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Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by low levels of serum immu-
noglobulins and increased susceptibility to infections, autoimmune disorders and cancer. CVID embraces a plethora of 
heterogeneous manifestations linked to complex immune dysregulation. While CVID is thought to be due to genetic defects, 
the exact cause of this immune disorder is unknown in the large majority of cases. Compelling evidences support a linkage 
between the gut microbiome and the CVID pathogenesis, therefore a potential for microbiome-based treatments to be a thera-
peutic pathway for this disorder. Here we discuss the potential of treating CVID patients by developing a gut microbiome-
based personalized approach, including diet, prebiotics, probiotics, postbiotics and fecal microbiota transplantation. We also 
highlight the need for a better understanding of microbiota-host interactions in CVID patients to prime the development of 
improved preventive strategies and specific therapeutic targets.
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AAD  Antibiotic-associated diarrhea
ARB  Antibiotic-resistant bacteria
CI  Confidence interval
CVID  Common variable immunodeficiency
DC  Dendritic cell
DF  Dietary fiber

ESBL-E  Extended-spectrum β-lactamase producing 
Enterobacteriaceae

FFT  Fecal filtrate transfer
FMT  Fecal microbiota transplantation
GALT  Gut-associated lymphoid tissue
GFD  Gluten-free diet
GLILD  Granulomatous-lymphocytic interstitial lung 

disease
GOS  Galactooligosaccharide
HBT  Hydrogen breath test
HIV  Human immunodeficiency virus
IgRT  Immunoglobulin replacement therapy
IgG1  Immunoglobulin G1
i.v.  Intravenous
LGG  Lactobacillus rhamnosus GG
LI  Lactose intolerance
LPS  Lipopolysaccharide
MAC  Microbiota accessible carbohydrate
MDR  Multidrug-resistant
MRSA  Methicillin-resistant Staphylococcus aureus
NGS  Next-generation sequencing
NK  Natural killer cell
PID  Primary immunodeficiency
rCDI  Refractory Clostridioides difficile infection
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s.c.  Subcutaneous
SCFA  Short-chain fatty acid
TMA  Trimethylamine
TMAO  Trimethylamine-N-oxide
Treg  Regulatory T cell
Tr1  Treg/type 1 regulatory T
VRE  Vancomycin-resistant Enterococcus

Introduction

The human microbiome consists of approximately 
10–100 trillion microbial cells harbored by an individual, 
the majority of which live in the gut [1]. The gut microbi-
ome has evolved with the host species over thousands of 
years to form a complex and mutually beneficial relation-
ship. The composition of gut microbiota is a dynamic pro-
cess changing throughout life. Microbiome establishment 
begins with vertical transmission of maternal microbiome 
at birth [2]. The colonization of gut microbiome during the 
early stages of life plays a crucial role in its future compo-
sition [3]. Multiple variables can influence gut microbial 
composition, including mode of delivery, early feeding, 
antibiotic use, diet and environmental factors [2, 4–6]. The 
gut microbiome plays a crucial role in maintaining immune 
homeostasis and modulating the host's innate and adaptive 
immune response [7–10]. It is also crucial for maintaining 
gut epithelial barrier homeostasis and orchestrating defense 
against pathogens [11]. Hence, a eubiotic gut microbiota is 
essential in maintaining human health and preventing dis-
eases. Gut microbiota dysregulation is suggested to play a 
key role in the development of several disorders, including 
inflammatory bowel diseases [12], irritable bowel syndrome 
[13], metabolic diseases [14], autoimmune disorders [15] 
and cancer [16, 17]. Gut microbiota profiling and modula-
tion (e.g., diet, prebiotics, probiotics, postbiotics and fecal 
microbiota transplantation) may thus represent a promising 
tool to manage these disorders. Prebiotics are non-digestible 
fibers that selectively stimulates the growth and/or activity 
of indigenous bacteria [18]. Probiotics are live microorgan-
isms which when administered in adequate amounts confer 
a health benefit to the host [19]. Postbiotics are preparation 
of inanimate microorganisms and/or their components that 
physiological benefits to the host [20] and are produced from 
inactivated commensal bacteria.

Common variable immunodeficiency (CVID) is the 
most common symptomatic primary immune deficiency 
(PID) in adulthood and is characterized by low levels of 
serum immunoglobulins (IgG and IgA, with or without 
IgM) and impaired antibody production in response to vac-
cines and pathogens [21, 22]. CVID encompasses a broad 
spectrum of heterogeneous manifestations related to com-
plex immune dysregulation. Although the increasing use of 

next-generation sequencing (NGS) technologies has pro-
moted the discovery of multiple genes associated with spe-
cific CVID phenotypes [23, 24], the pathogenesis is complex 
probably implying the environment, genetic and epigenetic 
alterations [25]. Emerging evidence highlights that both the 
intestinal ecosystem and the gut microbiota are profoundly 
disrupted in patients with CVID [26–29]. Recent evidence 
indicates that CVID patients with enteropathy have a more 
marked transcriptional response to gut viruses [30–32]. 
CVID patients have increased susceptibility to a wide range 
of infections [33], autoimmune diseases [34–36] and cancers 
[37–40]. Intravenous (i.v.) or subcutaneous (s.c.) immuno-
globulin replacement therapy (IgRT) has been shown to 
reduce life-threatening infections of CVID patients, radically 
improving their survival [37]. On the other hand, IgRT has 
not demonstrated efficacy in preventing and treating com-
plications related to immune dysregulation.

Gastrointestinal manifestations of CVID

Gastrointestinal (GI) manifestations are common in CVID 
ranging between 15 and 50% [41–43]. GI complications of 
CVID can involve any part the gastrointestinal tract, but the 
most commonly affected sites are the small bowel, the colon, 
the stomach and the liver [42, 44, 45]. Small bowel villous 
atrophy can be present mimicking celiac disease, but patients 
with CVID typically do not respond to a gluten-free diet 
(GFD) and they do not express the typical HLA genes asso-
ciated with celiac disease [46]. Atrophic gastritis can lead 
to pernicious anemia-like syndrome, which increases the 
risk for gastric adenocarcinoma [44, 47], the leading cause 
of cancer death in CVID [48, 49]. Enteropathy, a common 
CVID manifestation, may resemble celiac disease or inflam-
matory bowel diseases (IBD). CVID and IBD are related 
because the prevalence of the latter is increased among 
CVID patients [50, 51]. Chronic small bowel inflammation 
may occur in up to 12% of CVID patients and is associ-
ated with persistent diarrhea, malabsorption, weight loss 
and steatorrhea [21, 52]. Additional clinical complications 
include osteoporosis, zinc, vitamin A, D, B12 and D defi-
ciency [52, 53].

More than 60% of patients with CVID have symptoms of 
small intestinal bacterial overgrowth [54]. Profiling the gut 
microbiome of patients with CVID has been performed in 
hopes to identify a possible association between the microbi-
ome [26, 28, 55–57] and development of GI manifestations, 
autoimmunity, and malignancy in patients with CVID, but 
these questions remain unanswered. There is clear evidence 
that the gut microbiota composition is different between 
CVID patients and healthy individuals, but whether this dif-
ference may be contributing to symptom and disease sever-
ity remains to be determined [56, 58]. GI manifestations 
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in CVID are often difficult to control because they do not 
respond to IgRT [47, 51]. CVID-related enteropathy can be 
associated with villous atrophy, malabsorption and chronic 
diarrhea [42, 44, 59]. The latter triad often characterizes 
difficult to treat CVID patients. Microbial dysbiosis may 
worsen the damage to the gut barrier and lead to the trans-
location of bacteria or their fragments and metabolites, 
promoting systemic inflammation and liver injury [58, 60]. 
In addition, the disruption of beneficial obligate anaerobes 
in the gut promotes colonization with multidrug-resistant 
(MDR) pathogens, such as vancomycin-resistant Enterococ-
cus (VRE) and extended-spectrum β-lactamase producing 
Enterobacteriaceae (ESBL-E) [61, 62]. The treatment of 
autoimmune and lymphoproliferative complications [e.g., 
autoimmune cytopenias, lymphoid hyperplasia/splenomeg-
aly, granulomatous-lymphocytic interstitial lung disease 
(GLILD)] often requires immunosuppressive therapies [63], 
amplifying the disruption of gut microbiota and infectious 
risk. Moreover, prophylactic, prolonged and/or repeated 
antimicrobial therapies, determining gut dysbiosis, can con-
tribute to an increased risk for diarrhea [64, 65]. Restora-
tion of the gut microbiota to a eubiotic state plays a critical 
role in the management of gastrointestinal manifestations in 
CVID. Hence, gut microbiota modulation may be a potential 
therapeutic tool in these patients.

Despite the increasing evidence of alteration of gut 
microbiome in CVID [26, 28, 55–57], therapeutic manipu-
lation has only been explored as a possible target for CVID 
patients in one study using rifaximin. Mitigating dysbiosis in 
patients with CVID is a new pathway to be evaluated, poten-
tially impacting clinical outcomes and survival. Different 
approaches could improve the gut microbiota composition. 
Dietary fiber modifications, prebiotic and probiotic sup-
plementation have been suggested to be beneficial chronic 
human diseases, including cardiovascular, metabolic and 
cancer diseases [66, 67]. However, no studies have explored 
the effects of these approaches in CVID patients, and the 
appropriate prebiotic and probiotic combination beneficial 
for each individual remains poorly understood. The use 
of antibiotics still needs confirmation, although eubiotic 
effects have been reported with the use of rifaximin [28, 
68]. Finally, modulation of gut microbiota–intestinal barrier 
interactions is already considered a therapeutic strategy in 
several diseases [69].

CVID is a heterogeneous condition and clinical manifes-
tations may vary from increased susceptibility to infections 
to a variety of inflammatory complications. In addition to 
GI manifestations, several autoimmune disorders [70], inter-
stitial lung disease [71], polyclonal lymphoproliferations 
[72], and increased risk of malignancy [44, 73] can occur 
in CVID patients. The hypothetical relationships between 
these heterogeneous inflammatory manifestations and gut 
microbioma are largely unknown.

This review aims to provide a critical overview of pos-
sible interventions (e.g., diet, prebiotics, probiotics, postbi-
otics and fecal microbiota transplantation) that should be 
investigated in CVID patients with gastrointestinal manifes-
tations for the purpose to restore and/or promote a healthy 
gut microbiome in these patients.

Dietary and supplementary interventions

Diet, prebiotics and short‑chain fatty acids

Host diet plays a crucial role in modulating the gut micro-
biota [74–78]. The plasticity of the human microbiome, its 
integration with the immune system and its responsiveness 
to diet make it an extremely attractive therapeutic target.

Dietary fibers (DFs) fermented by gut microbiota have a 
prebiotic action, which selectively promote the growth and/
or activity of the intestinal microbiota, especially Bifido-
bacteria and Lactobacilli [79, 80], improving human health 
in chronic diseases and infections [66]. Not all DFs can be 
digested by gut microbes, and the term “microbiota accessi-
ble carbohydrates” (MACs) refers to complex carbohydrates 
that cannot be digested by the host but are metabolically 
available to intestinal microbes. Among these dietary com-
pounds are inulin-type fructans (e.g., inulin, oligofructose 
and fructooligosaccharides), galactans, galactooligosaccha-
rides (GOS), and other heteropolysaccharides [81]. DFs are 
fermented by intestinal microbiota to release short-chain 
fatty acids (SCFAs). SCFAs exert pleiotropic biological 
functions, including an anti-inflammatory response [82], 
modulation of intestinal epithelial barrier [83] and mainte-
nance of mucosal immune cell activity [84, 85]. In particu-
lar, SCAFs increase  Foxp3+ regulatory cells (Tregs) during 
mucosal infection in Candida albicans-infected mice [86], 
upregulates IL-10 production and interfere with the produc-
tion of pro-inflammatory molecules of IL-12, TNF-α, IL-1β 
and NO by inhibiting NF-κB activity [87–89].

Diets rich in MACs (e.g., whole grains, vegetables, leg-
umes without processed foods) and exposure to fermented 
foods (a known source of lactic acid bacteria) may be ben-
eficial for preserving gut microbial communities beneficial 
to human health [90]. DFs also promote the secretion of 
mucus from the intestinal epithelial barrier and enhance the 
expression of tight junction proteins. A known consequence 
of MAC restriction is the use of intestinal mucus as the pri-
mary source of energy by intestinal microbiota resulting in 
disrupted gut barrier integrity and decreased SCFA produc-
tion. As a result of inadequate MACs, the mucus layer in 
the colon may be degraded by mucin-degrading bacteria, 
thus allowing greater epithelial access and the occurrence 
of lethal colitis by mucosal pathogens [91].



1984 Clinical and Experimental Medicine (2023) 23:1981–1998

1 3

A recent study showed that a fermented-food diet might 
enhance microbiome diversity and reduce various inflamma-
tion markers (i.e., IL-6, IL-10 and IL-12b) in healthy adults 
[92]. The latter study showed that a high-fiber diet could 
modulate immune responses and gut microbiome functions.

In contrast, the Western diet (rich in animal protein and 
fat, poor in fiber) reduces bacterial diversity and richness, 
with a significant decline in numbers of beneficial Bifido-
bacterium, Lactobacillus and Eubacterium species and an 
increase in Bacteroides and Enterobacteria, as compared to 
a plant-based diet [90].

Diet is a major factor that can shape gut barrier structure 
and function [93]. Fermented food (i.e., yogurt) confers a 
benefit on gut epithelial barrier function, as suggested by 
decreased plasma soluble CD14 (sCD14) concentrations, a 
surrogate marker of gut microbial translocation [94]. In par-
ticular, plasma sCD14 is released by macrophages and hepat-
ocytes as part of the innate immune response to lipopolysac-
charide (LPS), a component of gram-negative bacteria, and 
it has been used as a marker of gut hyperpermeability.

Several studies have demonstrated that the Mediterra-
nean diet, characterized by a higher intake of vegetables 
over animal proteins, is the most effective diet in maintain-
ing gut microbial diversity [95, 96]. Strict adherence to the 
Mediterranean diet has been associated with enhanced lev-
els of SCFAs and Lactobacillus, Bifidobacterium, Eubac-
teria, Bacteroides and Prevotella, as well as decreases in 
Clostridium. Furthermore, the beneficial impact of diet on 
the intestinal microbiota could be explained by its ability to 
improve inflammation and lipid profile.

Reduced serum levels of vitamin A and D are frequently 
found in CVID patients [97, 98]. The latter vitamins regulate 
tight junction molecule expression in the gut barrier [99] 
and the mucosal immune system, modulating gut microbial 
species [100, 101]. In addition, vitamin D supplementation 
promotes gut microbiota richness and reduces the Firmi-
cutes/Bacteroidetes ratio [102].

Regarding dietary management of CVID enteropa-
thy, gluten-free diet (GFD) and gluten sensitivity are still 
debated in CVID patients. CD19 deficiency is a risk factor 
for monogenic CVID in humans [103]. A mouse model of 
CVID  (CD19−/− mice) shows altered gut microbiota com-
position and intestinal malabsorption [104]. An elegant 
study demonstrated that metronidazole and GFD histo-
logically reduced malabsorption of the intestinal mucosa 
in  CD19−/− mice [104]. According to the authors, malab-
sorption in  CD19−/− mice was both microbiota-dependent 
and gluten-sensitive. Gluten antigens modified by micro-
bial transglutaminase may enhance their immunogenicity 
and trigger an inflammatory [104]. GFD is often followed 
by individuals to alleviate gastrointestinal symptoms. In 
short-term studies, GFD has been shown to influence the 
composition and function of the intestinal microbiota in 

healthy subjects [105, 106]. In patients with celiac disease, 
the GFD over two years may also alter the gut microbiota 
profile, decreasing Bifidobacteria and Lactobacilli and 
increasing potential Enterobacteriaceae pathobionts. Jor-
gensen and colleagues have debated the clinical relevance 
of  CD19−/− mice as a CVID model [107]. This mouse model 
does not represent the polygenic etiology of the majority of 
CVID patients. Therefore, the results derived from animal 
models should be critically evaluated when investigating the 
relationship between microbiota and immunodeficiency.

Patients with CVID could be at increased risk of lac-
tose intolerance (LI) because of “sprue-like” enteropathy. 
Although there is no evidence, it is possible to speculate that 
CVID patients with enteropathy do not express lactase at 
the brush border of the small intestine. Hence, secondary LI 
may contribute to chronic diarrhea in CVID patients. Undi-
gested lactose in the small intestine causes osmotic water 
trapping, and the colonic osmotic load is increased approxi-
mately eightfold by fermentation of lactose to SCFAs. 
Future studies are needed to evaluate the prevalence of LI 
in CVID and whether the effects of a lactose-free diet or the 
use of exogenous digestive enzymes [108] may have a posi-
tive impact on gastrointestinal symptoms. In this context, the 
gut microbiota could be influenced by biotic interventions, 
which may improve the symptoms and clinical signs of LI 
[109]. The use of probiotics significantly reduced abdomi-
nal pain, bloating and/or flatulence, vomiting and diarrhea 
in individuals with LI. The latter effect is associated with 
reduced exhaled H2 [109]. Several mechanisms may explain 
the above-mentioned effects. First, probiotics can produce 
lactase in the gastrointestinal tract [110], promoting colonic 
fermentation and the overall hydrolytic capacity [111]. Sec-
ond, probiotics inhibit the growth of heterofermentative 
bacteria (which produce gas), resulting in improved colonic 
compensation [112] by secreting antimicrobial peptides 
[113], adhering competitively to the mucosa, and modulat-
ing intestinal barrier permeability [114, 115]. Several probi-
otics (including L. rhamnosus, L. acidophilus, L. bulgaricus, 
L. reuteri, S. thermophilus and B. longum) have been found 
to be effective in attenuating clinical signs of LI in popula-
tions with altered lactose absorption [109].

Probiotics

Probiotics are microbial strains that provide health ben-
efits to the host when administered in adequate amounts 
[19, 116]. Probiotics have a role in maintaining the 
immune system homeostasis in the gastrointestinal tract 
as result of direct interactions with several immune cells 
[117, 118]. Probiotics can be found in fermented foods, 
either naturally or artificially added, and can colonize 
the human gastrointestinal tract. Microbiome richness 
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is essential in health maintenance, and broad-spectrum 
probiotics are helpful in the prevention and therapy of 
various diseases [119, 120]. The main probiotic products 
currently on the market are developed with Lactobacilli, 
Bifidobacteria and other lactic acid bacteria, such as 
Streptococci and Lactococci. Promising probiotic strains 
include the bacterial genera Escherichia, Bacillus, Pro-
pionibacterium and some other yeast genera, mainly Sac-
charomyces. The first available probiotics contained only 
one species of microorganism, whereas subsequent prod-
ucts had a larger variety and number of microorganisms. 
Probiotic efficacy depends on species, dose and disease 
[121], and the duration of treatment varies according to 
the clinical indication.

The effective delivery of living bacteria into lymphoid 
follicles increases mucosal immune responses, as demon-
strated by significantly increased levels of sIgA,  CD11c+ 
dendritic cells (DCs),  CD4+ T cells, and  IgA+ B cells in the 
intestinal tract in a mouse model [122]. Probiotics inhibit the 
growth of pathogenic bacteria, competing for nutrients that 
would otherwise be utilized by pathogens. Probiotics such 
as Lactobacillus rhamnosus strain GG and L. plantarum 
impede the adhesion of enteropathogenic Escherichia coli 
(E. coli) to the gastrointestinal tract [123]. There is evidence 
that L. acidophilus or L. casei raised lactic acid bacteria with 
a concomitant reduction in anaerobes and fecal coliforms 
[124, 125]]. Moreover, Li et al. [126] showed that probiot-
ics shift the composition of gut microbiota toward specific 
beneficial bacteria (i.e., Oscillibacter and Prevotella). In an 
experimental model of hepatocellular carcinoma, the lat-
ter bacteria produced anti-inflammatory compounds, which 
subsequently reduced Th17 polarization and promoted the 
differentiation of anti-inflammatory Treg/type 1 regulatory 
T (Tr1) cells in the gut [126].

Probiotics have been shown to promote gut barrier integ-
rity by increasing the number of goblet cells that strengthen 
the mucus layer [127]. Various Lactobacillus species pro-
mote mucin expression in human intestinal cell lines [128, 
129]. VSL#3, a probiotic mixture of Lactobacillus and Bifi-
dobacterium species, promotes the expression of MUC2, 
MUC3 and MUC5AC in HT29 cells [130] and increases 
tight junction protein expression in vitro and in vivo [131]. 
Furthermore, L. acidophilus A4 cell extract intensifies the 
expression of MUC2 in HT29 cells, and this effect is unre-
lated to probiotic adhesion to the cell monolayer [132].

Probiotics promote gut barrier integrity by increasing 
gene expression in tight junction signaling. L. acidophilus 
and S. thermophilus inhibited the attachment of enteroinva-
sive E. coli in HT29 and Caco-2 cells by maintaining (ZO-
1, actin) or enhancing (occluding, actinin) cytoskeletal and 
tight junctional protein phosphorylation [133]. Lactobacillus 
rhamnosus GG (LGG) exerts an important role in epithelial 

cell survival by activating Akt and inhibiting p38 in response 
to pro-apoptotic signaling pathways [134].

Probiotics modulate mucosal immune responses by the 
induction of different cytokines (e.g., IFN-γ and TNF-α), 
which stimulate an adaptive immune response. This effect 
is related to the probiotic strain itself [135–137]. Probiot-
ics enhance the production of secretory IgA in vitro [138] 
and in vivo [139], which is one of the properties by which 
probiotics can support the immune system [19, 140]. Sev-
eral studies have demonstrated that specific probiotic strains 
can enhance the humoral immune response to infections. In 
children with rotavirus-induced diarrhea, administration of 
Lactobacillus GG showed a marked increase in IgA, IgM 
and IgG levels [141]. In addition, probiotics influence the 
immune response and activity of natural killer (NK) cells, 
which fight virus-infected and cancer cells [142]. Adminis-
tration of B. bifidum and L. acidophilus La1 increased the 
IgA response following immunization for Salmonella typhi, 
whereas Lactobacillus GG promoted the immune response 
to the oral rotavirus vaccine. The latter observations suggest 
that probiotics may improve vaccine efficacy by acting as 
potential adjuvants [143].

Another relevant property of probiotics is the inhibi-
tion of the growth of pathogenic bacteria by synthesizing 
low molecular weight compounds such as organic acids 
(i.e., acetic and lactic acids) and large molecular weight 
antimicrobial compounds called bacteriocins [144]. These 
compounds display inhibitory effects on gram-negative bac-
teria, including H. pylori [145]. Bacteriocins produced by 
probiotics are bifidocin B from B. bifidum NCFB, lactacin 
B from L. acidophilus, nisin from Lactococcus lactis, and 
plantaricin from L. plantarum [146]. Synbiotic therapy with 
B. longum and a prebiotic (Synergy 1) determine the release 
of defensins from intestinal epithelial cells in patients with 
ulcerative colitis [147]. Taken together, all this evidence sug-
gests that probiotics improve gut epithelial barrier tightness 
and integrity by a variety of mechanisms and that mucosal 
restoration may positively impact the outcomes of disease. 
On the other hand, specific studies in cohorts of CVID 
patients are needed to achieve any evidence.

The effects of probiotics on gut microbiota have been 
extensively studied; however, there is little evidence on 
the effects of probiotics on the upper respiratory system. 
Systematic reviews and meta-analyses found a favorable 
outcome of using probiotics in reducing the episodes of 
new respiratory infections in children [148, 149]. Below, 
we report the evidence regarding the efficacy of probiot-
ics, synbiotics and synthetic microbes in the gastrointestinal 
manifestations of CVID.
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Acute infectious diarrhea

Probiotics are effective in treating acute infectious diarrhea 
caused by bacteria, but there are inconsistent results for 
diarrhea caused by viral pathogens [150, 151]. A Cochrane 
review of 63 RCTs including 8,014 subjects with acute infec-
tious diarrhea found that probiotics significantly decreased 
the mean duration of diarrhea (25 fewer hours; 95% confi-
dence interval [CI], 16 to 34 fewer hours), reduced the risk 
of diarrhea lasting more than four days by 59%, and led 
to approximately one fewer stool on the second day (mean 
difference = 0.80; 95% CI, 0.45 to 1.14) [152]. In the case 
of acute infectious diarrhea, probiotics might be helpful if 
administered at the onset of symptoms and continued for at 
least one to two weeks after the symptoms have resolved. 
However, there are no studies evaluating the effects of pro-
biotics in the prevention and treatment of acute infectious 
diarrhea in CVID patients.

Antibiotic‑associated diarrhea

Despite adequate i.v. or s.c. IgRT, antibiotics are frequently 
prescribed to control acute infections or prevent infections 
in most patients with CVID [153]. Antibiotics induce pro-
found alterations of the gut microbiota with reduced gut 
SCFA concentrations, increase of luminal carbohydrates and 
colonic bile acids, impaired water absorption and develop-
ment of bacterial resistance [154, 155]. Antibiotic-associ-
ated diarrhea (AAD) is a relevant morbidity associated with 
antibiotic use. C. difficile is predicted to account for approxi-
mately 20% of all AAD cases [156]. Minor opportunistic 
pathogens, such as Clostridium perfringens, Klebsiella 
pneumonia, Klebsiella oxytoca, Staphylococcus aureus and 
Candida species, have also been related to AAD [157].

Probiotics could counteract the effects of antibiotics in 
the gastrointestinal tract by directly preventing the growth 
of pathogens or by inducing relevant alterations in the gut 
microbiota composition through the synthesis of SCFAs, 
production of bacteriocins or reducing luminal pH and  O2 
levels. Probiotics might also modulate the composition of 
bile acids and interact directly with the gut barrier and the 
immune system to cause an increase in mucosal response 
and modulation of water and solute transport [158]. Sev-
eral bacterial species have been studied in clinical trials for 
relieving AAD, including members of the Lactobacillus, 
Lactococcus, Bifidobacterium, Bacillus, Clostridium, Leu-
conostoc and Streptococcus genera. Among the yeasts, Sac-
charomyces boulardii has also been studied. Lactobacillus 
rhamnosus strain GG and S. boulardii strain CNCM I-745 
have been most frequently examined [159, 160]. However, 
which strains are most effective and their appropriate tim-
ing and duration of use are still unknown. Although many 

studies report that probiotics are generally safe, they should 
be administered in high-risk groups only after careful evalu-
ation of the risk–benefit ratio [161].

Helicobacter pylori infection

Helicobacter pylori (H. pylori) infection affects nearly 50% 
of the worldwide population and can bring digestive and 
extra digestive consequences [162]. There are few certain-
ties on the effectiveness of probiotics as a complement to 
antibiotic therapy to improve H. pylori eradication rates. A 
meta-analysis of nine RCTs with 1,163 patients reported that 
using Lactobacillus-containing probiotics combined with 
antibiotics increased the H. pylori eradication rate compared 
with the placebo [163]. On the other hand, a recent meta-
analysis of 21 RCTs involving 3,452 subjects showed that 
the combined approach of probiotics with antibiotics did not 
improve H. pylori eradication (odds ratio = 1.44; 95% CI, 
0.87 to 2.39) compared to the placebo [164].

Next‑generation probiotics

Additionally to traditional probiotics, live microorganisms 
with defined clinical benefits claims (also called next-
generation probiotics or live biotherapeutics products) are 
explored as therapeutic agents [165]. Next-generation can-
didate probiotics comprise Akkermansia, Roseburia, Fae-
calibacterium and Propionibacterium species [165–167]. 
The bacterium Akkermansia muciniphila has been labeled 
as a protective factor against the development of colitis and 
metabolic diseases [168]. This gram-negative, anaerobic, 
non-spore-forming, non-motile bacterium, belonging to the 
phylum Verrucomicrobia, is recognized as the first next-
generation probiotic. Administration of A. muciniphila can 
help protect against certain metabolic diseases [169–172] 
and inflammatory disorders [173, 174], influence gut perme-
ability [175], and promote the response to cancer immuno-
therapy [176] in mouse models. The mechanisms by which 
A. muciniphila potentially protects against various diseases 
in humans remain unclear. It has been shown that this sym-
biotic intestinal bacterium is an emerging "gatekeeper of the 
gut," regulating inflammation and gut epithelium integrity 
[168, 177, 178]. Probiotics containing A. muciniphila are 
currently under development. However, dietary interventions 
including polyphenols (i.e., green tea, concord grape, cran-
berry) [179–181], the antidiabetic drug metformin [182], 
selective antibiotics (i.e., vancomycin) [183] and FMT [184] 
are strategies that indirectly increase the abundance of A. 
muciniphila. Gut microbiota enriched in A. muciniphila 
reduces bacterial translocation and inflammation, acting as 
a shield for gut permeability [185]. Indeed, three in vitro 
studies reported that A. muciniphila improved the integrity 
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of the enterocyte monolayer and increased the expression 
of cell–cell adhesion and tight junction molecules [177, 
186]. In addition, long-term A. muciniphila administration 
improved the thickness of the colonic mucus layer about 
threefold in an accelerated aging mouse model [178]. A. 
muciniphila could induce butyrate-producing bacterial 
growth and butyrate production [187], immunoglobulin 
G1 (IgG1) antibodies, antigen-specific T-cell responses 
and intestinal adaptive immune responses [188]. Hence, 
we would like to suggest that A. muciniphila might reduce 
inflammation by preserving intestinal epithelium integrity, 
supporting butyrate-producing bacteria and subsequently 
preventing microbial translocation in CVID.

F. prausnitzii is another commensal that exerts specific 
anti-inflammatory properties on the gut [189]. The yeast S. 
boulardii has also been extensively studied in the context of 
inflammation and intestinal barrier dysfunction. In addition, 
the favorable effects of this yeast are supported by antimi-
crobial and antitoxin properties and trophic effects on the 
intestinal barrier [190].

Postbiotics, small molecule inhibition, 
and engineered microbes

Downstream signaling pathways and modulation of the 
effects of microbial-derived metabolites represent a prom-
ising source of new potential therapeutic targets [191, 192]. 
The latter purposes may be achieved through several meth-
ods, including supplementation with bioactive compounds 
(i.e., postbiotics), small molecule inhibition of microbial 
enzymes or engineered microbes to perform specific func-
tions. One of the experimental outcomes supporting these 
action modes is the exogenous administration of SCFAs, 
which improves inflammatory conditions in colitis mouse 
models [193].

Conversion of tryptophan to tryptamine and indole 
metabolites by intestinal bacteria plays an important role 
in maintaining intestinal barrier function [194]. Indole ace-
tic acid produced by Lactobacilli during infections causes 
the release of IL-22, a cytokine that enhances mucosal 
immune response in mice and restores gut barrier integrity 
[195–197]. IL-22 has been shown to have metabolic proper-
ties, enhancing insulin sensitivity and reducing endotoxemia 
[197].

Bacterial lysates (BLs), belonging to the family of post-
biotics, are obtained by the chemical/mechanical degrada-
tion of bacteria. The rationale for their clinical use in the 
prevention of microbial infection relates to the concept of 
the “gut-lung axis,” which represents the interplay between 
gut-associated lymphoid tissue (GALT) and the respira-
tory immune system [198]. Lyophilized BLs can reach the 
Peyer’s patches of the small intestine with stimulation of 

DCs and activation of B and T lymphocytes [199] which 
migrate within the mucous membrane of the respiratory 
tract. As a result, the innate immune system is stimulated 
and IgA are secreted [200].

Intestinal bacteria may also synthesize vitamin B12 and 
other B complex vitamins, which are frequently deficient in 
CVID [201]. A yogurt matrix enriched with L. acidophilus 
has been associated with increased vitamin B12 synthesis 
and reduced anemia prevalence [202].

Another link between a microbial-derived metabolite 
and human disease is the role of the proatherogenic metab-
olite trimethylamine-N-oxide (TMAO) in atherosclerotic 
disease. A recent study demonstrated that patients with 
CVID had elevated plasma levels of the metabolites TMAO 
and trimethylamine (TMA) than healthy individuals [29]. 
TMAO plasma levels correlated with increased LPS and 
inflammatory markers (i.e., IL-12 and TNF-α) and with 
gut abundance of Gammaproteobacteria [29]. Preclinical 
studies have reported that inhibition of a specific microbial 
enzyme responsible for TMA production from L-carnitine 
(the first step in TMAO synthesis) reduces atherosclerotic 
plaque development in a mouse model, providing a proof-
of-concept for targeting microbial metabolism [203, 204]. 
Finally, gut microbial metabolites may exert pleiotropic 
properties in the human host. SCFAs (acetate, propionate 
and butyrate) can also act as immunomodulatory and anti-
inflammatory metabolites [205, 206]. Other SCFAs derived 
from amino acid catabolism, including valerate, formate and 
branched-chain fatty acids, play a minor role in gut homeo-
stasis [207]. SCFAs may have differential effects on T-cell-
mediated immune responses, promoting the expansion of 
Treg cells [208]. In particular, butyrate has been found to 
promote colonic Treg differentiation from naïve  CD4+ T 
cells upregulating Foxp3 transcription via histone acetyla-
tion [209, 210] or by stimulating GPR109A and GPR43 
(GPCRs) signaling [211], as well as activating NLRP3, 
which is crucial for gut environmental stability and epithe-
lial repair [212]. Exploratory studies in well-characterized 
CVID cohorts are needed to identify microbial metabolites 
of interest. Despite the lack of evidence, metabolite-based 
therapeutics offer significant therapeutic promise. In fact, 
postbiotics may be safer alternatives for immunocompro-
mised subjects such as CVID patients and could avoid the 
potential disadvantages of probiotics [213].

Engineered microbes [214] might also have a potential 
role in CVID disease management. In two murine models 
of gut barrier impairment, oral supplementation with cam-
ouflaged probiotics (E. coli Nissle 1917) within a yeast 
membrane β-glucan enriched, significantly prevents the 
breakdown of gut barrier and shows reduced bacterial trans-
location and systemic inflammation [122]. As a consequence 
of the increase in secretory IgA, there was also an increase in 
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other mediators, such as  CD11c+ DCs,  CD3+ T cells,  CD4+ 
T cells,  CD8+ T cells, and  IgA+ B cells [122].

Antibiotics

Despite appropriate i.v. or s.c. IgRT, the most common 
clinical manifestations of CVID are recurrent respiratory 
and gastrointestinal infections [36, 215]. Therefore, a large 
percentage of CVID patients are treated with antibiotics to 
control acute infections or as prophylaxis to limit the fre-
quency of infections [153]. Antibiotics also have adverse 
side effects, including the development of dysbiosis and 
bacterial resistance [154]. Some antibiotics may also have 
positive impacts on the gut microbiota. For instance, rifaxi-
min has been shown to have a eubiotic effect by enhancing 
the abundance of beneficial bacterial species in patients with 
various gastrointestinal and liver disorders [68]. Preliminary 
studies indicated that rifaximin lowered plasma endotoxin 
levels in cirrhotic patients [216, 217]. In contrast, rifaximin 
had no effect on circulating biomarkers of systemic inflam-
mation (sCD14, sCD25 or LPS), but lowered microbial 
alpha diversity in CVID patients [28]. In addition, none of 
the ten major bacteria implicated in differentiating CVID 
patients from healthy controls, as measured by the CVID-
specific dysbiosis index [55], were affected by rifaximin. 
The CVID-specific dysbiosis index was correlated with 
circulating markers of systemic inflammation and intestinal 
permeability. It is possible to speculate that the absence of 
CVID specific dysbiosis index variation could explain the 
lack of an anti-inflammatory effect of rifaximin.

Fecal microbiota transplantation

Fecal microbiota transplantation (FMT) is an emerging 
therapy that has become established for the treatment of 
refractory or recurrent Clostridioides difficile infection 
(rCDI) [218, 219]. The use of FMT for additional disease 
conditions is currently evaluated, and compelling evidence 
suggests that FMT may be useful for treating a variety of 
disorders related to gut dysbiosis [220–225].

FMT is the transfer of an entire microbiome from a 
healthy donor into the intestinal tract of a recipient. The pro-
cedure can be performed via enema [226, 227], oral capsule 
with fecal extracts [228–230], or colonoscopy-guided inser-
tion [230, 231]. However, the route of delivery may bring 
along several methodological issues [232]. For instance, 
Bacteroidetes can be damaged by gastric juice as opposed to 
certain Firmicutes, which require passage through the upper 
gastrointestinal tract to become active [233]. Moreover, a 
lower gastrointestinal route of administration has shown bet-
ter results than the upper route in CDI [234]. Finally, the 

number of fecal infusions may be crucial: A single proce-
dure may be adequate for CDI, but not for chronic diseases 
that require multiple administrations.

FMT’s therapeutic benefits are due to an increased diver-
sity of bacteria, viruses, fungi and archaea that can engraft 
into the recipient host and improve microbial diversity. FMT 
may positively influence the treatment of chronic diarrhea 
and recurrent infections in patients with CVID. This novel 
therapeutic approach may be a new technique to re-establish 
the perturbed gut microbiota of CVID patients and subse-
quently increase microbiota-derived metabolites such as 
SCFAs. FMT, through the normalization of the gut micro-
biome, leads to an augmentation of immune defenses against 
pathogens (i.e., C. difficile) [235, 236]. These benefits com-
prise the secretion of mucin and antimicrobial peptides, as 
well as the restoration of the disrupted mucosal barrier or 
the production of secondary bile acids that inhibit the ger-
mination of C. difficile spores. To date, the experience of 
FMT in immunocompromised patients is limited to acquired 
immunodeficiencies (e.g., HIV infection, immunosuppres-
sive and antineoplastic agents, solid organ transplant recipi-
ent), in which FMT is an effective treatment for rCDI and 
has a comparable incidence of serious adverse events as in 
other immunocompromised patients [237–239]. However, 
due to the heterogeneity of immunocompromised patients 
enrolled in the studies, it is not possible to draw conclu-
sions concerning the efficacy and safety of FMT in specific 
immunosuppressive states [238].

Although increasing evidence concerning the use of FMT 
in acquired immunodeficiencies is growing [238–241], there 
is no evidence in CVID, probably due to the perceived risk 
of bacterial translocation and sepsis, and the role of FMT in 
improving clinical outcomes in CVID patients remains unex-
plored. Recently, safety alerts have been issued by regulatory 
bodies concerning the risk of pathogens being transmitted 
via FMT [242]. Detailed recommendations have been estab-
lished to ensure the safety of FMT during the COVID-19 
pandemic [243]. However, we foresee a potential role for 
this promising therapeutic approach in restoring CVID-
associated dysbiosis, as well as a future tool for intestinal 
decolonization of MDR bacteria.

Practical considerations for introducing FMT in CVID

Several technical and practical challenges exist, including 
the selection of clinical donors, preparation of standardized 
bacterial solutions and capsules, route and type of admin-
istration, matching of donors and recipients, prevention 
and treatment of complications. First, the success rate and 
efficacy of FMT depend on the gut microbial diversity of 
the donor and have led to the concept of a “super donor” 
[244]. Numerous studies have identified desirable qualities 
of a super donor [245–248]. The FMT response depends on 
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both the donor and recipient's immune system and genetic 
profile; hence, immune screening becomes crucial before 
FMT. In the context of CVID enteropathy, the engraftment 
and efficacy of FMT could be influenced by the absence of 
intestinal mucosal IgA. Tables 1 and 2 represent a proposed 
interview and a possible screening to select donors for FMT.

The selection of CVID patients for an FMT trial may be 
particularly challenging, as patients are frequently treated 
with antibiotics as prophylaxis to reduce infection frequency 
or control acute infections, potentially nullifying the efficacy 
of this therapeutic approach. In addition to the challenges 
with patient selection, in-depth donor screening is simi-
larly warranted to reduce the transmission of microorgan-
isms that may cause adverse infectious events in an already 
vulnerable host. The potential for COVID-19 transmission 
through FMT treatment remains unclear, even though no 
cases have been reported. Moreover, further studies regard-
ing the impact of COVID-19 on donors’ and recipients’ gut 
microbiomes are urgently needed.

As our knowledge of gut microbiota involvement in CVID 
constantly evolves, the potential of therapeutic approaches 

modulating the gut microbiota to improve GI symptoms 
in CVID patients is expanding. In the foreseeable future, 
identifying the exact gut microbiota profile in each CVID 
patient will be an available and intriguing tool to personalize 
treatments, including customized prebiotics and probiotics, 
FMT treatments and/or use of narrow-spectrum antibiotics. 
Hence, targeted treatments for gut microbiota manipulation 
may be more effective than conventional probiotics or broad-
spectrum antibiotics. In addition, early recognition of gut 
microbiota changes during patient follow-up may help pre-
dict CVID patients at high risk of adverse clinical outcomes. 
Currently, there are no established guidelines concerning the 
indications and the optimal FMT procedure for patients with 
CVID in clinical practice.

More stringent criteria for donor screening should be 
considered for FMT in CVID patients, and fecal specimen 
preparation with additional precautions is advisable for a 
better safety profile. Novel routes of administration for FMT, 
including fecal capsules, lyophilized stools or fecal filtrate 
transfer (FFT), could minimize current administration chal-
lenges with potentially fewer side effects. On the other hand, 

Fig. 1  Potential therapeutic approaches to modulate the gut micro-
biome in CVID patients. Repeated or chronic infections can induce 
impairment of mucosal immunity with intestinal epithelial dam-
age [253]. Recent evidences suggest that chronic inflammation may 
impact the gut microbiota [254]. Gut microbial dysbiosis can lead 
to translocation of bacteria or their fragments and metabolites, pro-
moting activation of innate and adaptive immune cells [58]. It is 
unknown whether it is possible to improve the clinical outcome of 
CVID patients with enteropathy through specific therapeutic inter-
ventions modulating the gut microbiota. Dietary and nutritional inter-
ventions are environmental factors that can modify the gut micro-
biota composition [74–76]. In particular, high-fiber diets increase 
beneficial microbes that produce short-chain fatty acids (SCFAs). 

Other approaches to reverse gut dysbiosis and restore homeostasis 
include the administration of prebiotics, probiotics or synbiotics [18, 
255]. Prebiotics (e.g., oligosaccharides) are nonviable substances that 
facilitate the growth or activity of specific bacteria. Probiotics com-
prise individuals or combinations of bacteria. Synbiotics are mixtures 
of prebiotics and probiotics.  Postbiotics (e.g., SCFA) are microbe-
derived soluble products and metabolites. Fecal microbiota transplant 
(FMT), introducing a new bacterial community to the recipient, aim-
ing to reverse the established dysbiosis, might be an appealing thera-
peutic tool in selected CVID patients. Finally, genetically engineered 
modified bacteria, that express therapeutic factors into the gut micro-
biota, might be used for managing pathologies linked to gut microbi-
ome in CVID patients (Tables 1, 2)
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their efficacy has not yet been demonstrated [249, 250]. The oral FMT administration route using fecal capsules with 

Table 1  Proposed interview to 
select donors for FMT [adapted 
from (206)]

Preliminary interview—medical history

Drugs that can alter gut microbiota
Recent (≤ 3 months) exposure to systemic antimicrobial drugs, immunosuppressant agents, chemotherapy
Chronic treatment (≥ 3 months) with daily use of proton pump inhibitors
Disorders potentially associated with the disruption of gut microbiota:
Personal history of chronic gastrointestinal disease, including functional gastrointestinal disorders; inflam-

matory bowel disease; celiac disease; other chronic gastroenterological diseases or recent abnormal 
gastrointestinal symptoms (e.g., diarrhea, hematochezia, etc.)

Personal history of cancer, including gastrointestinal cancers or polyposis syndrome, and first-degree fam-
ily history of premature colon cancer

Personal history of systemic autoimmune disorders
Obesity (body mass index > 30) and/or metabolic syndrome/diabetes
Personal history of neurological/neurodegenerative disorders
Personal history of psychiatric/neurodevelopmental conditions
Known history or risk behaviors for infectious disease
History of HIV, hepatitis B or C viruses, syphilis, human T-lymphotropic virus I and II
Current systemic infection
Use of illegal drugs
High-risk sexual behavior
Previous tissue/organ transplant
Recent hospitalization or discharge from long-term care facilities
High-risk travel
Needle stick accident in the last six months
Body tattoo, piercing, earring, acupuncture in the last six months
Enteric pathogen infection in the last two months
Acute gastroenteritis with or without confirmatory test in the last two months
History of vaccination with a live attenuated virus in the last two months

Table 2  Proposed donor blood 
and stool testing for FMT 
[adapted from [256]]

Blood testing

Complete blood cell count with differential
Liver enzyme (Aminotransferases), bilirubin
Creatinine
C-reactive protein
Treponema pallidum
Nematodes (Strongyloides stercoralis)
Serology for Hepatitis virus (HAV, HBV, HCV, HEV) and Human immunodeficiency virus (HIV)
Stool testing
Clostridioides difficile
Common enteric pathogens, including Salmonella, Shigella, Campylobacter, shiga toxin-producing 

Escherichia coli, Yersinia and Vibrio cholerae
Antibiotic-resistant bacteria (ARB), including vancomycin-resistant Enterococci (VRE), methicillin-

resistant Staphylococcus aureus (MRSA), Gram-negative ARB including extended-spectrum β-lactamase 
(ESBL)-producing Enterobacteriaceae, and carbapenem-resistant Enterobacteriaceae/carbapenemase-
producing Enterobacteriaceae (CRE), Shiga toxin-producing E. coli (STEC)

Norovirus, rotavirus, adenovirus
Giardia lamblia, Cryptosporidium spp, Isospora and Microsporidia
Protozoa and helminths/va and parasites (including Blastocystis hominis and Dientamoeba fragilis)
Helicobacter pylori fecal antigen (for upper route of FMT delivery)
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frozen or freeze-dried material has a number of advantages, 
including significantly lower volume and easier administra-
tion compared to conventional FMT. This result is a reduc-
tion in storage space requirements and an increase in patient 
compliance [249, 251]. FFT (containing bacterial debris, 
proteins, metabolic products, antimicrobial compounds and 
nucleotides) results in a bacteria-free solution. Hence, the 
transfer of “sterile” fecal filtrate might represent an alterna-
tive to conventional FMT, particularly for immunocompro-
mised patients, to decrease the risk of pathogen transmission 
[252].

FMT for CVID patients should ideally be discussed 
within a multidisciplinary team (MDT) in a personalized 
approach. An FMT MDT should include clinical immunol-
ogists, gastroenterologists and microbiologists, along with 
involved nursing and allied health professionals.

Conclusions

There is compelling evidence that the gut microbiome plays 
a pivotal role in the pathophysiology of CVID. There is the 
possibility that modulation of the gut microbiota via prebiot-
ics, probiotics and FMT to improve gastrointestinal symp-
toms could represent a novel treatment strategy in selected 
patients with CVID. The experimental and clinical develop-
ment of microbiota modulators in CVID requires a multidis-
ciplinary approach involving translational research teams. 
Studies in experimental models of CVID appear necessary 
to better understand the immunological and biochemical 
effects of modulators of the gut microbiota. Figure 1 sum-
marizes the potential approaches that may modulate the gut 
microbiome in CVID patients. Future randomized clinical 
trials should systematically evaluate the potential benefits 
and risks associated with the use of microbiome modulators 
in CVID patients.
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