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Abstract
Idiopathic inflammatory myopathy (IIM) are heterogeneous autoimmune diseases that primarily affect the proximal muscles. 
IIM subtypes include dermatomyositis (DM), polymyositis (PM), and anti-synthetase syndrome (ASS). Metabolic distur-
bances may cause irreversible structural damage to muscle fibers in patients with IIM. However, the metabolite profile of 
patients with different IIM subtypes remains elusive. To investigate metabolic alterations and identify patients with differ-
ent IIM subtypes, we comprehensively profiled plasma metabolomics of 46 DM, 13 PM, 12 ASS patients, and 30 healthy 
controls (HCs) using UHPLC-Q Exactive HF mass spectrometer. Multiple statistical analyses and random forest were used 
to discover differential metabolites and potential biomarkers. We found that tryptophan metabolism, phenylalanine and 
tyrosine metabolism, fatty acid biosynthesis, beta-oxidation of very long chain fatty acids, alpha-linolenic acid and linoleic 
acid metabolism, steroidogenesis, bile acid biosynthesis, purine metabolism, and caffeine metabolism are all enriched in 
the DM, PM, and ASS groups. We also found that different subtypes of IIM have their unique metabolic pathways. We 
constructed three models (five metabolites) to identify DM, PM, ASS from HC in the discovery and validation sets. Five 
to seven metabolites can distinguish DM from PM, DM from ASS, and PM from ASS. A panel of seven metabolites can 
identify anti-melanoma differentiation-associated gene 5 positive (MDA5 +) DM with high accuracy in the discovery and 
validation sets. Our results provide potential biomarkers for diagnosing different subtypes of IIM and a better understanding 
of the underlying mechanisms of IIM.
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Introduction

Idiopathic inflammatory myopathy (IIM) is a group of rare 
autoimmune disorders affecting multiple extra muscular 
organs in addition to the usually severe and acute muscle 
inflammation [1]. Despite advances in the management and 
treatment of IIM, they are still associated with increased 
morbidity and mortality, often leading to severe impair-
ment of the quality of life [1]. The main subtypes of IIM 
include dermatomyositis (DM), polymyositis (PM), overlap 
syndrome with myositis (OM), including anti-synthetase 
syndrome (ASS), immune-mediated necrotizing myopathy 
(IMNM), and inclusion body myositis (IBM). Diagnosis and 
classification of different subtypes are challenging, often 
requiring the detection of autoantibodies, histological evalu-
ation of skeletal muscle biopsies, and muscle MRI/EMG 
[2]. Improved diagnostic criteria are needed to provide a 
reliable diagnosis and effective treatment of all subforms of 
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IIM. Melanoma differentiation-associated gene 5 (MDA5) 
is a unique autoantigen target in a subtype of DM [3]. Pre-
vious studies have found that Chinese DM patients have a 
higher frequency of anti-MDA5 antibodies [4]. Anti-MDA5 
positive DM is generally associated with a significant risk 
of interstitial lung disease (ILD), which has a potentially 
fatal course and poor prognosis [5]. Early identification of 
the unique clinical condition is critical for appropriate early 
intervention to improve patient outcomes. Therefore, a bet-
ter understanding of the pathways that trigger pathogenesis 
and the precise classification of IIM will aid in the clinical 
development of more effective treatments.

Recent studies have demonstrated that infiltration of 
T cells, macrophages and dendritic cells, MHC class I 
molecule expression on muscle fibers, and other immune 
mechanisms are involved in the pathophysiology of IIM 
[6]. Emerging evidence suggests that non-immune mecha-
nisms such as ER stress, NFκB-activation, and free radicals 
also participate in skeletal muscle fiber damage in IIM [7]. 
However, the exact mechanism has not been elucidated. 
Immunometabolism is a relatively new area of metabolic 
research focused on functional studies between metabolic 
reprogramming and the immune system, which will pro-
vide an additional dimension to understanding the molecu-
lar mechanisms underlying different subtypes of IIM [8]. 
18-fluorodeoxyglucose PET/CT scans reveal dysregulated 
glucose metabolism in the muscle of patients with DM/PM 
[9]. Previous studies have also shown that serum fatty acid, 
phosphatidylcholine, and triacylglycerol are altered in PM/
DM patients compared to healthy controls [10]. Recent stud-
ies have shown that phenylalanine, tyrosine and tryptophan 
biosynthesis, and nitrogen metabolism are significantly 
involved in DM patients [11]. There is accumulating evi-
dence that glycolysis, fatty acid oxidation, fatty acid syn-
thesis, the tricarboxylic acid cycle, amino acid metabolism, 
and the pentose phosphate pathway are all involved in the 
metabolism of patients with IIM [12]. However, the con-
tribution of each pathway to the pathogenesis may depend 
on the particular subset of IIM. Currently, information on 
metabolite profiles in patients with different subtypes of IIM 
(such as DM, PM, and ASS) and homogeneous subgroups 
through stratification by myositis-specific antibodies is very 
limited.

Here, we used an untargeted metabolomic approach to 
thoroughly investigate metabolite alterations in the plasma 
of DM, PM, and ASS patients by UHPLC-Q Exactive HF 
mass spectrometer. We also analyzed metabolite changes in 
the plasma of patients with anti-MDA5 positive (MDA5 +) 
and negative (MDA5-) DM. We observed differential metab-
olites and disturbed metabolic pathways among patients 
with different subtypes of IIM. Our results also show that 
metabolites in plasma can distinguish IIM isoforms. Our 
study provides new insights into the underlying mechanism 

of IIM, and may provide a novel diagnostic method for dif-
ferent subtypes of IIM.

Materials and methods

Materials

LC–MS-grade acetonitrile (ACN) and methanol (MeOH) 
were purchased from Fisher Scientific, Inc. (Rockford, IL). 
Formic acid was obtained from DIKMA Technologies, Inc. 
(Beijing, China), and ammonium formate was purchased 
from Sigma Aldrich (St. Louis, MO). Internal standards 
L-Leucine-d3 and L-Tryptophan-d5 were from Toronto 
Research Chemicals (Toronto, ON); L-Phenylalanine 
(13C9, 99%) was from Cambridge Isotope Laboratories, Inc. 
(Tewksbury, MA); Progesterone-2,3,4-13C3 was purchased 
from Sigma Aldrich (St. Louis, MO). Ultrapure water was 
filtered through a Milli-Q system (Millipore, Billerica, MA).

Specimens

The samples and clinical information were reviewed and 
approved by the Ethics Committee of Shenzhen Peo-
ple’s Hospital, China (LL-KY 2019514). After obtaining 
informed consent, K2-EDTA plasma samples were collected 
from 46 patients with DM, 13 patients with PM, 12 patients 
with ASS, and 30 age and gender-matched healthy controls. 
All procedures performed in the study were in accordance 
with the 1964 Helsinki declaration and its later amendments. 
The diagnosis and classification of IIM (including DM, PM, 
and ASS) comply with Classification Criteria by the Euro-
pean League Against Rheumatism/American College of 
Rheumatology in 2017 [13]. At least two rheumatologists 
from Shenzhen People’s Hospital confirmed the diagnosis. 
As shown in Table 1, detailed information was collected. All 
plasma samples were stored at -80 °C.

Metabolite extraction

The plasma metabolite extraction method followed a pre-
vious report with minor modifications [14]. Briefly, 100 
µL of plasma was extracted by directly adding 300 µL of 
MeOH/ACN (2:1, v/v). To provide accurate quantitation of 
metabolites, an internal standard mix was added. Samples 
were vortex mixed for 1 min, then incubated at -20 °C for 
2 h. Subsequently, the samples were centrifuged at 4000 rpm 
for 20 min, and the supernatant was transferred for vacuum 
freeze drying. Metabolites were resuspended with 150 µL 
MeOH/H2O (1:1, v/v) and centrifuged at 4000  rpm for 
30 min. The supernatants were transferred to autosam-
pler vials for LC–MS analysis. Equal volumes of plasma 
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Table 1  Demographics and baseline characteristics of patients with different IIM subtypes and healthy controls

SD, standard deviation; IQR, interquartile range; no, number; CK, creatine kinase; α-HBDH, α-hydroxybutyrate dehydrogenase; LDH, lactate 
dehydrogenase; GPT, glutamate pyruvic transaminase; GOT, glutamate oxaloacetate transaminase; CRP, C-reactive protein; ESR, erythrocyte 
sedimentation rate; ALB, serum albumin

IIM (n = 71) Control (n = 30)

DM (n = 46) PM (n = 13) ASS (n = 12)

Age (years) (Mean ± SD) 52 ± 13 50 ± 13 54 ± 12 50 ± 14
Gender (Male/Female) 18/28 2/11 2/10 12/18
Disease duration (weeks) (Median (IQR)) 55 (20,212) 312 (52,442) 82 (52,163) /
Clinical characteristics (n, %)
Muscle weakness 33 (71.7) 13 (100.0) 9 (75.0) /
Myalgia 14 (30.4) 9 (69.2) 4 (33.3) /
Dysphagia 8 (17.4) 2 (15.4) 1 (8.3) /
Arthritis 17 (37.0) 3 (23.1) 7 (58.3) /
Periorbital edema and erythema 12 (26.1) 0 (0) 0 (0) /
V sign 18 (39.1) 0 (0) 0 (0) /
Shawl sign 14 (30.4) 0 (0) 0 (0) /
Gottron papules 26 (56.5) 0 (0) 0 (0) /
Nail-fold telangiectasias and periungual erythema 3 (6.5) 0 (0) 0 (0) /
Mechanic's hands 13 (28.3) 0 (0) 3 (25.0) /
Holster sign 13 (28.3) 0 (0) 0 (0) /
Raynaud's phenomenon 2 (4.3) 0 (0) 1 (8.3) /
Skin ulcer 6 (13.0) 0 (0) 0 (0) /
ILD 29 (63.0) 5 (38.5) 11 (91.7) /
Laboratory parameters
ANA-positive (n, %) 21 (45.7) 6 (46.2) 10 (83.3) /
Anti-Mi-2-positive (n, %) 6 (13.0) 0 (0) 0 (0) /
Anti-SSA/RO52kd-positive (n, %) 21 (45.7) 5 (38.5) 9 (75.0) /
Anti-SSB/La-positive (n, %) 2 (4.3) 1 (7.7) 0 (0) /
Anti-RNP-positive (n, %) 3 (6.5) 2 (15.4) 1 (8.3) /
Anti-JO-1-positive (n, %) 3 (6.5) 0 (0) 9 (75.0) /
Anti-PL-7-positive (n, %) 2 (4.3) 0 (0) 1 (8.3) /
Anti-PL-12-positive (n, %) 2 (4.3) 0 (0) 1 (8.3) /
Anti-EJ-positive (n, %) 0 (0) 0 (0) 0 (0) /
Anti-OJ-positive (n, %) 0 (0) 1 (7.7) 0 (0) /
Anti-MDA5-positive (n, %) 17 (37.0) 0 (0) 0 (0) /
Anti-TIF1γ-positive (n, %) 7 (15.2) 0 (0) 0 (0) /
Anti-NXP2-positive (n, %) 2 (4.3) 0 (0) 0 (0) /
Anti-SAE1-positive (n, %) 2 (4.3) 0 (0) 0 (0) /
Anti-PL-Scl-positive (n, %) 1 (2.2) 0 (0) 0 (0) /
Anti-Ku-positive (n, %) 3 (6.5) 0 (0) 0 (0) /
Anti-SRP-positive (n, %) 4 (8.7) 2 (15.4) 0 (0) /
Anti-HMGCR-positive (n, %) 0 (0) 0 (0) 0 (0) /
CK (U/L) (Median (IQR)) 79 (37, 281.5) 1211 (147, 1946) 105 (41, 605) /
α-HBDH (U/L) (Median (IQR)) 195 (155, 288) 312 (149, 462.5) 199 (148, 292) /
LDH (U/L) (Median (IQR)) 240 (176, 372.3) 383 (188, 556) 248 (185, 323) /
GPT (U/L) (Median (IQR)) 34 (16, 73.1) 53 (17, 94.5) 25 (13, 36.5) /
GOT (U/L) (Median (IQR)) 27 (19, 65.1) 60 (25, 88.5) 23 (15, 34) /
CRP (mg/L) (Median (IQR)) 3 (1, 6.1) 1 (0, 13) 2 (1, 10.3) /
ESR (mm/h) (Median (IQR)) 15 (8, 31.5) 9 (6, 16.5) 18 (14, 19.8) /
ALB (g/L) (Median (IQR)) 40 (34, 42.6) 39 (36, 42.8) 38 (32, 40.8) /
ferritin (μg/L) (Median (IQR)) 296 (99, 729.2) 120 (53, 275.3) 161 (71, 311.1) /
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metabolite extracts were pooled as quality control (QC) sam-
ples for evaluating the performance of the entire LC–MS 
system.

LC–MS/MS analysis

For the separation and detection of metabolites, a 2D 
UHPLC system (Waters, USA) coupled with a heated elec-
trospray ionization (HESI) source and a Q Exactive HF mass 
spectrometer (Thermo Fisher Scientific, USA) was used; the 
LC–MS/MS system was controlled by the Xcalibur 2.3 soft-
ware program. The mass data were collected in both positive 
and negative modes. The LC conditions were as follows: 
ACQUITY UHPLC BEH C18 column (2.1 × 100  mm, 
1.7 μm, Waters); mobile phase, (A) 0.1% formic acid and 
(B) ACN (in the positive mode); (A) 10 mM ammonium 
formate and (B) ACN (in the negative mode). The LC gradi-
ent used was as follows: 0–1 min, 2% B; 1–9 min, 2%-98% 
B; 9–12 min, 98% B; 12–12.1 min, 98%-2% B; and 12.1-
15 min, 2% B. The volume of injection was 5 μl. The flow 
rate was 0.35 ml/min, and the column temperature was main-
tained at 45 °C. The mass spectrometric settings for positive/
negative mode were as follows: spray voltage, 3.8/-3.2 kV; 
sheath gas flow rate, 40; aux gas flow rate, 10; aux gas 
heater temperature, 350 °C; capillary temperature, 320 °C. 
The acquisition was performed from m/z 70 to 1050; the 
resolution was 70,000. The automatic gain control (AGC) 
target for MS acquisitions was set to 3e6. The maximum ion 
injection time was 100 ms. Top 3 precursors were selected 
for subsequent MS/MS fragmentation with a maximum ion 
injection time of 50 ms, a resolution of 30,000, and an AGC 
of 1e5. The stepped normalized collision energy was set to 
20, 40, and 60 eV. To provide more reliable experimental 
results, the samples were randomly ordered. A QC sample 
was interspersed for every 10 samples (Table S1).

Data processing

The LC–MS/MS data were preprocessed using Compound 
Discoverer 3.1 software, mainly including peak extraction, 
intra and inter-group retention time correction, missing 
value imputation, and compound identification. The tabular 
files were then processed using metaX, the metabolomics 
R package [15]. To obtain relative peak areas, the data 
were normalized by probabilistic quotient normalization 
(PQN). Quality control-based robust LOESS signal correc-
tion (QC-RLSC) was performed to correct the batch effect. 
Compounds with a coefficient of variation (CV) ≥ 30% in the 
QC samples were removed. All metabolites were matched 
against these databases, BGI self-built standard library, 
mzCloud, and ChemSpider (HMDB, KEGG, LipidMaps) 
databases. The main parameters for metabolite identifica-
tion were as follows: precursor mass tolerance < 5, fragment 

mass tolerance < 10 ppm, and RT tolerance < 0.2 min. All 
identifications were further manually confirmed based on 
biological background. The preprocessed data were further 
used for the following statistical analysis.

Statistical analysis

Multivariate and univariate statistical analyses were com-
bined to screen for differential metabolites between groups. 
Principal component analysis (PCA) and partial least-
squares discriminant analysis (PLS-DA) were used for sam-
ple overview and classification. To analyze similarities and 
differences within and between groups, as well as outliers of 
observed variables, PCA performed dimensionality reduc-
tion on the raw data. The PLS-DA models were validated by 
permutation tests (200 runs); the fitted models were consid-
ered significant when the  R2 and  Q2 were positive [16]. Vari-
able importance in projection (VIP) scores were employed to 
visualize the effects of variables in the models. Significant 
differences between groups were tested using Student’s test. 
Differential metabolites were determined according to fold 
change ≥ 1.2 or ≤ 0.8, P value < 0.05, and VIP ≥ 1. Enrich-
ment analysis of differential metabolites with a metabo-
lomics standards initiative (MSI) level 1/2 was performed 
by MetaboAnalyst. To further discover potential biomarkers 
between different groups, the random forest was also used 
by MetaboAnalyst. When ntree was larger than 500, all the 
model tended to be stable; and the final random forest model 
parameters were set as ntree = 500 and mtry = 2.

Results

Idiopathic inflammatory myopathy patient 
characteristics and cohorts

To evaluate changes of metabolites in the plasma of DM, 
PM, ASS patients, and HCs, we recruited 46, 13, and 12 
patients with DM, PM, and ASS, and 30 HCs, respectively. 
Detailed demographics, clinical characteristics, and labo-
ratory parameters of patients with IIM and HC are shown 
in Table 1. Thirty-seven percent of DM patients were anti-
MDA5 positive. To find biomarkers for the diagnosis of DM, 
PM, ASS patients from HCs, we divided the samples into a 
discovery (DM, n = 31; PM, n = 9; ASS, n = 8; HC, n = 20) 
and a validation (DM, n = 15; PM, n = 4; ASS, n = 4; HC, 
n = 10) cohort. In order to discover metabolite biomarkers 
for predicting MDA5 + DM patients, we also divided DM 
patients into discovery (MDA5 + , n = 12; MDA5-, n = 19) 
and validation (MDA5 + , n = 5; MDA5-, n = 10) groups 
based on MDA5 positive or negative (Fig. 1a). Moreover, 
the different groups used in this study are properly matched 



3421Clinical and Experimental Medicine (2023) 23:3417–3429 

1 3

for age and gender in both the discovery and validation sets 
(Table S2). All the samples were analyzed in the same batch.

Significant differences in plasma metabolites 
between dermatomyositis, polymyositis, 
anti‑synthetase syndrome patients and healthy 
controls

To investigate differential metabolites in different subtypes 
of IIM patients and HCs, we systematically analyzed metab-
olites in plasma from DM, PM, ASS patients, and HCs by 
untargeted metabolomics using high-resolution LC–MS. The 
quality of metabolite extraction and LC–MS analysis was 
assessed by base peak chromatogram (BPC) overlay of QC 

samples, PCA of all samples, CVs of features (retention time 
(RT) and m/z) in QC samples and internal standards. The 
BPCs of QC samples overlapped well, and QC samples were 
tightly clustered in the PCA plots of all samples (Fig.S1 and 
S2). The percentages of features with CV < 30% detected 
in positive and negative modes were 88.02% and 88.24%, 
respectively (Fig.S3). The CVs of all internal standards were 
less than 20%. The results showed that the data quality is 
sufficient for the following metabolomics profiling.

We first established PCA to observe the distribution of 
features in DM, PM, ASS, and HC groups. The PCA plot 
showed that the IIM groups (including DM, PM, and ASS) 
were well separated from the HC groups, and no abnormal 
samples were found (Fig. 1b). PCA loading plot was shown 

Fig. 1  Significant differences in plasma metabolites between patients 
with dermatomyositis, polymyositis, anti-synthetase syndrome, 
and healthy controls. a. Idiopathic inflammatory myopathy patient 
cohorts. b. Principal component analysis (PCA) score plots from 
DM, PM, ASS, and HC groups. c. PCA score plots from DM and HC 

groups. d. Partial least square discriminant analysis (PLS-DA) score 
plots from DM and HC groups. e. PLS-DA models were evaluated 
by 200 permutation tests. f. Volcano plots from DM and HC groups. 
g. Summary of differential features and metabolites between patients 
with different IIM subtypes and HCs. POS, positive; NEG, negative
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in Fig.S4a.We further applied PCA and PLS-DA to reveal 
discriminative features between the two groups, including 
DM vs. HC, PM vs. HC, ASS vs. HC, DM vs. PM, DM vs. 
ASS, and PM vs. ASS. The PCA plots with features were 
well separated between DM, PM, ASS, and HC groups 
(Fig. 1c, S5a1, and S5a2), whereas different subtypes of IIM 
couldn’t be separated (Fig.S5a3-a5). PCA loading plots were 
shown in Fig.S4b and Fig.S5b1-b5. PLS-DA plots showed 
that the two groups (including DM vs. HC, PM vs. HC, ASS 
vs. HC, DM vs. PM, DM vs. ASS, and PM vs. ASS) were 
well separated; and PLS-DA models were evaluated by 200 
permutation tests (Fig. 1d, e, S5c1-c5). These models were 
robust in DM vs. HC, PM vs. HC, ASS vs. HC, and PM vs. 
ASS groups (DM vs. HC:  R2, 0.96;  Q2, 0.76; PM vs. HC: 
 R2, 0.98;  Q2, 0.73; ASS vs. HC:  R2, 0.99;  Q2, 0.76; PM vs. 
ASS:  R2, 1;  Q2, 0.1;). However, these models overfitted in 
DM vs. PM  (R2, 0.92;  Q2, − 0.22;) and DM vs. ASS groups 
 (R2, 0.94;  Q2, − 0.33). These VIP values in these overfitted 
models were not adopted in the following analysis.

We used the following criteria: fold change ≥ 1.2 or ≤ 0.8, 
P value < 0.05, and VIP ≥ 1 to find differential features in 
different subtypes of IIM patients and HCs. Differential fea-
tures were visualized by volcano plots (Fig. 1f, S5d1-d5). As 
shown in Fig. 1g, we found 1465, 969, 1034, 416, 419, and 
294 features with significant differences in the DM vs. HC, 
PM vs. HC, ASS vs. HC, DM vs. PM, DM vs. ASS, and PM 
vs. ASS groups, respectively (We adopted fold change ≥ 1.2 
or ≤ 0.8, and P value < 0.05 to find differential features in 
DM vs. PM, and DM vs. ASS groups). After identifying 
these features, 59, 47, 44, 23, 15, and 16 differential metabo-
lites with MSI level 1/2 were identified in the DM vs. HC, 
PM vs. HC, ASS vs. HC, DM vs. PM, DM vs. ASS, and PM 
vs. ASS groups, respectively (Fig. 1g). All results indicated 
that metabolites in plasma between DM, PM, ASS, and HC 
are significantly different, contributing to a comprehensive 
understanding of the role of metabolites in the pathogenesis 
of different subtypes of IIM.

Three models with five metabolites can identify 
dermatomyositis, polymyositis, and anti‑synthetase 
syndrome from healthy controls

To detect pathway changes in different subtypes of IIM, 
enrichment analysis was performed using differential 
metabolites with MSI level 1/2 in the DM vs. HC, PM vs. 
HC, and ASS vs. HC groups. As shown in Fig. 2a, S6a1, 
and S6a2, multiple biological processes were enriched in 
different subtypes of IIM patients; caffeine metabolism, 
bile acid biosynthesis, tryptophan metabolism, steroido-
genesis, fatty acid biosynthesis, beta-oxidation of very 
long chain fatty acids, alpha-linolenic acid and linoleic 
acid metabolism, phenylalanine and tyrosine metabolism, 
and purine metabolism were all enriched in the DM, PM, 
and ASS groups. To assess the discriminative ability of 
metabolites to diagnose patients with DM, PM, and ASS 
from HCs, we applied feature selection with differential 
metabolites with MSI level 1/2 to construct models in the 
discovery set (DM, n = 31; PM, n = 9; ASS, n = 8; HC, 
n = 20) by random forest. We then tested the independent 
performance of these models in the validation set (DM, 
n = 15; PM, n = 4; ASS, n = 4; HC, n = 10). As shown 
in Fig. 2b and c, the panel of five metabolites (Desoxy-
cortone, Testosterone sulfate, L-phenylalanine, Hypox-
anthine, and Cytosine) could accurately identify DM 
patients from HCs in both the discovery (AUC = 0.988) 
and validation (AUC = 0.957) sets. The contributions of 
these five metabolites to the model are shown in Fig. 2f. 
We further analyzed the concentration trends of these 
metabolites in the DM and HC groups in both the discov-
ery and validation sets, respectively. As shown in Fig. 2g, 
the changes in metabolite concentrations between the DM 
and HC groups in the discovery and validation sets were 
consistent. Similarly, five metabolites (PM: Docosahexae-
noic acid, N-arachidonoyl-l-serine, Testosterone sulfate, 
3-hydroxydecanoic acid, and Cytosine; ASS: Testosterone 
sulfate, Xanthine, Hypoxanthine, 7-methylguanosine, and 
Homogentisate) could identify patients with PM, and ASS 
from HCs in both the discovery and validation cohorts 
(Fig. 2b, d, e). Interestingly, the metabolites partially over-
lapped between these models, while the contributions to 
the models and the concentration trends of individual 
metabolites differed (Fig.S6b1-b2, c1-c2). The metabolite 
identifications were confirmed by commercial standards; 
if commercial standards were lacking, metabolites were 
further confirmed manually by spectral matching to the 
theoretical fragments (Fig. 2h, S6d1-d2). Together, all 
results suggested that we can accurately identify patients 
with DM, PM, and ASS from HCs by using metabolites 
in plasma.

Fig. 2  Five metabolites selected by random forest can identify der-
matomyositis, polymyositis, and anti-synthetase syndrome from 
healthy controls. a. Enrichment analysis of differential metabolites 
with MSI level 1/2 between DM and HC groups. b. Summary of 
models of identifying DM, PM, and ASS from HC using five metabo-
lites in plasma in the discovery and validation cohorts. The contribu-
tion rank of each metabolite in every model is listed as number 1, 2, 
…, and 5. The receiver operating characteristic (ROC) curve based 
on five metabolites can accurately identify DM (c), PM (d), and ASS 
(e) from HC in the discovery and validation sets. f. Contribution of 
five metabolites to the identification model of DM. g. The concen-
tration trends of individual metabolites in the DM and HC groups in 
the discovery and validation sets. h. Detailed MS/MS spectra of five 
potential metabolite biomarkers for identification of DM. The meas-
ured MS/MS spectral fragment profile (top, black) matching the com-
mercial standard/theoretical fragment (bottom, red); HC-D, DM-D, 
HC and DM groups in the discovery set, respectively; HC-V, DM-V, 
HC and DM groups in the validation set, respectively

◂
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Five to seven metabolites in plasma can distinguish 
between different subtypes of idiopathic 
inflammatory myopathy

Next, we applied enrichment analysis to examine pathway 
changes in the DM vs. PM, DM vs. ASS, and PM vs. ASS 
groups, using differential metabolites with MSI level 1/2.

As shown in Fig. 3a, S7a1, and S7a2, different meta-
bolic pathways were enriched in different subtypes of IIM 
patients; however, fatty acid biosynthesis was enriched 
in all cases. We also evaluated whether metabolites in 
plasma could distinguish between different subtypes of 
IIM patients in the discovery set (DM, n = 46; PM, n = 13; 
ASS, n = 12) using differential metabolites with MSI level 
1/2 by random forest. As shown in Fig. 3b and c, a panel 
of five metabolites (3-hydroxydecanoic acid, Palmitoyl-
carnitine, Cytosine, 3-hydroxybutyric acid, and Nicotina-
mide) has an AUC of 0.804 to differentiate DM from PM. 
The predicted contributions of these five metabolites are 
shown in Fig. 3f. The concentrations of these five metab-
olites in the DM and PM groups are shown in Fig. 3g. 
Detailed MS/MS spectra of 3-hydroxydecanoic acid, Pal-
mitoylcarnitine, Cytosine, and Nicotinamide are shown 
in Fig. 3h. We also examined metabolites in plasma to 
differentiate DM from ASS, and PM from ASS. We found 
that seven metabolites in plasma (DM vs. ASS: 13(s)-
hotre, 3-hydroxydecanoic acid, Taurochenodeoxycholic 
acid, Glycocholic acid, Glycocholate, α-hydroxyhippuric 
acid, and 17α-hydroxyprogesterone; PM vs. ASS: Tau-
rochenodeoxycholic acid, Nicotinamide, Glycocholate, 
Xanthine, L-glutamic acid, 11,12-epoxy-(5z,8z,11z)-
icosatrienoic acid, and 3-hydroxybutyric acid) could dis-
tinguish these two groups (DM vs. ASS: AUC = 0.797; 
PM vs. ASS: AUC = 0.885) (Fig. 3b, d, and e). Similar 
to the above results, the metabolites partially overlapped, 
and the contributions and concentrations of individual 
metabolites varied (Fig. 3b, S7b1-b2, c1-c2). Detailed 
MS/MS spectra of 13(s)-hotre, Taurochenodeoxycholic 
acid, Glycocholic acid, Glycocholate, α-hydroxyhippuric 
acid, 17α-hydroxyprogesterone, L-glutamic acid, and 
11,12-epoxy-(5z,8z,11z)-icosatrienoic acid are shown in 
Fig.S7d1-d2. These results demonstrated that metabolites 

in plasma contain information on distinguishing between 
different subtypes of IIM patients.

A panel of seven metabolites can predict 
MDA5 + dermatomyositis

We next investigated metabolite alterations in the plasma 
of MDA5 + and MDA5- DM patients. We found that 342 
features were significantly different between MDA5 + and 
MDA5- DM patients. Ten metabolites with MSI level 1/2 
were identified. The pathways involved in these metabolites 
are shown in Fig. 4a. To evaluate the ability of metabolites in 
plasma to discriminate between patients with MDA5 + and 
MDA5- DM, we established models with these ten metab-
olites in the discovery cohort (MDA5 + , n = 12; MDA5-, 
n = 19) by random forest and tested the model in the valida-
tion cohort (MDA5 + , n = 5; MDA5-, n = 10). As shown in 
Fig. 4b, a panel of seven metabolites (12-hydroxydodecanoic 
acid, Pyridoxal, Tetradecanedioic acid, 3-(2-hydroxyphenyl)
propanoate, Lauroylcarnitine, L-glutamic acid, and Hexa-
decanedioic acid) could precisely distinguish MDA5 + DM 
patients from MDA5- DM patients in both the discovery 
(AUC = 0.864) and validation (AUC = 0.82) cohorts. The 
contributions of these seven metabolites are shown in 
Fig. 4c. The metabolite concentration alternatives were 
consistent between the MDA5 + and MDA5- DM groups in 
the discovery and validation sets (Fig. 4d). Detailed MS/
MS spectra of these seven metabolites are shown in Fig.S8. 
These results suggested that the metabolism of MDA5 + DM 
patients differs from that of MDA5- DM patients, and 
the metabolites in plasma are predictive of MDA5 + DM 
patients.

Discussion

Here, we performed untargeted metabolomics analysis to 
identify metabolite changes in different IIM subtypes. Since 
anti-MDA5 antibodies showed great utility in identifying 
DM patients with higher homogeneity, we also analyzed 
metabolites associated with MDA5 + DM patients. We fur-
ther estimated the power of five to seven candidate metabo-
lite biomarkers to differentiate DM, PM, and ASS patients 
from HCs, between different subtypes of IIM patients, and 
MDA5 + and MDA5- DM patients in the discovery/valida-
tion cohorts by random forest.

These metabolite alterations presumably reflect essential 
biological physiology of different IIM subgroups. Here, we 
found that tryptophan metabolism, phenylalanine and tyros-
ine metabolism, fatty acid biosynthesis, beta-oxidation of 
very long chain fatty acids, alpha-linolenic acid and linoleic 
acid metabolism, steroidogenesis, bile acid biosynthesis, 
purine metabolism, and caffeine metabolism are all enriched 

Fig. 3  Five to seven metabolites selected by random forest can dis-
tinguish different idiopathic inflammatory myopathy subtypes. a. 
Enrichment analysis of differential metabolites with MSI level 1/2 
between DM and PM groups. b. Summary of models of differentiat-
ing DM, PM, and ASS using five to seven metabolites in plasma. The 
contribution rank of each metabolite in every model is listed as num-
ber 1, 2, …, and 7. ROC curves based on five to seven metabolites 
can accurately distinguish DM from PM (c), DM from ASS (d), and 
PM from ASS (e). f. Contribution of five metabolites to the identifi-
cation model of DM from PM. g. The concentration trends of individ-
ual metabolites in the DM and PM groups. h. Detailed MS/MS spec-
tra of 3-hydroxydecanoic acid, Palmitoylcarnitine, and Nicotinamide

◂
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in the DM, PM, and ASS groups. Consistent with these 
results, Tie Zhang et al. found that phenylalanine, tyrosine 
and tryptophan biosynthesis are the most prominently altered 
pathways in DM [11]. Oxidative metabolism of tryptophan 
increases when inflammation occurs [17]. Previous studies 
have shown that tyrosine, phenylalanine, and tryptophan are 
also associated with several cancers [18]. Tyrosine is formed 
from phenylalanine catalyzed by phenylalanine hydroxylase. 
Neurauter, G. et al. found that phenylalanine hydroxylase 
activity is changed in malignancy [19]. In agreement with 
our results, Joan Raouf et al. found that serum lipids profiles 
are significantly altered in DM/PM patients [10]. There is 
increasing evidence that various lipids, such as fatty acids, 
phospholipids, and prostaglandins, play important roles in 
regulating skeletal muscle growth and functions [20, 21]. 

Altered lipid metabolism may be caused by chronic inflam-
mation and ER stress. Lipidomic disturbances lead to per-
sistent muscle impairment [22, 23]. Previous studies have 
suggested that peroxidation of plasma membrane lipids may 
account for the mechanism of abundant production of reac-
tive oxygen intermediates in IIM [24]. Purine metabolism 
has also been implicated in the physiopathology of IIM. 
Recent studies have shown that purine nucleoside phosphor-
ylase (PNP) deficiency is associated with an increased risk 
of developing autoimmune disorders, such as lupus [25] and 
autoimmune hemolytic anemia [26]. Additionally, high lev-
els of cytosine can be found in the urine of individuals with 
severe combined immunodeficiency syndrome [27]. Caffeine 
can interact with different components of the immune sys-
tem by acting as a non-specific phosphodiesterase inhibitor 

Fig. 4  Seven metabolites selected by random forest can predict 
MDA5 + dermatomyositis. a. Enrichment analysis of differential 
metabolites with MSI level 1/2 between MDA5 + and MDA5-DM. 
b. ROC curve based on seven metabolites can accurately predict 
MDA5 + DM. c. Contribution of seven metabolites to the prediction 
model of MDA5 + DM. d. The concentration trends of individual 

metabolites in the MDA5 + and MDA5-DM groups in the discovery 
and validation sets. MDA5 + _D, MDA5-_D, MDA5 + and MDA5-
DM groups in the discovery set, respectively; MDA5 + _V, MDA5-
_V, MDA5 + and MDA5-DM groups in the validation set, respec-
tively
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[28]. It affects the immune system by inhibiting the release 
of proinflammatory cytokines, influencing the activity of 
macrophages and natural killer cells, reducing the prolifera-
tion of T and B cells proliferation and ultimately produc-
ing antibodies [29]. Caffeine metabolism is associated with 
disease activity, severity, and constitutional symptoms of 
autoimmune diseases, such as systemic lupus erythemato-
sus [30] and rheumatoid arthritis [31]. We also found that 
arachidonic acid metabolism is enriched in DM and ASS 
patients. Arachidonic acid metabolites, such as leukotriene 
subfamilies and prostaglandin, contribute to muscular pain 
and inflammation, myogenesis, and muscle repair in chronic 
inflammatory diseases [32]. More importantly, we also found 
that different subtypes of IIM have their unique metabolic 
pathways, suggesting that metabolites in plasma can define 
IIM subtypes. However, further studies will be required to 
explore the detailed metabolite mechanisms associated with 
different IIM subtypes.

Here, we established three models with five metabolites 
in plasma that can identify DM, PM, and ASS patients from 
HCs. Notably, we split the samples into discovery and vali-
dation cohorts to test the independent performance of these 
models. We found that the panels of five metabolites are 
sufficient to distinguish DM, PM, and ASS patients from 
HCs in the discovery and validation sets. To ensure the accu-
racy of identification of these metabolites, we confirmed 
by commercial standards or theoretical fragments. MS/MS 
spectra of these metabolites showed that the identification is 
reliable. Despite the small sample size of the PM and ASS 
groups, we also assessed the ability of the metabolites in 
plasma to discriminate between different IIM subgroups. In 
this study, we found that five to seven metabolites in plasma 
can discriminate between different subtypes of IIM patients 
with high accuracy in the discovery cohort. Taken together, 
the metabolites in plasma contain information to distinguish 
different IIM subtypes. However, these potential metabolic 
biomarkers require further validation in independent and 
larger cohorts.

In this study, we found that metabolites in plasma are 
significantly different between MDA5 + and MDA5- DM 
patients. Our results also suggested that a panel of seven 
metabolites can accurately predict MDA5 + DM patients in 
both the discovery and validation cohorts. The subset of DM 
with MDA5 + antibodies present considerable challenges to 
rheumatologists in the clinical management of DM patients 
[33]. Anti-MDA5 antibodies are demonstrated to be closely 
linked to ILD with poor survival [34]. Previous studies have 
shown that activation of monocytes, macrophages [35], neu-
trophils, and CD4 + T helper (Th)1 cells, as well as increased 
expression of CD4 + CXCR4 + T cells [36] and interferon 
(IFN)-g [37] contribute to the development of DM-ILD. Our 
study provides a new perspective for understanding the non-
immune molecular mechanisms of MDA5 + DM [38].

Conclusions

In conclusion, our findings provide evidence that metabolic 
homeostasis is disrupted in IIM patients compared with 
age and gender-matched HCs; in addition, combinatorial 
analysis of five to seven metabolites in plasma possibly 
allows for distinguishing DM, PM, and ASS patients from 
HCs, between different subtypes of IIM patients, and even 
MDA5 + and MDA5- DM patients. Our insights into plasma 
metabolite differences between different IIM subtypes high-
light the importance of metabolite variation in the pathogen-
esis of IIM. Future studies will elucidate whether changes in 
plasma metabolomic profiles reflect muscle tissue metabolite 
profiles and validate whether these metabolites can be used 
as diagnostic biomarkers for clinical IIM subtypes in larger 
cohorts.
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