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Abstract
Immunoglobulin A (Chan in J Allergy Clin Immunol 134:1394–14014e4, 2014), the second most abundant immunoglobulin 
in serum, plays an important role in mucosal homeostasis. In human serum, there are two subclasses of IgA, IgA1 (≅ 90%) 
and IgA2 (≅ 10%), transcribed from two distinct heavy chain constant regions. This study evaluated the serum concentra-
tions of total IgA, IgA1, and IgA2, and total IgG, IgG1, IgG2, IgG3, and IgG4 in T2-high asthmatics compared to healthy 
controls and the presence of gender-related variations of immunoglobulins. Total IgA levels were increased in asthmatics 
compared to controls. Even more marked was the increase in total IgA in male asthmatics compared to healthy male donors. 
IgA1 were increased only in male, but not in female asthmatics, compared to controls. Concentrations of IgG2, but not 
IgG1, IgG3, and IgG4, were reduced in asthmatics compared to controls. IgG4 levels were reduced in female compared to 
male asthmatics. In female asthmatics, IgA and IgA1 levels were increased in postmenopause compared to premenopause. 
IgA concentrations were augmented in mild, but not severe asthmatics. A positive correlation was found between IgA levels 
and the age of patients and an inverse correlation between serum concentrations of IgA2 and IgE in asthmatics. A positive 
correlation between total IgA or IgA2 and IgG2 was found in asthmatics. These results highlight a gender dimorphism in 
IgA subclasses in male and female T2-high asthmatics. More adequate consideration of immunological gender disparity in 
asthma may open new opportunities in personalized medicine by optimizing diagnosis and targeted therapy.
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Introduction

Accumulating evidence indicates that gender has an impact 
on gene expression in various inflammatory diseases 
[2–6]. Males and females differ in their immunological 
responses to antigens and show distinctions in innate and 
adaptive immune responses [7]. Certain immunological 
sex differences are present throughout life, whereas oth-
ers are only apparent before puberty and after menopause, 
suggesting that both genes and hormones are involved. 
It is important to acknowledge gender differences when 
considering the prevalence of various diseases between 
males in females. Under the Severe Asthma Research 
Program (SARP), the gender difference in asthma inci-
dence, prevalence, and severity was assessed [8]. Between 
the age of 4 and 14 years, asthma was more prevalent in 
boys compared to girls. However, after puberty, asthma 
became more prevalent and severe in women [9]. Interest-
ingly, after menopause, asthma becomes more severe in 
males [10]. Moreover, female patients experience more 
symptoms when compared to males, resulting in a poorer 
quality of life [9]. Even though gender-related differences 
in asthma prevalence and clinical features have been 
described, the mechanisms underlying this phenomenon 
have been incompletely elucidated.

Besides gender, aging profoundly inf luences the 
immune system [11–14]. In humans, the serum concen-
trations of IgG and IgA generally tend to increase slightly 
with age [15]. In postmenopausal women, changes in the 
immune system have been attributed to estrogen depriva-
tion [16]. Sex hormones modulate both humoral and cell-
mediated immune responses [17].

Immunoglobulin A [1] is the most produced antibody 
class in the body (≅ 60 mg/kg/day) and the predominant 
antibody in mucosal surfaces, where it plays an important 
role in mucosal homeostasis [18–20]. At mucosal surfaces, 
a joining (J) chain is added to IgA when it is synthesized 
forming primarily dimers [21]. The dimers bind to the 
poly-Ig receptor (pIgR) expressed at the basolateral side 
of mucosal epithelial cells before being transported to 
the apical side of the cells where it is released into the 
lumen by proteolytic cleavage [22]. Unlike IgA produced 
at mucosal surfaces, serum IgA is predominantly mono-
meric and not joined to the J chain or the secretory com-
ponent [23]. In humans, IgA represents the second most 
prevalent immunoglobulin in the serum [24, 25]. There are 
two subclasses of human IgA, IgA1 and IgA2, transcribed 
from two distinct heavy chain constant regions, with the 
first one dominating in serum and most tissues and the 
second mainly secreted at the mucosal surfaces [26, 27]. 
Human IgA1 and IgA2 are encoded by different genes, 
α1 and α2, respectively, located on chromosome 14 [24, 

28]. The two IgA subclasses have different stability and 
effector functions due to highly significant differences in 
the hinge region and glycosylation patterns [29, 30]. In 
human serum, the predominant IgA form is monomeric 
with a subclass distribution of about 90% IgA1 and 10% 
IgA2 [27, 29]. It has become clear that serum IgA1 has 
specific immunological functions independent from the 
role of secretory IgA [29]. Although the pathogenic role 
of IgE in asthma is well-established [31–33], the complex 
interplay of IgE, IgG, and IgA subclasses in allergic dis-
eases has been recently reviewed [34].

Asthma is a heterogeneous group of inflammatory res-
piratory disorders characterized by distinct phenotypes 
(T2-high and T2-low) and variable clinical course [35–38]. 
The majority of asthmatic patients fall into the T2-high phe-
notype characterized by increased IgE and FeNO, hypere-
osinophilia, and overexpression of Th2 cytokines [35, 37]. 
T2-low asthma is presumably a heterogeneous condition 
incompletely understood [36, 38, 39].

To the best of our knowledge, the serum concentrations of 
IgG1 and IgA2 subclasses in asthma have not been reported 
so far. The aim of the study was twofold: first, to evaluate the 
serum concentrations of IgA (IgA1, IgA2) and IgG (IgG1, 
IgG2, IgG3, IgG4) subclasses in adult T2-high asthmatics 
compared to age-matched healthy controls; second, to inves-
tigate the presence or absence of gender-related variations of 
serum levels of IgA and IgG subclasses between male and 
female asthmatics and controls.

Materials and methods

Patients and methods

This case-control study was carried out at the Center for 
Basic and Clinical Immunology Research (CISI) of the 
Department of Translational Medical Sciences, University 
of Naples Federico II (Naples, Italy), from September 2020 
to October 2021. Forty-three Caucasian asthmatic patients 
(mean age 46.7 ± 15.8 years) were recruited in the outpatient 
clinic of the Division of Allergy and Clinical Immunology. 
Fifty-five volunteers were enrolled as healthy matched con-
trols (mean age 43.8 ± 9.5 years). The study was approved by 
the Ethics Committee of the University of Naples Federico 
II, School of Medicine (Prot. 198/18), and informed con-
sent was obtained from all participants prior to collection 
of blood according to recommendations from the Declara-
tion of Helsinki. All participants were enrolled if adherent 
to stringent exclusion and inclusion criteria and provided 
written informed consent to participate in the study. Patients 
were eligible for enrollment in the study if they were aged 
18–70 years and had a clinical diagnosis of asthma accord-
ing to Global Initiative for Asthma [GINA] 2021 criteria 
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[40]. Key exclusion criteria for both healthy controls and 
asthmatics were acute and chronic infections, bronchiectasis, 
primary and secondary immunodeficiencies, autoimmune 
diseases, malignancies, cystic fibrosis, patient-reported 
smoking history or the onset of respiratory symptoms after 
the age of 40 years in current or previous smokers with 
a smoking history of at least 10 pack-years. None of the 
asthmatic patients has been or was treated with allergen-
specific immunotherapy [41] or monoclonal antibodies anti-
IgE, anti-IL-5/IL-5Rα, or anti-IL-4Rα [42–44]. Forty out 
of 43 patients were treated with daily low-dose of inhaled 
glucocorticoids (ICS) therapy [fluticasone propionate (FP), 
100–200 μg or equivalent] plus two additional controllers 
(e.g., a long-acting β2-agonist and/or leukotriene receptor 
antagonist and/or long-acting muscarinic agonist); 3/43 of 
patients were treated with daily medium-dose of ICS (FP, 
250–500 μg or equivalent); 6/43 of patients were on oral 
glucocorticoids (mean daily prednisone intake 11.6 mg/
die). Table 1 shows the demographic and clinical charac-
teristics of the patients and healthy volunteers included in 
the study. The following parameters were evaluated: the on-
treatment forced expiratory volume in 1 s  (FEV1, in liters), 
the score on the Asthma Control Test (ACT) [45], serum 

IgE, total IgA and subclasses (IgA1 and IgA2), and total IgG 
and subclasses (IgG1, IgG2, IgG3, IgG4). Pulmonary func-
tion test (Quark PTF, COSMED, Pavona di Albano, Italy) 
was performed according to the American Thoracic Soci-
ety/European Respiratory Society (ATS/ERS) guidelines 
[36].  FEV1, Forced Vital Capacity (FVC), and  FEV1/FVC 
were measured, and the best of three forced maneuvers was 
recorded. Results were expressed both as absolute values 
and as a percentage of the predicted values referred to Euro-
pean Respiratory Society (ERS) reference values [35]. The 
Body Mass Index (BMI) was calculated as body weight [46]/
height2  (m2) [46]. Peripheral blood leukocyte counts were 
measured using an automated hematology analyzer [47].

Measurement of serum immunoglobulins

Serum samples from venous blood were stored in aliquots 
at − 80 °C until tested. Total IgE, IgG and subclasses (IgG1, 
IgG2, IgG3, IgG4), and IgA were measured by nephelom-
etry using Behring BN™ II System (Siemens Healthcare 
Diagnostics Ltd, Erlangen, Germany). Calibration was 
performed using N protein standard SL (OQIM), accord-
ing to Sanguin nephelometric standard M1590 (based on 

Table 1  Demographic and 
clinical characteristics of 
healthy controls and asthma 
patients

CRSsNP chronic sinusitis without nasal polyps, CRSwNP chronic sinusitis withnasal polyps, FEV1 Forced 
expiratory volume in the 1st second; FVC Forced vital capacity; FEV1/FCV ratio (%) actual ratio of the two 
parameters; FEF25−75  forced expiratory flow between 25 and 75% of FVC; ICS Inhaled glucocorticoids; 
OCS Oral glucocorticoids; LABA Long-acting ß-2 agonist; LTRA  Leukotriene-receptor antagonist; LAMA 
Long-acting muscarinic agonist; ACT  asthma control test; BMI Body mass index. PRED prednisone; NA 
not applicable; *p < 0.05; **p < 0.01; ***p < 0.0005; ****p < 0.0001

Characteristics Healthy controls Asthma patients p-value

Subjects, n° 55 43 NA
Age (years) 43.8 ± 9.5 46.7 ± 15.8 0.54
Sex, male/female 32/23 11/32 NA
BMI (Kg/m2) 25.79 ± 3.24 26.01 ± 4.46 0.82
Smokers, n°(%) None None NA
Age of asthma diagnosis NA 28.4 ± 18.8 NA
Annualized Asthma Exacerbation Rate (AAER) NA 0.53 ± 1 NA
ACT (score) NA 16.3 ± 5.2 NA
Allergic Rhinitis, n° (%) None 37 (86.1) NA
CRSsNP, n° (%) None 13 (30.02) NA
CRSwNP,  n° (% None 7 (16.3) NA
FEV1 (L/s) 3.72 ± 0.88 2.44 ± 0.82 ****
FEV1 (%) 106.3 ± 11.74 78.85 ± 21.05 ****
FEV1/FCV ratio (%) 100 ± 9.44 93.26 ± 13.38 NS
FEF25–75 (%) 110 ± 18.5 75.47 ± 36.23 ****
ICS use (%) None 83.7 NA
LABA use (%) None 74.4 NA
LTRA use (%) None 44.2 NA
LAMA use (%) None 4.7 NA
OCS use, n (%) None 6 (14.0) NA
Dose of OCS (mg/d), PRED equivalent None 11.6 ± 10.3 NA
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WHO67/97 reference serum) [48]. The precision evaluation 
(coefficient of variation: CV) for the measurement of IgG 
and IgG subclasses was done according to the Clinical and 
Laboratory Standards Institute (CLSI) EP05-A3 guidelines 
[49]. The intra-assay CVs ranged from 1.8 to 3.6%. The 
linearity for the measurement of IgG and IgG subclasses 
(coefficient of determination:  R2) was assessed according 
to the CLSI EP06-A guidelines [50]. The R2 values ranged 
from 0.97 to 0.99. IgA1 and IgA2 subclasses were assessed 
by using the Binding Site  SPAPLUS® turbidimetric analyzer 
(The Binding Site, Birmingham, UK). The CVs were 1.4% 
(IgA1) and 1.7% (IgA2). The correlation coefficients were 
0.99 (IgA1) and 0.99 (IgA2). IgE were measured by chemi-
luminescent immunoassay using Immunolite 2000 (Siemens 
Healthcare Diagnostics Ltd, Erlangen, Germany). The CV 
was 2.9%, and the coefficient of correlation was 0.99.

Statistical analysis

Statistical analysis was performed by using GraphPad Prism 
8 software (GraphPad Software, La Jolla, CA, USA). Data 
are expressed as mean ± standard deviation (SD) of the 
indicated number of experiments. Values from groups were 
compared by Student’s t test or Mann–Whitney U test based 
on the parametric or nonparametric distribution of the con-
tinuous variables. One-way analysis of variance (ANOVA) 
followed by Tukey’s post hoc was used for multiple com-
parisons. For the correlation analyses, Pearson’s correlation 
method was used. P values less than 0.05 were considered 
significant.

Results

Demographic and clinical characteristics of asthma 
patients and healthy controls

The demographic and clinical characteristics of healthy 
donors and asthma patients are given in Table 1. The median 
age was 46.7 ± 15.8 years for asthmatics and 43.8 ± 9.5 years 
for healthy controls. Thirty-two patients (74.4%) were 
female and 11 (25.6%) were male. None of healthy con-
trols and asthma patients were smokers. All patients had a 
T2-high phenotype based on skin test positivity and/or spe-
cific IgE (65.2%), hypereosinophilia (34.8%), and increased 
FeNO levels. Asthmatic patients had an annualized asthma 
exacerbations rate (AAER) of 0.53 and an ACT score of 
16.3 ± 5.2. Allergic rhinitis (86.1%) and chronic rhinosi-
nusitis without nasal polyps (30.2%) and with nasal polyps 
(CRSwNP) (16.3%) were comorbidities of asthmatics.  FEV1 
in asthmatics was lower in healthy controls (2.44 ± 0.82 L/s 
vs. 3.72 ± 0.88 L/s; p < 0.0001).

Serum concentrations of IgE, IgA1, and IgA2 
subclasses in asthma patients and healthy controls

The serum concentrations of IgE, total IgA, IgA1, and 
IgA2 subclasses in controls and asthmatics are given in 
Table 2, which also reports the concentrations of these 
immunoglobulin classes and subclasses in male and female 
subjects. As expected, serum IgE concentrations were sig-
nificantly increased (p < 0.0001) in all asthmatic subjects 
irrespectively of gender (Table 2). Total serum IgA levels 
were also increased (p < 0.05) in asthmatics compared to 
controls (Fig. 1A). Even more marked (p < 0.01) was the 
increase in total serum IgA in male asthmatics when com-
pared to healthy male donors (Fig. 1B). By contrast, the 
serum concentrations of IgA were not different between 
female asthmatics and controls (Table 2).

In human serum, IgA1 represents the major (≅ 90%) 
IgA subclass [27]. Therefore, we measured serum IgA1 
and IgA2 subclasses in asthmatics and controls. Serum 
IgA1 did not differ between these two groups. However, 
when subjects were analyzed by gender, we found that 
serum IgA1 levels were significantly increased (p < 0.05) 
in male asthmatics compared to controls (Fig. 1C), but not 
in females (Table 2). IgA2 represents approximately 10% 
of serum IgA [27]. The serum concentrations of IgA2 did 
not differ between asthmatics and controls in both males 
and females (Table 2).

Table 2  Serum concentrations of IgE, IgA, IgA1, and IgA2 sub-
classes in healthy controls and asthma patients

NA not applicable; NS not significant. *p < 0.05; **p < 0.01; 
****p < 0.0001

Laboratory data Healthy controls Asthma patients p-value

Serum total IgE (Log 10)
Total 1713 2563 ****
Male 1613 2565 ****
Female 1694 2453 ****
Serum IgA (g/L)
Total 1.95 ± 0.70 2.39 ± 0.94 *
Male 1.96 ± 0.62 3.142 ± 1.05 **
Female 1.94 ± 0.79 2.105 ± 0.83 NS
Serum IgA1 (g/L)
Total 1.530 ± 0.57 1.708 ± 0.74 NS
Male 1.568 ± 0.57 2.223 ± 0.91 *
Female 1.486 ± 0.57 1.526 ± 0.59 NS
Serum IgA2 (g/L)
Total 0.437 ± 0.25 0.369 ± 0.18 NS
Male 0.462 ± 0.29 0.408 ± 0.21 NS
Female 0.398 ± 0.19 0.356 ± 0.17 NS
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Serum concentrations of total IgG and subclasses 
in asthma patients and healthy controls

Serum concentrations of total IgG did not differ between 
asthmatics and controls in both males and females (Table 3). 
Similarly, IgG1, IgG3, and IgG4 subclasses did not differ 
between asthmatics and healthy donors in both males and 
females (Table 3). By contrast, concentrations of IgG2 were 
lower in asthmatics when compared to controls (p < 0.001) 
(Fig. 1E). The latter difference was particularly evident in 
males (p < 0.0001) but not in females (Table 3).

Gender‑specific differences of serum 
immunoglobulins in asthma patients

The previous results highlighted unexpected gender-specific 
differences in total IgA and IgA1 (Table 2). Therefore, we 
systematically compared gender-specific differences of all 

serum immunoglobulins examined (IgE, total IgA, IgA1, 
IgA2, total IgG, IgG1, IgG2, IgG3, and IgG4) in asthma 
patients (Table 4).

Figure 2A shows that serum concentrations of total IgA 
were markedly increased (p < 0.001) in males when com-
pared to female asthmatics. Examining serum concentra-
tions of IgA1, we found that asthmatic males had higher 
values than females (p < 0.05) (Fig. 2B). Interestingly, also 
the concentrations of IgG4 were increased (p < 0.05) in male 
asthmatics compared to females (Fig. 2C). Concentrations 
of other IgA and IgG subclasses did not differ between male 
and female asthmatics (Table 4).

Serum concentrations of IgA pre‑ 
and postmenopause in female asthma patients

Gender differences in asthma incidence, prevalence, and 
severity have been started to be appreciated [8]. Moreover, 

Fig. 1  Serum concentrations of IgA in healthy controls and asthma 
patients (a) Serum concentrations of IgA in healthy male controls 
and asthma patients (b) Serum concentration of IgA1 in healthy 
male controls and asthma patients (c) Serum concentrations of IgA2 

in healthy controls and asthma patients (d) Serum concentrations of 
IgG2 in healthy controls and asthma patients (e) Data are presented as 
scatter plots with mean ± SD. Significance was tested with two sided 
Student’s t test. *p < 0.05; **p < 0.01; ***p < 0.001
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menopause can affect asthma severity [10]. Besides gen-
der, aging profoundly influences the innate and adaptive 
immune system [11–14]. When we evaluated the effects of 
menopause on total IgA and IgA subclasses in asthmatics, 
we found that serum concentrations of total IgA were sig-
nificantly increased (p < 0.01) after menopause (Fig. 3A). 
Similarly, the serum levels of IgA1 were increased (p < 0.01) 
after menopause (Fig. 3B). The specificity of this observa-
tion was supported by the finding that serum concentrations 
of IgA2 were not affected by menopause in female asthma 

subjects (Fig. 3C). Similarly, serum levels of IgG and their 
subclasses and IgE did not differ in controls and asthmatics 
between pre- and postmenopause (data not shown).

Correlations between asthma severity and serum 
concentration of IgA

The alterations of serum concentrations of total IgA and 
IgA1 in asthmatics prompted us to investigate the possi-
ble correlations between asthma severity and the concen-
trations of these immunoglobulins. Figure 4A shows that 
serum levels of total IgA were increased in mild, but not 
in severe asthmatics compared to controls. Serum con-
centrations of IgA1 in mild and severe asthmatics did not 
differ from controls (Fig. 4B), whereas IgA2 levels were 
reduced in both mild and severe asthma patients vs. con-
trols (Fig. 4C). As expected, IgE levels were significantly 
increased (p < 0.0001) in both mild and severe asthmatics 
(Fig. 4D).

Correlations between serum concentrations of IgA 
and age of asthmatics and controls

Serum levels of IgG and IgA tend to increase slightly with 
age [15]. In adult healthy subjects, there was no correlation 
between serum concentrations of IgA, IgA1, and IgA2 and 
the age of donors (data not shown). By contrast, we found a 
positive correlation (r = 0.36; p < 0.05) between serum lev-
els of total IgA and the age of asthmatics (Supplementary 
Fig. 1). No significant correlations were found between the 
age of asthmatics and serum concentrations of both IgA1 
and IgA2 (data not shown).

Correlations between serum concentrations of IgE 
and IgA subclasses in asthmatics and controls

The pathogenic role of IgE in asthma and allergic disorders 
is well-established [31–33]. The role of IgA subclasses in 
asthma has been recently emphasized [34]. We found an 
inverse correlation (r = −0.31; p < 0.05) between serum con-
centrations of IgA2 and IgE in asthmatics (Fig. 5A) but not 
in controls (Fig. 5B). No correlations were found between 
serum IgE and total IgA and IgA1 in both normal donors and 
asthmatics (data not shown).

Correlations between serum concentrations of IgA 
and IgG subclasses in asthmatics and controls

We investigated possible correlations between serum con-
centrations of IgA and IgG subclasses in asthmatics and con-
trols. There was no correlation between total IgA and IgG 
in both controls and asthmatics (data not shown). Similarly, 
there was no correlation between total IgA and IgG1, IgG2, 

Table 3  Serum concentrations of IgG and IgG subclasses in healthy 
controls and asthma patients

NS not significant. *p < 0.05. ****p < 0.0001

Laboratory data Healthy controls Asthma patients p-value

Serum IgG (g/L)
Total 10.71 ± 2.1 10.38 ± 2.4 NS
Male 11.50 ± 1.7 10.04 ± 2.1 NS
Female 9.78 ± 2 10.49 ± 2.5 NS
Serum IgG1 (g/L)
Total 7.15 ± 1.4 7.52 ± 2.2 NS
Male 7.44 ± 1.2 7.06 ± 2.7 NS
Female 6.86 ± 1.6 7.67 ± 2.1 NS
Serum IgG2 (g/L)
Total 4.81 ± 1.7 3.70 ± 1.2 ***
Male 5.51 ± 1.5 3.92 ± 0.9 ****
Female 3.86 ± 1.5 3.62 ± 1.3 NS
Serum IgG3 (g/L)
Total 0.31 ± 0.3 0.34 ± 0.2 NS
Male 0.33 ± 0.3 0.31 ± 0.1 NS
Female 0.27 ± 0.1 0.34 ± 0.2 NS
Serum IgG4 (g/L)
Total 0.89 ± 0.6 0.86 ± 0.9 NS
Male 0.99 ± 0.4 1.5 ± 1.3 NS
Female 0.74 ± 0.7 0.63 ± 0.6 NS

Table 4  Gender-specific differences in asthma patients

NS not significant. *p < 0.05; ***p < 0.001

Laboratory data Asthmatic males Asthmatic females p-value

Serum total IgE (Log 
10)

2565 2453 NS

Serum IgA (g/L) 3.142 ± 1.05 2.105 ± 0.83 ***
Serum IgA1 (g/L) 2.223 ± 0.91 1.526 ± 0.59 *
Serum IgA2 (g/L) 0.408 ± 0.21 0.356 ± 0.17 NS
Serum IgG (g/L) 10.04 ± 2.1 10.49 ± 2.5 NS
Serum IgG1(g/L) 7.06 ± 2.7 7.67 ± 2.1 NS
Serum IgG2(g/L) 3.92 ± 0.9 3.62 ± 1.3 NS
Serum IgG3 (g/L) 0.31 ± 0.1 0.34 ± 0.2 NS
Serum IgG4 (g/L) 1.5 ± 1.3 0.63 ± 0.6 *
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Fig. 2  Serum concentration of IgA (a), IgA1 (b) and IgG4 (c) in male and female asthma patients. Data are presented as scatter plots with 
mean ± SD. Significance was tested with two-sided Student’s t test. *p < 0.05; ***p < 0.001

Fig. 3  Serum concentrations of IgA (a), IgA1 (b), and IgA2 (c) 
in pre- (mean age 33.6 ± 10  years) and postmenopause (mean age 
60.3 ± 5.1  years) female asthmatic patients. Data are presented as 

scatter plots with mean ± SD. Significance was tested with two-sided 
Student’s t test. **p < 0.01

Fig. 4  Serum concentrations of IgA (a), IgA1 (b), IgA2 (c) and IgE 
(d) in healthy controls, mild, and severe asthmatics. Data are pre-
sented as box plots with medians and interquartile ranges plus whisk-

ers ranging from min to max. Significance was tested using one-way 
ANOVA followed by Tukey’s post hoc. *p < 0.05; ****p < 0.0001
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IgG3, and IgG4 in healthy subjects (data not shown). In asth-
matics, there was a correlation between serum concentra-
tions of total IgA and IgG2 (r = 0.38; p < 0.01) (Fig. 5C). 
Similarly, there was a correlation (r = 0.48; p < 0.001) 
between serum concentrations of IgA2 and IgG2 (Fig. 5D). 
As expected, we found close correlations between serum 
levels of total IgG and IgG1 (r = 0.84; p < 0.0001), IgG2 
(r = 0.40; p < 0.001), IgG3 (r = 0.32; p < 0.05), but not IgG4 
(r = 0.09; NS) in asthmatics (Supplementary Fig. 2A, B, C, 
D). By contrast, we found a positive correlation between 
total IgG and only IgG1 in the control group (r = 0.68; 
p < 0.0001) (Supplementary Fig. 3A, B, C, D).

Discussion

In this study, we found that serum concentrations of IgE 
and total IgA were significantly increased in adult patients 
with T2-high asthma compared to healthy controls. IgA 
levels were increased in males but not in female asthmat-
ics. Similarly, IgA1 were increased only in males, but not 
in female asthmatics, compared to controls. IgG2, but not 
IgG1, IgG3, and IgG4, was lower in asthmatics compared 
to healthy donors. This difference was significant in male 
but not in female asthmatics. In addition, IgG4 concentra-
tions were reduced in females compared to male asthmatics. 
Considering the blocking activity of IgG4, the latter findings 
might explain why asthma tends to be more severe in women 
[9]. Total IgA and IgA1 were increased after menopause in 
female asthmatics. Serum concentrations of total IgA were 
increased in mild, but not severe asthmatics compared to 
controls, whereas IgE levels were increased in both groups 
of asthmatics. An inverse correlation between serum levels 
of IgA2 and IgE was found in asthmatics but not in controls. 
A positive correlation was found between IgG2 and both 
total IgA and IgA2 in asthmatics. Collectively, our results 

highlight a gender dimorphism in IgA subclasses in asth-
matic patients.

Previous studies have examined the serum concentra-
tions of total IgA in children [51–55] and adults with asthma 
[56–58]. Unfortunately, these studies have not evaluated the 
serum concentrations of IgA1 and IgA2 in both healthy con-
trols and asthmatics. Moreover, these old studies did not 
examine the phenotype of asthmatic patients. In addition, 
serum concentrations of IgA increase with age [58, 59] 
and, therefore, results in children cannot be compared to 
those in adults. In a previous study on 15 normal subjects, 
9 mild and 22 adults with severe asthma, serum IgA and 
IgG were decreased only in severe asthmatics compared 
to healthy controls [56]. These results apparently differ 
from our study in which we found that mild, but not severe 
T2-high asthmatics, had increased serum total IgA levels. In 
a population-based study, history of asthma was more preva-
lent in adults with selective IgA deficiency [57]. In a large 
population-based study of 1,136 adult patients with asthma, 
serum IgA increased with age and positively correlated to 
IgE [58]. To the best of our knowledge, our study is the first 
to evaluate the serum concentrations of total IgA, IgA1 and 
IgA2 in adult patients with T2-high asthma compared to 
age-matched healthy subjects. We found that serum levels 
of total IgA are increased in asthmatic subjects compared to 
controls, total IgA are lower in female asthmatics compared 
to males, and IgA1 subclass is increased in male asthmatics 
compared to controls. Steffen and collaborators have also 
demonstrated that serum IgA and IgA1, but not IgA2 are 
increased in healthy men compared to women [29].

Human IgG subclasses are similar in structure but differ 
in binding to receptors and accessory molecules, altering 
their functionality [60]. In this study, we found that serum 
levels of IgG2 were lower in asthmatics compared to con-
trols. Moreover, IgG4 concentrations were decreased in 
females compared to male asthmatics. In a small number 
of asthmatics and healthy subjects, serum IgG in severe 

Fig. 5  Correlations between serum concentrations of IgA2 and IgE 
in asthma patients (a) and healthy controls (b). Correlations between 
serum concentrations of IgA (c) or IgA2 (d) and IgG2 in asthma 

patients. Significance was tested with Pearson’s correlation method. 
*p < 0.05; ***p < 0.001
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asthmatics were decreased when compared to controls [56]. 
By contrast, in a large study, allergic subjects had signifi-
cantly higher IgG4 levels than controls and this difference 
was more pronounced for men than women [61].

IgG4 coexist as two isomers differing from other immu-
noglobulin subclasses in the disulfide bonding of hinge 
cysteines [34, 60]. In vivo, half-molecules of IgG4 recom-
bine randomly with other half-molecules of IgG4, combin-
ing specificities of two molecules, resulting in monovalent-
bispecific antibodies [62]. The resulting IgG antibody has 
low affinity for the activating Fc receptor for IgG (FcγR), 
while retaining high affinity for the inhibiting FcγRIIb. IgG, 
by interacting with FcγRIIb inhibits downstream signaling 
through FcεRI, thus preventing the release of proinflamma-
tory mediators from basophils and mast cells [63]. IgG4 has 
therefore been characterized as “blocking antibody” in the 
context of allergic disorders [34]. The clinical relevance of 
lower concentrations of IgG4 in female compared to male 
asthmatics requires additional investigations.

Previous studies indicate that serum IgA levels increase 
with age [58, 59]. We found that serum concentrations of 
IgA are significantly correlated with the age of asthmatic 
patients. This observation prompted us to analyze total IgA, 
IgA1, and IgA2 in female asthmatics and controls before and 
after menopause. Interestingly, we found that total IgA and 
IgA1 are increased in postmenopausal asthmatic women. 
We cannot exclude the possibility that the alterations in total 
IgA and IgA1 levels found in post-menopausal asthmatic 
women are associated with the age of donors. However, the 
specificity of our observation is supported by the finding 
that serum IgA2 are not affected by menopause in female 
patients. This novel observation is not surprising because 
it is well-established that menopause has a distinct impact 
on the female immune system. For instance, several hor-
mones (e.g., estradiol, testosterone, FH, FSH) can affect the 
immune responses [7, 64, 65]. At menopause, estradiol pro-
duction in the ovaries ceases. Thereafter, only basal levels 
of progesterone are being synthesized by the adrenal glands. 
In aged women, dehydroepiandrosterone (DHEA) and tes-
tosterone levels decrease, yet follicle-stimulating hormone 
(FSH) and luteinizing hormone (LH) levels rise from the 
fourth decade onward [66]. In men, there is a slower yet 
steady decline in testosterone levels displaying no clear turn-
ing point [67]. For instance, female hormones can modulate 
IgA production in experimental models [68–70].

IgE is central to type I immediate allergic responses 
[31–33]. Allergen-specific IgA2 and polymeric IgA2 have 
been shown to be elevated following allergen immunother-
apy [34, 71]. A positive correlation between serum IgA and 
IgE has been reported in adult asthmatics [58]. Our present 
study for the first time demonstrates an inverse correlation 
between serum IgE and IgA2 in asthmatics. Moreover, we 
found a positive correlation between IgG2 and both total 

IgA and IgA2 only in asthmatic patients. The latter observa-
tion is interesting because the types of antigens that could 
elicit IgG2 and IgA appear to be similar, as the majority of 
environmental antigens that induce IgA are glycosylated. 
Moreover, both IgA2 [27, 72] and IgG2 can form dimers 
[60]. Collectively, our results reveal a series of complex cor-
relations between serum IgA2 and both IgE and IgG2 in 
asthmatics that require additional investigations.

Gender differences in serum IgA and IgA1 and to a lesser 
extent in IgG4 between male and female asthmatics could 
be explained by genetic, epigenetic and non-genetic factors 
(e.g., microbiota, lifestyle). At first sight, the findings that 
IgA, IgA1, and IgG4 are increased in male asthmatics versus 
females were surprising because nine genes corresponding 
to nine isotypes of heavy chains (i.e., μ, δ, γ1, γ2, γ3, γ4, α2 
and ε) are located on chromosome 14 [73]. However, we 
cannot rule out the possibility that some of the ≅ 50 X-linked 
genes involved in the modulation of immunity [74] also dic-
tate sex differences in immunoglobulin synthesis.

Epigenetic studies could help to address the molecular 
basis of disparities of serum IgA, IgA1, and IgG4 in male 
and female asthmatics. The possibility exists that sex hor-
mones influence epigenetic factors (e.g., DNA methylation, 
chromatin conformation) [75, 76] that control immunoglob-
ulin synthesis, thus playing a role in gender-dependent IgA, 
IgA1, and IgG4 disparities in male and female asthmatics.

Sex hormones, in particular androgens, seem critical in 
shaping the gut microbiota composition [77, 78]. There is 
growing evidence for gender dimorphism of gut microbiota 
in humans and other species [79–81], which may contrib-
ute to divergent development of the host immune system 
[82, 83]. Asthma development has been increasingly asso-
ciated with gut and lung microbiome alterations [84, 85]. 
An aberrant IgA response to the gut microbiota precedes 
asthma development [86]. IgA regulates the composition and 
function of the gut microbiota and modulates its interaction 
with the host [20, 87]. Future studies should investigate the 
possible interactions between gut and lung microbiota, sex 
hormones and serum IgA subclasses in male and female 
asthmatics.

In adults, asthma is more prevalent and severe in women 
[9]. In addition, female patients experience more symptoms 
when compared to males [9]. Sex disparities in asthma 
remain poorly understood and could be influenced by life-
style-associated allergy risk factors (e.g., exposure to ciga-
rette smoke, diesel exhaust, detergents) [88]. It is difficult to 
control lifestyle in patient cohorts; however, the existence 
of lifestyle-dependent sex differences in IgA and IgG sub-
classes could be investigated by using appropriate experi-
mental models of lung inflammation [27].

This study has several limitations that should be pointed 
out. The sample size of the asthma patient and healthy 
control cohorts investigated in the present study is limited. 
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Further studies on larger cohorts of both healthy controls and 
asthmatics could better highlight the significance of gender 
dimorphism in IgA and IgG subclasses in these patients. For 
instance, we anticipate that it would be necessary to examine 
at least one order of magnitude larger cohorts to correlate 
alterations of serum IgA and IgG subclasses to lung function 
in asthmatic patients. Asthma is a heterogeneous group of 
inflammatory disorders characterized by distinct subtypes 
and variable clinical courses [35–38]. The patients included 
in this study were adults with a T2-high asthma phenotype 
of different severity (mild and severe). The limited sample 
size of patients did not allow to correlate the serum concen-
trations of IgA and IgG subclasses to T2-low or T2-high 
asthma [39, 89]. Finally, results might be confounded by 
glucocorticoid treatment [90], especially because the major-
ity of the asthmatic participants were using high-dose ICS 
and some systemic glucocorticoids. The effects of high-dose 
ICS and systemic glucocorticoids on serum levels of IgA 
and IgG subclasses in asthmatics are not known.

Conclusions

Our study showing different levels of gender dimorphism in 
IgA subclasses in asthmatic patients might have translational 
relevance in clinical manifestations of asthma. First, we 
found that IgA and IgA1 were markedly increased in males, 
but not female asthmatics compared to controls. Similarly, 
IgG4 were augmented in male compared to female asth-
matics. Second, within the female asthma population, IgA 
and IgA1 were increased after menopause compared to pre-
menopause. IgA antibodies play important roles in protect-
ing subjects from bacterial and viral infections at mucosal 
surfaces, including in the airways [91–93]. In this study, we 
found that females have lower levels of IgA, IgA1, and IgG4 
compared to male asthmatics. It is tempting to speculate that 
lower serum concentrations of these antibodies in female 
asthmatics could contribute to the increased prevalence and 
severity of asthma in adult women [9]. Interestingly, after 
menopause, asthma becomes more severe in males [10] and 
serum levels of IgA/IgA1 are higher in postmenopause com-
pared to premenopause in female asthmatics.

The impact of gender on disease biology and treatment 
outcomes is well-appreciated in medical disciplines, such as 
cardiology [94, 95] and oncology [96–98], whereas its rel-
evance in allergy was thus far underestimated in both clinical 
and preclinical studies. More adequate consideration of the 
immunological basis of gender disparity in asthma may open 
new opportunities in personalized medicine by optimizing 
diagnosis and targeted therapy.
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