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Abstract
RNA modification is manifested as chemically altered nucleotides, widely exists in diverse natural RNAs, and is closely 
related to RNA structure and function. Currently, mRNA-based vaccines have received great attention and rapid develop-
ment as novel and mighty fighters against various diseases including cancer. The achievement of RNA vaccines in clinical 
application is largely attributed to some methodological innovations including the incorporation of modified nucleotides 
into the synthetic RNA. The selection of optimal RNA modifications aimed at reducing the instability and immunogenicity 
of RNA molecules is a very critical task to improve the efficacy and safety of mRNA vaccines. This review summarizes the 
functions of RNA modifications and their application in mRNA vaccines, highlights recent advances of mRNA vaccines in 
cancer immunotherapy, and provides perspectives for future development of mRNA vaccines in the context of personalized 
tumor therapy.
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Abbreviations
APC	� Antigen-presenting cell
ARCA​	� Anti-reverse cap analog
BCR	� B cell receptor
BID-seq	� Bisulfite-induced deletion sequencing
CAPAM	� Cap-specific adenosine methyltransferase
CDS	� Coding sequence
COVID-19	� Coronavirus disease 2019
CpG-ODN	� Cytosine-phosphate-guanosine-oligode-

oxynucleotide
DART-Seq	� Deamination adjacent to RNA modifica-

tion targets
DCRNA	� Dendritic cells pulsed with tumor RNA
DC	� Dendritic cell
dsRNA	� Double-stranded RNA
GBM	� Glioblastoma
GLORI	� Glyoxal and nitrite-mediated deamination 

of unmethylated adenosines
hDcp2	� Human decapping enzyme 2
hm5C	� 5-hydroxymethylcytosine

IFN	� Interferon
KIRC	� Kidney renal clear cell carcinoma
LC–MS/MS	� Liquid chromatography tandem–mass 

spectrometry
LNP	� Lipid nanoparticle
LUAD	� Lung adenocarcinoma
m1A	� N1-methyladenosine
m1G	� 1-methylguanosine
m1Ψ	� N1-methylpseudouridine
m2G	� 2-methylguanosine
m3C	� 3-methylcytidine
m5C	� 5-methylcytosine
m5U	� 5-methyluridine
m6A	� N6-methyladenosine
m6Am	� N6,2'-O-dimethyladenosine
m6A-SAC-seq	� m6A-selective allyl chemical labeling and 

sequencing
m6A-seq	� N6-methyladenosine sequencing
m7G	� 7-methylguanosine
MeRIP-seq	� Methylated RNA immunoprecipitation 

sequencing
MHC	� Major histocompatibility complex
miCLIP-seq	� m6A individual-nucleotide-resolution 

cross-linking and immunoprecipitation 
sequencing

MTase	� Methyltransferase
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Nm	� 2'-O-methylation
NSCLC	� Non-small cell lung cancer
ONT 	� Oxford Nanopore Technologies
PAB	� Poly(A)-binding protein
PacBio	� Pacific Biosciences
PAIso-seq	� Poly(A) inclusive RNA isoform 

sequencing
PAL-seq	� Poly(A)-tail length profiling by 

sequencing
PAMP	� Pathogen-associated molecular pattern
PRR	� Pattern recognition receptor
PSI-seq	� Pseudouridine site identification 

sequencing
RCC​	� Renal cell carcinoma
RLR	� RIG-I-like receptor
s2U	� 2-thiouridine
SCLC	� Small cell lung cancer
ssRNA	� Single-strand RNA
TAA​	� Tumor-associated antigen
TCGA​	� The Cancer Genome Atlas
TCR​	� T cell receptor
TGS	� Third-generation sequencing
Th cell	� T helper cell
TLR	� Toll-like receptor
UTR​	� Untranslated region
ZIKV	� Zika virus

Introduction

Vaccines serve as highly specialized biological agents that 
can provide active adaptive immunity to specific infectious 
diseases [1]. Vaccination has a long history for humans. In 
the 1790s, a rural doctor named Edward Jenner made a great 
discovery by the utilization of the cowpox virus prepara-
tion from a milkmaid as a vaccine against smallpox [2]. 
Subsequent study suggested that efficacious vaccines may 
work in two ways: One is to induce an immune mechanism 
for prophylactically preventing potential infection, and the 
other is to provide a treatment when infection has already 
occurred [3]. A milestone technology for vaccine devel-
opment is the mRNA vaccine, which takes full advantage 
of the advancement in the fields of molecular biology and 
immunology and has been regarded as a form of gene ther-
apy to some extent [4].

Back in the early 1990s, many studies attempted to apply 
mRNA to new therapeutics [5]. It was not until 2005 that a 
team of researchers at the University of Pennsylvania pio-
neered mRNA technology when they demonstrated that the 
activation of certain immune cells could be ablated through 
modifying RNA with 5-methylcytosine (m5C), N6-methyl-
adenosine (m6A), 5-methyluridine (m5U), 2-thiouridine (s2U), 

or pseudouridine (Ψ) [6], laying a solid foundation for future 
mRNA-based therapies.

Currently, RNA modifications have become a critical and 
indispensable factor for designing and developing new and 
highly efficient mRNA vaccines. With the global pandemic 
of coronavirus disease 2019 (COVID-19), many pharmaceuti-
cal companies, such as Moderna, Pfizer/BioNTech, CureVac 
and Arctrus, developed mRNA-based COVID-19 vaccine 
candidates [5], with or without RNA modification technol-
ogy. Notably, the vaccines produced by Moderna and Pfizer/
BioNTech both contained the modified base (N1-methylp-
seudouridine, m1Ψ) and achieved a protective efficacy greater 
than 90% [7–9]. By contrast, the unmodified CureVac vaccine 
showed only 47% protection against coronavirus infection [9, 
10]. These clinical observations reflected in part the contribu-
tion of RNA modifications to the protective efficacy of mRNA 
vaccines.

Immunotherapy is one of the most promising strategies 
for cancer treatment. As a representative approach to cancer 
immunotherapy, tumor vaccines have attracted increasing 
attention in recent years [11]. Functionally they can be divided 
into two categories: preventive and therapeutic vaccines [11]. 
The former is used in healthy individuals to induce immune 
memory and thereby prevent morbidity from certain cancers 
[11]. The latter is used for disease management by strength-
ening or reactivating the tumor patient's own immune system 
[11]. It is worth noting that mRNA vaccines have become a 
popular form of cancer vaccine because they provide antigen 
delivery and innate immune activation-mediated co-stimula-
tion in a spatiotemporally aligned manner [12]. At present, 
mRNA vaccines targeting a variety of tumors are in clinical 
trials, including renal cell carcinoma, brain tumor, melanoma, 
prostate cancer, lung cancer, gastrointestinal tumor and AML. 
Compelling evidence shows that RNA modifications, such 
as m5C and Ψ, play an important role in the development of 
tumor vaccines [13–15]. In theory, numerous modifications 
that affect RNA structure and function could be used in can-
cer vaccines (Fig. 1), but few have actually been used. There-
fore, exploring more RNA modifications aimed at improving 
the vaccine efficacy and safety is a meaningful task in future 
development of tumor vaccines. In this review, we describe 
the functions of RNA modifications and their application in 
mRNA vaccines, emphasize recent advances of mRNA vac-
cines in cancer immunotherapy, and look ahead to the future 
prospects of RNA modification in the development of novel 
mRNA cancer vaccines.

Principles of developing mRNA vaccine

The interdisciplinary combination of techniques derived 
from molecular biology and immunology has greatly facili-
tated the researchers’ ability to design and produce mRNA 
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vaccines. The basic principle is that mRNA molecules 
encoding antigens are delivered into the subject and sub-
sequently translated in vivo into intracellular, membrane-
bound, or secreted antigens that will elicit potent immune 
responses [16, 17] (Fig. 2). To this end, a series of in vitro 
experiments should be well accomplished. Specifically, the 
target antigenic sequence is selected in silico and synthe-
sized as a DNA template, whereby the mRNA can be tran-
scribed on a large scale [16, 17]. Considering that mRNA 
molecules are manufactured in a cell-free fashion, any avail-
able gene sequences could be regarded as potential mRNA 
vaccine candidates, which thus can be efficiently, rapidly and 
cost-effectively tested and assessed in the laboratory using 
animal models [16–18].

Selection of the optimal RNA modification is an impor-
tant consideration for in vitro synthesis of mRNA vaccines. 
RNA modifications can abrogate the immunogenicity of 
synthetic mRNA molecules by bypassing immune activa-
tion pathways (Fig. 3). During the body's natural immunity 

to foreign pathogens (e.g., virus), the innate immune sys-
tem senses multiple pathogen-associated molecular patterns 
(PAMPs) through specific pattern recognition receptors 
(PRRs), two types of which are Toll-like receptors (TLRs) 
and RIG-I-like receptors (RLRs) [19]. TLRs are type I 
transmembrane proteins [20, 21], in which TLR3, TLR7, 
and TLR8 are expressed in dendritic cells (DCs) and can 
recognize viral-derived double-stranded RNA (dsRNA) 
or single-strand RNA (ssRNA) in the endosome, activat-
ing multiple signaling cascades that promote type I inter-
feron (IFN) production [22, 23]. However, in a variety of 
cells other than DCs, the key viral sensors appear to be the 
RLRs [24]. Two representative RLRs (RIG-I and MDA5) 
can recognize viral RNA present in the cytoplasm [25] and 
then interact with MAVS to induce the expression of type 
I IFN through the activation of IRF3 or NF-κB [25–27]. In 
addition, dsRNA produced during viral infection can also 
stimulate PKR activity, leading to eIF2α phosphorylation 
and subsequent antiviral responses [28].

Fig. 1   Chemical structures of common RNA modifications
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For unmodified RNA vaccines, the in vitro transcription 
process produces not only the desired full-length ssRNA but 
also dsRNA byproduct [29], and both ssRNA and dsRNA 
can induce immune responses via the above-mentioned 
pathways [22]. However, modified nucleotides can reduce 
the immunogenicity of in vitro transcribed RNAs in two 
ways. First, they inhibit the formation of dsRNA byprod-
uct, thereby improving the purity of ssRNA. Specifically, Ψ, 
m1Ψ, and m5C are able to reduce the production of dsRNA 
byproduct, but not the MDA5-stimulatory activity of the 
dsRNA byproduct [30]. Second, they inhibit the activation 
of PRRs. It has been found that RNAs with m6A, m5C, m5U, 
s2U or Ψ modifications do not activate TLR7/8, and those 
with m6A and s2U do not activate TLR3 [6]. Notably, s2U 
and Ψ can also decrease the activity of RIG-I [31]. In addi-
tion, modified nucleotides affect RNA stability, structure, 
and intramolecular interactions [32]. For instance, Ψ modifi-
cation can improve the translational capacity and stability of 

mRNA [33]. Taken together, enhanced properties conferred 
by modified nucleotides make synthetic RNA molecules 
effective and safe vehicles for vaccination.

RNA modification in mRNA vaccines

To date, more than 150 modifications have been discov-
ered in all kinds of RNA molecules, including mRNA [34]. 
The functional domains of mRNA usually contain coding 
sequence (CDS), 5'-untranslated region (UTR), and 3'-UTR 
[35], and the properties of these structures are closely 
related to the effectiveness of mRNA vaccines. Therefore, 
we focused on characterizing the various RNA modifications 
that occur in these regions, so that the knowledge built on 
them will benefit the design of highly stable and efficacious 
mRNA vaccines (Fig. 4).

Fig. 2   Principles of synthetic mRNA pharmacology. Step 1: After 
obtaining the pathogen genome, the target antigen sequence is 
designed and then inserted into the plasmid DNA vector. Step 2: 
The linearized plasmid DNA template is used for in vitro transcrip-
tion and the resulting synthetic mRNA is purified. Step 3: The mRNA 
vaccine is prepared by encapsulating the purified mRNA with deliv-
ery vehicles. Step 4: The mRNA vaccine is taken up by endocytosis. 
Step 5: The target mRNA is released into the cytoplasm. Step 6: The 
mRNA is translated into protein by the ribosome. Step 7: The protein 
product is degraded into antigenic peptide epitopes by the proteasome 

complex. Step 8: The antigenic epitopes are loaded onto MHC class 
I molecules in the endoplasmic reticulum. Step 9: MHC class I mol-
ecules present antigenic peptides to CD8+ T lymphocytes. Step 10: 
Alternatively, the protein product is secreted and then taken up by the 
cell, followed by a degradation process in the endosome. Step 11: The 
antigenic fragments are presented on the cell surface to Th cells by 
MHC class II molecules. Step 12: Th cells stimulate B cells to pro-
duce neutralizing antibodies against circulating pathogens. MHC, 
major histocompatibility complex; BCR, B cell receptor; TCR, T cell 
receptor; Th cell, T helper cell
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Ψ and m1Ψ

Ψ (pseudouridine) is the most abundant RNA modification 
[36] that is introduced in RNA by pseudouridine synthases 
or PUS enzymes [37]. It acts as a multifunctional player 
involved in RNA stability, translation and immunogenic-
ity. Specifically, based on thermodynamic data, a report 
showed that Ψ can stabilize RNA duplexes when replac-
ing U and generating Ψ-A, Ψ-U and Ψ-C pairs, which 
relies on type of base pair, the location of the Ψ in the 
duplex, and type and direction of adjacent Watson–Crick 
pairs [38]. Another study revealed that pseudouridylation 
(conversion of uridine into Ψ) of stop codons can inhibit 
translation termination both in vitro and in vivo and the 
resulting Ψ-containing codons encode for amino acids 
with similar properties [39]. In addition, incorporation of 

Ψ into in vitro-transcribed mRNA can improve the sta-
bility and translation of mRNA while evading the attack 
of the body's immune system by inhibiting the immu-
nogenicity of mRNA [33]. These properties make Ψ a 
very popular modified nucleotide that has been used in 
various mRNA vaccines, for example, against melanoma 
[13, 14]. As for the method to detect Ψ, a high-through-
put sequencing technology called Ψ-seq was developed 
in 2014, which can map Ψ sites at a transcriptome-wide 
scale with high resolution, confirming that Ψ is ubiqui-
tous in different types of RNAs including mRNA, snoRNA 
and rRNA [36]. In the same year, the pseudouridine site 
identification sequencing (PSI-seq) technology was devel-
oped, using 1-cyclohexyl-(2-morpholinoethyl)carbodiim-
ide metho-p-toluene sulfonate to modify Ψ and forcing 
reverse transcription to specifically stop at Ψ sites, thereby 
detecting Ψ modification with single-base resolution [40]. 

Fig. 3   Schematic depicting the mechanism by which RNA modifications abrogate the immunogenicity of synthetic mRNA molecules in the 
cytoplasm

Fig. 4   Schematic representation 
of the types of modified nucleo-
tides on native mRNA
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Notably, high-throughput sequencing methods for identi-
fying Ψ have advanced significantly in the last few years. 
In 2022, bisulfite-induced deletion sequencing (BID-seq) 
was developed to capture quantitative information about Ψ 
at a single-base resolution [41]. Relying on this approach, 
the researchers revealed that the TRUB1 protein is the 
main mRNA Ψ ‘writer’ and confirmed the role of Ψ in 
promoting stop codon readthrough in vivo [41]. Due to 
the long read length, third-generation sequencing (TGS) 
technologies, mainly represented by Oxford Nanopore 
Technologies (ONT) and Pacific Biosciences (PacBio), 
are being used to interrogate various RNA biological pro-
cesses at the single-molecule level. Based on ONT direct 
RNA sequencing data, two research groups demonstrated 
the utility of TGS in detecting Ψ modification and built 
their respective computational tools to predict Ψ modifica-
tions and evaluate the modification stoichiometry [42, 43]. 
Applying different stimuli to cell models, one group identi-
fied heat-sensitive Ψ-modified sites in small nuclear RNAs 
[42], and the other group found IFN inducible Ψ-modified 
sites in IFN-stimulated mRNAs, consistent with a role for 
Ψ in enabling efficacy of mRNA vaccines [43].

Because m1Ψ can reduce the immunogenicity of mRNA 
and exert context-dependent effects on mRNA translation 
[44], it is also favored by mRNA vaccine developers. It has 
been reported that (m5C/)m1Ψ-modified mRNA can lead to 
reduced innate immunogenicity in part by increasing its abil-
ity to evade activation of TLR3 and downstream immune 
signaling [45]. Notably, m1Ψ has a brief history of use in 
the preparation of mRNA vaccines. A potent m1Ψ-modified 
mRNA vaccine was developed against Zika virus (ZIKV) 
in 2017, which induced strong and long-lasting neutralizing 
antibody responses in mice and nonhuman primates [46]. 
As an example of mRNA vaccines for autoimmune diseases, 
delivery of m1Ψ-modified mRNA encoding disease-associ-
ated self-antigens can suppress multiple sclerosis in different 
mouse models by reducing effector T cells and developing 
regulatory T cell populations [47]. These studies carried out 
in animal models confirmed the application potential of m1Ψ 
modification in mRNA vaccines, providing confidence in 
translating the work from animal to human clinical studies. 
It must be emphasized that the m1Ψ modification is currently 
used in human COVID-19 mRNA vaccines to make the vac-
cines more effective [44].

RNA methylation

RNA methylation is one of the most common RNA modifi-
cations, which harbors multiple modification sites, including 
m5C, N1-methyladenosine (m1A), m6A, and 7-methylguano-
sine (m7G), 1-methylguanosine (m1G), and 2-methylguano-
sine (m2G) [48]. Previous studies have confirmed that 

m5C can promote mRNA export by affecting ALYREF, a 
kind of mRNA export adaptor [49]. In addition, m6A can 
affect mRNA translation and decay through controlling 
m6A-related proteins like YTHDF2 and YTHDF3 [50]. As in 
m1Ψ, other RNA methylations are gaining attention as new 
candidates for mRNA vaccine development. For example, 
Starostina et al. have tested different mRNA vaccine variants 
modified with m5C or m6A against influenza virus [51]. As 
technology iterates and evolves, a variety of methods have 
been developed to detect RNA methylation, such as liquid 
chromatography tandem-mass spectrometry (LC–MS/MS) 
[52, 53], methylated RNA immunoprecipitation sequenc-
ing (MeRIP-seq) [54], N6-methyladenosine sequencing 
(m6A-seq) [55, 56], and m6A individual-nucleotide-reso-
lution cross-linking and immunoprecipitation sequencing 
(miCLIP-seq) [57]. To get rid of the dependence on antibod-
ies for the detection of m6A, several novel techniques have 
recently been developed by three independent research teams 
[58–60]. Meyer reported DART-Seq (deamination adjacent 
to RNA modification targets), which can map thousands of 
m6A sites in cellular RNAs with as little as 10 nanograms 
of total RNA as input [58]. This method employs a strategy 
where m6A-adjacent cytidines can be edited by fusing the 
cytidine deaminase APOBEC1 to the m6A-binding YTH 
domain and the resulting C-to-U edits are detected using 
RNA-seq [58]. In 2022, Hu et al. developed m6A-selective 
allyl chemical labeling and sequencing (m6A-SAC-seq) to 
map global m6A sites in whole transcriptome at single-base 
resolution and revealed the dynamics of cell-state-specific 
m6A sites during human hematopoietic stem and progenitor 
cell differentiation into monocytes [59]. In the same year, 
Liu et al. presented an unbiased and convenient method for 
the absolute quantification of m6A at single-base resolution 
using glyoxal and nitrite-mediated deamination of unmeth-
ylated adenosines (GLORI) [60]. With the GLORI, they 
successfully identified 176,642 m6A sites in the HEK293T 
transcriptome and also provided a quantitative landscape of 
the m6A methylome in response to stress [60].

5'‑cap

The 5'-cap (m7GpppN) is a characteristic structure for 
eukaryotic mRNAs, which is formed by linking m7G to the 
5'-end of RNA-polymerase II transcripts through a 5ʹ-5ʹ-
triphosphate linkage (ppp) [61, 62]. Specific sites in the 
5'-cap can be methylated by methyltransferase (MTase)-
transferred methyl groups from S-adenosyl-L-methionine or 
functional moieties from non-natural analogs [63, 64]. It has 
been reported that cap-specific adenosine methyltransferase 
(CAPAM, a methyltransferase responsible for methylation 
of the N6 position of the adenosine initiation nucleotide)-
dependent methylation and propargylation have exactly the 
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opposite effects on translation—namely the methylation 
greatly reduces translation but the propargylation maintains 
translation [64]. Moreover, propargylated mRNA can cause 
a stronger immune response [64]. There is study that devel-
oped a set of biotin-labeled cap analogs, which have been 
shown to not only promote translation in vitro but also resist 
degradation by the RNA decapping enzyme human decap-
ping enzyme 2 (hDcp2) [65]. Except for the normal 5'-cap 
structure, some RNAs have a "reverse" cap where the m7G 
is adjacent to the body of the RNA [66]. Such reverse caps 
in conventional in vitro-synthesized mRNAs can result in 
a reduction of translational efficiency [67]. Stepinski et al. 
designed two novel cap analogs that cannot be incorporated 
in the reverse orientation and are thus called anti-reverse cap 
analogs (ARCAs) [67]. ARCA-capped transcripts have the 
same size and homogeneity as those produced by m7GpppG 
or GpppG and show higher translation efficiency than 
m7GpppG-capped transcripts [67]. As an important detec-
tion tool, CapQuant is a system-level mass spectrometry-
based technology that can accurately quantify various types 
of 5'-cap [68]. Given that chemical modification of the 5'-cap 
structure significantly affects RNA stability and translation 
efficiency, it is also a critical factor in optimizing the design 
of RNA vaccines.

Poly(A) tail

The poly(A) tail, almost found on every mRNA in eukar-
yotes, is associated with the translation and stability of 
mRNA [69, 70]. Removal of the poly(A) tail is the first and 
rate-limiting step in the mRNA decay pathway [71, 72]. 
There has evidence that an evolutionarily conserved pro-
tein, poly(A)-binding protein (PAB), can bind to the poly(A) 
tail, not only affecting the activity of deadenylating nuclease 
but also stimulating translation [72, 73]. Interestingly, one 
report suggested that PAB also has an intrinsic property of 
stabilizing RNA, and the main or only role of poly(A) tail in 
mRNA stability is to bring PAB to mRNA [74]. In addition, 
it has been found that the poly(A) tail of appropriate length 
can serve as an identity element for mRNA nuclear export, 
because that the poly(A) tail can either increase RNA length 
or provide a platform for recruitment of mRNA export fac-
tors [75]. Many studies have shown that a number of modi-
fication sites exist in the poly(A) tail region. The uridylation 
of the poly(A) tail was found to promote mRNA decay [76], 
while the guanylation could protect mRNA from rapid dead-
enylation [77]. A novel RNA-seq technology, called poly(A) 
inclusive RNA isoform sequencing (PAIso-seq), showed that 
17% of mRNAs contained non-A residues in the poly(A) 
tails in mouse GV oocytes [78]. In addition to PAIso-seq, 
there have been several methods developed for deciphering 
sequence features of the poly(A) tail, such as TAIL-seq [79, 

80] and poly(A)-tail length profiling by sequencing (PAL-
seq) [80]. To sum up, modification of the poly(A) tail should 
be an important consideration in controlling the stability and 
translation of mRNA vaccine.

5'‑ and 3'‑UTRs

There are two UTRs at the 5' and 3' ends of the mature 
mRNA. They do not encode proteins, but have regulatory 
biological functions on mRNA. The 5'-UTR acts as a con-
troller of mRNA translation initiation in eukaryotes [81]. 
Different forms of RNA modifications can be found in 
5'-UTR sequences, including m1A, m6A, N6,2'-O-dimethy-
ladenosine (m6Am), m5C and Ψ [48, 82, 83]. The 3'-UTR is 
an essential regulatory region for diverse mRNA processes, 
such as nuclear export, RNA stability, polyadenylation, sub-
cellular localization, and mRNA translation and decay [54, 
84]. As such, any modifications that occur in this region 
may affect gene expression by altering RNA fate [84]. Much 
evidence shows that several modifications including m6A, 
m5C and Ψ are prevalent within the 3'-UTR [54, 83, 85]. Due 
to the pivotal role of 5'- and 3'-UTRs in mRNA functionali-
zation, their RNA modification types provide an important 
reference model for the in vitro synthesis of mRNA vaccines 
similar to natural mRNA.

Application of mRNA vaccines in cancer 
immunotherapy

As an emerging therapeutic strategy for different types of 
tumors, cancer vaccines mainly induce or enhance tumor-
specific immunity by acting on key target proteins such 
as tumor-associated antigens (TAAs) and cancer neoanti-
gens [86]. The mRNA-based techniques provide a new and 
promising avenue for the design and development of novel 
cancer vaccines. There are already numerous clinical tri-
als of mRNA vaccines targeting the following five tumors 
(Table 1).

Renal cell carcinoma (RCC)

RCC is one of the most common cancers in the world, 
accounting for 5% of all new diagnoses in men and 3% in 
women, according to Cancer Statistics 2022 [95]. At present, 
the treatment of RCC is mainly surgery, supplemented by 
regular follow-up, and new treatment options such as vascu-
lar endothelial growth factor inhibitors and tyrosine kinase 
inhibitors are also emerging [96]. Since RCC is classified 
as an immunogenic tumor, exploring its immunotherapeutic 
approach has become one of the research hotspots in the 
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field of RCC [97]. It has been confirmed that therapy using 
RCC RNA-transfected DCs is not only feasible and safe, 
but also stimulates the expansion of tumor-specific poly-
clonal T cells in vivo [98]. Another research established a 
generic DC vaccine strategy in which RNA prepared from 
a well-characterized highly immunogenic RCC cell line 
(RCC-26) was used as a source of TAAs for loading of DCs 
[99]. In addition, when the number of CD4+/CD25+ Tregs 
in metastatic RCC patients is decreased with the recombi-
nant IL-2 diphtheria toxin conjugate DAB389IL-2, RNA-
transfected DC vaccine can drastically boost the stimula-
tion of tumor-specific T cell responses [100]. An mRNA 

vaccine consisting of RNAs encoding six different TAAs 
has been reported to induce T-cell responses against multi-
ple TAA epitopes, thereby contributing to prolonging over-
all survival in patients with metastatic RCC [97]. Of note, 
high-throughput data mining provides a powerful approach 
to discover more potentially effective neoantigens for RCC 
mRNA vaccine development. For example, analysis of The 
Cancer Genome Atlas (TCGA)-kidney renal clear cell carci-
noma (KIRC) dataset identified four genes (TOP2A, NCF4, 
FMNL1, and DOK3) that were upregulated, mutated, and 
positively correlated with survival and antigen-presenting 
cells [101].

Table 1   List of clinical trials of mRNA vaccines against five types of cancer

Data from https://​clini​caltr​ials.​gov/ (Accessed January 19, 2023); NA: Not available

Cancer Types Status Phases Study Type References

Brain cancer; Neoplasm metastases Completed Phase 1 Interventional NCT02808416 [87]
GBM; Brain tumor Completed Phase 1 & 2 Interventional NCT00846456 [88]
Malignant neoplasms of brain Active, not recruiting Phase 1 Interventional NCT00639639 [89]
Malignant glioma; Astrocytoma; GBM Completed Phase 1 Interventional NCT02529072
Adult GBM Recruiting Phase 1 Interventional NCT04573140
Recurrent central nervous system neoplasm Completed Phase 1 Interventional NCT00890032
High grade glioma; Diffuse intrinsic pontine glioma Recruiting Phase 1 & 2 Interventional NCT04911621
Metastatic NSCLC; NSCLC Completed Phase 1 & 2 Interventional NCT03164772
Esophageal cancer; NSCLC Unknown status NA Interventional NCT03908671
NSCLC Completed Phase 1 & 2 Interventional NCT00923312 [90]
Ewings sarcoma; NSCLC; Liver cancer Completed Phase 1 Interventional NCT01061840
Malignant melanoma Completed Phase 1 & 2 Interventional NCT00204516
Melanoma Terminated Phase 1 & 2 Interventional NCT01944709
Melanoma; Colon cancer; Gastrointestinal cancer; Genitourinary 

cancer; Hepatocellular cancer
Terminated Phase 1 & 2 Interventional NCT03480152 [91]

Melanoma Not yet recruiting Phase 1 Interventional NCT05264974
Malignant melanoma Completed Phase 1 & 2 Interventional NCT01278940
Metastatic malignant melanoma Terminated Phase 1 & 2 Interventional NCT00961844
Melanoma Active, not recruiting Phase 1 Interventional NCT02410733 [92]
Melanoma Active, not recruiting Phase 2 Interventional NCT03897881
Melanoma stage III; Melanoma stage IV; Unresectable melanoma Recruiting Phase 2 Interventional NCT04526899
Melanoma stage III or IV Completed Phase 1 & 2 Interventional NCT00243529
Melanoma Completed Phase 1 Interventional NCT01456104
Melanoma Completed Phase 1 & 2 Interventional NCT01530698
Breast cancer; Malignant melanoma Completed Phase 1 Interventional NCT00978913
Melanoma Completed Phase 1 Interventional NCT01066390 [93]
Melanoma Completed Phase 2 Interventional NCT02285413 [94]
Recurrent melanoma; Stage IV melanoma Terminated Phase 2 Interventional NCT00087373
Hormonal refractory prostate cancer Completed Phase 1 & 2 Interventional NCT00831467 [90]
Prostate cancer Active, not recruiting Phase 1 & 2 Interventional NCT01197625
Prostate cancer Completed Phase 1 & 2 Interventional NCT01278914
Metastatic prostate cancer Withdrawn Phase 1 & 2 Interventional NCT01153113
Prostatic neoplasms Completed Phase 2 Interventional NCT01446731
Prostate carcinoma Terminated Phase 2 Interventional NCT02140138
RCC​ Unknown status Phase 1 & 2 Interventional NCT02787915

https://clinicaltrials.gov/
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Brain tumor

Brain tumors are defined as tumors that grow intracrani-
ally. Brain and other nervous system tumors are the leading 
cause of cancer death in the United States for men under 
40 and women under 20, according to Cancer Statistics 
2022 [95]. The current mainstay of treatment for tumors 
is surgical resection, supplemented by radiation and/or 
chemotherapy [102, 103]. However, due to the complex-
ity of brain structure and the possibility of tumor metas-
tasis, surgical resection is sometimes difficult to achieve 
the desired effect, and thus, some researchers have tried 
to use immunotherapy to treat brain tumors. A study has 
demonstrated the feasibility and safety of the monocyte-
derived dendritic cells pulsed with tumor RNA (DCRNA 
vaccine) in pediatric patients with recurrent brain tumors 
[104]. Glioma, the most common primary intracranial 
tumor, accounts for 81% of malignant brain tumors [105]. 
There are many studies on glioma immunotherapy through 
analyzing the relevant data. Four tumor antigens (TCF12, 
TP53, C3, and IDH1) were found to be associated with 
poor prognosis and infiltration of antigen-presenting cells 
[106], while those (ANXA5, FKBP10, MSN, and PYGL) 
with good prognosis [107]. For glioblastoma (GBM), the 
most common and aggressive malignant brain tumor in 
adults, Rose et al. identified 11 specific potential targets 
for immunotherapy strategies by comparing surfaceomes 
between GBM cells and astrocytes [108]. In another study, 
ARPC1B and HK3 were revealed as potential antigens for 
the development of GBM mRNA vaccines [109]. For dif-
fuse glioma, Zhou et al. suggested that COL1A2, SAMD9 
and KDR can be used as potential antigens for developing 
mRNA vaccines [110]. Overall, these findings provide 
numerous candidate target proteins awaiting experimental 
and clinical validation for the design and development of 
effective brain tumor RNA vaccines.

Melanoma

Melanoma is an aggressive tumor that originates in mel-
anocytes [111]. In the event of malignant transformation, 
the primary tumor is prone to metastasize, posing a huge 
threat to the life of the patient [111]. Melanoma ranks fifth 
in estimated new cases in both men and women, accord-
ing to Cancer Statistics 2022 [95]. There are already sev-
eral treatments for melanoma, such as surgical resection, 
chemotherapy, targeted therapy, and immunotherapy. 
Three classes of proteins displayed on major histocompat-
ibility complex (MHC) class I proteins on the surface of 
melanoma cells, including TAAs, tumor-specific antigens 

and melanoma differentiation antigens, are able to warn 
the immune system that the cells are diseased [112]. Two 
research groups demonstrated the efficacy of TAA-based 
mRNA vaccines using the same RNA modifications (m5C 
and Ψ), showing that these vaccines were able to induce 
robust immune responses in melanoma mouse models [13, 
14]. Specifically, one group aimed at reducing the mRNA 
immunogenicity and increasing the expression levels of 
antigens using the modified nucleotides [13], while the 
other group found no significant difference in the CD8 T 
cell levels in mice immunized with modified mRNA rela-
tive to controls, but significantly higher CD8 T cell levels 
in mice treated with unmodified mRNA relative to controls 
[14]. In addition, there are some studies using combination 
therapy strategies to increase the antitumor effect [113, 
114]. For example, Li et al. revealed that the combination 
of cytosine-phosphate-guanosine-oligodeoxynucleotides 
(CpG-ODNs) and mRNA vaccines modified by N1-meth-
ylpseudo-UTP and cap 1 analogs could be a promising 
candidate approach for immunostimulatory sequence-
based therapeutic strategies [113]. The good news is that 
a commercial vaccine FixVac (BNT111) has been inves-
tigated in an ongoing, first-in-human, dose-escalation 
clinical trial in advanced melanoma patients, which can 
be intravenously administered against four non-mutated 
TAAs and shows a favorable safety profile and prelimi-
nary antitumor responses, either alone or in combination 
with immune checkpoint inhibitor therapy [92, 115]. More 
importantly, this vaccine was modified by uridine, which 
increased the immunostimulatory effect and was optimized 
for enhanced pharmacological activity [115].

Prostate cancer

Prostate cancer is the most common malignancy among 
men in western countries with high mortality. According 
to Cancer Statistics 2022, prostate cancer ranks first in 
estimated new cases and second in estimated deaths from 
the male population [95]. In addition to traditional radical 
prostatectomy, many non-surgical treatments are widely 
practiced, including chemotherapy, radiation therapy, abla-
tive therapy, androgen-deprivation therapy and immuno-
therapy [116]. Although mRNA vaccines against prostate 
cancer have been studied, the vaccines have disadvantages 
such as high cost of gold particles, unstable mRNA, and 
limited large-scale production of mRNA-transfected DCs 
in vitro [117]. To address these issues, the recombinant 
bacteriophage MS2 virus-like particles were designed to 
encapsulate target mRNA, resulting in an easy-to-pre-
pare, non-toxic, ribonuclease-resistant vaccine that elic-
ited potent humoral and cellular immune responses and 
delayed tumor growth [117]. Another study developed an 
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adjuvant-pulsed mRNA vaccine modified by m5C and Ψ 
and revealed that co-delivery of the modified mRNA and 
palmitic acid-conjugated Resiquimod (C16-R848) could 
promote the recruitment of CD8+ T cells to tumors and 
enhance the overall antitumor response, improving the 
therapeutic and preventive efficacy of the vaccine [15]. 
Notably, two vaccines, CV9103 and CV9104, based on 
the novel RNActive® technology, are currently avail-
able for the treatment of prostate cancer patients and have 
been shown to be highly specific, safe and effective [118]. 
In addition, some studies have revealed new targets for 
mRNA vaccines. For instance, eight mutated antigens 
(KLHL17, CPT1B, IQGAP3, LIME1, YJEFN3, KIAA1529, 
MSH5, and CELSR3) were found to be overexpressed in 
prostate adenocarcinoma and associated with poor progno-
sis [119]. Furthermore, based on distinct clinical, molecu-
lar, and cellular characteristics, this study classified pros-
tate adenocarcinoma into three immune subtypes (PIS1, 
PIS2, and PIS3) and suggested that patients with PIS2 and 
PIS3 were more suitable for vaccination [119].

Lung cancer

Lung cancer remains the leading cause of cancer-related 
death worldwide. The disease can be divided into two major 
histological subtypes: small cell lung cancer (SCLC) and 
non-small cell lung cancer (NSCLC), which account for 
approximately 15% and 85% of cases, respectively [120]. 
RNA vaccines for NSCLC are already in clinical trials. 
For example, CV9201, a cancer immunotherapy based on 
RNActive® technology encoding five NSCLC antigens, was 
well tolerated and elicited a detectable immune response 
[121]. Furthermore, in phase IIa, median progression-free 
and overall survival for patients were 5.0 months (95% CI 
1.8–6.3) and 10.8 months (8.1–16.7) from first administra-
tion, respectively [121]. Another clinical trial evaluated 
the safety and tolerability of BI1361849 (CV9202), a self-
adjuvanted protamine formulated mRNA-based active can-
cer immunotherapy encoding six NSCLC-associated anti-
gens, showing that it was well tolerated in combination with 
local radiation [122]. In addition, several studies have used 
bioinformatic approaches to screen and identify potential 
tumor antigens for the development of RNA vaccines for 
lung adenocarcinoma (LUAD), the most common histologi-
cal subtype of lung cancer [123]. Two genes, KLRG1 and 
CBFA2T3, were identified to be associated with prognosis 
in LUAD patients and positively correlated with the infil-
tration of antigen-presenting cells (APCs) [124]. Another 
seven genes including GPRIN1, MYRF, PLXNB2, SLC9A4, 
TRIM29, UBA6, and XDH can serve as potential immune 
biomarker candidates to activate the immune response [125].

Future prospects and challenges of mRNA 
vaccines

Increasing basic research and clinical applications show 
that mRNA vaccines have many advantages over other 
types of vaccines. Firstly, mRNA vaccines have the excel-
lent safety. Unlike DNA and viral vaccines, mRNA is a 
non-infectious nucleic acid substance and once delivered 
to the cytoplasm, the mRNA is translated immediately 
[61, 126]. Since mRNA vaccines do not enter the nucleus 
and cannot integrate into the genome, there is no risk of 
causing genetic mutations in recipients [61, 126]. Like 
native mRNAs, the activity of in vitro transcribed mRNAs 
is transient, and they are fully degraded by physiologi-
cal metabolic pathways [61]. Secondly, mRNA vaccines 
are relatively simple to design and inexpensive to produce 
[61, 127]. Once the sequence information of the mRNA 
of a new target gene is obtained, its corresponding mRNA 
vaccine can theoretically be designed and synthesized 
very quickly [127]. In the field of tumor research, there 
are a large number of high-throughput sequencing data 
and clinical case resources that can be used to screen and 
identify valuable target gene candidates for mRNA vac-
cines. Thirdly, there are already some measures to enhance 
the thermostability of mRNA vaccines with or without 
major changes in the formulation [128]. For instance, the 
lyophilized vaccines are stable for 36 months at 5–25 °C, 
free from the dependence on low temperature conditions 
during long-distance transportation and long-term storage 
[126].

Despite the above-mentioned advantages and rapid 
advance of mRNA vaccines, there are still some gaps 
between their application status and our expectations. Spe-
cifically, much of the mRNA vaccine research currently 
underway is primarily tested and evaluated in animal mod-
els rather than humans [129], which means that whether 
the vaccine can elicit an immune response in humans is 
unclear, so further clinical trials are urgently needed to 
verify the safety and efficacy of the mRNA vaccines.

In order to fully realize the potential of mRNA vaccines 
to treat diseases, especially tumors, another issue is how 
to choose a biocompatible and safe delivery system so that 
the synthetic RNA molecules can avoid being cleared by 
off-target organs, can reach the correct tissue, can interact 
with the desired cell type in the complex tissue microen-
vironment, can be taken up by endocytosis, and can even-
tually get out of the endosome [130]. Lipid nanoparticles 
(LNPs) are currently the most trending delivery vehicles 
for in vivo application, which can increase mRNA entrap-
ment efficiency, prevent mRNA degradation before release, 
promote endosomal escape, and control the site and tim-
ing of mRNA vaccine delivery in the body [131, 132]. 
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In a clinical trial (NCT03480152), LNPs have been uti-
lized to encapsulate personalized mRNA vaccine against 
melanoma [91]. An emerging advantage of LNPs is that 
organ-specific targeting can be readily achieved by alter-
ing their lipid structures [133]. In one example, changes in 
the alkyl chain length of a lipid led to selective delivery of 
mRNA to the liver or spleen [133, 134]. Intriguingly, LNP 
charge can also affect mRNA delivery [130]. For example, 
researchers redirected hepatotropic LNP to the lung via 
adding a cationic lipid to the LNP [130, 135]. Although 
these advances offer valuable information for the future 
design of tissue-targeted mRNA therapeutics, the urgency 
for mRNA cancer vaccines is to expedite testing of the 
delivery efficiency of different LNP formulations in animal 
models and to increase the number of vaccines entering 
clinical trials in LNP formulations.

It is believed that the property of the selected antigen also 
affects the quality of the elicited immune response [129], and 
therefore, numerous bioinformatic analyses have been actively 
focused on mining potential new tumor-associated antigens for 
mRNA vaccines, but relevant experimental validation is lack-
ing. In fact, high-throughput sequencing technologies coupled 
with bioinformatics tools may offer great help in improving the 
specificity of mRNA vaccines in the context of personalized 
tumor therapy. For example, most (up to 70%) human genes 
generate many forms of transcript variants [136], which may 
be translated into different isoforms. Moreover, given the pos-
sibility of population-specific and individual-specific isoforms, 
there is a need to obtain reliable full-length transcript sequence 
information from the target individuals for precise design of 
mRNA vaccines, which can be achieved via TGS technologies, 
such as ONT RNA-seq and PacBio Iso-Seq.

Last but not least, based on the lessons and experiences of 
mRNA-modified vaccines for infectious diseases, modified 
nucleosides and sequence engineering should be applied to 
the development of more cancer mRNA vaccines as soon as 
possible. Furthermore, we have entered an era where various 
combinations of RNA modifications will be detectable at the 
transcript level in an individual using TGS techniques, espe-
cially ONT direct RNA sequencing [42]. If the functional 
effects of these combinatorial RNA modifications on mRNA 
stability, structure and translation can be well interpreted, 
this will open up a huge possibility for customizing unique 
mRNA vaccines that best fit an individual's immune system 
and thus greatly facilitate the application of mRNA vaccines 
in cancer immunotherapy.

Conclusions

In summary, we reviewed and discussed the functions of 
RNA modifications and their applications in mRNA vac-
cines and emphasized recent advances of mRNA vaccines 

in cancer immunotherapy. More importantly, we provided 
future research directions to explore the functions of combi-
natorial RNA modifications at the transcript level as a basis 
for the development of novel mRNA vaccines in the context 
of individualized tumor therapy.
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