Skip to main content
Log in

The roles of FHL2 in cancer

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

LIM domain protein 2, also known as LIM protein FHL2, is a member of the LIM-only family. Due to its LIM domain protein characteristics, FHL2 is capable of interacting with various proteins and plays a crucial role in regulating gene expression, cell growth, and signal transduction in muscle and cardiac tissue. In recent years, mounting evidence has indicated that the FHLs protein family is closely associated with the development and occurrence of human tumors. On the one hand, FHL2 acts as a tumor suppressor by down-regulating in tumor tissue and effectively inhibiting tumor development by limiting cell proliferation. On the other hand, FHL2 serves as an oncoprotein by up-regulating in tumor tissue and binding to multiple transcription factors to suppress cell apoptosis, stimulate cell proliferation and migration, and promote tumor progression. Therefore, FHL2 is considered a double-edged sword in tumors with independent and complex functions. This article reviews the role of FHL2 in tumor occurrence and development, discusses FHL2 interaction with other proteins and transcription factors, and its involvement in multiple cell signaling pathways. Finally, the clinical significance of FHL2 as a potential target in tumor therapy is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BC:

Breast cancer

HCC:

Hepatocellular carcinoma

GC:

Gastric cancer

CC:

Colorectal cancer

NSCLC:

Non-small cell lung cancer

PDAC:

Pancreatic ductal adenocarcinoma

GCTs:

Granulosa cell tumors

EMT:

Epithelial-mesenchymal transition

SLIM:

Skeletal muscle LIM

BRCA1:

Breast cancer type1 susceptibility gene

Id3:

Inhibitors of differentiation 3

SRF:

Serum response factor

References

  1. Shathasivam T, Kislinger T, Gramolini AO. Genes, proteins and complexes: the multifaceted nature of FHL family proteins in diverse tissues. J Cell Mol Med. 2010;14(12):2702–20. https://doi.org/10.1111/j.1582-4934.2010.01176.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liang Y, Bradford WH, Zhang J, Sheikh F. Four and a half LIM domain protein signaling and cardiomyopathy. Biophys Rev. 2018;10(4):1073–85. https://doi.org/10.1007/s12551-018-0434-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. She M, Tang M, Jiang T, Zeng Q. The roles of the LIM domain proteins in drosophila cardiac and hematopoietic morphogenesis. Front Cardiovasc Med. 2021;8:616851. https://doi.org/10.3389/fcvm.2021.616851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Freyd G, Kim SK, Horvitz HR. Novel cysteine-rich motif and homeodomain in the product of the Caenorhabditis elegans cell lineage gene lin-11. Nature. 1990;344(6269):876–9. https://doi.org/10.1038/344876a0.

    Article  CAS  PubMed  Google Scholar 

  5. Yasuoka Y, Taira M. LIM homeodomain proteins and associated partners: then and now. Curr Top Dev Biol. 2021;145:113–66. https://doi.org/10.1016/bs.ctdb.2021.04.003.

    Article  CAS  PubMed  Google Scholar 

  6. Zhu X, Wang B, Wang X, Zhang C, Wei X. Genome-wide identification, characterization and expression analysis of the LIM transcription factor family in quinoa. Physiol Mol Biol Plants Int J Funct Plant Biol. 2021;27(4):787–800. https://doi.org/10.1007/s12298-021-00988-2.

    Article  CAS  Google Scholar 

  7. Chan KK, Tsui SK, Lee SM, et al. Molecular cloning and characterization of FHL2, a novel LIM domain protein preferentially expressed in human heart. Gene. 1998;210(2):345–50. https://doi.org/10.1016/s0378-1119(97)00644-6.

    Article  CAS  PubMed  Google Scholar 

  8. Fimia GM, De Cesare D, Sassone-Corsi P. A family of LIM-only transcriptional coactivators: tissue-specific expression and selective activation of CREB and CREM. Mol Cell Biol. 2000;20(22):8613–22. https://doi.org/10.1128/mcb.20.22.8613-8622.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morgan MJ, Madgwick AJ. The LIM proteins FHL1 and FHL3 are expressed differently in skeletal muscle. Biochem Biophys Res Commun. 1999;255(2):245–50. https://doi.org/10.1006/bbrc.1999.0179.

    Article  CAS  PubMed  Google Scholar 

  10. Han S, Cui C, Wang Y, et al. FHL3 negatively regulates the differentiation of skeletal muscle satellite cells in chicken. 3 Biotech. 2019;9(6):206. https://doi.org/10.1007/s13205-019-1735-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wei X, Zhang H. Four and a half LIM domains protein 1 can be as a double-edged sword in cancer progression. Cancer Biol Med. 2020;17(2):270–81. https://doi.org/10.20892/j.issn.2095-3941.2019.0420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang Z, Yu C, Yu L, Shu H, Zhu X. The roles of FHL3 in cancer. Front Oncol. 2022;12:887828. https://doi.org/10.3389/fonc.2022.887828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee JY, Lori D, Wells DJ, Kemp PR. FHL1 activates myostatin signalling in skeletal muscle and promotes atrophy. FEBS Open Bio. 2015;5:753–62. https://doi.org/10.1016/j.fob.2015.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arimura T, Hayashi T, Matsumoto Y, et al. Structural analysis of four and half LIM protein-2 in dilated cardiomyopathy. Biochem Biophys Res Commun. 2007;357(1):162–7. https://doi.org/10.1016/j.bbrc.2007.03.128.

    Article  CAS  PubMed  Google Scholar 

  15. Stathopoulou K, Schnittger J, Raabe J, et al. CMYA5 is a novel interaction partner of FHL2 in cardiac myocytes. FEBS J. 2022;289(15):4622–45. https://doi.org/10.1111/febs.16402.

    Article  CAS  PubMed  Google Scholar 

  16. Morgan MJ, Madgwick AJ. The fourth member of the FHL family of LIM proteins is expressed exclusively in the testis. Biochem Biophys Res Commun. 1999;255(2):251–5. https://doi.org/10.1006/bbrc.1999.0180.

    Article  CAS  PubMed  Google Scholar 

  17. Morgan MJ, Whawell SA. The structure of the human LIM protein ACT gene and its expression in tumor cell lines. Biochem Biophys Res Commun. 2000;273(2):776–83. https://doi.org/10.1006/bbrc.2000.3006.

    Article  CAS  PubMed  Google Scholar 

  18. Dawid IB, Breen JJ, Toyama R. LIM domains: multiple roles as adapters and functional modifiers in protein interactions. Trends Genet TIG. 1998;14(4):156–62. https://doi.org/10.1016/s0168-9525(98)01424-3.

    Article  CAS  PubMed  Google Scholar 

  19. Wang J, Yang Y, Xia HH, et al. Suppression of FHL2 expression induces cell differentiation and inhibits gastric and colon carcinogenesis. Gastroenterology. 2007;132(3):1066–76. https://doi.org/10.1053/j.gastro.2006.12.004.

    Article  CAS  PubMed  Google Scholar 

  20. Genini M, Schwalbe P, Scholl FA, Remppis A, Mattei MG, Schäfer BW. Subtractive cloning and characterization of DRAL, a novel LIM-domain protein down-regulated in rhabdomyosarcoma. DNA Cell Biol. 1997;16(4):433–42. https://doi.org/10.1089/dna.1997.16.433.

    Article  CAS  PubMed  Google Scholar 

  21. Johannessen M, Møller S, Hansen T, Moens U, Van Ghelue M. The multifunctional roles of the four-and-a-half-LIM only protein FHL2. Cell Mol Life Sci CMLS. 2006;63(3):268–84. https://doi.org/10.1007/s00018-005-5438-z.

    Article  CAS  PubMed  Google Scholar 

  22. Kleiber K, Strebhardt K, Martin BT. The biological relevance of FHL2 in tumour cells and its role as a putative cancer target. Anticancer Res. 2007;27(1a):55–61.

    CAS  PubMed  Google Scholar 

  23. Cao CY, Mok SW, Cheng VW, Tsui SK. The FHL2 regulation in the transcriptional circuitry of human cancers. Gene. 2015;572(1):1–7. https://doi.org/10.1016/j.gene.2015.07.043.

    Article  CAS  PubMed  Google Scholar 

  24. Jiao Y, Wei J, Li Z, Zhou J, Liu Y. High FHL2 mRNA expression and its prognostic value in lung cancer. Aging. 2022;14(19):7986–8000. https://doi.org/10.18632/aging.204328.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Algaber A, Madhi R, Hawez A, Rönnow CF, Rahman M. Targeting FHL2-E-cadherin axis by miR-340-5p attenuates colon cancer cell migration and invasion. Oncol Lett. 2021;22(2):637. https://doi.org/10.3892/ol.2021.12898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen YH, Wu ZQ, Zhao YL, Si YL, Guo MZ, Han WD. FHL2 inhibits the Id3-promoted proliferation and invasive growth of human MCF-7 breast cancer cells. Chin Med J. 2012;125(13):2329–33.

    CAS  PubMed  Google Scholar 

  27. Li N, Xu L, Zhang J, Liu Y. High level of FHL2 exacerbates the outcome of non-small cell lung cancer (NSCLC) patients and the malignant phenotype in NSCLC cells. Int J Exp Pathol. 2022;103(3):90–101. https://doi.org/10.1111/iep.12436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schlisio S, Halperin T, Vidal M, Nevins JR. Interaction of YY1 with E2Fs, mediated by RYBP, provides a mechanism for specificity of E2F function. EMBO J. 2002;21(21):5775–86. https://doi.org/10.1093/emboj/cdf577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Philippar U, Schratt G, Dieterich C, et al. The SRF target gene Fhl2 antagonizes RhoA/MAL-dependent activation of SRF. Mol Cell. 2004;16(6):867–80. https://doi.org/10.1016/j.molcel.2004.11.039.

    Article  CAS  PubMed  Google Scholar 

  30. Kong Y, Shelton JM, Rothermel B, et al. Cardiac-specific LIM protein FHL2 modifies the hypertrophic response to beta-adrenergic stimulation. Circulation. 2001;103(22):2731–8. https://doi.org/10.1161/01.cir.103.22.2731.

    Article  CAS  PubMed  Google Scholar 

  31. Scholl FA, McLoughlin P, Ehler E, de Giovanni C, Schäfer BW. DRAL is a p53-responsive gene whose four and a half LIM domain protein product induces apoptosis. J Cell Biol. 2000;151(3):495–506. https://doi.org/10.1083/jcb.151.3.495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu J, Zhou J, Li MS, et al. Transcriptional regulation of the tumor suppressor FHL2 by p53 in human kidney and liver cells. PloS ONE. 2014;9(8):e99359. https://doi.org/10.1371/journal.pone.0099359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Friedrich FW, Reischmann S, Schwalm A, et al. FHL2 expression and variants in hypertrophic cardiomyopathy. Basic Res Cardiol. 2014;109(6):451. https://doi.org/10.1007/s00395-014-0451-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hobert O, Westphal H. Functions of LIM-homeobox genes. Trends Genet TIG. 2000;16(2):75–83. https://doi.org/10.1016/s0168-9525(99)01883-1.

    Article  CAS  PubMed  Google Scholar 

  35. Shi X, Bowlin KM, Garry DJ. Fhl2 interacts with Foxk1 and corepresses Foxo4 activity in myogenic progenitors. Stem Cells (Dayton, Ohio). 2010;28(3):462–9. https://doi.org/10.1002/stem.274.

    Article  CAS  PubMed  Google Scholar 

  36. Ng EK, Chan KK, Wong CH, et al. Interaction of the heart-specific LIM domain protein, FHL2, with DNA-binding nuclear protein, hNP220. J Cell Biochem. 2002;84(3):556–66.

    Article  PubMed  Google Scholar 

  37. Stathopoulou K, Cuello F, Candasamy AJ, et al. Four-and-a-half LIM domains proteins are novel regulators of the protein kinase D pathway in cardiac myocytes. Biochem J. 2014;457(3):451–61. https://doi.org/10.1042/bj20131026.

    Article  CAS  PubMed  Google Scholar 

  38. Ding L, Wang Z, Yan J, et al. Human four-and-a-half LIM family members suppress tumor cell growth through a TGF-beta-like signaling pathway. J Clin Investig. 2009;119(2):349–61. https://doi.org/10.1172/jci35930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ng CF, Ng PK, Lui VW, et al. FHL2 exhibits anti-proliferative and anti-apoptotic activities in liver cancer cells. Cancer Lett. 2011;304(2):97–106. https://doi.org/10.1016/j.canlet.2011.02.001.

    Article  CAS  PubMed  Google Scholar 

  40. Nouët Y, Dahan J, Labalette C, et al. The four and a half LIM-only protein 2 regulates liver homeostasis and contributes to carcinogenesis. J Hepatol. 2012;57(5):1029–36. https://doi.org/10.1016/j.jhep.2012.06.035.

    Article  CAS  PubMed  Google Scholar 

  41. Yan J, Zhu J, Zhong H, Lu Q, Huang C, Ye Q. BRCA1 interacts with FHL2 and enhances FHL2 transactivation function. FEBS Lett. 2003;553(1–2):183–9. https://doi.org/10.1016/s0014-5793(03)00978-5.

    Article  CAS  PubMed  Google Scholar 

  42. Xiong Z, Ding L, Sun J, et al. Synergistic repression of estrogen receptor transcriptional activity by FHL2 and Smad4 in breast cancer cells. IUBMB Life. 2010;62(9):669–76. https://doi.org/10.1002/iub.367.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang W, Yang Y, Jiang B, et al. XIAP-associated factor 1 interacts with and attenuates the trans-activity of four and a Half LIM protein 2. Mol Carcinog. 2011;50(3):199–207. https://doi.org/10.1002/mc.20705.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang W, Wang J, Zou B, et al. Four and a half LIM protein 2 (FHL2) negatively regulates the transcription of E-cadherin through interaction with Snail1. Eur J Cancer (Oxford, England 1990). 2011;47(1):121–30. https://doi.org/10.1016/j.ejca.2010.07.045.

    Article  CAS  Google Scholar 

  45. Verset L, Tommelein J, Moles Lopez X, et al. Epithelial expression of FHL2 is negatively associated with metastasis-free and overall survival in colorectal cancer. Br J Cancer. 2013;109(1):114–20. https://doi.org/10.1038/bjc.2013.290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gullotti L, Czerwitzki J, Kirfel J, et al. FHL2 expression in peritumoural fibroblasts correlates with lymphatic metastasis in sporadic but not in HNPCC-associated colon cancer. Lab Investig J Tech Methods Pathol. 2011;91(12):1695–705. https://doi.org/10.1038/labinvest.2011.109.

    Article  CAS  Google Scholar 

  47. Tammela T, Sanchez-Rivera FJ, Cetinbas NM, et al. A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature. 2017;545(7654):355–9. https://doi.org/10.1038/nature22334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zienert E, Eke I, Aust D, Cordes N. LIM-only protein FHL2 critically determines survival and radioresistance of pancreatic cancer cells. Cancer Lett. 2015;364(1):17–24. https://doi.org/10.1016/j.canlet.2015.04.019.

    Article  CAS  PubMed  Google Scholar 

  49. Manzo-Merino J, Massimi P, Banks L, Lizano M. High risk HPV E6 oncoproteins impair the subcellular distribution of the four and a half LIM-only protein 2 (FHL2). Virology. 2015;476:100–5. https://doi.org/10.1016/j.virol.2014.11.025.

    Article  CAS  PubMed  Google Scholar 

  50. Wang C, Lv X, He C, Davis JS, Wang C, Hua G. Four and a half LIM domains 2 (FHL2) contribute to the epithelial ovarian cancer carcinogenesis. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21207751.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Huang Z, Li Q, Luo K, et al. miR-340-FHL2 axis inhibits cell growth and metastasis in ovarian cancer. Cell Death Dis. 2019;10(5):372. https://doi.org/10.1038/s41419-019-1604-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nagaraj AB, Joseph P, Kovalenko O, et al. Critical role of Wnt/β-catenin signaling in driving epithelial ovarian cancer platinum resistance. Oncotarget. 2015;6(27):23720–34. https://doi.org/10.18632/oncotarget.4690.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chen D, Xu W, Bales E, et al. SKI activates Wnt/beta-catenin signaling in human melanoma. Can Res. 2003;63(20):6626–34.

    CAS  Google Scholar 

  54. Pašaliç Z, Greif PA, Jurinoviç V, et al. FHL2 interacts with CALM and is highly expressed in acute erythroid leukemia. Blood Cancer J. 2011;1(11):e42. https://doi.org/10.1038/bcj.2011.40.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. Hepatocellular carcinoma. Lancet (Lond, Engl). 2022;400(10360):1345–62. https://doi.org/10.1016/s0140-6736(22)01200-4.

    Article  CAS  Google Scholar 

  56. Xia T, Lévy L, Levillayer F, et al. The four and a half LIM-only protein 2 (FHL2) activates transforming growth factor β (TGF-β) signaling by regulating ubiquitination of the E3 ligase Arkadia. J Biol Chem. 2013;288(3):1785–94. https://doi.org/10.1074/jbc.M112.439760.

    Article  CAS  PubMed  Google Scholar 

  57. Shao C, Qiu Y, Liu J, et al. PARP12 (ARTD12) suppresses hepatocellular carcinoma metastasis through interacting with FHL2 and regulating its stability. Cell Death Dis. 2018;9(9):856. https://doi.org/10.1038/s41419-018-0906-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kashyap D, Pal D, Sharma R, et al. Global increase in breast cancer incidence: risk factors and preventive measures. Biomed Res Int. 2022;2022:9605439. https://doi.org/10.1155/2022/9605439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Platet N, Cathiard AM, Gleizes M, Garcia M. Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion. Crit Rev Oncol Hematol. 2004;51(1):55–67. https://doi.org/10.1016/j.critrevonc.2004.02.001.

    Article  PubMed  Google Scholar 

  60. Fan M, Yan PS, Hartman-Frey C, et al. Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant. Cancer Res. 2006;66(24):11954–66. https://doi.org/10.1158/0008-5472.Can-06-1666.

    Article  CAS  PubMed  Google Scholar 

  61. Putnik M, Zhao C, Gustafsson J, Dahlman-Wright K. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells. Biochem Biophys Res Commun. 2012;426(1):26–32. https://doi.org/10.1016/j.bbrc.2012.08.007.

    Article  CAS  PubMed  Google Scholar 

  62. Wu L, Wu Y, Gathings B, et al. Smad4 as a transcription corepressor for estrogen receptor alpha. J Biol Chem. 2003;278(17):15192–200. https://doi.org/10.1074/jbc.M212332200.

    Article  CAS  PubMed  Google Scholar 

  63. Tanaka S, Sugimachi K, Kawaguchi H, Saeki H, Ohno S, Wands JR. Grb7 signal transduction protein mediates metastatic progression of esophageal carcinoma. J Cell Physiol. 2000;183(3):411–5. https://doi.org/10.1002/(sici)1097-4652(200006)183:3%3c411::Aid-jcp14%3e3.0.Co;2-z.

    Article  CAS  PubMed  Google Scholar 

  64. Siamakpour-Reihani S, Argiros HJ, Wilmeth LJ, et al. The cell migration protein Grb7 associates with transcriptional regulator FHL2 in a Grb7 phosphorylation-dependent manner. Journal of molecular recognition : JMR. 2009;22(1):9–17. https://doi.org/10.1002/jmr.916.

    Article  CAS  PubMed  Google Scholar 

  65. Martin BT, Kleiber K, Wixler V, et al. FHL2 regulates cell cycle-dependent and doxorubicin-induced p21Cip1/Waf1 expression in breast cancer cells. Cell Cycle (Georget, Tex). 2007;6(14):1779–88. https://doi.org/10.4161/cc.6.14.4448.

    Article  CAS  Google Scholar 

  66. Gabriel B, Fischer DC, Orlowska-Volk M, et al. Expression of the transcriptional coregulator FHL2 in human breast cancer: a clinicopathologic study. J Soc Gynecol Investig. 2006;13(1):69–75. https://doi.org/10.1016/j.jsgi.2005.10.001.

    Article  CAS  PubMed  Google Scholar 

  67. Liu L. Expression and correlation analysis of FHL-2 and COX-2 in gastric cancer tissues. Mod Med Oncol. 2011;19(04):733–5.

    CAS  Google Scholar 

  68. Yan Q, Zhang W, Wu Y, et al. KLF8 promotes tumorigenesis, invasion and metastasis of colorectal cancer cells by transcriptional activation of FHL2. Oncotarget. 2015;6(28):25402–17. https://doi.org/10.18632/oncotarget.4517.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Li SY, Huang PH, Tarng DC, et al. Four-and-a-half LIM domains protein 2 is a coactivator of Wnt signaling in diabetic kidney disease. J Am Soc Nephrol. 2015;26(12):3072–84. https://doi.org/10.1681/asn.2014100989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lalle G, Twardowski J, Grinberg-Bleyer Y. NF-κB in cancer immunity: friend or foe? Cells. 2021. https://doi.org/10.3390/cells10020355.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Qiao L, Wang Y, Pang R, et al. Oncogene functions of FHL2 are independent from NF-kappaBIalpha in gastrointestinal cancer. Pathology oncology research : POR. 2009;15(1):31–6. https://doi.org/10.1007/s12253-008-9085-1.

    Article  CAS  PubMed  Google Scholar 

  72. Al Moustafa AE. Epithelial-mesenchymal transition and its regulators are major targets of triple-negative breast cancer. Cell Adhes Migr. 2013;7(5):424–5. https://doi.org/10.4161/cam.26728.

    Article  Google Scholar 

  73. Iwatsuki M, Mimori K, Yokobori T, et al. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 2010;101(2):293–9. https://doi.org/10.1111/j.1349-7006.2009.01419.x.

    Article  CAS  PubMed  Google Scholar 

  74. Kong F, Shi L. Expression of FHL2 in mesenchymal transformation of gastric cancer epithelial cells. China Clin Res. 2018;31(03):365–8. https://doi.org/10.13429/j.cnki.cjcr.2018.03.019.

    Article  CAS  Google Scholar 

  75. Mitchell EP. Risk trends in colorectal cancer. J Natl Med Assoc. 2020;112(5):445. https://doi.org/10.1016/j.jnma.2020.10.002.

    Article  PubMed  Google Scholar 

  76. Ji AM, Su D, Che O, et al. Functional gene silencing mediated by chitosan/siRNA nanocomplexes. Nanotechnology. 2009;20(40):405103. https://doi.org/10.1088/0957-4484/20/40/405103.

    Article  CAS  PubMed  Google Scholar 

  77. Amann T, Egle Y, Bosserhoff AK, Hellerbrand C. FHL2 suppresses growth and differentiation of the colon cancer cell line HT-29. Oncol Rep. 2010;23(6):1669–74. https://doi.org/10.3892/or_00000810.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang W, Jiang B, Guo Z, et al. Four-and-a-half LIM protein 2 promotes invasive potential and epithelial-mesenchymal transition in colon cancer. Carcinogenesis. 2010;31(7):1220–9. https://doi.org/10.1093/carcin/bgq094.

    Article  CAS  PubMed  Google Scholar 

  79. Wu M, Wang J, Tang W, et al. FOXK1 interaction with FHL2 promotes proliferation, invasion and metastasis in colorectal cancer. Oncogenesis. 2016;5(11):e271. https://doi.org/10.1038/oncsis.2016.68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu Y, Guo Z, Zhang D, et al. A novel colon cancer gene therapy using rAAV-mediated expression of human shRNA-FHL2. Int J Oncol. 2013;43(5):1618–26. https://doi.org/10.3892/ijo.2013.2090.

    Article  CAS  PubMed  Google Scholar 

  81. Lu H, Wang X, Urvalek AM, et al. Transformation of human ovarian surface epithelial cells by Krüppel-like factor 8. Oncogene. 2014;33(1):10–8. https://doi.org/10.1038/onc.2012.545.

    Article  CAS  PubMed  Google Scholar 

  82. Li JC, Yang XR, Sun HX, et al. Up-regulation of Krüppel-like factor 8 promotes tumor invasion and indicates poor prognosis for hepatocellular carcinoma. Gastroenterology. 2010;139(6):2146-57.e12. https://doi.org/10.1053/j.gastro.2010.08.004.

    Article  CAS  PubMed  Google Scholar 

  83. Wu Y, Peng Y, Wu M, et al. Oncogene FOXK1 enhances invasion of colorectal carcinoma by inducing epithelial-mesenchymal transition. Oncotarget. 2016;7(32):51150–62. https://doi.org/10.18632/oncotarget.9457.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Verset L, Tommelein J, Decaestecker C, et al. ADAM-17/FHL2 colocalisation suggests interaction and role of these proteins in colorectal cancer. Tumour Biol J Int Soc Oncodev Biol Med. 2017;39(3):1010428317695024. https://doi.org/10.1177/1010428317695024.

    Article  CAS  Google Scholar 

  85. Al-Nomani L, Friedrichs J, Schüle R, Büttner R, Friedrichs N. Tumoral expression of nuclear cofactor FHL2 is associated with lymphatic metastasis in sporadic but not in HNPCC-associated colorectal cancer. Pathol Res Pract. 2015;211(2):171–4. https://doi.org/10.1016/j.prp.2014.12.001.

    Article  CAS  PubMed  Google Scholar 

  86. Nasim F, Sabath BF, Eapen GA. Lung cancer. Med Clin N Am. 2019;103(3):463–73. https://doi.org/10.1016/j.mcna.2018.12.006.

    Article  PubMed  Google Scholar 

  87. Rankin NM, McWilliams A, Marshall HM. Lung cancer screening implementation: complexities and priorities. Respirology (Carlton, Vic). 2020;25(Suppl 2):5–23. https://doi.org/10.1111/resp.13963.

    Article  PubMed  Google Scholar 

  88. Jacobsen MM, Silverstein SC, Quinn M, et al. Timeliness of access to lung cancer diagnosis and treatment: a scoping literature review. Lung Cancer (Amsterdam, Netherlands). 2017;112:156–64. https://doi.org/10.1016/j.lungcan.2017.08.011.

    Article  PubMed  Google Scholar 

  89. Borczuk AC, Shah L, Pearson GD, et al. Molecular signatures in biopsy specimens of lung cancer. Am J Respir Crit Care Med. 2004;170(2):167–74. https://doi.org/10.1164/rccm.200401-066OC.

    Article  PubMed  Google Scholar 

  90. Arend RC, Londoño-Joshi AI, Straughn JM Jr, Buchsbaum DJ. The Wnt/β-catenin pathway in ovarian cancer: a review. Gynecol Oncol. 2013;131(3):772–9. https://doi.org/10.1016/j.ygyno.2013.09.034.

    Article  CAS  PubMed  Google Scholar 

  91. Song Y, Chen J, Zhang C, et al. Mechanosensitive channel Piezo1 induces cell apoptosis in pancreatic cancer by ultrasound with microbubbles. iScience. 2022;25(2):103733. https://doi.org/10.1016/j.isci.2022.103733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jin X, Jiao X, Jiao J, Zhang T, Cui B. Increased expression of FHL2 promotes tumorigenesis in cervical cancer and is correlated with poor prognosis. Gene. 2018;669:99–106. https://doi.org/10.1016/j.gene.2018.05.087.

    Article  CAS  PubMed  Google Scholar 

  93. Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10(8):550–60. https://doi.org/10.1038/nrc2886.

    Article  CAS  PubMed  Google Scholar 

  94. Jin H, Lee K, Kim YH, et al. Scaffold protein FHL2 facilitates MDM2-mediated degradation of IER3 to regulate proliferation of cervical cancer cells. Oncogene. 2016;35(39):5106–18. https://doi.org/10.1038/onc.2016.54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hua G, He C, Lv X, et al. The four and a half LIM domains 2 (FHL2) regulates ovarian granulosa cell tumor progression via controlling AKT1 transcription. Cell Death Dis. 2016;7(7):e2297. https://doi.org/10.1038/cddis.2016.207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Varier L, Sundaram SM, Gamit N, Warrier S. An overview of ovarian cancer: the role of cancer stem cells in chemoresistance and a precision medicine approach targeting the Wnt pathway with the antagonist sFRP4. Cancers. 2023. https://doi.org/10.3390/cancers15041275.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kn Y, Perumalsamy NK, Warrier S, Perumalsamy LR, Dharmarajan A. Wnt antagonist as therapeutic targets in ovarian cancer. Int J Biochem Cell Biol. 2022;145:106191. https://doi.org/10.1016/j.biocel.2022.106191.

    Article  CAS  Google Scholar 

  98. Yang Y, Hou H, Haller EM, Nicosia SV, Bai W. Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J. 2005;24(5):1021–32. https://doi.org/10.1038/sj.emboj.7600570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kahl P, Gullotti L, Heukamp LC, et al. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Can Res. 2006;66(23):11341–7. https://doi.org/10.1158/0008-5472.Can-06-1570.

    Article  CAS  Google Scholar 

  100. McGrath MJ, Binge LC, Sriratana A, et al. Regulation of the transcriptional coactivator FHL2 licenses activation of the androgen receptor in castrate-resistant prostate cancer. Can Res. 2013;73(16):5066–79. https://doi.org/10.1158/0008-5472.Can-12-4520.

    Article  CAS  Google Scholar 

  101. Wang Q, Wang X, Tian X, Tang R, Xu X. Four and a half LIM domains 2 contributes to the development of human tongue squamous cell carcinoma. J Mol Histol. 2016;47(2):105–16. https://doi.org/10.1007/s10735-016-9654-7.

    Article  CAS  PubMed  Google Scholar 

  102. Joos H, Albrecht W, Laufer S, Reichel H, Brenner RE. IL-1beta regulates FHL2 and other cytoskeleton-related genes in human chondrocytes. Mol Med (Camb, Mass). 2008;14(3–4):150–9. https://doi.org/10.2119/2007-00118.Joos.

    Article  CAS  PubMed  Google Scholar 

  103. Lai CF, Bai S, Uthgenannt BA, et al. Four and half lim protein 2 (FHL2) stimulates osteoblast differentiation. J Bone Miner Res Off J Am Soc Bone Miner Res. 2006;21(1):17–28. https://doi.org/10.1359/jbmr.050915.

    Article  CAS  Google Scholar 

  104. Wixler V, Hirner S, Müller JM, et al. Deficiency in the LIM-only protein Fhl2 impairs skin wound healing. J Cell Biol. 2007;177(1):163–72. https://doi.org/10.1083/jcb.200606043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Verset L, Feys L, Trépant AL, De Wever O, Demetter P. FHL2: a scaffold protein of carcinogenesis, tumour-stroma interactions and treatment response. Histol Histopathol. 2016;31(5):469–78. https://doi.org/10.14670/hh-11-709.

    Article  CAS  PubMed  Google Scholar 

  106. Wei Y, Renard CA, Labalette C, et al. Identification of the LIM protein FHL2 as a coactivator of beta-catenin. J Biol Chem. 2003;278(7):5188–94. https://doi.org/10.1074/jbc.M207216200.

    Article  CAS  PubMed  Google Scholar 

  107. Wixler V. The role of FHL2 in wound healing and inflammation. FASEB J Off Publ Fed Am Soc Exp Biol. 2019;33(7):7799–809. https://doi.org/10.1096/fj.201802765RR.

    Article  CAS  Google Scholar 

  108. Duan Y, Qiu Y, Huang X, Dai C, Yang J, He W. Deletion of FHL2 in fibroblasts attenuates fibroblasts activation and kidney fibrosis via restraining TGF-β1-induced Wnt/β-catenin signaling. J Mol Med (Berl). 2020;98(2):291–307. https://doi.org/10.1007/s00109-019-01870-1.

    Article  CAS  PubMed  Google Scholar 

  109. Ng CF, Xu JY, Li MS, Tsui SK. Identification of FHL2-regulated genes in liver by microarray and bioinformatics analysis. J Cell Biochem. 2014;115(4):744–53. https://doi.org/10.1002/jcb.24714.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Excellent Youth Project of Hunan Provincial Education Department [Grant No.22B0411]; Hunan Provincial Innovation Foundation For Postgraduate [Grant No.CX20210960].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. JZ and QZ wrote the manuscript; MS reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Meihua She.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zeng, Q. & She, M. The roles of FHL2 in cancer. Clin Exp Med 23, 3113–3124 (2023). https://doi.org/10.1007/s10238-023-01076-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01076-3

Keywords

Navigation