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Abstract
The aim of this study was to design physics-preserving and precise surrogate models of the nonlinear elastic behaviour of 
an intervertebral disc (IVD). Based on artificial force-displacement data sets from detailed finite element (FE) disc models, 
we used greedy kernel and polynomial approximations of second, third and fourth order to train surrogate models for the 
scalar force-torque -potential. Doing so, the resulting models of the elastic IVD responses ensured the conservation of 
mechanical energy through their structure. At the same time, they were capable of predicting disc forces in a physiological 
range of motion and for the coupling of all six degrees of freedom of an intervertebral joint. The performance of all surrogate 
models for a subject-specific L4| 5 disc geometry was evaluated both on training and test data obtained from uncoupled 
(one-dimensional), weakly coupled (two-dimensional), and random movement trajectories in the entire six-dimensional 
(6d) physiological displacement range, as well as on synthetic kinematic data. We observed highest precisions for the kernel 
surrogate followed by the fourth-order polynomial model. Both clearly outperformed the second-order polynomial model 
which is equivalent to the commonly used stiffness matrix in neuro-musculoskeletal simulations. Hence, the proposed model 
architectures have the potential to improve the accuracy and, therewith, validity of load predictions in neuro-musculoskeletal 
spine models.

Keywords Biomechanics · Intervertebral disc · Kernel approximation · Spine modeling · Elastic surrogates

1 Introduction

Surrogate modelling is a computationally inexpensive way 
to model complex, nonlinear biostructures in neuro-muscu-
loskeletal (NMS) simulations of the spine used to non-inva-
sively study generic and subject-specific spinal load sharing 
amongst active and different passive tissue compartments in 
predictive simulations (Meszaros-Beller et al. 2023; Mörl 
et al. 2020; Rupp et al. 2015; Guo et al. 2021). Particularly, 
the intervertebral disc (IVD) is a critical component, provid-
ing support and allowing for movement in all six degrees 
of freedom (DOFs). However, modelling the multiphasic 
soft matter physics of an IVD as a sub-model in subject-
specific NMS spine models is challenging, especially under 
the demand of reduced model complexity to map the six-
dimensional (6d) force-displacement behaviour. Apart from 
few attempts to directly model the IVD by mechanical com-
ponents like springs in a multibody (MB) environment (Gao 
et al. 2015), the vast majority of spine models rely on data-
based IVD models (see Fig. 1 for an overview of current 
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modelling approaches), which are typically implemented as 
a force-torque element acting on adjacent vertebrae, while 
depending on the relative translational and rotational dis-
placements of each vertebra. Such models should generally 
meet the following requirements: first, physical validity, sec-
ond, exhibit the nonlinear force-displacement relations that 
are revealed experimentally, e.g., in Berkson et al. (1979), 
Schultz et al. (1979) and Panjabi et al. (1994), third, account 
for the coupling of the various DOFs, which has been docu-
mented in a few studies such as Patwardhan et al. (2003) and 
McGlashen et al. (1987), and, fourth, have a high accuracy 
on the given data set.

Disregarding the nonlinear characteristics of this 
soft cartilaginous tissue, the elastic IVD responses are 
commonly estimated by (bi-)linear spring-damping 
elements (Stokes and Gardner-Morse 1995; Huynh et al. 
2010; Christophy et al. 2012; Meng et al. 2015; Meszaros-
Beller et  al. 2023; Senteler et  al. 2016; Stokes et  al. 
2002; Monteiro et al. 2011). Even though these so-called 
bushing elements do only allow for linear coupling of 
DOFs, they are currently the most sophisticated approach 
for modelling elastic IVD responses in MB simulation 
frameworks in terms of considering fundamental physical 

principles, specifically the energy-conserving nature 
inherent to the term ‘elastic’. This fact is surprising, 
since it has already been elucidated more than one 
decade ago that the conservation of mechanical energy 
can be incorporated in MB IVD surrogates by deriving 
all vectorial forces and torques from a single scalar 
force-torque potential (see Senan and O’Reilly (2009) 
and Metzger et al. (2010)). However, existing nonlinear 
models of IVDs do either neglect mutual influences of 
DOFs (Damm et al. 2020; Schmid et al. 2020), or include 
coupling of only two or three DOFs by fitting force-
displacement data for single force or torque components 
separately, e.g., with polynomials (Karajan et al. 2013; 
Zhang et al. 2020) or kernel approximations (Wirtz et al. 
2015). Due to the lack of a common force potential and, 
by that, a loss of physical information, the latter published 
models violate energy balance.

Obtaining multidirectional force-displacement relations 
experimentally is not trivial and data of coupled DOF 
stiffnesses are still rare. Consequently, data-based models 
that include nonlinear coupling can hardly be trained on 
pure experimental data at present. As an alternative, detailed 
finite element (FE) models, validated against multiple 

Fig. 1  Overview of current surrogate modelling approaches for the 
elastic IVD responses. Linear stiffness matrices (top left), as for 
example Christophy et al. (2013) and Huynh et al. (2010), conserve 
energy and principally allow for coupling of all six DOFs. However, 
they often consider only two coupled DOFs or, when implemented as 
diagonal matrix, no coupling (coupled DOFs = 1). Similarly, uncou-
pled nonlinear models (top right) were developed from reported data 
(Damm et al. 2020; Schmid et al. 2020). Previous nonlinear models 

that including coupling (middle) were either polynomial approxi-
mations (Zhang et  al. 2020; Karajan et  al. 2013) with two coupled 
DOFs or kernel models (Wirtz et al. 2015; Haasdonk et al. 2021) with 
three coupled DOFs but did not conserve mechanical energy during 
motion. The first nonlinear surrogates that include coupling of all six 
DOFs, and conservation of energy (bottom right) are presented in this 
work and base on kernel or polynomial approximations
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experimental findings, can be used to provide estimates for 
the nonlinear and coupled elastic responses (Schmidt et al. 
2007).

Several detailed, multiphasic FE models exist (Weisse 
et al. 2012; Ehlers et al. 2008; Karajan 2012; Little et al. 
2008), which are often scaled to a subject-specific anatomy 
and generally capable of computing realistic IVD forces 
even under large and multidirectional deformations. 
However, their steep computational costs stand in contrast 
to the required reduced force law in a MB spine model, 
and can therefore not directly be implemented in the 
NMS model. To link detailed FE and NMS MB models, 
one can make use of hybrid models (Azari et al. 2018; 
Khoddam-Khorasani et  al. 2018), with only slightly 
reduced computational cost compared to the pure FE 
models. A popular alternative approach is to use a detailed 
model to generate a multidimensional database and find 
a mathematical description, i.e., a surrogate, to map the 
resulting 6d displacements in an intervertebral joint to the 
six elastic responses component-wise (Karajan et al. 2013; 
Wirtz et al. 2015; Haasdonk et al. 2021). However, this 
procedure is associated with the aforementioned problem 
of the lack of energy conservation when kinetic coupling 
is included.

Consequently, the use of an FE IVD model developed to 
simulate a loading scenario similar to the utility of the NMS 
MB model, is suitable for generating a training data set. So, 
in this work, we employ a validated FE model from Little 
et al. (2008) for the subject-specific geometry of the Visible 
Male (Spitzer et al. 1996) and record its force-displacement 
relations. As surrogate models learn to map the model 
inputs to the desired outputs, and have no knowledge of the 
underlying physical system, there is a need to incorporate 
these physical laws directly into the model structure. Here, 
we modelled elastic response forces and torques, so we 
were aiming at surrogates that conserve the total energy. 
In mathematical terms, this is equivalent to requiring that 
the surrogate is the force field of an unknown potential. 
To enforce this condition, we define an IVD surrogate of a 
generic potential energy, and impose constraints on the value 
of its derivatives based on the measured force-displacement 
data of the detailed FE model. We apply this idea to define 
different types of surrogate models: polynomial models of 
low (second, third or fourth) order, and kernel models based 
on greedy kernel algorithms (Wendland 2005; Fasshauer 
and McCourt 2015; Wenzel et al. 2021). The novelty of 
this work lies in the design of these two IVD surrogate 
architectures that both combine the property of conservation 
of mechanical energy with existing fitting algorithms that 
consider the nonlinearity and kinetic coupling of the six 
DOFs of an intervertebral joint. Additionally, we quantified 
the accuracy of all surrogates to demonstrate the huge benefit 

of using nonlinear IVD models over common stiffness 
matrices in the context of predictive NMS MB simulations.

2  Energy‑conserving surrogate models

A surrogate model itself is no biophysical model in the 
sense of providing a full understanding of the mechanical 
responses exerted by microscopic structures. It is rather 
an approximation of the macroscopic output as a function 
of input variables. Therefore, desired features need to be 
anchored in the intrinsic model structure. As we aim for a 
surrogate model for the elastic response forces and torques, 
the model must not violate basic physical principles. In 
particular, it should not produce or annihilate energy 
during motion (no gain nor loss) because this would 
contradict the assumption of a purely elastic behaviour. 
To allow for kinetic coupling, the elastic responses that 
are exerted onto the adjacent vertebra endplates need to 
be treated as force-torque pairs rather than as uncoupled 
vector components.

In Sect.  2.1, we will recall the prerequisites of 
biomechanical surrogate models that map the 6d inputs of 
joint displacements to the 6d outputs comprising force and 
torque and at the same time ensure energy conservation 
from Senan and O’Reilly (2009) and Metzger et al. (2010) 
as the latter is regularly not taken into account in current 
IVD models. Afterwards, we give concrete classes of 
models, namely polynomial models (Sect. 2.2) and kernel 
models (Sect. 2.3) to realise the theoretical approach, and 
represent the force-torque pair by nonlinear, composite 
functions of coupled inputs. These models will be used and 
compared in the numerical simulations of Appendix D.

For readers who like to skip the math, the Sects. 2.1–2.3 
can be summarised as follows: When a surrogate for the 
potential energy stored in an IVD is identified, instead of 
independently mapping each force and torque component, 
the model’s mechanical responses are automatically energy 
conserving. Thus, for an accurate modelling process, it is 
crucial to derive force and torque components from the 
first derivatives of the potential energy.

In the following, we use bold letters to denote vector 
valued quantities, i.e., xi for i = 1,… ,N  correspond to 
vector valued (input) data points. In contrast, non-bold 
letters correspond to scalar valued quantities, i.e., x� for 
� = 1,… , d correspond to the component of a vector x.

2.1  Conservative force‑torque field

The total mechanical energy conservation is a crucial fea-
ture of every elastic surrogate model, i.e., kinetic energy 
and potential energy may vary but their sum will stay 
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constant over time independent of the loads applied. This 
is equivalent to the demand of zero net work on closed 
paths, i.e., the independence of mechanical work of the 
chosen (displacement) path. In other words, we can state 
that the surrogate model should represent a conserva-
tive force field (Senan and O’Reilly 2009; Metzger et al. 
2010).

To elaborate this in more detail, we consider the potential 
energy U(x) as a function of the translational r = (x1, x2, x3) 
and rotational displacements � = (x4, x5, x6) , which together 
form the 6d state vector x = (r,�) of the intervertebral 
joint. Analogously, we define a vector of all six elastic 
IVD responses F = (F,M) , containing three force com-
ponents F = (F1,F2,F3) and three torque components 
M = (F4,F5,F6).

The existence of such a path- and time-independent 
potential U is mandatory for a conservative force field. 
According to the definition of a conservative force, the 
response forces and torques conserve mechanical energy if 
they can be derived from U as negative gradients

wi th  ∇ = (�x1 , �x2 , �x3 , �x4 , �x5 , �x6 ) and �x� ≡ �

�x�
 for 

� = 1, 2, ..., 6 , and where F′ represents the torque compo-
nents in a different coordinate system, which can be easily 
converted in Cartesian coordinates1 to obtain F .

To be called conservative, a force field F  needs to be 
curl-free, i.e.,

We remark that curl-free is only a notation motivated by 
the case of ℝ3 , for which conservative vector fields are curl-
free as the curl is zero. As the notation curl-free has been 
established in the literature (see e.g., Drake et al. (2021) and 
Drake et al. (2022)) also beyond the case of ℝ3 , we stick to 
it here.

Before proceeding with our formulation, we observe that 
this requirement is obviously fulfilled if the model neglects 
coupling between DOFs, i.e., if F�

�
= F

�
�
(x�) , as holds for, 

e.g., Schmid et al. (2020) and Mörl et al. (2020), or for 
symmetric stiffness matrices (Kövecses and Angeles 2007). 
On the other hand, the condition of Eq. (2) is automatically 
satisfied with the existence of a pot ntial U satisfying Eq. (1), 
as we can then rewrite Eq. (2) as −�x� �x�U = −�x� �x�U . The 
key to developing mechanical energy-conserving surrogates 
is, thus, to create a model for the force potential U and, 

(1)∇U = −F� ,

(2)�x�F
�
�
= �x�F

�
�

∀ 1 ≤ �,� ≤ 6.

afterwards, derive single force and torque components from 
it. In the following subsections, we present two different 
realisations of these elastic surrogate models including a 
coupling of different DOFs: polynomial models (Sect. 2.2) 
and greedy kernel models (Sect. 2.3).

We remark that from the practical point of view, for the 
computation of both types of models, we applied common 
preprocessing steps to the data. These include especially 
data cleaning (removing doubled points, removing outliers) 
and data transformation (scaling of the input to [−1,+1] ). 
As scaling of the inputs also affects the outputs due to 
their relation from Eq. (1), no independent scaling of the 
outputs was applied. Further, no dimensionality reduction 
was applied as all features are inherently important for the 
conservation of energy.

2.2  Energy‑conserving polynomial models

In this subsection, we briefly present well-known polynomial 
models and elaborate how to use them for energy-conserving 
modelling. For our numerical experiments, we will consider 
polynomial models of degree two, three and four. For these 
low degrees, we can write generic polynomials as

where pi, pik, pikj, pikjl , 1 ≤ i, j, k, l ≤ 6 , are the free parameters 
of the model. Here, we omit the 0-degree monomial as 
explained later.

In order to predict the vector valued force-torque pair, 
simply using vector valued coefficients to map the single 
vector components independently does not result in energy-
conserving surrogates as elaborated in Sect. 2.1. Instead, 
we predict the underlying (unknown) potential U(x) from 
Eq.  (1) by fitting its derivative values, i.e., determining 
the coefficients of the polynomial model from Eq.  (3) 
such that ∇U(x) ≈ ∇q

�
(x) for some � = 2, 3, 4 . As the 

values of the potential are unknown, we use the derivative 
values—which are provided as response forces and torques 
in force-displacement data sets—for the approximation. As 
an example, for � = 1,… , 6 we use in the case of a fourth-
order polynomial the equations

(3)

q2(x) =

6∑

i=1

pixi +

6∑

i,k=1

pikxixk ,

q3(x) = q2(x) +

6∑

i,k,j=1

pikjxixkxj ,

q4(x) = q3(x) +

6∑

i,k,j,l=1

pikjlxixkxjxl ,

1 The explicit equations for this transformation depend on the angu-
lar representation chosen for � , and the reader is referred to Appen-
dix C for a detailed derivation of the equations and the corresponding 
pre- and post-processing steps.
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The prefactors 2, 3 and 4 were explicitly included as we 
exploit the symmetry of the tensors p�i, p�ik , such that we 
can reduce the number of independent parameters. Note 
that the coefficient p� in Eq. (4) can in general be nonzero 
when the IVD is pre-strained and therefore exerts forces in 
the reference position where all displacements are zero, i.e., 
x = 0.

The surrogate is obtained from imposing Eq.  (4) for 
� = 1,… , 6 and for all x in the data set. This results in a 
linear equation system which is, however, not necessarily 
square in general, as the number of equations ( d ⋅ N ) usually 
does not match the number of (independent) parameters for 
the polynomial model from Eq. (3). Thus, the linear equation 
system is solved in a least-square sense. The corresponding 
calculations were done in Python using PyTorch (Paszke 
et al. 2017).

We remark that the 0-degree monomial is omitted in 
Eq. (3) as they are cancelled by differentiation and do not 
appear in Eq. (4). This corresponds to the fact that a potential 
is only uniquely defined up to the addition of constant terms.

2.3  Energy‑conserving kernel models

In the following, we use kernel models within this theory of 
conservative force-torque field (Wendland 2005; Fasshauer 
and McCourt 2015). The reader is referred to Appendix A 
for background information and an introduction into kernel 
methods with a focus on sparse kernel models obtained by 
greedy strategies. In fact, kernel methods generalise the 
polynomial models from the previous subsection, as those 
can be obtained using the so-called polynomial kernels. 
Thus, this broader class of methods allows for more 
sophisticated and accurate mathematical models.

We use the Gaussian kernel k(x, z) ∈ ℝ (see Appendix A, 
Eq. (7)), which has been used to train surrogates of single 
components of the IVD responses before (Wirtz et al. 2015; 
Haasdonk et al. 2021). However, here we exactly ensure the 
energy conservation property of Eq. (2) by using a curl-free 
variant of the Gaussian kernel (Drake et al. 2022), that is a 
matrix-valued kernel given by

(4)

F
�
�
= −

�q4(x)

�x�

= − p� − 2

6∑

i=1

p�ixi − 3

6∑

i,k=1

p�ikxixk

+ 4

6∑

i,k,j=1

p�ikjxixkxj .

for �, � = 1, ..., 6 . By choosing a dimensionality of d = 6 , we 
account for the six DOF in an intervertebral joint. Then, the 
force-torque vector can be represented by the sparse kernel 
interpolant (see Eq. (8) for comparison), F� ≈ sn(x) , with 
vector-valued coefficients �i ∈ ℝ

6 for i = 1, ..., n (where the 
number n of used training points is a small subset of the 
training data inputs {xi}Ni=1, n ≪ N)

with a common potential energy of all interpolant 
components,

The vectorial coefficients �i can be determined from the 
interpolation conditions sn(xi) = yi (with n of the training 
data outputs {yi}ni=1 assigned to the kernels at {xi}ni=1).

Note that several selection criteria give rise to meaningful 
subsets Xn ⊂ XN . In this paper, we use a �-stabilised greedy 
algorithm, which is a modification of standard greedy 
algorithms to yield more stable approximants sn , see Wenzel 
et al. (2021). An implementation of the stabilised greedy 
algorithms for various kernels with a recent extension to 
the curl-free Gaussian kernel mentioned above in arbitrary 
dimensions d ∈ ℕ can be found in the energy-conserving 
Vectorial Kernel Orthogonal Greedy Algorithm (VKOGA) 
implementation2 (Santin and Haasdonk 2021; Wenzel et al. 
2021).

For the actual calculation of the models for all IVDs, 
we apply this VKOGA algorithm to the preprocessed data 
with a stabilisation parameter of � = 0.05 . In particular, 
we run a 5-fold cross-validation to search for the best 
hyperparameters, precisely the best kernel width parameter 
� . As a search grid we used {�} ∈ {0.5, 0.7, 0.9, 1.2} . 
The maximal expansion size nmax of the model was set to 
nmax = 500.

3  Results

Both approaches from Sect. 2.2 and Sect. 2.3 were applied 
in the context of a digital human spine model to join the 
advantages of FE simulations of single tissue models and 
muscle-driven MB simulations with forward-dynamic 

(5)
kcf(x, z) ∶= − ∇x∇

⊤
z
k(x, z) ∈ ℝ

6×6,

⇒ kcf(x, z)𝜇𝜈 = − 𝜕x𝜇 𝜕z𝜈k(x, z) ,

(6)sn(x) =

n∑

i=1

kcf(x, xi)�i

Usn
(x) =

n∑

i=1

d∑

j=1

(
∇zk(x, z = xi)

)

j
(�i)j .

2 https:// gitlab. mathe matik. uni- stutt gart. de/ pub/ ians- anm/ ecvko ga

https://gitlab.mathematik.uni-stuttgart.de/pub/ians-anm/ecvkoga
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capabilities. At the example of a subject-specific anat-
omy, we built surrogate models of detailed FE IVD repre-
sentations, and implemented these in a MB thoracolumbar 
spine model (for generation of artificial training and test 
data, see Appendix D).

To evaluate the performance and accuracy of the kernel 
and polynomial modeling approach, we juxtaposed the 
different surrogate predictions with respect to the refer-
ence values gained using the underlying detailed FE IVD 
model. We started with an analysis of the models’ accu-
racy on the training data, followed by random six-DOF 
test displacements and ending with typical whole spine 
motions. This validation process is conducted exemplary 
for the L4| 5 IVD geometry but could analogously be 
transferred to any other intervertebral level.

Additionally, we provide a verification test for elastic 
surrogate models (exemplary on the new kernel approach) 
in Appendix F.

3.1  Accuracy on training and six‑DOF test data

All surrogate models were created using single, two- and 
random six-DOF force-displacement training data sets. Their 
performance, in terms of predicted force precision, will here 
be compared to the training data itself and an additional six-
DOF test data set. The reader is referred to Appendix D.1 
for details about the data generation. Model predictions are 
compared to the reference data from the detailed FE model 
for all polynomial and kernel surrogates of the L4| 5 IVD 
with respect to the average relative errors of force and torque 
values in Table 1.

For all surrogates, we found comparable relative errors 
throughout the different parts of the training data set. As 
expected, the second-order polynomial model showed the 
largest errors of on average 23.3% for forces and 16.9% for 
torques, followed by the third-order polynomial with 16.3% 
for forces and 15.9% for torques. The errors decreased with 
higher levels of polynomial order down to around 12.2% for 

Fig. 2  Comparison of single-DOF results for the detailed FE model 
of the L4  5 disc (black line) and the surrogates derived from it: ker-
nel (blue line) and polynomial approximation (in red: second-order 
dotted line, third-order dashed line, fourth-order solid line). The six 
reaction force and torque components are displayed as a function 
associated with their corresponding displacement DOF and act in 
the opposite direction, i.e., anterior displacement results in a posteri-
orly (AP) directed shear force, lateral displacement or rotation to the 

right (negative lateral displacement values or positive lateral rotation 
angles) produces left lateral shear forces or bending moments, respec-
tively, an axial compression (negative axial displacement) leads to 
tensile forces in the IVD, and a rotation about the caudo-cranial axis 
to a restoring force towards the relaxed position. Note that the pre-
load of the IVD in the zero-displacement position causes an asym-
metry in the compressive force values for positive and negative axial 
displacements
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forces and 9.6% for torques predicted by the fourth-order 
polynomial model. The lowest relative errors of, on aver-
age, 5.8% for forces and 6.5% for torques occurred using 
the kernel model.

A closer look at the single-DOF displacement 
trajectories, see Fig. 2, revealed that all models complied 
with the data and could be taken into consideration for 
use in biomechanical models. Only the deviations from 
the reference data, see Fig. 3, exhibited a clear difference 
between the IVD surrogate types. All models showed a 
similar pattern for lateral and anterior-posterior shear as 
well as for the axial rotation, whereas for lateral and frontal 
flexion and for compression, the fourth-order polynomial 
and kernel model were closer to the reference data, see 
Fig. 3.

Considering isolated force and torque components in the 
single-DOF simulations, we observed large relative errors in 
zero-crossing regions, i.e., when absolute values are small, 
across all surrogates and DOF. These errors decreased 
rapidly (but not monotonically) with larger excursions.

Polynomial models showed relative errors of 21.5%/ 
20.1%, 15.7%/ 15.2% and 11.8%/ 10.5% for the forces/ tor-
ques predicted by the second-, third- and fourth-order poly-
nomial on six-DOF test data. This was in the same range as 
the errors for the training data presented above. In contrast, 
for the kernel model, we saw a marked jump to 7.5% and 
8.1% in the averaged force and torque errors, respectively. 
Thus, we presume that kernel models tend to be very precise 
in regions close to the training data but loose accuracy fur-
ther away. This seems not to be the case for the polynomial 

Fig. 3  Deviations of the force and torque predictions of surrogate models from the reference data for single-DOF trajectories (compare Fig. 2)

Table 1  Average relative errors of predicted forces and torques (in 
% ) of the different IVD surrogate models (second-, third- and fourth-
order polynomial and kernel approximation) with respect to the FE 
measurements for single-DOF (1D), two-DOF (2D) and random six-
DOF (6D) force-displacement training data as well as unseen ran-
dom six-DOF data which was not used for model training but as test 
data (6D test). The errors were computed as the norm of the respec-
tive absolute error vector normalised by the reference force or torque 
amplitude. In simulations with an asterisk, force and torque errors 
were calculated only for movement trajectories with nonzero trans-
lational or rotational displacements, respectively, in order to avoid 
domination of the zero-displacement state in the relative error estima-
tion

1D∗ 2D∗ 6D 6D test

Second p Force 21.2 26.4 22.2 21.5
Torque 13.2 17.3 20.3 20.1

Third p Force 15.5 17.5 15.8 15.7
Torque 16.5 16.2 15.1 15.2

Fourth p Force 11.6 13.1 11.8 11.8
Torque 8.7 9.7 10.3 10.5

Kernel Force 4.8 6.6 5.9 7.5
Torque 6.3 6.7 6.4 8.1
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models at the example of mapping 6d elastic IVD responses. 
However, judging from this set of training and random test 
data, the kernel model outperforms all polynomial models, 
especially on the full training data set but also markedly for 
the six-DOF test data where it still exhibits about 30% lower 
errors as compared to the most accurate polynomial model 
in this study.

3.2  Accuracy for spinal bending movements

In the second part of the model analysis, we investigated 
the IVD model precision on specifically relevant movement 
trajectories for biomechanics exemplary for three bending 
motions: forward bending, lateral bending to the right, and 
lateral bending to the left. For this, we created artificial 
kinematic data for the entire spine stemming from MB 
simulations of the subject-specific spine with kernel 
surrogates included, see Appendix  D.2. The detected 
force-displacement data were not only applied to the 
detailed model to gain reference values but also to the 
three polynomial models to facilitate a comparison of the 
surrogate models’ accuracy on the same kinematic data.

For the forward and lateral bending motions, see Fig. 6, 
we observed a different model behaviour as seen before 

in Sect. 3.1. The performance of the surrogate models is 
depicted in Figs. 4, 9 and 10. First of all, the absolute val-
ues of forces and bending torques are lower as compared 
to in vivo measurements since head, neck and arm masses 
are neglected in the underlying NMS thoracolumbar spine 
model. However, this does not affect the surrogate model 
itself. Second, the relative errors were—on average—lower 
as compared to the six-DOF test data set, which can be 

Fig. 4  Kernel (blue line) and polynomial approximation predictions 
(in red: second-order dotted line, third-order dashed line, fourth-order 
solid line) of the three force and torque components for a forward 

bending movement trajectory in comparison with the reference data 
from the detailed FE model (black lines) for the same kinematics

Table 2  Average relative errors (in % ) of predicted forces and torques 
of all four surrogate models (second-, third- and fourth-order polyno-
mial and kernel approximation) for typical spine movements: forward 
flexion (FF), left (LLB) and right lateral bending (RLB). Kinematic 
data were generated using an individualised MB spine model in com-
bination with level-specific IVD kernel models

FF LLB RLB

Second p Force 7.0 7.8 20.7
Torque 9.3 10.2 6.6

Third p Force 3.7 4.2 4.4
Torque 17.8 15.0 11.6

Fourth p Force 6.8 5.6 5.5
Torque 9.0 6.6 5.2

Kernel Force 4.1 4.1 8.4
Torque 8.5 8.2 5.5
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attributed to the fact that there were no zero-crossings in 
the force and torque amplitude.

The mean relative errors varied a lot for the lower-order 
polynomials ranging from 6.6% to 20.7% for the second and 
3.7% to 17.8% for the third-order polynomial with the larg-
est errors occurring for the torque predictions. In contrast, 
the fourth-order polynomial and kernel model exhibited the 
most consistent relative errors of on average 6%/ 6.9% and 
5.5%/ 7.4% for force/ torque error, respectively, see Table 2. 
An additional analysis of the errors of single force com-
ponents and the measured elastic responses for the lateral 
bending can be found in Appendix G. Nevertheless, fourth-
order polynomial and kernel approximation seem to be com-
parably precise in the spine bending test cases for the L4| 5 
IVD. Both outperform the commonly used linear stiffness 
matrix significantly.

4  Discussion

To the best of our knowledge, this work is the first that 
combines the approach of creating a surrogate for a force 
potential with current sophisticated algorithms for nonlinear 
and high-dimensional force mapping in the context of 
biomechanics. By that, we present two novel surrogate 
architectures that intrinsically include the elastic nature 
of the IVD tissue: one based on kernel algorithms and 
one based on polynomial approximations. At the same 
time, we consider the large mutual impact of the different 
DOFs of an intervertebral joint onto their corresponding 
force and torque contributions. The resulting kernel and 
fourth-order polynomial models showed average relative 
errors of below 10% for all test and training data sets. 
Hence, when implemented in a MB simulation model, they 
can mimic the forces and torques of multiphasic, detailed 
IVD models onto the adjacent vertebral bodies with high 
precision compared to the second-order polynomial for 
the force potential. The latter corresponds, in fact, to the 
stiffness matrix of commonly used bushing elements. In 
this way, we are capable of simulating movements of the 
entire thoracolumbar spine at low computational costs. 
However, the usefulness of a surrogate depends largely on 
the appropriateness of its database. Alongside the quality of 
the different training and test data sets, we will discuss the 
biomechanical and methodological benefits and challenges 
of such surrogate models.

4.1  Biomechanical quality of the training data 
and elastic modelling approach

While it would be valuable to develop the surrogate models 
using in vitro results for a cadaveric joint, whereby multi 
DOF loading is applied to a single IVD to provide multi-axis 

loading data for mathematical modelling, this is not feasible 
nor realistic due to specimen fatigue, creep and sub-failure 
micro-damage. As a basis for data acquisition, we therefore 
decided to use a detailed FE IVD model that has already 
been used in the clinical environment in the context of sco-
liosis surgery (Little et al. 2008; Little and Adam 2011). Val-
idation of subject-specific osseoligamentous FE spine mod-
els including this IVD model has shown good agreement 
between experimentally measured stiffness and predicted 
stiffness for both joint level and overall spinal responses. 
Similarly, an analysis of the single-DOF force and torque 
predictions reveals a basic consistency with literature data 
(see Appendix E).

The generated surrogates shall serve as ideally elastic 
representations of the IVD responses. Since physiological 
IVD tissue has poroelastic as well as viscoelastic 
properties (Costi et al. 2008), the presented models can 
only approximate the IVD mechanics in a specific use 
case, i.e., under physiological loading conditions and 
strain rates. Consequently, the underlying FE model uses 
material parameters which are stiffer as compared to quasi-
static experimental setups (e.g., from Berkson et al. (1979) 
and Schultz et al. (1979)), where creep-effects reduce the 
measured forces and torques. Additionally, a physiological 
pre-load increases linearity of force-displacement relations 
(Gardner-Morse and Stokes 2003; Zhang et  al. 2020) 
which are nonlinear when starting in a relaxed state. Future 
representations of the IVD may include velocity dependent 
effects on stiffness and damping behaviour.

In this work, IVD surrogates were developed for the 
intervertebral level-, and subject-specific IVD mechanics 
for the anatomy of the VM (Spitzer et al. 1996)). Although 
it is known that the elastic responses of an IVD vary 
considerably interpersonally and with degeneration, these 
observations have rarely been quantified experimentally. 
Thus, subject-specific geometric differences, such as 
IVD conicity, are neglected in most MB spine simulation 
models, as there exists no scaling law for IVD forces on 
the adjacent vertebra endplates. Moreover, there is currently 
no non-invasive approach to prescribe mechanical soft 
tissue properties of subject-specific intervertebral discs. 
These facts restrict the IVD representations in NMS MB 
spine models to population-based and overly simplified 
models. Integrating surrogates of detailed, individualised 
IVD models into NMS models can partly overcome this 
challenge. We expect the level- and subject-specific IVD 
characteristics to substantially affect the load distribution 
determined in spine simulations as compared to population-
based stiffness matrices averaged over several spinal levels 
as in Meszaros-Beller et al. (2023).

In our approach, mechanical responses of the detailed 
IVD model only scale with the subject-specific geom-
etry while keeping the tissue stiffness parameters 
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constant—disregarding possible gender, ageing, or traumatic 
effects. Ideally, multidimensional force-displacement data 
comprising material parameters derived from healthy and 
degenerated tissue would be used to set up a parametrised 
model that can be adapted to the subject’s conditions. This 
is, however, not a limitation of the general methodology pre-
sented in this work.

The kinematics used for the comparison between different 
IVD modelling approaches was gained from a predictive 
simulation of a NMS MB spine model. Even though the 
generic baseline model, from which the individualised 
model was derived, forecasted internal loads that were in 
good agreement with existing data on IVD, muscle and 
ligament forces during forward bending, the resulting 
movement trajectory might differ from the subject’s actual 
kinematics for the same bending task. A different joint angle 
trajectory could possibly lead to areas where models perform 
differently, i.e., with higher or lower average relative errors. 
However, we do not anticipate any fundamental changes in 
our conclusions when applying other displacements to the 
models.

4.2  Challenges and benefits of the new 
methodology

For some detailed IVD models, it was not possible to collect 
data in the desired range of motion due to convergence 
issues of the FE numerics in the ABAQUS 6.14 solver. 
This was especially the case for very thin or conically 
shaped geometries and is expected to generally occur for 
degenerated thoracic and pathological IVDs. The different 
surrogate models for these IVDs were then trained with the 
same amount of data points but on a smaller displacement 
space. We initially intended to also model the L5| S1 IVD 
but since the FE simulations were restricted to a range 
below the compression levels reached during gravitational 
settling process, the MB simulations failed when including 
a L5| S1 kernel surrogate model into the individualised 
spine. Instead, we kept the bushing element for L5| S1 from 
Meszaros-Beller et al. (2023).

As described in Appendix D.1, we recorded data along 
trajectories starting from and returning to the starting point 
of zero displacements—therewith following a similar 
protocol as possible experimental data sets on coupled DOFs 
in the future. Thus, we find a data-rich area around this point. 
In contrast, only 200 displacement trajectories were used to 
detect forces in the entire 6d space resulting in data-sparse 
areas for the highly coupled DOF motions and specifically 
at the boundaries. The bending simulations, however, started 
from an equilibrated position under gravitational loads 
which is not equivalent to the zero-displacement position 
referred to as the initial state. This explains the slightly larger 
deviations from the detailed model at the beginning of the 

movement simulations (see Figs. 4, 9 and 10) as compared 
to the purely one-dimensional displacement predictions 
(Fig. 3). A more systematic scan of the 6d space enclosed 
by the physiological boundaries defined in Appendix D.1, 
or further data points would presumably improve model 
performances for unknown trajectories such as the spine 
bending motions. In particular, the kernel approximation 
could profit as it shows the only marked jump in relative 
errors from training to unseen test data probably due to the 
inhomogeneously distributed locations of the kernel centres.

We observed a systematic decrease in relative errors for 
an increasing polynomial order of the surrogates. However, 
the underlying algorithm uses tensor multiplications 
with tensors of the same order as the polynomial. This 
complicates the model development when adding terms of 
higher order to capture the high-dimensional coupling of 
DOFs. In contrast, kernel approximations can easily handle 
functions with high-dimensional inputs with calculations 
being based on common matrix multiplications.

The higher accuracy and improved practicality for 
6d fitting comes with an increasing number of model 
parameters. While the second-order polynomial has only 21 
independent values in the stiffness matrix and the 6 forces 
and torques in the zero-displacement state (in total 27), the 
third-order polynomial requires additional 56 parameters 
for the symmetric third-order tensor (83 in total), and a 
fourth-order polynomial needs additional 126 parameters 
to describe the symmetric fourth-order tensor (summing 
up to 209 independent parameters). The actual number of 
kernel surrogate parameters varies depending on the number 
of kernels used by the algorithm, which was limited to a 
maximum 500. For the L4| 5 kernel model, this was 399 
kernels with 6 parameters for the corresponding vectorial 
weighting factor plus one for the kernel width (in total 2,394 
independent model parameters). In the current work, the 
focus laid on including a given data set—here, the finite 
element model mechanics—into a multibody environment 
with the highest possible precision. Thus, number of model 
parameters played a minor role. However, a larger model 
complexity might cause higher computational cost, or be 
relevant for certain applications. This effort is—for both the 
polynomial and kernel model—orders of magnitude lower 
than the underlying finite element model, and reasonably 
small in our tests.

While kernel models perform excellently on the range 
of motion defined by the boundaries of the data set (see 
Appendix  D.1) and particularly on the training data, a 
limitation of the kernel surrogate models is its limited 
generalisation performance to unseen physical regimes of 
the data: the used Gaussian kernel is a localised function, 
and as all the recorded data lies in a bounded 6d box, the 
kernel surrogate model can only be expected to perform well 
within this box. Outside the boundaries, its performance will 
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likely deteriorate and approach zero for larger excursions. 
This can be seen as a benefit of the polynomial models, 
as they actually can suitably predict growing forces and 
torques for increasing displacements, even outside the box 
of collected data points. A future extension of this project 
would be to combine kernel and polynomial approaches 
in order to benefit from the extrapolation capabilities of 
polynomial models and, at the same time, from the precision 
of kernel models especially in data-rich regions.

Also, it seems worth investigating further strategies 
to improve the accuracy of the surrogates. Higher-order 
polynomials or different kernel types, e.g., polynomial 
kernels, might be an alternative choice for the mostly 
monotonous force-displacement curve.

In Appendix F, we present a test to verify the elastic 
soft-tissue models with respect to energy conservation. 
The results demonstrate that surrogates developed here do, 
indeed, conserve energy—in contrast to previously presented 
approaches such as Haasdonk et al. (2021). This analysis 
also shows that although the training data were gained 
with an ideally elastic FE IVD model, the surrogates with 
independently fitted output forces and torques are not fully 
elastic. Even if computed net work was low for the non-
conserving force in the chosen example, errors can add up 
over time particularly when several of such energy sinks or 
sources are implemented. This highlights the necessity to 
incorporate fundamental physical principles in the surrogate 
development process.

5  Conclusion

With the presented work, we demonstrate a way to design 
and develop surrogate models for multidimensional data sets 
of the elastic responses of soft tissues such as IVDs. By 
deriving all force and torque components from one single 
force potential, we ensure the conservation of mechanical 
energy in the modelled material. In combination with greedy 
kernel and polynomial approximations of detailed FE IVD 
models, we gained precise models capable of predicting 
the nonlinear and coupled force-displacement behaviour of 
IVDs in a MB spine simulation. Using this approach, it is 
also possible to increase the level of individualisation in 
subject-specific MB spine models with respect to level- and 
subject-specific IVD characteristics.

Appendix A: Kernel methods

In the following, we briefly introduce kernel methods 
(Wendland 2005; Fasshauer and McCourt 2015) with a 
focus on sparse greedy kernel models. The notion kernel 
methods comprises useful machine learning techniques 

and high-dimensional scattered data approximation. These 
methods work solely based on the data and are especially 
independent of the data distribution.

The key ingredient is a kernel k, which is a symmetric 
function k ∶ Ω × Ω → ℝ on a given domain Ω . Here, we 
will use Ω ⊂ ℝ

d with d = 6 , although kernels are generally 
applicable in general space dimensions d ∈ ℕ . A well-
known kernel is the Gaussian kernel, which is given by

with a kernel width parameter 𝜖 > 0 . Associated with a kernel 
and a data set (XN , YN) = ({xi}

N
i=1

, {yi}
N
i=1

) ⊂ (Ω ×ℝ)N , we 
define the kernel matrix KXN

 as

Only if this kernel matrix KXN
 is strictly positive definite 

for any choice of pairwise distinct data points {xi}Ni=1 , the 
kernel is called positive definite. This is the case for the 
Gaussian kernel. In this case, the mathematics gives rise to 
an associated space of functions, the so-called Reproducing 
Kernel Hilbert Space (RKHS) Hk(Ω) . Inside this space of 
functions, a unique interpolating function sN to the data set 
(XN , YN) can be found. In particular, a representer theorem 
(Kimeldorf and Wahba 1970; Schölkopf et al. 2001) states 
that this interpolant sN can be expressed as

where the coefficients � = (�i)
N
i=1

∈ ℝ
N can be calculated 

with help of the kernel matrix KXN
 and the target value vector 

y = (yi)
N
i=1

 by solving the linear equation system

which arises from the interpolation conditions sN(xi) = yi 
for all i = 1, ..,N . Provable error estimates show a rapid and 
precise approximation with few expansion points (Wendland 
2005; Santin and Haasdonk 2017; Wenzel et al. 2023).

The same holds for the here applied curl-free Gaussian 
kernel (see Sect. 2.3, Eq. (5)), where the kernel interpolant 
takes a similar form as in Eq. (8), though with vector-valued 
coefficients �i (see Eq. (6)). Again, the coefficients �i can 
be determined from the interpolation conditions sN(xi) = yi , 
which leads to a linear system of size dN × dN  similar to 
Eq. (9).

The computation of the kernel matrix KXN
 and a 

straightforward solving for the coefficient vectors �i of the 
equation system Eq. (9) have a cost of order O(d2N2) and 
O(d3N3) , respectively. This is prohibitively expensive for 
large data sets, as in the case of the simulation of the IVDs 
(see Appendix D). Thus, we employ greedy algorithms that 
result in sparse interpolants sn with n ≪ N  by selecting a 

(7)k(x, z) = e−�
2‖x−z‖2

2 ∈ ℝ, x, z ∈ ℝ
d,

(KXN
)ij = k(xi, xj), 1 ≤ i, j ≤ N.

(8)sN(x) =

N∑

i=1

�ik(x, xi) ,

(9)KXN
� = y,
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proper subset Xn ⊂ XN of the training data. These algorithms 
start with an empty interpolation set X0 ∶= � and iteratively 
add another interpolation point as Xn+1 ∶= Xn ∪ {xn+1} 
according to a selection criterion �(n) , i.e.,

A variety of selection criteria allows to balance between, 
e.g., accuracy and stability of the resulting model, see 
(Wenzel et al. 2021, 2023).

Appendix B: Definition of joint reference 
frames

In the current study, we adapted the joint body configura-
tion and the VB and joint frame definition of the individual-
ised model from Meszaros-Beller et al. (2023) (Appendices 
1-3). Accordingly, joint reference frames Oi

JNT
 (i denotes the 

intervertebral level from L5| S1 to T1| 2 when enumerating 
joints) were chosen to be located at the arithmetic mean of 
the geometric centres of sub- and superjacent VB endplates, 
the EPCs, and their orientation set to the average orienta-
tion of both adjacent endplates. Two corresponding joint 
reference frames of each intervertebral joint, one fixed to 
the parent and the other fixed to the child body, coincide in 
the initial position. Thus, the location of the joint reference 
frames between their superjacent VB with inferior EPC at 
P
inf,i+1

EPC
 and its subjacent VB with superior EPC at Psup,i

EPC
 in 

the initial position is given by

where i ranges from sacrum (S1) to the first thoracic (T1) for 
VBs and respective EPCs.

When determining the orientation of Oi
JNT

 , we calculate 
the average orientation of the coordinate systems of both 
adjacent endplates, Oinf,i+1

EPC
 and Osup,i

EPC
 , such that the rotation 

matrix from Osup,i

EPC
 to Oi

JNT
 is exactly the inverse matrix to 

describe the rotation from Oinf,i+1

EPC
 to Oi

JNT
 . In general, a rota-

tion matrix can fully be parameterised by three mutually 
independent quantities. These quantities may be quaternions 
or axis-angle representations with two independent quanti-
ties for the normalised rotation axis and one for the rotation 
magnitude. Alternatively, a set of three angles is used which 
can be of Cardan or Euler type, a rotation vector—related to 
axis-angles—or, with a deeper biomechanical interpretation, 
anatomical angles (Pearcy and Tibrewal 1984) or projected 
angles onto specific planes, e.g., sagittal, coronal and hori-
zontal plane. In contrast to most biomechanical modelling 
approaches of the IVD based on Euler or Cardan angles 
(Christophy et al. 2013; Karajan et al. 2013), we decided 
to use the angle-axis representation for the computation of 

xn+1 ∶= arg maxx∈Ω�
(n)(x).

PJNT,i = (Pinf,i+1

EPC
+ P

sup,i

EPC
)∕2 ,

joint orientations and the related rotation-vector notation for 
rotational displacements in the joint because of four aspects: 
First, the angle-axis and rotation-vector conventions have 
a unique solution when restricting to rotation magnitudes 
below 180◦ , which is an appropriate assumption the case 
in the context of the intervertebral joint. Second, these rep-
resentations are biomechanically meaningful as the angle 
vector immediately gives insight into the rotation axis of the 
intervertebral joint and the overall magnitude of the rotation 
angle. Third, both are comparably simple to be transposed 
since there are no distinct mutual dependencies between the 
three angle components. This is especially relevant when 
transferring models from one simulation tool to the other, 
where the order of unit axis or, in case of Euler and Cardan 
angles, the order of consecutively executed rotations around 
the single unit axes might be different. Fourth, they are 
closely related to quaternions, which eases the transforma-
tion of torques derived from a force potential into Cartesian 
torque vectors (see Appendix C).

Using the angle-axis representation for the relative ori-
entation of Osup,i

EPC
 with respect to Oinf,i+1

EPC
 , we find Oi

JNT
 by 

halving the rotation magnitude. The detailed procedure is 
presented in the following. We calculate the rotation axis t 
and angle � representing the rotation matrix from Osup,i

EPC
 to 

O
inf,i+1

EPC
 , Rsup,i→inf,i+1 = (Rsup,i)

−1
⋅ Rinf,i+1:

where Tr(Rsup,i→inf,i+1 ) is the matrix’ trace and  T the skew-
symmetric matrix of the rotation axis t = (tx, ty, tz),

Then, the orientation Oi
JNT

 relative to Osup,i

EPC
 is found by rotat-

ing about the same axis t as above by �∕2 , and can be calcu-
lated following Rodrigues’ rotation formula:

with I denoting the identity matrix.
Afterwards, the rotation matrix Rsup,i→JNT,i given in local 

coordinates of the subjacent vertebral endplate is back-
transformed into the global reference frame to receive a 
description of the average coordinate system orientation in 
the global reference frame, RJNT,i = Rsup,i ⋅ Rsup,i→JNT,i.

� = arccos

(
Tr(Rsup,i→inf,i+1) − 1

2

)

T =
Rsup,i→inf,i+1 − (Rsup,i→inf,i+1)

−1

2 ⋅ sin �
.

T =

⎛
⎜
⎜
⎝

0 − tz ty
tz 0 − tx
−ty tx 0

⎞
⎟
⎟
⎠

.

Rsup,i→JNT,i =I + sin
(
�

2

)

⋅ T

+
(

1 − cos
(
�

2

))

⋅ (T)2
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Finally, we want to take the note that the same definition 
of joint position and orientation was used as reference frame 
when recording the force-displacement data, see Appen-
dix D.1. We therefore defined the surrogate reference frames 
to coincide with the joint reference frames also in the MB 
simulations, see Appendix D.2.

Appendix C Conservative momentum 
for rotation‑vector angles

In order to create surrogate models for the force potential 
(the potential energy) of an IVD, and to correlate its 
derivatives to the forces and torques on the vertebra, the 
methodology used in Metzger et al. (2010), O’Reilly and 
Srinivasa (2002) and Senan and O’Reilly (2009) is followed. 
In contrast to these works, which are based on the general 
theory on moment potentials (Simmonds 1971, 1984) and 
its application to rotations parametrised by quaternions and 
Euler angles, we here elaborate the equations for the use 
of a rotation-vector notation as justified in Appendix B. 
That means that our force potential U = U(r,�) depends 
explicitly on the translational displacements r in the 
intervertebral joint and on the rotation-vector � = (x4, x5, x6) 
describing the rotational displacement. The rotation vector 
itself includes information about the magnitude Φ = ‖�‖ of 
the rotation about the normalised axis u = �∕Φ.

The change of potential energy when moving along a 
path is described by the following relation, where the time 
dependency of the force potential is defined by the work 
performed in this time against the translational displacement 
F ⋅ ṙ and the rotational displacement M ⋅ � , i.e.,

with translational velocity ṙ and rotational velocity vector � . 
Without an explicit time dependency of U, we can rewrite 
the left hand side into

From the first term, we identify F = −
�U

�r
 . In order to 

calculate the torque M from the gradient of the force 
potential M� = −

�U

��
 , we must re-formulate the second term. 

For this, we do a brief excursion developing �̇.
The time derivative of the angle vector can be accessed 

via the time derivative of the corresponding quaternion 
q = (cos(Φ∕2), u ⋅ sin(Φ∕2)) ,  which is expressed as 

(10)−U̇(r,�) = F ⋅ ṙ +M ⋅ � ,

(11)−U̇(r,�) = −
𝜕U

𝜕r
⋅ ṙ −

𝜕U

𝜕�
⋅ �̇ .

quaternion product of the angular velocity and the 
quaternion itself:

Reformulating left and right side of Eq. (12), we get

The scalar and vector components of Eq. (13) yield the two 
relations

Finally, with [� − u(� ⋅ u)] = u × (� × u) , we can derive

for all Φ ≠ 0 . Note that u is not defined if Φ = 0 , and we set 
�̇ = � in this case.

Returning to Eq. (11), we rewrite the term that accounts for 
the implicit time dependency of U through the rotation vector 
and insert Eq. (17). Comparing the derived term with Eq. (10) 
leads us to a formulation of the torque vector M:

Lastly, we write Eq.  (18) in matrix form such that 
M = B ⋅M� = −B ⋅ �U∕��:

(12)
dq

dt
=

1

2

(
0

�

)

q.

(13)

(
− sin(

Φ

2
) ⋅

Φ̇

2

u̇ ⋅ sin(
Φ

2
) + u ⋅ cos(

Φ

2
) ⋅

Φ̇

2

)

=
1

2

(
−� ⋅ u ⋅ sin(

Φ

2
)

� ⋅ cos(
Φ

2
) + � × u ⋅ sin(

Φ

2
)

)

.

(14)Φ̇ = � ⋅ u

(15)
2 ⋅ u̇ sin(

Φ

2
) = � × u ⋅ sin(

Φ

2
)

+ [� − u(� ⋅ u)] ⋅ cos(
Φ

2
) .

(16)�̇ =Φ ⋅ u̇ + Φ̇ ⋅ u

(17)
=
Φ

2

[

� × u + u × (� × u) ⋅ cot
(
Φ

2

)]

+ u ⋅ (� ⋅ u)

(18)

−
𝜕U

𝜕�
⋅ �̇ = M�

⋅

[

� ⋅ (� ⋅ u) +
Φ

2
(� × u

+u × (� × u) ⋅ cot
(
Φ

2

))]

=� ⋅

[

(M�
⋅ u) ⋅ u +

Φ

2
⋅ u ×M�

+
Φ

2
cot

(
Φ

2

)(
M� − u ⋅ (M�

⋅ u)
)]

= � ⋅M .
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with B = B1 −
1

Φ2
⋅

(

1 −
Φ

2
⋅ cot

(
Φ

2

))

⋅ B2.
Eq.  (19) holds true for all Φ ≠ 0 . The cotangent  

term, however, can cause numerical problems for Φ ≈ 0 .  
I t  is  therefore recommended to approximate 
cot

(
Φ

2

)

=
2

Φ
−

Φ

6
−

Φ3

45⋅8
 for small rotational displacements. 

With the first two terms, we already get a negligible discrep-
ancy of only 1.5 ⋅ 10−11 to the theoretical value of cot

(
Φ

2

)

 
for Φ = 0.1◦ . For all three terms, pure numerical errors of 
O(10−13) occur. Due to further multiplications in the equa-
tion for B with Φ , the first two terms are sufficient to reach 
analytical deviations of or below the order of numerical 
errors. The low-angle approximation of B is, thus, 
B = B1 − B2∕12.

If we transform our data set for recorded torque output 
vectors values into M� = B−1

⋅M , we can derive the surro-
gate models for pure (negative) first-order partial derivatives 
of U with respect to angle components analogue to the three 
force components. Analogously, when predicting torques 
with a surrogate for the potential U, we have to multiply 
them with matrix B in order to achieve a torque vector given 
in Cartesian coordinates.

Appendix D: Generation of artificial data 
for training and evaluation of subject‑ 
and level‑specific surrogate IVD models

In our previous study (Meszaros-Beller et al. 2023), we took 
a first step towards individualising a fully articulated generic 
thoracolumbar spine model (Hammer et al. 2022). For this, 
we extracted landmark positions of vertebra endplates for 
all spinal levels from the first thoracic vertebra T1 to the 
last lumbar vertebra (L5) and the pelvis from computed 

(19)
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tomography scans of the Visible Male (VM) geometry 
(Spitzer et al. 1996). While Meszaros-Beller et al. (2023) 
used this geometric information to determine vertebra posi-
tions and orientations as well as ligament and muscle attach-
ment sites for a MB spine model, we here created a detailed 
osseoligamentous FE model on the basis of the same land-
mark data set to complement the existing MB model in terms 
of individualisation of IVD characteristics. We thereby fol-
lowed the procedure and adopted the model parameters from 
Little and Adam (2015). The osseoligamentous FE model 
served as a database for the training of IVD surrogates, which 
then have been implemented in the MB spine model.

In Appendix D.1, we describe the recording of multidi-
mensional force-displacement data of all IVDs from the first 
thoracic (T1| 2) to the last lumbar (L4| 5) interspinal level. 
This way, we investigate the coupling of the elastic IVD 
responses in all six dimensions. Based on this data set, we 
created kernel models for each spinal level, which are capa-
ble of mimicking the multiaxial coupling in the mechanical 
characteristics, see Sect. 2.3.

Alongside with the kernel models, in order to compare 
their accuracy with commonly used bushing elements or low 
order polynomial approximations, we created second-, third- 
and fourth-order polynomial models for the L4| 5 disc force 
potential as described in Sect. 2.2 based on the same training 
data set. Note that the second-order polynomial is equivalent 
to a common bushing element, i.e., a linear, symmetric 
stiffness matrix, with an offset force at the zero-displacement 
position of the joint. This offset can be interpreted as an 
initial displacement between the two bushing reference 
frames with respect to the relaxed state of the IVD, which 
is typically reached when both bushing frames coincide. 
The third- and fourth-order polynomial models for the force 
potential correspond to coupled second- and third-order 
polynomials, respectively, for the force and torque vectors 
as the order reduces by one according to Eq. (1).

Finally, the level-specific kernel models were 
implemented in the corresponding MB model of the VM 
geometry model in order to predict the subject’s elastic IVD 
responses during forward and lateral flexion movements, see 
Appendix D.2.

D.1 FE simulations of subject‑ and level‑specific IVDs

Starting from the geometric information of the VM 
spine anatomy gained in Meszaros-Beller et al. (2023), 
particularly the vertebral body (VB) shape, location and 
orientation, the entire spinal column from L5 to T1 was 
meshed using a custom python-script VirtuSpine to create 
an osseoligamentous FE model of the subject-specific spine 
according to the workflow described in Little and Adam 
(2015). The articulation of space enclosed by adjacent VBs 
was filled by detailed IVD models whose outer geometry 
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was extrapolated from its adjacent vertebral endplates. By 
considering the vertebra endplates to match with the IVD 
endplates, every IVD was parameterised by eight points in 
each vertebra endplate plane. The centre of every endplate 
was chosen as a distinguished point and called endplate 
centroid (EPC). Furthermore, the endplate orientation was 
defined by its angles in the sagittal and the coronal plane as 
well as the axial rotation angle in the endplate plane.

Materials and parameters were adopted from Little 
and Adam (2015) and applied to all spinal levels. Being 
comprised of a hydrostatic inner part and a hyper-elastic 
outer ground matrix, the detailed IVD model accounted 
for the different mechanics of the nucleus pulposus and 
the annulus fibrosus, respectively. Embedded linear elastic 
‘rebar’ elements represented the collagen fibres within 
the disc. Thus, the IVD’s biomechanical behaviour varied 
with interspinal level and subject-specific anatomy due to 
their individual dimensions that were dependent upon their 
corresponding endplate positions, orientations and shapes. 
Note, with this approach only the geometry determined 
the IVD characteristics while general material parameters 
remained unchanged.

As we were focussing on the IVD dynamics, the sixteen 
thoracolumbar IVD parts were segregated from the osseolig-
amentous FE model for further investigation. Every IVD was 
rotated and shifted into the average coordinate system of its 
endplates according to Appendix B, which is equivalent to 
the corresponding intervertebral joint coordinate system in 
the MB model of the VM, see Meszaros-Beller et al. (2023) 
(Appendix C). This way, the displacement loads, applied to 
the IVD endplates later, were already specified in the form 
of generalised coordinates in the kinematic chain. Further, it 
ensures comparable load scenarios between all discs in the 
subsequent simulations. On the other hand, it implies that a 
rotation about, e.g., the IVD’s local left-right-axis will not 
necessarily contribute to the global spinal forward flexion 
in the same way as local and global reference frames do 
generally not match.

We performed FE simulations applying loads onto 
single IVDs using the ABAQUS 6.14 software. Based on 
the assumption of rigid vertebrae in the MB approach, 
we considered the endplates to be non-deformable and 
connected all nodes on every endplate rigidly to their 
respective EPCs. Hence, the shape of all endplates was kept 
constant independent of the load applied. During all load 
steps, we fixed the inferior endplate, indicated by defining 
the HOLD NODE at the lower EPC. Displacement loads 
were applied to the LOAD NODE located at the arithmetic 
mean of both IVD EPCs in the initial position, i.e., the 
origin of the enplates’ average coordinate system. The 
LOAD NODE was rigidly connected to the superior EPC 
via a beam connector (see Fig. 5). Displacements denoted 
translations and rotations of the LOAD NODE with respect 
to its initial position in the intervertebral joint coordinate 
system. Additionally, the induced response forces of the IVD 
tissue onto its superior vertebra are recorded as summed 
forces—acting at the entire superior endplate—at the LOAD 
NODE. Due to the rigid link of the LOAD NODE to all 
nodes on the upper endplate, the acting force is identical in 
every of these nodes while the response torque only differs 
with lever arm.

As IVDs have an intrinsic pressure, we numerically 
increased the nucleus pulposus pressure by 0.25 kPa in 
twenty increments in the first load step of all simulations as 
in Little and Adam (2015), and enforced the IVD to return 
into its initial position in a second step before applying 
the displacement loads. Henceforth, we refer to this IVD 
state and geometry, rotated into the IVD’s respective joint 
coordinate system, and pre-strained by an intrinsic nucleus 
pressure, as the initial state or zero-displacement state of an 
IVD, which serves as the starting state for all following load 
scenarios. Note that IVDs in our approach are not in their 
rest state in the initial state.

To capture the focussed multiaxial, nonlinear and coupled 
mechanical responses, we recorded the six displacements 
and the accompanying six IVD response forces onto the 
superior vertebra not only during movements along 1) single 
DOFs, but also for 2) two coupled DOFs and for 3) motions 
in all six dimensions simultaneously. All analyses were 
performed as static load steps with direct user control of 
the intervertebral displacement and constant incrementation 
through the step. Every load scenario consists of a 
simulation starting in the initial state and ending at the target 
displacement vector, with linearly interpolated increasing 
displacements in every increment, followed by a equidistant, 
stepwise linear reduction back to the initial state.

Displacement loads were applied in a symmetric bound-
ing box centred in the initial state with maximum displace-
ment values mi for every DOF i chosen such that the FE 
simulations cover most of the physiological range of motion 
of an intervertebral joint, and such that the simulations can 

Fig. 5  Definition of specific nodes in the level-specific detailed IVD 
models. The inferior endplate was kept fixed over time by placing the 
HOLD NODE at the inferior EPC. Displacement loads were applied 
to the superior endplate by a rigid beam connector the LOAD NODE, 
which was positioned at the arithmetic mean of both adjacent EPCs in 
the initial state



 M. Hammer et al.

still converge. Precisely, the simulations were confined to a 
maximum displacement of ±3 mm for anterior-posterior and 
lateral translation, the axial compression and extension were 
varied up to ±20% of the disc height, and we set the upper 
and lower boundaries for each rotational motion (frontal 
flexion-extension, lateral flexion-extension and axial rota-
tion) to ±9◦ according to reported physiological limits from 
(Newell et al. 2017; Pearcy and Tibrewal 1984; Wang et al. 
2013). This covers the full physiological range for all DOF 
except for the flexion-extension axis. According to Pearcy 
and Tibrewal (1984), the flexion range of motion is on aver-
age 15◦ in all lumbar levels with highest measured values 
of about 20/ 21◦ degrees. Subtracting the smaller value for 
the maximum extension, the flexion angle can still reach on 
average 13◦ in the L4| 5 segment. For our force-displacement 
data base, we only used ±9◦ around the initial position which 
is 4 ◦ less than the full flexion angle. The reduced range was 
due to convergence issues with the FE model. Note that for 
overly thin thoracic and wedged IVDs the loading scenario 
had to be adapted, meaning that the mi were reduced, when-
ever the FE simulations were not converging. In the analysis 
of the VM disc mechanics, this was especially the case for 
the T4| 5 IVD.

In load scenario 1), only one component i of the interver-
tebral joint state vector x was altered while the remaining 
five components were fixed to zero. The value of the 1d 
displacement was increased up to the edge of the boundary 
box, by using increments of 1% of the target value to gain 
very dense training data along these trajectories.

The twelve single-DOF simulations of load scenario 1) 
imitate pure translations along and rotations about single 
unit axes up to their respective maximum value mi or down 
to their minimum value defined by (−mi) . Executed with 
100 increments each, this data set comprises 1201 different 
data points including the initial reference position. This load 
scenario allows to compare predicted with experimentally 
measured IVD force-displacement relations.

For every combination of two DOFs in load scenario 2), 
20 simulations with ten increments each were performed 
with end positions ±(mi,±mj) , ±(mi,±mj∕2) , ±(mi∕2,±mj) , 
±(mi,±mj∕3) and ±(mi∕3,±mj) (for i < j ), resulting in, in 
total, 3000 additional data points.

Furthermore, we acquired data for six-DOF motion 
trajectories in load scenario 3) using the MATLAB func-
tion rand to generate 200 random end positions in the 6d 
bounding box defined by the maximum absolute values mi . 
Again using 10 increments per simulation, we gained 2000 
independent data points. Before processing the data further, 
duplicate entries in the data set, stemming from the back-
ward simulations, were deleted right away. Thus, in sum, 
6201 different data points were recorded for every of the 16 
IVDs and used to train the surrogate models. Additionally, 

we repeated the load scenario 3) with another 200 random 
6d end positions in order to get a separate set of test data to 
validate the surrogate models in Sect. 3.1.

Starting from and ending at the initial position in every 
single load case results in a data-rich region around the 
zero displacement position. Consequently, we can expect 
the trained surrogate to be most precise in this state, 
which is also the initial position for the settling process 
under gravitation in our NMS MB simulations. We would 
like to note that neither the number of increments nor the 
movement velocity in the FE simulation had an influence 
on the IVD responses as the underlying FE model is based 
on an ideally elastic material. This implies that all recorded 
forces and torques do only depend on the actual translational 
and rotational displacement.

D.2 Subject‑specific thoracolumbar spine simulation 
to generate kinematic test data

We adopted the subject-specific MB model of the thora-
columbar spine for the VM anatomy from Meszaros-Beller 
et al. (2023) including all muscle and ligament threads as 
well as their parameters. This model was derived for the 
use with the MB simulation tool demoa (Schmitt 2022) and 
is already individualised compared to its baseline generic 
spine model (Hammer et al. 2022) with respect to the skel-
etal geometry and characteristic muscle and ligament lengths 
scaled to subject-specific attachment sites. In this work, we 
took the individualisation one step further by implementing 
level-specific IVD models between L5 and T1 taking into 
account the subjects’ geometry.

The complex, nonlinear characteristics of the detailed 
IVD models was condensed in the surrogates to the 
biomechanical function of an IVD in the spinal column. 
Particularly, this comprised the ability to resist the 
gravitational load and to restrict the range of motion of 
the—otherwise free—intervertebral joint by exerting 
response forces onto the endplates of its adjacent vertebrae. 
It was, therefore, sufficient to implement IVDs as force-
torque-functions depending on the displacements in the 
intervertebral joint. In the acquisition of training data for the 
surrogate models (see Appendix D.1), we already ensured 
that the IVD reference frame located in the initial state of the 
LOAD NODE is equal to the corresponding joint reference 
frame (see Appendix B for details about the definition of 
local reference frames). Thus, we directly replaced the 
formerly used bushing elements by the developed kernel 
surrogate models from Sect. 2.3. Rotational displacements 
in the joints, typically parametrised by Cardan angles in 
demoa, were converted into an angle-vector convention 
to be in accordance with the angle description used as 
inputs for the surrogate models in the training data set. 
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Predicted elastic response forces and torques were applied 
to the superior endplate and—with opposite sign—to the 
inferior endplate at the joint coordinate fixed to the superior 
endplate (analogue to the LOAD NODE in Appendix D.1) 
and continuously recalculated during the forward-dynamic 
MB simulations.

The thoracolumbar MB spine model with individualised 
IVDs is, afterwards, actuated such that it performs forward 
and lateral bending movements in order to investigate the 
accuracy of the surrogate models in typical spinal motions. 
These purely muscle-driven simulations were governed by 
a hybrid controller (Bayer et al. 2017), where the muscle 
stimulation u is determined by an open-loop contribution 
in combination with a feed-back mechanism regulating the 
muscle’s fibre length lCE to reach a target fibre length � . A 
full set of such target fibre lengths for all muscles in the 
system defined a target position. 

As in Meszaros-Beller et al. (2023), we chose the gain factor 
� = 2.0 and uopen = 0.04 for back muscles and uopen = 0.02 
for all abdominal muscles in combination with an event-
based switch between different target poses. The feedback 
controller was normalised by the muscle’s optimal fibre 
length lCE,opt , and weighted by the factor w = 0.25 through-
out this study. The calculation of target lengths � is described 
in Rockenfeller et al. (2021) in more detail.

We performed whole spine simulations (see Fig. 6) fol-
lowing the procedure described in Meszaros-Beller et al. 
(2023) for the steady-state simulation to gain the equili-
brated upright state under gravitational load and for the 
forward bending motion—merely with kernel surrogates 
included instead of generic bushing elements. As before, the 
initial position determined the zero-displacement state of all 

u = uopen + w ⋅ � ⋅
lCE − �

lCE,opt

intervertebral joints, whereas the actual bending simulation 
starts from the equilibrated state. We performed a forward 
flexion with 2◦-increments of lumbar angle in the intermedi-
ate target positions until a lumbar angle of 20◦ was reached 
with respect to the equilibrated state ( �flex

lum,0
= 20.2◦ ). 

Hereby, the lumbar angle was defined as the angular dif-
ference between the local cranial axes of the lowest (L5) 
and first lumbar vertebral body (L1) when projected onto 
the sagittal or frontal plane to determine the flexion or lat-
eral angle, respectively (Meszaros-Beller et al. 2023). The 
simulations were stopped after the peak bending angle was 
reached.

In addition to the forward bending motion, we simulated 
left and right lateral bending starting from the settled posi-
tion, in which we detected a slight tilt to the right with a 
lateral lumbar bending angle of �lat

lum,0
= 3.4◦ . Again, each 

lateral bending simulation started from the equilibrated 
position, and we chose target positions in 2◦-increments of 
the lateral lumbar angle up to a maximum change in lateral 
lumbar bending angle of ±14◦ with ‘+’ indicating motions 
to the right and ‘–’ indicating left lateral bending. Note 
that the lumbar lordosis angle �lum as a typical representa-
tive for the evaluation of spinal curvature was measured 
between the vertebrae L1 and L5 using the angular differ-
ence in local longitudinal axis orientation, when projected 
onto the sagittal plane in case of the forward flexion angle 
�flex
lum

 and projected onto the frontal plane to gain the lateral 
flexion angle �lat

lum
.

During all three bending simulations, we detected 
rotational and translational displacements as well as reac-
tion torques and forces calculated by the kernel surrogate 
in the L4| 5 IVD every 10 ms. Afterwards, the recorded 
displacements were applied to the detailed FE model in 
ABAQUS 6.14 with 10 increments to reach every position. 
The results of the detailed model were used as reference 
values to determine the precision of the surrogate models.

(a) equilibrated state (b) forward (c) right lat. (d) left lat.
bending bending bending

Fig. 6  Forward (b) as well as right (c) and left (d) lateral bending simulations of the thoracolumbar spine model started from an equilibrated 
state (a) under gravitational loads
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Appendix E: Comparison of detailed IVD 
model predictions with experimental data

The personalised and level-specific IVDs are a key feature 
accomplishing the geometric individualisation process of 
the generic model started in Meszaros-Beller et al. (2023). 
Using a detailed FE model to record coupled 6d data 
facilitates us to capture multidimensional kinetic coupling 
in the surrogate models. However, the biomechanical 
quality of the surrogates and, therewith, the significance 
of the MB simulation results depends on the validity of 
the underlying detailed IVD model. We, thus, evaluated 
the force-displacement relations of our subject-specific 
detailed model of the L4| 5 disc with experimental values 
from cadaver studies in Fig. 7. Note that even though 
the elastic response of the IVD was determined on the 
individualised geometry of the Visible Male (Spitzer et al. 
1996), its lumbar region can be considered healthy with a 
disc height of 16.6mm (measured between the geometric 
centres of the adjacent endplates in the joint reference 
frame, see Appendix B).

The obtained elastic IVD responses compare reasonably 
well with the experimental data of IVD reaction forces and 
torques (Tencer et al. 1982; Berkson et al. 1979; Schultz 
et al. 1979; Lin et al. 1978; Zhang et al. 2020) and stiffness 
(Costi et al. 2008) (see Fig. 7). This especially applies in the 
range of joint angles occurring in the bending movement 
simulations analysed in Sect. 3.2). However, particularly the 
shear forces are higher as compared to quasi-static data from 
Tencer et al. (1982), Berkson et al. (1979), Schultz et al. 
(1979) and Lin et al. (1978). In line with observations by 
Costi et al. (2008) and Amin et al. (2016) about a velocity 
dependent increase in stiffness of IVD and functional spinal 
unit, the material parameters of the detailed FE model use 
larger stiffness values corresponding to physiological move-
ment speeds.

Note that the predicted IVD responses of the best poly-
nomial (fourth order) and kernel surrogates differ from the 
detailed model. This has, however, only a minor effect on the 
biomechanical validity of the surrogates as deviations from 
their reference model are small compared to the absolute 
values, see Figs. 2 and 3.

Fig. 7  Comparing elastic responses of a subject-specific detailed FE 
model of the L4  5 disc (red line) against experimental data from liter-
ature (black circles, crosses and asterisks) (Tencer et al. 1982; Berk-
son et al. 1979; Schultz et al. 1979; Lin et al. 1978), linear regressions 
to velocity dependent disc responses for two different movement fre-
quencies in the plotted displacement range (Costi et al. 2008), and a 
recent meta-regression analysis (solid black line) (Zhang et al. 2020). 

The intervertebral joint displacements occurring during the spinal 
bending motions described in Appendix  D.2 are indicated by grey 
shaded areas. Note that we assumed a constant compressive load-
ing of 155 N for the regression fit of a L4  5 disc. This value equals 
the compressive force acting in the zero-displacement state of the 
detailed model
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Appendix F: Verification of elastic surrogate 
models

In order to verify the development algorithm and 
implementation of the newly developed surrogates, we 
evaluated the gain and loss of energy. For this, we calculated 
the work done when travelling along a closed path through 
the 6d space of the intervertebral joint displacements, 
starting and ending at the same position. The net work done 
on this path should be zero for ideally elastic models (see 
Sect. 2.1).

Here, we exemplary depict the procedure for a 2d motion 
(see Fig. 8) and, determine the work starting from the ini-
tially modelled position with zero displacements, moving 
posteriorly by 2 mm, then perform a pure extension motion 
(3◦ about the y-axis) followed by an anterior motion to 
x = 0 mm, and, lastly, a forward flexion back to the initial 
state. By that, four path sections ( k = 1, 2, 3, 4 ) are defined 
between two successive target points or a target and the ini-
tial/ end point.

As test models, we use two different kernel approxima-
tions to map the elastic coupled, nonlinear 6d force-torque 
pair as a function of the joint displacements for the same 
L4| 5 data set, which was presented in Appendix D.1. The 
first surrogate model (S1) was developed mapping single 
force or torque components to the data with an algorithm 
similar to Haasdonk et al. (2021) extended to 6 dimen-
sions of inputs and outputs, whereas the second model (S2) 
mapped a common force potential from which all force and 
torque components can be derived following the approach 
from Sect. 2.3.

As both surrogate models do not depend on velocity or 
time explicitly, we can arbitrarily choose a time of t = 1 s 
needed for every path section p ( p = 1, 2, 3, 4 ), summing 

up to 4 s in total, and a discretisation of N equidistant 
displacement increments on every path section, such that 
the translational displacement Δxn (for n = 1, ...,N ) and the 
displacement �n ⋅ Δt , with the angular velocity �n , remain 
constant within every path section. Assuming constant 
time intervals Δt , the net work −ΔU  can be written in 
terms of the power −U̇ and determined numerically using 
a simple rectangle method for integration,

Note that Eq. (21) is independent of the chosen path and 
could be extended to movements with curved trajectories. 
The calculated power, however, scales linearly with the 
movement velocity, which becomes particularly relevant if 
the net power is not zero, i.e., for non-conservative surrogate 
models.

Figure 8 shows the expected behaviour for the calcu-
lated net power of both models. For the new kernel mod-
elling approach S2, it decreases with finer discretisation 
steps, i.e., increasing step number N or higher accuracy in 
the integration solver. This illustrates that the observed net 
work performed is induced solely by the error of the rec-
tangle integration method and vanishes for infinitely large 
N (or until the order of typical numerical errors of 10−16 is 
reached). In contrast, a model fit of single force and torque 

(21)

−∮ dU̇( x,�) = −

4⋅N∑

n=1

ΔU(xn,�n)

Δt

=

4⋅N∑

n=1

(

Fn ⋅
Δxn
Δt

+ Tn ⋅ �n

)

(22)=

4∑

p=1

(
Δxp

Δt
⋅

N∑

n=1

Fn + �p ⋅

N∑

n=1

Tn

)

.

Fig. 8  The energy loss or gain is calculated by integration of the 
force-torque vector over the joint displacement vector along a closed 
movement trajectory (red line on the left). It is quantified in terms of 

the net power (right plot) for non-conservative (S1, blue crosses) and 
conservative models (S2, red circles) depending on the discretisation, 
i.e., the number of increments on every path
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Table 3  Average relative errors (in % ) of predicted force and torque 
vector components of all four surrogate models (second-, third- and 
fourth-order polynomial as well as kernel approximation) were evalu-
ated for typical spine movements: forward flexion (FF), left (LLB) 
and right lateral bending (RLB). The three force components are the 

anterior-posterior (AP) shear, the lateral (LA) shear and the compres-
sive (CO) force; the three torque components are lateral, extension 
(EX) and axial (AX) bending torque. Note that we allow for nega-
tive relative error values when the surrogate underestimates elastic 
responses

AP shear LA shear CO force LA torque EX torque AX torque

Second p FF −7.5 7.7 −4.2 4.3 8.4 18.3
LLB 75.9 −29.8 −6.1 5.0 7.9 827.8
RLB 552.1 46.5 −19.5 3.0 2.6 −48.5

Third p FF −32.1 11.4 0.6 18.2 16.2 0.8
LLB 33.8 −30.2 3.0 9.3 13.4 832.5
RLB 399.0 35.2 0.0 12.5 8.5 −29.7

Fourth p FF −35.2 9.1 −5.8 7.2 6.6 38.0
LLB 32.5 −30.0 −4.9 −0.1 4.6 472.8
RLB 356.0 18.2 −1.4 4.6 3.7 −26.2

Kernel FF −49.2 −60.3 −0.3 −0.8 −2.1 56.5
LLB 26.9 −64.2 2.1 −0.3 −1.8 601.3
RLB 830.5 −23.3 0.6 −0.6 −1.7 −52.7

Fig. 9  Kernel (blue line) and polynomial approximation predictions 
(in red: second-order dotted line, third-order dashed line, fourth-order 
solid line) of the three force and torque components for a lateral 

bending movement to the left in comparison with the reference data 
from the detailed FE model (black lines) for the same kinematics
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components leads to a loss or gain in mechanical energy—
independent of the accuracy of the integration solver.

Appendix G: Surrogate accuracy of single 
force and torque components

Analysing the precision of the different surrogate types 
developed in this study, we found the fourth-order 
polynomial and kernel approximation to perform best on 
training as well as test data with respect to relative errors 
of predicted force and torque vectors (see Sect. 3). A closer 
look at single components of the force-torque vector reveals 
strikingly high differences in relative errors between models 
but even amongst force and torque components predicted 
by the same surrogate (see Table 3). While lowest relative 
errors generally occur for the three components with 
largest absolute values, compressive force, lateral torque 
and flexion-extension torque, we see tremendous relative 
deviations for forces and torques with comparably small 
values throughout the movement trajectory. This is in 
accordance with the observation from Sect. 3.1, where the 
largest relative errors occurred at zero-crossings of the single 
force and torque components.

However, the trend of most force- or torque-displace-
ment relations followed the one of the reference data as 
can be seen in Figs. 4, 9 and 10. Only the compressive 
force prediction of the second-order polynomial for both 
lateral bending motions, and the kernel prediction for the 
anterior-posterior shear force in case of the lateral move-
ment to the right show a rather constant force-length rela-
tion, whereas the reference values decreased with increas-
ing lumbar bending angle. The fourth-order polynomial 
provides the lowest maximum relative error in our test 
cases, whilst for the three main components, the kernel 
approximations achieved the, by far, best results with simi-
larly low error values for the compressive force predicted 
by the third-order polynomial. For the latter, the other 
error values were, however, higher.

To conclude, comparably large relative errors occur 
for single components of the force-torque pair with low 
absolute values show (see Appendix G) while the error of 
the force or torque vector is low. As we saw in the single-
DOF trajectories, this is mainly governed by large rela-
tive errors for low absolute values. Such a behaviour was 
expected as the surrogates were optimised for low absolute 
errors, not taking into account relative deviations in the 

Fig. 10  Kernel (blue line) and polynomial approximation predictions 
(in red: second-order dotted line, third-order dashed line, fourth-order 
solid line) of the three force and torque components for a lateral 

bending movement to the right in comparison with the reference 
data from the detailed FE model (black lines) for the same kinematics
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modelling process. Different optimisation criteria might 
reduce these relative errors in the consideration of single 
force and torque directions.
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