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Abstract
We propose a variational approach that employs a generalized principle of virtual work to estimate both the mechanical 
response and the changes in living bone tissue during the remodeling process. This approach provides an explanation for 
the adaptive regulation of the bone substructure in the context of orthotropic material symmetry. We specifically focus upon 
the crucial gradual adjustment of bone tissue as a structural material that adapts its mechanical features, such as materials 
stiffnesses and microstructure, in response to the evolving loading conditions. We postulate that the evolution process relies 
on a feedback mechanism involving multiple stimulus signals. The mechanical and remodeling behavior of bone tissue is 
clearly a complex process that is difficult to describe within the framework of classical continuum theories. For this reason, 
a generalized continuum elastic theory is employed as a proper mathematical context for an adequate description of the 
examined phenomenon. To simplify the investigation, we considered a two-dimensional problem. Numerical simulations 
have been performed to illustrate bone evolution in a few significant cases: the bending of a rectangular cantilever plate and 
a three-point flexure test. The results are encouraging because they can replicate the optimization process observed in bone 
remodeling. The proposed model provides a likely distribution of stiffnesses and accurately represents the arrangement of 
trabeculae macroscopically described by the orthotropic symmetry directions, as supported by experimental evidence from 
the trajectorial theory.

Keywords Bone functional adaptation · Growth/resorption processes · Bone remodeling · Orthotropic constitutive law · 
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1 Introduction

Wolff’s law statement concerns the concept of “bone 
functional adaptation” to mechanical loadings. It is a 
well-known principle named after the German anatomist 
and surgeon Julius Wolff which states that the micro-
mechano-morphological properties of bone are primar-
ily, albeit not entirely, a consequence of bone response to 
mechanical deformation  (Wolff 1892). More specifically, 
the law asserts that bone will remodel itself over time in 
response to the mechanical loads placed upon it, becom-
ing denser and stronger in areas subjected to increased 
stress while weakened and more susceptible to fractures 
in areas subjected to less stress. Wolff’s law has important 
implications for the prevention and treatment of condi-
tions such as osteoporosis, as weight-bearing exercise and 
other forms of physical activity that can help maintain 
bone density and reduce the risk of fractures. Furthermore, 
specific dental treatments utilize Wolff’s law to enhance 
the alignment of teeth within the dental arches (Cornelis 
et al. 2021). Bone remodeling in the vicinity of osteomy-
elitis (Masters et al. 2019) affected bone could also be 
influenced by the changed local loading environment both 
during disease development and after surgical treatment 
(Lamm et al. 2015).

This remodeling process is ensured by the synergic 
activity of three types of bone cells with different func-
tions in the growth, maintenance, and repair of bone tis-
sue: osteoclasts, osteoblasts, and osteocytes. Osteoclasts 
are large, multinucleated cells that dismantle mineral tis-
sue through a process called resorption. They are respon-
sible for removing old, damaged bone tissue and releasing 
calcium and other minerals into the bloodstream. Osteo-
blasts are cells that synthesize and deposit new bone tissue 
through a process called ossification. They secrete col-
lagen and other proteins that form the framework for new 
bone tissue and also help to mineralize the bone matrix 
with hydroxyapatite, i.e., a calcium phosphate mineral. 
Osteoblasts are responsible for the growth and repair 
of bone tissue and play a key role in maintaining bone 
density and strength. Osteocytes are mature bone cells, 
deriving from the differentiation of osteoblasts, embed-
ded within the mineralized matrix of bone tissue buried 
into tiny spaces called lacunae. They play a crucial role in 
regulating bone metabolism and responding to mechanical 
stresses placed on the bone that involves a process called 
mechanotransduction. Osteocytes are a kind of sensor cell 
connected to one another and to the bone surface by long, 
branching structures called dendritic processes housed in 
an intricate network of canals between the lacunae, called 
canaliculi, and filled with interstitial (periosteocytic) fluid. 
They communicate with the other bone cells to coordinate 

bone remodeling and repair. The activity of all these cells 
is essential for maintaining a balance between bone resorp-
tion and bone formation and for ensuring that bone tis-
sue is constantly being renewed, replaced, and fit for its 
mechanical task.

The activity of bone cells results in the constitution and 
continuous shaping of two types of bone tissue that can be 
found in the human body: cortical and trabecular bone. 
They have different characteristics and serve different func-
tions. Cortical bone, also known as compact bone, is the 
denser, more resistant outer layer of bone that makes up 
the shafts of long bones, such as the femur. It is composed 
of tightly packed layers of mineralized collagen fibers and 
is responsible for providing structural support and pro-
tection for the body and vital organs. They form cylindri-
cal substructures called osteons. Cortical bone, due to its 
mechanical properties and space distribution, is relatively 
resistant to bending and twisting forces and is well-suited 
for weight-bearing activities. Trabecular bone, also known 
as spongy bone or cancellous bone, is a lighter, less dense 
type of bone tissue that is found at the ends of long bones 
and in the interior of short bones. It is composed of a net-
work of bony struts called trabeculae that provide support 
for the bone and help distribute weight and stress. Trabecular 
bone is more compliant and can better withstand compres-
sion forces, making it an essential component of the body’s 
shock-absorbing system, also considering that it is filled with 
bone marrow that has damping properties. Both types of 
bone tissue are important for maintaining overall bone health 
and function (Giorgio et al. 2021).

The bottom line is that the structure of bone tissue main-
tains a delicate balance between providing strength and sup-
port to the body while minimizing the cost of nutrients and 
required energy for the living cells operating in it (Bednarc-
zyk and Lekszycki 2016, 2022). By adjusting the distribu-
tion of bone mass and arranging its microstructure in an effi-
cient composite structure, bone tissue is able to achieve this 
balance and maintain its function and integrity over time. 
Bone achieves this balance in response to the mechanical 
strain induced by external loads to which it is subjected. This 
means that areas subjected to more significant stress, such as 
the weight-bearing bones in the legs, will have more mass 
density than areas subjected to less stress, such as the bones 
in the fingers. This can be achieved, for example, through 
changes in the diameters and numbers of the trabeculae 
(Zhao et al. 2018). Besides, bone can also achieve an effi-
cient composite structure by re-arranging its microstructure 
to maximize strength while minimizing weight, specifically 
by reorienting the pattern of the trabeculae depending on 
the direction of the external forces applied (Kivell 2016).

Usually, to explain the reorientation of the inner micro-
architecture of bone tissue, the so-called trajectorial the-
ory (Lanyon 1974) is employed, which assumes that the 
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principal stresses are one of the main factors in determining 
the structure of trabecular bone tissue. More precisely, it is 
observed that the directions of the cancellous microstructure 
tend to be aligned to the eigenvectors of stress. Observed 
discrepancies in this alignment is mainly due to the different 
kinds of external loads that actually are applied to the bone 
tissue in different situations: each of these loads obviously 
determine different directions of principal stresses. There-
fore, the effective trabecular orientation has to be consid-
ered as the weighted average result produced by the several 
mechanical loads applied during the functioning of the sys-
tem “bone structure”.

From a modeling viewpoint, bone remodeling can be 
regarded as a feedback phenomenon in the control theory 
framework (Frost 1987; Turner 1991). The stiffness tensor 
and material strength can be considered controlled quantities 
in this biological process. Thus, a control loop is established 
to regulate those variables at a setpoint, i.e., the so-called 
homeostatic state. To this end, the amount and the distribu-
tion of bone mass are changed to guarantee optimal func-
tionality of the bone tissue. Indeed, based on the external 
request for mechanical resistance, the active bone cells, i.e., 
process actuators, can resorb or synthesize bone tissue based 
on the information provided by the osteocytes in charge of 
sensing the mechanical state of the tissue. In an effort to 
explain this biological process, an early attempt has been 
made introducing an evolutionary equation for apparent 
mass density (bone tissue is a porous material) that relied 
on a mechanical feedback signal (Beaupré et al. 1990; Mul-
lender and Huiskes 1995). This is because bone mass density 
is directly linked to its stiffness; therefore, any changes in 
mass density would also alter the elastic modulus. Based 
on empirical evidence, this relationship between apparent 
mass density and stiffness has been introduced phenomeno-
logically (Carter and Hayes 1976; Currey 1988). Thus, the 
change in the mass density also results in an adaptive evolu-
tion of the elastic modulus that optimizes the mechanical 
response of the bone. This approach is particularly suited 
for an isotropic behavior of the considered tissue since the 
apparent mass density is a scalar quantity and, hence, does 
not directly imply any mechanical properties linked with 
the reorientation of the trabecular microstructure. Therefore, 
the initial models incorporating mass density evolution have 
been primarily utilized for isotropic materials.

To take into account also the reorientation evolution, 
thus, it has been proposed a direct evolution of the stiffness 
tensor through a remodeling tensor that, in this context, is 
related to variables such as the apparent mass density and 
fabric tensor, which are intricately linked to the porosity and 
directionality of the trabeculae (Cowin et al. 1992; Doblaré 
and Garcıa 2002). These formulations can also be applied to 
orthotropic or anisotropic materials because of the tensorial 
nature of the stiffness tensor. However, some approaches are 

still based on mass density, even in orthotropic scenarios. 
Using phenomenological relationships, the distinct elastic 
moduli can be evaluated from the mass density. One poten-
tial limitation of this proposal is that the orthotropy direc-
tions are predetermined. In Sarikanat and Yildiz (2011), 
these directions are postulated to be aligned with the stress 
isolines following the trajectorial theory. However, it is 
worth noting that this perspective does not entail any form 
of evolution for the orthotropy directions.

The feedback signal is usually evaluated using a mechani-
cal stimulus that conveys the information of the mechanical 
state considered pertinent for the particular adopted for-
mulation. This mechanical state can be specified by strain 
energy density (Huiskes et al. 1987), effective stress (Carter 
et al. 1987; Beaupré et al. 1990), strain peak (Turner 1998), 
or damage variable (Prendergast and Taylor 1994; Hambli 
2014), to name a few. There are two types of stimulus for-
mulation: local and nonlocal. Local models apply the evo-
lution law to each point of the body individually without 
directly considering the mechanical state of nearby points. 
Conversely, nonlocal models provide an evolution for each 
point in the body incorporating data from that point and 
other points in a specified finite surrounding volume of 
material. Nonlocal models are based on convolution inte-
grals (Lekszycki and dell’Isola 2012; Kumar et al. 2011; 
George et al. 2018, 2019) or diffusion equations (Giorgio 
et al. 2019; Scerrato et al. 2022) and guarantee the possibil-
ity of describing the interaction between bone tissue and 
graft of bio-resorbable material or between healthy bone and 
necrotic tissue in which osteocytes could be dead. This kind 
of interaction is prevented from happening in local mod-
els because no stimulus can be generated where osteocytes 
are absent. On the contrary, with the nonlocal effect, the 
stimulus originating in surrounding areas can reach zones 
without osteocytes and trigger the remodeling process, as 
in fact occurs.

Bone tissue is characterized by a variegated architecture 
with multiple levels of complexity. Due to this, the conven-
tional continuum elastic theory fails to accurately describe 
its intricate mechanics in different circumstances. For this 
reason, generalized continuum theories can be adopted to 
imitate the behavior of the real tissue more accurately and 
efficiently. The presence of high contrast in the mechani-
cal properties of the bone may lead to the use of second 
gradient models that can represent a more rich behavior in 
terms of deformation modes and boundary conditions sus-
tainable (Fedele 2022; dell’Isola et al. 2022; Solyaev et al. 
2020; Vazic et al. 2021, 2023; Sarar et al. 2023; Carter et al. 
1987; Andres et al. 2001). Strictly related models are those 
that deal with fiber-reinforced composites (Steigmann 2012; 
Franciosi et al. 2019; Spagnuolo 2022) since the mineraliza-
tion of the tissue starts from a network of collagen fibers in 
the new woven bone.



2138 I. Giorgio et al.

1 3

Another aspect that is essential in a refined description 
of bone tissue is porosity. Models that take into account this 
aspect can explain phenomena involving inner pore pres-
sure and possible dissipation due to the interaction between 
the solid matrix and viscous fluids, namely bone marrow, 
interstitial fluid, and blood, contained in it. The dissipation 
can be introduced using phenomenological laws, as can be 
found in (Jankowski et al. 2022; Sessa 2023), or more fun-
damentally, using Rayleigh functional (Giorgio et al. 2016). 
Due to the various types of porosity found in bone tissue, 
it is possible to utilize models with double or even higher 
porosity (see, e.g., De Cicco and De Angelis 2020; De Cicco 
2022). Naturally, it is possible to use more complex models, 
such as poroelastic materials with fiber reinforcement and 
potential fluid inclusion, to depict the mechanical behavior 
of bones accurately (Tomic et al. 2014; Grillo et al. 2015, 
2018; Cuomo et al. 2022; Gazzo et al. 2020).

Experimental evidence on bone samples revealed non-
classical effects associated with the microstructure (Park 
and Lakes 1986). This exotic behavior can be considered in 
the context of micropolar theory (see, e.g., Eremeyev and 
Pietraszkiewicz 2012, 2016; Eremeyev et al. 2017, 2020; 
La Valle 2022).

The implementation of a variational formulation repre-
sents an elegant and effective approach to comprehending 
the relationship between the evolution of bone micro-archi-
tecture and the underlying physical laws that govern their 
behavior. This technique proves particularly advantageous 
in addressing complex problems, such as those encountered 
in studying bones and growth phenomena (Grillo and Di 
Stefano 2023; Grillo and Di Stefano 2023). This powerful 
approach can also be used to address challenging problems, 
such as those involving damage, that are intrinsically con-
nected to the evolution of bone tissue (Placidi et al. 2018, 
2018, 2019; Timofeev et al. 2021; De Angelis 2007). Numer-
ous authors interpret the remodeling of bone tissue as a com-
plex optimization problem in which the local properties of 
mass and stiffness are regarded as conflicting objectives that 
must be balanced. From this perspective, once again, the 
variational tools provide a powerful arsenal at our disposal 
to obtain the optimized substructure underlying the bone tis-
sue (see, as general reference Bendsoe and Sigmund 2003; 
Eschenauer and Olhoff 2001, and as a more specific applica-
tion to the bone Nowak 2010, 2020).

In this paper, we propose a possible way to incorporate 
the fundamental aspect of reorientating the trabecular micro-
architecture of bone tissue in an elastic continuum scenario 
at a macroscopic level of observation. The material behavior 
is assumed to be orthotopic. The governing equation for the 
remodeling process is deduced from a variational point of 
view through the definition of a generalized virtual work 
that takes into account both the mechanical response and the 
evolution of the trabecular microstructure. The stimuli used 

as feedback signals to guide the process are defined on an 
energetic basis and have a nonlocal formulation that relays 
on diffusion equations.

2  Modeling of the evolution process related 
to bone functional adaptation

2.1  Kinematics

As happens in standard continuum mechanics, the posi-
tion x occupied by any particle X at the time t ∈ [t0, tf ] in 
the current configuration is given by the placement map 
� ∶ B

∗ × [t0, tf ],→ E
3 , where E3 is the Euclidean 3D affine 

space,

where the material particles in the reference configuration 
are denoted by X in the domain B∗.

Aiming to describe the bio-mechanical behavior of a bone 
tissue as a continuum deformable body having orthotropic 
material symmetry, in each material point and at every time 
instant, we introduce a material symmetry rotation Q(X, t).

Equivalently, one may consider the three time-variable 
orthogonal unit vectors

where 
{
ei
}
 is an orthonormal basis in the space of dis-

placements of E3 . Moreover, we assume that the organism 
in which the bone tissue is incorporated has a bone tissue 
control system activated by suitable stimuli, which are gener-
ated as a response of the tissue mechanical state and which 
determine its production and adsorption.

Therefore, to model the bio-mechanical evolution of 
the bone tissue, we use the following list of kinematical 
descriptors: 

1. The displacement field, denoted by u(X, t) = �(X, t) − X,
2. The angles characterizing the rotation Q with respect to 

an Eulerian basis,
3. The set of material parameters, which characterize the 

orthotropic quadratic elastic energy,
4. The set of stimuli that are needed to guide the remod-

eling process.

The spirit here is to consider a generalized continuum theory 
where the overall evolution of the system is given by the 
standard descriptor, i.e., the placement � or, equivalently, 
the displacement u , as well as further ones that specify both 
the mechanical properties of the tissue and the process of 

(1)x = �(X, t)

Q(X, t)ei ∶= Ai(X, t),
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the bio-mechanical transduction guided on the information-
based stimuli production.

Let us denote by � , the variables specifying the orienta-
tion A1(X, t) and A2(X, t) , by p(X, t) the entire set of elastic 
moduli, and, finally, by S = {Spi} the vector whose compo-
nents represent the bio-mechanical stimuli, being each of 
them associated with each modulus pi.

In the present model, the deformation measure is given 
in terms of the deformation gradient tensor F = ∇� , and 
specifically by means of the linearized strain tensor

Because of the complexity of the system, we presently 
confine our further development to the particular signifi-
cant case in which a bi-dimensional domain B∗ is taken into 
account. The interesting results we believe to have obtained 
will motivate the development of a full 3D model. In the 
case of 2D evolutions, as only one angle is sufficient to char-
acterize the orientation Q defining the evolutionary reori-
entation of the trabecular substructure, we can proceed as 
follows. We introduce the macro-rotation related to the polar 
decomposition of F

in which the rotation R is characterized by an angle � in the 
bi-dimensional problem and U gives the deformation. Then, 
assuming that the microstructure associated with the tra-
beculae can be represented by the angle � , which gives, e.g., 
the orientation of A1 , we can introduce the relative angle

that represents a measure of misalignment between the mate-
rial directions of symmetry and the current orientation of the 
infinitesimal material cube at the same location due to the 
application of the external load.

2.2  Principle of virtual work

A generalized virtual-work principle is postulated for the 
independent virtual displacements �u , its virtual gradient 
�∇u , the virtual change in the parameters �� , and �pi as 
follows:

(2)E =
1

2

(
F⊤ + F

)
− I =

1

2

(
∇u⊤ + ∇u

)

(3)F = R(�)U

(4)�(X, t) = �(X, t) − �(X, t).

(5)

∫
B
∗

𝛿wm d𝜔 − ∫
𝜕B∗

f ⋅ 𝛿u dl − ∫
𝜕B∗

� ⋅ 𝛿∇u ⋅ n dl

+ ∫
B
∗

(c𝛾 �̇� + 𝜏𝛾𝛾)𝛿𝛾 d𝜔

+
∑

i
∫
B
∗

[
cpi ṗi −A(Spi)

]
𝛿pi d𝜔 = 0

The first line of (5) is representative of the mechanical con-
tribution given by the stored strain energy, namely wm , and 
the external virtual work done by the traction f  per unit 
line and the density of double force �  since we consider 
second gradient materials (Madeo et al. 2012; Giorgio et al. 
2017; Ganghoffer et al. 2019). The last two contributions 
are related to the mechano-biological evolution driven by 
the mechanical response. In them, we can interpret c𝛾 �̇� and 
��� as remodeling couples, where c� and �� are constitutive 
parameters that relate to the time rate of the evolution of � 
and the evolution of � , respectively. In addition, cpi ṗi and 
−A(Spi) could be thought as remodeling actions that expend 
a mechano-biological work on the material parameter pi . 
Similarly to the previous term, cpi is a constitutive param-
eter linked to the time rate of the evolution of the elastic 
modulus pi and A  is a biological potential associated with 
the evolution of pi . It is worth noting that the weak contribu-
tion related to the remodeling actions in the last term of (5) 
produces an evolutionary term very similar to the one used 
in Eq. (5) in Giorgio et al. (2019).

The key idea of the model is to define a total bio-mechan-
ical work as the sum of two contributions: 1) the first one 
able to characterize the mechanical response of bone and 2) 
the second one to determine the evolution of the inner archi-
tecture of the tissue considering both the orientation of the 
substructure and its stiffness. Since the complex phenom-
ena involving the bone tissue develop on a multilevel time 
scale and the remodeling process is happening very slowly, 
herein, we neglect the rapid dynamic associated with the 
bone mechanics assuming a clear separation of time scale 
between the fastest variations related to the application of 
mechanical loads and the slow process of the remodeling. 
For this aim, we consider loads slowly variable in time, and 
thus, we neglect inertial phenomena.

To be more specific, we can introduce the energy (Cyron 
and Aydin 2017; DiCarlo and Quiligotti 2002):

where wm is the standard orthotropic second gradient 
mechanical deformation energy and wr is the mechano-bio-
logical term which captures biologically induced changes 
of the bone substructure and, thus, is representative of the 
stress-free configuration of the tissue over the remodeling 
process.

To describe the mechanical response of the bone tissue, 
we take as our starting point the constitutive equations for 
orthotropic materials. In this paper, we adopt, for the strain 
energy density wm , the Galilean invariant function:

in which, for simplicity, we consider two additive terms: one 
related to a first gradient behavior and the other to a second 

(6)w(F,∇F,� , � , p, S) = wm(F,∇F,� , p) + wr(� , p, S)

(7)wm(E,∇E) = w1(E) + w2(∇E)
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gradient one. Particularly, the first gradient contribution can 
be specialized as

where J1 , J2 , J4 , J5 , J6 , and J7 are the invariants character-
izing the material symmetry in linear elasticity, that are 
defined as follows:

Assuming small deformations, the dependence of the strain 
energy given by (8) could be assumed quadratic in the dis-
placement field at leading order, and therefore, a function 
possessing material orthotropic symmetry is (Spencer 1982, 
1984, Spencer and Soldatos 2007)

in which K, � , �1 , �2 , and �1 , �2 are material coefficients and 
�1 , �2 , and �3 are coupling coefficients. We remark that the 
first two terms in (10) are associated with the hydrostatic and 
deviatoric contribution to the isotropic part of deformation. 
Here, all the material parameters may be inhomogeneous.

To complete the definition of the elastic stored energy, 
we assume also a second gradient contribution. The rea-
son for which we postulate this further contribution to the 
stored energy must be attributed to the trabecular sub-
structure of bone. Indeed, in the regions characterized by 
a very low mass density, we can assume that the trabeculae 
are very thin and long with weak connections, which may 
imply the need, at macro level, of second gradient models 
(Giorgio et al. 2017; Abdoul-Anziz and Seppecher 2018; 
Abdoul-Anziz et al. 2019; dell’Isola et al. 2022). This typi-
cally occurs in areas subject to minimal deformation (i.e., 
high porosity) or in the case of a disease like osteoporo-
sis. In this special cases, a simple energy function which 
involves some second gradient effects with orthotropic 
symmetry is (Steigmann and dell’Isola 2015, Giorgio et al. 
2016)

where �1 and �2 are second gradient moduli and the nota-
tion “,” indicates partial differentiation. Moreover, the sec-
ond gradient contributions can be split into the tangential 
stretch gradient and the curvature parts considering the 
decomposition:

(8)w1 = ŵ1(J1, J2, J4, J5, J6, J7)

(9)
J1 = tr(E), J2 = tr(E2)

J4 = A1 ⋅ EA1 J5 = A1 ⋅ E
2
A1

J6 = A2 ⋅ EA2 J7 = A2 ⋅ E
2
A2

(10)

w1(E) =
1

2
K J1

2 + �

(
J2 −

1

2
J1

2
)

+
(
�1 J4 + �2 J6

)
J1 + 2�1 J5 + 2�2 J7

+
1

2
�1 J4

2 +
1

2
�2 J6

2 + �3 J4J6

(11)
w2(∇E) =

1

2

(
�1 |(A1)p(A1)q � ,pq|2 + �2 |(A2)p(A2)q � ,pq|2

)

where �iai = FAi (no summation convention), �i = ||FAi
|| , 

�i are the geodesic curvatures induced by the deformation 
on the trabecula (Shirani and Steigmann 2020) (see, e.g., 
Fig. 1). The vectors ni are orthogonal to ai . With the decom-
position (12), the second gradient energy density is assumed 
to be

being explicit the terms which refer to tangential stretch gra-
dient effects and bending deformation. The same splitting 
procedure can be made for the stiffnesses, so we have �s

1
 and 

�s
2
 for the tangential stretch gradient stiffnesses and �b

1
 and 

�b
2
 for the bending stiffnesses.
The mechano-biologic energy density, wr , responsible for 

the remodeling is considered as the summation of several 
contributions. Particularly, one, wR , is related to the reori-
entation of the orthotropic symmetry direction A1 (which is 
associated with the directions of trabecular substructure), 
and all the others gathered in ws are associated with the evo-
lution of the material stiffnesses characterizing the mechani-
cal response. Thus, we have:

By specifying the stored strain energy as (10) and (11), we 
can specialize p as {p1, p2,… , p13} = {K,�, �1, �2,… ,�b

2
}.

With the definition (4), we assume that

where �� is a mechano-biological parameter associated with 
the level of energy that can be stored in such a process.

(12)(Ai)p(Ai)q � ,pq = (Ai ⋅ ∇�i) ai + �2
i
�ini

(13)
w2(∇E) =

1

2

[
�s

1
(A1 ⋅ ∇�1)

2 + �s

2
(A2 ⋅ ∇�2)

2
]

+
1

2

[
�b

1

(
�2
1
�1
)2

+ �b

2

(
�2
2
�2
)2]

(14)wr(� , p, S) = wR(�) + ws(p, S)

(15)wR(�) =
1

2
���

2

Fig. 1  Material directions A
i
 in the reference configuration aligned to 

the trabecula pattern and their images a
i
 under the tensor F for the 

section of a femur
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It is worth mentioning that, in a more general context, the 
angle � can be replaced with the rotation Q and the relative 
angle can be evaluated approximately by

since the deformation tensor U tends to I in the small defor-
mation regime.1 Therefore, we have

In the mechano-biological process, some energy dissipation 
occurs over time during the transition between different ori-
entations; therefore, we define a Rayleigh dissipation func-
tion also to take into account this aspect, namely

where c� is a kind of “viscous” parameter. Therefore, a term 
c𝛾 �̇� 𝛿𝛾 can be introduced in the virtual-work formulation, 
which implies a non-conservative phenomenon.

To define the evolution of all the material stiffnesses 
and coupling coefficients, we use the contribution ws which 
depends on them. In particular, for each material parameter 
pi (with i = 1,… , 13 ), we can define the biologic potential 
energy as

where A(Spi) can be interpreted as a remodeling action 
which affects the material parameter pi and Spi is the stimu-
lus associated to such an evolution (Giorgio et al. 2019). The 
remodeling action is assumed to be a linear function of the 
stimulus as follows:

where �pi represents a mechano-biological gain to be tuned 
with experimental evidence and S0

pi
 is a reference stimulus 

introduced to set the homeostatic state. The difference 
between the actual stimulus Spi and the reference one gives 
feedback on how the system is far from homeostasis and, 
therefore, drives the evolution to restore this functional point 
of operation.

(16)� = Q⊤F

(17)� ≈ arctan

(
Γ21

Γ11

)

(18)DR =
1

2
c𝛾 �̇�

2

(19)wsi(pi, Spi) = −A(Spi) pi

(20)A(Spi) = �pi(Spi − S0
pi
)

Finally, gathering all the contributions for the stiffnesses, 
we postulate

Similarly to the reorientation evolution, a Rayleigh dissipa-
tion function is introduced also for the materials coefficients 
pi in the form:

with cpi the related viscous coefficient.

2.3  Evolution equations for stimuli

In this section, we postulate, independently from the prin-
ciple of virtual work, a set of evolution equations for bio-
mechanical stimuli.

We consider as an open, and important, problem the pos-
tulation of a unique variational principle from which this 
last kind of evolution equations can be deduced as conse-
quence (see, Barchiesi and Hamila 2022, for a first attempt, 
even if in a slightly different context). Here, we consider 
the stimulus field (as depending, in our simplified model, 
on the material particle and time) as a modeling tool in the 
description of the mechanically guided remodeling action 
occurring in bone tissues.

We postulate that the mechanical state, acquired by sensor 
cells, i.e., osteocytes, determines this stimulus. This stimulus 
is then the activator of the biological agents which remodel 
the bone tissue. As the principal path for the transmission of 
the information acquired by sensor cells, concerns the action 
of paracrine factors, which are chemical agents, released and 
spread via the diffusion, we postulate a diffusive model to 
describe the evolution of the stimulus field.

Therefore, for each material parameter pi , we postulate 
the evolution of the corresponding stimulus as follows:

where dpi is a damping coefficient, �pi the diffusion coeffi-
cient assumed constant and thus isotropic for the sake of def-
initeness and tractability, r(Upi

) is a source term, and s(Spi) 
is an absorption function. Following the work (Branecka 
et al. 2022), where the evolution of different material coef-
ficients is determined by the energy contribution associated 
with the same coefficient, here we set the source term r as 
proportional to the portion of the energy density relative to 
the same coefficient. For example, to define this contribu-
tion related to the shear coefficient � in (10), we set in the 
bi-dimensional formulation

(21)ws =
∑

i

wsi(pi, Spi)

(22)Dsi =
1

2
cpi ṗi

2

(23)dpi

�Spi

�t
= ∇ ⋅

(
�pi∇Spi

)
+ r(Upi

) − s(Spi )

1 Indeed, we can write:

and, thus, an approximation of the relative angle � = � − �.

� =Q⊤
RU ≈ Q

⊤
R =

(
cos(𝜓) sin(𝜓)

− sin(𝜓) cos(𝜓)

)(
cos(𝜗) − sin(𝜗)

sin(𝜗) cos(𝜗)

)

=

(
cos(𝜗 − 𝜓) − sin(𝜗 − 𝜓)

sin(𝜗 − 𝜓) cos(𝜗 − 𝜓)

)
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and, for the sake of simplicity, the coefficient of propor-
tionality is assumed to be 1. As usually done in the diffu-
sion equation, the sink term s is defined proportional to the 
stimulus itself as follows:

being R the absorption coefficient related to the metabolic 
activity associated with the stimulus.

3  Numerical results and discussion

The proposed model has been tested through numerical sim-
ulations in some illustrative cases. In particular, we consider 
a rectangular sample made of trabecular bone tissue. In the 
first test, we analyze a cantilever plate under a uniform dis-
tribution of a shear force density �(t) on the side opposite the 
clamp (see Fig. 2). The second test, instead, is a three-point 
flexural one, where we employ the symmetry of the system 
to examine only half of the specimen (see Fig. 10). Since our 
formulation is variational, the numerical implementation of 
the tests has been conducted with the finite element method 
using the principle of virtual work (5) directly inside the 
commercial software COMSOL Multiphysics. We perform 
simulations in Comsol for testing the proposed approach 
because of its high flexibility and ease of use. Indeed, it 
is possible to implement the governing equation directly 
using the weak formulation. However, the general-purpose 
nature of the software does not allow for specific code opti-
mization for the considered problem. To achieve this, one 
can consider implementing isogeometric analysis (Greco 
and Cuomo 2021; Greco et al. 2021; Torabi and Niiranen 
2023) or an ad hoc discretization (Turco et al. 2016; Turco 
2018, 2022) in a subsequent phase of the development of 
the model.

The simulations has been performed for a rectangular 
domain of 75 × 25 mm dimension, and the initial mate-
rial stiffnesses are listed in Table 1. The second gradient 
stiffnesses, for the sake of simplicity, are set to be equal, 
namely �s

1
= �s

2
= �b

1
= �b

2
= 1.5 N. The coefficients 

related to the evolutionary process for the reorientation of 
the material symmetry directions and the stiffnesses are 

(24)r(U�) = �

(
J2 −

1

2
J1

2
)

(25)s(Spi) = RSpi

reported in Tables 2 and 3. Herein, for the sake of simplic-
ity and tractability, we postulate that the evolution of a few 
stiffnesses is more significant than the others, and then, 
we neglect the adaptive process of these last that changes 
their magnitude. Therefore, the only stiffnesses we con-
sider to evolve are the shear modulus � and the stretching 

Table 1  Initial material 
parameters (GPa)

K � �
1

�
2

�
1

�
2

�
1

�
2

�
3

17.84 7.32 −2.87 −2.25 −1.71 −1.09 2.97 1.47 2.14

Table 2  Evolutionary 
parameters for the reorientation 
process

c� ��

6.048 × 105 Pa s 1 × 10−3 Pa

Table 3  Evolutionary parameters for the stiffness adaptive recalibra-
tion

c� �� S
0

�

6.048 × 1012 Pa s 1 × 104 Pa 3660 Pa
c�1

��1 S
0

�1

6.048 × 1012 Pa s 1 × 104 Pa 1484.8 Pa
c�2

��2 S
0

�2

6.048 × 1012 Pa s 1 × 104 Pa 734.29 Pa

Table 4  Evolutionary parameters for the diffusion of the stimuli

d� �� R�

3.024 × 106 Pa s 1 × 10−4 N 0.35 × 102 Pa

d�1
��1 R�1

6.048 × 106 Pa s 1 × 10−4 N 0.35 × 102 Pa

d�2
��2 R�2

6.048 × 106 Pa s 1 × 10−4 N 0.35 × 102 Pa

Fig. 2  Cantilever plate bending test set-up
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stiffnesses in the material symmetry directions, i.e., �1 and 
�2 . Finally, Table 4 shows the coefficients employed in 
the diffusion equations of the stimuli corresponding to the 
stiffnesses that are assumed to adapt to external mechani-
cal conditions. The initial values of the stimuli are set to 
zero and Neumann boundary conditions specify that the 
stimuli flow vanishes to have insulation from the outside. 
In what follows, on the boundaries for which the bound-
ary condition is not specified, the weak contribution or 
the dual is set to zero, as typically done for the adopted 
formulation.

3.1  A rectangular cantilever plate bending 
under a uniform load per unit length

In the first case, we perform a numerical simulation aiming 
at reproducing the behavior of a rectangular plate of bone 
tissue under the typical arrangement of a cantilever sys-
tem. We set the displacement vector of the left short edge 
zero and apply a uniform shear force per unit length on the 
opposite edge variable in time. The initial transient of the 
force is designed to gradually reach a steady-state condi-
tion and avoid sudden variations of the displacement that 

Fig. 3  Bending test: distribution 
of �

1
 at steady state after the 

application of the load

Fig. 4  Bending test: distribution 
of �

2
 at steady state after the 

application of the load
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could induce some relevant inertial effects. The expression 
of the force applied is as follows:

where �0 is the magnitude of the force and Ts the exten-
sion of the transient. In particular, Ts = 60, 480 s and 
�0 = 1.25 × 105 N/m . This value corresponds to a steady-
state condition that is reached for the strain energy density 
wm in the considered case.

The results of this test show that the initially uniform 
distributed stiffnesses tend to increase their value where 
needed, i.e., where there is a localization of the contribu-
tion of energy associated with them, and decrease where 
the same energy density drops. Figures 3, 4, and 5 report 
this evolutionary change in the distribution of �1 , �2 , and 
� , respectively, together with the current final deforma-
tion. Indeed, the localization of the apposition of new bone 
tissue and its resorption is placed in the expected regions.

The other significant aspect of the proposed model, which 
is the possibility of having an evolution of the material sym-
metry directions, is shown in three-time subsequent steps 
(see Fig. 6): 1) at the beginning, where they are assumed 
parallel to the sides of the rectangular specimen; 2) at an 
intermediate step; and at the steady-state condition.

To better understand the magnitude of this result, we con-
sider the streamlines generated by these material symmetry 
directions at the end of the process and compare them with 
the isostatic lines related to the eigendirections of the strain 
tensor as shown in Fig. 7.

At first sight, they seem slightly different, but a more 
quantitative careful comparison demonstrates that they are 

(26)𝜏(t) =

{
𝜏0

[
t

Ts
−

1

2𝜋
sin

(
2𝜋

t

Ts

)]
t < Ts

𝜏0 t ⩾ Ts

Fig. 5  Bending test: distribu-
tion of � at steady state after the 
application of the load

Fig. 6  Bending test: evolution of the material symmetry directions for 
the bending cantilever test: (1) at the beginning; (2) at an intermediate 
stage; (3) at the steady-state condition
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Fig. 7  Comparison between: a streamlines generated by the unit vectors A
1
 and A

2
 ; b) isostatic lines for the bending test

Fig. 8  Bending test: difference 
between the angles between the 
vectors A

1
 and A

2
 and the eigen-

vectors of the stress
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the same almost everywhere except for very tiny regions (the 
green ones), as shown in Fig. 8. Actually, Fig. 8 displays the 
difference between the angles related to the vectors A1 and 
A2 and those associated with the eigenvectors of the strain. 
This plot allows seeing that these two fields share the same 
angle or an angle of �∕2 in most of the domain. Therefore, 
since the two eigenvectors and the two fields of material 
symmetry must be orthogonal to each other, this implies 
that the isostatic and material symmetry directions coincide, 
and at least they exchange their order where the difference is 
�∕2 , accordingly with the trajectorial theory.

The slight changes in the angles in the green regions of 
Fig. 8 are indeed related to the exchange between the two 
vector fields passing through areas with a different repre-
sentation, namely a sort of transition zone. We can notice in 
Fig. 9 that passing through this region the same direction of 
orthotropy Ai (in the picture A1 is indicated with blue arrows 
and A2 with red arrows) stops being parallel to one eigendi-
rection of the strain tensor to align with the other, which is 
rotated of �∕2 relatively to the first, and simultaneously the 
same switch happens to the other direction of orthotropic 
symmetry.

3.2  A three‑point flexure test

The second case examined is a three-point flexure test. The 
effects of a test fixture having pins interacting with the bone 
specimen during the test are simulated with an elastic barrier 
of potential that impedes the sample from overlapping with 
them. Specifically, we use a frictionless penalty method to 
mimic the contact between the pins and the bone tissue. The 
specimen is placed on two fixed supporting pins set apart 

Fig. 9  Bending test: Enlargement of the vectors A
1
 (blue arrows) and 

A
2
 (red arrows) in the transition zone

Fig. 10  Three-point flexure test set-up

Fig. 11  Three-point flexure test: 
distribution of �

1
 at steady state 

after the application of the load



2147An orthotropic continuum model with substructure evolution for describing bone remodeling:…

1 3

with a specific span length equal to 11∕6 L = 137.5 mm. A 
third loading pin in the middle of the test sample is used to 
deform the bone tissue gradually descending from above 
with a given time law. Here, we use the same expression as 
the previous test, Eq. (26), replacing the amplitude of the 
shear force with the assigned displacement to the loading 
pin u0 = 2 mm. Due to the symmetry of the problem, we 
consider just half of the rectangular bone piece imposing 
symmetry conditions on the displacement at the middle sec-
tion where the load is applied, namely u1 = 0.

Figures 11, 12, and 13 exhibit the evolutionary change 
in the distribution of �1 , �2 , and � , respectively, together 
with the current final deformation. As expected, analo-
gously to the previous case, a distribution of the stiff-
nesses reflecting the actual distribution of the energy 
density of the considered contributions is achieved.

Figure 14 shows the evolutions of the material sym-
metry directions as the remodeling process progresses at 
three significant time instants. Their behavior is charac-
terized by the alignment of them with the isostatic lines 
of the particular test considered, as can be clearly dem-
onstrated by Fig. 15 where the streamlines generated by 
the unit vectors A1 and A2 , as well as the isostatic lines, 
are displayed. Once again, their difference is very small 
and limited to narrow areas with a switch in the order that 
yields a difference of �∕2 , thus, a matter of representa-
tion, as it is quantified in Fig. 16.

Fig. 12  Three-point flexure test: 
distribution of �

2
 at steady state 

after the application of the load

Fig. 13  Three-point flexure test: 
distribution of � at steady state 
after the application of the load
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4  Conclusions

Bone remodeling is the process by which bones con-
tinually renew themselves throughout a person’s life. It 
involves the dissolution and absorption of old bone tis-
sue by resorbing the mineralized matrix, breaking down 
the collagen fibers, and forming new bone tissue in a 
coordinated and controlled manner. Bone remodeling is 
essential for several reasons. It allows bones to repair 

themselves after injury or damage, helps to regulate the 
amount of calcium in the body, and plays a crucial role in 
maintaining bone strength and integrity. Besides, it also 
allows the bone to adapt to changes in stress and load over 
time since the new bone tissue is laid down in a highly 
organized manner and remodeled to meet the demands 
of the surrounding tissue. The process is influenced by a 
variety of factors, including hormones, diet, aging, and 
mainly physical activity. This process is really complex 
and we are far from completely understanding all its 
aspects. However, in this paper, we propose a new varia-
tional formulation that, by using the mechanical influence 
of the external load, is capable of explaining the adap-
tive process of rearranging the network of interconnected 
bone struts in the trabecular bone as well as their ability 
to carry on the load to which it is subject. The mechani-
cal model is based on a generalized continuum theory 
and is characterized by an orthotopic material symmetry, 
which is entirely plausible for this material (Allena and 
Cluzel 2018; Cluzel and Allena 2018). The generaliza-
tion involves some second gradient effects that could be 
relevant in specific contexts where the bone mass density 
is rarefied, and the lattice arrangement of the trabeculae 
is made of very thin and long struts with weak connec-
tions. Expressly, we assume a generalized principle of 
virtual work, assuming two key aspects, one related to 
the mechanical behavior of the bone tissue and the other 
concerning the evolutionary process that allows changing 
the orientations of the trabeculae as well as their thick-
ness and length at the macroscopic level of observation 
of the entire sample. To illustrate the effectiveness of our 
proposal, two numerical tests have been performed. The 
results are promising and encouraging since they allow 
us to recover the optimization process typical of bone 
remodeling in the more general situation of orthotopic 
materials. Indeed, we are able to obtain not only a likely 
distribution of stiffnesses in the considered sample but 
also a reorientation of the material symmetry related to 
the actual arrangement of the trabeculae at a micro-level 
as postulated by the trajectorial theory for which we have 
experimental evidence.

Fig. 14  Three-point flexure test: evolution of the material symmetry 
directions for the bending cantilever test: a at the beginning; b at an 
intermediate stage; c at the steady-state condition



2149An orthotropic continuum model with substructure evolution for describing bone remodeling:…

1 3

Fig. 15  Comparison between: a streamlines generated by the unit vectors A
1
 and A

2
 ; b isostatic lines for the three-point flexure test

Fig. 16  Three-point flexure test: 
difference between the angles 
between the vectors A

1
 and 

A
2
 and the eigenvectors of the 

stress
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