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Abstract
In recent years, various types of immunotherapy, particularly the use of immune checkpoint inhibitors targeting programmed 
cell death 1 or programmed death ligand 1 (PD-L1), have revolutionized the management and prognosis of non-small cell 
lung cancer. PD-L1 is frequently used as a biomarker for predicting the likely benefit of immunotherapy for patients. How-
ever, some patients receiving immunotherapy have high response rates despite having low levels of PD-L1. Therefore, the 
identification of this group of patients is extremely important to improve prognosis. The tumor microenvironment contains 
tumor, stromal, and infiltrating immune cells with its composition differing significantly within tumors, between tumors, 
and between individuals. The omics approach aims to provide a comprehensive assessment of each patient through high-
throughput extracted features, promising a more comprehensive characterization of this complex ecosystem. However, fea-
tures identified by high-throughput methods are complex and present analytical challenges to clinicians and data scientists. It 
is thus feasible that artificial intelligence could assist in the identification of features that are beyond human discernment as 
well as in the performance of repetitive tasks. In this paper, we review the prediction of immunotherapy efficacy by different 
biomarkers (genomic, transcriptomic, proteomic, microbiomic, and radiomic), together with the use of artificial intelligence 
and the challenges and future directions of these fields.
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Introduction

Lung cancer is responsible for the majority of cancer-related 
deaths in the world. Non-small cell lung cancer (NSCLC) 
represents approximately 80–90% of lung cancers [1]. Over 
half of NSCLC tumors are advanced when diagnosed, and 
the overall 5-year survival for NSCLC patients is only 18% 
[2].

In recent years, the use of various types of immuno-
therapy, particularly immune checkpoint inhibitors (ICIs) 
targeting programmed cell death 1 (PD-1) or programmed 
death ligand 1 (PD-L1), has revolutionized the treatment of 
NSCLC [3, 4]. Both PD-1 and PD-L1 are important immune 
checkpoints (ICs). PD-1 is expressed on the surfaces of 
immune cells and binds its ligand, PD-L1, expressed on 
tumor cells, suppressing the immune response against the 
tumor [5]. The function of anti-PD-1/PD-L1 immunotherapy 
is to prevent this interaction and thus enhance the immune 
response directed against the tumor [6].

Immunohistochemical (IHC) detection of PD-L1 has 
FDA approval and is the most frequently used biomarker 
for the prediction of the effectiveness of immunotherapy [7]. 
However, anomalous results have been observed in clinical 
practice, with many patients with high PD-L1 levels show-
ing a poor response to immunotherapy while others with low 
or negative PD-L1 levels do respond. Furthermore, the effi-
cacy of immunotherapy guided by PD-L1 expression levels 
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does not exceed 30% [8]. This suggests that the use of PD-L1 
as a sole biomarker is inadequate.

The tumor microenvironment (TME) contains various 
cell types, including tumor, stromal, and infiltrating immune 
cells, and its composition differs significantly within tumors 
[9], between tumor types [10], and among individuals [11]. 
In such a heterogeneous system, many pro- and anti-tumor 
cellular components or signals can influence the efficacy of 
immunotherapy. Thus, the tumor response to immunother-
apy is complex and involves a large number of mechanisms 
and pathways. Omics approaches, aimed at the comprehen-
sive assessment of each patient through the analysis of high-
throughput-extracted features, promise to provide a more 
comprehensive characterization of this complex ecosystem.

Artificial intelligence (AI) is a subdivision of computer 
science that can be used to predict and classify material 
according to the available data [12]. Deep learning (DL) is a 
representative learning method in which complex multi-layer 
neural network architectures automatically learn from data 
by converting input information into multi-level abstrac-
tions. At the same time, models are constructed by the 
selection of features and model fitting using a combination 

of computerized algorithms and high-throughput data. Pre-
vious studies have shown that AI-based automatic learning 
and diagnostic models have shown good performance in 
cell classification [13], cancer detection [14], pathological 
diagnosis [15], and the analysis of multiple biomarkers [16].

Here, we review the use of multi-omics (genomics, tran-
scriptomics, proteomics, microbiomics, and radiomics) for 
the prediction of the outcome of immunotherapy and spe-
cifically discuss the applications of AI in these predictions 
(Fig. 1).

Genomics

Tumor mutation burden

The TMB represents the total number of somatic mutations 
present in the tumor tissue after the exclusion of germline 
mutations. Somatic mutations can produce changes in cell 
surface proteins, leading to the appearance of neoantigens 
that are recognized as foreign by the immune system, stim-
ulating the immune response and subsequent elimination 

Fig.1   Overview of multi-omic signatures for predicting the efficacy of immunotherapy in patients with non-small cell lung cancer
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of the tumor cells [17]. There is, thus, a significant asso-
ciation between high TMB and the patient’s response to 
immunotherapy.

In the CheckMate 026 study, an exploratory analysis 
of the influence of tumor mutational burden (TMB) on 
clinical outcome showed that in patients with high TMB 
levels (≥ 243 mutations/Mb), those receiving immuno-
therapy had longer PFS (9.7 months vs. 5.8 months for 
chemotherapy, HR, 0.62 (95%CI, 0.38–1.00)) and higher 
objective response rates (ORRs) (46.8% vs. 28.3% for 
chemotherapy) [18]. The Checkmate 227 study used 
TMB ≥ 10 mut/Mb as the cutoff value for high TMB and 
found markedly improved ORR and PFS when nivolumab 
was combined with Ipilimumab compared with chemother-
apy in advanced NSCLC patients with high TMB, regard-
less of PD-L1 expression level [19]. These two studies 
suggest that the TMB may be useful as a complementary 
biomarker for the selection of patients likely to respond 
to immunotherapy. Next, the bFAST cohort C study and 
a multi-center retrospective study set the TMB threshold 
at 16 mutations/Mb and 20 mutations/Mb, respectively, 
and also found that high TMB was associated with better 
patient outcomes [20, 21]. However, there is a problem that 
these studies have inconsistent definitions of high TMB, 
and the inconsistencies in TMB detection platforms and 
methods, sample status, and result interpretation further 
interfere with the prediction of clinical outcomes. There-
fore, TMB requires synchronization and standardization 
for reliable clinical application. In addition, it is worth not-
ing that TMB still has serious limitations as a predictive 
factor in immunotherapy combined with chemotherapy.

Circulating tumor DNA (ctDNA)

Measurement of ctDNA in the peripheral blood can pro-
vide an accurate reflection of the TMB and genomics of 
the cancer and can thus be used as a biomarker predicting 
treatment response and prognosis.

Assessment of ctDNA levels before treatment has 
been demonstrated to be useful for outcome prediction, 
with high ctDNA scores indicative of poor outcomes in 
many cancer types [22, 23]. A prospective phase II clini-
cal trial observed an association between lower baseline 
ctDNA levels and enhanced OS and PFS after treatment 
of NSCLC with pembrolizumab [24]. Several recent stud-
ies have shown an independent association between early 
reduction in the ctDNA allele frequency and enhanced OS 
and ORR in patients with advanced NSCLC after immuno-
therapy [24, 25]. Vokes et al. reported at the 2023 Ameri-
can Society of Clinical Oncology (ASCO) that dynamic 
changes in ctDNA can predict the therapeutic efficacy of 
cemiplimab [26]. Pseudoprogression can also be identified 

by ctDNA kinetics. For instance, a study by Guibert et al. 
observed rapid and significantly reduced ctDNA levels in 
two patients with pseudoprogression while patients with 
true progression showed increased levels [27].

Although ctDNA levels are considered predictors of 
response to immunotherapy, there is no uniform standard 
for baseline risk stratification thresholds and time points 
for testing. Therefore, further cross-study validations and 
standardization of ctDNA thresholds are needed in the 
future.

Genetic mutations

EGFR mutations

Together with the total mutational burden, there are specific 
mutations that may influence the efficacy of immunotherapy. 
Meta-analyses of three clinical trials (CheckMate 057, POP-
LAR, and KEYNOTE 010) and meta-analyses of five trials 
(CheckMate 017, CheckMate 057, KEYNOTE 010, OAK, 
and POPLAR) confirmed that single-agent ICI does not pro-
long OS in patients with mutations in EGFR [28, 29]. The 
CheckMate 012 study found that immunotherapy combined 
with chemotherapy similarly failed to improve PFS and OS 
in patients with EGFR mutations [30]. However, the ORI-
ENT-31 study confirmed that ICI combined with anti-angi-
ogenic therapy and chemotherapy significantly improved 
PFS in EGFR-mutant non-squamous NSCLC patients who 
progressed after treatment with EGFR-TKIs [31]. Although 
the IMpower150 [32], ORIENT-31 and ATTLAS/KCSG-
LU19-04 [33] studies have unanimously confirmed that 
patients with EGFR-TKI-resistant NSCLC can benefit from 
the four-drug combination therapy of immune + platinum-
containing double-drug chemotherapy + bevacizumab. 
However, the four-drug combination regimen has a higher 
incidence of adverse effects and is limited in clinical use. 
Checkmate 722 and Keynote 789 studies chose immuno-
therapy + platinum-based doublet chemotherapy, but the 
efficacy was not satisfactory. The Checkmate 722 study 
demonstrated that nivolumab + chemotherapy had no sig-
nificant clinical benefit compared with chemotherapy in 
patients with EGFR-TKI resistance [34]. In the Keynote 
789 study, pembrolizumab repeated the failed results [35]. 
Whether other immune drugs combined with chemotherapy 
are effective, and whether immunotherapy + anti-angiogenic 
therapy + single-agent chemotherapy is feasible and is wor-
thy of further exploration in the future.

ALK or ROS1 fusion‑positive

NSCLC patients with the ALK/ROS1 fusion are classified as 
having low TMB despite their high levels of PD-L1 expres-
sion [36]. The ATLANTIC study has shown that the ORR 
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of patients with ALK rearrangements after immunotherapy 
was significantly lower than that of ALK-negative patients 
[37]. The results of the IMMUNOTARGET study found that 
the ORRs of NSCLC patients with positive ALK and ROS1 
driver genes treated with ICIs were 0% and 17%, respec-
tively [38].

RET rearrangement

Patients with NSCLC accompanied by RET rearrangements 
also typically have lower TMB levels (< 2.5 mut/Mb) and 
PD-L1 expression [36, 39]. Previous retrospective studies 
have shown that the curative effect of ICI therapy in patients 
with RET-rearranged NSCLC is poor, with a median PFS 
of < 3.5 months and an ORR of < 10% [40, 41].

HER2 mutations

Marcelo et al. analyzed data from more than 4000 driver-
positive NSCLC patients, observing that patients with 
classic EGFR mutation and HER2 mutations who were 
treated with ICIs had the shortest PFS (1.8 and 1.9 months, 
respectively) [36]. The POLISH study also found that for 
advanced NSCLC patients with HER2 mutations, chemo-
therapy + immunotherapy did not improve median PFS 
compared with chemotherapy + anti-angiogenic therapy or 
chemotherapy alone (both p > 0.05) [42].

KRAS mutations

Mutations in KRAS are often associated with both a high 
TMB and significantly elevated PD-L1 expression [43]. 
Moreover, previous studies found no significant differences 
in ORR, PFS, and OS between NSCLC patients with or 
without KRAS mutations [44, 45].

Mutations in KRAS are highly heterogeneous. Ricciuti 
et  al. found that among patients with KRAS mutations 
receiving immunotherapy, those with the KRAS G12D 
mutation had worse ORR, PFS, and OS than patients with 
other KRAS mutations [46].

KRAS mutations in NSCLC are frequently seen in con-
junction with mutations in tumor protein 53 (TP53) and 
serine-threonine kinase 11/liver kinase B1 (STK11/LKB1). 
These KRAS-STK11/LKB1 co-mutant tumors tended to 
show greater resistance to PD-1 inhibitors [47], while the 
patients with the KRAS-TP53 co-mutation were more sen-
sitive to PD-1 inhibitors [48]. Lung cancer patients with 
KRAS mutations have a 20% and 10% chance of co-occur-
ring KEAP1 and SMARCA4 mutations, respectively [49, 
50], and these co-mutations appear to be linked to poorer 
outcomes after immunotherapy.

BRAF mutations

BRAF-mutant NSCLC often has a high TMB and high lev-
els of PD-L1 expression [36, 51]. Li et al. found no sig-
nificant difference in PFS, OS, and ORR between NSCLC 
patients carrying BRAF-mutant or wild-type genes after 
single-agent ICI therapy or ICI combination therapy [52]. 
A study observed shorter PFS and OS in patients receiving 
ICIs in the patients carrying the BRAF V600E mutation 
compared with those without the mutation [53].

MET exon 14

Studies by Negrao et al. and Mazieres et al. found that 
NSCLC patients with MET exon 14 mutations who were 
treated with ICIs had a median PFS of < 5 months and an 
ORR of < 20% [36, 38]. Similarly, Sabari et al. found that 
the overall response to ICIs was reduced in NSCLC patients 
with MET exon 14 mutations regardless of PD-L1 expres-
sion and the TMB level [54].

Transcriptomics

Transcriptomics involves the analysis of all RNA tran-
scripts within a cell type and is usually performed using 
high-throughput techniques such as RNA sequencing (RNA-
seq) and microarrays [55]. A number of recent studies have 
investigated the prediction of immunotherapy response using 
transcriptome signatures.

Ayers analyzed gene expression profiling (GEP) using 
RNA from baseline tumor samples from patients treated 
with pembrolizumab, identifying the GEPs of T-cell inflam-
mation, specifically, genes involved in antigen presentation 
after IFN-γ activation, the expression of chemokines, cyto-
toxicity, and resistance to the adaptive immune response 
[56]. Another clinical trial involving 20 groups of patients 
with advanced solid tumors further validated the relationship 
between T-cell inflammatory GEP and the clinical efficacy 
of pembrolizumab and found that tumors with higher T-cell 
inflammatory GEP showed higher response rates and longer 
PFS [57]. Further analysis by the POPLAR study showed 
that among patients treated with atezolizumab, patients with 
high expression of T effector-interferon-γ-related genes 
had significantly longer OS [58]. In addition, in NSCLC 
patients receiving durvalumab, those with a four-gene IFNγ-
positive (IFNγ +) signature, namely IFNγ, CD274, LAG3, 
and CXCL9, showed greater ORR and longer median OS 
and PFS, irrespective of their PD-L1 status [59]. These tran-
scriptomic data can help to further optimize cancer immu-
notherapy strategies. However, these studies have tended 
to analyze specific genes in isolation, and the underlying 
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pathways through which the genes influence the efficacy of 
ICI therapy require further investigation.

Proteomics

Protein is one of the main building blocks of cells. Proteom-
ics is the large-scale study of proteins through analysis of 
their identities and quantities in biological samples (cells, 
tissues, or body fluids).

Using spatially resolved proteomic analysis, Myrto et al. 
identified tumor cell CD44 as a biomarker for the predic-
tion of the efficacy of immunotherapy in NSCLC patients 
[60]. Shen et al. analyzed SEL1L3 in a large-scale tissue 
proteomics dataset established by the Taiwan Cancer Moon 
Shot Program and found that it could serve as a potential 
emerging adjuvant for immunotherapy of lung adenocarci-
noma [61]. To verify the real performance of blood-based 
proteomic analysis in NSCLC immunotherapy, all patients 
were tested and designated as HIC-Hot (HIC-H) or HIC-
Cold (HIC-C) before initiating treatment. The study found 
that the survival time of all HIC-H patients was significantly 
longer than that of HIC-C patients, irrespective of PD-L1 
expression. Additionally, the data also suggest that HIC-C 
patients should not be treated with ICIs alone, regardless 
of PD-L1 expression [62]. Furthermore, the combination 
of protein markers (CXCL9, CXCL10, IL-15, CASP8, and 
ADA) was found to be more accurate in predicting response 
than tumor PD-L1 expression or the levels of individual pro-
teins [63].

Notably, although proteomic studies are able to predict 
the immunotherapy response, there are still some limitations. 
These tests are based on protein signatures, and the quality 
of the signature is determined by the quality of the data used 
in the signature generation. In addition, proteomic analyses 
based on tumor blood typically measure proteins shed from 
the tumor into the blood. Thus, the effectiveness of these 
tests is dependent on the amount of shedding, which is likely 
to vary between patients. Finally, most studies focusing on 
proteomics-based biomarkers have been retrospective, and as 
such they lack informed treatment guidelines, such as NCCN 
guidelines. Thus, more prospective and randomized clinical 
trials are required in this area.

Microbiomics

The microbiome refers to the colonies of symbiotic micro-
organisms within the human body. Analysis of the micro-
biome is also thought to be able to predict the response to 
ICI treatment.

Gut microbiota

A study published by Routy in 2018 showed that antibiotic 
treatment reduced the OS of patients with advanced NSCLC 
by half within 3 months of immunotherapy [64]. Significant 
differences in fecal microbiomes were observed before the 
start of ICI treatment between patients who responded to treat-
ment and those who did not, with Akkermansia muciniphila 
and Enterococcus hirae found to be significantly related to 
improved clinical outcomes. Routy et al. reported that ICI 
resistance could be reduced in mice by transplantation of 
Akkermansia muciniphila and Enterococcus hirae, suggest-
ing that the gut microbiome modulates the effectiveness of 
immunotherapy and that ICI efficacy is related to gut bacterial 
type and can improve immune tolerance in patients by sup-
plementing with beneficial bacteria. A multi-center prospec-
tive observational study in 2019 further verified that among 
NSCLC patients treated with ICI, those with higher levels of 
Akkermansia muciniphila showed better response rates [65].

These studies demonstrated that the microbiome com-
position differs according to treatment response, and while 
favorable results were consistently associated with increased 
microbiome diversity, differences were observed in the indi-
vidual bacteria between studies. These differences may be due 
to the type of ICI used, and geographical location may also 
play a role.

Local tumor microbiome

The gut microbiota has been linked to the therapeutic effec-
tiveness of immunotherapy through a variety of mechanisms. 
For lung cancer, local tumor-microbiome interactions are 
also crucial for the efficacy and prognosis of ICI therapy. The 
results of Brutsche et al. showed that, as with gut microbes, 
more diverse bacterial metagenomes were linked to improved 
survival after ICI treatment. The presence of Gammaproteo-
bacteria has been associated with reduced PD-L1 levels and 
decreased response to immunotherapy [66]. Sang Hoon Lee 
et al. observed that V. dispar was more abundant in patients 
that responded to immunotherapy while Haemophilus influ-
enzae and Neisseria perflava were more abundant in patients 
who did not. Thus, Haemophilus may represent a target for 
lung cancer treatment [67]. However, mechanistic data on the 
function of the microbiome in relation to NSCLC immuno-
therapy are scarce at this stage, and further investigation is 
required.

Both preclinical and clinical studies have provided insight 
into the influence of the microbiome on the immunotherapy 
response. Future studies should address the classification of 
favorable and unfavorable characteristics of the microbiota 
and their influence on the cells and pathways of the immune 
response to provide a full understanding of their roles in 
TMEs and to enhance the effectiveness of treatment. The 
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gut-pulmonary axis refers to the commonality between the 
microbiomes of the lung and gut which are not separate enti-
ties but rather communicate in a bidirectional manner to modu-
late each other's immune responses. The gut-pulmonary axis 
offers the possibility of indirect modulation of the lung micro-
biota by manipulating the more accessible gut microbiota.

Radiomics

Radiomics converts medical images into quantitative data, 
dissecting the complexity of tumor biology both macro-
scopically and microscopically. Radiomics offers a more 
comprehensive analysis of the tumor than analysis of biopsy 
specimens as it extracts features from the entire TME. Radi-
omic models can also be applied in multiple scans, allowing 
the non-invasive and continuous monitoring of the tumor 
and its response to treatment.

Prediction of immunotherapy efficacy

Tunali et al. analyzed pre-immunotherapy data from NSCLC 
patients treated with PD-1/PD-L1 from 13 institutions, 
finally identifying four radiomic features that were used for 
the construction of a model for the differentiation of patient 
response to ICI with an AUC of 0.790 [68]. Lu et al. selected 
88 radiomic features from CT images to build a random for-
est model and combined clinicopathological factors to deter-
mine the patients that were most likely to respond to immu-
notherapy before beginning treatment (AUC: 0.848–0.902) 
[69]. Using a combination of CT images and genomic data, 
Sun et al. developed a radiomic signature of CD8 cells that 
were effective in predicting treatment outcomes with anti-
PD-1 or anti-PD-L1 immunotherapy [70].

Identification of hyperprogression 
and pseudoprogression

Hyperprogression describes the apparent paradox of 
increased progression occurring after the initiation of 
immunotherapy. Patients who experience hyperprogression 
have a poor prognosis, and early identification of hyper-
progression may prevent ineffective treatment and reduce 
the occurrence of toxicity. Pranjal Vaidya et al. extracted 
a total of 198 radiomic texture patterns as well as nodule-
associated vascular features from CT scans for modeling 
to identify hyperprogression, demonstrating AUCs of 0.850 
and 0.960 for the training and validation sets, respectively 
[71]. In addition, Tunali et al. combined radiomic models 
with clinical features and found relatively high predictive 
power for hyperprogression, with AUCs ranging from 0.804 
to 0.865 [72]. In addition, distinguishing pseudoprogression 
from true disease progression is important for the clinical 

decision-making process. Barabino et al. found that changes 
in nine radiomic features were significantly associated with 
pseudoprogression [73].

These studies show that while radiomics can be a better 
predictor of ICI treatment efficacy, several problems remain, 
including a lack of high-quality data and image standardiza-
tion, together with a poorly effective combination of multi-
ple imaging methods, and a lack of prospective validation. 
In future studies, a variety of modeling approaches should be 
used for the selection of the best method. Furthermore, mul-
tiple cross-validations should be conducted for single-center 
studies. In conclusion, we consider that the use of radiomics 
in PD-L1-related imaging of NSCLC patients has potential.

The application of AI in predicting 
the response to immunotherapy

AI‑based genomics

He et al. used 1020 DL features to build a model to dis-
tinguish between patients with high and low TMB, find-
ing that the model was effective in dividing patients into 
high-risk and low-risk groups when predicting the efficacy 
of immunotherapy [74]. Jain and Massoud combined three 
DL models to predict TMB status, reporting an AUC of the 
joint model of 0.920 [75]. These studies demonstrate the 
value of an AI system to assist healthcare professionals in 
identifying the expression status of these genes that have the 
advantages of being easy to use and non-invasive.

AI‑based transcriptomics

Intratumoral heterogeneity (ITH) is a key factor influencing 
the patient response to immunotherapy [76]. To determine 
ITH levels, Sung et al. used an ML-based approach to pre-
dict ITH using transcriptomic data. They demonstrated that 
their method could distinguish tumor samples with high and 
low ITH levels and identify transcriptomic markers associ-
ated with ITH [77]. To facilitate the investigation of hetero-
geneity in the ICI response, Zeng et al. developed a non-neg-
ative matrix factorization (NMF)-based ML framework to 
identify factors affecting the immunotherapy response using 
data from TCGA samples [78]. With the advent of the era 
of precision medicine, AI-assisted transcriptomic technol-
ogy will continue to develop and become more common in 
immunotherapy research, providing valuable information for 
the formulation of new strategies to improve the efficacy of 
cancer immunotherapy.
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AI‑based proteomics

A study reported the construction of an ML-based serum 
protein classifier that could classify patients into drug-resist-
ant, intermediate, or sensitive groups according to clinical 
and mass spectrometry (MS) characteristics. This serum 
protein classifier showed good performance in predicting 
patient immune responses [79]. The VeriStrat test is a pro-
teomic signature using ML-based MS. The test evaluates 
the spectrum of blood samples and assigns patients to either 
VeriStrat "good" (VS-G) or VeriStrat "poor" (VS-P) groups. 
It was found that the VeriStrat status was significantly asso-
ciated with both PFS and OS in NSCLC patients receiving 
ICI treatment [80].

Compared to genomics and transcriptomics, proteom-
ics may be more effective in assessing features of the TME 
and immune responses in patients with lung cancer, result-
ing in a more accurate prediction of the response to immu-
notherapy. The application of AI methods to proteomics 
may thus represent a future direction in the development 
of improved methods for assessing patient prognosis after 
immunotherapy.

AI‑based microbiomics

Many factors associated with the gut microbiota, includ-
ing its composition and community structures, influence the 
immunotherapy response. Thus, statistical analysis using AI 
can assist in the elucidation of the specific composition or 
important combinations of gut microbiota species. Tatsuro 
Okamoto will conduct a prospective observational study 
using AI (UMIN000046428) to elucidate the specific gut 
microbiome composition or gut microbial combinations 
associated with the immunotherapy response in lung cancer 
patients [81].

AI‑based radiomics

Based on contrast-enhanced CT before neoadjuvant immu-
notherapy, a study used radiomic features, clinicopathologi-
cal information, and DL features to construct a model for the 
prediction of a good pathological response, finding an AUC 
of 0.805 [82]. In another study, a combination of radiomics 
and DL was used for predicting the response of NSCLC 
patients with advanced disease to immunotherapy with an 
AUC of 0.960 [83]. He et al. also demonstrated that the com-
bination of radiomics with DL could identify patients likely 
to benefit from ICI treatment (p < 0.001) [84].

Radiomics is both non-invasive and reproducible and thus 
offers a novel solution. Also, radiomics-based predictive 
models allow the early identification of suitable patients for 
immunotherapy, thus enabling precision medicine.

Future challenges

Although various studies have explored the potential of 
various histological approaches and AI in predicting the 
response to immunotherapy, challenges associated with their 
application in clinical practice still remain.

Both the methods of measurement and the platforms 
used to measure most genomic biomarkers are inconsistent, 
resulting in poor reliability and reduced accuracy. Further-
more, the optimal threshold is difficult to determine, i.e., dif-
ferent studies have used different thresholds for prediction, 
leading to inconsistent results. MS-based proteomics has 
been widely used in cancer immunology research, but MS 
proteomics has difficulty in accurately identifying unique 
peptides and different protein isoforms. Transcriptomics also 
presents several difficulties, specifically, in relation to sam-
ple preparation, computational analysis, and reproducibility. 
As for microbiomics, its future challenges include an inad-
equate understanding of the modulating effects of the micro-
biota on the therapeutic response, a lack of information and 
consensus on the use of microbial signatures as predictive 
biomarkers, and limited information on how the microbiota 
could be modulated. In addition, while current research has 
focused on bacteria, symbiotic viruses, fungi, and archaea 
also have non-negligible roles in cancer. In terms of radiom-
ics, a significant limitation is the absence of standardization 
between studies as this complicates data sharing and reduces 
the generalizability of models constructed in different insti-
tutions (Table 1).

Faced with the challenge of lack of standardization and 
validation of biomarkers for predicting the efficacy of immu-
notherapy in NSCLC, the following are some suggestions 
and directions for future efforts: 1) Standardize measure-
ment methods of biomarkers: Develop unified measure-
ment methods and technical standards to ensure the reli-
ability and comparability of biomarker measurement results. 
Establish standard operating procedures and quality control 
procedures to reduce measurement errors. 2) Multi-center 
collaborative research: Establish an international or cross-
institutional research collaboration organization to conduct 
large-scale research, collect more sample data, and conduct 
verification and comparative analysis of different immuno-
therapy drugs and treatment options. Cross-center collabo-
ration can increase the number of samples and improve the 
credibility of the study. 3) Unified data collection and shar-
ing: Establish a unified database for collecting and storing 
biomarker data generated in clinical trials and real-world 
applications. By sharing data, the verification and promotion 
of biomarkers can be accelerated, and more data can be pro-
vided for the discovery and verification of future biomarkers.

The cost-effectiveness of different biomarkers also 
deserves discussion. Because genomics and radiomics 
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can use existing gene sequencing data and existing medi-
cal imaging data, their application in efficacy prediction 
is relatively low-cost. Microbiomics is less expensive but 
requires steps such as sample collection and high-throughput 
sequencing. Transcriptomics and proteomics involve multi-
ple steps such as sample collection, RNA (protein) extrac-
tion, sequencing, and analysis, so their costs are relatively 
high. In low-resource settings, several strategies can help 
improve the cost-effectiveness: 1) Optimize sample col-
lection and processing procedures to ensure high-quality 
data acquisition. 2) Reasonably use existing data resources 
and conduct secondary analysis to reduce the cost of new 
data collection. 3)  Establish cross-institutional or interna-
tional collaboration networks to share data and resources. 4) 
Develop simpler, cost-effective measurement technologies, 
such as rapid sequencing, portable imaging equipment, etc. 
5) Further strengthen the development of artificial intelli-
gence algorithms and improve the accuracy and efficiency 
of prediction models, thereby saving the cost of data analysis 
and interpretation.

Conclusions

In this study, we reviewed the application of genomics, 
transcriptomics, proteomics, microbiomics, and radiomics 
in predicting immunotherapy outcomes. While data on the 
use of individual biomarkers to predict response to immu-
notherapy are plentiful, direct comparisons between them 
are scarce. PD-L1 is still the most commonly used, and its 
combination with other biomarkers can help improve the 
predictive ability of immunotherapy efficacy. In addition, 
the combination of AI and multi-omics data can help inte-
grate the various data and realize automatic prediction, ulti-
mately providing personalized treatment for patients with 
lung cancer.

Acknowledgements  This project was supported by a grant from the 
Regional Innovation Cooperation Project of the Sichuan Science and 
Technology Program (2021YFQ0029).

Author contributions  Conceptualization was contributed by Qinghua 
Zhou and Ting Mei. Literature search and collation were performed 
by Ting Mei and Ting Wang. Writing–Original draft preparation was 
attributed by Ting Mei and Ting Wang. Supervision was involved by 
Qinghua Zhou. Writing–reviewing and editing was done  by Ting Mei, 
Ting Wang, and Qinghua Zhou.

Table 1   Advantages and disadvantages of biomarkers for predicting immunotherapy outcome

Category Advantage Disadvantages

PD-L1 1. Easy to detect
2. FDA-approved

1. Inconsistent detection methods
2. Uncertain optimal cutoff value
3. PD-L1 dynamic changes

TMB 1. FDA-approved
2. Independent of other predictors such as PD-L1 expres-

sion

1. Tumor spatiotemporal heterogeneity
2. Inconsistent detection methods
3. Uncertain optimal cutoff value

ctDNA 1. Minimally invasive
2. High repeatability

1.Detection technology and standardization issues
2. ctDNA source and decomposition issues

NAL 1. Improve the accuracy of treatment 1. Technical limitations
2. High data quality requirements
3. Difficulty obtaining data

Gene mutation 1. Wide clinical application 1. Inconsistent detection platform and analysis method
2. Uncertainty in predictions
3. Tumor heterogeneity and dynamics

Transcriptome 1. Aid clinical decision-making
2. Overall

1. Difficult data analysis
2. Uncertainty about data sources
3. Lack of uniform standards

Proteome 1. Minimally invasive (usually only plasma) 1. Protein marker diversity
2. Technical complexity
3. Difficulty in interpreting data

Microbiome 1. Easy access to samples
2. High repeatability

1. Lack of standardized methods
2. Unclear mechanism

Radiomics 1. Non-invasive
2.Multi-parameter analysis
3. High precision
4. Fast

1. Sample size limitation
2. Difficult data analysis
3. High cost



Clinical and Experimental Medicine           (2024) 24:60 	 Page 9 of 11     60 

Funding  This project was supported by a grant from the Regional Inno-
vation Cooperation Project of Sichuan Science and Technology Pro-
gram (2021YFQ0029).

Data availability  The data that support the findings of this study are 
available from the corresponding author upon reasonable request.

Declarations 

Competing interests  The authors have no relevant financial or non-
financial interests to disclose.

Ethics approval  Not applicable.

Consent to publish  Not applicable.

Open Access   This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Siegel RL, et al. Cancer Statistics, 2021. CA: a Cancer J Clin. 
2021;71(1):7-33.

	 2.	 Reck M, et  al. Management of non-small-cell lung can-
cer: recent developments. Lancet (London, England). 
2013;382(9893):709–19.

	 3.	 Park K, et al. Pan-Asian adapted ESMO clinical practice guide-
lines for the management of patients with locally-advanced 
unresectable non-small-cell lung cancer: a KSMO-ESMO ini-
tiative endorsed by CSCO, ISMPO, JSMO, MOS SSO and TOS. 
Ann Oncol. 2020;31(2):191–201.

	 4.	 Rittmeyer A, et al. Atezolizumab versus docetaxel in patients 
with previously treated non-small-cell lung cancer (OAK): a 
phase 3, open-label, multicentre randomised controlled trial. 
The Lancet. 2017;389(10066):255–65.

	 5.	 Suresh K, et al. Immune checkpoint immunotherapy for non-
small cell lung cancer: benefits and pulmonary toxicities. Chest. 
2018;154(6):1416–23.

	 6.	 Yi M, et al. Biomarkers for predicting efficacy of PD-1/PD-L1 
inhibitors. Mol Cancer. 2018;17(1):129.

	 7.	 Ettinger DS, et  al. NCCN guidelines insights: non-small 
cell lung cancer. J Natl Compr Cancer Netw: JNCCN. 
2021;19(3):254–66.

	 8.	 Sunshine J, Taube JM. PD-1/PD-L1 inhibitors. Curr Opin Phar-
macol. 2015;23:32–8.

	 9.	 Gerlinger M, et  al. Intratumor heterogeneity and branched 
evolution revealed by multiregion sequencing. N Engl J Med. 
2012;366(10):883–92.

	10.	 Cavalli FMG, et al. Intertumoral heterogeneity within medullo-
blastoma subgroups. Cancer Cell. 2017;31(6):737-754.e6.

	11.	 Jia Q, et  al. Tracking neoantigens by personalized circulat-
ing tumor DNA sequencing during checkpoint blockade 

immunotherapy in non-small cell lung cancer. Adv Sci (Weinh). 
2020;7(9):1903410.

	12.	 Kantarjian H, Yu PP. Artificial intelligence, big data, and cancer. 
JAMA Oncol. 2015;1(5):573–4.

	13.	 Chen CL, et al. Deep learning in label-free cell classification. Sci 
Rep. 2016;6(1):21471.

	14.	 Yan X, Ding J, Cheng HD. A Novel Adaptive Fuzzy Deep Learn-
ing Approach for Histopathologic Cancer Detection. Annu Int 
Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3518–3521.

	15.	 Serag A, et al. Translational AI and deep learning in diagnostic 
pathology. Front Med. 2019;6:185.

	16.	 Dong Y, et al. Multi-channel multi-task deep learning for predict-
ing EGFR and KRAS mutations of non-small cell lung cancer on 
CT images. Quant Imaging Med Surg. 2021;11(6):2354–75.

	17.	 Davoli T, et al. Tumor aneuploidy correlates with markers of 
immune evasion and with reduced response to immunotherapy. 
Science. 2017;355(6322):eaaf8399.

	18.	 Carbone DP, et al. First-line nivolumab in stage IV or recurrent 
non-small-cell lung cancer. N Engl J Med. 2017;376(25):2415–26.

	19.	 Hellmann MD, et  al. Nivolumab plus Ipilimumab in lung 
cancer with a high tumor mutational burden. N Engl J Med. 
2018;378(22):2093–104.

	20.	 Peters S, et al. Atezolizumab versus chemotherapy in advanced 
or metastatic NSCLC with high blood-based tumor mutational 
burden: primary analysis of BFAST cohort C randomized phase 
3 trial. Nat Med. 2022;28(9):1831–9.

	21.	 Singal G, et al. Association of patient characteristics and tumor 
genomics with clinical outcomes among patients with non-
small cell lung cancer using a clinicogenomic database. JAMA. 
2019;321(14):1391–9.

	22.	 Stover DG, et al. Association of cell-free DNA tumor fraction 
and somatic copy number alterations with survival in metastatic 
triple-negative breast cancer. J Clin Oncol. 2018;36(6):543–53.

	23.	 Bernard V, et al. Circulating nucleic acids are associated with 
outcomes of patients with pancreatic cancer. Gastroenterology. 
2019;156(1):108-118.e4.

	24.	 Bratman SV, et al. Personalized circulating tumor DNA analysis 
as a predictive biomarker in solid tumor patients treated with pem-
brolizumab. Nature Cancer. 2020;1(9):873–81.

	25.	 Ricciuti B, et al. Early plasma circulating tumor DNA (ctDNA) 
changes predict response to first-line pembrolizumab-based 
therapy in non-small cell lung cancer (NSCLC). J Immunother 
Cancer. 2021;9(3): e001504.

	26.	 Vokes NI, et  al. Circulating tumor DNA (ctDNA) dynam-
ics and survival outcomes in patients (pts) with advanced 
non-small cell lung cancer (aNSCLC) and high (>50%) pro-
grammed cell death-ligand 1 (PD-L1) expression, randomized 
to cemiplimab (cemi) vs chemotherapy (chemo). J Clin Oncol. 
2023;41(16_suppl):9022–9022.

	27.	 Guibert N, et al. Monitoring of KRAS -mutated ctDNA to discrim-
inate pseudo-progression from true progression during anti-PD-1 
treatment of lung adenocarcinoma. Oncotarget. 2017;8(23):38056.

	28.	 Lee CK, et al. Checkpoint inhibitors in metastatic EGFR-mutated 
non–small cell lung cancer—a meta-analysis. J Thorac Oncol. 
2017;12(2):403–7.

	29.	 Lee CK, et al. Clinical and molecular characteristics associated 
with survival among patients treated with checkpoint inhibitors 
for advanced non-small cell lung carcinoma: a systematic review 
and meta-analysis. JAMA Oncol. 2018;4(2):210–6.

	30.	 Rizvi NA, et al. Nivolumab in combination with platinum-based 
doublet chemotherapy for first-line treatment of advanced non-
small-cell lung cancer. J Clin Oncol. 2016;34(25):2969–79.

	31.	 Lu S, et al. VP9-2021: ORIENT-31: Phase III study of sintilimab 
with or without IBI305 plus chemotherapy in patients with EGFR 
mutated nonsquamous NSCLC who progressed after EGFR-TKI 
therapy. Ann Oncol. 2022;33(1):112–3.

http://creativecommons.org/licenses/by/4.0/


	 Clinical and Experimental Medicine           (2024) 24:60    60   Page 10 of 11

	32.	 Socinski MA, et al. IMpower150 final overall survival analy-
ses for atezolizumab plus bevacizumab and chemotherapy in 
first-line metastatic nonsquamous NSCLC. J Thorac Oncol. 
2021;16(11):1909–24.

	33.	 Park S, et al. Phase III, Randomized Study of Atezolizumab Plus 
Bevacizumab and Chemotherapy in Patients With EGFR- or 
ALK-Mutated Non-Small-Cell Lung Cancer (ATTLAS, KCSG-
LU19-04). J Clin Oncol. 2023 Oct 20:JCO2301891.

	34.	 Mok T, et al. Nivolumab Plus Chemotherapy in Epidermal Growth 
Factor Receptor-Mutated Metastatic Non-Small-Cell Lung Cancer 
After Disease Progression on Epidermal Growth Factor Receptor 
Tyrosine Kinase Inhibitors: Final Results of CheckMate 722. J 
Clin Oncol. 2024 Jan 22:JCO2301017.

	35.	 Yang JC-H, et al. Pemetrexed and platinum with or without 
pembrolizumab for tyrosine kinase inhibitor (TKI)-resistant, 
EGFR-mutant, metastatic nonsquamous NSCLC: Phase 3 KEY-
NOTE-789 study. J Clin Oncol. 2023;41(17_suppl):9000.

	36.	 Negrao MV, et al. Oncogene-specific differences in tumor muta-
tional burden, PD-L1 expression, and outcomes from immu-
notherapy in non-small cell lung cancer. J immunother cancer. 
2021;9(8):e002891.

	37.	 Garassino MC, et al. Durvalumab as third-line or later treat-
ment for advanced non-small-cell lung cancer (ATLANTIC): 
an open-label, single-arm, phase 2 study. Lancet Oncol. 
2018;19(4):521–36.

	38.	 Mazieres J, et al. Immune checkpoint inhibitors for patients 
with advanced lung cancer and oncogenic driver alterations: 
results from the IMMUNOTARGET registry. Ann Oncol. 
2019;30(8):1321–8.

	39.	 Offin M, et al. Immunophenotype and response to immuno-
therapy of RET-rearranged lung cancers. JCO Precis Oncol. 
2019;3:1–8.

	40.	 Lee J, et al. Characteristics and outcomes of RET-rearranged 
Korean non-small cell lung cancer patients in real-world practice. 
Jpn J Clin Oncol. 2020;50(5):594–601.

	41.	 Chang G-C, et al. ALK variants, PD-L1 expression, and their 
association with outcomes in ALK-positive NSCLC patients. Sci 
Rep. 2020;10(1):21063.

	42.	 Yang G, et  al. First-line immunotherapy or angiogenesis 
inhibitor plus chemotherapy for HER2-altered NSCLC: a ret-
rospective real-world POLISH study. Ther Adv Med Oncol. 
2022;14:17588359221082340.

	43.	 Calles A, et al. Expression of PD-1 and its ligands, PD-L1 and 
PD-L2, in smokers and never smokers with KRAS-mutant lung 
cancer. J Thorac Oncol. 2015;10(12):1726–35.

	44.	 Erica C. Nakajima, et al. Outcomes of first-line immune check-
point inhibitors with or without chemotherapy according to KRAS 
mutational status and PD-L1 expression in patients with advanced 
NSCLC: FDA pooled analysis.. JCO 40, 9001–9001(2022).

	45.	 Noordhof A, et al. Prognostic impact of KRAS mutation status 
for patients with stage IV adenocarcinoma of the lung treated 
with first-line pembrolizumab monotherapy. Lung Cancer. 
2021;155:163–9.

	46.	 Ricciuti B, et al. Dissecting the clinicopathologic, genomic, and 
immunophenotypic correlates of KRAS(G12D)-mutated non-
small-cell lung cancer. Ann Oncol. 2022;33(10):1029–40.

	47.	 Skoulidis F, et al. STK11/LKB1 mutations and PD-1 inhibitor 
resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 
2018;8(7):822–35.

	48.	 Dong Z-Y, et al. Potential predictive value of TP53 and KRAS 
mutation status for response to PD-1 blockade immunotherapy in 
lung adenocarcinoma. Clin Cancer Res. 2017;23(12):3012–24.

	49.	 Chen X, et  al. Pan-cancer analysis of KEAP1 mutations as 
biomarkers for immunotherapy outcomes. Ann Transl Med. 
2019;8(4):141.

	50.	 Alessi JV, et al. SMARCA4 and other SWItch/Sucrose nonfer-
mentable family genomic alterations in NSCLC: clinicopathologic 
characteristics and outcomes to immune checkpoint inhibition. J 
Thorac Oncol. 2021;16(7):1176–87.

	51.	 Murciano-Goroff YR, et al. Immune biomarkers and response to 
checkpoint inhibition of BRAF V600 and BRAF non-V600 altered 
lung cancers. Br J Cancer. 2022;126(6):889–98.

	52.	 Li H, et al. Tumor immune microenvironment and immunotherapy 
efficacy in BRAF mutation non-small-cell lung cancer. Cell Death 
Dis. 2022;13(12):1064.

	53.	 Guisier F, et al. Efficacy and safety of Anti–PD-1 immunotherapy 
in patients with advanced NSCLC With BRAF, HER2, or MET 
mutations or RET translocation: GFPC 01–2018. J Thorac Oncol. 
2020;15(4):628–36.

	54.	 Sabari JK, et al. PD-L1 expression, tumor mutational burden, and 
response to immunotherapy in patients with MET exon 14 altered 
lung cancers. Ann Oncol. 2018;29(10):2085–91.

	55.	 Cieślik M, Chinnaiyan AM. Cancer transcriptome profil-
ing at the juncture of clinical translation. Nat Rev Genet. 
2018;19(2):93–109.

	56.	 Ayers M, et al. IFN-γ-related mRNA profile predicts clinical 
response to PD-1 blockade. J Clin Invest. 2017;127(8):2930–40.

	57.	 Ott PA, et  al. T-cell-inflamed gene-expression profile, pro-
grammed death ligand 1 expression, and tumor mutational burden 
predict efficacy in patients treated with pembrolizumab across 20 
cancers: KEYNOTE-028. J Clin Oncol. 2019;37(4):318–27.

	58.	 Fehrenbacher L, et al. Atezolizumab versus docetaxel for patients 
with previously treated non-small-cell lung cancer (POPLAR): 
a multicentre, open-label, phase 2 randomised controlled trial. 
Lancet. 2016;387(10030):1837–46.

	59.	 Higgs BW, et al. Interferon gamma messenger RNA signature in 
tumor biopsies predicts outcomes in patients with non-small cell 
lung carcinoma or urothelial cancer treated with durvalumab. Clin 
Cancer Res. 2018;24(16):3857–66.

	60.	 Moutafi MK, et al. Spatially resolved proteomic profiling identi-
fies tumor cell CD44 as a biomarker associated with sensitivity 
to PD-1 axis blockade in advanced non-small-cell lung cancer. J 
Immunother Cancer. 2022;10(8):e004757.

	61.	 Shen CY, et  al. Tissue proteogenomic landscape reveals the 
role of uncharacterized SEL1L3 in progression and immuno-
therapy response in lung adenocarcinoma. J Proteome Res. 
2022;22(4):1056–70.

	62.	 Rich P, et al. Real-world performance of blood-based proteomic 
profiling in first-line immunotherapy treatment in advanced 
stage non-small cell lung cancer. J Immunother Cancer. 
2021;9(10):e002989.

	63.	 Eltahir M, et al. Plasma proteomic analysis in non-small cell 
lung cancer patients treated with PD-1/PD-L1 blockade. Cancers 
(Basel). 2021;13(13):3116.

	64.	 Routy B, et al. Gut microbiome influences efficacy of PD-1–
based immunotherapy against epithelial tumors. Science. 
2018;359(6371):91–7.

	65.	 Derosa L, et al. Intestinal Akkermansia muciniphila predicts over-
all survival in advanced non-small cell lung cancer patients treated 
with anti-PD-1 antibodies: results a phase II study. J Clin Oncol. 
2021;39(15_suppl):9019–9019.

	66.	 Boesch M, et al. Local tumor microbial signatures and response 
to checkpoint blockade in non-small cell lung cancer. Oncoim-
munology. 2021;10(1):1988403.

	67.	 Jang HJ, et al. Relationship of the lung microbiome with PD-L1 
expression and immunotherapy response in lung cancer. Respir 
Res. 2021;22(1):322.

	68.	 Tunali I, et  al. P101–041 quantitative imaging features pre-
dict response of immunotherapy in non-small cell lung cancer 
patients: topic: prognostic factors Treatment. J Thorac Oncol. 
2017;12(1):S474–5.



Clinical and Experimental Medicine           (2024) 24:60 	 Page 11 of 11     60 

	69.	 Yang B, et al. Combination of computed tomography imaging-
based radiomics and clinicopathological characteristics for pre-
dicting the clinical benefits of immune checkpoint inhibitors in 
lung cancer. Respir Res. 2021;22(1):189.

	70.	 Sun R, et al. A radiomics approach to assess tumour-infiltrating 
CD8 cells and response to anti-PD-1 or anti-PD-L1 immuno-
therapy: an imaging biomarker, retrospective multicohort study. 
Lancet Oncol. 2018;19(9):1180–91.

	71.	 Vaidya P, et al. Novel, non-invasive imaging approach to iden-
tify patients with advanced non-small cell lung cancer at risk of 
hyperprogressive disease with immune checkpoint blockade. J 
Immunother Cancer. 2020;8(2):e001343.

	72.	 Tunali I, et al. Novel clinical and radiomic predictors of rapid 
disease progression phenotypes among lung cancer patients 
treated with immunotherapy: an early report. Lung Cancer. 
2019;129:75–9.

	73.	 Barabino E, et al. Exploring response to immunotherapy in non-
small cell lung cancer using delta-radiomics. Cancers (Basel). 
2022;14(2):350.

	74.	 He B, et al. Predicting response to immunotherapy in advanced 
non-small-cell lung cancer using tumor mutational burden radi-
omic biomarker. J Immunother Cancer. 2020;8(2):e000550.

	75.	 Jain MS, Massoud TF. Predicting tumour mutational burden from 
histopathological images using multiscale deep learning. Nat 
Mach Intell. 2020;2(6):356–62.

	76.	 Suphavilai C, et al. Predicting heterogeneity in clone-specific 
therapeutic vulnerabilities using single-cell transcriptomic sig-
natures. Genome Med. 2021;13(1):189.

	77.	 Sung J-Y, et al. Assessment of intratumoral heterogeneity with 
mutations and gene expression profiles. PLoS ONE. 2019;14(7): 
e0219682.

	78.	 Zeng Z, et  al. Machine learning on syngeneic mouse tumor 
profiles to model clinical immunotherapy response. Sci Adv. 
2022;8(41):eabm8564.

	79.	 Muller M, et al. A serum protein classifier identifying patients 
with advanced non-small cell lung cancer who derive clinical 
benefit from treatment with immune checkpoint inhibitors. Clin 
Cancer Res. 2020;26(19):5188–97.

	80.	 Chae YK, et al. Mass spectrometry-based serum proteomic sig-
nature as a potential biomarker for survival in patients with non-
small cell lung cancer receiving immunotherapy. Transl Lung 
Cancer Res. 2020;9(4):1015–28.

	81.	 Shoji F, et al. Artificial intelligence-derived gut microbiome as a 
predictive biomarker for therapeutic response to immunotherapy 
in lung cancer: protocol for a multicentre, prospective, observa-
tional study. BMJ Open. 2022;12(6): e061674.

	82.	 Lin Q, et  al. CT-based radiomics in predicting pathological 
response in non-small cell lung cancer patients receiving neoad-
juvant immunotherapy. Front Oncol. 2022;12: 937277.

	83.	 Ren Q, et al. Assessing the robustness of radiomics/deep learning 
approach in the identification of efficacy of anti-PD-1 treatment 
in advanced or metastatic non-small cell lung carcinoma patients. 
Front Oncol. 2022;12: 952749.

	84.	 He BX, et al. Deep learning for predicting immunotherapeutic 
efficacy in advanced non-small cell lung cancer patients: a ret-
rospective study combining progression-free survival risk and 
overall survival risk. Transl Lung Cancer Res. 2022;11(4):670–85.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Multi-omics and artificial intelligence predict clinical outcomes of immunotherapy in non-small cell lung cancer patients
	Abstract
	Introduction
	Genomics
	Tumor mutation burden
	Circulating tumor DNA (ctDNA)
	Genetic mutations
	EGFR mutations
	ALK or ROS1 fusion-positive
	RET rearrangement
	HER2 mutations
	KRAS mutations
	BRAF mutations
	MET exon 14


	Transcriptomics
	Proteomics
	Microbiomics
	Gut microbiota
	Local tumor microbiome

	Radiomics
	Prediction of immunotherapy efficacy
	Identification of hyperprogression and pseudoprogression

	The application of AI in predicting the response to immunotherapy
	AI-based genomics
	AI-based transcriptomics
	AI-based proteomics
	AI-based microbiomics
	AI-based radiomics

	Future challenges
	Conclusions
	Acknowledgements 
	References


