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Abstract
Hepatocellular carcinoma (HCC) is responsible for roughly 90% of all cases of primary liver cancer, and the cases are on 
the rise. The treatment of advanced HCC is a serious challenge. Immune checkpoint inhibitor (ICI) therapy has marked a 
watershed moment in the history of HCC systemic treatment. Atezolizumab in combination with bevacizumab has been 
approved as a first-line treatment for advanced HCC since 2020; however, the combination therapy is only effective in a 
limited percentage of patients. Considering that the tumor immune microenvironment (TIME) has a great impact on immu-
notherapies for HCC, an in-depth understanding of the immune landscape in tumors and the current immunotherapeutic 
approaches is extremely necessary. We elaborate on the features, functions, and cross talk of the innate and adaptive immune 
cells in HCC and highlight the benefits and drawbacks of various immunotherapies for advanced HCC, as well as future pro-
jections. HCC consists of a heterogeneous group of cancers with distinct etiologies and immune microenvironments. Almost 
all the components of innate and adaptive immune cells in HCC have altered, showing a decreasing trend in the number of 
tumor suppressor cells and an increasing trend in the pro-cancer cells, and there is also cross talk between various cell types. 
Various immunotherapies for HCC have also shown promising efficacy and application prospect. There are multilayered 
interwoven webs among various immune cell types in HCC, and emerging evidence demonstrates the promising prospect 
of immunotherapeutic approaches for HCC.
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Introduction

The liver is a vital hub of macronutrient metabolism, lipid 
homeostasis, detoxification, and immune surveillance. In 
addition to its tolerance property toward antigens that are 
commonly encountered, the liver is an immune-active organ 
because of its responsibility to remove pathogens and gut-
draining antigens from the systemic circulation. A healthy 
liver is primarily populated by leukocytes, including Kupffer 
cells (KCs), T cells, B cells, natural killer (NK) cells, and 
NKT cells [1, 2]. The tolerogenic and immune-rich environ-
ment of the liver maintains local and systemic homeostasis. 

Once the liver cancer has developed, the tolerogenic envi-
ronment promotes tumor progression [3].

Hepatocellular carcinoma (HCC) is responsible for 
roughly 90% of all cases of primary liver cancer. Chronic 
hepatitis virus infections, alcohol misuse, metabolic syn-
drome, and several monogenic diseases are well-known risk 
factors for HCC. Most patients are diagnosed with HCC at 
an advanced stage since the disease is almost symptomless 
in the early stages. Advanced HCC used to be treated with 
transarterial chemoembolization (TACE) and tyrosine kinase 
inhibitors (TKIs), but these modalities do not significantly 
prolong the lifespan of patients [4]. However, immuno-
therapies are transforming cancer treatment [5]. Nivolumab 
and pembrolizumab, both anti-PD-1 drugs, have been used 
as second-line treatments for advanced HCC resistant to 
sorafenib [6, 7]. When compared to first-line sorafenib, the 
combination of atezolizumab (an anti-PD-L1) and beva-
cizumab (a VEGF blockade) provides superior outcomes 
and has become a new first-line treatment in advanced HCC 
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[5]. Despite a significant paradigm shift in HCC treatment, 
immunotherapies still have limitations due to a lack of 
data on drug resistance and response prediction. Previous 
research has suggested that the tumor immune microenviron-
ment (TIME) of HCC is significantly related to the progno-
sis and treatment response [8, 9]. This review summarizes 
the immunobiological features of HCC, with a focus on 
various innate and adaptive immune cells (shown in Fig. 1) 
in the tumor microenvironment (TME) and the cross talk 
among them. We also describe recent immunotherapeutic 
approaches and potential future directions.

Innate immune cells in HCC

Myeloid cells

Dendritic cells

Like dendritic cells (DCs) in other tissues, liver DCs mainly 
include conventional DCs (cDCs) and plasmacytoid DCs 

(pDCs) [10]. cDCs are the only cells in the body capable 
of activating naive T cells, whereas pDCs are inefficient 
antigen-presenting cells in the liver [11, 12].

In HCC, the proportion of LAMP3 + DCs that originated 
from cDC1 or cDC2 and are correlated with the malfunction 
of T lymphocytes is higher in tumor tissues than that in adja-
cent non-tumor tissues, and the fraction of pDCs in relapsed 
tumor samples is larger than that in primary tumor samples 
[13, 14]. Hypoxia is a common phenomenon in tumors. In 
severely hypoxic tumor regions of HCC, regulatory T cells 
(Tregs) and cDC2 can be attracted by CCL20 and CXCL5, 
and hepatoma cell-derived extracellular adenosine can 
recruit pDCs via the hypoxia-inducible factor (HIF)-1α/
CD39/CD73 signaling pathway [15, 16]. HCC-produced 
α-fetoprotein (AFP) can impair biological metabolism of 
DCs by suppressing the expression of the metabolism regu-
lators SREBP-1 and PGC1-α, mediate the dysfunction and 
apoptosis of DCs, and suppress the activation of NK cells 
by DCs [17–19]. In addition, in an in vitro study, tumor 
culture supernatants from HCC cell lines could impede the 
differentiation and maturation of monocyte-derived DCs, 

Fig. 1   The tumor immune microenvironment of HCC. Tumor cells 
can evade host immune attack if HCC tumor antigens are not effec-
tively recognized and presented by the immune system, or if the func-
tion of tumor-killing T lymphocytes is inhibited by suppressor cells 
or molecules in the tumor microenvironment. This figure illustrates 
the complex interactive network. In the figure, the vertically down-
ward blue arrows and the vertically upward red arrows indicate the 
decrease and increase in the number of cells in HCC, respectively. 
The thick black arrows pointing upwards represent an increase in cell 

secretory products. Furthermore, arrows pointing to cells symbol-
ize facilitative effects, while lines symbolize inhibitory action. TAN, 
tumor-associated neutrophil; MDSC, myeloid-derived suppressor 
cells; TAM, tumor-associated macrophages; Treg, regulatory T cell; 
pDC, plasmacytoid dendritic cell; NK, natural killer; KC, kupffer 
cell; MC, mast cell; CTL, cytotoxic T lymphocyte; CSC, cancer stem 
cell-like cell; cDC, conventional dendritic cell; HSC, hepatic stellate 
cell; CAF, cancer-associated fibroblast; ILC2, helper-like innate lym-
phoid cell 2
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leading them to develop an immunosuppressive interleu-
kin (IL)-10highIL-12lowTNF-αlow cellular phenotype [20]. 
Tumor-associated DCs can induce tumor immune evasion 
via suppressing the functions of various T cell subsets and 
NK cells through multiple ligand-receptor pairs, including 
PD-1/PD-L1, and promoting the expansion of Tregs, which 
can mediate the loss of HLA-DR from DCs to maintain their 
tumor immunosuppressive activity, forming a positive feed-
back loop [13, 15, 16].

Neutrophils

Neutrophils are rich in the peripheral blood. The abundance 
of neutrophils depends on continuous supplementation 
through granulopoiesis in the bone marrow because of the 
limited lifespan of these cells. Neutrophils exhibit a strong 
effector response when they are recruited into inflamma-
tion sites [21]. In the past few decades, neutrophils have 
been regarded as a unique component that can promote the 
intercellular communication between tumor cells and TME 
[22]. Tumor-associated neutrophils (TANs) were confirmed 
to have different activation/differentiation states, including 
the N1 phenotype (anti-tumor) and the N2 phenotype (pro-
tumor) [23]. N1 TANs have enhanced phagocytosis and 
migratory capacity, increased oxidative burst, and enhanced 
cytotoxicity for tumor cells. N2 TANs have inhibitory effects 
on T cells and are less cytotoxic to tumor cells [24].

In HCC, monocyte-derived CXCL2 and CXCL8 can 
recruit peripheral neutrophils to TME and sustain their sur-
vival [25], and tumor cells then educate the peripheral blood 
neutrophils to develop into CCL2 + or CCL17 + TANs via 
PI3K/Akt and p38/MAPK signaling pathways. As a result, 
TANs are distributed all over the tumor stroma. TANs can 
facilitate neovascularization and progression of HCC by the 
recruitment of macrophages and Tregs, which is related to 
the poor prognosis of HCC [26]. Activated neutrophils can 
form extracellular traps (NETs) under various inflammatory 
conditions [27]. NET formation is increased in HCC-derived 
neutrophils. The increased NETs can inhibit HCC cell death 
and enhance the invasiveness of HCC cells via activation of 
TLR4/9-COX2 signaling [28]. Furthermore, cortisol, which 
is mainly produced in males, can induce TGF-β expression 
in the liver, TGF-β is associated with TAN recruitment and 
the upregulation of some pro-tumor molecules, contributing 
to the gender disparity in HCC carcinogenesis [29]. Moreo-
ver, cancer stem cell-like cells (CSCs) have been confirmed 
to exist in various cancers, including HCC. CSCs are linked 
to the development and progression of HCC [30, 31]. TANs 
can increase the stem cell properties in tumor cells via the 
miR-301b-3p/LASMP/CYLD signaling pathway, and liver 
CSCs can recruit more TANs into the TME by secreting high 
levels of CXCL5 because of the hyperactive NF-κB signal-
ing. It is a positive feedback loop, ultimately fostering HCC 

progression [32]. A latest study found that cabozantinib (a 
TKI) combined with anti-PD-1 can promote the recruit-
ment of N1 TANs in HCC and inhibit tumor progression 
[33]. Recently, some TAN-targeting drugs have undergone 
clinical testing and demonstrated some therapeutic benefits 
[34–36]. However, more investigation is required to ascer-
tain the function of neutrophil phenotypes, particularly TAN 
phenotypes, in HCC.

Kupffer cells

KCs, which line the liver sinusoids, are the liver-resident 
macrophages. KCs are responsible for detoxifying blood that 
may contain harmful enteric pathogens or toxic digestive 
byproducts, as well as being involved in inflammatory pro-
cesses, particularly in viral hepatitis and HCC [37]. There 
are two functionally opposite phenotypes of KCs in the 
healthy liver: classically (M1) and alternatively (M2) acti-
vated KCs, with a balance between them [38]. Besides KCs, 
there is another macrophage subtype in the liver, peripheral 
blood monocyte-derived macrophages (MoMFs) [39].

Even though KCs are the first line of defense against HCC 
cells, most studies have confirmed their pro-cancer roles in 
HCC, and TME-driven KC transition from M1 to M2 may 
be one important cause [38, 40, 41]. In mouse HCC tissues, 
myeloid-derived suppressor cells (MDSCs), an immuno-
suppressive cell, could inhibit the costimulatory molecule 
expression and the antigen-presenting function of KCs while 
increasing the expression of coinhibitory molecules in KCs, 
which could be another cause of the cancer-promoting KC 
formation [40]. In an HCC mouse model, M2-KCs were 
thought to be a key factor in tumor progression, and micro-
RNA-206, which could promote M1-KC polarization, had 
been shown to increase the percentage of CD8 + T cells in 
HCC and suppress tumor growth [38]. Furthermore, based 
on a recent study, different types of TMEs were present in 
HCC, with distinct cell distribution patterns correspond-
ing to different stages of hepatocyte dedifferentiation. The 
regional immunity of HCC was reversely regulated by KCs 
and infiltrating MoMFs with pro- and anti-tumor functions, 
respectively. In HCC mouse models, KC depletion could 
increase the intratumoral infiltration of MoMFs and improve 
the efficacy of anti-PD-1 antibodies, inhibiting tumor pro-
gression [41]. Mechanistically, KCs can suppress the tumor-
killing toxicity of CD8 + T cells via B7-H1/PD-1 interac-
tions or mucin domain-containing molecule-3 (Tim-3)/
galectin-9 signaling pathways in HCC [42, 43]. In addition, 
KCs also play an important role in hepatocarcinogenesis 
[44–46]. Sympathetic nervous system-mediated activation 
of KCs, as well as autophagy-deficient KCs, can promote 
the tumorigenesis of HCC by increasing liver inflammation 
and fibrosis [44, 45]. TREM-1 (triggering receptor expressed 
on myeloid cells), the proinflammatory receptor on KCs, can 
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also regulate the activation of KCs and the development of 
HCC [46].

Myeloid‑derived suppressor cells

MDSCs exert immunosuppressive roles by releasing large 
quantities of active components [47]. Two major MDSC 
subpopulations, monocyte MDSCs (M-MDSCs) and poly-
morphonuclear MDSCs (PMN-MDSCs), were recently 
identified. Another subtype is early MDSCs (eMDSCs), 
which contain more progenitor cells that can differentiate 
into mature MDSCs [48]. In different conditions of TME, 
MDSCs may transform into DCs, neutrophils, or mac-
rophages and conduct a variety of functions [49].

MDSCs are increased in the peripheral blood and tumor 
tissues of HCC patients, and the number of PMN-MDSCs 
in the peripheral blood exceeds that of M-MDSCs, which 
is associated with poor prognosis [50–56]. Hepatic stellate 
cells (HSCs), non-parenchymal hepatocytes, are activated 
when the liver is injured [57]. In HCC, activated HSCs can 
recruit MDSCs by producing the stromal cell-derived fac-
tor 1 and induce MDSC expansion via IL-6 signaling or 
the complement C3 pathway [58–60]. Cancer-associated 
fibroblasts (CAFs), which originate from HSCs, play pro-
tumorigenic roles through their interaction with HCC cells, 
and CAF-derived cytokines can stimulate the generation of 
MDSCs [61, 62]. Furthermore, HIF-1 can promote MDSC 
accumulation via ectonucleoside triphosphate diphospho-
hydrolase-2, which can also inhibit MDSC maturation in 
HCC [63, 64]. In addition, chronic restraint stress-related 
β-adrenergic signaling in HCC can also recruit MDSCs 
through the CXCL5-CXCR2-Erk signaling pathway [65]. 
MDSCs can promote tumor progression via multiple path-
ways. MDSC-derived IL-10 has been shown to inhibit IL-12 
production and DC activation, and MDSC-derived fibroblast 
growth factor 1 has been shown to activate CAFs, result-
ing in tumor growth [66, 67]. Moreover, M-MDSCs can 
suppress tumor immunity via the CXCL10/TLR4/MMP14 
signaling, thereby increasing tumor recurrence after liver 
transplantation [68]. Endoplasmic reticulum (ER) stress, 
characterized by the accumulation of a large amount of 
structurally abnormal protein in the ER and the subsequent 
aberrant response, is confirmed to be associated with hepa-
tocarcinogenesis [69, 70]. The increased PMN-MDSCs in 
HCC can impede T cell proliferation through the ROS/Argi-
nase I pathway, which is mediated by ER stress [71].

Mast cells

Human mast cells (MCs) originate from hematopoietic 
stem cells. Mature MCs are observed in almost all tissues as 
hypergranular cells but are absent in blood. MCs can be clas-
sified into several subpopulations based on their properties. 

According to their tissue localization, MCs can be divided 
into two types: mucosal MCs and connective tissue MCs. 
Tryptase-expressing MCs (MCTs), tryptase and chymase-
expressing MCs, and chymase-expressing MCs are classified 
based on their protease content. In terms of their roles in the 
disease, MCs are further categorized as inflammatory MCs, 
tumor-promoting MCs, and anti-tumor MCs [72, 73].

The number of MCs in tumor tissues is markedly lower 
than in peritumoral tissues in HCC [73–75]. The role of 
MCs in HCC is still debatable. On the one hand, MCs were 
demonstrated to promote the infiltration of MDSCs, which 
secreted IL-17, IL-17 then recruited Tregs, which produced 
IL-9; and IL-9, in turn, enhanced the immunosuppressive 
effect of MCs in HCC. There was a closed interaction loop 
among the three cell types that promoted tumor progression 
[76]. MCTs, the primary IL-17 producers, were reported 
to promote HCC angiogenesis [77, 78]. On the other hand, 
reduced intratumoral MCs in HCC were found to be related 
to a larger tumor size and a higher recurrence rate after liver 
transplantation, and by introducing microRNAs into tumor 
cells to inhibit the ERK1/2 signaling pathway, MCs could 
prevent HCC metastasis, showing the anti-tumor properties 
of MCs [75, 79]. MCs play different roles in HCC, possibly 
because different MC types have different functions, and 
researchers have not consistently classified or stratified MCs 
in depth. MCs and their products might also play different 
roles based on the different biological characteristics of vari-
ous tumor cells. The granules and histamine produced by 
MCs could inhibit huh-6 cell growth and activate huh-6 cell 
apoptosis while enhancing HA22T/VGH cell proliferation 
[80]. Besides, higher peritumoral MC density was verified 
to be associated with a worse prognosis and an earlier recur-
rence of HCC [81].

Innate lymphoid cells

NK cells

The liver is the organ with the largest number of NK cells in 
the human body [82]. Unlike other lymphocytes, NK cells 
promote cellular activation and target cells for clearance 
using the absence of self. NK cell function is under the dual 
control of activating and inhibitory receptors. The interac-
tion of inhibitory receptors and the major histocompatibil-
ity complex (MHC)-I on normal hepatocytes inhibits the 
activation of NK cells. A common mechanism of NK cell 
activation is the MHC-I downregulation of malignant cells. 
Target killing of NK cells is executed by perforin, granzyme, 
and apoptosis-inducing ligands [83].

The number of NK cells in HCC tissues is decreased, and 
their functions are impaired, which is related to the unfa-
vorable prognosis for HCC [84]. An elevated level of HCC 
cell-derived exosomal circular ubiquitin-like with PHD and 
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ring finger domain 1 RNA (circUHRF1) in the peripheral 
blood of HCC patients correlates with the reduced tumor 
infiltration of NK cells. CircUHRF1 can also suppress NK 
cell cytotoxicity by increasing TIM-3 expression, which is 
mediated by the degradation of miR-449c-5p [85]. Simi-
larly, high levels of plasma TGF-β in patients with HCC 
lead to metabolic and functional defects in circulating NK 
cells [86]. Furthermore, transmembrane 4 L six family mem-
ber 5 (TM4SF5), which is abundant in HCC, inhibits the 
expression of NK cytotoxicity-stimulated membrane ligands 
SLAMF6, SLAMF7, and MICA/B on target HCC cells, 
resulting in the decreased number and functional impair-
ment of NK cells [87]. Moreover, the epithelial cell adhe-
sion molecule (EpCAM) is a CSC biomarker in HCC [88, 
89]. CSCs with high EpCAM expression in HCC can resist 
NK cell killing by promoting the carcinoembryonic antigen-
related cell adhesion molecule 1 expression [90]. Notably, 
there is also complex cross talk among various immune cells 
in the TIME. MDSCs and tumor-associated macrophages 
(TAMs) in HCC can suppress NK cell cytotoxicity through 
NKp30 on NK cells [91], and Tregs can impair the immune 
responses of NK cells by releasing immunosuppressive 
cytokines IL-8, IL-10, and TGF-β [92].

NKT cells

NKT cells, expressing both T cell receptor (TCR)-chains 
and NK cell markers (NKp46 and NK1.1), can recognize 
lipids and glycolipids with the presentation of CD1d [93, 
94]. NKT cells are categorized into type I and type II cells 
based on their TCR rearrangement and glycolipid reactiv-
ity [95]. Activated type I NKT cells, which is also called 
invariant NKT (iNKT) cells, can affect downstream immune 
responses by secreting interferon (IFN)-γ and IL-4 [96, 97]. 
Type II NKT cells have more Vα rearrangement sequences, 
and they can promote tumor growth and metastasis with the 
activation of sulfatides [98, 99].

In HCC, the number of iNKT cells in the tumor tissues 
is obviously lower compared with the adjacent non-tumor 
tissues, and their low infiltration in tumors is associated 
with the advanced stages and vascular invasion [100]. 
HCC is closely linked to liver inflammation, and iNKT 
cells can mediate anti-tumor effects by suppressing the 
inflammatory response in the process of β-catenin-induced 
liver tumorigenesis [101]. A synthetic glycolipid called 
α-galactosylceramide (α-GalCer) can inhibit the growth of 
hepatoma cells in the murine liver by stimulating NKT cells, 
which in turn activate NK cells [102]. The adoptive trans-
fer of a small number of NKT cells that have been ex vivo 
treated with HCC-derived antigens can suppress the tumor 
growth in HCC mice, and the effect is correlated with NKT 
cell number, STAT4 expression, and serum levels of IL-12, 
IFN-γ, and IL-4 [103]. Furthermore, DCs pulsed with tumor 

antigens have been shown to inhibit HCC progression by 
activating NKT and CD8 + lymphocytes and increasing 
IFN-γ production [104]. NKT cells can be recruited to 
the liver via CXCR6-CXCL16 in the murine HCC mod-
els. CXCR6-deficient mice have an apparent higher tumor 
burden and tumor progression after intraperitoneal injec-
tion of DEN due to a reduction of iNKT and CD4 + T cells 
in the liver [105, 106]. Bile acid metabolism usually has a 
certain impact on the immune system of the body. Primary 
bile acids can promote the recruitment of NKT cells to the 
liver by upregulating the expression of CXCL16, thereby 
inhibiting HCC progression, and secondary bile acids, which 
are converted from primary bile acids by relevant bacteria, 
play the opposite role [106, 107]. There are also subpopu-
lations of NKT cells that are involved in HCC promotion. 
CD4 + iNKT cells, unlike their CD4- counterparts, can boost 
tumor growth by inhibiting the cytotoxicity of CD8 + T cells 
and promoting Th2 cytokine production in HCC [108, 109].

Gamma delta T cells

Gamma delta (γδ) T cells are the important fighters of 
the immune system, accounting for an average of 3.7% of 
CD3 + T cells in peripheral blood. Based on the TCR rear-
rangement, γδ T cells, the nonconventional T lymphocytes, 
can be divided into three groups: Vδ1, Vδ2, and Vδ3 T cells. 
Vδ2 T cells predominate in the blood, while the other two 
groups are abundant in tissues. They have a range of biologi-
cal functions, including pathogen clearance, inflammation 
regulation, and tumor immunity [110, 111].

The infiltration of γδ T cells in HCC is significantly 
decreased compared with the peritumoral tissues, which 
may be due to their G2/M cell arrest and active apoptotic 
state in tumors, and the low infiltration was confirmed to be 
correlated with the poor prognosis of HCC [112, 113]. γδ T 
cells can secrete IFN-γ in the early stage, which is essential 
for anti-tumor immunity [114]. An in vitro study observed 
that γδ T cells could inhibit the viability of HCC cells, and 
histone deacetylase inhibitors and zoledronic acid could 
enhance the suppression [115]. In addition to the reduced 
number, the function of γδ T cells is also abnormal in HCC. 
The cytotoxicity of γδ T cells is suppressed by various fac-
tors. Tregs, as well as the imbalance between HSCs and γδ 
T cells, can impair the function of γδ T cells, [116, 117]. 
Furthermore, increased glutamine metabolism and decreased 
glucose and lipid metabolism in γδ T cells further exacerbate 
the cellular dysfunction [112]. Several studies have been 
conducted to improve the anti-tumor function of γδ T cells 
in HCC. Aminobisphosphonate has been shown to promote 
the expansion of peripheral Vδ2 T cells and inhibit tumor 
growth, providing a new approach for HCC therapy [118]. 
Vδ1 T cells engineered with soluble IL-15 and a glypi-
can 3 (GPC-3)-receptor can efficiently destroy HCC cells 
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[119]. Moreover, the cytotoxicity of γδ T cells in HCC can 
be restored after supplementation with normal Vδ2 T [112, 
120].

Other innate immune cells

Mucosal-associated invariant T (MAIT) cells, mostly located 
at mucosal sites and the liver, are innate-like cells. MAIT 
cells can recognize the antigens presented by MHC-I-related 
protein 1. When activated, they can perform anti-cancer 
activity by producing cytotoxic cytokines and substances 
[121]. In HCC, MAIT cells are greatly reduced in tumors 
compared to adjacent tissues, which may be attributed to the 
downregulation of CCR6, CXCR6, and CCR9 on tumor-edu-
cated MAIT cells [122–124]. In addition, MAIT cells exhibit 
pro-tumor properties, accompanied by immune checkpoint 
upregulation, decreased secretion of IFN-γ and IL-17, and 
increased IL-8 production [122, 123]. Co-administration of 
5-OP-RU (5-(2-oxopropylideneamino)-6D-ribitylaminoura-
cil, microbial riboflavin-derived antigen) and CpG (Toll-like 
receptor 9 agonist) can suppress the HCC progression by 
activating MAIT cells to release IFN-γ and cytotoxic sub-
stances, together with the accumulation of CD8 + T cells and 
NK cells in vivo [124].

Helper-like innate lymphoid cells (ILCs) consist of three 
subgroups: ILC1s, ILC2s, and ILC3s, which are function-
ally equivalent to Th1, Th2, and Th17 cells, respectively, 
and play a vital role in cancers [125, 126]. Hepatic ILC1s, 
including embryonic and postnatal subsets, most closely 
resemble NK cells in phenotype and function [127, 128], and 
they have been shown to play a suppressor role in the liver 
metastasis of tumors. ILC1s can suppress liver metastasis 
by limiting metastatic seeding and producing effector mol-
ecules, and their cytotoxicity can be calibrated by the acti-
vating receptor NKp46 on ILC1s  [129–131]. ILC2s are the 
most clearly defined subset of helper-like ILCs, and Bcl11b 
and TGF-β are required for their development [132, 133]. 
In HCC, ILC2s are enriched in tumor tissues and are related 
to a poor prognosis. ILC2s can promote HCC progression 
through the CXCL2-neutrophil and IL-13-B cell signal-
ing pathways [134, 135]. ILC3s express RORgt, which is 
essential for their function [136]. In an in vitro study, ILC3s 
exerted cytotoxicity against HCC cells mediated by TRAIL 
[137]. However, in a murine HCC model, ILC3s lacking 
the natural cytotoxicity-triggering receptor (NCR − ILC3s) 
promoted HCC progression by orchestrating the IL-23/IL-17 
axis [138]. Similarly, a decreased serum short-chain fatty 
acid (SCFA) level due to the loss of the gut microbiota Lac-
tobacillus reuteri in HCC mice promoted the release of IL-
17A by ILC3s in tumors, which boosted tumor growth [139]. 
The contradictory conclusions of the in vivo and in vitro 
studies may be attributed to the remodeling of ILC3s by the 
TME, and further investigation is needed [140].

Adaptive immune cells in HCC

T and B cells, the adaptive immune cells, are essential for 
HCC immunity. Their functions and immunotherapy appli-
cations in HCC have received a lot of interest [5]. Here, we 
provide a summary of recent developments.

Conventional T cells consist of CD8 + and CD4 + T 
cells, and the former outnumber the latter in the liver; 
CD8 + T cells are the main tumor-infiltrating lymphocytes 
that perform anti-tumor functions [141, 142]. CD4 + T 
cells, mainly including CD4 + T-helper (Th) cells and 
Tregs, are also crucial in tumor immunity [143]. In HCC, 
CD4 + effector memory T (Tem) cells and Tregs progres-
sively grow in number from the adjacent non-tumor region 
to the leading-edge area (slightly) to the tumor core (sig-
nificantly), whereas CD8 + Tem cells showed the opposite 
trend [144]. The inhibition of CD8 + T cell infiltration by 
TAMs and plasma cells may be one reason for the reduc-
tion of CD8 + T cells in HCC [145, 146]. CD8 + T cells 
also exhibit an exhausted state in HCC with a high expres-
sion of PD-1 and LAG-3, which is a gradual and ongoing 
process that peaks in TNM stage II tumors [147, 148]. 
Multiple factors contribute to the exhaustion of CD8 + T 
cells. Firstly, tumor endothelial cells, MDSC-like mac-
rophages, M2 macrophages, and CAFs in HCC may facili-
tate the formation of CD8 + T cell exhaustion [149–152]. 
Secondly, TGF-β1 derived from HCC cells can upregu-
late PD-1 and CTLA-4 expression on T lymphocytes via 
the CaN/NFATc1 pathway and accelerate T cell apopto-
sis [153]. Thirdly, abnormal glycolytic flux and lactate 
synthesis, as well as alterations in S-adenosylmethionine 
metabolism, can promote the development of exhausted T 
cells [154, 155]. Tregs are immunosuppressive cells, and 
exosomal circRNAs and IL-10 produced by HCC cells can 
promote the stability and expansion of them via various 
signaling pathways [156, 157]. HBV infection is the lead-
ing cause of more than half of HCC cases worldwide, and 
the hepatitis B-induced IL-8 can drive preferential Treg 
polarization mediated by liver sinusoidal endothelial cell-
derived TGF-β [158–160]. Furthermore, lactic acid can 
stimulate PD-1 expression on Tregs in HCC, leading to the 
enhanced immunosuppressive properties of Tregs [161]. 
It is noteworthy that Tregs recruited by circulating tumor 
cells (CTCs)-derived CCL5 in HCC can promote CTC 
metastatic seeding, which may contribute to the develop-
ment of novel anti-metastasis treatment for HCC [162].

B cells are a type of antigen-presenting cell that can 
present antigens to T cells and produce specific antibodies. 
Plasma cells, which originate from B cells, are involved 
in antibody production. The function of B cells in HCC 
remains controversial [163]. Some studies showed that 
the proportion of CD19 + B cells was higher in HCC 
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tissues than in paracancerous tissues, and an increased B 
cell number in tumors was not only associated with an 
advanced tumor stage but also promoted immune escape 
in HCC [146],[164]. Additionally, B cells in HCC tis-
sues have somatic hypermutations and class-switched 
recombinations of the IgG phenotype that are not seen 
in normal liver tissues [165]. Since there is little direct 
communication between HCC cells and B cells, B cells 
may modulate tumor immunity through other mechanisms 
[145]. Regulating B cells (Bregs), originally defined as 
CD19 + CD24hiCD38hi cells, play an immunosuppres-
sive role in tumors, and the number of Bregs expressing 
IL-10 increases in HCC. Exosomal high-mobility group 
box 1 produced by HCC cells can promote Breg expansion 
via the TLR-MAPK signaling pathway, and TLR activa-
tion can also increase the expression of Bcl-6, which is 
required for HCC environmental factors to promote the 
formation of PD-1high Bregs [146], [163, 166–168]. In 
addition, CXCR3 + B cells, which account for approxi-
mately 45% of infiltrating B cells in HCC, can induce M2b 
macrophage polarization via IgG pathways, and CCR6 + B 
cells can promote angiogenesis by interacting with CCL20 
generated by HCC cells [169, 170]. However, Zhang 
and colleagues discovered that HCC exhibited a global 
alteration in the B cell compartments with a decrease in 
CD20 + B cells and all B cell subsets, and that high levels 
of CD20 + B cells, IgM + B cells, CD27 − B cells, naive 
B cells, and plasma cells in HCC were associated with 
improved clinical outcomes [171]. Different criteria for 
defining B cells and their subgroups may be the cause of 
the contradictory results, and more research is required in 
the future.

HCC immunotherapies

As HCC is an inflammation-related cancer, immunotherapy 
is a promising treatment option [172]. As a result of in-
depth research into the TIME of HCC, new immunotherapy 
methods are constantly emerging. We summarize the most 
recent representative data from preclinical and clinical trials 
of immunotherapeutic strategies (shown in Fig. 2, Tables 1 
2) for HCC and discuss their clinical application prospects.

Immune checkpoint inhibitor therapy

Immune checkpoints are specific membrane molecules that 
are related to immune escape in cancers. There are many 
studies on the major immune checkpoints, such as CTLA-4, 
PD-1, and PD-L1, for immunotherapy [173]. Tremelimumab 
is a CTLA-4 blockade. A preliminary clinical study found 
that HCC patients treated with tremelimumab had a median 
overall survival (OS) of 8.2 months and a disease control 
rate of 76.4% [174]. The results of the KEYNOTE-240 
trial showed that the median OS and progression-free sur-
vival (PFS) with pembrolizumab were 13.9 months and 
3.0 months, respectively, when it was studied as a second-
line therapy [175]. Additionally, pembrolizumab had a 10% 
overall response rate in HCC patients who failed sorafenib 
treatment in a recent study [176]. What is more, the median 
OS with single-agent nivolumab as first-line therapy for 
HCC was 16.4 months in the CheckMate-459 trial [177]. 
Although these single ICI therapies have certain anti-tumor 
effects in HCC patients, the efficacy is still unsatisfactory, 
which may be associated with the complex TIME of HCC.

As multiple mechanisms are involved in the tumorigen-
esis and progression of HCC, combining ICIs with other 

Fig. 2   Recent immunotherapy 
concepts for HCC. CAR-T, 
chimeric antigen receptor-T 
cell; CIK, cytokine-induced 
killer; PBMC, peripheral 
blood mononuclear cell; 
IFN-α, interferon-α; IL-1α, 
interleukin-1α; DC, dendritic 
cell; OV, oncolytic virus; CTL, 
cytotoxic T lymphocyte; TAM, 
tumor-associated macrophage; 
ICI, immune checkpoint inhibi-
tor; PD-1, programmed cell 
death-1; PD-L1, programmed 
cell death ligand 1
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drugs or treatments may be a promising approach for HCC 
treatment. First, the combination of two ICIs targeting dif-
ferent immune checkpoints is effective for HCC therapy 
[178, 179]. The objective response rate (ORR) of tremeli-
mumab combined with durvalumab (an anti-PD-L1 mono-
clonal antibody) in HCC patients was 24.0% in a clinical 
trial [178]. Likewise, another study found that nivolumab 
plus ipilimumab (an anti-CTLA-4 agent) showed a long-
lasting response and a promising response rate in HCC 

patients who had received sorafenib treatment before [179]. 
Second, ICIs combined with anti-angiogenic drugs are effec-
tive against HCC [180–182]. VEGF overexpression in HCC 
is linked to a high density of tumor blood vessels [183]. In 
the IMbrave-150 trial, patients with atezolizumab (a PD-L1 
inhibitor) plus bevacizumab (a VEGF blockade) had an ORR 
of 30% and a median OS of 19.2 months, and the combina-
tion therapy also exhibited good efficacy for HCC patients 
in South Korea in the real world [180, 181]. Furthermore, 

Table 1   Summary of clinical trials of ICIs as monotherapy and in combination with other agents or treatments

HCC hepatocellular carcinoma, ORR objective response rate, OS overall survival, PR partial response, DCR disease control rate, RFS recur-
rence-free survival, RECIST response evaluation criteria in solid tumors, PFS progression-free survival, m median

Clinical trials Phase Disease stage Patient 
num-
bers

Comparison arms Results Publication

ICI monotherapy
CheckMate 040 

(NCT01658878)
I/II Advanced HCC 262 Nivolumab Cohort 1 (dose escalation): 

ORR 15%, 9-month 
OS rate 66%, mOS 
15 months

Cohort 2 (dose expansion): 
ORR 20%, 9-month OS 
rate 74%

[6]

KEYNOTE-224 
(NCT02702414)

II Advanced HCC 104 Pembrolizumab ORR 17%, mOS 
12.9 months, 12-month 
OS rate 54%

[7]

NCT01008358 II Advanced HCC 37 Tremelimumab mOS 8.2 months, PR rate 
17.6%, DCR 76.4%

[174]

KEYNOTE- 240 
(NCT02702401)

III Advanced HCC 413 Pembrolizumab vs. 
placebo

ORR 18.3%, mOS 
13.9 months

[175]

NCT03163992 II Advanced HCC 60 Pembrolizumab Overall response rate 10% [176]
CheckMate 459 

(NCT02576509)
III Advanced HCC 743 Nivolumab vs. Sorafenib ORR 15%, mOS 

16.4 months, 24-month 
OS rate 36.8%

[177]

Combination ICI therapy
NCT02519348 I/II Unresectable HCC 332 Tremelimumab + Dur-

valumab versus 
Tremelimumab versus 
Durvalumab

ORR 24%, mOS 
18.7 months

[178]

CheckMate 040 
(NCT01658878)

I/II Advanced HCC 148 Nivolumab + Ipilimumab 
(3 dosing arms)

Arm 1: ORR 32%, Arm 2: 
ORR 31%, Arm 3: ORR 
31%

[179]

IMbrave150 
(NCT03434379)

III Advanced/unresectable 
HCC

501 Atezolizumab + Bevaci-
zumab versus Sorafenib

ORR 27.3%, mOS 
19.2 months

[180]

NCT04297202 II Resectable HCC 18 Camrelizumab + Apatinib 1-year RFS rate 53.85%, 
ORR 16.7% (based on 
RECIST)

[182]

NCT03006926 Ib Unresectable HCC 104 Lenvatinib + Pembroli-
zumab

mOS 22 months, ORR 
46% (based on RECIST)

[184]

NCT03299946 Ib Locally advanced HCC 15 Cabozantinib + Nivolumab 80% successfully under-
went margin negative 
resection

[185]

ICIs in combination with other locoregional therapy
NCT01853618 II Advanced HCC 32 Tremelimumab + ablation mOS 12.3 months, 

12-month PFS rate 
33.1%

[186]
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camrelizumab (an anti-PD-1 drug) in combination with apat-
inib (a VEGFR2 monoclonal antibody) demonstrated favora-
ble perioperative outcomes in patients with surgically resect-
able HCC [182]. Third, ICIs combined with TKIs such as 
lenvatinib and cabozantinib are an effective treatment option 
[184, 185]. In a phase Ib study, the combination treatment of 
pembrolizumab and lenvatinib had an ORR of 46.0% and a 
median OS of 22 months in HCC patients [184]. Moreover, 
neoadjuvant therapy of nivolumab combined with cabozan-
tinib could convert locally advanced HCC to resectable dis-
ease with the promotion of anti-tumor immunity [185]. At 
last, ICIs in combination with locoregional treatments, such 
as ablation, TACE, and stereotactic body radiotherapy, are 
available for HCC treatment [186–188].

Adoptive cell therapy

There are two cell types of adoptive cell therapy (ACT) that 
are applied in the preclinical and clinical studies of HCC: 
genetically modified lymphocytes and cytokine-induced 
killer cells (CIKs). The objective of genetic modification of 
lymphocytes is to equip them with chimeric antigen recep-
tor (CAR) to better target tumor-specific antigens [189]. 
GPC-3, a carcinoembryonic proteoglycan on the tumor 
cell membrane, and CD133, an endothelial progenitor cell 
marker, are two popular immunotherapy targets in recent 
HCC research [190, 191]. GPC-3-targeted CAR-T cells have 
been proven to have good safety and efficacy in the therapy 
of HCC, and GPC-3-CAR-T cells with the co-expression of 
IL-15 and IL-21 demonstrated superior cell proliferation and 
anti-tumor ability [192–194]. 8F8 is a low-affinity, GPC-3 
specific antibody. 8F8-targeted CAR-T cells can withstand 
exhaustion and maintain anti-tumor effects in tumor lesions 

for a long time [195]. Similarly, CD133-targeted CAR-T 
cells show significant cytotoxicity against HCC cells [191]. 
What is more, GPC-3-targeted CAR-NK cells/Vδ1 T cells 
also exhibit robust anti-tumor activity in HCC [119, 196].

CIKs, exhibiting the phenotype and cytotoxicity of T cells 
and NK cells, contain multiple cell subsets [197]. CIKs can 
identify and destroy HCC CSCs through NKG2d-ligand 
recognition, thereby inhibiting HCC progression [198]. 
There is a cross talk between CIKs and MDSCs in HCC, 
and suppressing MDSCs can enhance the cytotoxicity of 
CIKs [199]. Adjuvant immunotherapy with CIKs in HCC 
patients could improve prognosis and quality of life when 
combined with radical therapy, TACE, or radiofrequency 
ablation [200–202], and receiving CIK therapy after curative 
treatment was proved to be cost-effective due to the reduced 
recurrence and prolonged survival of HCC [203]. In addi-
tion, PD-L1 and PD-1 might be used as two biomarkers to 
guide CIK treatment in HCC because high PD-L1 expres-
sion and a high infiltration of PD-1 + lymphocytes in HCC 
were all found to be correlated with good efficacy for CIK 
therapy [204, 205].

Cytokine therapy

In terms of cytokine therapy, IFN-α has received more atten-
tion and is still being studied. IFN-α is a type I IFN with 
immunostimulatory and anti-vascular properties. Recombi-
nant IFN-α is the first immunotherapy for human cancers 
[206]. According to some studies, IFN-α administration did 
not significantly improve the survival of HCC patients, and 
adjuvant IFN-α therapy after resection had no effect on RFS 
in HCC patients [207, 208]. Some studies, however, found 
that IFN-α could provide a significant benefit in both OS and 

Table 2   Summary of clinical trials of other immunotherapies

CAR-T cells, chimeric antigen receptor-T cells; GPC3, Glypican-3; CIK, cytokine-induced killer; IFNα-2b, interferonα-2b; Pexa-Vec, Pexastig-
mogene devacirepvec; BSC, best supportive care

Clinical trials Phase Disease stage Patient 
num-
bers

Comparison arms Results Publication

Adoptive cell therapy
NCT02541370 II Advanced HCC 21 Anti-CD133 CAR-T cells mOS 12 months, mPFS 

6.8 months
[191]

NCT02395250 and 
NCT03146234

I Advanced HCC 13 Anti-GPC3 CAR-T cells 3-year OS rate 10.5%, 1-year 
OS rate 42.0%, 6-month OS 
rate 50.3%

[192]

NCT01890291 II Post-curative HCC 226 CIKs versus No treatment 5-year PFS rate 44.8% [202]
Cytokine therapy
NCT00149565 III Post-curative HCC 268 IFNα-2b treatment versus No 

treatment
5-year OS rate 73.9%, 5-year 

RFS rate 44.2%
[208]

Oncolytic virus therapy
TRAVERSE (NCT01387555) IIb Advanced HCC 129 Pexa-Vec plus BSC versus 

BSC
mOS 4.2 months [236]
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RFS for HCC patients undergoing curative surgery, and that 
IFN-α therapeutic response could be predicted by hepatic 
retinoic acid-inducible gene-I and tetratricopeptide repeats 
3 [209–211]. As a result of the heterogeneity of treatment 
responses, INF-α is not widely used in the clinical practice 
of HCC therapy.

Recent studies have confirmed that IFN-α treatment 
can recruit the cytotoxic T cells in murine HCC models 
by remodeling glucose metabolism, as well as promote the 
infiltration of cytotoxic CD169 + macrophages and M1-like 
macrophages, and that combined treatment with ICIs or 
sorafenib has synergistic anti-tumor efficacy [212–214]. 
These findings open a new avenue for the future use of 
IFN-α in the HCC therapy.

Therapeutic vaccines

The main purpose of using cancer vaccines is to generate 
specific anti-tumor responses with strong potency. Clas-
sic cancer vaccines include peptide vaccines and antigen-
pulsed DC vaccines. Tumor-associated antigens (TAAs), 
such as AFP, GPC-3, and telomerase, are common targets 
for HCC-specific peptide vaccines [215]. Recent research 
has primarily concentrated on GPC-3-related HCC vaccines. 
Because of the elevated density of peptide-specific cytotoxic 
T lymphocytes (CTLs) in the TME, HCC patients with high 
GPC-3 expression in tumor tissues and/or high content 
of GPC-3 in plasma have a high response rate and a good 
prognosis for the GPC-3 vaccine [216]. H8B-BsAb, a novel 
tetravalent bispecific anti-GPC-3 antibody, showed signifi-
cant anti-tumor effect in a xenograft mouse model of HCC, 
and may be a potential candidate for HCC therapy [217]. 
Aside from antibodies, the GPC-3-modified molecules per-
form well against HCC [218–220]. Besides, other peptide 
vaccines, such as the aspartate-hydroxylase vaccine, the HA 
(the fusion of high-mobility group nucleosome binding pro-
tein 1 and AFP) vaccine, and the VEGF vaccine, also have 
promising applications in the treatment of HCC [221–223].

DC vaccines have been widely used in the treatment of vari-
ous cancers, including HCC [224, 225]. A meta-analysis found 
that DC vaccines had a higher ORR and longer median OS and 
PFS compared to peptide vaccines in HCC treatment [226]. 
Many studies on novel DC vaccines have recently emerged, 
laying a solid theoretical foundation for the development of 
effective DC vaccines in the treatment of HCC. CD40L on 
activated CD4 + Th cells can communicate with CD40 on 
DCs to promote the secretion of Th1 cytokines by DCs, and 
the CD40L-DCs were confirmed to improve the anti-tumor 
activity of the AFP-DC vaccine in an orthotopic HCC mouse 
model, and the combination of them could significantly sup-
press tumor progression, accompanied by a robust Th1-shift 
in the TME and increased tumor cell apoptosis [227]. Further-
more, CSC/DC fusion cells could promote CTL accumulation 

in HCC and enhance anti-tumor immunity in animal experi-
ments [228]. Recently, a DC-based nano-vaccine that con-
sisted of silicon phthalocyanine dichloride, Fe(III)-captopril, 
and the exfoliated membrane of mature DCs stimulated by 
specific H22 cell neoantigens appeared, and it was proved to 
induce the activation and proliferation of neoantigen-specific 
T cells, as well as convert N2-type neutrophils to N1-type neu-
trophils in H22 tumors [229]. In addition, the combination of 
DC vaccines with other treatments such as ICIs, CIKs, and 
ACT demonstrates robust anti-tumor efficacy and may be a 
promising treatment strategy for HCC [230–233].

Oncolytic virus therapy

Oncolytic viruses (OVs) can spread through tumor tissues, 
replicate selectively in cancer cells, and annihilate them with-
out impairing normal cells [234]. The most common OVs for 
HCC therapy in preclinical and clinical studies are vesicular 
stomatitis virus and adenovirus. Pexastigmogene devacirepvec 
(Pexa-Vec) is a main OV that is currently being investigated 
in HCC; however, the efficacy of Pexa-Vec in clinical trials is 
disappointing [235, 236]. Nonetheless, studies involving other 
OVs are ongoing and have yielded promising results in animal 
models of HCC.

The influenza virus (IV), an RNA virus, has been identified 
as a potentially effective oncolytic agent. In HCC mouse mod-
els, recombinant IV with PD-1 antibody or CTLA4-specific 
scFv could activate anti-tumor immunity [237, 238]. Vaccinia 
virus, which is a double-stranded DNA virus, could enhance 
anti-HCC effects when carried with IL-24 or Aphrocallistes 
vastus lectin [239, 240]. T cell immunoglobulin and ITIM 
domain (TIGIT) expressed on activated NK and T cells is a 
key checkpoint molecule. The poliovirus receptor (PVR) is the 
cognate ligand of TIGIT [241]. In a recent study, an adenovi-
rus expressing a PD1-PVR fusion protein could inhibit tumor 
growth mediated with CD8 + T cells in a mouse model of H22 
ascites HCC, and it showed a better effect when combined 
with fludarabine [242]. However, OVs also have some draw-
backs for application, mainly including non-specific distribu-
tion to organs and the generation of neutralizing antibodies 
[243, 244]. To overcome these shortcomings and improve the 
therapeutic efficacy of OVs, a research team exploited a polyg-
alactosyl-b-agmatyl copolymer-coated oncolytic adenovirus, 
which displayed enhanced infectivity and tumor cell killing 
activity in vitro and provided a theoretical basis for the effec-
tive treatment of HCC with OVs in the future [245].

Conclusions

As indicated by immunological classification, HCC consists 
of a heterogeneous group of cancers with distinct etiologies 
and immune microenvironments. There are multilayered 
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interwoven webs among various immune cell types in HCC, 
and different stages of HCC are often accompanied by phe-
notypic changes of different immune cells in the TME, 
requiring thoughtful treatment design to ensure the success 
of immunotherapy. Emerging preclinical and clinical evi-
dence demonstrates the promising prospect of immunothera-
peutic approaches for HCC. With the advent of cutting-edge 
technologies such as single-cell approaches and multiplex 
histological analysis that preserve spatial information, it 
is possible to gain a better understanding of HCC immune 
status and discover new immunotherapy targets and patient-
tailored approaches.
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