Skip to main content

Advertisement

Log in

Long non-coding RNA MM2P suppresses M1-polarized macrophages-mediated excessive inflammation to prevent sodium taurocholate-induced acute pancreatitis by blocking SHP2-mediated STAT3 dephosphorylation

  • Research
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

M1 macrophage-mediated excessive inflammatory response plays a key role in the onset and progression of acute pancreatitis (AP), and this study aimed to investigate the role and underlying mechanisms by which the macrophage polarization-related long noncoding RNA (lncRNA) MM2P participated in the regulation of AP progression. By performing quantitative reverse-transcription PCR (qRT-PCR) assay, lncRNA MM2P was found to be downregulated in both sodium taurocholate-induced AP model mice tissues and lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and gain-of-function experiments confirmed that overexpression of lncRNA MM2P counteracted inflammatory responses, reduced macrophage infiltration and facilitated M1-to-M2 transformation of macrophages to ameliorate AP development in vitro and in vivo. Further mechanical experiments revealed that lncRNA MM2P inhibited Src homology 2 containing protein tyrosine phosphatase 2 (SHP2)-mediated signal transducer and activator of transcription 3 (STAT3) dephosphorylation to activate the STAT3 signaling, and silencing of SHP2 suppressed M1 type skewing in LPS-induced RAW264.7 cells. Interestingly, our rescuing experiments verified that lncRNA MM2P-induced suppressing effects on M1-polarization of LPS-treated RAW264.7 cells were abrogated by co-treating cells with STAT3 inhibitor stattic. Collectively, our data for the first time revealed that lncRNA MM2P suppressed M1-polarized macrophages to attenuate the progression of sodium taurocholate-induced AP, and lncRNA MM2P might be an ideal biomarker for AP diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data and materials availability

The data were all included in this paper. The original data are available from the corresponding author upon reasonable request.

References

  1. Manohar M, Jones EK, Rubin SJS, et al. Novel circulating and tissue monocytes as well as macrophages in pancreatitis and recovery. Gastroenterology. 2021;161(6):2014–29. https://doi.org/10.1053/j.gastro.2021.08.033.

    Article  CAS  PubMed  Google Scholar 

  2. Silva-Vaz P, Abrantes AM, Castelo-Branco M, et al. Multifactorial scores and biomarkers of prognosis of acute pancreatitis: applications to research and practice. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21010338.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Habtezion A, Gukovskaya AS, Pandol SJ. Acute pancreatitis: a multifaceted set of organelle and cellular interactions. Gastroenterology. 2019;156(7):1941–50. https://doi.org/10.1053/j.gastro.2018.11.082.

    Article  CAS  PubMed  Google Scholar 

  4. Peng C, Li Z, Yu X. The role of pancreatic infiltrating innate immune cells in acute pancreatitis. Int J Med Sci. 2021;18(2):534–45. https://doi.org/10.7150/ijms.51618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sendler M, Weiss FU, Golchert J, et al. Cathepsin B-mediated activation of trypsinogen in endocytosing macrophages increases severity of pancreatitis in mice. Gastroenterology. 2018;154(3):704-718.e10. https://doi.org/10.1053/j.gastro.2017.10.018.

    Article  CAS  PubMed  Google Scholar 

  6. Qiu Z, Xu F, Wang Z, et al. Blockade of JAK2 signaling produces immunomodulatory effect to preserve pancreatic homeostasis in severe acute pancreatitis. Biochem Biophys Rep. 2021. https://doi.org/10.1016/j.bbrep.2021.101133.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sun K, He SB, Qu JG, et al. IRF5 regulates lung macrophages M2 polarization during severe acute pancreatitis in vitro. World J Gastroenterol. 2016;22(42):9368–77. https://doi.org/10.3748/wjg.v22.i42.9368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu J, Zhang L, Shi J, et al. Macrophage phenotypic switch orchestrates the inflammation and repair/regeneration following acute pancreatitis injury. EBioMedicine. 2020. https://doi.org/10.1016/j.ebiom.2020.102920.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang L, Shi J, Du D, et al. Ketogenesis acts as an endogenous protective programme to restrain inflammatory macrophage activation during acute pancreatitis. EBioMedicine. 2022. https://doi.org/10.1016/j.ebiom.2022.103959.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Duan F, Wang X, Wang H, et al. GDF11 ameliorates severe acute pancreatitis through modulating macrophage M1 and M2 polarization by targeting the TGFβR1/SMAD-2 pathway. Int Immunopharmacol. 2022. https://doi.org/10.1016/j.intimp.2022.108777.

    Article  PubMed  Google Scholar 

  11. Hu F, Lou N, Jiao J, et al. Macrophages in pancreatitis: Mechanisms and therapeutic potential. Biomed Pharmacother. 2020; 131110693. Doi: https://doi.org/10.1016/j.biopha.2020.110693.

  12. Dey S, Udari LM, RiveraHernandez P, et al. Loss of miR-29a/b1 promotes inflammation and fibrosis in acute pancreatitis. JCI Insight. 2021. https://doi.org/10.1172/jci.insight.149539.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yuan X, Luo C, Wu J, et al. Abdominal paracentesis drainage attenuates intestinal mucosal barrier damage through macrophage polarization in severe acute pancreatitis. Exp Biol Med. 2021;246(18):2029–38. https://doi.org/10.1177/15353702211015144.

    Article  CAS  Google Scholar 

  14. Chen S, Zhu J, Sun LQ, et al. LincRNA-EPS alleviates severe acute pancreatitis by suppressing HMGB1-triggered inflammation in pancreatic macrophages. Immunology. 2021;163(2):201–19. https://doi.org/10.1111/imm.13313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu F, Tao X, Zhao L, et al. LncRNA-PVT1 aggravates severe acute pancreatitis by promoting autophagy via the miR-30a-5p/Beclin-1 axis. Am J Transl Res. 2020;12(9):5551–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu W, Wang M, Li C, et al. LncRNA Snhg1 plays an important role via sequestering rno-miR-139-5p to function as a ceRNA in acute rejection after rat liver transplantation based on the bioinformatics analysis. Front Genet. 2022. https://doi.org/10.3389/fgene.2022.827193.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xu C, Luo Y, Ntim M, et al. Effect of emodin on long non-coding RNA-mRNA networks in rats with severe acute pancreatitis-induced acute lung injury. J Cell Mol Med. 2021;25(4):1851–66. https://doi.org/10.1111/jcmm.15525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bai J, Zhang Y, Zheng X, et al. LncRNA MM2P-induced, exosome-mediated transfer of Sox9 from monocyte-derived cells modulates primary chondrocytes. Cell Death Dis. 2020;11(9):763. https://doi.org/10.1038/s41419-020-02945-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cao J, Dong R, Jiang L, et al. LncRNA-MM2P identified as a modulator of macrophage M2 polarization. Cancer Immunol Res. 2019;7(2):292–305. https://doi.org/10.1158/2326-6066.Cir-18-0145.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Zou Y, Zheng J, et al. lncRNA-MM2P downregulates the production of pro-inflammatory cytokines in acute gouty arthritis. Mol Med Rep. 2020;22(3):2227–34. https://doi.org/10.3892/mmr.2020.11314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu ZJ, Ran YY, Qie SY, et al. Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway. CNS Neurosci Ther. 2019;25(12):1353–62. https://doi.org/10.1111/cns.13261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu Z, Meng Y, Miao Y, et al. Propofol ameliorates renal ischemia/reperfusion injury by enhancing macrophage M2 polarization through PPARγ/STAT3 signaling. Aging. 2021;13(11):15511–22. https://doi.org/10.18632/aging.203107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang X, Jia P, Ren T, et al. MicroRNA-382 promotes M2-like macrophage via the SIRP-α/STAT3 signaling pathway in aristolochic acid-induced renal fibrosis. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2022.864984.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu X, Li Y, Jiang X, et al. Long non-coding RNA: multiple effects on the differentiation, maturity and cell function of dendritic cells. Clin Immunol. 2022. https://doi.org/10.1016/j.clim.2022.109167.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang C, Chen S, Zhang T, et al. TLR3 ligand polyI: C prevents acute pancreatitis through the interferon-β/interferon-α/β receptor signaling pathway in a caerulein-induced pancreatitis mouse model. Front Immunol. 2019. https://doi.org/10.3389/fimmu.2019.00980.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu X, Zhu Q, Zhang M, et al. Isoliquiritigenin ameliorates acute pancreatitis in mice via inhibition of oxidative stress and modulation of the Nrf2/HO-1 pathway. Oxid Med Cell Longev. 2018. https://doi.org/10.1155/2018/7161592.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Han X, Ni J, Wu Z, et al. Myeloid-specific dopamine D(2) receptor signalling controls inflammation in acute pancreatitis via inhibiting M1 macrophage. Br J Pharmacol. 2020;177(13):2991–3008. https://doi.org/10.1111/bph.15026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buck SJS, Plaman BA, Bishop AC. Inhibition of SHP2 and SHP1 protein tyrosine phosphatase activity by chemically induced dimerization. ACS Omega. 2022;7(16):14180–8. https://doi.org/10.1021/acsomega.2c00780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim M, Morales LD, Jang IS, et al. Protein tyrosine phosphatases as potential regulators of STAT3 signaling. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19092708.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li X, He C, Li N, et al. The interplay between the gut microbiota and NLRP3 activation affects the severity of acute pancreatitis in mice. Gut Microbes. 2020;11(6):1774–89. https://doi.org/10.1080/19490976.2020.1770042.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wan J, Wang J, Wagner LE 2nd, et al. Pancreas-specific CHRM3 activation causes pancreatitis in mice. JCI Insight. 2021. https://doi.org/10.1172/jci.insight.132585.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Feng YC, Gan Y, et al. LncRNA MILIP links YBX1 to translational activation of Snai1 and promotes metastasis in clear cell renal cell carcinoma. J Exp Clin Cancer Res. 2022;41(1):260. https://doi.org/10.1186/s13046-022-02452-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu J, Niu Z, Zhang R, et al. MALAT1 shuttled by extracellular vesicles promotes M1 polarization of macrophages to induce acute pancreatitis via miR-181a-5p/HMGB1 axis. J Cell Mol Med. 2021;25(19):9241–54. https://doi.org/10.1111/jcmm.16844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Feng Z, Yinchu Z, Yinsheng S, et al. Potential effects of calcium binding protein S100A12 on severity evaluation and curative effect of severe acute pancreatitis. Inflammation. 2015;38(1):290–7. https://doi.org/10.1007/s10753-014-0032-x.

    Article  CAS  PubMed  Google Scholar 

  35. Sternby H, Hartman H, Thorlacius H, et al. The initial course of IL1β, IL-6, IL-8, IL-10, IL-12, IFN-γ and TNF-α with regard to severity grade in acute pancreatitis. Biomolecules. 2021. https://doi.org/10.3390/biom11040591.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu X, Luo W, Chen J, et al. USP25 deficiency exacerbates acute pancreatitis via up-regulating TBK1-NF-κB signaling in macrophages. Cell Mol Gastroenterol Hepatol. 2022;14(5):1103–22. https://doi.org/10.1016/j.jcmgh.2022.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu H, Wu L, Liu L, et al. Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization. Biochem Pharmacol. 2018. https://doi.org/10.1016/j.bcp.2018.05.007.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

KP and CB conceived and designed the experiments, LCJ, WW and YYZ performed the experiments and analyzed the data, LS, CB and YYZ draft the manuscript, LS, KP and YLNYZ·ABLZ revised the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Lin Song.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, K., Biao, C., Zhao, Y.Y. et al. Long non-coding RNA MM2P suppresses M1-polarized macrophages-mediated excessive inflammation to prevent sodium taurocholate-induced acute pancreatitis by blocking SHP2-mediated STAT3 dephosphorylation. Clin Exp Med 23, 3589–3603 (2023). https://doi.org/10.1007/s10238-023-01126-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01126-w

Keywords

Navigation