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Abstract
This paper presents a mathematical model for arterial dissection based on a novel hypothesis proposed by a surgeon, Axel 
Haverich, see Haverich (Circulation 135(3):205–207, 2017. https://​doi.​org/​10.​1161/​circu​latio​naha.​116.​025407). In an attempt 
and based on clinical observations, he explained how three different arterial diseases, namely atherosclerosis, aneurysm and 
dissection have the same root in malfunctioning Vasa Vasorums (VVs) which are micro capillaries responsible for artery 
wall nourishment. The authors already proposed a mathematical framework for the modeling of atherosclerosis which is 
the thickening of the artery walls due to an inflammatory response to VVs dysfunction. A multiphysics model based on a 
phase-field approach coupled with mechanical deformation was proposed for this purpose. The kinematics of mechanical 
deformation was described using finite strain theory. The entire model is three-dimensional and fully based on a macroscopic 
continuum description. The objective here is to extend that model by incorporating a damage mechanism in order to capture 
the tearing (rupture) in the artery wall as a result of micro-injuries in VV. Unlike the existing damage-based model of the 
dissection in the literature, here the damage is driven by the internal bleeding (hematoma) rather than purely mechanical 
external loading. The numerical implementation is carried out using finite element method (FEM).
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1  Introduction

Arteries are classified into two distinct types: elastic arteries 
and muscular arteries. Elastic arteries, such as the aorta and 
the common carotid and iliac arteries, have larger dimen-
sions than muscular arteries, for example, the coronaries, 
the femoral and renal arteries Humphrey (1995). A healthy 
artery wall mainly consists of three layers: the intima (the 
innermost layer), the media (the middle layer), and the 
adventitia (the outermost layer). The media gives the most 
significant mechanical strength to the artery wall in both the 
longitudinal and circumferential directions due to its struc-
tural arrangement, which is similar to laminate composites 
MacLean et al. (1999). In the artery wall, the two families 
of collagen fibers are almost equally distributed concerning 

the axis of the artery, with the fiber orientation in the adven-
titia and the media closer to the axial direction and the cir-
cumferential direction, respectively Schriefl et al. (2015). 
In addition to these layers, a vascular network of tiny blood 
vessels known as Vasa Vasorum (VV) is present in the large 
or medium-sized arteries for the complete nourishment of 
the arterial wall.

Arterial dissection is described as delamination between 
the different layers as well as the separation of the lami-
nated structure of the artery wall. The mechanical phenom-
enon of arterial dissection can be split into two separate 
processes, namely initiation and propagation. According 
to Rajagopal et al. Rajagopal et al. (2007), the commence-
ment of the aortic dissection can be triggered due to high 
systolic blood pressure, whereas propagation is influenced 
by pulse pressure and heart rate. For example, in some types 
of aortic dissections, the propagation of the initial tear in 
the intima permits pathological blood within layers of the 
media Gasser and Holzapfel (2006); Sommer et al. (2008). 
This pressurized blood expands the split and may create an 
additional passage known as the false lumen by compressing 
the true lumen Chen et al. (2013). It might be lethal since 
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it causes a decrease in blood flow to vital arteries. Another 
closely related appearance of dissection is an intramural 
hemorrhage/hematoma (IMH) Thubrikar and Agali (1999); 
Khan and Nair (2002). In IMH, the hematoma initiates the 
delamination of the different layers, increases in size plus 
expansion, and ultimately erupts into the true lumen. There 
is yet no consensus on whether an IMH is a separate entity, 
or if it is a preliminary stage of arterial dissection (Which 
came first, the chicken or the egg?). However, it has been 
identified that the conversion rate of an IMH into an aortic 
dissection, with its above-mentioned complications, is up to 
88–90% Alomari et al. (2014).

Numerous investigations on arterial dissection imply 
and endorse the intimal tear and IMH as incitement to the 
propagation of dissection. Based on several cardiovascular 
surgeries, Axel Haverich established a unified hypothesis, 
which describes atherosclerosis as a microvascular disease 
triggered by VV occlusion inside the outer layer of the 
arteries (adventitia) that culminates with arterial functional 
impairment Haverich (2017). As mentioned earlier, VV is 
required to provide nutrients to artery walls in large- and 
medium-sized arteries. However, the obstruction of VV by 
viruses, bacteria, and tiny dust particles, which are most 
likely induced due to risk factors such as hypertension, 
smoking and age can disrupt the nutrition supply to the wall 
tissues. Consequently, VV experiences various ischemic pro-
cesses that lead to inflammation mechanisms. Thus, elevated 
systemic inflammation would be the prime initiation of arte-
rial dissection. During his cardiac surgeries, Axel Haver-
ich Haverich (2017) noticed that non-atherosclerotic large 
and medium arteries possess no VV in the adventitial layer, 
implying no risk of wall ischemic processes. The mathemati-
cal model established in the present work is primarily based 
on the hypothesis presented in Haverich (2017).

In early experimental research, Tam et al. Tam et al. 
(1998) studied the tear propagation driven by pressure in 
porcine thoracic aortas under static conditions. It showed 
an inverse relationship between the propagation pressure 
and the initial depth of the tear. Furthermore, Sommer et al. 
conducted peeling tests on the specimens of human aor-
tic media and observed variations in dissection energy in 
circumferential and axial directions Sommer et al. (2008). 
Pasta et al. performed peel tests on the aneurysm aorta due 
to the increasing possibility of dissecting the aneurysm Pasta 
et al. (2012). Likewise, direct peel and tension tests were 
also implemented on the left anterior descending coronary 
artery Wang et al. (2013) and a carotid artery Tong et al. 
(2011) to investigate dissection properties. According to a 
recent experimental study Kozuń et al. (2018), researchers 
investigated that the evolution of atherosclerosis decreases 
artery wall resistance against dissection. Another study 
from the same research group observed that the dissection 
process differed between the ascending aorta and ascending 

aneurysmal aorta Kozuń et al. (2019). Haslach et al. carried 
out pressure inflation experiments on aortic ring specimens 
with different orientations of notches Haslach et al. (2018). 
This work concluded that shear rupture is driving aortic dis-
section as well as that shear tests, rather than tensile strength 
tests, may provide effective evaluations for the strength of 
the artery wall.

Besides clinical observation, arterial dissection has 
always been a fascinating subject among researchers in the 
field of computational biomechanics. Gasser and Holzap-
fel presented the first numerical study of peeling tests in 
the context of the partition of unity finite element method 
(FEM), coupled with cohesive crack theory, to examine the 
dissection propagation of aortic media Gasser and Holzapfel 
(2006). Ferrara and Pandolfi employed cohesive zone mod-
eling based on traction-separation law to simulate peeling 
processes Ferrara and Pandolfi (2010). Both contributions 
adapted the Holzapfel-Gasser-Ogden material to account for 
the anisotropic hyperelasticity of the artery wall. Wang et al. 
investigated the initiation and propagation of the dissection 
in the framework of the extended FEM and created the resid-
ually stressed artery model Wang et al. (2016, 2017).

Based on the hypothesis of Humphrey Humphrey (2012), 
the semi-analytical and FEM-based continuum methods 
were used by Roccabianca et al. Roccabianca et al. (2013) 
to investigate the influence of pooled glycosaminoglycans 
(GAGs). The findings demonstrate a substantial intramural 
stress concentration around the accumulation of GAGs as a 
result of intra-lamellar swelling pressure. Furthermore, par-
ticle-based computational studies Ahmadzadeh et al. (2019) 
examined the initiation and progression of intra-lamellar 
(medial) dissection under the impact of pooled GAGs. In 
a recent study Rolf-Pissarczyk et al. (2021), a discrete fiber 
dispersion model was employed to analyze the deteriora-
tion of interlamellar elastic fibers during delamination of 
the aorta.

In a recent phase-field modeling approach Ban et al. 
(2021, 2022), Ban and colleagues investigated the aortic 
dissection to examine the correlation between the pressure-
volume curve and the intramural fluid that originates and 
propagates intramural delamination, employing the micro-
structure suggested by histology. In particular, they simu-
lated the experimental investigations conducted by Roach 
and Song Roach and Song (1994) as well as verified the 
power law behavior indicated by Yu et al. Yu et al. (2020). 
Gültekin et al. Gültekin et al. (2016) employed a phase-field 
model to simulate peeling and simple shear experiments 
performed on the aortic wall. Phenomenologically equiva-
lent to previous research, an anisotropic failure criterion 
based on the fracture energy of the components (the ground 
matrix and the collagen fibers) of the material model has 
been implemented in this model. In a recent research work 
Gültekin et al. (2019), Gültekin et al. extended the previous 
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analysis by adapting a similar crack phase-field approach 
and came to the same conclusions as Haslach et al. (2018) 
that aortic dissection is characterized by an in-plane shear-
driven process.

The outcome of the mathematical models can be vali-
dated against clinical medical data. For example, in the case 
of aortic dissection, CT or MRI images are pretty usable. 
High-resolution images allow precise descriptions of aor-
tic wall thickness, constitution, morphology and wall con-
figuration Ko et al. (2021); Murillo et al. (2021). They can 
be employed in diagnosing aortic pathologies of all kinds, 
especially aortic dissections and IMH with a sensitivity of 
as high as 96% 2014 ESC guidelines on the diagnosis and 
treatment of aortic diseases (2014).

In this contribution, the authors extend the multiphysics 
model presented in Soleimani et al. (2021) to predict the 
emergence of dissection by introducing a specific damage 
model that captures the tearing in the arterial wall. The exist-
ing damage-based models of dissection in the literature are 
identical to classical fracture mechanics problems in which 
an external mechanical loading (here blood pressure in the 
lumen) leads to crack propagation in a notched specimen. 
The distinction between the presented phase-field model of 
dissection and those available in the literature is that here 
the damage is triggered and driven by IMH in addition to the 
presence of mechanical loading due to lumen blood pressure. 
In this sense, the problem is similar to hydraulic fracture 
(hydrofracking) Mauthe and Miehe (2017).

2 � Mathematical modeling of arterial 
dissection

A coupled multi-physics approach is used to characterize the 
progression of atherosclerosis as well as the dissection of the 
arterial wall. Firstly, the mechanical deformation captured 
by the displacement field u is governed by the conservation 
of linear momentum. Secondly, the nutrient concentration is 
determined by the scalar variable c, indicating the availabil-
ity of the nutrients, and its transportation follows a classical 
diffusion–reaction equation. Lastly, the phase-field variables 
� and d represent the inflammation (overgrowth) and rupture 
(damage) of the arterial tissue, respectively, using Allen-
Cahn type Allen and Cahn (1979) phase-field modeling. The 
following “assumptions" and “hypotheses" imply a physi-
cally significant correlation between these diverse fields:

Assumptions: 

1.	 To reduce the complexity, we consider the multi-
layered structure as a single-layer structure with 
similar material properties and orientations of the 
collagen fibers for all layers.

2.	 The blood flowing in the lumen delivers the nutrients 
to tissues near the intima layer via diffusion. More-
over, the tissues closer to the adventitia layer are 
nourished by VV for a sufficient supply of nutrition 
to the entire arterial wall. As shown in Fig. 1, the 
2D structure of VVs, which initiates on the exterior 
part of the artery wall and permeates up to the cen-
tral portion of the wall, is generated stochastically 
utilizing an open-source MATLAB code Tyutyun-
nikov (2006). Figure 1 also depicts the parameters 
that significantly influence the geometrical shape of 
VVs.

3.	 The impact of blood flow is incorporated through 
physical boundary conditions, instead of modeling 
in an explicit manner. Specifically, the interfaces 
interacting directly with the blood are preset to have 
the maximum nutrient concentration. Moreover, the 
innermost surface of the wall is subjected to the sys-
tolic mean pressure exerted by the blood flow in the 
lumen.

4.	 For simplification, we assume that all of the cells in 
the arterial wall consume nutrients at a uniform rate. 

Fig. 1   Geometrical representation of VV using tree fractal concept 
and also initial occlusion, from Soleimani et al. (2021)
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Likewise, the nutrient’s diffusivity across the wall is 
kept constant before initiating inflammation and is 
assumed to reduce as the inflammation progresses 
due to a denser texture of the tissue.

5.	 A finite strain theory including a multiplicative 
decomposition of the deformation gradient is 
employed to formulate the large mechanical defor-
mation of the wall induced by the overgrowth.

Hypotheses:
In case of atherosclerosis 

1.	 As shown in Fig. 2, the occlusion of VV results in 
nutrient deficiency inside the outer layer of the wall, 
leading to the emergence and evolution of inflam-
mation. Mathematically, a threshold criterion for 
the nutrient is established below that inflammation 
occurs, connecting the nutrition transport equation 
with the inflammation phase-field equation.

2.	 The development of the lesion is in the direction of 
maximum change of nutrients. From a mathemati-
cal point of view, the sharp interface between the 
inflammatory and healthy regions, as illustrated in 
Fig. 2, is interpreted as the lesion boundary. The 
advection of this boundary is in the direction of the 
nutrient gradient (maximum nutrient change).

3.	 The overgrowth, is directly proportional to inflam-
mation, establishing the connection between the 
phase-field variable and mechanical deformation.

 In case of dissection 

1.	 As shown in Fig. 2, the occlusion of VV results in 
an IMH which means simply bleeding. The func-
tion of the hematoma in dissection is similar to that 
of inflammation in atherosclerosis and hence it is 
described using a phase-field equation.

2.	 The development of the lesion is driven by blood 
perfusion. The sharp interface between the hema-
toma and healthy regions, as illustrated in Fig. 2, is 
interpreted as the lesion boundary. The advection of 
this boundary depends on how the damaged (rup-
tured) zone evolves, see Fig. 3.

3.	 The overgrowth, is directly proportional to hema-
toma development, establishing the connection 
between the phase-field variable and mechanical 
deformation.

The two aforementioned hypotheses are in line with the 
objective of this work, namely establishing a mathematical 
model that unifies both atherosclerosis and dissection in the 
same framework. As stated, both pathologies originate from 
dysfunctioning arterial capillaries (VVs). Rupturing VV as 
the leading cause and pathomechanism of IMH has been 
described before Alomari et al. (2014). Though risk fac-
tors like arterial hypertension or atherosclerosis are already 
identified, the initiating event, which leads to the forma-
tion of IMH remains unknown Alomari et al. (2014); Bai-
koussis et al. (2009). Only and certainly not a satisfactory 

Fig. 2   Inflammation as a response to the VV occlusion due to 
viruses, bacteria and fine particle, from Soleimani et al. (2021)

Fig. 3   Histopathology of IMH in an arterial vessel. Hematoxylin and 
Eosin (H&E) stained artery shows fresh extravasation of erythrocytes 
into the vessel wall (area in the dotted line with subtotal stenosis of 
the vascular lumen



2101Mathematical modeling and numerical simulation of arterial dissection based on a novel surgeon’s…

1 3

explanation so far is “spontaneously”. However, the hypoth-
esis proposed here has good supporting and already pub-
lished evidence regarding VV dysfunction and disease initia-
tion Haverich (2017). In fact, Köster Köster (1876) was one 
of the first, who observed and described, that “obstruction” 
of VV leads to necrosis of the tunica media and potential 
development of atherosclerosis, ultimately leading to rupture 
of VV. As a cause of obstruction, syphilitic aortitis has been 
described before. Spirochetes have been repeatedly found 
inside the aortic wall resulting in inflammatory obstruction 
of VV resulting in wall ischemia and consecutively necro-
sis, aneurysm formation and rupture O’Regan (2002); Stone 
et al. (2015). Not only spirochates have been found in VV, 
RNA and DNA analysis revealed other bacterial and viral 
components supporting our hypothesis of infection-triggered 
obstruction of the VV. Another significant pathway of inti-
mal bleeding is angiogenesis. Angiogenesis is the process of 
blood vessels sprouting from preexisting vessels. Neovessel 
formation is triggered primarily in response to hypoxia and/ 
or inflammatory signals. Neovessels, in general, are inher-
ently immature, fragile and leaky Jeziorska and Woolley 
(1999); Dunmore et al. (2007).

Based on the assumptions and hypotheses stated above, 
one can now formulate the governing equations for the mul-
tiphysics problem at hand.

2.1 � Mechanical equilibrium equation

As indicated in assumption 5, the idea for the formulation 
of overgrowth originates from multiplicative finite plasticity, 
in which the total deformation gradient is split through the 
multiplicative decomposition according to

where Fe corresponds to the elastic part of the mechanical 
deformation and Fg captures the overgrowth due to inflam-
mation. The spatial gradient of the displacement field u can 
be utilized to compute the deformation gradient F such that

in which ∇ refers to the gradient operator in the spatial 
coordinates.

The conservation of linear momentum for the artery in 
the spatial coordinates using the assumption of quasistatic 
process and body forces equal to zero can be given by

in which ∇⋅ denotes the spatial divergence operator and � is 
the Cauchy stress tensor. Since atherosclerosis is considered 
a slow process, the so-called non-compliant terms pertaining 

(1)F = FeFg,

(2)F = (I − ∇u)−1,

(3)∇ ⋅ � = 0,

to the growth process are neglected in the conservation equa-
tion of linear momentum Goriely (2017).

Furthermore, one needs to assume a free energy function 
Ψ (constitutive relationship) from which the stress tensor can 
be computed as follows

where Je is the determinant of the elastic deformation gradi-
ent ( Je = Det(Fe) ). A nearly incompressible and isotropic 
hyperelastic neo-Hookean free energy function is adopted 
according to

where � and � represent the constant material parameters. 
Additionally, Î1e is the first invariant of the isochoric right 
Cauchy-Green tensor defined as Ĉe = J

−
2

3

e F
T
e
Fe and can be 

computed using

2.2 � Nutrient transport equation

The nutrient transport in the arterial wall is considered to 
obey the classical diffusion–reaction equation

where c denotes the nutrient concentration and D represents 
the diffusivity coefficient. Further, Rc defines the rate of 
nutrient consumption in cells, which is the sink term in this 
equation. As mentioned in assumption 4, Rc is kept constant 
and uniform, while D reduces due to inflammation. For sim-
plicity, a linear equation based on the inflammation state � 
as shown below can be used to model the transition of the 
diffusivity coefficient

where Dmax and Dmin are the diffusivity in the healthy and 
inflammatory arterial tissue, respectively.

It should be noted that the time-dependent part is omit-
ted from the nutrient transport equation because the diffu-
sion process has a substantially shorter time scale than the 
inflammation process.

(4)� =
1

Je

�Ψ

�Fe

F
T
e
,

(5)

Ψ = Ψiso + Ψvol =
𝜇

2
(Î1e − 3)

�������

Isochoric energy

contribution

+
𝜈𝜇

(1 − 2𝜈)
(Je − 1)2 − 𝜇 LogJe

�����������������������������������������

Volumetric energy

contribution

,

(6)Î1 = Tr(Ĉe).

(7)∇ ⋅ (D∇c) − Rc = 0,

(8)D = �Dmin + (1 − �)Dmax,
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2.3 � Inflammation phase‑field equation

A phase-field variable termed � is used to determine whether 
or not a specific region of tissue has undergone the inflam-
mation process. From a mathematical standpoint, � is a 
binary indicator bounded in the interval [0,1], expressing 
the status of the inflammatory phase at the point of interest. 
In specific, � = 0 indicates no inflammation, whereas � = 1 
signifies the occurrence of inflammation. The boundary 
of inflammatory cells is characterized by a sharp interface 
between 0 and 1.

In order to capture the interface between the inflamma-
tory and the surrounding healthy tissue, the Allen-Cahn type 
phase-field model is utilized as follows

where the parameters M and � govern the energy jump and 
the width of the interface between the phases, respectively. 
The function f (� ) describes the barrier that must be over-
come for a phase transformation and is commonly given by

in which M = f (1∕2) is the local maximum value of the 
function between the two cells at � = 1 and � = 0.

Moreover, S�(c, d) signifies the source term of the equa-
tion. It is, indeed, the driver of the phase-field. Based on 
hypotheses 1 and 2, a physically meaningful expression is 
employed to represent the function S�(c, d) as

where the parameter Rs controls the magnitude of the source 
term. A clear interpretation exists for equation (11) and 
hence the hematoma growth depends on two things: The 
damaged (ruptured) region captured by d and the blood 
availability represented by c. In fact, the ruptured region 
provides room for blood perfusion. A linear dependency is, 
of course, the simplest assumption but not the only possible 
model.

One may refer to Soleimani et al. (2021) for more details 
regarding the choice of this specific form of the source func-
tion as well as the phase-field model.

In order to invoke the third hypothesis, the inflammation 
state � should be linked to the mechanical part of the growth 
tensor Fg . By the assumption of isotropic overgrowth, Fg 
can be expressed by a scalar � and the identity tensor I , as 
shown below

(9)

�̇
⏟⏟⏟

Phase evolution in pseudo time

= −M
�f (�)
��

⏟⏞⏞⏟⏞⏞⏟
Bulk contribution

+ �2∇2�
⏟⏟⏟

Sharp interface contribution

+ S�(c, d),
⏟⏟⏟

Driver (source) of phase - field

(10)f (�) = 16M�2(1 − �)2,

(11)S�(c, d) = Rs c d,

The scalar parameter � captures the overgrowth. It is imple-
mented as an internal variable and set to zero initially. The 
velocity gradient related to the rate of growth tensor can be 
calculated by

in which the dot denotes the time derivative. As postulated 
in Soleimani et al. (2021), one can linearly connect the over-
growth magnitude to the rate of hematoma state (similar 
to the inflammation state in the case of atherosclerosis) as 
follows

where kg is a proportionality coefficient, chosen as the model 
parameter.

2.4 � Damage (crack) phase‑field equation

In order to capture the rupture within a particular region, the 
phase-field variable denoted as d is utilized. The central idea of 
this approach is to regularize a sharp crack interface by a diffu-
sive crack topology. The phase-field variable is a scalar-valued 
function in the interval [0,1], characterizing for d = 0 the intact 
(solid) state and for d = 1 the fully cracked (ruptured) state of 
the tissue. It is important to note that the phase-field variable 
is formulated in the reference configuration.

Following the arguments outlined in Miehe et al. (2010), 
the sharp crack interface is considered to be governed by

where the parameter l is the width of the crack zone. It cor-
responds to the crack surface energy defined by the equation

The rupture of the artery is an irreversible process from a 
physical point of view. It results from a local state of ten-
sion which leads to the propagation of a crack. Therefore, 
we decompose the volumetric part of the free energy ( Ψvol ) 
into a tensile part and fracture-insensitive compressive part. 
Hence the volumetric part of free energy in equation (5) is 
replaced with

in which

(12)Fg = (1 + �)I.

(13)Lg = ḞgF
−1
g

=
𝛼̇

1 + 𝛼
I,

(14)
𝛼̇

1 + 𝛼
= kg𝜙̇,

(15)d − l2∇2d = 0,

(16)�(d,∇d) =
d2

2
+

l2

2
∇d ⋅ ∇d.

(17)(1 − HJ)g(d)Ψvol + HJΨvol,
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and the degradation function g(d) is defined as

in which dmin is a numerical parameter close to zero in order 
to avoid singularity when d approaches 1. This function is 

(18)HJ =

{
1 if Je ≤ 1

0 if Je > 1
,

(19)g(d) = (1 − d)2 + d dmin,

monotonically decreasing if the damage variable d increases 
gradually.

One can see that the volumetric part of the energy is 
degraded if it is in a tensile state. Furthermore, the iso-
choric part of the energy is always degraded irrespective of 
the tensile/compressive state. Hence, Ψiso in equation (5) is 
replaced with

Table 1   Implementation algorithm in the AceGen

1. Interpolate the field variables DI (components of displacement, concentration, IMH and damage) using standard linear FEM shape functions 
NI

D =
∑M

I
NIDI , DI ∶= uI , vI ,wI , cI ,�I , dI,   M: number of nodes

De ∶=
⋃M

I
DI =

�
u1, v1,w1, c1,�1, d1, ..., uN , vN ,wN , cN ,�N , dN

�

2. Initialize the Global Newton–Raphson using
Fg(n+1) = Fg(n) = (1 + �n)I

Fe(n+1) = Fn+1 ⋅ F
−1
g(n+1)

3. Compute
Je(n+1) = Det(Fe(n+1))

Ce(n+1) = J
−

2

3

e(n+1)
F
T
e(n+1)

⋅ Fe(n+1)

Ψn+1 using (5)

�n+1 =
1

Je(n+1)

�Ψn+1

�Fe(n+1)

F
T
e(n+1)

4. Local equation (at Gauss point): R� = 0

a. Solve the local problems, namely equation (14), at Gauss points to 
find the internal variables ( �n+1)

R� =
(�n+1−�n)

(1+�n+1)
− kg(�n+1 − �n)

b. Update Je(n+1) , Fg(n+1) and Fe(n+1)

c. Compute A =
��n+1

�De

 which is later needed in tangent computation 
(step 6)

5. Compute the total weak form using (25)
Π = ∫

B
�n+1 ∶ ∇sym�un+1 dv + Kc ∫B[D∇cn+1 ⋅ ∇�cn+1 + Rc �cn+1] dv

+K� ∫B[�
2∇�n+1 ⋅ ∇��n+1 +M

�f (�n+1)

��n+1

��n+1 +
�n+1−�

t−Δt

Δt
��n+1

−Rs cn dn ��n+1] dv

+Kd ∫B[dn+1 �dn+1 + l2∇dn+1 ⋅ �∇dn+1 + �d
dn+1−d

t−Δt

Δt
�dn+1

−
�g(dn+1)

�dn+1

Ψmax

Ψcri∕l
�dn+1] dv

6. Compute the residuum vector of the element 

Re =
�Π

��De

7. Compute the element stiffness matrix taking into account the local internal variables

Ke =
�Re

�De

| ��

�De
=A

8. Global Newton–Raphson iteration: 

(ℝ,𝔻,𝕂) =
⋃all elements

(Re,De,Ke)

DO WHILE ‖ℝ‖ ≥ TOL (Check the global convergence)
Repeat steps (3) to (7)
𝔻 ⇐ 𝔻 + Δ𝔻, Δ𝔻 = −𝕂−1

ℝ

END DO
9. Go to the next time step and start from step (2)
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Similar to equation (9), the Allen-Cahn type equation for the 
damage field can be written as

in which �d is an artificial viscosity and l refers to the dam-
age length-scale parameter. Additionally, the damage source 
term, Sd(u, d) , is driven by the mechanical part and can be 
written as

Note that the reversibility of damage (healing) is prevented 
by treating Ψmax as a history variable meaning that the maxi-
mum value of the free energy appearing in the course of the 
time is used. In practice, when it comes to numerical imple-
mentation, the local energy density Ψ is compared with that 
of the previous time step, and then the maximum of these 
two is stored as the history variable. In mathematical terms

in which the superscripts n and n + 1 refers to the previous 
and current time steps, respectively. Equation (23) ensures 
that the damage variable d is either increasing (during load-
ing) or frozen (during unloading).

(20)g(d)Ψiso.

(21)

𝜂dḋ
���

damage evolutionin pseudo time

= −d + l
2∇2

d
�����������

surface energy

+ Sd(u, d),
�����

Driver (source) of damage field

(22)Sd(u, d) = −
�g(d)

�d

Ψmax

Ψcri∕l
.

(23)Ψmax = MAX[Ψn+1,Ψn],

3 � Numerical implementation using FEM

In order to implement the equations discussed in the previ-
ous section, we adopt a standard Galerkin FEM. Considering 
the week form of equations (3), (7), (9) and (21), one can 
construct a Lagrangian L as a function of primary variables 

Fig. 4   Geometrical model of the artery with boundary conditions

Fig. 5   Discretized model and local mesh refinement in 2D
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u , c, � and d. Stationary conditions �L = 0 leads to the 
desired weak form

in which K� , Kc and Kd are the numerical parameters 
employed to get a suitable condition number of the multi-
field global stiffness matrix. Their selection significantly 
impacts the performance of the monolithic approach in solv-
ing the multi-field problem.

After the formulation of the weak form, integration by 
parts is applied to the integrals in equation (24), which 
includes now the boundary terms specified on the bound-
ary �B . In addition, a backward (implicit) Euler scheme 

(24)

�(u, c,�, d) = ∫
(∇ ⋅ �) ⋅ �u dv

+ Kc ∫
[D∇2c)�c + Rc�c]dv

+ K� ∫
[(�2∇2�)�� +M

�f (�)
��

�� − S�(c, d)�� + �̇ ��] dv

+ Kd ∫
[d �d − l2∇2d �d − Sd(u, d)�d + �dḋ �d] dv = 0,

is used to approximate the time derivative terms ( 𝜙̇ and 
ḋ ). In this regard, the superscript t − Δt refers to the previ-
ous time step. As a result, the weak form in equation (24) 
leads to

Table 3   Geometrical parameters of VV tree fractal (the values with-
out reference are assumed by the authors)

Description Parameter Value Unit Ref

Tree trunk L0 80 μm

Second branching parameter �2 1.0 –
Third branching parameter �3 1.0 –
Forth branching parameter �4 1.0 –
Second branch angle 2D �2

2�

3
Rad

Third branch angle 2D �3
2�

3
Rad

Forth branch angle 2D �4
2�

3
Rad

Table 2   Geometrical parameters of the test cases and material constants (the values without reference are assumed by the authors)

Description Parameter Value Unit Ref

Coronary artery inner diameter D 1200.0 μm  Holzapfel et al. (2005)
Coronary artery wall thickness t 400.0 μm  Holzapfel et al. (2005)
Initial occlusion location S 30.0 μm

Overgrowth constant kg 10 Time−1

Max. internal pressure pmax 120 (≈ 16) mmHg (kPa)  Ramanathan and Skinner 
(2005)

Cell consumption Rc 10−2 μg μm−3 Time−1

Max. diffusion coefficient Dmax 103 μm2 Time−1

Min. diffusion coefficient Dmin 1.0 μm2 Time−1

Hematoma rate Rs 100 μmTime−1

Shear modulus � ∼ 30 kPa  Holzapfel et al. (2005)
Poisson’s ratio � 0.49 –
Inter-layer fracture energy Ψcri

l
100 kPa  Gültekin et al. (2019)

Damage length scale l 2 h μm

Damage viscosity parameter �d 0.01 –
Numerical minimum allowed damage dmin 10−4 –
Phase-field parameter � 25 –
Phase-field parameter M 1 –
Numerical parameter K� 1 –
Numerical parameter Kc 1 –
Numerical parameter Kd 1 –
Mesh size 2D, coarse/fine h 20/2 μm

Mesh size 3D, coarse/fine h 40/10 μm
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where n is the normal vector to the surface of the boundary. 
Moreover, t = � ⋅ n signifies the traction (mechanical flux) 
applied on the boundaries. Likewise, D∇c ⋅ n corresponds 
to the nutrient flux on the boundaries. It is a common as 
well as justifiable assumption that the boundary term for 

(25)

�(u, c,�, d) =∫
�:∇sym�u dv − ∫�

t ⋅ �u ds

+ Kc ∫
[D∇c ⋅ �∇c + Rc�c] dv − Kc ∫�

D∇c ⋅ n �c ds

+ K� ∫
[�2∇� ⋅ ∇�� +M

�f (�)
��

�� +
� − �t−Δt

Δt
��

− Rsc d ��] dv − K� ∫�
�2∇� ⋅ n �� ds

+ Kd ∫
[d �d + l2∇d ⋅ �∇d + �d

d − dt−Δt
Δt

�d

−
�g(d)
�d

Ψmax
Ψcri∕l

�d] dv − Kd ∫�
l2∇d ⋅ n �d ds = 0,

the phase-field variable is set to zero. Thus, the flux terms 
K� ∫�B �

2∇� ⋅ n �� ds as well as Kd ∫�B l
2∇d ⋅ n �d ds can be 

omitted. Figure 4 illustrates the boundary conditions.
The formulation of the multi-field problem (mechanical 

deformation, nutrient concentration, IMH and damage) in 
hand has been implemented via AceGen, which is an auto-
matic differentiation (hybrid symbolic/numeric differentia-
tion) tool. One may refer to Korelc and Wriggers (2016) for 
more detailed information on AceGen. Further, the gener-
ated output has been tailored to a user element using the 
FORTRAN programming language, which can be invoked 
by any FEM solver, e.g., AceFEM, ANSYS, ABAQUS. 
In the present work, we selected ANSYS because of its 
extensive pre-processor and post-processor features. The 
employed element is a hexahedral (brick-shaped) element, 
which is commonly used in FEM, with eight nodes and lin-
ear shape functions. Every node has six degrees of freedom. 

Fig. 6   2D atherosclerosis 
(without damage evolution, i.e., 
d = 0 ): variation of dimension-
less nutrient and inflammation 
in the course of time
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Three of them indicate the components of the displacement 
vector u . The remaining three are assigned to the nutrient 
concentration field c and the phase-field variables � and d. 
Moreover, the variable � is treated as an internal variable at 
the Gauss points. Based on the Newton–Raphson method, an 
implicit iterative procedure is utilized to solve the nonlinear 
problem at hand. All internal and field variables are consid-
ered to be known at the previous iteration highlighted with 
the subscript n. It should be distinguished from the values 
of the time-dependent variables at the previously converged 
time step, represented using superscript t − Δt . The global 
system solution provides the current values for the primary 

variables u , c, � and d, which are indicated by the subscript 
n + 1 . For the sake of simplification, the entire implemented 
algorithm is summarized in Table 1.

4 � Numerical examples

As stated before, the objective of this work is to show that 
atherosclerosis and dissection can be regarded as different 
pathology but with similar roots. In the former, a nutrient 
disruption in the artery wall due to VV dysfunction leads 

Fig. 7   2D atherosclerosis 
(without damage evolution, 
i.e., d = 0 ): distribution of 
von Mises stress and the radial 
deformation in the course of 
time
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to an inflammatory response which results in the thicken-
ing of the artery wall, while, in the latter, an internal rup-
ture of VVs gives rise to interlayer delamination. Hence 
two test cases are presented to demonstrate how these two 

pathological conditions can be unified from a modeling point 
of view.

In the first example, the strength of the artery is assumed 
to be infinite in order to prevent rupture (damage). In the 

Fig. 8   2D atherosclerosis 
(without damage evolution, i.e., 
d = 0 ): variation of stresses 
across the artery thickness
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second example, the inter-layer strength is limited to a finite 
value (threshold) which, when crossed, leads to inter-layer 
rupture. In order to test the suitability of the mathemati-
cal model and to examine the initiation of dissection (dam-
age evolution), a 2D artery model is used for the numerical 
simulation. Specifically, the arterial wall’s geometry is con-
sidered a simple 2D cylinder, as shown in Fig. 4, along with 
the setting of boundary conditions. The material and numeri-
cal parameters required for the simulations are collected in 
Table 2. The material parameters concerning fracture and 
mechanical behavior of the coronary arteries are taken from 
the literature. One needs to keep in mind that there is no ref-
erence value, especially for fracture-related parameters and 
the literature suffers from arbitrariness and scatteredness in 
this regard, see e.g., Ban et al. (2021, 2022); Gültekin et al. 
(2019); Holzapfel et al. (2005); Badel et al. (2014).

Although the mathematical model and numerical imple-
mentation are 3D, the numerical examples are color mainly 

restricted to 2D with plane strain assumption, due to com-
putational efficiency. Furthermore, the mesh is only refined 
around the region where the phase-field equations are to 
be solved. Figure 5 shows the mesh representing the artery 
section Table 3.

4.1 � Inflammatory response of artery wall 
without dissection

The first test case predicts atherosclerosis, which is wall 
thickening due to the malfunction of the nourishment net-
work namely VVs. The VV network supplies the wall with 
the nutrient as an auxiliary mechanism to the diffusion from 
the lumen. The presence of VVs substantially changes the 
nutrient distribution compared to simple diffusion-domi-
nated nourishment from the lumen. Based on the presented 
mathematical model, inflammation development is regulated 
by the nutrient gradient. Figure 6 depicts the progression 

Fig. 9   2D dissection (with 
damage evolution, i.e., d ≠ 0 ): 
variation of dimensionless 
nutrient and hematoma in the 
course of time
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of the inflammation in the presence of VVs. One can see 
that the phase-field approach is capable of capturing this 
phenomenon. The wall swells and an inner bulge is gener-
ated giving rise to atherosclerosis. From a modeling point 
of view, to avoid the appearance of damage (rupture) in our 
general multi-physics model, a very large value is chosen for 
the critical fracture energy so that the damage mechanism is 
not activated despite very large deformation.

Figure 7 shows the evolution of equivalent stress as well 
as the radial deformation. It illustrates that the inflammatory 
region is highly under stress. A closer look at the radial and 
tangential stresses in Fig. 8 reveals that the inflammatory 
zone is predominantly subjected to compressive stresses 

while the tissue surrounding bears tensile stresses. That 
means the stress gradient is significant across the bounda-
ries of inflammation.

4.2 � IMH‑driven response of artery wall 
with dissection

The dissection example is, in principle, identical to the pre-
vious one except for the damage mechanism being activated. 
It is achieved by setting the inter-layer fracture energy Ψcri 
to a finite value, see Table 1. As a result, rupture occurs 
when the fracture threshold is exceeded. Here the IMH is 
driven by the seepage of blood from the VVs to the aperture 

Fig. 10   2D dissection (with 
damage evolution, i.e., d ≠ 0 ): 
distribution of von Mises stress 
and the radial deformation in 
the course of time
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and consequently contributes to the propagation of the rup-
tured region, see Fig. 9. As stated before, the progression of 
the interlayer debonding is similar to the hydraulic fracture 
(hydrofracking) phenomenon in which pressurized fluid is 
utilized to fracture the bedrock Mauthe and Miehe (2017).

The interlayer debonding may extend to a very long 
distance (axial extension) and cause acute conditions that 
might be life-threatening. A well-known example of such a 
scenario is the aortic dissection in which the inner layer of 
the wall is torn and the blood flows between the layers of 

Fig. 11   2D dissection (with 
damage evolution, i.e., d ≠ 0 ): 
variation of stresses along the 
defined path from point 1 to 
point 2
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the aortic wall instead of the lumen. It leads to a profound 
drop in blood pressure and quick death. Here, the long-term 
and large-scale propagation of the ruptured region is not 
considered in the simulation. Rather, the early phases of 
the rupture are investigated and hence the nucleation of 
the micro-injury within the wall and its propagation at the 
earlier phases is of interest. The full fluid-solid interaction 
analysis of the pathology in the later stages necessitates a 
fluid flow analysis in which the blood penetrates the ruptured 
region from the lumen and expands it. The full analysis is 
left for future works.

A comparison of the mechanical quantities in athero-
sclerosis and dissection scenarios is quite informative. In 
this regard, Fig. 10 can be compared with Fig. 7. The two 

phenomena lead to substantially different responses of the 
artery wall. While the integrity of the artery wall is kept 
intact in the case of atherosclerosis, the rupture of the wall 
is the main manifestation of dissection. From a mathemati-
cal point of view, the former ensures a continuous profile of 
physical quantities such as stresses and displacements, but 
the latter results in a jump in the profile of field variables due 
to the presence of delamination. Figures 10 and 7 depict the 
variation of stresses and displacements across the thickness 
of the wall in two cases. The ruptured region cannot sustain 
mechanical loads and hence the state of stress inside the 
aperture is hydrostatic compression which can be interpreted 
as the pressurized blood. The crack tip, however, is highly 
under stress as expected.

Fig. 12   3D dissection (with 
damage evolution, i.e., d ≠ 0 ): 
variation of stresses along the 
defined path from point 1 to 
point 2
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One can realize more clearly the distinction between 
stress states in two cases by looking at the radial and tan-
gential stress profiles in Figs. 8 and 11. Unlike the fractured 
zone (Fig. 11), the inflammatory zone (Fig. 8) undergoes 
intense mechanical stresses (because there is no softening 
mechanism in the model) with a very sharp gradient at the 
interface between the inflammation and the surrounding 
tissues. Nonetheless, in Fig. 11, the fractured zone bears 
a compressive and almost isotropic state of stress (due to 
pressurized blood in the ruptured zone) which is reflected in 
small von Mises stress. Moreover, the stress concentration 
is also observed at the crack tips (relatively high von Mises 
stress at the crack tip).

Inflammation and dissection differ also in the way that 
they induce deformation in the artery wall. Different defor-
mation modes are observed when one compares the radial 

deformation in Figs. 7 and 10. A jump in radial deformation 
and in the case of dissection clearly shows the discontinu-
ity of geometry. However, as stated before, the dissection 
expands in both tangential and axial directions. To capture 
the axial propagation of the ruptured zone, a 3D model is 
inevitable and a 2D histological representation is not suffi-
cient. However, the computational cost of 3D cases is dras-
tically higher than that of 2D cases. Here the total number 
of degrees of freedom for 2D examples is roughly 1.5 × 105 
while it exceeds 4 × 106 in 3D. Nonetheless, using a coarser 
mesh, a 3D test case is also executed to examine the axial 
variation of stress components around the regions under-
going dissection. Figs. 12 and 13 illustrate the profile of 
stress components along radial and axial paths defined in 
the region of interest. One can realize that similar to 2D 
examples, the ruptured region filled with blood bears high 

Fig. 13   3D dissection (with 
damage evolution, i.e., d ≠ 0 ): 
variation of stresses along the 
defined path from point 1 to 
point 2



2114	 M. Soleimani et al.

1 3

compressive and almost hydrostatic stresses (very small von 
Mises stress), while the crack tips undergo relatively high 
von Mises stresses.

5 � Conclusion

In this work, a mathematical model was presented for the 
prediction of the dissection initiation in the arteries. The 
mathematical framework is an extension of the model devel-
oped for atherosclerosis in Soleimani et al. (2021). By using 
the extended model for the prediction of atherosclerosis and 
dissection, this work advocates the idea of a unified frame-
work proposed by the fifth author that explains different arte-
rial diseases, namely atherosclerosis, aneurysm and dissec-
tion, using a unified approach. There are some limitations 
that this paper is based on. They can be addressed in order 
to improve the model.

One direction for the extension of this work is clinical 
validation. The outcome of the computational models can be 
validated against clinical medical data. For example, in the 
case of aortic dissection, high-resolution CT or MRI images 
are pretty usable Ko et al. (2021); Murillo et al. (2021).

The constitutive modeling of the artery has also a poten-
tial for improvement. The assumed uniform wall can be 
replaced by a multi-layer structure each of whose layers has 
different mechanical properties due to the presence of rein-
forcing fibers.

Moreover, the fluid flow in the lumen can be coupled 
with the existing model in order to capture the propagation 
of the dissection on larger scales. This extension neces-
sitates conducting an affordable 3D analysis using paral-
lel solvers. The reason is that resolving the phase-field 
variables as well as the VV network in 3D needs a suffi-
ciently fine mesh. It leads naturally to millions of degrees 
of freedom for such a nonlinear and coupled multiphysics 
problem.
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