
Vol.:(0123456789)

Clinical and Experimental Medicine           (2024) 24:15  
https://doi.org/10.1007/s10238-023-01274-z

REVIEW

WNT/β‑catenin regulatory roles on PD‑(L)1 and immunotherapy 
responses

Keywan Mortezaee1

Received: 18 October 2023 / Accepted: 29 November 2023 
© The Author(s) 2024

Abstract
Dysregulation of WNT/β-catenin is a hallmark of many cancer types and a key mediator of metastasis in solid tumors. Overac-
tive β-catenin signaling hampers dendritic cell (DC) recruitment, promotes  CD8+ T cell exclusion and increases the popula-
tion of regulatory T cells (Tregs). The activity of WNT/β-catenin also induces the expression of programmed death-ligand 
1 (PD-L1) on tumor cells and promotes programmed death-1 (PD-1) upregulation. Increased activity of WNT/β-catenin 
signaling after anti-PD-1 therapy is indicative of a possible implication of this signaling in bypassing immune checkpoint 
inhibitor (ICI) therapy. This review is aimed at giving a comprehensive overview of the WNT/β-catenin regulatory roles on 
PD-1/PD-L1 axis in tumor immune ecosystem, discussing about key mechanistic events contributed to the WNT/β-catenin-
mediated bypass of ICI therapy, and representing inhibitors of this signaling as promising combinatory regimen to go with 
anti-PD-(L)1 in cancer immunotherapy. Ideas presented in this review imply the synergistic efficacy of such combination 
therapy in rendering durable anti-tumor immunity.
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Introduction

Wingless-related integration site (WNT)/β-catenin is an 
immunosuppressive signaling [1] that its activity in a tumor 
is indicative of low rates of immune infiltration [2]. WNT/β-
catenin signaling is a critical mediator of melanoma metas-
tasis [3], orchestrating a T cell exclusion profile [4]. Disrup-
tion of WNT/β‐catenin signaling is reported as a strategy for 
suppression of invasion and metastasis in non-small cell lung 
cancer (NSCLC) [5]. β-catenin activation shapes the immune 
desert landscape of hepatocellular carcinoma (HCC) [6]. The 
suppressive effect of WNT/β-catenin on CCL4 contributed 
to the cold immune phenotype of melanoma [7]. Mutations 
in the WNT/β-catenin occur in about 70% of microsatellite 
stable colorectal cancer (CRC) patients [8]. The frequency of 
β-catenin+ tumor cells and programmed death-ligand 1 (PD-
L1)+ immune cells can be regarded as an indicator of CRC 
progression [9]. WNT/β-catenin activity promotes CRC 

progression through induction of epithelial-mesenchymal 
transition (EMT) [10]. Expression of Frizzled-10 (Fzd-10) 
receptor and further β-catenin activation promote cancer 
stem cell (CSC) expansion and predicts weak prognosis in 
HCC [11]. Enriched activity of this signaling in tumors with 
cold immunity (non-T cell-inflamed) provides a rationale for 
development of inhibitors in order to restore immune infil-
tration and increasing the efficacy of immunotherapy [12]. 
There are signs of evidence indicating the combination of 
impact of WNT/β-catenin blockade with immune checkpoint 
inhibitors (ICIs) for better promotion of anti-tumor immu-
nity against cancers like NSCLC [13] and melanoma [14]. 
The aim of this review is to justify the mechanistic backbone 
of WNT/β-catenin-mediated ICI resistance, as well as ration-
alizing a possibility of the application of WNT/β-catenin 
blockade as a combinatory regimen with anti-PD-(L)1 aim-
ing at a durable anti-cancer therapy.
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WNT/β‑catenin

Signaling elements

WNT (WNT5a) is a gene assessed to evaluate mesenchy-
mal transition [15], and β-catenin is a critical mediator of 
WNT signaling [16]. In fact, WNT proteins co-express 
to act synergistically for activation of β-catenin signaling 
in several cell types [17]. Adenomatosis polyposis coli, 
CTNNB1 and AXIN (AXIN1 and AXIN2) are β-catenin 
signaling elements [12]. Adenomatosis polyposis coli is 
a gene related to the suppression of WNT/β-catenin [18], 
which shows mutations in more than 90% of sporadic colon 
cancer cases [19]. CTNNB1 is a gene encoding β-catenin 
that is mutated frequently in HCC. CTNNB1 mutation 
results in the cytoplasmic accumulation of β-catenin, 
which subsequently causes aberrant activation of WNT 
[20]. AXIN is a cytoplasmic protein that acts as a nega-
tive regulator of WNT pathway and promotes β-catenin 
degradation [21]. AXIN2 can be assessed as a marker for 
analyzing the activity of WNT pathway [22]. WNT/β-
catenin pathway signals via interaction with Fzd receptor 
family as well as different co-receptors [23]. Low-density 
lipoprotein receptor related proteins 5 and 6 (LRP5/6) is 
a co-receptor located on cell surface that is involved in 
the initiation of WNT/β-catenin pathway [18]. Upon WNT 
activation, β-catenin degrading complex is inactivated, 
which results in β-catenin accumulation within the cytosol 
and its further stabilization. The stabilized β-catenin fur-
ther translocated into the nucleus where it bonds to the T 
cell transcription factor (Tcf)/lymphoid enhancer-binding 
factor 1 (Lef1) [24, 25]. β-catenin is a Tcf1 transcriptional 
coactivator in which interactions within the β-catenin/Tcf1 
axis are vital for transcriptional regulation. The Tcf1 long 
isoform contains β-catenin binding domain that mediates 
β-catenin recruitment to the protein complex [26]. WNT 
is palmitoylated by porcupine (PORCN). PORCN activity 
is vital for secretion of WNT and its bondage to Fzd in 
responder cells [27]. PORCN inhibition disrupts secretion 
of WNT and hampers stem cell activity in tumors [27], so 
it can be a target in WNT-driven cancers [28]. Fzd recep-
tors are other targets for WNT pathway suppression in 
human cancers [23]. Dickkopf-related protein 1 (DKK1) is 
a known antagonist of WNT that acts through suppression 
of WNT interaction with Fzd receptors [29]. Hindering 
the secretion of WNT ligands, interfering with interaction 
between WNT ligand and receptor, increasing the degrada-
tion of β-catenin or blocking interaction between β-catenin 
with its target genes are strategies for hampering WNT/
β-catenin signaling. Monoclonal antibodies against Fzd 
receptors, such as vantictumab (OMP-18R5), Fzd8 fusion 
proteins and extracellular traps for WNT ligand signaling, 

such as ipafricept (OMP-54F28), and PORCN inhibitors, 
such as ETC-159, LGK974 (WNT974), CGX1321 and 
RXC004 are targeted inhibitors of WNT/β-catenin signal-
ing [30] (Fig. 1).

WNT/β‑catenin signaling in health and disease

WNT/β-catenin is an evolutionally conserved singling [31] 
that is important in establishing and maintenance of cell-to-
cell adhesion [2]. Dysregulation of WNT/β-catenin accounts 
for diseases like cancer. When WNT ligand is not present 
in the environment, β-catenin is assembled in related com-
plex and low level of β-catenin is maintained within cytosol. 
β-catenin further undergoes phosphorylation and degrada-
tion. By contrast, bondage between WNT with related recep-
tors prevent β-catenin degradation and allows its accumula-
tion within cytosol and further translocation into nucleus 
for activating WNT-related transcription program [32]. 
WNT/β-catenin maintains stemness in several epithelial 
tissues, which is important for development and regenera-
tion of body organs [27]. WNT/β-catenin signaling promotes 
self-renewal potential of hematopoietic stem cells [31], and 
its sustained activity in epidermal region expands stem cell 
compartment in the underlying dermis [33]. Survival of 
immature  CD4+  CD8+ T cells in thymus is also associated 
with β-catenin [34]. The impact of WNT (WNT3a) on self-
renewal maintenance of  CD8+ T cells, as occurring under 
normal conditions, represents implications of this signaling 
in vaccination or adoptive T cell therapy [31].

Increased β-catenin activity is a tumor hallmark [35], 
which is contributed to the initiation, progression, and inva-
sion and metastasis of cancer [36]. Hyperactive WNT/β-
catenin signaling promotes aberrant cellular growth during 
cancer initiation [18]. WNT/β-catenin is active in areas with 
vascular endothelial growth factor (VEGF)-related cold 
immunity [37], and the impact of β-catenin on P-glycopro-
tein is indicative of its involvement in multi-drug resistance 
[38, 39]. WNT/β-catenin reduces the expression of epithe-
lial-related markers, such as E-cadherin [40], which is for 
acquisition of cancer stemness features. CSCs are  PORCN+ 
and provide WNT within their niches for tumor progressive 
purposes [41].

WNT/β‑catenin impact on cellular immunity

Β-catenin activity mediates cooperation between tumor 
and stroma to promote cancer growth [42]. Primary 
tumors show elevated expression of WNT/β-catenin in 
 CD8+ T cells. Increased expression of genes related to the 
WNT/β-catenin pathway in lymphocytes is contributed to 
the apoptosis of mature T cells, and increased β-catenin 
signaling in tumor cells promotes T cell exhaustion [43]. 
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Besides, infiltration of effector  CD8+ T cells into the 
tumor area is diminished under WNT/β-catenin pathway 
activity [30, 44]. Mutation of adenomatosis polyposis 
coli is contributed to the elevated β-catenin activity and 
reduced  CD8+ T cell proportion in the TME of CRC [45]. 
There is a strong correlation between regulatory T (Treg) 
intra-tumoral recruitment with mutation of adenomatosis 
polyposis coli in CRC [46]. β-catenin acts on Tcf/Lef, 
which are transcription factors important for promoting 
immunosuppressive activity of Tregs [47]. β-catenin also 
reduces levels of chemokines contributed to the recruit-
ment of dendritic cells (DCs) into tumor area [48, 49]. 
β-catenin downregulates CCL5 Chemokine (C–C motif) 
ligand 5 (CCL5) [49], which is involved in T cell [50] 
and DC [51] recruitment. WNT/β-catenin also promotes 
DC tolerance [30]. Hampering  CD103+ DC recruitment 

by tumor cell-intrinsic WNT/β-catenin results in defec-
tive  CD8+ T cell priming [44] (Fig. 2). Increased activity 
of WNT5a/β-catenin is contributed to the indoleamine 
2,3-dioxygenase 1 (IDO1) induction in tumor-associated 
DCs [30], which is seemingly mediated through peroxi-
some proliferator-activated receptor-γ (PPARγ) activation 
[52] and further reprogramming of DC metabolism from 
glycolysis into oxidative phosphorylation [14] (Fig. 3). 
Granulocytic-myeloid-derived suppressor cell (G-MDSC) 
is another cell type highly expressing canonical WNT 
[53]. WNT signaling promotes G-MDSC recruitment into 
tumor area [30], and the activity of WNT in G-MDSCs is 
for the subsequent induction of aberrant WNT/β-catenin 
activation in malignant cells for promoting breast cancer 
metastasis [53]. Finally, tumor-associated macrophages 
(TAMs) are cells upregulating WNT/β-catenin [54]. WNT 

Fig. 1  WNT/β-catenin signaling. Different steps are involved in the 
activity of WNT/β-catenin signaling. First, WNT palmitoylation 
occurs under the impact of porcupine (PORCN), which causes WNT 
secretion and activation. The active WNT interacts with Frizzled 
(Fzd)/lipoprotein receptor related proteins 5 and 6 (LRP5/6) com-
plex in target cell and subsequently causes inactivation of β-catenin 
degrading complex and the resultant β-catenin cytosolic accumula-
tion and its stabilization. The stabilized β-catenin translocate into the 
nucleus where it bonds to the T cell transcription factor (Tcf)/lym-

phoid enhancer-binding factor 1 (Lef1) for regulation of target genes. 
β-catenin signaling is inactivated when glycogen synthase kinase 3β 
(GSK3β) and the inhibitory complex is active, which subsequently 
promotes β-catenin proteasomal degradation. APC, adenomatosis 
polyposis coli; ZEB, Zinc finger E-box binding homeobox; IDO, 
indoleamine 2,3-dioxygenase; PPARγ, peroxisome proliferator-acti-
vated receptor-γ; and PD-L1, programmed death-ligand 1. Inhibitors 
of different paths in this signaling are marked as dashed rectangles
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ligands derived from tumor cells promote macrophage 
type 2 (M2) polarization through canonical pathway 
[55]. β-catenin ablation in TAMs by approaches like 

CD200R1-Ig expressing adenoviral therapy suppresses 
M2 polarity [56]. β-catenin blockade may even promote 
a M2-to-M1 shift in macrophages [54] (Fig. 2).

Fig. 2  The impact of WNT/β-catenin signaling on immune cells 
within tumor microenvironment (TME). β-catenin activation down-
regulates chemokine (C–C motif) ligand 5 (CCL5) activity, re-expres-
sion of which restores immune surveillance. Defective  CD8+ T cell 
priming, impaired recruitment of dendritic cells (DCs) and  CD8+ 
T cells, and increased recruitment of regulatory T cells (Tregs) and 

granulocytic-myeloid-derived suppressor cells (G-MDSCs) are out-
comes of elevated WNT/β-catenin signaling in cancer. Shifting mac-
rophage reprogramming into pro-tumor type 2 (M2) phenotype is 
another outcome, which is contributed to the intensification of immu-
nosuppressive tumor profile. PPARγ, peroxisome proliferator-acti-
vated receptor-γ

Fig. 3  WNT/β-catenin signaling 
in tumor metabolism. A highly 
glycolytic tumor microenvi-
ronment (TME) represents 
high lactate release, which 
further acts for expression of 
programmed death-1 (PD-1) 
on regulatory T cells (Tregs). 
WNT5a/β-catenin induces 
indoleamine 2,3-dioxygenase 
(IDO)1 in tumor-associated den-
dritic cells (DCs) through acti-
vating peroxisome proliferator-
activated receptor-γ (PPARγ). 
PPARγ reprograms DC 
metabolism toward oxidative 
phosphorylation (OXPHOS), 
which further increases IDO1 
activity in DCs. IDO1 catalyzes 
tryptophan degradation, and the 
resultant kynurenine accumula-
tion promotes Treg activity



Clinical and Experimental Medicine           (2024) 24:15  Page 5 of 11    15 

WNT/β‑catenin regulatory roles on PD‑1/
PD‑L1 and ICI responses

Increased PD-L1 expression is placed downstream to the 
β-catenin activity [38]. Bondage of β-catenin/Tcf/Lef 
complex to the promoter of CD274 gene induces PD-L1 
expression on tumor cells [57], and the impact of WNT/β-
catenin on PD-L1 activation is indicative of the key role 
of this signaling in regulation of tumor immune landscape 
[58]. Increased activity of WNT/β-catenin signaling is the 
underlying mechanism contributed to the development 
of non-inflamed TME and low ICI responses in highly 
mutated cancer type like NSCLC. In such cancer type, 
high tumor-mutational burden (TMB) is representative of 
low responses to ICI therapy [13]. This is in contrast with 
the common belief that a tumor with higher somatic muta-
tions generally shows higher responses to immunotherapy 
due to being more accessible to be killed by immune sys-
tem [59]. The high TMB in NSCLC is accompanied by 
lack of  CD8+ T cell in TME and the resultant promotion 
of ICI resistance. This is due to the increased activity of 
WNT/β-catenin, which impairs  CD8+ T cell infiltration 
into the tumor area [13]. β-catenin activation is contributed 
to anti-PD-1 resistance in HCC [49]. B-cell lymphoma 9 
(BCL9) is the co-activator of β-catenin. Pharmacologi-
cal blockade of β-catenin/BCL9 using desired peptides 
is reported to reduce the proportion of Tregs, increased 
tumoral infiltration of cytotoxic T lymphocytes and sensi-
tized cancer cells to anti-PD-1 therapy [46]. Lack of T cell 
genomic signature and T cell infiltrate due to the intrinsic 
tumor-mediated WNT/β-catenin activity is contributed 
to the anti-PD-L1 resistance of melanoma [4]. There is a 
report of increased WNT/β-catenin in  CD8+ T cells after 
anti-PD-1 therapy of primary sarcomas [43]. Constitutive 
activation of WNT/β-catenin and further decreased expres-
sion of the chemokine CCL4 seemingly account for inef-
fective ICI responses [60]. WNT/β-catenin mediates resist-
ance to ICI therapy in part through blockade of cytokines 
contributed to the recruitment of immune cells. Targeting 
CTNNB1 using the nanoparticle drug product DCR-BCAT 
is attested to augmented T cell infiltration and increased 
tumor sensitivity to ICI therapy [61].

The activity of WNT/β-catenin is hampered by glyco-
gen synthase kinase 3β (GSK3β) [31, 62, 63]. β-catenin is 
a GSK3β substrate [64]. GSK3β acts for promoting PD-L1 
ubiquitination and degradation [65–67] (Fig. 1). GSK3β 
inhibition, β-catenin induction and PD-L1 glycosylation 
are mediated under the influence of epidermal growth fac-
tor (EGF) [68], and that GSK3β activators can be used 
for PD-L1 instability and increasing anti-PD-1 efficacy 
[65]. WNT/β-catenin stimulates glycolysis [69], and the 
highly glycolytic TME shapes the immune landscape of 

tumor through inducing the expression of PD-1 on Tregs 
[70] (Fig. 3). WNT/β-catenin induces PD-L1 transcription 
and T cell apoptosis through stimulating c-Myc signal-
ing in hepatitis B virus (HBV) mouse model and  HBV+ 
hepatoma cells, which is counteracted by phosphatase 
and tensin homolog deleted on chromosome 10 (PTEN) 
[71]. Trujillo and colleagues described mechanistic back-
bone of resistance to the combined anti-PD-1 and anti-
CTLA-4 in two cases of metastatic melanoma and noticed 
a robust tumoral expression of β-catenin in a one and 
acquired PTEN loss in another, with both evolving loss 
of T cell infiltration [72]. β-catenin also cooperate with 
prostaglandin E2 (PGE2) in cancer [73], and the release 
of PGE2 from M2 TAMs induces PD-L1 on tumor cells 
[74]. Study shows a possible correlation between PGE2 
generation and increased β-catenin activity for maintain-
ing stemness in glioblastoma tumor cells [75]. Promoter 
of cyclooxygenase-2 (COX-2) contains Tcf4 binding ele-
ment to which β-catenin is bonded for further upregula-
tion of COX-2 in colon and liver cancer [76]. β-catenin 
also interacts with liver kinase B1 (LKB1) to control 
PD-1 activity [16]. Silencing intracellular LKB1 is also 
followed by an increase in the level of PD-L1 [77], and 
the loss of Stk11/Lkb1 is reported to promote resistance 
to anti-PD-(L)1 in KRAS mutant lung adenocarcinoma 
[78] (Fig. 4). Finally, β-catenin/Tcf4 induces Zinc finger 
E-box binding homeobox1 (ZEB1), a known mediator of 
EMT [79], and that EMT induction is linked positively 
with PD-L1 expression on tumor cells, as evidenced by the 
implication of the EMT activator ZEB1 in relieving miR-
200-mediated repression of PD-L1 activity on tumor cells 
[80]. Etoposide is a chemotherapy drug that mediates mes-
enchymal–epithelial transition (MET) to reduce nuclear 
β-catenin and the resultant downregulation of PD-L1 on 
tumor cells [81] (Fig. 5).

Combination of WNT/β‑catenin inhibitors 
with anti‑PD‑1/PD‑L1

Inhibitors of WNT/β-catenin can be developed to exert 
synergistic anti-tumor effects with ICIs in cancer immuno-
therapy [82]. There is a report in HCC mice model indicat-
ing potent anti-tumor efficacy of nanoparticles constructed 
to simultaneously target hyperactive WNT/β-catenin and 
block endogenous PD-L1 [83]. Takeuchi and colleagues 
attested a positive impact of WNT/β-catenin on ICI resist-
ance in  TMBhigh NSCLC, and the combination therapy with 
WNT/β-catenin blockade and anti-PD-1 better promoted 
anti-tumor immunity compared with either agent alone [13]. 
Microsatellite stable (MSS) CRC shows dismal responses 
(0%) to ICI therapy. Combination of the PORCN inhibitor 
ETC-159 with the PD-1 inhibitor nivolumab reduced tumor 
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volume in mice engrafted with MSS CRC. Combination 
therapy increased the fraction of effector  CD4+ and  CD8+ T 
cells and reduced Treg population, and augmented the anti-
gen presentation profile represented by increased tumoral 
cell expression of major histocompatibility complex class II 
(MHC II) [84]. Elevated activity of WNT ligand signaling is 
also responsible for failure of anti-PD-1 in melanoma. Sup-
pression of WNT ligand increases the efficacy of anti-PD-1 
in autochthonous animal tumor models through reduction 
of G-MDSC recruitment and reversion of DC tolerance. 
The higher suppressive impact of vantictumab or ipafricept 
over solo anti-PD-1 is reported in animal tumor model of 
melanoma, which is correlated with higher intra-tumoral 
infiltration of tumor-specific  CD8+ T cells. DeVito and col-
leagues attested a positive link between anti-PD-1 resistance 
with increased WNT ligand signaling, which is indicative 
of the sensitivity of anti-PD-1 refractory melanoma to the 
WNT ligand blockade, as shown after application of ETC-
159 [30]. The efficacy of WNT974 plus the PD-1 inhibitor 
spartalizumab was evaluated in patients with advanced solid 
cancers. Treatment-related adverse events (TRAEs) were 
reported in 78% of patients, with hypothyroidism identified 
in 19% of cases. 53% of patients who were refractory to prior 
anti-PD-1 showed stable disease, with uveal melanoma all 
cases (n = 5) represented stable disease. The outcomes are 
indicative of a presumable synergistic activity of the com-
bined WNT pathway inhibition with ICI therapy against 
advanced solid cancers [22] (Table 1).

Fig. 4  Signaling pathways related to the WNT/β-catenin activity 
and checkpoint regulation in cancer. Epidermal growth factor (EGF) 
inhibits glycogen synthase kinase 3β (GSK3β), induces β-catenin, 
and stimulates programmed death-ligand 1 (PD-L1) glycosylation. 
Activation of GSK3β destabilizes PD-L1 through promoting its ubiq-
uitination and proteasomal degradation. β-catenin activity increases 
c-Myc, the activity of which enforces PD-L1 expression in tumor 
microenvironment (TME) and the subsequent apoptosis of T cells. 
The histone demethylase inhibitor 5-carboxy-8-hydroxyquinoline 

(IOX1) suppresses Jumonji domain-containing 1A (JMJD1A) and 
its downstream β-catenin, and downregulates PD-L1 on tumor cells. 
Prostaglandin E2 (PGE2) stimulates the activity of β-catenin for 
maintaining cancer stemness. PGE2 release from M2 macrophages 
also induces PD-L1 expression on tumor cells. Promoter of cyclooxy-
genase-2 (COX-2) contains Tcf4 binding element to which β-catenin 
is bonded for upregulation of COX-2 expression. PTEN, phosphatase 
and tensin homolog deleted on chromosome 10; and LKB1, liver 
kinase B1

Fig. 5  Epithelial mesenchymal plasticity in β-catenin and check-
point regulation. Zinc finger E-box binding homeobox1 (ZEB1) is an 
epithelial-mesenchymal transition (EMT)-related transcription fac-
tor that its expression is induced by the β-catenin/Tcf4 complex. The 
N-glycosyltransferase STT3 is stimulated by EMT inducible effect 
on β-catenin in cancer cells and cancer stem cells (CSCs) to promote 
programmed death-ligand 1 (PD-L1) upregulation. Conversion into 
mesenchymal–epithelial transition (MET) phenotype reduces nuclear 
β-catenin, downregulates PD-L1, and sensitizes tumor cells to immu-
notherapy
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In summary, it is rationale to assert that dysregulation of 
the WNT/β-catenin occurs in the context of human cancers 
and is associated with several cellular processes involved 
in tumor progression. Failure of anti-checkpoint therapy 
is a multi-mechanistic issue, among which the activity of 
WNT/β-catenin signaling has recently taken important 
consideration due to its critical association with cancer 
stemness. Tight interactions between WNT/β-catenin with 
different cells within tumor immune ecosystem, close inter-
actions with PD-1/PD-L1 axis, and the promising outcomes 
from clinical trials targeting the two are all indicative of the 
application of combination therapies using WNT/β-catenin 
inhibitors with anti-PD-(L)1 in cancer immunotherapy, par-
ticularly in tumors with cold immunity and highly aggres-
sive profile. However, there are points require attention when 
interpreting outcomes in patients under exposure to the 
combined WNT/β-catenin inhibitor/anti-PD-(L)1 therapy. 
First, interactions between WNT with complex receptors 
can activate signaling either dependent or independent on 
β-catenin, and a hallmark of a β-catenin-dependent path-
way is its stability and nuclear translocation [86]. Second, 
β-catenin transactivation can also occur independent on 
WNT [87], and Tcf1/Lef1 can also be activated by other 
transcription factors, such as ATF2 [88]. Third, geno-
toxic agents can activate WNT/β-catenin independent on 
canonical Fzd/LRP receptor complex [89]. Further studies 
are demanded for surveying other upstream mediators or 

inhibitors of β-catenin activity. 5-carboxy-8-hydroxyquino-
line (IOX1), for instance, is a histone demethylase inhibitor 
that suppresses Jumonji domain-containing 1A (JMJD1A) 
and its downstream β-catenin, and downregulates tumoral 
PD-L1, expressed secondary to the doxorubicin chemother-
apy [38] (Fig. 4). The presence of WNT/β-catenin signaling 
in circulating extracellular vesicles (EVs) [90], and surface 
representation of PD-L1 by EVs secreted from tumor cells 
[91] are all indicative of a possibility for application of EVs 
in cancer immunotherapy targeting both signaling. A key 
virtue of such strategy is the tendency of EVs for their pref-
erential attraction toward tumor tissue area due to expressing 
receptors related to that tumor type. Besides WNT/β-catenin, 
the activity of TGF-β signaling is also contributed to the 
stemness of tumor cells and cancer resistance to ICI therapy. 
Bispecific antibodies against TGF-β and PD-L1 are devel-
oped, and impressive responses are for PD-L1high platinum 
refractory NSCLC patients [92].
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Table 1  Targeting WNT-β-catenin in cancer immunotherapy

MSS, microsatellite stable; CRC, colorectal cancer; PD-1, programmed death-1; Treg, regulatory T; HCC, hepatocellular carcinoma; PD-L1, 
programmed death-ligand 1; and CAF, cancer-associated fibroblast

Cancer type Target regimen Effects References

NSCLC WNT/β-catenin blockade plus anti-PD-1 Combination therapy better promoted anti-tumor 
immunity

[13]

MSS CRC PORCN inhibitor ETC-159 plus anti-PD-1 
(nivolumab)

Combination therapy in in mice engrafted tumor 
reduced tumor volume, increased the proportion 
of effector  CD4+ and  CD8+ T cells and reduced 
Treg population

[84]

Melanoma ETC-159 plus anti-PD-1 Anti-PD-1 resistance is linked positively with 
increased WNT ligand signaling, and anti-PD-1 
refractory melanoma is sensitive to the ETC-159 
therapy 

[30]

Advanced solid cancers WNT974 plus anti-PD-1 (spartalizumab) Combination therapy resulted in a stable disease 
in 53% of patients who were refractory to prior 
anti-PD-1, with uveal melanoma all cases had 
stable disease

[22] 

HCC Nanoparticle-based inhibition of β-catenin and 
PD-L1

Nanoparticle delivery increased intra-tumoral 
proportion and activity of  CD8+ T cells, and it 
showed higher anti-tumor effects compared with 
anti-PD-L1 in orthotopic homograft animal model 

[83]

Xenograft model WNT inhibitors plus anti-PD-L1 WNT blockade increased anti-PD-L1 efficacy 
through hampering CAF-related immunotherapy 
resistance 

[85]
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