Skip to main content

Advertisement

Log in

CYP51-mediated cholesterol biosynthesis is required for the proliferation of CD4+ T cells in Sjogren’s syndrome

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

CYtochrome P450, family 51 (CYP51) is an important enzyme for de novo cholesterol synthesis in mammalian cells. In the present study, we found that the expression of CYP51 positively correlated with CD4+ T cell activation both in vivo and in vitro. The addition of ketoconazole, a pharmacological inhibitor of CYP51, prevented the proliferation and activation of anti-CD3/CD28-expanded mouse CD4+ T cells in a dose-dependent fashion. Liquid chromatography-tandem mass spectrometry indicated an increase in levels of lanosterol in T cells treated with ketoconazole during activation. Ketoconazole-induced blockade of the cholesterol synthesis pathway also caused Sterol regulatory element binding protein 2 (SREBP2) activation in CD4+ T cells. Additionally, ketoconazole treatment elicited an integrated stress response in T cells that up-regulated activating transcription factor 4 (ATF4) and DNA-damage inducible transcript 3 (DDIT3/CHOP) at the translational level. Furthermore, treatment with ketoconazole significantly decreased the amount of CD4+ T cells infiltrating lesions in the submandibular glands of NOD/Ltj mice. In summary, our results suggest that CYP51 plays an essential role in the proliferation and survival of CD4+ T cells, which makes ketoconazole an inhibitor of CD4+ T cell proliferation and of the SS-like autoimmune response through regulating the biosynthesis of cholesterol and inducing the integrated stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Data banks/repositories corresponding to all datasets analyzed in this study were listed in Additional file 1.

Abbreviations

ABCA1:

ATP-binding cassette transporter A 1

ABCG1:

ATP-binding cassette transporter G 1

ATF4:

Activating transcription factor 4

BIM:

Bcl-2 interacting mediator of cell death

BP:

Biological process

CDK2:

Cyclin-dependent kinase 2

CDK4:

Cyclin-dependent kinase 4

CFSE:

5-(And -6) -Carboxyfluorescein Daicetate Succinimidyl Ester

CYP51:

Lanosterol 14alpha-demethylase

Cyp51:

Cytochrome P450 family 51

CYP51A1:

Cytochrome P450 family 51 subfamily A member 1

Ddit3:

DNA-damage inducible transcript 3

DEGs:

Differentially expressed genes

DMSO:

Dimethyl sulfoxide

Eif2ak3:

Eukaryotic translation initiation factor 2 alpha kinase 3

FDPS:

Farnesyl pyrophosphate synthase

FBS:

Fetal bovine serum

GEO:

Gene Expression Omnibus database

GO:

Gene Ontology

GSEA:

Gene Set Enrichment Analysis

H&E:

Hematoxylin & eosin

HMGCR:

Hydroxymethylglutaryl-CoA reductase

HMG-CoA:

3-Hydroxy-3-methyl glutaryl coenzyme A reductase

IFN-γ:

Interferon-γ

IL-17:

Interleukin-17

IL-2:

Interleukin-2

HMGCR:

Hydroxymethylglutaryl-CoA reductase

IDI1:

Isopentenyl pyrophosphate isomerase 1

IL-6:

Interleukin-6

JNK/STAT:

Janus kinase/signal transducer and activator of transcription

KTC:

Ketoconazole

LC–MS:

Liquid chromatography-tandem mass spectrometry

ISR:

Integrated stress response

LXRβ:

Liver x receptor β

MBCD:

Methyl-β-cyclodextrin

MCL-1:

Myeloid cell leukemia-1

mRNA:

Messenger RNAs

NCBI:

National Center for Biotechnology Information

p38MAPK:

P38 mitogen-activated protein kinase

PBS:

Phosphate buffered saline

PCR:

Polymerase chain reaction

PBMC:

Peripheral blood mononuclear cell

PERK:

Protein kinase RNA–like endoplasmic reticulum kinase

RA:

Rheumatoid arthritis

SEM:

Standard deviations of the mean

SFR:

Salivary flow rate

siRNA:

Small-hairpin RNA

SLE:

Systematic lupus erythematosus

SQLE:

Squalene epoxidase

SREBP2:

Sterol regulatory element binding protein2

SS:

Sjogren’s syndrome

Th1:

T helper 1

TNF-α:

Tumor necrosis factor-α

7-DHC:

7-Dehydrocholesterol

References

  1. Mavragani CP, Moutsopoulos HM. Sjögren’s syndrome. Annu Rev Pathol Mech Dis. 2014;9:273–85.

    Article  CAS  Google Scholar 

  2. Fox RI. Sjögren’s syndrome. In: Lancet. Elsevier, 2005 p. 321–331

  3. Tang Y, Zhou T, Yu X, Xue Z, Shen N. The role of long non-coding RNAs in rheumatic diseases. Nat Rev Rheumatol. 2017;13:657–69.

    Article  CAS  PubMed  Google Scholar 

  4. Malladi AS, Sack KE, Shiboski SC, et al. Primary Sjögren’s syndrome as a systemic disease: a study of participants enrolled in an international Sjögren’s syndrome registry. Arthritis Care Res. 2012;64:911–8.

    Article  Google Scholar 

  5. Singh N, Cohen PL. The T cell in Sjogren’s syndrome: force majeure, not spectateur. J Autoimmun. 2012;39:229–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wei L, Zhifei X, Xiaoran N, et al. Patients with early-onset primary Sjögren’s syndrome have distinctive clinical manifestations and circulating lymphocyte profiles. Rheumatology (Oxford). 2022;61:597–605.

    Article  CAS  PubMed  Google Scholar 

  7. Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med. 1994;179:1317–30.

    Article  CAS  PubMed  Google Scholar 

  8. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol. 2010;28:445–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. da Silva TA, Oliveira-Brito PKM, Gonçalves TE, Vendruscolo PE, Roque-Barreira MC. ArtinM mediates murine T cell activation and induces cell death in Jurkat human leukemic T cells. Int J Mol Sci. 2017;18(7):1400.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hohlfeld R, Dornmair K, Meinl E, Wekerle H. The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol. 2016;15:198–209.

    Article  CAS  PubMed  Google Scholar 

  11. Nocturne G, Mariette X. Advances in understanding the pathogenesis of primary Sjögren’s syndrome. Nat Rev Rheumatol. 2013;9:544–56.

    Article  CAS  PubMed  Google Scholar 

  12. Van Woerkom JM, Kruize AA, Wenting-Van Wijk MJG, et al. Salivary gland and peripheral blood T helper 1 and 2 cell activity in Sjögren’s syndrome compared with non-Sjögren’s sicca syndrome. Ann Rheum Dis. 2005;64:1474–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Roescher N, Tak PP, Illei GG. Cytokines in Sjögren’s syndrome: potential therapeutic targets. Ann Rheum Dis. 2010;69:945–8.

    Article  CAS  PubMed  Google Scholar 

  14. Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity. 2011;34:149–62.

    Article  CAS  PubMed  Google Scholar 

  15. Pérez P, Kwon YJ, Alliende C, et al. Increased acinar damage of salivary glands of patients with Sjögren’s syndrome is paralleled by simultaneous imbalance of matrix metalloproteinase 3/tissue inhibitor of metalloproteinases 1 and matrix metalloproteinase 9/tissue inhibitor of metalloprotein. Arthritis Rheum. 2005;52:2751–60.

    Article  PubMed  Google Scholar 

  16. Fogli LK, Sundrud MS, Goel S, et al. T cell-derived IL-17 mediates epithelial changes in the airway and drives pulmonary neutrophilia. J Immunol. 2013;191:3100–11.

    Article  CAS  PubMed  Google Scholar 

  17. Shi H, Cao N, Pu Y, Xie L, Zheng L, Yu C. Long non-coding RNA expression profile in minor salivary gland of primary Sjögren’s syndrome. Arthritis Res Ther. 2016;18:109.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fu J, Shi H, Wang B, et al. LncRNA PVT1 links Myc to glycolytic metabolism upon CD4+ T cell activation and Sjögren’s syndrome-like autoimmune response. J Autoimmun. 2020;107:102358.

    Article  CAS  PubMed  Google Scholar 

  19. Fu J, Pu Y, Wang B, et al. Pharmacological inhibition of glutaminase 1 normalized the metabolic state and CD4+ T cell response in Sjogren’s syndrome. J Immunol Res. 2022;1–13:2022.

    Google Scholar 

  20. Castrejón-Morales CY, Granados-Portillo O, Cruz-Bautista I, et al. Omega-3 and omega-6 fatty acids in primary Sjögren’s syndrome: clinical meaning and association with inflammation. Clin Exp Rheumatol. 2020;38(Suppl 1):34–9.

    PubMed  Google Scholar 

  21. Lu J, Guo Y, Lu Y, et al. Untargeted lipidomics reveals specific lipid abnormalities in Sjögren’s syndrome. Rheumatology (Oxford). 2021;60:1252–9.

    Article  CAS  PubMed  Google Scholar 

  22. Edgar R. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zeng D, Ye Z, Shen R, et al. IOBR: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front Immunol. 2021;12:1–9.

    Article  Google Scholar 

  24. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database hallmark gene set collection. Cell Syst. 2015;1:417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omi A J Integr Biol. 2012;16:284–7.

    Article  CAS  Google Scholar 

  27. Bruserud Ø. Effects of azoles on human acute myelogenous leukemia blasts and T lymphocytes derived from acute leukemia patients with chemotherapy-induced cytopenia. Int Immunopharmacol. 2001;1:2183–95.

    Article  CAS  PubMed  Google Scholar 

  28. Guide for the care and use of laboratory animals. National academies press, Washington, D.C., Washington (DC), 2011.

  29. Chisholm DM, Waterhouse JP, Mason DK. Lymphocytic sialadenitis in the major and minor glands: a correlation in postmortem subjects. J Clin Pathol. 1970;23:690–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gu F, Xu S, Zhang P, et al. CP-25 Alleviates experimental Sjögren’s syndrome features in NOD/Ltj mice and modulates T lymphocyte subsets. Basic Clin Pharmacol Toxicol. 2018;123:423–34.

    Article  CAS  PubMed  Google Scholar 

  31. Yin J, Zheng Z, Zeng X, et al. lncRNA MALAT1 mediates osteogenic differentiation of bone mesenchymal stem cells by sponging miR-129-5p. PeerJ. 2022;10:e13355.

    Article  PubMed  PubMed Central  Google Scholar 

  32. King RJ, Singh PK, Mehla K. The cholesterol pathway: impact on immunity and cancer. Trends Immunol. 2022;43:78–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bietz A, Zhu H, Xue M, Xu C. Cholesterol metabolism in T cells. Front Immunol. 2017;8:16–26.

    Article  Google Scholar 

  34. Yin J, Zeng X, Ai Z, Yu M, Wu Y, Li S. Construction and analysis of a lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in oral cancer. BMC Med Genomics. 2020;13:1–14.

    Article  Google Scholar 

  35. Zhao Y, Chen D, Yin J, Xie J, Sun C-Y, Lu M. Comprehensive analysis of tumor immune microenvironment characteristics for the prognostic prediction and immunotherapy of oral squamous cell carcinoma. Front Genet. 2022;13:788580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hubler Z, Allimuthu D, Bederman I, et al. Accumulation of 8,9-unsaturated sterols drives oligodendrocyte formation and remyelination. Nature. 2018;560:372–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li M-X, Yang Y, Zhao Q, et al. Degradation versus inhibition: development of proteolysis-targeting chimeras for overcoming statin-induced compensatory upregulation of 3-hydroxy-3-methylglutaryl coenzyme a reductase. J Med Chem. 2020;63:4908–28.

    Article  CAS  PubMed  Google Scholar 

  38. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66.

    Article  CAS  PubMed  Google Scholar 

  39. Lefever S, Anckaert J, Volders P-J, Luypaert M, Vandesompele J, Mestdagh P. DecodeRNA- predicting non-coding RNA functions using guilt-by-association. Database (Oxford) 2017, 2017.

  40. Khadirnaikar S, Narayanan SP, Shukla SK. Decoding the LncRNA transcriptome of esophageal cancer: identification of clinically relevant LncRNAs. Biomark Med. 2018;12:1083–93.

    Article  CAS  PubMed  Google Scholar 

  41. Guo S, Jian L, Tao K, Chen C, Yu H, Liu S. Novel breast-specific long non-coding RNA LINC00993 acts as a tumor suppressor in triple-negative breast cancer. Front Oncol. 2019;9:1325.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Matsuura S, Fujii-Kuriyama Y, Tashiro Y. Immunoelectron microscope localization of cytochrome P-450 on microsomes and other membrane structures of rat hepatocytes. J Cell Biol. 1978;78:503–19.

    Article  CAS  PubMed  Google Scholar 

  43. Bai LL, Chen H, Zhou P, Yu J. Identification of tumor necrosis factor-alpha (TNF-α) inhibitor in rheumatoid arthritis using network pharmacology and molecular docking. Front Pharmacol. 2021;12:1–12.

    Article  Google Scholar 

  44. Gnedenko OV, Kaluzhskiy LA, Mol’nar AA, et al. SPR-biosensor assay for analysis of small compounds interaction with human cytochrome P450 51A1 (CYP51A1). Biomed Khim. 2013;59(4):388–98. https://doi.org/10.18097/pbmc20135904388.

    Article  CAS  PubMed  Google Scholar 

  45. Song BL, Javitt NB, DeBose-Boyd RA. Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol. Cell Metab. 2005;1:179–89.

    Article  CAS  PubMed  Google Scholar 

  46. Hong WC, Amara SG. Membrane cholesterol modulates the outward facing conformation of the dopamine transporter and alters cocaine binding. J Biol Chem. 2010;285:32616–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Idowu JY, Hagenbuch B. Free cholesterol affects the function and localization of human Na(+)/taurocholate cotransporting polypeptide (NTCP) and organic cation transporter 1 (OCT1). Int J Mol Sci. 2022;23(15):8457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wilfahrt D, Philips RL, Lama J, et al. Histone deacetylase 3 represses cholesterol efflux during CD4(+) T-cell activation. Elife. 2021;10:e70978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Marty-Roix R, Vladimer GI, Pouliot K, et al. Identification of QS-21 as an inflammasome-activating molecular component of saponin adjuvants. J Biol Chem. 2016;291:1123–36.

    Article  CAS  PubMed  Google Scholar 

  50. Kidani Y, Elsaesser H, Hock MB, et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat Immunol. 2013;14:489–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cui G, Qin X, Wu L, et al. Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. J Clin Invest. 2011;121:658–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Webb LM, Sengupta S, Edell C, et al. Protein arginine methyltransferase 5 promotes cholesterol biosynthesis-mediated Th17 responses and autoimmunity. J Clin Invest. 2020;130:1683–98.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bensinger SJ, Bradley MN, Joseph SB, et al. LXR Signaling Couples Sterol Metabolism to Proliferation in the Acquired Immune Response. Cell. 2008;134:97–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Leichner GS, Avner R, Harats D, Roitelman J. Metabolically regulated endoplasmic reticulum-associated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase: evidence for requirement of a geranylgeranylated protein. J Biol Chem. 2011;286:32150–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Harding HP, Zhang Y, Khersonsky S, et al. Bioactive small molecules reveal antagonism between the integrated stress response and sterol-regulated gene expression. Cell Metab. 2005;2:361–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zheng M, Zhang Q, Joe Y, et al. Curcumin induces apoptotic cell death of activated human CD4 + T cells via increasing endoplasmic reticulum stress and mitochondrial dysfunction. Int Immunopharmacol. 2013;15:517–23.

    Article  CAS  PubMed  Google Scholar 

  57. Chang SH, Chung Y, Dong C. Vitamin D suppresses Th17 cytokine production by inducing C/EBP Homologous Protein (CHOP) expression. J Biol Chem. 2010;285:38751–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sarmanova A, Doherty M, Kuo C, et al. Erratum: statin use and risk of joint replacement due to osteoarthritis and rheumatoid arthritis: a propensity-score matched longitudinal cohort study. Rheumatology. 2020;59:3120. https://doi.org/10.1093/rheumatology/keaa223.

    Article  PubMed  Google Scholar 

  59. Li GM, Zhao J, Li B, Zhang XF, Ma JX, Ma XL, Liu J. The anti-inflammatory effects of statins on patients with rheumatoid arthritis: a systemic review and meta-analysis of 15 randomized controlled trials. Autoimmun Rev. 2018;17:215–25.

    Article  CAS  PubMed  Google Scholar 

  60. Chataway J, Schuerer N, Alsanousi A, et al. Eff ect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet. 2014;383:2213–21.

    Article  CAS  PubMed  Google Scholar 

  61. Bogie JFJ, Vanmierlo T, Vanmol J, et al. Liver X receptor beta deficiency attenuates autoimmune-associated neuroinflammation in a T cell-dependent manner. J Autoimmun. 2021;124:102723.

    Article  CAS  PubMed  Google Scholar 

  62. Berghoff SA, Gerndt N, Winchenbach J, et al. Dietary cholesterol promotes repair of demyelinated lesions in the adult brain. Nat Commun. 2017;8(1):1–15.

    Article  Google Scholar 

  63. Fessler MB. The intracellular cholesterol landscape: dynamic integrator of the immune response. Trends Immunol. 2016;37:819–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pawelec G, Ehninger G, Rehbein A, Schaudt K, Jaschonek K. Comparison of the immunosuppressive activities of the antimycotic agents itraconazole, fluconazole, ketoconazole and miconazole on human T-cells. Int J Immunopharmacol. 1991;13:299–304.

    Article  CAS  PubMed  Google Scholar 

  65. Friccius H, Pohla H, Adibzadeh M, Siegels-Hübenthal P, Schenk A, Pawelec G. The effects of the antifungal azoles itraconazole, fluconazole, ketoconazole and miconazole on cytokine gene expression in human lymphoid cells. Int J Immunopharmacol. 1992;14:791–9.

    Article  CAS  PubMed  Google Scholar 

  66. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4+ T cell populations. Annu Rev Immunol. 2010;28:445–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bietz A, Zhu H, Xue M, Xu C. Cholesterol metabolism in T cells. Front Immunol. 2017;8:1–8.

    Article  Google Scholar 

  68. Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H. MTORC1 couples immune signals and metabolic programming to establish T reg-cell function. Nature. 2013;499:485–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Thurnher M, Gruenbacher G. T lymphocyte regulation by mevalonate metabolism. Sci Signal. 2015;8:1–10.

    Article  CAS  Google Scholar 

  70. Santori FR, Huang P, van de Pavert SA, et al. Identification of natural RORγ ligands that regulate the development of lymphoid cells. Cell Metab. 2015;21:286–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hu X, Wang Y, Hao L-Y, et al. Sterol metabolism controls TH17 differentiation by generating endogenous RORγ agonists. Nat Chem Biol. 2015;11:141–7.

    Article  CAS  PubMed  Google Scholar 

  72. Moon YA. The SCAP/SREBP pathway: a mediator of hepatic steatosis. Endocrinol Metab. 2017;32:6–10.

    Article  CAS  Google Scholar 

  73. Chong CR, Xu J, Lu J, Bhat S, Sullivan DJ, Liu JO. Inhibition of angiogenesis by the antifungal drug itraconazole. ACS Chem Biol. 2007;2:263–70.

    Article  CAS  PubMed  Google Scholar 

  74. Liu J, Tian Y, Ding Y, Heng D, Xu K, Liu W, Zhang C. Role of CYP51 in the regulation of T3 and FSH-induced steroidogenesis in female mice. Endocrinology. 2017;158:3974–87.

    Article  CAS  PubMed  Google Scholar 

  75. Van Nistelrooy JGM, Van Den Brink JM, Van Kan JAL, Van Gorcom RFM, De Waard MA. Isolation and molecular characterisation of the gene encoding eburicol 14α-demethylase (CYP51) from Penicillium italicum. Mol Gen Genet. 1996;250:725–33.

    PubMed  Google Scholar 

  76. Rozman D, Strömstedt M, Tsui LC, Scherer SW, Waterman MR. Structure and mapping of the human lanosterol 14α-demethylase gene (CYP51) encoding the cytochrome p450 involved in cholesterol biosynthesis; comparison of exon/intron organization with other mammalian and fungal CYP genes. Genomics. 1996;38:371–81.

    Article  CAS  PubMed  Google Scholar 

  77. Strömstedt M, Rozman D, Waterman MR. The ubiquitously expressed human CYP51 encodes lanosterol 14α-demethylase, a cytochrome P450 whose expression is regulated by oxysterols. Arch Biochem Biophys. 1996;329:73–81.

    Article  PubMed  Google Scholar 

  78. Kanda N. Antimycotics suppress interleukin-4 and interleukin-5 production in anti-CD3 plus anti-CD28-stimulated T cells from patients with atopic dermatitis. Japanese J Med Mycol. 2004;45:137–42.

    Article  CAS  Google Scholar 

  79. Gong X, Qian H, Zhou X, et al. Structural insights into the Niemann-Pick C1 (NPC1)-mediated cholesterol transfer and Ebola Infection. Cell. 2016;165:1467–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hu M, Yang F, Huang Y, You X, Liu D, Sun S, Sui S-F. Structural insights into the mechanism of human NPC1L1-mediated cholesterol uptake. Sci Adv. 2021;7(29):eabg3188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Faust PL, Kovacs WJ. Cholesterol biosynthesis and ER stress in peroxisome deficiency. Biochimie. 2014;98:75–85.

    Article  CAS  PubMed  Google Scholar 

  82. Kovacs WJ, Tape KN, Shackelford JE, et al. Peroxisome deficiency causes a complex phenotype because of hepatic SREBP/insig dysregulation associated with endoplasmic reticulum stress. J Biol Chem. 2009;284:7232–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Huang B. Song B liang and Xu C: cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nat Metab. 2020;2:132–41.

    Article  PubMed  Google Scholar 

  84. De Giorgi M, Jarrett KE, Burton JC, et al. Depletion of essential isoprenoids and ER stress induction following acute liver-specific deletion of HMG-CoA reductase. J Lipid Res. 2020;61:1675–86.

    Article  PubMed Central  Google Scholar 

  85. Nam G-H, Kwon M, Jung H, et al. Statin-mediated inhibition of RAS prenylation activates ER stress to enhance the immunogenicity of KRAS mutant cancer. J Immunother cancer. 2021;9(7):e002474.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lorbek G, Perše M, Jeruc J, et al. Lessons from hepatocyte-specific Cyp51 knockout mice: impaired cholesterol synthesis leads to oval cell-driven liver injury. Sci Rep. 2015;5:1–11.

    Article  Google Scholar 

  87. Holcik M, Sonenberg N. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol. 2005;6:318–27.

    Article  CAS  PubMed  Google Scholar 

  88. Hinnebusch AG, Lorsch JR. The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb Perspect Biol. 2012;4:1–25.

    Article  Google Scholar 

  89. Wang L, Zeng X, Ryoo HD, Jasper H. Integration of UPRER and oxidative stress signaling in the control of intestinal stem cell proliferation. PLoS Genet. 2014;10(8):e1004568.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, Carter TA, Olwin BB. P38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med. 2014;20:265–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xiong G, Hindi SM, Mann AK, et al. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. Elife. 2017;6:1–27.

    Article  Google Scholar 

  92. Smith M, Wilkinson S. ER homeostasis and autophagy. Essays Biochem. 2017;61:625–35.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mennerich D, Kellokumpu S, Kietzmann T. Hypoxia and reactive oxygen species as modulators of endoplasmic reticulum and golgi homeostasis. Antioxidants Redox Signal. 2019;30:113–37.

    Article  CAS  Google Scholar 

  94. Feelders RA, Newell-Price J, Pivonello R, Nieman LK, Hofland LJ, Lacroix A. Advances in the medical treatment of Cushing’s syndrome. Lancet Diabetes Endocrinol. 2019;7:300–12.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The flow cytometry and confocal analysis were performed in Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine. We are grateful for the contributions of their professional assistant. We would like to express our gratitude to EditSprings (https://www.editsprings.cn/) for the expert linguistic services provided.

Funding

This research was funded by the National Natural Science Foundation of China (Grants No. 82001064, 82201086, 82170976, 81970951); Yangfan program of Shanghai Science and Technology Committee (22YF1422100); Fundamental research program funding of Ninth People’s Hospital affiliated to Shanghai Jiao Tong university School of Medicine (JYZZ132); Biological sample bank project of Ninth People’s Hospital Affiliated to Shanghai Jiao Tong university School of Medicine (YBKB202107); The Cross project of Shanghai Ninth people’s hospital affiliated to Shanghai Jiaotong University of Medicine and Shanghai Science and Technology University (JYJC202126); The 15th undergraduate training program for innovation of Shanghai Jiaotong University School of medicine (1521Y591); and the Shanghai Summit & Plateau Disciplines.

Author information

Authors and Affiliations

Authors

Contributions

Junhao Yin has a substantial contribution to the conception and design of this study, acquisition of experimental data, analysis of data, formal analysis and draft of the article. Jiayao Fu contributes to interpretation of data and paper writing. Yanxiong Shao contributes to methology. Jiabao Xu contributes to experimental validation and data curation. Hui Li contributes to experimental validation. Changyu Chen contributes to paper writing. Yijie Zhao and Zhanglong Zheng contribute to analysis of data. Chuangqi Yu has a substantial to design of the study. Lingyan Zheng and Baoli Wang have a substantial contribution to revise the article critically for important intellectual content and final approval of the version to be published. All authors read and approved the manuscript for submission.

Corresponding authors

Correspondence to Lingyan Zheng or Baoli Wang.

Ethics declarations

Conflict of interests

The authors declare no potential conflicts of interest.

Ethical approval

The study was conducted according to the guidelines of the Declaration of Helsinki and was approved by the Ethics Committee of the Shanghai Ninth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine (Approval sequence: SH9H-2019-T159-2 and SH9H-2021-TK69-1).”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 10 KB)

Supplementary file2 (XLSX 6067 KB)

Supplementary file3 (XLSX 420 KB)

10238_2022_939_MOESM4_ESM.tif

Additional file 4. Apoptosis evaluation of unactivated CD4+T cells treated with different concentration of KTC.(TIF 1339 KB)

10238_2022_939_MOESM5_ESM.tif

Additional file 5. Long-term treatment of KTC attenuates the symptoms of disease in SS-like NOD/ShiLtj mice. (A) Representative H&E staining of salivary gland tissues of the indicated groups. (B) Lymphocyte infiltration score of the indicated groups. Asterisk indicates P<0.05, double asterisks indicate P<0.01 vs. controlAdditional file 5. Long-term treatment of KTC attenuates the symptoms of disease in SS-like NOD/ShiLtj mice. (A) Representative H&E staining of salivary gland tissues of the indicated groups. (B) Lymphocyte infiltration score of the indicated groups. Asterisk indicates P<0.05, double asterisks indicate P<0.01 vs. control (TIF 3297 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Fu, J., Shao, Y. et al. CYP51-mediated cholesterol biosynthesis is required for the proliferation of CD4+ T cells in Sjogren’s syndrome. Clin Exp Med 23, 1691–1711 (2023). https://doi.org/10.1007/s10238-022-00939-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-022-00939-5

Keywords

Navigation