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Abstract
Multiple myeloma (MM) is the second most common hematological malignancy worldwide, characterized by abnormal 
proliferation of malignant plasma cells within a tumor-permissive bone marrow microenvironment. Metabolic dysfunctions 
are emerging as key determinants in the pathobiology of MM. In this review, we highlight the metabolic features of MM, 
showing how alterations in various lipid pathways, mainly involving fatty acids, cholesterol and sphingolipids, affect the 
growth, survival and drug responsiveness of MM cells, as well as their cross-talk with other cellular components of the 
tumor microenvironment. These findings will provide a new path to understanding the mechanisms underlying how lipid 
vulnerabilities may arise and affect the phenotype of malignant plasma cells, highlighting novel druggable pathways with a 
significant impact on the management of MM.
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Introduction

Multiple myeloma (MM) is a biologically and clinically het-
erogeneous malignancy of terminally differentiated plasma 
cells (PCs), which abnormally proliferate in the bone mar-
row (BM), and typically secrete non-functional monoclonal 
immunoglobulin (Ig) in serum and urine. The stages of MM 
development usually begin from an asymptomatic premalig-
nant condition defined monoclonal gammopathy of undeter-
mined significance (MGUS), which can progress, through 
smoldering myeloma (SMM), to a clinically active disease 
and finally to plasma cell leukemia, where malignant PCs 
are no longer dependent from the BM for growth and sur-
vival. The standard clinical practice is to monitor MGUS 
and SMM patients, in absence of therapy, for their risk of 

progression to overt MM, which accounts to 1% per year for 
MGUS patients, and 10% per year for SMM patients within 
5 years, declining to 3% per year thereafter [1, 2].

Despite notable advancements in treatment options target-
ing PCs within their tumor-promoting BM milieu (BMM), 
most of MM patients relapse and unfortunately succumb to 
the disease [1, 3], thus prompting the continuous search of 
new actionable vulnerabilities.

Cellular metabolism is the result of finely orchestrated 
fundamental processes which produce the energy necessary 
for maintaining cellular homeostasis thus supporting growth, 
proliferation, and differentiation [4]. During tumorigenesis, 
the accumulation of mutations in oncogenes and tumor sup-
pressor genes may frequently account for the dysregulation 
of metabolic pathways [5, 6]. On this basis, dysfunctional 
metabolism has emerged as a key determinant in tumor 
pathobiology, providing new targets for therapeutic inter-
vention [7–10].

Overall, cancer cells experience metabolic reprogram-
ming to enhance energy production, which is mandatory 
to sustain their elevated biosynthetic needs and promote 
disease progression [11, 12]. Aerobic glycolysis, i.e., the 
process whereby cancer cells metabolize glucose even in 
the presence of oxygen, has been widely reported among 
cancer hallmarks, leading to important metabolic conse-
quences, such as elevated ATP synthesis, increase of pentose 
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phosphate pathway (PPP), and decrease in ROS and oxi-
dative stress through generation of nucleotide precursors, 
producing acidity within the tumor microenvironment to 
sustain growth and metastasis [13]. Alongside, it has been 
recently demonstrated that cancer cells, by modulating their 
mitochondrial dynamics, can take advantage of high oxi-
dative phosphorylation (OXPHOS), inhibiting the intrinsic 
apoptosis and leading to the resistance of cancer cells to 
apoptotic stimuli [6, 14–16].

Mitochondrial alterations, with increased biomass as well 
as unbalanced mitochondrial functions, can prompt meta-
bolic changes which have been found instrumental in MM 
onset and chemoresistance [6, 16, 17]. MM cells are strictly 
dependent on glucose metabolism by enhancing glucose 
uptake and aerobic glycolysis and producing lactate, provid-
ing an important carbon source for tricarboxylic acid (TCA) 
cycle and OXPHOS, required to maintain elevated protein 
synthesis, folding and secretion. Accordingly, higher levels 
of lactate dehydrogenase (LDH) are associated with aggres-
sive disease and poor prognosis of MM patients [18]. The 
enhancement of aerobic glycolysis also turns on the PPP to 
boost the generation of the antioxidant compounds, such as 
NADPH and glutathione (GSH), to reduce MM cells suscep-
tibility to oxidative damage, making them more resistant to 
oxidative stress-inducing drugs [19]. Therefore, the inhibi-
tion of the glycolytic process or glycolysis-related biosyn-
thetic pathways could reduce MM progression; accordingly, 
selective inhibition of GLUT1, found highly expressed and 
associated with worse outcomes of MM patients, antago-
nized glucose uptake eliciting anti-tumor activity in malig-
nant PCs [20].

In addition to glucose, MM PCs seem highly dependent 
on amino acid metabolism for survival, exhibiting elevated 
glutamine uptake to fuel OXPHOS in the BM [21]. Accord-
ingly, the oncogene c-MYC, widely overexpressed in MM, 
plays a key role in the regulation of aerobic glycolysis, by 
increasing glucose dependency as well as glutamine con-
sumption through an increase in glutamine transporter 
(ASCT2) and glutaminase (GLS) transcription [22–24]. 
Indeed, alteration of glutamine uptake through inhibition 
of glutamine importer ASCT2 markedly reduced MM cell 
growth. Glutamine also plays a key role in proteasome 
inhibitors (PIs) resistance [10], and it is indispensable for 
the production of amino acids and nucleotides as well as for 
the synthesis of substrates for TCA cycle [25, 26]. Similarly, 
the elevated PPP and serine synthesis pathway sustain bort-
ezomib resistance due to the increased anti-oxidant capac-
ity in MM cells. Targeting serine metabolism can therefore 
enhance the sensitivity to bortezomib through inhibition of 
3-phosphoglycerate dehydrogenase (PHGDH), which cata-
lyzes the rate-limiting step for serine synthesis [27].

Importantly, metabolic reprogramming of MM cells is 
widely affected by bone marrow stromal cells (BMSCs), 

which surround and protect malignant PCs producing 
growth factors and cytokines as pro-survival signals [28]. 
Under the microenvironment hypoxic conditions, the mTOR 
(mechanistic target of rapamycin)-driven translation of the 
transcription factor HIF-1α (hypoxia inducible factor-1-α) 
is upregulated in MM, switching metabolism toward gly-
colysis through the overexpression of metabolic enzymes 
such as GLUT1, HK2 (hexokinase 2), LDH [29], and the 
pyruvate dehydrogenase kinase-1 (PDK-1) [30]; in turn, 
MM cells induce BMSCs to undergo aerobic glycolysis, 
producing metabolites for their utilization by neoplastic 
cells, as OXPHOS substrates, sustaining ATP production, 
and increasing cell fitness to foster growth and migration 
[31–34].

In the context of MM cell metabolism, the glucose 
pathway has been so far the subject of deep investigation, 
although more recent evidence highlights lipid vulnerabili-
ties in MM PCs, providing new metabolic hubs to be tar-
geted in this still largely fatal malignancy [35].

In this review, we summarize: (i) the major classes of 
lipids whose aberrant metabolism have been implicated 
in MM onset and chemoresistance, (ii) their impact on 
the activity of various BMM cell populations, and (iii) the 
potential strategies targeting lipid-related dependencies in 
preclinical models of PC dyscrasias. Finally, the potential 
of circulating lipids as biomarkers for MM patient therapy 
response prediction or risk stratification will be discussed.

Lipid metabolic vulnerabilities of MM

Lipids are chemically defined as a diverse group of mol-
ecules, insoluble in water, not only components of organelles 
or cellular energy suppliers, but also signaling molecules 
crucial for maintaining cellular homeostasis [36].

Consistent with the seminal discovery in 1953 that tumors 
could synthesize lipids in a manner similar to embryonic 
tissues, many tumor cells have been found to exhibit a high 
rate of de novo lipogenesis [37]. Importantly, clinical obser-
vations found that lipid metabolism reprogramming often 
predicts poorer prognosis in cancer patients [38], includ-
ing those affected by hematological malignancies. A large 
number of lipid droplets that store lipids and cholesterol can 
be detected in tumor cells, and high lipid droplets and cho-
lesterol esters are nowadays considered indicators of aggres-
siveness of both solid and hematological cancers [38, 39].

A graphic overview of the main lipid metabolic pathways 
found deregulated in MM, and discussed in the following 
sections of this review, is provided in Fig. 1.
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Fig. 1  Graphic overview of the main lipid biosynthetic pathways 
found deregulated in MM. A FATP (Fatty acid transport protein) and 
CD36 (cluster of differentiation 36) proteins facilitate the transport of 
FAs through the plasma membrane to the cell compartments, where 
the synthesis of FAs takes place. Acetyl-CoA, derived from various 
metabolic sources, including glucose, amino acids, and mitochondrial 
FA oxidation, is carboxylated by the enzyme acetylCoA carboxylase 
(ACC) in the cytoplasm, requiring ATP and biotin as a cofactor. The 
carboxylation of acetyl-CoA results in the formation of malonyl-CoA, 
a building block for FA synthesis. The synthesis of FAs is instead 
carried out by a multi-enzyme complex called fatty acid synthase 
(FAS). Once the desired FA length is reached, the final product is 
typically palmitic acid (16 carbons). Palmitate can be desaturated by 
the enzyme stearoyl-CoA desaturase (SCD), which introduces a dou-
ble bond between carbons 9 and 10 of the palmitate, resulting in the 
formation of MUFAs. PUFAs are synthesized from MUFAs by fatty 
acid desaturase 2 (FADS2). The synthesis of TGs in cells involves a 
series of steps within specific cellular compartments. Glycerol-3-phos-
phate, derived from glucose metabolism or glycerol uptake, serves as 
the starting point and it is converted to lysophosphatidic acid (LPA) 
by glycerol-3-phosphate acyltransferase (GPAT) in the endoplasmic 
reticulum (ER). LPA undergoes acylation by acyl-CoA to form phos-
phatidic acid (PA) in a reaction catalyzed by the enzyme acylglycerol-
3-phosphate acyltransferase (AGPAT). The final step in the glycerol 
phosphate pathway involves the dephosphorylation of PA by phos-
phatidate phosphatase (PAP) to produce diacylglycerol (DAG). DAG 
is subsequently acylated by diacylglycerol acyltransferase (DGAT) 
to form triglycerides. Once synthesized, TGs are packaged into spe-
cialized cytoplasmic structures called lipid droplets. B Glucose trans-
porters (GLUT) facilitate the passage of glucose through the cell 
membrane; glucose is then converted to pyruvate through glycolysis, 
and then enters the Krebs cycle as acetyl-CoA. Acetate also plays a 
key role as a precursor for cholesterol synthesis. Through a series of 
enzymatic reactions, acetate is activated with acetyl-CoA, which rep-
resents an important starting point for the synthesis of cholesterol. 
Then Acetyl-CoA, derived from various sources, including glucose 

metabolism, FA oxidation, and amino acid breakdown serves as a pre-
cursor for the synthesis of mevalonate, the initial step in cholesterol 
biosynthesis. AcetoacetylCoA then condenses with another molecule 
of acetyl-CoA, catalyzed by the enzyme HMG-CoA synthase, to pro-
duce 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), next converted 
to mevalonate by HMGCoA reductase; mevalonate is phosphoryl-
ated with the help of the mevalonate kinase (MVK) enzyme, and then 
undergoes a series of reactions forming isopentenyl pyrophosphate 
(IPP) and dimethylamil pyrophosphate (DMAPP), critical building 
blocks for the generation of various isoprenoids. Multiple IPP mol-
ecules can condense together to form longer isoprenoid chains, such 
as GPP (Geranyl Pyrophosphate), farnesyl pyrophosphate (FPP), and 
geranylgeranyl pyrophosphate (GGPP). FPP undergoes a series of 
reactions that lead to the formation of squalene, a precursor molecule 
of cholesterol; squalene is converted into cholesterol through a series 
of enzymatic reactions, which include the formation of lanosterol 
and the elimination of functional groups. In addition, geranylgeranyl 
diphosphate synthase 1 (GGPS1) converts FPP into geranylgeranyl 
pyrophosphate (GGPP). Prenylation, a process carried out by farnesyl-
transferase (FTase) and geranylgeranyltransferase (GGTase), allows 
the post-translational addition of both FPP and GGPP to various pro-
teins, including those belonging to the RHO, RAS, and RAB families. 
C The synthesis of sphingolipids occurs primarily in the ER and starts 
with palmitoyl-CoA, a basic building block derived from the break-
down of FAs, that undergoes a series of enzymatic reactions, includ-
ing condensation with serine, to produce 3-ketosphinganine. The 
3-ketosphinganine is then reduced by the 3-ketosphinganine reductase, 
resulting in the formation of sphinganine that is acylated by ceramide 
synthase. This reaction leads to the formation of ceramide, which is 
the central molecule in sphingolipid synthesis. Different enzymes such 
as SM synthase and ceramidase (CDase) introduce modifications to 
ceramide to generate different types of sphingolipids, such as sphingo-
myelin and sphingosine. The final conversion of sphingosine to sphin-
gosine-1-phosphate is catalyzed by sphingosine kinases. The picture 
was created using BioRender software
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Fatty acids (FAs) and triglycerides

FAs play a key role in many cellular processes, contributing 
to the maintenance of the plasma membrane structural integ-
rity as well as regulating cellular energy metabolism and sig-
nal transduction, ultimately impacting on cellular homeosta-
sis [40]. Indeed, an aberrant FA metabolism has been linked 
to the cancer onset and progression, providing metabolites 
for cellular energy needs to support uncontrolled cell growth 
and proliferation [41]. Lipid supply can be accomplished 
either exogenously or, for certain lipid classes, by imple-
menting biosynthetic pathways [42].

The synthesis of FAs is an anabolic process which occurs 
when the cellular energy need is diminishing, resulting in a 
reduction in TCA cycle pathway. FAs are taken up into the 
cells by using fatty acid translocase protein CD36 and by FA 
transporter proteins (FATP), whereas FA binding proteins 
(FABPs) shuttle FAs into the cells. Notably, FAs transported 
by CD36 are converted into secondary metabolites such as 
ceramides, diacylglycols and phospholipid inositol deriva-
tives [35, 43–45]. FABPs facilitate the intracellular transport 
of long-chain FAs (LCFAs), and regulate lipid synthesis and 
oxidation [46]. In several tumors, an increased expression 
of CD36 has been found, which seems to promote the EMT 
process and thus a more aggressive tumor phenotype [47].

Once into the cells, FAs are activated by the addition of 
coenzyme A (CoA) mediated by the long-chain acyl-CoA 
synthetase (ACSL) group of proteins; at this point, they can 
undergo the esterification process in the ER or be re-routed 
to the mitochondria, through the carnitine palmitoyltrans-
ferase 1 (CPT1), where they are oxidized to produce Acetyl-
CoA to support TCA cycle and further yield ATP [48]. The 
ACSL family plays an important role in cancer biology, and 
increased expression of ACSL has been observed in many 
types of cancer, such as colon, liver, lung, brain and colo-
rectal cancers [46, 49–51].

According to the number of saturations and metabolic 
origin, it is possible to make a macrodistinction between 
saturated (SFA) and monounsaturated (MUFA) FAs, which 
originate from acetyl-CoA in cells, and polyunsaturated fatty 
acids (PUFA), synthesized from linoleic acid (C18:2n-6) and 
α-linoleic acid (ALA; C18:3n-3), two essential FAs intro-
duced in the diet [42].

MUFA synthesis originates from the de novo lipogen-
esis. Starting from glucose which derives from dietary car-
bohydrates, after glycolysis and the TCA cycle, citrate is 
produced in the mitochondria, which is transported into the 
cytosol where is then released acetyl-CoA following the 
action of ATP-citrate lyase (ACLY). The resulting acetyl-
CoA is converted to malonyl-CoA by acetyl-CoA carbox-
ylase 1 (ACC1), and finally fatty acid synthase (FASN) 
serially condensates seven malonyl-CoA molecules to one 
acetyl-CoA to produce 16-carbon palmitate, which will 

undergo elongation (by ELOVL elongase enzymes) and 
desaturation (by FADS and SCD desaturase enzymes) reac-
tions to generate bioactive FAs with different length and 
degrees of saturation, including stearic, palmitoleic and oleic 
acids [52]. ACC1 is the rate-limiting enzyme of de novo 
lipogenesis [53]; FAS enzyme is essential to produce bioac-
tive lipids to sustain membrane structure and intracellular 
signaling. Since most cancers depend on the synthesis of 
new FAs, ACC1 and FAS represent potential therapeutic 
target for this disease [54].

During the genesis of PUFAs, the activity of some FA 
desaturases and elongases is essential for controlling the 
length and degree of unsaturation of FAs, thus influencing 
their functions and metabolic fate. One of the main enzymes 
with desaturase activity is the stearoyl-CoA desaturase-1 
(SCD1), localized at the ER, catalyzing the biosynthesis of 
MUFAs, (i.e., palmitoleate and oleate) from their SFA pre-
cursors (i.e., palmitate and stearate) [55]. Several studies 
confirmed the role of SCD1 in tumorigenesis, as it modu-
lates the FA composition of cancer cells. Indeed, its expres-
sion is increased in many types of cancer [56–58], where it 
protects cells from death, in particular from ferroptosis, an 
iron-mediated cell death mechanism that determines the per-
oxidation of membrane lipids, mainly PUFAs, constituting 
membrane phospholipids [59, 60]. An increased activity of 
SCD1 can lead to an unbalanced composition of membrane 
phospholipids with higher abundance of MUFAs, reluctant 
to lipid peroxidation and therefore resistant to ferroptosis 
[61].

FA synthesis enzymes are regulated at the transcriptional 
level by sterol regulatory element-binding protein (SREBP) 
transcription factors [62]. It has been noted that SREBP 
increases phospholipid, TG, and cholesterol synthesis to 
promote cancer cell survival and tumor growth [63, 64].

β-oxidation is an energetic process, generating acetyl-
CoA entry into the TCA cycle, for the production of ATP in 
the mitochondria. Along with glucose and glutamine, FAs 
represent one of the main sources of energy [40]. Instead, 
FAs esterification leads to the synthesis of substrates useful 
for the generation of other complex lipids, such as phos-
pholipids, sphingolipids and glycerolipids. These complex 
lipids can also act as lipid signalers that modify membrane 
structures and promote gene transcription for cell growth, 
proliferation and differentiation [46, 65].

One of the metabolic fates of FAs consists in their assem-
bly into triglycerides (TG), which represent the main form 
of storage and FA transport within cells and in plasma [66]. 
The first step of TG synthesis consists in the esterification 
of the long-chain acyl-CoA into Glycerol-3-phosphate 
(G3P), by the action of mitochondrial and microsomal G3P 
acyltransferase (GPAT) enzymes. This reaction catalyzes 
the synthesis of lysophosphatidic acid (LPA) which is sub-
sequently acylated to form phosphatidic acid (PA) by the 
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acylglycerol-3-phosphate acyltransferases (AGPAT) pre-
sent in the ER membrane. PA can be dephosphorylated by 
phosphatide phosphohydrolase (PAP, also known as Lipin) 
to form diacylglycerol (DG), precursors for TG synthesis; 
DG acyltransferase (DGAT), on the other hand, determines 
the final stage of TG biosynthesis, catalyzing DG acylation. 
The newly synthesized TG molecules are then directed by 
the ER lipid bilayer to form cytosolic lipid droplets or can 
be directly excreted from the cell (Fig. 1A) [67].

FA pathway alterations and targeting in MM

Accumulation of TG-based lipid droplets occurs in malig-
nant PCs, which, in the case of starvation, provides the long-
term energy source available to support cellular needs [68]. 
Indeed, when energy is required, FA degradation is activated 
to produce ATP molecules for rapid tumor cell proliferation 
and growth [69]. Besides as energy reservoir, FAs are also 
important for their role in maintaining the integrity of the 
cell membrane, as well as signaling molecules [70].

Tumor cells exhibit elevated rate of lipogenesis, which is 
mostly supported by de novo FAs synthesis, to sustain FA 
catabolism through β-oxidation, as alternative pathway to 
support cancer cell proliferation and growth. Notably, CPT1 
family members, including three enzymes, represent the 
rate-limiting enzymes of fatty acid oxidation (FAO), whose 
overexpression has been associated to carcinogenesis and 
chemoresistance [71]. In line with these notions, it has been 
demonstrated that etomoxir inhibits FAO by blocking CPT1, 
thus reducing the intracellular ATP levels and inducing cell-
cycle arrest in G0/G1 phase in MM cells [72]. Moreover, 
the combination of etomoxir and orlistat, a FASN enzyme 
inhibitor, had an additive effect on MM cell viability inhi-
bition, through the reduction of p21 protein levels and the 
phosphorylation of Rb. Notably, orlistat-mediated inhibition 
of de novo FA synthesis sensitized MM cells to bortezomib, 
reducing PI resistance through activation of apoptosis [72].

The pivotal role of ACC1 in FA synthesis makes it a 
promising therapeutic target for various metabolic diseases 
such as non-alcoholic fatty liver disease, obesity and dia-
betes. Many tumors have a high energy flow and a strong 
dependence on FA synthesis, making ACC a valuable thera-
peutic target also in neoplasias [53]. We recently demon-
strated that a MIR17 host gene (MIR17HG)-derived long 
non-coding RNA, named lnc-17–92, acts as a chromatin 
scaffold for the functional interaction between the c-MYC 
onco-protein and WDR82, a regulatory component of the 
SET1 methyltransferase complex which catalyzes histone H3 
Lys-4 (H3K4) methylation (mono-, di-, tri-) at the transcrip-
tional start sites of active loci, thus promoting the expres-
sion of ACACA gene, encoding ACC1. Targeting MIR17HG 
pre-RNA with novel antisense molecules (ASOs) disrupted 
the transcriptional and functional activities of lnc-17–92, 

causing potent anti-tumor effects in preclinical models both 
in vitro and in vivo, which was associated with a decrease 
in de novo lipogenesis [73].

Under conditions of metabolic stress, such as hypoxia, 
glucose deprivation, and low serum, ACSS2 enzyme can 
promote malignant cell growth and survival in some solid 
tumors through the production of acetyl-CoA, which is fur-
ther incorporated into metabolic pathways or acts as an epi-
genetic modulator in the activation of protein acetylation 
[74]. Interestingly, ACSS2 expression promoted myeloma-
tous tumorigenesis through stabilization of IRF4, an onco-
genic protein controlling a wide variety of genes that are 
key for cellular growth, survival and metabolic processes 
[75, 76]. In obese MM patients, the expression of ACSS2 
was significantly higher than healthy individuals, and the 
increased ACSS2 level was positively correlated with high 
BMI values, thus strengthening the link between obesity and 
MM [76].

Reprogramming of lipid metabolism and changes in 
mitochondrial functions can also occur as adaptive survival 
mechanisms in MM cells after PIs treatment [77, 78]. Xu 
et al. demonstrated that PIs induce an abnormal lipid accu-
mulation in MM cells, mainly observed in TGs content, 
through the activation of ATF4/SREBP pathway, confer-
ring PIs resistance, as a compensatory mechanism to allow 
protein synthesis, avoiding ER stress and maintaining cell 
survival. On this basis, the authors explored the potential 
synergistic effects of lipid-modulating drugs in combination 
with PIs. The treatment with lovastatin, a well-known drug 
used for the treatment of hypercholesterolemia, in combi-
nation with PIs synergistically reduced MM cell viability, 
leading to a reduction of phospholipid-based metabolic flux 
and exacerbating the TG-based lipid content in malignant 
PCs, likely triggering a protective mechanism responsible 
for the adaptive survival of tumor cells. Based on the lov-
astatin-mediated increase in TG content, the administration 
of the chemically modified TG-lowering drug fenofibrate, 
a lipid-regulating fibric acid derivative used for the treat-
ment of patients with hypertriglyceridemia, resulted in a 
strong synergistic anti-tumor effect, maximizing the killing 
of MM cells, when combined to lovastatin and PIs [79]. In 
parallel, Lipchick et al. reported that MM cells can repro-
gram their metabolism to develop PI resistance by inhibiting 
lipid synthesis, as demonstrated by the findings that levels of 
SREBP1, along with its downstream target fatty acid elon-
gase 6 (ELOVL6), were lower in bortezomib-resistant than 
sensitive primary MM cells, reducing lipid synthesis and 
causing bortezomib resistance [80].

The abnormal FA metabolism in tumor cells is also 
linked to the altered activity of ACSL enzyme family [81]. 
A dual function of ACSL4 enzyme has been demonstrated 
in MM, with a tumor promoting function observed when 
highly expressed in malignant PCs, where its knock-down 
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antagonizes cell proliferation, likely by inhibiting c-Myc and 
SREBPs transcription factor activity; on the other hand, high 
expression of ACSL4 is also mandatory for the activation of 
the ferroptosis pathway: as a consequence, ACSL4 knock-
down induced ferroptosis resistance in MM cells, implicat-
ing ACSL4 as a predictive biomarker of ferroptosis sensitiv-
ity in MM [82].

Increasing evidence highlighted the role of PUFAs in 
determining cancer risk and progression [83]. An elevated 
expression of the cytosolic phospholipase A2α (cPLA2α), 
the rate-limiting enzyme involved in the production of ara-
chidonic acid (AA), has been reported in both MGUS and 
MM patients. The authors demonstrated that the inhibi-
tion of cPLA2α reduced the viability of different MM cell 
lines, through activation of apoptotic pathway. Specifically, 
cPLA2α inhibitors, AVX420 and AVX002, downregulated 
the cellular content of PGE2, thus reducing the AA produc-
tion as well as the expression of COX-2 and NF-κB, through 
the inhibition of PI3K/AKT signaling [84].

Recently, a role of fatty acid binding proteins (FABPs) 
in contributing to cancer development and progression 
has emerged [85–87]. FABPs facilitate the long-chain 
FAs intracellular trafficking and regulate FA synthesis and 
β-oxidation [86]. A recent study, carried out through an 
integrative analysis of MM and normal BM specimens in 
two published datasets, showed that FABP5 mRNA expres-
sion was significantly correlated with the infiltrations of 
immune cells, such as B cell naïve, macrophages M1, mac-
rophages M2, neutrophils, activated NK cells and resting 
memory T cells, in the BMM of MM patients. This interplay 
acts as immunosuppressive mechanism during tumor pro-
gression, by which MM cells can regulate the function of 
immune cells, and is associated with unfavorable outcomes 
in patients, making FABP5 a candidate prognostic marker 
in MM [88]. Furthermore, Farrell et al. demonstrated that 
FABP inhibitors, BMS3094013 and SBFI-26, represent an 
effective strategy to target MM progression, both in vitro and 
in vivo, impacting on oncogenic c-Myc signaling pathway 
[89]. The inhibition of FABPs family, particularly FABP5, 
altered cell structure, inflammatory and metabolic pathways, 
clearly impacting on the mitochondrial membrane potential, 
oxygen consumption rates and FA oxidation (Fig. 1B) [90].

Mevalonate

Cholesterol can enter cells via LDL cholesterol receptor-
mediated uptake from the bloodstream or being synthe-
sized de novo via the mevalonate biosynthetic (MVA) 
pathway, also called isoprenoid biosynthetic pathway 
(IBP), necessary for isoprenoid production, protein pre-
nylation and production of coenzymes and other molecules 
[91]. This process occurs mainly in the liver, but also in 
other tissues such as the adrenal glands and the intestine. 

Its synthesis starts from acetyl-CoA, produced by the 
metabolism of carbohydrates and fats, and involves more 
than 20 enzymes distributed across the cytosol and the ER, 
leading to the formation of 3-hydroxy-3-methylglutaryl 
coenzyme A (HMGCoA) from three acetyl-CoA mol-
ecules, catalyzed by HMGCoA synthase (HMGCS) [92]; 
subsequently, 3-hydroxy-3-methylglutaryl-CoA reductase 
(HMGCR) converts HMG-CoA to mevalonate, which is 
phosphorylated by MVA kinase (MK) and converted into 
isopentenyl pyrophosphate (IPP).

Physiologic regulatory mechanisms maintain a balance in 
the synthesis and metabolism of cholesterol. One of the main 
regulatory pathways involves the HMGCR, which catalyses 
a key reaction in cholesterol synthesis. When cholesterol 
levels are high, this enzyme is inhibited by cellular signals 
that reduce its activity, thereby reducing the production of 
cholesterol.

IPP and dimethylamine pyrophosphate (DMAPP) serve 
as substrates for farnesyl diphosphate synthase (FDPS), to 
generate both geranyl pyrophosphate (GPP) and farnesyl 
pyrophosphate (FPP), which can be converted into squalene, 
a long-chain molecule that represents a key step in choles-
terol synthesis; finally, by cyclization and side chain remod-
eling and after the action of squalene synthase and squalene 
epoxidase, squalene is converted into cholesterol [91].

Intermediates of the MVA pathway can undergo further 
enzymatic actions that catalyze the synthesis of molecules 
that participate in other biological mechanisms. For exam-
ple, the synthesis of FPP and geranylgeranyl pyrophosphate 
(GGPP) is essential for protein prenylation, a post-transla-
tional modification required for the function of many signal-
ing proteins, some of which belong to the Ras small GTPase 
superfamily (e.g., the Ras, Rab, and Rho), including over 
150 proteins regulating many cellular functions, such as 
membrane trafficking, cell proliferation, survival and dif-
ferentiation [93].

In addition to cholesterol synthesis, the mevalonate path-
way is essential for the production of selenoproteins, includ-
ing GPX4, a protein involved in cellular protection against 
ferroptosis [43]. The main regulators of cholesterol synthesis 
are sterol regulatory element binding proteins (SREBPs), 
which transcriptionally control the enzymes involved in the 
synthesis of sterols [61]. SREBP2 activates the transcription 
of enzymes of the mevalonate pathway, such as HMGCR, 
and regulates the uptake of cholesterol through the induction 
of low-density lipoprotein receptor (LDLR) expression [94]. 
On the other hand, LXRs control the reverse cholesterol 
transport pathway, through which the excess of cholesterol is 
returned to the liver for excretion as bile acids [95]. In condi-
tions of low cholesterol levels, SREBP2 remains blocked in 
the ER, and oxysterols or desmosterol [96] bind and activate 
the LXR/RXR heterodimers, which in turn activate specific 
LXR target genes, such as ATP-binding cassette transporters 
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A1 and G1 [97], ultimately promoting the elimination of the 
excess of cellular cholesterol (Fig. 1B) [98].

Mevalonate pathway alterations and targeting 
in MM

Statins are well-known inhibitors of HMGCR as well as 
of the mevalonate pathway rate-limiting enzymes, which 
are crucial for cell growth and survival. Statins are used 
in the treatment of dyslipidaemia and coronary heart dis-
ease, although recently their application has emerged against 
various types of cancer, such as pancreatic ductal adenocar-
cinoma, prostate cancer, hepatocellular carcinoma, breast 
cancer stem cells, triple negative breast cancer, colorectal 
cancer, and many others [99]. In MM cell lines, HMGCR 
inhibitors induced apoptosis and activation of the unfolded 
protein response (UPR) pathway, inhibiting the produc-
tion of FPP and GGPP isoprenoids through suppression of 
farnesylation and geranylgeranylation processes [100].

In addition, therapeutic combinations of various classes 
of statins (such as simvastatin, lovastatin, and fluvastatin) 
with the most widely used drugs in MM, such as lenalido-
mide, thalidomide, and bortezomib, displayed a synergistic 
reduction in cell viability and migration, by inducing over-
expression of stress response genes and apoptosis. Moreover, 
treatment with statins was also effective in murine models 
of MM, as it reduced tumor burden and increased animal 
survival, either alone or in combination with bortezomib 
[101]. In line with these findings, in a cohort study of 4957 
patients with MM, Sanfilippo et al. reported that statins 
improved survival of MM patients, with a 21% reduction 
in all-cause mortality and a 24% reduction in specific MM 
mortality [102].

Several studies demonstrated the beneficial effects of the 
therapeutic targeting of IBP signaling at the level of farnesyl 
diphosphate synthase (FDPS), which can be inhibited by bis-
phosphonates (BP) or nitrogen bisphosphonates (NPBs), the 
drugs most commonly used in the management of MM bone 
disease, acting by reducing bone resorption and increasing 
bone density through inhibition of osteoclast activity [103].

Hyperactivation of the RAS/RAF/MEK/ERK cascade 
associated with Ras mutations is constantly observed in MM 
patients, of which approximately 23% carry Ras mutations, 
in particular K-Ras mutations, which correlate with poor 
prognosis in MM. Such over-regulation is driven by MM-
induced changes in the bone, resulting in the production of 
high levels of interleukins. The development of RAS inhibi-
tors is an attractive area of investigation, although limited 
to the only approved inhibitor of G12C mutated K-Ras. An 
additional approach to modulate Ras expression is to inhibit 
Farnesyltransferase (FTase), which is fundamental in many 
biological aspects, including gene transcription regulation, 
intracellular signaling, protein–protein interactions and RAS 

membrane association. To date, Farnesyltransferase inhibi-
tors (FTIs) have been assessed in clinical studies and demon-
strated activity in breast cancer, myelodysplastic syndrome, 
and leukemias. Interestingly, the FTI called Tipifarnib 
(R115777) showed promising biological activity against 
myelodysplastic cells and led to significant clinical improve-
ments of patients treated with doses below maximum toler-
ability [104]. In addition, the combination of Tipifarnib and 
bortezomib showed enhanced anti-MM activity respect to 
single agent treatment, as it enhanced the activation of the 
ER stress response, the induction of apoptosis as well as 
the reversal of cell-adhesion mediated drug resistance [105].

Additional therapeutic targets within the IBP pathway 
are geranylgeranyltransferase type I and II (GGTase I and 
II) enzymes, which are essential for Rho and Rab protein 
prenylation and geranylgeranylation, promoting their local-
ization in the membrane and loading of GTP, ultimately 
activating signaling pathways driving actin polymerization. 
The development of GGTase I (GGTI-1) inhibitors proved 
difficult due to the strong similarity between the active site 
of GTase I and FTase causing off-target effects, thus mak-
ing difficult the development of selective inhibitors. On the 
other hand, several inhibitors of GGTase II (GGTI-2) were 
developed and evaluated in preclinical studies. GGTase II 
inhibitors proved similar to statins treatment, in that they 
induced the accumulation of light intracellular chains and 
apoptosis mediated by UPR [101]. The first characterized 
GGTI-2 inhibitor was 3-PEHPC, an analog of biphospho-
nate known as risedronate, capable to inducing apoptosis 
and preventing Rab6 geranylgeranylation in MM cell lines, 
whose effect was unfortunately limited to preclinical stud-
ies due to the reduced potency (IC50 = 600 µM). Indeed, 
the development of a more potent analog of 3-PEHPC, car-
rying structural changes, yielded better anti-MM efficacy. 
Moreover, additional compounds were developed to opti-
mize the inhibition of Rab activity, such as triazole inhibi-
tors, N-oxide derivatives of 3-PEHPC, and benzimidazole 
carboxyphosphonates [106].

The geranylgeranylation of Rho and Rab proteins can 
also be targeted by geranylgeranyl diphosphate synthase 
(GGDPS) inhibitors (GGSI). GDPS catalyzes GGPP syn-
thesis, which in turn is covalently bound to Rab proteins 
targeted by GGTase II. By inhibiting GGDPS in MM cells, 
the transport of monoclonal proteins (MP) in intracellular 
vesicles, which normally depends on the activity of Rab pro-
teins, is impaired. Because of this deficit in Rab-mediated 
transport, monoclonal proteins are not properly directed 
to their cellular destinations; as a result, they accumulate 
within the RE, causing ER stress, activation of the UPR, 
and apoptosis [101].

One of the most powerful GGSI compound developed in 
recent years is VSW1198, a triazole isoprenoid composed 
of a mixture of homogeranyl and homoeryl isomers that 
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synergistically interact to inhibit GGDPS. GGSI VSW1198 
inhibited geranylgeranylation in MM cell lines and was 
highly selective to GGDPS [107]. In addition, a newly devel-
oped GGSI (CML-07–119) reduced serum M protein levels 
and interrupted Rap1a prenylation in transgenic mice [108]. 
Another GGSI (RAM2061) has been reported to slow tumor 
growth in a MM xenotransplantation model, dampening 
geranylgeranylation in vivo either alone or in combination 
with bortezomib [101].

Sphingolipids

Sphingolipids play a structural role in the cytoplasmic mem-
brane, but they are also implicated in the control of cell 
growth, proliferation and apoptosis [109]. These are amphi-
pathic molecules, with ceramide representing the simplest 
one. Sphingolipid metabolism involves de novo synthesis in 
the endoplasmic reticulum (ER), where the enzyme serine 
palmitoyltransferase (SPT) catalyzes the coupling of pal-
mitoyl coenzyme-A with the D-serine amino acid to syn-
thesize 3-ketosphinganine [110]. Reduction of 3-ketosph-
inganine forms dihydrosphingosine, which is then typically 
N-acylated by one of six ceramide synthases (CerS1-CerS6) 
with 14–26 carbon saturated or monounsaturated fatty acids, 
to form dihydroceramides, subsequently dehydrogenated to 
ceramides by dihydroceramide desaturase [111].

Ceramides represent a crossroad for the production of 
other sphingolipids with different, even opposite activities 
[112]. The synthesis of sphingomyelin and a vast range of 
complex glycosphingolipids takes place from ceramide, 
which occurs mainly in the Golgi. Transport of ceramide 
from the ER to the Golgi occurs by ceramide transfer protein 
(CERT) for sphingomyelin, or by vesicular transport for glu-
cosylceramide synthesis. Ceramides can also be phosphoryl-
ated in the Golgi apparatus by ceramide kinase (CERK) to 
form ceramide-1-phosphate (C1P); sphingomyelin and gly-
cosphingolipids (GSL) are instead delivered to the plasma 
membrane by vesicular transport [111].

The activity of the ceramidase enzyme on ceramides 
allows the synthesis of sphingosine, which in turn can be 
phosphorylated by one of the two sphingosine kinases, 
SphK1 and SphK2, forming Sphingosine-1-phosphate 
(S1P), a metabolite of considerable interest because involved 
in many extra-metabolic cellular processes, such as inflam-
mation, proliferation and angiogenesis [113]. S1P can have 
intracellular actions, can be exported to the extracellular 
environment through channels as the ATP-independent 
multi-transmembrane transporters Spinster homolog 2 
(SPNS2), or can even be exocytosed via vesicles and/or 
lipid exosomes [114]. Once in the extracellular space, S1P 
binds to G protein-coupled S1P receptors, a family that is 
intertwined with other cellular signaling pathways, while 

intracellular S1P binds directly to intracellular protein tar-
gets (Fig. 1C) [115].

Sphingolipid pathway alterations and targeting 
in MM

Sphingosine-1 phosphate (S1P) has been found involved in 
the interaction between tumor cells and the BMM [116].
Intriguingly, while S1P represents a lipid capable of pro-
moting tumorigenesis, ceramide represents a powerful anti-
inflammatory and pro-apoptotic agent, hence the various 
enzymatic modifications that ceramide can undergo may 
lead to different and even opposite effects.

S1P is a bioactive lipid produced by several cell types 
present in the BM niche, including MM cells, polarized 
macrophages, osteoblasts and osteoclasts; it is involved in 
the processes of inflammation, proliferation and angiogen-
esis [114]. The binding of S1P to its membrane G protein-
coupled receptors regulates cellular processes such as sur-
vival and proliferation through ERK1/2, PI3K, Rac and Rho 
activation.

Noteworthy, S1P has been reported to regulate hemat-
opoietic progenitor cell lineage and plasma cell localization 
in the BM [117]. The work by Petrusca et al. highlights S1P 
as fundamental to send pro-tumor signals by increasing lev-
els of the Growth Factor Independence 1 (GFI1) transcrip-
tion factor, which consequently leads to increased growth 
and viability of MM cells, making MM cell resistant to 
bortezomib-induced cell death and also promoting osteo-
clastogenesis [112].

Due to S1P synthesis, sphingosine kinase (SphK) 
enzymes may represent key targets in reducing MM cell 
viability. Accordingly, K145, an inhibitor of sphingosine 
kinase 2 (SphK2), triggered MM cell death through UPR 
activation; moreover, the concomitant treatment of K145, 
a SphK2 inhibitor, together with bortezomib reactivated 
bortezomib sensitivity of drug-resistant MM cells [118]. An 
increased expression of SphK2 was found in MM cells as 
well as in MM patient PCs, where short hairpin RNA-medi-
ated knock-down, or pharmacological inhibition of SphK2 
by the selective inhibitor ABC294640, induced apoptosis 
via caspase-3 activation, overcoming the protective effect of 
BMSCs; additionally, ABC294640 enhanced c-Myc protea-
some degradation [119].

During MM progression, there is a constant increase in 
angiogenesis in the BM niche, which is essential for MM 
growth, invasion and metastasis. The increased rate of angio-
genesis represents the main difference between clinically 
active MM versus SMM, whereby an imbalance of pro- and 
anti-angiogenic factors determines the so-called angiogenic 
switch [120]. The SphK1-S1P-S1PR1 pathway has been 
found implicated in the regulation of angiogenesis: indeed, 
studies conducted in vivo demonstrated that mice with a 
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general knockout of S1PR1 died from embryonic hemor-
rhage due to lack of vascular maturation [121].

Regarding the possible link of sphingolipids with drug 
resistance, it has been reported that sphingomyelin synthesis 
is associated with the onset of PI resistance in MM cells 
[78]. Accordingly, the SMS inhibitor D609 determined a 
greater cytotoxic effect in cells resistant to the bortezomib 
and carfilzomib compared to sensitive cells, suggesting a 
possible dependence of PI resistant cells on sphingomyelin 
[112].

The clinical confirmation of the close link between MM 
and sphingolipids comes from the increased risk of develop-
ing MM in patients with Gaucher disease, a sphingolipidosis 
that causes an accumulation of glucosylceramide due to an 
enzymatic deficiency of acid glucocerebrosidase [122]. Gau-
cher disease is likely associated with a high risk of monoclo-
nal gammopathy due to the reduced presence of ceramide, 
whose activity triggers pro-apoptotic and anti-inflammatory 
effects also dampening chemoresistance [123].

Faict et al. also demonstrated dysregulation of sphin-
golipid metabolism due to an upregulation of acid sphin-
gomyelinase (ASM) in primary MM cells as well as borte-
zomib-treated cell lines. Interestingly, the exosomes of these 
cells were also rich in ASM, suggesting the possibility of 
conferring the drug-resistant phenotype on other cells as 
well [124].

Some research groups have investigated the possible anti-
angiogenic role of some classes of sphingolipids, includ-
ing ceramide. Treatment of MM cells with C6-ceramide 
(ExoC6-cer), used to mimic the endogenous effects of cera-
mide, led to the inhibition of MM cell proliferation [125], 
as well as anti-angiogenic effects, likely through upregulat-
ing the exosomal levels of some tumor suppressive miR-
NAs (miR-29b, miR-202 and miR-15a/16), among which 
miR-29b, an established tumor suppressive miRNA in MM 
[126–129], accounted for the downregulation of AKT3, 
PI3K and VEGFA.

MM is associated with osteolytic bone lesions and skel-
etal complications [130]. Interactions between MM cells and 
BMSCs promote tumor growth, survival and bone destruc-
tion. Osteolytic lesions are localized to areas adjacent to 
tumor growth and are characterized by increased activity of 
osteoclastic bone resorption (activated by RANKL and IGF-
I) and suppression of osteoblastogenesis [130, 131]. Osteo-
clasts are formed by fusion of mononuclear precursors and 
are responsible of the bone resorption. Lactosylceramide 
(LacCer), gangliosides GM2, and GM3 are the main GSL 
constituents of mature osteoclasts [132], while GM1 colocal-
izes with RANK, the RANKL receptor, in lipid rafts [133]. 
Exogenous GM3 and GM1 were able to restore osteoclast 
formation but less than LacCer [132], with GM3 acting as 
pro-osteoclastogenic factor synergistically enhancing the 
ability of RANKL and IGF-I to induce the maturation of 

osteoclasts. The increasing levels of GM3, often detected in 
MM patients, would be thus indicative of bone loss due to 
excessive osteoclast activity and failure of osteoblast activ-
ity. GSL synthesis inhibitors are also able to regulate osteo-
clastogenesis by interfering with RANK, c-Src and TRAF6 
co-localization in the lipid rafts, ultimately interfering with 
the signaling cascade that activates the NF-kB pathway and 
the subsequent transcription of osteoclastogenic genes [134]. 
Inhibition of GSL synthesis using NB-DNJ, a selective GCS 
inhibitor, dramatically inhibited RANKL-induced osteoclas-
togenesis [135]. Elegant preclinical studies demonstrated 
that Eliglustat, an FDA-approved small GSL synthetic 
inhibitor used for the treatment of Gaucher disease type 1 in 
adults [136], was capable to reduce osteoclast-driven bone 
loss in MGUS and MM models, acting as autophagy inhibi-
tor which prevents TRAF3 degradation through a GLS-
dependent mechanism [137].

Impact of lipid molecules on BMM fitness

The transfer of mitochondria among tumor cells and other 
cells of the microenvironment can indeed contribute to 
cancer-associated metabolic alterations. In MM, the uptake 
of BMSC-derived mitochondria, mechanistically mediated 
by tuneling nanotubes, has been associated to drug resist-
ance due to increased ATP levels and reduced mitochondrial 
superoxide species [138, 139]. Within the BMM, MSCs are 
an essential precursor to BM adipocytes and osteoblasts. 
Increasing evidence indicates that the balance between the 
pool of MSCs and mature cells (adipocytes and osteoblasts) 
is often altered during aging and disease; moreover, MM-
associated MSCs are distinct from healthy donor MSCs, and 
their gene expression profiles may be predictive of patient 
outcomes. Fairfield et  al. demonstrated that MM cells 
can inhibit adipogenic differentiation while stimulating a 
senescence-associated secretory phenotype (SASP) prompt-
ing MM survival. Accordingly, the contact with MM cell 
lines, as well as MM-derived conditioned media, triggered 
a marked decrease in lipid accumulation in differentiating 
murine pre-adipocytes, which displayed gene expression 
changes in steroid biosynthesis, cell cycle and metabolism 
(oxidative phosphorylation and glycolysis) and a marked 
increase of typical MM-supportive genes, including IL-6 
and CXCL12. Indirect exposure to MM-derived media, prior 
to differentiation induction, promoted a senescent-like phe-
notype in differentiating MSCs, and this trend was also con-
firmed in MM-associated MSCs compared to MSCs from 
normal donors [140].

FA metabolism in MM can be likely suggestive of a pos-
sible metabolic shift from aerobic glycolysis to FA oxida-
tion, as previously reported in leukemia. Although MM 
cells heavily depend on glucose uptake, they lie in a niche 
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surrounded by adipocytes [141], which occupy approxi-
mately the 70% of BM volume, and contain TGs that pro-
duce and release FAs, in turn taken up by MM cells [45, 
141]. BM adipocytes (BMAds) have been shown to contrib-
ute to malignancies such as acute myelogenous leukemia, 
bone-metastatic breast cancer and MM, although the under-
lying mechanisms remain elusive [142]. After the initial dis-
coveries indicating that BMAds support proliferation, migra-
tion and chemoresistance of MM cells [143, 144], it was 
reported that MM cells can in turn affect BMAds. Edwards 
group showed that, in the BM surrounding the tumor, BMAd 
number was decreased in mice with high MM burden [145], 
and that lipid content of BMAds was reduced after contact 
with MM cells. Furthermore, when co-cultured with MM 
cells, normal BMAds were reprogrammed and produced 
adipokines, such as adiponectin and TNFα, that activate 
osteoclastogenesis prompting MM bone disease [146].

Interestingly, Panaroni et al. demonstrated that BM aspi-
rates from precursor states of MM, including MGUS and 
SMM, are more prone to adipogenic commitment compared 
with healthy donors. In vitro co-culture assays confirmed 
an adipocyte-induced promotion of MM cell proliferation 
in MGUS and SMM compared with NDMM. Using murine 
MM cell/BM adipocyte co-culture models, MM cells were 
found to induce lipolysis in adipocytes via activation of the 
ferroptosis pathway. Upregulation of fatty acid transporters 
1 and 4 on MM cells mediated the uptake of secreted FFAs 
by adjacent MM cells. The effect of FFAs on MM cells was 
dose-dependent, with increased in proliferation at lower con-
centrations versus induction of ferroptosis-mediated lipo-
toxicity at higher concentrations. Intriguingly, exogenous 
administration of arachidonic acid, a very-long-chain FFA, 
in a murine plasmacytoma model triggered a reduction in 
tumor burden [69], strengthening the therapeutic potential 
of strategies modulating FAs in the BMM.

Immune dysfunction is present in MM, conferring tumor 
growth and resistance to therapy, but also determining a 
higher susceptibility of patients to infections and impaired 
cellular immunity, evidenced by a weak immune response 
to vaccinations [147, 148]. Overall, alterations in a wide 
variety of cells, including accessory and immune cells of the 
BM, as regulatory T cells, myeloid-derived suppressor cells 
[149, 150], Th17 cells [151], tumor-associated macrophages, 
MSCs and osteoclasts contribute to immune suppression and 
immune exhaustion found in MM [120]. Understanding 
metabolic alterations underlying T cell dysfunction in the 
BMM can be thus instrumental for the design of novel can-
cer immunotherapeutics. Intriguingly, decrease in BM  CD8+ 
T-cell function in MM patients is common respect to healthy 
controls, and it is also consistently lower in BM samples 
than matched peripheral blood cells. These changes were 
accompanied by decreased mitochondrial mass and mark-
edly elevated long-chain FA uptake. In vitro experiments 

confirmed that uptake of BM lipids suppressed  CD8+ T 
function, which was impaired in autologous BM plasma, 
but rescued by lipid removal. RNA-sequencing revealed 
high expression of FATP1 in BM  CD8+ T cells from MM 
patients, and FATP1 blockade rescued  CD8+ T-cell func-
tion, thus representing a novel target for anti-MM immuno-
therapy. Notably, analysis of samples from treated patient 
cohorts demonstrated that  CD8+ T cell metabolic dysfunc-
tion is relieved in treatment-responsive but not relapsed MM 
patients [152]. Increased CD36 expression in tumor-infiltrat-
ing  CD8+ T cells was associated with tumor progression and 
poor survival in human and murine cancer models. Notably, 
CD36-depleted effector  CD8+ T-cells exhibited increased 
cytotoxic cytokine production and enhanced tumor kill-
ing abilities; conversely, CD36-mediated uptake of FAs by 
tumor-infiltrating  CD8+ T cells induced lipid peroxidation 
and ferroptosis, and led to reduced production of cytotoxic 
cytokines and impaired anti-MM activity [153].

Modulation of intracellular cholesterol levels can also 
trigger recognition and targeting of MM cells by NK cells, 
with potential implication in NK-based immunotherapy. 
As stated above, LXRs are nuclear receptors regulating 
intracellular cholesterol and lipid homeostasis. MM cells 
have been reported to respond to LXR activation through 
changes in the intracellular cholesterol content, associated 
with an enhanced expression of the NK cell-activating 
ligands, i.e. the major histocompatibility complex class I 
chain-related molecule A and B (MICA and MICB), two 
well characterized ligands of the NK group 2D receptor 
(NKG2D)/CD314 activating receptor expressed in cyto-
toxic lymphocytes, thus making MM cells more prone to 
NK-mediated recognition and killing. Mechanistically, 
LXR activation was found to regulate MICA at the tran-
scriptional level, while MICB by inhibition of its lysosomal 
degradation [154].

Circulating lipids as potential biomarkers 
in MM

Many studies have reported alterations in plasma lipid lev-
els in many types of cancers, including MM, which can be 
regarded as novel potential prognostic, diagnostic and pre-
dictive circulating biomarkers.

The metabolic profile has proven useful to discriminate 
among healthy individuals, NDMM patients or those in 
complete remission [155]. By profiling the metabolome of 
BM supernatants and peripheral plasma of MM patients and 
healthy controls, Fei et al. identified potential diagnostic and 
prognostic biomarkers. In particular, a different metabolic 
pattern emerged between the two groups, highlighting the 
possible metabolic biomarkers associated with the risk of 
the disease, such as urea abundance, uric acid, serine and 
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threonine in both plasma and BM of MM patients, likely 
associated with impaired kidney function during MM pro-
gression. In addition, FAs (linoleic acid, oleic and palmitic 
acid) and glycerol levels were significantly lower in MM 
patients than in healthy controls, while the levels of two 
TCA intermediates (succinate and malate) increased [156]. 
Additionally, patients with MM had higher saturated n-6 
polyunsaturated FA and FA (PUFA) scores and lower mono-
unsaturated, n-3 PUFA, and trans-FA scores than controls. 
The n-3/n-6 PUFA ratio was overall lower in patients with 
MM, and there was a distinct grouping of individual FA 
variants in MM patients [157].

FA levels in the erythrocytic membrane have been found 
altered in patients with MM compared to controls. Spe-
cifically, significant reductions in long-chain PUFA such 
as arachidonic acid and docosahexaenoic acid have been 
observed, representing potential diagnostic and/or predic-
tive biomarker for MM [70].

Puchades-Carrasco et al. [158] used HNMR spectros-
copy to characterize the different metabolic profiles of three 
patient groups consisting of 31 serum samples from healthy 
donors, 27 NDMM, and 23 patients after complete remis-
sion. NDMM patients had low levels of saturated, MUFA 
and PUFA, along with low levels of cholesterol, compared 
to the control group; conversely, patients in full remission 
showed an increase in cholesterol levels that matched the 
metabolic profiles of patients at the time of diagnosis.

Circulating lipids can be also used to improve the pre-
dictive accuracy of biomarkers for prognosis, likely help-
ing the decision-making process and overall management 
of patients. In a prediction study of a cohort of 275 MM 
patients, a six parameters prognostic model, including 
ApoB, apoa1, LDL, HDL and TG, was capable of stratify-
ing patients into high- and low-risk groups and predicting 
survival with greater accuracy and discriminatory ability 
than conventional (ISS and Durie Salmon) staging systems. 
Among 275 patients, 179 were treated with conventional 
drugs, while 96 underwent therapy with bortezomib. In both 
subgroups, patients in the low-risk group had longer over-
all survival; in addition, ApoB and the ApoB/apoa1 ratio 
were risk factors for MM patients, and survival times were 
extended when total cholesterol and HDL-C levels found 
elevated [159]. In a further study, 59 serum samples of MM 
patients before receiving treatment were analyzed to identify 
serum lipid biomarker candidates to predict the response to 
bortezomib. No significant difference was found between the 
responder and non-responder groups; while the levels of 10 
lipid metabolites, 7 LPG (glycerophospholipids), of which 
two PCs represented phosphatidylcholine (PC:38:3/38:5), 
and five PE ethers of the phosphatidylethanolamine class 
(PE:36:4e/ 36:4p/ 38:4p/ 38:5p/ 38:7e), 1 SM of the sphin-
golipid class (SM 39:1 + H), and 2 ChE, cholesterol esters, 
(18:3 + NH4 and 20:3 + NH4), were progressively increased 

in non-responders, through minor/partial responders to good 
responders, thus emerging as potential predictive biomarkers 
of response to bortezomib therapy [160].

Other metabolites were found in different concentrations 
between the MGUS, NDMM, and RRMM groups such 
as free carnitine, acetylcarnitine, glutamate, asymmetric 
dimethylarginine (ADMA), and eight phosphatidylcholine 
species (PC), applying them as potential predictive biomark-
ers of disease [161].

Bone and lipid metabolic dysfunctions of MM patients 
have been associated with alterations in Vitamin D, a fat-
soluble cell signaling molecule responsible for several func-
tions within the cell, such as the maintenance of homeostasis 
and metabolism of calcium and phosphate and the regulation 
of bone metabolism. Bao et al. demonstrated that serum vita-
min D is related to cholesterol, and that serum cholesterol 
and triglyceride levels in patients with NDMM were sig-
nificantly lower in the group with a lower ratio, compared 
to the group with a higher ratio, of vitamin D to telopeptide 
carboxyterminal type I collagen (b-CTX), a known marker 
of osteoclast activity. This finding supports the notion that 
vitamin D deficiency is linked to dysfunction in bone and 
lipid metabolism, and can predict the severity of the disease 
[162].

Conclusion and future perspectives

Lipid reprogramming is emerging among the metabolic 
hallmarks of cancer, and can be also exploited by myeloma 
PCs to meet the requirements for survival, proliferation, 
chemoresistance and immune evasion. It has now become 
clear that the BMM can contribute to the metabolic rewir-
ing of the MM cells, causing changes in metabolite levels, 
increased/decreased activity of metabolic enzymes and met-
abolic shifts [35]. Such metabolic adaptations will promote a 
pro-tumoral environment stimulating MM growth and drug 
resistance.

Overall, lipid metabolic vulnerabilities of MM involve 
enhanced lipid de novo synthesis and/or exogenous 
lipid uptake, due to the overexpression of FASN, ACC1, 
HMGCR, and CD36 or FABP proteins. Targeting of sphin-
golipids, which regulate relevant survival pathways in MM 
PCs, have been also considered in the design of strategies 
aimed at reactivating the sensitivity of the malignant MM 
clone to standard-of-care treatments [112].

The major lipid therapeutic vulnerabilities found in MM, 
and discussed in this review, are summarized in Table 1.

Overall, manipulation and/or pharmacological targeting 
of lipid pathways in tumor cells might cause multiple effects. 
As an example, therapeutic strategies aimed at the inhibition 
of key rate limiting enzymes in lipid biosynthesis can reduce 
lipid availability and energy supply, while over-stimulation 
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of some lipid levels can trigger ER stress; in parallel, dis-
ruption of mitochondrial oxidative homeostasis can lead to 
mitochondrial stress, and blocking lipid-related signaling 
pathways can even promote ferroptosis, a programmed cell 
death caused by excessive accumulation of iron-dependent 
lipid peroxides from PUFA. Since several hematological 
malignancies seem sensitive to ferroptosis, it is emerging as 
a promising therapeutic strategy indeed deserving thorough 
investigation also in MM [39], especially on the basis of the 
wide epigenetic reprogramming that ferroptotic agents might 
trigger in MM cells [163].

Recent studies have also highlighted the multifac-
eted activities of cholesterol, regulating cell integrity and 
inflammatory responses. As such, manipulation of choles-
terol homeostasis has been shown to affect leukemic and 
MM cell survival, and to restore immune responses [154, 
164–167]. Because of the complex regulation of cholesterol 

metabolism and the multiple mechanisms by which choles-
terol interferes with tumor and immune responses, target-
ing cholesterol metabolism for cancer treatment remains 
challenging. Preclinical studies have shown successful anti-
tumor immune responses when using drugs that interfere 
with cholesterol homeostasis combined with immune check-
point blockers [168], prompting the translation of this strat-
egy into clinical practice to treat MM patients undergoing 
immune checkpoint blockade. Lipophilic statins have unfor-
tunately a short half-life, suggesting that HMGCR activity 
should rapidly recover, leading to resynthesis of cholesterol 
and isoprenoids; moreover, diets containing geranylgeraniol 
may overcome the blockade of isoprenoid synthesis carried 
out by statins. All these factors, which may account for the 
failure of some prospective clinical trials [169], should be 
considered when designing statin-based studies [98].

Table 1  Drugs targeting lipid-related molecules in MM

Drug(s) Target Molecular and biological effects in preclinical MM models References

Etomoxir CPT1 Suppression of FAO through inhibition of long-chain FAs import into mitochondria
Arrest of cell cycle in G0/G1 phase and reduction of intracellular ATP levels

[72]

Orlistat FASN Blocking of TG hydrolysis and FA absorption
Sensitization of MM cells to bortezomib through activation of apoptosis

[72]

ASO targeting lnc-17–92 ACC1 Inhibition of lnc-17–92 with antagonistic effects on the c-MYC-ACC1 axis
In vitro and in vivo anti-tumor effects in preclinical MM models

[73]

AVX420
AVX002

cPLA2α Downregulation of PGE2 and arachidonic acid intracellular content
Inhibition of NF-κB activity through the suppression of PI3K/AKT signaling
Reduction of cell viability through apoptosis activation

[84]

BMS3094013
SBFI-26

FABP5 Alteration of cell structure, inflammatory and metabolic pathways
Reduction of oxygen consumption rate and FAO

[90]

Statins HMGCR Inhibition of FPP and GGPP production through inhibition of farnesylation. and gera-
nylgeranylation processes

Activation of UPR pathway and induction of apoptosis

[100]

Bisphosphonates FDPS Immunomodulatory effects and direct anti-MM activity
Reduction of bone resorption through osteoclastogenesis blockade

[103]

R115777 FTase Inhibition of MM cell viability
Activation of ER stress response through suppression of Ras expression

[104]

3-PEHPC GGTase II Accumulation of intracellular light chains and apoptosis mediated by UPR
Suppression of MM cell proliferation and apoptosis induction by preventing Rab activa-

tion

[101, 106]

GGSI VSW1198
CML-07–119
RAM2061

GGDPS In vitro and in vivo inhibition of tumor growth
Downregulation of Rab-mediated proteins monoclonal traffic
Reduction of serum M protein levels
Activation of UPR and ER stress and induction of apoptosis

[101, 107, 108]

K145
ABC294640

SphK2 Reduction of intracellular S1P levels and increase in ceramide
Reactivation of bortezomib sensitivity in drug-resistant MM cells
Activation of apoptosis in MM cells via caspase-3 triggering
Enhancement of c-MYC proteasomal degradation

[119]

D609 SMS Reduction of intracellular SM synthesis
Increase in ceramide intracellular levels
Cytotoxic effects against PI-resistant MM cells

[112]

NB-DNJ GSL Suppression of RANKL-induced osteoclastogenesis and reduction of bone destruction [135]
Eliglustat GSL Suppression of RANKL-induced osteoclastogenesis and reduction of bone destruction; 

synergistic effect with zoledronic acid
[137]
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In conclusion, understanding the oncogenic mechanisms 
of lipid metabolism, and targeting lipid metabolism repro-
gramming to identify new MM dependencies, has important 
scientific significance and holds the potential for clinical 
translation. It can be hypothesized that a single lipid pathway 
inhibition might not be effective in inhibiting MM devel-
opment, activating escape metabolic pathways. Therefore, 
combined inhibition of multiple pathways, involved in lipid 
metabolism, glucose and/or amino acid metabolism, should 
be explored in the near future in the context of MM preclini-
cal and clinical studies.
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