Skip to main content

Advertisement

Log in

Exosome-associated miRNA-99a-5p targeting BMPR2 promotes hepatocyte apoptosis during the process of hepatic fibrosis

  • Correspondence
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Liver fibrosis is a serious stage of chronic liver injury. Inhibition of hepatic stellate cells activation and hepatocytes apoptosis is important measures in the treatment of liver fibrosis. Studies have shown that exosomes are involved in regulating the information transmission between cells, but there are few studies on the interaction between exosomes from HSC and hepatocytes. This study screened miRNAs with significant differences related to liver fibrosis in the database. Then, we activated HSC applying transforming growth factor β1 (TGF-β1) and collected exosomes. The expression of miRNA in HSC-derived exosomes was verified by quantitative real-time PCR (qRT-PCR). The results of cell function test showed that HSC-derived exocrine miRNA-99a-5p could inhibit hepatocytes proliferation and promote hepatocytes apoptosis. Conversely, inhibition of miRNA-99a-5p can promote hepatocytes proliferation and inhibit apoptosis. Target gene prediction and luciferase assay show that miRNA can specifically bind to BMPR2 site sequence. In addition, we also detected the expression of BMPR2 and apoptosis-related protein by qRT-PCR and Western blot (WB). In conclusion, this study demonstrates that HSC-derived exocrine miRNA-99a-5p can promote hepatocytes apoptosis and participate in the process of liver fibrosis by targeting BMPR2. Our findings highlight the therapeutic potential of HSC-derived exocrine miRNA-99a-5p in hepatic fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Availability of data and materials

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding authors.

References

  1. McQuitty CE, Williams R, Chokshi S, Urbani L. Immunomodulatory role of the extracellular matrix within the liver disease microenvironment. Front Immunol. 2020;11:574276. https://doi.org/10.3389/fimmu.2020.574276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chon YE, Park JY, Myoung SM, et al. Improvement of liver fibrosis after long-term antiviral therapy assessed by fibroscan in chronic hepatitis B patients with advanced fibrosis. Am J Gastroenterol. 2017;112(6):882–91. https://doi.org/10.1038/ajg.2017.93.

    Article  PubMed  Google Scholar 

  3. Szabo G, Kamath PS, Shah VH, Thursz M, Mathurin P, Meeting EAJ. Alcohol-related liver disease: areas of consensus, unmet needs and opportunities for further study. Hepatology. 2019;69(5):2271–83. https://doi.org/10.1002/hep.30369.

    Article  PubMed  Google Scholar 

  4. Marjot T, Moolla A, Cobbold JF, Hodson L, Tomlinson JW. Nonalcoholic fatty liver disease in adults: current concepts in etiology, outcomes, and management. Endocr Rev. 2020. https://doi.org/10.1210/endrev/bnz009.

    Article  PubMed  Google Scholar 

  5. Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev. 2017;1(121):27–42. https://doi.org/10.1016/j.addr.2017.05.007.

    Article  CAS  Google Scholar 

  6. Wells RG. Cellular sources of extracellular matrix in hepatic fibrosis. Clin Liver Dis. 2008;12(4):759–68. https://doi.org/10.1016/j.cld.2008.07.008.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kim DK, Lee J, Simpson RJ, Lotvall J, Gho YS. EVpedia: a community web resource for prokaryotic and eukaryotic extracellular vesicles research. Semin Cell Dev Biol. 2015;40:4–7. https://doi.org/10.1016/j.semcdb.2015.02.005.

    Article  CAS  PubMed  Google Scholar 

  8. Yanez-Mo M, Siljander PR, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. https://doi.org/10.3402/jev.v4.27066.

    Article  PubMed  Google Scholar 

  9. Szabo G, Momen-Heravi F. Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2017;14(8):455–66. https://doi.org/10.1038/nrgastro.2017.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen L, Chen R, Kemper S, Cong M, You H, Brigstock DR. Therapeutic effects of serum extracellular vesicles in liver fibrosis. J Extracell Vesicles. 2018. https://doi.org/10.1080/20013078.2018.1461505.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Thietart S, Rautou PE. Extracellular vesicles as biomarkers in liver diseases: a clinician’s point of view. J Hepatol. 2020;73(6):1507–25. https://doi.org/10.1016/j.jhep.2020.07.014.

    Article  CAS  PubMed  Google Scholar 

  12. Tian S, Zhou X, Zhang M, et al. Mesenchymal stem cell-derived exosomes protect against liver fibrosis via delivering miR-148a to target KLF6/STAT3 pathway in macrophages. Stem Cell Res Ther. 2022;13(1):330. https://doi.org/10.1186/s13287-022-03010-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dai X, Chen C, Xue J, et al. Exosomal MALAT1 derived from hepatic cells is involved in the activation of hepatic stellate cells via miRNA-26b in fibrosis induced by arsenite. Toxicol Lett. 2019;316:73–84. https://doi.org/10.1016/j.toxlet.2019.09.008.

    Article  CAS  PubMed  Google Scholar 

  14. Hyun J, Wang S, Kim J, et al. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat Commun. 2016;22(7):10993. https://doi.org/10.1038/ncomms10993.

    Article  CAS  Google Scholar 

  15. Zhang T, Hu J, Wang X, et al. MicroRNA-378 promotes hepatic inflammation and fibrosis via modulation of the NF-kappaB-TNFalpha pathway. J Hepatol. 2019;70(1):87–96. https://doi.org/10.1016/j.jhep.2018.08.026.

    Article  CAS  PubMed  Google Scholar 

  16. Safran M, Masoud R, Sultan M, et al. Extracellular vesicular transmission of miR-423–5p from HepG2 cells inhibits the differentiation of hepatic stellate cells. Cells. 2022. https://doi.org/10.3390/cells11101715.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen L, Chen R, Velazquez VM, Brigstock DR. Fibrogenic signaling is suppressed in hepatic stellate cells through targeting of connective tissue growth factor (CCN2) by cellular or exosomal MicroRNA-199a-5p. Am J Pathol. 2016;186(11):2921–33. https://doi.org/10.1016/j.ajpath.2016.07.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Geiger A, Walker A, Nissen E. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice. Biochem Biophys Res Commun. 2015;467(2):303–9. https://doi.org/10.1016/j.bbrc.2015.09.166.

    Article  CAS  PubMed  Google Scholar 

  19. Jiang JX, Chen X, Serizawa N, et al. Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic Biol Med. 2012;53(2):289–96. https://doi.org/10.1016/j.freeradbiomed.2012.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lavallard VJ, Bonnafous S, Patouraux S, et al. Serum markers of hepatocyte death and apoptosis are non invasive biomarkers of severe fibrosis in patients with alcoholic liver disease. PLoS ONE. 2011;6(3):e17599. https://doi.org/10.1371/journal.pone.0017599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Inagaki Y, Okazaki I. Emerging insights into Transforming growth factor beta Smad signal in hepatic fibrogenesis. Gut. 2007;56(2):284–92. https://doi.org/10.1136/gut.2005.088690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gough NR, Xiang X, Mishra L. TGF-beta signaling in liver, pancreas, and gastrointestinal diseases and cancer. Gastroenterology. 2021;161(2):434-52 e15. https://doi.org/10.1053/j.gastro.2021.04.064.

    Article  CAS  PubMed  Google Scholar 

  23. Dewidar B, Meyer C, Dooley S, Meindl-Beinker AN. TGF-beta in hepatic stellate cell activation and liver fibrogenesis-updated 2019. Cells. 2019. https://doi.org/10.3390/cells8111419.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Verrecchia F, Mauviel A. Transforming growth factor-beta and fibrosis. World J Gastroenterol. 2007;13(22):3056–62. https://doi.org/10.3748/wjg.v13.i22.3056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Castilla A, Prieto J. Human fibrogenesis and transforming growth factor beta-1. J Hepatol. 1993;18(3):378–9. https://doi.org/10.1016/s0168-8278(05)80285-5.

    Article  CAS  PubMed  Google Scholar 

  26. Tadokoro T, Morishita A, Masaki T. Diagnosis and therapeutic management of liver fibrosis by MicroRNA. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22158139.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Qi X, Lai J. Exosomal microRNAs and progression of nonalcoholic steatohepatitis (NASH). Int J Mol Sci. 2022. https://doi.org/10.3390/ijms232113501.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Guo S, Booten SL, Aghajan M, et al. Antisense oligonucleotide treatment ameliorates alpha-1 antitrypsin-related liver disease in mice. J Clin Invest. 2014;124(1):251–61. https://doi.org/10.1172/JCI67968.

    Article  CAS  PubMed  Google Scholar 

  29. Lu W, Tang H, Li S, Bai L, Chen Y. Extracellular vesicles as potential biomarkers and treatment options for liver failure: a systematic review up to March 2022. Front Immunol. 2023;14:1116518. https://doi.org/10.3389/fimmu.2023.1116518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Garcia-Martin R, Wang G, Brandao BB, et al. MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature. 2022;601(7893):446–51. https://doi.org/10.1038/s41586-021-04234-3.

    Article  CAS  PubMed  Google Scholar 

  31. Wang X, He Y, Mackowiak B, Gao B. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut. 2021;70(4):784–95. https://doi.org/10.1136/gutjnl-2020-322526.

    Article  CAS  PubMed  Google Scholar 

  32. Yang X, Ma L, Wei R, et al. Twist1-induced miR-199a-3p promotes liver fibrosis by suppressing caveolin-2 and activating TGF-beta pathway. Signal Transduct Target Ther. 2020;5(1):75. https://doi.org/10.1038/s41392-020-0169-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Khanam A, Saleeb PG, Kottilil S. Pathophysiology and treatment options for hepatic fibrosis: can it be completely cured? Cells. 2021. https://doi.org/10.3390/cells10051097.

    Article  PubMed  PubMed Central  Google Scholar 

  34. van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 2012;64(3):676–705. https://doi.org/10.1124/pr.112.005983.

    Article  CAS  PubMed  Google Scholar 

  35. Wang N, Li X, Zhong Z, et al. 3D hESC exosomes enriched with miR-6766-3p ameliorates liver fibrosis by attenuating activated stellate cells through targeting the TGFbetaRII-SMADS pathway. J Nanobiotechnol. 2021;19(1):437. https://doi.org/10.1186/s12951-021-01138-2.

    Article  CAS  Google Scholar 

  36. Chiabotto G, Ceccotti E, Tapparo M, Camussi G, Bruno S. Human liver stem cell-derived extracellular vesicles target hepatic stellate cells and attenuate their pro-fibrotic phenotype. Front Cell Dev Biol. 2021;9:777462. https://doi.org/10.3389/fcell.2021.777462.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wan Z, Yang X, Liu X, et al. M2 macrophage-derived exosomal microRNA-411–5p impedes the activation of hepatic stellate cells by targeting CAMSAP1 in NASH model. iScience. 2022;25(7):104597. https://doi.org/10.1016/j.isci.2022.104597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hou X, Yin S, Ren R, et al. Myeloid-cell-specific IL-6 signaling promotes MicroRNA-223-enriched exosome production to attenuate NAFLD-associated fibrosis. Hepatology. 2021;74(1):116–32. https://doi.org/10.1002/hep.31658.

    Article  CAS  PubMed  Google Scholar 

  39. Schon HT, Weiskirchen R. Immunomodulatory effects of transforming growth factor-beta in the liver. Hepatobiliary Surg Nutr. 2014;3(6):386–406. https://doi.org/10.3978/j.issn.2304-3881.2014.11.06.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang J, Jin H, Liu H, et al. MiRNA-99a directly regulates AGO2 through translational repression in hepatocellular carcinoma. Oncogenesis. 2014;3(4):e97. https://doi.org/10.1038/oncsis.2014.11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gharib AF, Eed EM, Khalifa AS, et al. Value of Serum miRNA-96-5p and miRNA-99a-5p as diagnostic biomarkers for hepatocellular carcinoma. Int J Gen Med. 2022;15:2427–36. https://doi.org/10.2147/IJGM.S354842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the Science and Technology Project of Hainan Province & Hainan Province Clinical Medical Center. Finally, we thank the reviewers.

Funding

The study was funded by the Science and Technology Project of Hainan Province, Hainan Natural Science Foundation, Grant/Award Number: Nos. 821QN0983 and 819QN387, the healthy department of Hainan province (20A200104). This research was also supported by Hainan Province Clinical Medical Center.

Author information

Authors and Affiliations

Authors

Contributions

FL designed and conceived, performed the experiments, analysed the data, and approved the final draft. XH W prepared figures and/or tables, and approved the final draft. TF Y, SL W performed some of the experiments. All the authors have reviewed and approved the final version of the manuscript.

Corresponding authors

Correspondence to Feng Li or Xiaohong Wen.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Yan, T., Wang, S. et al. Exosome-associated miRNA-99a-5p targeting BMPR2 promotes hepatocyte apoptosis during the process of hepatic fibrosis. Clin Exp Med 23, 4021–4031 (2023). https://doi.org/10.1007/s10238-023-01122-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01122-0

Keywords

Navigation