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Abstract
The ubiquitous RNA-processing molecule TDP-43 is involved in neuromuscular diseases such as inclusion body myositis, a 
late-onset acquired inflammatory myopathy. TDP-43 solubility and function are disrupted in certain viral infections. Certain 
viruses, high viremia, co-infections, reactivation of latent viruses, and post-acute expansion of cytotoxic T cells may all 
contribute to inclusion body myositis, mainly in an age-shaped immune landscape. The virally induced senescent, interferon 
gamma-producing cytotoxic CD8+ T cells with increased inflammatory, and cytotoxic features are involved in the occurrence 
of inclusion body myositis in most such cases, in a genetically predisposed host. We discuss the putative mechanisms linking 
inclusion body myositis, TDP-43, and viral infections untangling the links between viruses, interferon, and neuromuscular 
degeneration could shed a light on the pathogenesis of the inclusion body myositis and other TDP-43-related neuromuscular 
diseases, with possible therapeutic implications.

Keywords TDP-43 · Inclusion body myositis · Myositis triggers · Interferon gamma · Long COVID

Abbreviations
aa  Amino acid
ALS  Amyotrophic lateral sclerosis
BRCA1  Breast cancer susceptibility gene 

1
Anti-cN1A  Antibodies against the cytosolic 

5′-nucleotidase 1A

CANDLE syndrome  Chronic atypical neutrophilic der-
matosis with lipodystrophy and 
elevated temperature

cGAS  Cyclic GMP–AMP synthase
CHCHD10  Coiled-coil-helix-coiled-coil-

helix domain-containing protein 
10

CMV  Cytomegalovirus
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CYLD  Cylindromatosis, a deubiquit-
inating enzyme that negatively 
regulates signal transduction 
pathways, such as NF-kB signal-
ing pathways

DM  Dermatomyositis
dsRNA  Double-stranded RNA
EBV  Epstein–Barr virus
ERV  Endogenous retroviruses
GBP2  Guanylate-binding protein 2
GSK3  Glycogen synthase kinase 3
HCV  Hepatitis C virus
HIV  Human immunodeficiency virus
hnRNP  Heterogeneous nuclear 

ribonucleoprotein
HSPs  Heat shock proteins
HTLV1  Human T-cell leukemia virus type 

1
IFN  Interferon
IBM  Inclusion body myositis
IIMs  Idiopathic inflammatory 

myopathies
iPS  Immunoproteasomes
IRF  Interferon regulatory factor
lncRNA  Long non-coding RNA
Malat1/MALAT1  Metastasis-associated lung adeno-

carcinoma transcript-1
MDA-5  Melanoma differentiation-associ-

ated protein 5
MHC  Major histocompatibility complex
miRNA  MicroRNA
mRNA  Messenger RNA
NBR1  Neighbor of BRCA1
NF-kB  Nuclear factor kappa B
NK  Natural killer cells
NLRP3  NOD-, LRR-, and pyrin domain-

containing protein 3
PASC  Post-acute sequelae SARS-CoV-2 

infection
PM  Polymyositis
PSMB8  Proteasome subunit beta type-8
Rbck1  RanBP-type and C3HC4-type 

zinc finger-containing protein 1
RBP  RNA-binding proteins
RIG-I  Retinoic acid-inducible gene-I
RNA  Ribonucleic acid
RRM  RNA-recognition motif
SARS-CoV-2  Severe acute respiratory syn-

drome coronavirus 2
SARS-CoV2 S1 RBD  SARS-CoV-2 spike S1 protein 

receptor binding domain

SAMHD1  Sterile alpha motif domain and 
histidine-aspartate domain-con-
taining protein 1

SGs  Stress granules
ssRNA  Single-stranded RNA
STAT   Signal transducer and activator of 

transcription
STING  Stimulator of interferon genes
TARDBP  TAR-DNA-binding-protein 43 

(transactive response DNA-bind-
ing protein of 43 kDa)

TDP-43  TAR-DNA-binding protein 43
TEMRA  Effector memory T cells re-

expressing CD45RA
TRIM21  Tripartite motif containing 21
UPS  Ubiquitin-proteasome system
YB  Y-box-binding protein-1

Background

Inclusion body myositis (IBM) is an inflammatory myopathy 
occurring after middle age, with autoimmune and degen-
erative mechanisms [1, 2]. Other idiopathic inflammatory 
myopathies (IIMs) are dermatomyositis (DM), polymy-
ositis (PM), overlap syndromes including anti-synthetase 
syndrome and necrotizing pauci-immune myositis [3]. The 
distinction between IBM, PM, and PM with mitochondrial 
pathology is not neat, raising the question whether IBM is a 
variant of PM occurring in the older age, related to immu-
nosenescence [4]. IBM pathogenesis centrally involves 
cytotoxic, senescent CD8+ T cells, defects of autophagy and 
ubiquitin–proteasome system (UPS) resulting in proteostasis 
impairment and abnormal sarcoplasmic protein aggregation, 
along with endoplasmic reticulum and mitochondrial alter-
ations, and antibodies to the cytosolic 5′-nucleotidase 1A 
(anti-cN1A) [1, 5]. The driving mechanisms of this pathol-
ogy, however, are still evasive.

IBM belongs to a group of neurological disorders, the TDP-
43 proteinopathies, which pathogenically involve TDP-43 
[TAR-DNA-binding protein 43 (transactive response DNA-
binding protein of 43 kDa)] [6]. TDP-43, encoded by the 
TARDBP gene, an RNA- and DNA-binding nuclear regula-
tory protein, member of the heterogeneous nuclear ribonucleo-
protein (hnRNP) family [7, 8]. In skeletal muscles, TDP-43 
is involved in transcription regulation, RNA splicing, mRNA 
stability, RNA transport, and quality control and undergoes 
post-translational modifications with functional consequences 
[9]. TDP-43 functions in muscles are complex, including 
myoregeneration (Table 1). In neurodegeneration, the mecha-
nisms of TDP-43 involvement include cytotoxic aggregations, 
nuclear loss, alteration of cellular functions, and others [6, 10].
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IBM muscle biopsies reveal cytoplasmic aggregation of 
TDP-43 and TDP-43 nuclear loss [10]. Even an 1% amount of 
myofibers staining for TDP-43 in a muscle biopsy was highly 
sensitive and specific for IBM [11].

TDP-43 may have an emerging intriguing role in viral infec-
tions [12]. TDP-43 is involved in controlling IFN responses 
triggered by endogenous RNA, but the TDP-43 role as an 
RNA-binding protein in viral infections is rarely investigated 
[13, 14]. Loss of TDP-43 results in dsRNA intracellular 
accumulation and interferon (IFN) triggering [13]. The TDP-
43 ortholog of Caenorhabditis elegans called TDP1 limits 
dsRNA accumulation [21]. Also, knockdown of TARDBP 
increases viral replication in macrophages [14] and TDP-43 
knockdown amplifies enterovirus infections, suggesting an 
antiviral effect of TDP-43 [22]. Moreover, TDP-43 binding 
is protective against HIV-1 by sterically hindering a HIV-1 
promoter [23]. Also, after TDP-43 knockdown in mouse brain, 
the type I IFN-inducible genes, including the mouse orthologs 
of the intracellular sensor molecules RIG-I and MDA-5 which 
detect viral RNA, are the most overexpressed [21, 24]. In Cox-
sackie B3 infection, the viral protease 2A alters TDP-43 distri-
bution, solubility, and function [22]. Therefore, TDP-43 could 
have an important role in the viral-induced IFN response in 
TDP-43 proteinopathies, including IBM (Table 2).

Role of TDP‑43

TDP‑43 in basal conditions and in infections

In basal conditions, TDP-43 is bound by the long-non-
coding RNA (lncRNA) Malat1 (metastasis-associated 
lung adenocarcinoma transcript-1), in humans called 
MALAT1 [14]. Malat1 binding hinders the TDP-43 

cleavage, mediated by activated caspase-3, from gen-
erating TDP-35 and IRF3 (IFN regulator factor 3) [14]. 
Generally, viral infections result in reduced expression of 
Malat1, promoting antiviral IFN production [14]. Moreo-
ver, TDP-35 amplifies the IFN–I production by degrading 
the negative regulator of IRF3 called Rbck1 (RanBP-type 
and C3HC4-type zinc finger-containing protein 1) [14]. 
However, Malat1 function may increase in certain viral 
infections, such as HIV, Coxsackie myocarditis or mild 
COVID-19 [14, 25, 40]. Malat1 has immunosuppressor 
and NF-kB- and NLRP3 regulatory effects [40, 41]. Also, 
MALAT1 is upregulated in IBM [42]. Increased Malat1 
in IBM and TDP-43 aggregation may likely depend on 
viral characteristics and is in line with a slow inflamma-
tory response.

TDP-43 can be activated after caspase-induced cleav-
age, the N-terminal cleavage product of TDP-43 forming 
protein aggregates, while the C-terminal cleavage prod-
uct is degraded by proteasomes [22]. The proteasome 
inhibition contributes to the pathogenesis of IBM, as the 
major proteasomal enzymes have decreased activity [43]. 
Immunoproteasomes (iPS) found in immune tissues (con-
stitutively expressed in hematopoietic cells or induced in 
response to IFN gamma or TNF alpha) have structural 
similitudes to proteasomes but have three different induc-
ible catalytic subunits (PSMB8, -B9, and -B10), trig-
gered by IFN-ƴ in viral infections, or by other pathogens, 
proteins, or particles [44–46]. Generation of cytotoxic 
CD8+ T cell responses upon a viral infection requires anti-
gen processing through the proteasome, which selectively 
cleaves after certain ammino acids residues [46].

Table 1  Roles of TDP-43 in muscles

IFN interferon, RBP ribonucleoproteins, lncRNA long non-coding RNAs, ssRNA single-strand RNA

Function Roles of TDP-43 References

mRNA metabolism TDP-43 is involved in transcription regulation, nucleocytoplasmic shuttling, mRNA splicing, transla-
tion, transcription, transport, stabilization, miRNA, and lncRNA processing, and RNA quality 
control

TDP-43 binds ssRNA and DNA and acts as a transcription repressor, or scaffold for nuclear bodies

[1–3, 9, 11–14]

Myogenesis TDP-43 is involved in muscle development and differentiation, neuromuscular junction formation, and 
muscle regeneration after injury

TDP-43 transiently forms during myogenesis amyloid-like myogranules, along with RNA- and RNA-
binding proteins

TDP-43 is required for the expression of myogenesis regulators and myogenic microRNAs such as 
miR-1 and miR-206 [9, 13]

TDP-43 activates Wnt/β-catenin signaling, involved in muscle regeneration and fibrosis

[5, 6, 9, 13, 15–18]

Association with
mitochondria

In myogranules, TDP-43 co-localizes and interacts with the mitochondrial inner membrane protein 
CHCHD10

. In IBM, TDP-43 aggregates accumulate with mitochondria in myofibers, resulting in mitochondrial 
and muscle fibers toxicity. TDP-43 targets the mitochondria complex I

[6, 19, 20]
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TDP‑43 in IBM biopsies

In IBM muscle biopsies, the overexpression of the immu-
noproteasome (iPS) subunits PSMB8 and-9, correlated 
with IFN-ƴ, IRF1 (interferon regulatory factor 1), and 
STAT1 (signal transducer and activator of transcription 
1), is another argument for a viral trigger [44, 47]. The iPS 
upregulates the major histocompatibility complex MHC-1 
and MHC-2 on myofibers, exposing them to immune attack 
[48–50]. Also, iPS are involved in muscle remodeling and 
prevention of protein aggregation [51]. Of note, mutations of 
the (immuno)proteasome subunits, as in the rare autoinflam-
matory diseases Nakajo–Nishimura or CANDLE syndrome, 
may result in an IBM-like myositis [52].

IBM patients have a high IFN score and IFN-ƴ signa-
ture, along with increased IFN type I expression in muscle 
which amplifies inflammation [53, 54]. The IFN-ƴ, central 
in IBM, is produced by the highly differentiated cytotoxic 
CD8+ T cells, reprogrammed with aging to fulfill innate-
like functions [55, 56]. These CD8+ cells and effector 
memory T cells re-expressing CD45RA (TEMRA) found 
in IBM may be induced not only by senescence, but also by 
persistent viruses [1, 4, 55, 57]. IFN-ƴ induces ER stress 
and aggregation of TDP-43 and other proteins [1, 5, 54]. 
IFN-I may also be induced by anti-Ro52, present in some 
IBM patients [50, 58]. Ro52 or TRIM21 (tripartite motif 
proteins), is an IFN–inducible E3 ligase involved in IFN 
type I downregulation [59]. Other infection-related fac-
tors may intervene in IBM, such as activation of NLRP3 
inflammasome, heat shock proteins (HSP), ribosomal 

proteins, or molecular mimicry with a mycobacterial pro-
tein guanylate-binding protein 2 (GBP2) with antiviral and 
anti-tuberculous functions [5, 60]. GBP2 is involved in 
the control of mRNA splicing [5] with possible relevance 
in TDP-43 dysfunction when mRNA splicing is altered.

Also, the glycogen synthase kinase 3 (GSK3), a serine/
threonine kinase with 2 isoforms (α and β), is activated 
in IBM [33]. GSK3, involved in many cellular processes, 
is an immunomodulator in IBM [33]. GSK3 delays and 
decreases IFN-1 production, enhances IFNγ signaling, but 
also increases and delays pro-inflammatory cytokines pro-
duction [33]. Moreover, GSK3β is one of the protein kinases 
involved in the TDP-43 phosphorylation [34]. TDP-43 
expression activates GSK3, and GSK inhibition decreases 
TDP-43 aggregation [35].

Also, activation of autophagy is part of the innate immune 
response, and autophagy receptors may become viral targets 
[15]. Amongst these autophagy receptors, NBR1 (neighbor 
of BRCA1), a ubiquitin-binding scaffold protein, increases 
in viral infections [61], and NBR1 accumulates and is abnor-
mal in IBM muscle [62].

In IBM, the dysregulation of a deubiquitinase called 
cylindromatosis (CYLD) reduces the autophagic clearance 
of protein aggregates [63]. CYLD is expressed with phos-
phorylated TDP-43 in the sIBM myofibers [63]. CYLD, 
required for antiviral host defense, is involved in the STING 
cleavage [64] and negatively regulates NF-kB [63].

IFN-ƴ and low RNA amounts in cytoplasm also stimulate 
aggregation of TDP-43 and other RBPs with “prion-like” 

Table 2  Immunomodulatory and antiviral roles of TDP-43

dsRNA double-strand RNA, IFN interferon, RBP ribonucleoproteins, lncRNA long non-coding RNAs, Malat1 metastasis-associated lung adeno-
carcinoma transcript-1, GSK3 glycogen synthase kinase 3, RRM RNA recognition motif 1, SARS-CoV2 S1 RBD SARS-CoV-2 spike S1 protein 
receptor binding domain, RBPs RNA-binding proteins, YB-1-box-binding protein-1

Function Roles of TDP-43 References

Immunomodulatory TDP-43 regulates the accumulation of RNA polymerase III transcripts and other endogenous immu-
nostimulatory dsRNAs which trigger IFN

TDP43 limits overexpression of IFN-I related genes including RIG-I and MDA-5 in animal models
TDP-43 interacts with lncRNAs such as Malat1, which prevents TDP-43 cleavage and IFN generation
TDP-43 aggregation may be induced by IFN-ƴ and by low amounts of cytoplasmic RNA
TDP-43 expression activates GSK3, which delays and decreases
IFN-1 production and enhances IFNγ and other pro-inflammatory cytokines production
GSK is involved in TDP-43 phosphorylation and aggregation

[9, 11, 25–34] 

Antiviral TDP-43 binds YB-1, a host regulator of HCV replication [35]
TDP-43 suppresses HIV1 transcription by binding HIV-1 long terminal repeats
HIV-1 could replicate in human immune cells independent of TDP-43
A specific deubiquitinase inhibitor, IU1, reversed HIV-1 latency by degrading TDP-43
Knocking down TDP-43 with siRNAs in cell cultures reactivates HIV-1 by reversing its latency
TDP-43 binding may sterically hinder the HIV-1 LTR promoter involved in viral transcription and reacti-

vation
Silencing TDP-43 increases HIV-1 infectivity by reducing HDAC6

[12, 36, 37]
[23]

TDP-43 is protective against enteroviruses [38]
TDP-43 RRM binds the SARS-CoV2 S1 RBD [39]
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low-complexity (LC) domains, favored by proteins misfold-
ing in aging [1, 65].

Potential links between IBM and viral infections

The IBM occurrence may reflect various pathogenic associa-
tions, including viral infections [4]. In general, chronic IIM 
may be triggered by viruses such as Coxsackie B, entero-
virus, parvovirus, HTLV-1, or HIV [66]. Mechanisms of 
viral-induced myositis hypothetically include direct invasion 
of myocytes by the virus, molecular mimicry, exposure of 
cryptic epitopes after conformational alterations, myotoxic 
cytokines such as IFNs and autoimmune reactions [66–68]. 
Latent viral infection, viral-induced denaturation of self-
structures or homologies with various viral proteins could 
result in a prolonged immune response [66]. For instance, 
enterovirus 71 (EV71) may upregulate TRIM21 (Ro52), 
which degrades SAMHD1, a host antiviral molecule [59]. 
Also, during a viral infection, many ribonucleoproteins 
including TDP-43, are hijacked [12]. Coxsackie virus B3 
protease 3C causes TDP-43 cytoplasmic redistribution and 
aggregation [12, 22].

Also, the aging cellular environment may make the 
myofiber susceptible to a newly invading virus, or may allow 
cytopathic manifestation of a virus, or a vertically transmit-
ted genomic endogenous virus such as a retrovirus dormant 
for years, such as HTLV1, may start to be transcribed due 
to the age-modified milieu [16]. Endogenous retroviruses 
(ERVs, genomic remnants of ancient viral infections, most 
inactive and non-infectious) are mutually reinforcing with 
TDP-43 proteinopathies regarding neurodegeneration [17, 
26]. Moreover, aging may favor both ERVs expression and 
TDP-43 proteinopathy [26].

However, no definite evidence for a viral etiology of IBM 
has been established [27]. Mumps virus was described as a 
potential IBM cause, later questioned in immunohistochemi-
cal studies [28]. IBM patients have an increased prevalence 
of hepatitis C virus (HCV) or human lymphotropic T virus-1 
(HTLV1) [69–71]. The relationship between HCV and TDP-
43 is yet to be clarified. TDP-43 binds YB (Y-box-binding 
protein-1), a host factor involved in HCV capsids assem-
bling, and TDP-43 knockdown significantly decreased HCV 
replication [19]. The persistent HCV-related IFN upregula-
tion and lymphocyte exhaustion may in fact contribute to 
the chronic myopathy in HCV [4]. TDP-43 facilitates HBV 
gene expression stimulating its transcription and assembly of 
protein complexes [12]. Furthermore, the clinical picture of 
IBM patients with HCV is different from the one of patients 
with IBM and HIV; therefore, no unique mechanism links a 
chronic viral infection to IBM [20].

Most of the HIV-positive patients with myositis had over-
lapping features of PM and IBM, which clinically progress 
to IBM, and most of them have anti-c1NA antibodies and 

rimmed vacuoles [20]. TDP-43 suppresses HIV-1 transcrip-
tion by binding HIV-1 long terminal repeat [72]. Knock-
ing down TDP-43 with siRNAs in cell cultures reactivates 
HIV-1 by reversing its latency [23]. Notwithstanding, HIV-1 
can replicate in human immune cells independent of TDP-43 
[73]. In viral-associated IBM in HIV and HTLV-1, the viral 
antigen is not present in myofibers but in the T cells and 
macrophages instead [1]. HIV infection can induce T cells 
immune senescence [74]. Thus, it is more conceivable that 
the virally induced senescent, IFN-ƴ producing cytotoxic 
CD8+ T cells lead to IBM.

IBM has been reported to be induced by Covid-19 in a 
54-year female patient with diabetes mellitus and hyperlipi-
demia on statins [75]. Also, an axial paraspinal myopathy 
was reported in Covid-19 [76], and paraspinal myositis may 
be a feature of IBM [27]. However, long-term consequences 
of SARS-CoV2 infection, including muscular involvement, 
are starting to be recognized [77]. After COVID-19, the 
prevalence of myositis-specific antibodies and myositis-
associated antibodies increases [78]. Possible mechanisms 
include type I IFN pathways, NLRP3 inflammasome activa-
tion, or a previous exposure to common coronaviruses [79]. 
SARS-CoV-2 impairs the stress granules (SGs) disassembly, 
and the SARS CoV-2 nucleocapsid N protein binds the SG-
related amyloid proteins, favoring aggregation [24]. Also, 
SARS-CoV-2 spike S1 protein receptor binding domain 
(SARS-CoV2 S1 RBD) attaches to TDP-43 RRM at the viral 
surface, initiating aggregation [39]. TDP-43 is aggregated 
and hyperphosphorylated in SARS-CoV2 patients [12]. 
Also, the SARS-COV2 nucleocapsid N protein phospho-
rylation is mediated by GSK3, delaying the IFN-1 response 
[33] (Fig. 1).

Legend: In IBM, TDP-43 becomes mislocalized and 
accumulates in the cytoplasm of cells, leading to protein 
aggregation and disruption of many cellular processes. Into 
the myofibers, in basal conditions, TDP-43 is bound by the 
long-non-coding RNA (lncRNA) Malat1 (metastasis-asso-
ciated lung adenocarcinoma transcript-1). Malat1 binding 
prevents the TDP-43 cleavage, mediated by activated cas-
pase-3, to generate TDP-35 and IRF3 (IFN regulator factor 
3). TDP-35 amplifies the IFN production by degrading the 
negative regulator of IRF3. Generally, viral infections result 
in reduced expression of Malat1, promoting antiviral IFN 
production. However, certain viruses (Coxsackie B, hepa-
titis C, HIV, HTLV-1, SARS-CoV2, etc.) increase Malat1, 
delaying and decreasing IFN-1 production. Nevertheless, 
the implications for IBM pathogenesis are still hypotheti-
cal. GSK3 (glycogen synthase kinase 3) similarly enhances 
IFNγ and pro-inflammatory cytokines production, phos-
phorylating TDP-43 and promoting TDP-43 aggregation. 
After caspase-induced cleavage, the N-terminal cleavage 
product of TDP-43 may form protein aggregates, while the 
C-terminal cleavage product is degraded by proteasomes. 
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Autophagy receptors may become viral targets. Amongst 
these autophagy receptors, NBR1 (neighbor of BRCA1), a 
ubiquitin-binding scaffold protein, increases in viral infec-
tions, and NBR1 accumulates and is abnormal in IBM mus-
cle. Defects of autophagy and ubiquitin–proteasome system 
(UPS) result in proteostasis impairment and abnormal sar-
coplasmic protein aggregation. TDP-43 is involved in the 
viral-induced IFN response, inducing mitochondrial and 
endoplasmic reticulum damage, and activating mitochon-
drial unfolded protein response. IFN gamma plays a major 
role in these processes.

Muscle weakness or fatigue frequently persists over 
6 months after SARS-CoV2 infection, accompanied by 
electrophysiological myopathic changes [29, 80]. Post-
acute COVID-19 sequelae (PASC) may affect 1/3 up to 
2/3 of COVID-19 patients [30, 81]. PASC may be shaped 
by factors like endothelial damage, immunosenescence, 
mitochondrial alterations, and possibly by higher viral bur-
den, and others [82]. In a longitudinal multi-omics study, 
SARS-CoV2 viremia, reactivation of latent viruses such 
as cytomegalovirus (CVM) and Epstein-Barr virus (EBV) 
and post-acute expansion of cytotoxic T cells were amongst 

the factors associated with PASC [81]. A particular PASC 
proinflammatory immune endotype, enriched with cytotoxic 
effector signatures in CD8+ and NK, has been identified 
[81]. It is tempting to speculate that co-infection with other 
viruses such as CMV could “flatten” the IFN-α initial pro-
duction and stimulate persistent CD8+ T cells with IFN-ƴ 
production in long-Covid.

Moreover, not only cytotoxic CD8+ T cells, but also the 
plasma cell infiltrate from the muscles of IBM patients has 
a distinct B cell receptor repertoire, different from DM and 
PM, reflecting features of antigen-driven selection and dif-
ferentiation [83]. It could be speculated that the T cells and 
plasma cell expansions may reflect linked recognition of 
common antigens, which needs further study in IBM [1, 
83]. Moreover, in some IBM patients, there is an increased 
population of large granular T lymphocytes (T-LGL) char-
acterized by augmented expression of surface molecules 
KLRG1 and CD57 [1]. The expanded T-LGL in IBM are 
rather secondary, “reactive,” with a senescent-like profile, 
associated with inhibitory NK cell receptors and increased 
inflammatory and cytotoxic features [84]. Of interest, HIV-1 

Fig. 1  Regulation of TDP-43 in viral infections: potential implications for cellular processes in IBM pathogenesis
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infection is also a risk factor for the evolution of clonal 
T-LGL disorders [85].

In IBM as in other autoimmune diseases, immunoaging 
may come with an increased risk for autoimmunity, possibly 
the price to pay to preserve some of the immune competency 
[86]. The virally induced senescent, IFN-ƴ producing cyto-
toxic CD8+ T cells may be the ones involved in IBM, in a 
predisposed host.

Genetics in IBM and viral infections

Susceptibility genes for IBM include HLA DRB1*03:01, 
01:01, and 13:01 alleles, respectively [87–89]. The HLA-
DRB1*03 allele, as a component of the ancestral HLA 
8.1 haplotype, is a susceptibility factor for IIMs and many 
other autoimmune diseases [90]. An arginine in position 74 
of the DRβ1 chain confers the allelic risk for IBM [89]. 
HLA DRB1*01 is also associated with rheumatoid arthri-
tis and hematologic malignancies, all overrepresented in 
IBM and associating age-related stochastic accumulation 
of CD8+ CD28- T cells [1, 86]. HLA-DRB1 alleles expres-
sion also impacts durable control of viral replication, HLA 
DR B1*03:01 being associated with high HIV viremia [91, 
92], while HLA DRB1*01 was associated with spontaneous 
viral clearance of hepatitis C [92].

HLA DRB1*13 is common for IBM susceptibility and 
for protection against infection with several viruses, includ-
ing HIV, HCV, HBV [87]. In IBM, the HLA DRB1*13:01 
was associated with the highest age of onset and the lower 
strength [88]. Nevertheless, intriguingly, HLA DRB1*13 
was protective against autoimmune diseases such as sys-
temic lupus erythematosus, psoriasis, systemic sclerosis, and 
others [93]. However, HLA DRB1*13 is also associated with 
a slow progression of HIV [94]. HLA DRB1 *13 is associ-
ated with the clearance of hepatitis B as well [95]. Surpris-
ingly, HLA DRB1*13 is neuroprotective, along with apoE, 
against age-related brain changes [96]. HLA-C*14:02:01 
allele was higher in IBM patients with high LGL T cell 
expression [84]. HLA-C*14:02 allele was also associated 
with a T cell response in HIV-1 infection, which was never-
theless non-protective for the viral infection [97].

HLA-F, found in IBM and Sjogren’s syndrome, also 
elicits antiviral responses through activation of the 
KIR3DS1+ NK cells [98, 99].

A bioinformatic analysis identified 10 genes in IBM, 
most of them involved in immune mediated and infectious 
diseases, including CCR5 (encoding the human C–C motif 
chemokine receptor type 5), IRF8 (interferon regulatory fac-
tor 8), HLA DRB1, CD74, and others [100]. CCR5 is also 
common for IBM susceptibility and for antiviral protection 
[88]. CCR5, expressed by tissue-resident memory T cells, 
is centrally involved in immunosurveillance, in inflamma-
tory, autoimmune, and neoplastic disorders [101]. CCR5 

also serves as an HIV co-receptor [102]. Similarly, a bio-
informatic analysis found common molecular mechanisms 
between IBM and Sjogren’s syndrome, related to viral infec-
tion and antigen processing/presentation [99]. Amongst the 
29 common genes identified, PSMB9 encodes the immu-
noproteasome B9, while CD74 encodes the cluster of dif-
ferentiation 74 (also called HLA class II invariant gamma 
chain), a transmembrane glycoprotein contributing to anti-
gen presentation [98]. CD74, as a key molecule of mac-
rophage activation, involved in IFN-I and IFN-γ associated 
pathways in IBM and in the interaction between myofibers 
and macrophages in IBM [103]. CD74 interacts with the 
macrophage migration inhibitory factor, and CD74 upregu-
lation contributes to immune damage during HIV infection 
[104].

To conclude, many genes predisposing to IBM are also 
involved in antiviral defense, mostly in generating interferon 
type I and type II.

Therapeutic strategies involving TDP‑43 in IBM

IBM currently has no effective long-term therapy [1]. 
Immunosuppression later during the disease course did not 
improve IBM, and T cell depletion did not prevent vacuole 
formation and disease progression [10]. Moreover, immuno-
suppressive therapies may sometimes reveal an underlying 
chronic infection [20]. Therefore, HIV testing is advisable 
mostly in PM/IBM overlaps [20]. Also, pan-JAK inhibitors 
in aged mice alleviated the senescence—associated secre-
tory phenotype but may also reactivate latent viruses [55]. 
Trials of immunosuppressive therapies in IBM have been 
recently nicely reviewed [105]. Immunosuppression is not 
routinely advised unless IBM is rapidly progressive or asso-
ciated with other autoimmune diseases [105].

Followed both inflammatory and myodegenerative 
pathways presumed to be involved in IBM pathogene-
sis [105]. Most studies addressed inflammation or the 
involvement of T cells. Alemtuzumab (against CD52), 
natalizumab, anti-TNF alpha such as infliximab or etaner-
cept, or IL-1 inhibitors as anakinra and canakinumab 
showed modest or no improvement [105], Rapamycin 
(sirolimus) targets mTOR important in IL-2 immune 
responses and protein metabolism (NCT04789070) [105]. 
Novel therapeutic avenues involve anti-KLRG1 antibod-
ies, targeting a surface marker of the highly differentiated 
CD8T cells (NCT04659031) [84, 105]. Moreover, in HIV, 
the KLRG1 expression on NK cells correlates with HIV 
transcription, and targeting KLRG1 on NK cells poten-
tially aids in elimination of HIV-infected cells [106]. 
Therapies against myodegeneration have recently become 
targets in clinical trials (arimoclomol, bimagrumab, fol-
listatin, oxandrolone, rapamycin) [105].
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Possible future directions may address other pathways. 
The attempts to reduce TDP-43 level led to muscle weak-
ness and defective regeneration in myopathy models [6]. 
However, in neurological disorders such as ALS and 
other TDP-43-associated diseases, affecting skeletal and 
cardiac muscles besides neurons, there are several TDP-
43 directed therapies [107, 108]. In ALS inhibition or 
deletion of cGAS and STING prevents TDP-43-induced 
upregulation of NF-kB and IFN type I [107]. Neverthe-
less, the neurological and muscular effects are not com-
pletely superposable [6].

Research including new therapies and repurposing 
for IBM some drugs used with other indications could 
serve as directions for the future [109]. Future therapeutic 
approaches could include inhibition of TDP-43 aggrega-
tion, the TDP-43-mitochondria association, proteasomal 
degradation of cytoplasmic TDP-43, or reducing TDP-43 
aggregation-induced cell stress [37, 38, 110, 111]. Drugs 
stimulating the proteasome, such as chlorpromazine and 
other phenothiazines, methylene blue as a structural ana-
logue of chlorpromazine and pyrazolones may target pro-
teotoxic disorders [112]. The efficacy of zetomipzomib 
(KZR-616), a selective inhibitor of the immunoprotea-
some, is being studied in a phase 2 controlled multicenter 
study for active PM and DM [113, 114]. GSK3 inhibi-
tion decreases TDP-43 aggregation [34]. Lithium inhibits 
GSK-3 and induces autophagy, which may be relevant for 
IBM [115]. Also, lithium protected synapses from HIV-1 
Tat-induced neuronal loss, in cultures and may be neuro-
protective in HIV [116, 117]. Some other GSK3 inhibitors 
(including famotidine, naproxen, olanzapine, curcumin-
all sterically hindering the enzyme binding pocket) may 
be tested for repurposing in IBM [33]. Also, regulating 
CYLD could be tested as a possible a therapeutic strategy 
in IBM [63].

The connection between a chronic viral infection and 
IBM deserves to be investigated further. There are ques-
tions waiting to be answered. Which factors are involved 
in transforming acute viral myositis into chronic inflam-
matory idiopathic myopathy? And moreover, why do 
some aged patients develop after a viral infection an IIM, 
for instance an anti-synthetase syndrome, and others an 
IBM? For instance, in HIV infection, what conditionate 
the switch from a PM phenotype to an IBM one? [4]. 
Serial studies in patients with chronic viral infections and 
signs of myopathy and/or sarcopenia would probably shed 
light on this progression, also regarding the progression 
to immunosenescence, mitochondrial dysfunction and 
proteinopathy, and the role of TDP-43 in this setting.

Conclusions

TDP-43 is important in preventing the dsRNA-induced IFN 
responses [13]. Viral infections may disrupt TDP-43 solu-
bility and function, leading to its accumulation and lack of 
splicing regulation. The phenotypic differences between 
several IBM subtypes may be conditioned, besides genetic 
predisposing factors and age, also by environmental triggers 
such as certain viruses, and by epigenetic regulators [65]. 
Malat1 upregulation in certain viral infections may contrib-
ute to a protracted immune response [80].

Finding early disease markers and untangling mecha-
nisms after a viral injury could inform whether there is a 
window of opportunity for the anti-inflammatory therapy, 
hopefully stopping or slowing the plethora of accompanying 
proteostasis, mitochondrial, and metabolic defects. Certain 
viruses, high viremia, coinfections, reactivation of latent 
viruses, and post-acute expansion of cytotoxic T cells may 
all contribute to IBM, mainly in an age-shaped immune 
landscape, with CD8+ T cells with IFN-ƴ production. In 
most such cases, the virally induced senescent, IFN-ƴ pro-
ducing cytotoxic CD8+ T cells are the ones involved in IBM, 
in a genetically predisposed host. Immunophenotyping IBM 
patients to identify elevated CD8+ CD57+ populations may 
help stratify patients with prognostic and possibly therapeu-
tic implications [84]. Identifying pathogenic mechanisms 
may lead to the identification of potential new treatments or 
to drug repurposing to improve the outcome in this debilitat-
ing disease.
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