomorphic and of finite order in vertical strips.

Proof. — Indeed, by the Banach-Steinhaus theorem, for every d ′ > d , every vertical
strip S⊆H>C and every bounded subset B⊆V the set{

e−|s|
d′

Zs(v) | s ∈ S, v ∈ B
}
⊆C

is bounded and, by [Trè67, Corollary 33.1], for every s0 ∈H>C, Zs converges uniformly
on compact subsets to Zs0 as s→ s0. Let f ∈ S(A,V). Moreover, for every D ∈Diff(A),
as the function λ ∈A �→Dfλ is continuous and converges to 0 as λ→∞, the subset

{
Dfλ | λ ∈A

}∪ {0}
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of V is compact. Therefore, for every s0 ∈H>C, Zs(Dfλ) converges to Zs0(Dfλ) as s→ s0

uniformly in λ ∈ A and
{

e−|s|d
′
Zs(Dfλ) | s ∈ S, λ ∈A

}
is bounded for every d ′ > d and

every vertical strip S ⊆ H>C. This shows that the map (A.0.9.9) is continuous and of
finite order in vertical strips. To conclude we apply the holomorphicity criterion (A.0.3.1)
to the subspace H⊆ S(A)′ generated by “evaluations at a point of A”. �

A.0.10

Lemma A.0.10.1. — Assume that V is quasi-complete. Let Z+,Z− :H>C → V be holo-

morphic functions of finite order in vertical strips for some C > 0. Assume that there exists a total

subspace H ⊂ V′ such that for every λ ∈H, Z+,λ := λ ◦ Z+ and Z−,λ := λ ◦ Z− extend to holo-

morphic functions on C of finite order in vertical strips satisfying Z+,λ(s)= Z−,λ(−s) for every s ∈C.

Then, Z+ and Z− extend to holomorphic functions C→ V of finite order in vertical strips satisfying

Z+(s)= Z−(−s) for every s ∈C.

Proof. — Let d > 0 be such that Z+ and Z− are of order at most d in vertical
strips of H>C. Then, by their functional equation and the classical Phragmen-Lindelöf
principle, for every λ ∈ H, the holomorphic continuations of Z+,λ and Z−,λ are also of
order at most d in vertical strips. Therefore, up to multiplying Z+ and Z− by z �→ es4n+2

for some n � 0, we may assume that all these functions are rapidly decreasing in vertical
strips. Let D>C. Then, for every s ∈H]−D,D[ and ε ∈ {±}, we set

$ε(s)= 1
2π

(∫ +∞

−∞

Zε(D+ it)

D+ it − s
dt −

∫ +∞

−∞

Z−ε(D+ it)

D+ it + s
dt

)
.

Note that, since Z+ and Z− are rapidly decreasing in vertical strips and V is quasi-
complete, the above integrals converge absolutely and define elements of V. By the usual
holomorphicity criterion for parameter integrals, we readily check that the functions$+,
$− are holomorphic. Moreover, by the uniform boundedness principle, $+ and $− are
bounded in vertical strips. Finally, by Cauchy’s integration formula and the fact that the
functions Z+,λ, Z−,λ are rapidly decreasing in vertical strips, for every ε ∈ {±} and λ ∈H
the functions λ ◦$ε and Zε,λ coincide on H]−D,D[. Therefore, as H is total, $ε and Zε
coincide on H]C,D[. This shows that Z+ and Z− admit holomorphic extensions bounded
in vertical strips to H>−D for every D > C hence to C. That the functional equation
Z+(s)= Z−(−s) holds for these extensions easily follows from the assumption. �

A.0.11 Let A be a real vector space. Specializing the previous lemma to V =
S(A) and H the total subspace of V′ given by “evaluations at a point of A” yields the
following corollary.

Corollary A.0.11.1. — Let Z+,Z− :A×C→C be two functions such that:
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1. There exists C> 0 such that for every s ∈H>C, the function Z+(., s), Z−(., s) belong to

S(A) and the maps

s ∈H>C �→ Zε(., s) ∈ S(A), ε ∈ {±},
are holomorphic functions of finite order in vertical strips;

2. For every λ ∈A, s ∈ C �→ Z+(λ, s) and s ∈ C �→ Z−(λ, s) are holomorphic functions

of finite order in vertical strips satisfying the functional equation

Z+(λ, s)= Z−(λ,−s)

Then, for every s ∈C the functions Z+(., s), Z−(., s) belong to S(A) the maps s ∈C �→ Zε(., s) ∈
S(A), ε ∈ {±}, are holomorphic.

Assume now that W is a LF space. As W is barreled, W′ is quasi-complete [Trè67,
§34.3 Corollary 2]. Specializing Lemma A.0.10.1 to V = W′ and H a dense subset of
V′ =W, we obtain the following.

Corollary A.0.11.2. — Let W be a LF space, C > 0 and Z+,Z− :H>C ×W→ C be

two functions. Assume that:

1. For every s ∈H>C, Z+(s, .) and Z−(s, .) are continuous functionals on W;

2. There exists d > 0 such that for every w ∈W and ε ∈ {±}, s ∈H>C �→ Zε(s,w) is a

holomorphic function of order at most d in vertical strips;

3. For every f ∈ H and ε ∈ {±}, s �→ Zε(s, f ) extends to a holomorphic function on C of

finite order in vertical strips satisfying

Z+(s, f )= Z−(−s, f ).

Then, Z+ and Z− extend to holomorphic functions C→W′ of finite order in vertical strips satisfying

Z+(s,w)= Z−(−s,w) for every s ∈C and every w ∈W.
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