Skip to main content

Advertisement

Log in

Adverse events of immune checkpoint inhibitors in hepatocellular carcinoma: a systemic review and meta-analysis

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

The introduction of immune checkpoint inhibitors (ICIs) has reshaped the therapy of hepatocellular carcinoma (HCC). ICIs are a novel therapy with frequent adverse events (AEs), including treatment-related adverse events (trAEs) and immune-related adverse events (irAEs). However, no comprehensive overview of the toxicity spectrum of ICIs in HCC patients has been provided. Electronic databases were searched to identify eligible studies. A meta-analysis of the incidence rate of AEs in HCC patients treated with ICIs was performed. Lastly, the prognostic value of irAEs in HCC patients treated with ICIs was verified. Forty-seven studies with 6472 participations met the inclusion criteria. The pooled all-grade trAEs incidence rate was 83.4% (95% confidence interval [95% CI] 77.0–89.1%), ≥ grade 3 trAEs incidence rate was 33.0% (95% CI 26.9–39.5%), all-grade irAEs incidence rate was 34% (95% CI 22–47%), and ≥ grade 3 irAEs incidence rate was 9% (95% CI 5–14%). Aspartate aminotransferase (AST) increase (38%, 95% CI 35–40%) is the most common trAEs. Fatigue (14%, 95% CI 7–23%) is the most common irAEs. The pooled results also showed that 18.8% (95% CI 13.2–25.2%) of patients required systemic steroid therapy due to AEs, while 6.6% (95% CI 4.6–9.0%) of patients withdrew from treatment due to AEs. Additionally, patients experiencing irAEs may have a better progression-free survival (PFS) (multivariate analysis: hazard ratio [HR] = 0.41, 95% CI 0.27–0.61, I2 = 36.3%) but not overall survival (OS) (multivariate analysis: HR = 0.54, 95% CI 0.22–1.36, I2 = 83.2%) than those with no irAEs. Our study presents a systemic assessment of the AEs profile in HCC patients receiving ICIs, providing important reference for clinicians on toxicity profile. Besides, patients with irAEs may have a better PFS. More large-scale and prospective studies are needed to confirm our conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

ICIs:

Immune checkpoint inhibitors

HCC:

Hepatocellular carcinoma

AEs:

Adverse events

trAEs:

Treatment-related adverse events

irAEs:

Immune-related adverse events

95% CI:

95% Confidence interval

HR:

Hazard ratio

AST:

Aspartate aminotransferase

PFS:

Progression-free survival

OS:

Overall survival

aHCC:

Advanced hepatocellular carcinoma

PD-1:

Programmed cell death-1

PD-L1:

Programmed cell death ligand-1

CTLA-4:

Cytotoxic T lymphocyte-associated protein-4

VEGF:

Vascular endothelial growth factor

NSCLC:

Non-small cell lung carcinoma

RCT:

Randomized control trial

ORR:

Objective response rate

DCR:

Disease control rate

RECIST:

Response evaluation criteria in solid tumors

mRECIST:

Modified response evaluation criteria in solid tumors

CTCAE:

Common terminology criteria for adverse events

ALT:

Alanine aminotransferase

ECOG:

Eastern Cooperative Oncology Group

Tregs:

Regulatory T cells

Th1:

CD4 + helper T cells 1

IL-6/17:

Interleukin-6/17

Th-17:

T helper cell 17

HPD:

Hyperprogressive disease

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Verset G, Borbath I, Karwal M, et al. Pembrolizumab monotherapy for previously untreated advanced hepatocellular carcinoma: data from the open-label, phase II KEYNOTE-224 trial. Clin Cancer Res. 2022;28:2547–54. https://doi.org/10.1158/1078-0432.CCR-21-3807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhou M, Liu B, Shen J. Immunotherapy for hepatocellular carcinoma. Clin Exp Med. 2022. https://doi.org/10.1007/s10238-022-00874-5.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fessas P, Kaseb A, Wang Y, et al. Post-registration experience of nivolumab in advanced hepatocellular carcinoma: an international study. J Immunother Cancer. 2020. https://doi.org/10.1136/jitc-2020-001033.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rizzo A, Ricci AD, Gadaleta-Caldarola G, Brandi G. First-line immune checkpoint inhibitor-based combinations in unresectable hepatocellular carcinoma: current management and future challenges. Expert Rev Gastroenterol Hepatol. 2021;15:1245–51. https://doi.org/10.1080/17474124.2021.1973431.

    Article  CAS  PubMed  Google Scholar 

  6. Rizzo A, Ricci AD, Di Federico A, Frega G, Palloni A, Tavolari S, Brandi G. Predictive biomarkers for checkpoint inhibitor-based immunotherapy in hepatocellular carcinoma: Where do we stand? Front Oncol. 2021;11: 803133. https://doi.org/10.3389/fonc.2021.803133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gordan JD, Kennedy EB, Abou-Alfa GK, et al. Systemic therapy for advanced hepatocellular carcinoma: ASCO guideline. J Clin Oncol. 2020;38:4317–45. https://doi.org/10.1200/jco.20.02672.

    Article  CAS  PubMed  Google Scholar 

  8. Liu HT, Jiang MJ, Deng ZJ, Li L, Huang JL, Liu ZX, Li LQ, Zhong JH. Immune checkpoint inhibitors in hepatocellular carcinoma: current progresses and challenges. Front Oncol. 2021;11: 737497. https://doi.org/10.3389/fonc.2021.737497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sangro B, Chan SL, Meyer T, Reig M, El-Khoueiry A, Galle PR. Diagnosis and management of toxicities of immune checkpoint inhibitors in hepatocellular carcinoma. J Hepatol. 2020;72:320–41. https://doi.org/10.1016/j.jhep.2019.10.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378:158–68. https://doi.org/10.1056/NEJMra1703481.

    Article  CAS  PubMed  Google Scholar 

  11. De Velasco G, Je Y, Bosse D, et al. Comprehensive meta-analysis of key immune-related adverse events from CTLA-4 and PD-1/PD-L1 inhibitors in cancer patients. Cancer Immunol Res. 2017;5:312–8. https://doi.org/10.1158/2326-6066.CIR-16-0237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kfoury M, Najean M, Lappara A, et al. Analysis of the association between prospectively collected immune-related adverse events and survival in patients with solid tumor treated with immune-checkpoint blockers, taking into account immortal-time bias. Cancer Treat Rev. 2022;110: 102452. https://doi.org/10.1016/j.ctrv.2022.102452.

    Article  CAS  PubMed  Google Scholar 

  13. Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, Tierney JF. Preferred reporting items for a systematic review and meta-analysis of individual participant data. JAMA. 2015. https://doi.org/10.1001/jama.2015.3656.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5. https://doi.org/10.1007/s10654-010-9491-z.

    Article  PubMed  Google Scholar 

  15. Sterne JAC, Savovic J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366: l4898. https://doi.org/10.1136/bmj.l4898.

    Article  PubMed  Google Scholar 

  16. Wu Z, Chen Q, Qu L, et al. Adverse events of immune checkpoint inhibitors therapy for urologic cancer patients in clinical trials: a collaborative systematic review and meta-analysis. Eur Urol. 2022;81:414–25. https://doi.org/10.1016/j.eururo.2022.01.028.

    Article  CAS  PubMed  Google Scholar 

  17. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (minors): development and validation of a new instrument. Anz J Surg. 2003;73:712–6. https://doi.org/10.1046/j.1445-2197.2003.02748.x.

    Article  PubMed  Google Scholar 

  18. Nyaga VN, Arbyn M, Aerts M. Metaprop: a Stata command to perform meta-analysis of binomial data. Arch Public Health. 2014;72:39. https://doi.org/10.1186/2049-3258-72-39.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cheng AL, Qin S, Ikeda M, et al. Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J Hepatol. 2022;76:862–73. https://doi.org/10.1016/j.jhep.2021.11.030.

    Article  CAS  PubMed  Google Scholar 

  20. D’Alessio A, Fulgenzi CAM, Nishida N, et al. Preliminary evidence of safety and tolerability of atezolizumab plus bevacizumab in patients with hepatocellular carcinoma and Child-Pugh A and B cirrhosis: a real-world study. Hepatology. 2022. https://doi.org/10.1002/hep.32468.

    Article  PubMed  Google Scholar 

  21. El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet (No Pagination). 2017. https://doi.org/10.1016/S0140-6736%2817%2931046-2.

    Article  Google Scholar 

  22. Finn RS, Ikeda M, Zhu AX, et al. Phase Ib study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma. J Clin Oncol. 2020;38:2960–70. https://doi.org/10.1200/jco.20.00808.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Finn RS, Ryoo BY, Merle P, et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. J Clin Oncol. 2020;38:193–202. https://doi.org/10.1200/JCO.19.01307.

    Article  CAS  PubMed  Google Scholar 

  24. Han C, Ye S, Hu C, et al. Clinical activity and safety of penpulimab (anti-PD-1) with anlotinib as first-line therapy for unresectable hepatocellular carcinoma: an open-label, multicenter, phase Ib/II trial (AK105-203). Front Oncol. 2021;11: 684867. https://doi.org/10.3389/fonc.2021.684867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kelley RK, Sangro B, Harris W, et al. Safety, efficacy, and pharmacodynamics of tremelimumab plus durvalumab for patients with unresectable hepatocellular carcinoma: randomized expansion of a phase I/II study. J Clin Oncol: Offic J Am Soc Clin Oncol. 2021;39:2991–3001. https://doi.org/10.1200/JCO.20.03555.

    Article  CAS  Google Scholar 

  26. Kudo M, Matilla A, Santoro A, et al. CheckMate 040 cohort 5: a phase I/II study of nivolumab in patients with advanced hepatocellular carcinoma and Child-Pugh B cirrhosis. J Hepatol. 2021;75:600–9. https://doi.org/10.1016/j.jhep.2021.04.047.

    Article  CAS  PubMed  Google Scholar 

  27. Kuo YH, Yen YH, Chen YY, Kee KM, Hung CH, Lu SN, Hu TH, Chen CH, Wang JH. Nivolumab versus regorafenib in patients with hepatocellular carcinoma after sorafenib failure. Front Oncol. 2021;11: 683341. https://doi.org/10.3389/fonc.2021.683341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee MS, Ryoo BY, Hsu CH, et al. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): an open-label, multicentre, phase 1b study. Lancet Oncol. 2020;21:808–20. https://doi.org/10.1016/S1470-2045(20)30156-X.

    Article  CAS  PubMed  Google Scholar 

  29. Li H, Qin S, Liu Y, et al. Camrelizumab combined with FOLFOX4 regimen as first-line therapy for advanced hepatocellular carcinomas: a sub-cohort of a multicenter phase Ib/II study. Drug Des Devel Ther. 2021;15:1873–82. https://doi.org/10.2147/dddt.S304857.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Monge C, Xie C, Steinberg SM, Greten TF. Clinical indicators for long-term survival with immune checkpoint therapy in advanced hepatocellular carcinoma. J Hepatocell Carcinoma. 2021;8:507–12. https://doi.org/10.2147/jhc.S311496.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Qin S, Ren Z, Meng Z, et al. Camrelizumab in patients with previously treated advanced hepatocellular carcinoma: a multicentre, open-label, parallel-group, randomised, phase 2 trial. Lancet Oncol. 2020;21:571–80. https://doi.org/10.1016/S1470-2045(20)30011-5.

    Article  CAS  PubMed  Google Scholar 

  32. Ren Z, Xu J, Bai Y, et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2–3 study. Lancet Oncol. 2021;22:977–90. https://doi.org/10.1016/S1470-2045(21)00252-7.

    Article  CAS  PubMed  Google Scholar 

  33. Tai D, Loke K, Gogna A, et al. Radioembolisation with Y90-resin microspheres followed by nivolumab for advanced hepatocellular carcinoma (CA 209–678): a single arm, single centre, phase 2 trial. Lancet Gastroenterol Hepatol. 2021;6:1025–35. https://doi.org/10.1016/S2468-1253(21)00305-8.

    Article  PubMed  Google Scholar 

  34. Teng Y, Ding X, Li W, Sun W, Chen J. A retrospective study on therapeutic efficacy of transarterial chemoembolization combined with immune checkpoint inhibitors plus lenvatinib in patients with unresectable hepatocellular carcinoma. Technol Cancer Res Treat. 2022;21:15330338221075174. https://doi.org/10.1177/15330338221075174.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu JY, Yin ZY, Bai YN, et al. Lenvatinib combined with anti-PD-1 antibodies plus transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma: a multicenter retrospective study. J Hepatocell Carcinoma. 2021;8:1233–40. https://doi.org/10.2147/jhc.S332420.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xu J, Shen J, Gu S, et al. Camrelizumab in combination with apatinib in patients with advanced hepatocellular carcinoma (RESCUE): a nonrandomized, open-label, phase II trial. Clin Cancer Res. 2021;27:1003–11. https://doi.org/10.1158/1078-0432.Ccr-20-2571.

    Article  CAS  PubMed  Google Scholar 

  37. Yang F, Yang J, Xiang W, et al. Safety and efficacy of transarterial chemoembolization combined with immune checkpoint inhibitors and tyrosine kinase inhibitors for hepatocellular carcinoma. Front Oncol. 2021;11: 657512. https://doi.org/10.3389/fonc.2021.657512.

    Article  CAS  PubMed  Google Scholar 

  38. Yau T, Kang YK, Kim TY, et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: the CheckMate 040 randomized clinical trial. JAMA Oncol. 2020;6: e204564. https://doi.org/10.1001/jamaoncol.2020.4564.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yau T, Park JW, Finn RS, et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022;23:77–90. https://doi.org/10.1016/S1470-2045(21)00604-5.

    Article  CAS  PubMed  Google Scholar 

  40. Zhu AX, Finn RS, Edeline J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19:940–52. https://doi.org/10.1016/S1470-2045(18)30351-6.

    Article  PubMed  Google Scholar 

  41. Chon YE, Cheon J, Kim H, Kang B, Ha Y, Kim DY, Hwang SG, Chon HJ, Kim BK. Predictive biomarkers of survival in patients with advanced hepatocellular carcinoma receiving atezolizumab plus bevacizumab treatment. Cancer Med. 2022. https://doi.org/10.1002/cam4.5161.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chuma M, Uojima H, Hattori N, et al. Safety and efficacy of atezolizumab plus bevacizumab in patients with unresectable hepatocellular carcinoma in early clinical practice: a multicenter analysis. Hepatol Res. 2022;52:269–80. https://doi.org/10.1111/hepr.13732.

    Article  CAS  PubMed  Google Scholar 

  43. Himmelsbach V, Pinter M, Scheiner B, et al. Efficacy and Safety of Atezolizumab and Bevacizumab in the Real-World Treatment of Advanced Hepatocellular Carcinoma: Experience from Four Tertiary Centers. Cancers (Basel). 2022. https://doi.org/10.3390/cancers14071722.

    Article  PubMed  Google Scholar 

  44. Huang J, Guo Y, Huang W, et al. Regorafenib combined with PD-1 blockade immunotherapy versus regorafenib as second-line treatment for advanced hepatocellular carcinoma: a multicenter retrospective study. J Hepatocell Carcinoma. 2022;9:157–70. https://doi.org/10.2147/jhc.S353956.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Iwamoto H, Shimose S, Noda Y, et al. Initial experience of atezolizumab plus bevacizumab for unresectable hepatocellular carcinoma in real-world clinical practice. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13112786.

    Article  PubMed  Google Scholar 

  46. Kelley RK, Rimassa L, Cheng AL, et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2022;23:995–1008. https://doi.org/10.1016/s1470-2045(22)00326-6.

    Article  CAS  PubMed  Google Scholar 

  47. Kim BK, Cheon J, Kim H, Kang B, Ha Y, Kim DY, Hwang SG, Chon YE, Chon HJ (2022) Atezolizumab/bevacizumab vs. lenvatinib as first-line therapy for unresectable hepatocellular carcinoma: a real-world, multi-center study. Cancers (Basel). https://doi.org/10.3390/cancers14071747

  48. Lai Z, He M, Bu X, et al. Lenvatinib, toripalimab plus hepatic arterial infusion chemotherapy in patients with high-risk advanced hepatocellular carcinoma: a biomolecular exploratory, phase II trial. Eur J Cancer. 2022;174:68–77. https://doi.org/10.1016/j.ejca.2022.07.005.

    Article  CAS  PubMed  Google Scholar 

  49. Maesaka K, Sakamori R, Yamada R, et al. Comparison of atezolizumab plus bevacizumab and lenvatinib in terms of efficacy and safety as primary systemic chemotherapy for hepatocellular carcinoma. Hepatol Res. 2022;52:630–40. https://doi.org/10.1111/hepr.13771.

    Article  CAS  PubMed  Google Scholar 

  50. Ng KYY, Wong LWJ, Ang AJS, Tan SH, Choo SP, Tai DW, Lee JJX. Real-world efficacy and safety of immune checkpoint inhibitors in advanced hepatocellular carcinoma: experience of a tertiary Asian Center. Asia Pac J Clin Oncol. 2021;17:e249–61. https://doi.org/10.1111/ajco.13454.

    Article  PubMed  Google Scholar 

  51. Vithayathil M, D’Alessio A, Fulgenzi CAM, et al. Impact of older age in patients receiving atezolizumab and bevacizumab for hepatocellular carcinoma. Liver Int. 2022. https://doi.org/10.1111/liv.15405.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang JH, Chen YY, Kee KM, et al. The prognostic value of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in patients with hepatocellular carcinoma receiving atezolizumab plus bevacizumab. Cancers (Basel). 2022. https://doi.org/10.3390/cancers14020343.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Xin Y, Cao F, Yang H, Zhang X, Chen Y, Cao X, Zhou X, Li X, Zhou J. Efficacy and safety of atezolizumab plus bevacizumab combined with hepatic arterial infusion chemotherapy for advanced hepatocellular carcinoma. Front Immunol. 2022;13: 929141. https://doi.org/10.3389/fimmu.2022.929141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yao J, Zhu X, Wu Z, et al. Efficacy and safety of PD-1 inhibitor combined with antiangiogenic therapy for unresectable hepatocellular carcinoma: a multicenter retrospective study. Cancer Med. 2022. https://doi.org/10.1002/cam4.4747.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang JX, Chen YX, Zhou CG, Liu J, Liu S, Shi HB, Zu QQ. Efficacy and safety of the combination of transarterial chemoembolization with camrelizumab plus apatinib for advanced hepatocellular carcinoma: a retrospective study of 38 patients from a single center. Can J Gastroenterol Hepatol. 2022;2022:7982118. https://doi.org/10.1155/2022/7982118.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhao L, Chang N, Shi L, Li F, Meng F, Xie X, Xu Z, Wang F. Lenvatinib plus sintilimab versus lenvatinib monotherapy as first-line treatment for advanced HBV-related hepatocellular carcinoma: a retrospective, real-world study. Heliyon. 2022;8: e09538. https://doi.org/10.1016/j.heliyon.2022.e09538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zou J, Huang P, Ge N, Xu X, Wang Y, Zhang L, Chen Y. Anti-PD-1 antibodies plus lenvatinib in patients with unresectable hepatocellular carcinoma who progressed on lenvatinib: a retrospective cohort study of real-world patients. J Gastrointest Oncol. 2022;13:1898–906. https://doi.org/10.21037/jgo-22-643.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hsu WF, Chuang PH, Chen CK, et al. Predictors of response and survival in patients with unresectable hepatocellular carcinoma treated with nivolumab: real-world experience. Am J Cancer Res. 2020;10:4547–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu L, Xing K, Wei W, et al. Immune-related adverse events predict responses to PD-1 blockade immunotherapy in hepatocellular carcinoma. Int J Cancer. 2021. https://doi.org/10.1002/ijc.33609.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ng KYY, Tan SH, Tan JJE, et al. Impact of immune-related adverse events on efficacy of immune checkpoint inhibitors in patients with advanced hepatocellular carcinoma. Liver Cancer. 2022;11:9–21. https://doi.org/10.1159/000518619.

    Article  CAS  PubMed  Google Scholar 

  61. Pinato DJ, Marron TU, Mishra-Kalyani PS, et al. Treatment-related toxicity and improved outcome from immunotherapy in hepatocellular cancer: evidence from an FDA pooled analysis of landmark clinical trials with validation from routine practice. Eur J Cancer. 2021;157:140–52. https://doi.org/10.1016/j.ejca.2021.08.020.

    Article  CAS  PubMed  Google Scholar 

  62. Wang F, Qin S, Sun X, et al. Reactive cutaneous capillary endothelial proliferation in advanced hepatocellular carcinoma patients treated with camrelizumab: data derived from a multicenter phase 2 trial. J Hematol Oncol. 2020;13:47. https://doi.org/10.1186/s13045-020-00886-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu S, Lai R, Zhao Q, Zhao P, Zhao R, Guo Z. Correlation between immune-related adverse events and prognosis in hepatocellular carcinoma patients treated with immune checkpoint inhibitors. Front Immunol. 2021;12: 794099. https://doi.org/10.3389/fimmu.2021.794099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7:6. https://doi.org/10.1038/s41572-020-00240-3.

    Article  PubMed  Google Scholar 

  65. Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. Hepatocellular carcinoma. Lancet. 2022;400:1345–62. https://doi.org/10.1016/s0140-6736(22)01200-4.

    Article  CAS  PubMed  Google Scholar 

  66. D’Alessio A, Fulgenzi CAM, Nishida N, et al. Preliminary evidence of safety and tolerability of atezolizumab plus bevacizumab in patients with hepatocellular carcinoma and Child-Pugh A and B cirrhosis: a real-world study. Hepatology. 2022;76:1000–12. https://doi.org/10.1002/hep.32468.

    Article  CAS  PubMed  Google Scholar 

  67. Wang Y, Zhou S, Yang F, et al. Treatment-related adverse events of PD-1 and PD-L1 inhibitors in clinical trials: a systematic review and meta-analysis. JAMA Oncol. 2019;5:1008–19. https://doi.org/10.1001/jamaoncol.2019.0393.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Peeraphatdit TB, Wang J, Odenwald MA, Hu S, Hart J, Charlton MR. Hepatotoxicity from immune checkpoint inhibitors: a systematic review and management recommendation. Hepatology. 2020;72:315–29. https://doi.org/10.1002/hep.31227.

    Article  PubMed  Google Scholar 

  69. Finn RS, Ryoo BY, Merle P, et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind. Phase III trial. J Clin Oncol. 2020;38:193–202. https://doi.org/10.1200/JCO.19.01307.

    Article  CAS  PubMed  Google Scholar 

  70. Cui TM, Liu Y, Wang JB, Liu LX. Adverse effects of immune-checkpoint inhibitors in hepatocellular carcinoma. Onco Targets Ther. 2020;13:11725–40. https://doi.org/10.2147/OTT.S279858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dolladille C, Ederhy S, Sassier M, et al. Immune checkpoint inhibitor rechallenge after immune-related adverse events in patients with cancer. JAMA Oncol. 2020;6:865–71. https://doi.org/10.1001/jamaoncol.2020.0726.

    Article  PubMed  Google Scholar 

  72. Robert C, Hwu W-J, Hamid O, et al. Long-term safety of pembrolizumab monotherapy and relationship with clinical outcome: a landmark analysis in patients with advanced melanoma. Eur J Cancer. 2021;144:182–91. https://doi.org/10.1016/j.ejca.2020.11.010.

    Article  CAS  PubMed  Google Scholar 

  73. Xu Y, Fu Y, Zhu B, Wang J, Zhang B. Predictive biomarkers of immune checkpoint inhibitors-related toxicities. Front Immunol. 2020;11:2023. https://doi.org/10.3389/fimmu.2020.02023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Goswami S, Siddiqui BA, Subudhi SK, Basu S, Yadav SS, Diab A, Sharma P. A composite T cell biomarker in pre-treatment blood samples correlates with detection of immune-related adverse events. Cancer Cell. 2022;40:249–51. https://doi.org/10.1016/j.ccell.2022.02.015.

    Article  CAS  PubMed  Google Scholar 

  75. Hailemichael Y, Johnson DH, Abdel-Wahab N, et al. Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell. 2022;40(509–23): e6. https://doi.org/10.1016/j.ccell.2022.04.004.

    Article  CAS  Google Scholar 

  76. Ferrara R, Mezquita L, Texier M, et al. Hyperprogressive disease in patients with advanced non-small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy. JAMA Oncol. 2018;4:1543–52. https://doi.org/10.1001/jamaoncol.2018.3676.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhou X, Yao Z, Yang H, Liang N, Zhang X, Zhang F. Are immune-related adverse events associated with the efficacy of immune checkpoint inhibitors in patients with cancer? A systematic review and meta-analysis. BMC Med. 2020;18:87. https://doi.org/10.1186/s12916-020-01549-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fujii T, Colen RR, Bilen MA, et al. Incidence of immune-related adverse events and its association with treatment outcomes: the MD Anderson Cancer Center experience. Invest New Drugs. 2018;36:638–46. https://doi.org/10.1007/s10637-017-0534-0.

    Article  CAS  PubMed  Google Scholar 

  79. Chen J, Zhang D, Yuan Y. Anti-PD-1/PD-L1 immunotherapy in conversion treatment of locally advanced hepatocellular carcinoma. Clin Exp Med. 2022. https://doi.org/10.1007/s10238-022-00873-6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the grants from the Taishan Scholars Program of Shandong Province, National Natural Science Foundation of China (Grant Nos. 82073200, 81874178), major basic research of Shandong Provincial Natural Science Foundation (Grant No. ZR202105070027), and funds for Independent Cultivation of Innovative Team from Universities in Jinan (Grant No. 2020GXRC023).

Author information

Authors and Affiliations

Authors

Contributions

JCT, HL, and TL designed the study; JCT, LJY, and ZND contributed to data search from databases; HL, LJY, and ZND formulated inclusion criteria; JCT, HL, JSX, XCM, and YCY selected eligible studies; JCT, CLH, BWT, SYT, ZRD, DXW, XCM, and YCY acquired, analyzed, or interpreted data; JCT and HL assessed study quality and wrote the manuscript; TL resolved differences and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jin-Cheng Tian and Hui Liu have contributed equally to this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 352 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, JC., Liu, H., Yan, LJ. et al. Adverse events of immune checkpoint inhibitors in hepatocellular carcinoma: a systemic review and meta-analysis. Clin Exp Med 23, 2115–2129 (2023). https://doi.org/10.1007/s10238-022-00938-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-022-00938-6

Keywords

Navigation