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Abstract
The identification of material parameters accurately describing the region-dependent mechanical behavior of human brain 
tissue is crucial for computational models used to assist, e.g., the development of safety equipment like helmets or the plan-
ning and execution of brain surgery. While the division of the human brain into different anatomical regions is well estab-
lished, knowledge about regions with distinct mechanical properties remains limited. Here, we establish an inverse parameter 
identification scheme using a hyperelastic Ogden model and experimental data from multi-modal testing of tissue from 19 
anatomical human brain regions to identify mechanically distinct regions and provide the corresponding material parameters. 
We assign the 19 anatomical regions to nine governing regions based on similar parameters and microstructures. Statistical 
analyses confirm differences between the regions and indicate that at least the corpus callosum and the corona radiata should 
be assigned different material parameters in computational models of the human brain. We provide a total of four parameter 
sets based on the two initial Poisson’s ratios of 0.45 and 0.49 as well as the pre- and unconditioned experimental responses, 
respectively. Our results highlight the close interrelation between the Poisson’s ratio and the remaining model parameters. 
The identified parameters will contribute to more precise computational models enabling spatially resolved predictions of 
the stress and strain states in human brains under complex mechanical loading conditions.

Keywords Human brain tissue · Parameter identification · Finite hyperelasticity · Finite element method · Ogden model

1 Introduction

As powerful computational resources have become availa-
ble, it is now feasible to run complex mechanical simulation 
models of the brain. An emerging application of mechanical 
models for brain tissue is the simulation of neurosurgeries 
that enable surgeons to learn the procedures ’in the dry’ 
without any risk of harming the patient (Sase et al. 2015; 
Hansen et al. 2004; Delorme et al. 2012). Another applica-
tion is the design of protective equipment. Brain injuries are 
a major health issue. A study conducted by Majdan et al. 
(2017) reported a total number of 17.049 deaths related 

to traumatic brain injury (TBI) in 16 european countries 
during the year 2013. The development of new as well as 
the improvement of existing protective measures like hel-
mets can contribute to reduce this number. An overview of 
currently used brain biomechanical models is given in the 
review by Ji et al. (2022). Besides the simulation of external 
loads in the aforementioned scenarios, there are also mod-
els predicting phenomena linked to internal processes, such 
as (abnormal) cortical folding during brain development 
(Garcia et al. 2018), associated cellular processes (Budday 
et al. 2015; Zarzor et al. 2021) and diseases like epilepsy 
(Blumcke et al. 2021) or Alzheimer’s (Weickenmeier and 
Kuhl 2018).

A key prerequisite for accurate simulation models are consti-
tutive relations to solve the underlying boundary value problem 
arising from Cauchy’s equation of motion. Constitutive equa-
tions themselves require the identification of appropriate mate-
rial parameters. Their ability to approximate the actual mechan-
ical behavior has a significant influence on the accuracy of the 
output of the whole model. Most of the currently used models 
assume homogeneous material properties for brain tissue as a 
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whole (Zong et al. 2006; Yan and Pangestu 2011; Fernandes 
et al. 2018; Horgan and Gilchrist 2003; Kang et al. 1997). Only 
some distinguish between brain and brainstem (Ho and Kleiven 
2009; Ghajari et al. 2017) or between gray and white matter 
(Mao et al. 2013). Other approaches have incorporated a more 
heterogeneous distribution of material properties, for example 
by utilizing data from magnet resonance elastography (MRE) 
(Zhao and Ji 2022; Giudice et al. 2021), or have accounted 
for axon fiber tracts (Wu et al. 2019; Li et al. 2021; Giordano 
and Kleiven 2014). It is commonly assumed that brain tissue is 
nearly incompressible, which is often implemented in terms of 
a compressible formulation with a high bulk modulus in finite 
element models (Zong et al. 2006; Yan and Pangestu 2011; 
Fernandes et al. 2018; Kang et al. 1997). Different values for 
the initial value of the Poisson’s ratio � have been used for 
such simulations, e.g., 0.49995 (MacManus et al. 2018), 0.495 
(Pierrat et al. 2018), and 0.49 (Shafieian et al. 2009).

There have been numerous experimental studies character-
izing the mechanical behavior of brain tissue. An overview 
of experiments is given in the review by Faber et al. (2022). 
Material parameters can be identified by fitting a mechanical 
model with an underlying parameterized constitutive relation (a 
material model) to the experimental data. Budday et al. (2017) 
showed the importance of simultaneously considering multi-
ple loading modes when aiming to calibrate reliable material 
parameters. Due to the observed heterogeneity in mechanical 
properties, it is also desirable to test each specimen under all 
loading modes as opposed to using separate samples for the dif-
ferent tested modes. Although there have been more experiments 
on human brain tissue in recent years (Karimi et al. 2019; Forte 
et al. 2017; Jin et al. 2013; Chatelin et al. 2012; Zhu et al. 2010; 
Jin et al. 2013; MacManus et al. 2020; Finan et al. 2017; Greiner 
et al. 2021; Budday et al. 2017), there are still only a few test-
ing human brains under multiple loading modes (Budday et al. 
2017; Greiner et al. 2021; Jin et al. 2013). There are also signifi-
cant differences regarding the spatial resolution of experimental 
studies, i.e., the classification into different regions. While some 
report experimental results for gray and white matter (Forte et al. 
2017), others differentiate into three regions, i.e., corona radiata, 
thalamus and brainstem (Chatelin et al. 2012), or up to four 
regions, i.e., corpus callosum, corona radiata, basal ganglia and 
cortex (Budday et al. 2017). The distinction of these regions has 
so far been based on anatomical knowledge. However, to what 
extent anatomically distinct regions coincide with mechanically 
distinct regions remains largely unknown.

Most material parameters for brain tissue have been identi-
fied based on the assumption of homogeneous deformation 
states during experiments (Budday et al. 2017; Laksari et al. 
2012; Mihai et al. 2017). In experimental tests other than 
compression, however, the specimens need to be fixed to the 
specimen holders, which is usually achieved by gluing. The 
thereby introduced non-slipping boundary conditions lead 
to an inhomogeneous deformation state. By running finite 

element simulations with realistic boundary conditions using 
parameters obtained based on the assumption of a homoge-
neous deformation, it has been shown that this assumption 
introduces a notable error in the model predictions (Budday 
et al. 2020; Felfelian et al. 2019; Voyiadjis and Samadi-Dooki 
2018).

In this paper, we aim to identify mechanically distinct 
regions that should be accounted for in finite element models 
of the human brain and provide corresponding hyperelastic 
material parameters. To this end, we performed multi-modal 
mechanical testing (including different loading modes) on 
human brain tissue. Specifically, we extracted specimens 
from a total of 19 anatomical regions and tested them under 
cyclic compression, tension, as well as torsional shear. To 
capture the inhomogeneous deformation state during test-
ing caused by non-slip boundary conditions, we imple-
ment a quasistatic finite element model that simulates the 
testing procedure. We use a hyperelastic one-term Ogden 
model based on previous results of different groups who 
successfully used Ogden-type models to model the mechani-
cal behavior of brain tissue (Mihai et al. 2015; Miller et al. 
2000; Budday et al. 2017; Hosseini-Farid et al. 2019). By 
coupling our simulation model with an optimization routine, 
we identify the optimal set of material parameters. We fit 
parameters for the first and third loading cycle separately to 
represent the un- and preconditioned response, respectively. 
Furthermore, we used two different initial Poisson’s ratios of 
0.45 and 0.49 to compare how a different assumed compress-
ibility affects the results.

2  Methods

2.1  Human brains

We obtained seven whole human brains including the cer-
ebrum, cerebellum and brainstem from three female and four 
male body donors who had given their written consent to 
donate their body to research. Table 1 gives an overview of 
the obtained brains including the age of the respective body 
donor and the cause of death. None of the body donors had 

Table 1  Human brains

Brain Sex Age Cause of death

1 Male 92 Cardiovascular failure
2 Female 62 Liver and kidney failure
3 Male 68 Metastasizing bronchial carcinoma
4 Male 75 Cardiac insufficiency
5 Male 75 Metastasizing bronchial carcinoma
6 Female 77 Metastasizing pancreas carcinoma
7 Female 69 Metastasizing breast cancer
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suffered from any neurological disease known to affect the 
microstructure of the brain. We note that we could not find 
metastases in the brain from donors 3, 5, and 6, who had 
died from cancer. In brain number 7, however, we found one 
metastasis in the left cerebellar peduncle. The remaining 
tissue did not show any visible abnormalities. The brains 
1–3 and 5–6 were immersed in cerebrospinal fluid surrogate 
(CSFS) during transport. Brain 4 was kept in phosphate buff-
ered saline solution (PBS) and brain 7 in Ringer’s solution, 
as the otherwise preferred CSFS was not available on short 
notice. CSFS closely matches the electrolyte concentra-
tions of cerebrospinal fluid and is prepared from high purity 
water and analytical grade reagents. The constituents of all 
three solutions are listed in Table 2. We received the brains 
between 9 and 24 h post mortem and directly cut them into 
1 cm thick coronal slices that we kept refrigerated at 4 °C 
in the solution they had arrived in (CSFS, PBS, or Ringer’s 
solution) until mechanical testing. The mechanical experi-
ments were completed within 72 h post mortem.

2.2  Specimen preparation

We used a biopsy punch to extract cylindrical samples of 
8 mm diameter, as shown in Fig. 1a, b. To ensure that the 
specimens only experienced small deformations before 

being probed mechanically, we punched them out of coro-
nal slices while the slices were immersed in CSFS, PBS, 
or Ringer’s solution. Like this, the cylindrical specimens 
could slide out of the biopsy punch without adhering to it. 
If the small cylinders had a height of more than 6mm, we 
carefully shortened them with a surgical scalpel. The final 
specimen height as recorded by the rheometer (see also 
Sect. 2.3) varied between 2.7 and 7.2 mm with a mean of 4.9
mm. For most regions, it was possible to extract homoge-
neous specimens of this size. Exceptions are brain regions 
that contain both white and gray matter tissue, such as the 
midbrain, pons, and medulla. Samples of the deep cerebellar 
nuclei contained a certain amount of cerebellar white mat-
ter because the cerebellar nuclei are too small to be probed 
separately. Figure 2 gives an overview of samples extracted 
from each brain region. The corresponding abbreviations are 
introduced in Table 3.

2.3  Experimental setup

We used a Discovery HR-3 rheometer from TA instruments 
(New Castle, Delaware, USA) to measure the tissue response 
under compression, tension, and torsional shear (see Fig. 1c, 
d). After gluing sandpaper to the specimen holders and cali-
brating the instrument, we fixed the specimens to the sand-
paper on the upper and lower specimen holders using super-
glue. We waited 30 to 60 s to let the glue dry before adding 
PBS to immerse the specimen and keep it hydrated during 
the experiment. We conducted all tests at 37◦ C. Figure 1c 
shows a specimen that has been fixed to the upper specimen 
holder. The testing protocol is summarized in Table 4. We 
first applied three cycles of compression and tension with 
a loading velocity of 40 µm/s and minimum and maximum 
stretches of � = [H + Δz]∕H = 0.85 and � = 1.15 , where H 
denotes the initial specimen height and Δz the displacement 
in the direction of loading. Subsequently, we performed a 
compression relaxation test at � = 0.85 with a loading veloc-
ity of 100 µm/s and a holding period of 300 s, and a tension 
relaxation test at � = 1.15 , with the same loading velocity 
and holding period. Then, we performed two sets of cyclic 
torsional shear tests with three cycles and a maximum shear 
strain of � = 0.15 and � = 0.3 , respectively. For compression 
and tension tests, we recorded the corresponding force fz and 
determined the nominal stress as Pexp = fz∕A , where A is 
the cross-sectional area of the specimen in the undeformed 
configuration. For torsional shear tests, we recorded the cor-
responding torque t and determined the torsional shear stress 
as � = 2t∕�r3.

Table 2  Storage solutions

Solutions Constituents (in mM/100 ml)

CSFS Na+ 150, K+ 3.0, Ca2+1.4, Mg2+ 0.8, P 1.0, Cl- 155
PBS NaCl 137, KCl 2.7, Phosphate buffer 11.9
Ringer’s NaCl 1.24×1e-4, NaH2PO4 1.25, MgSO4 1.8, CaCl2 

1.6, KCl 3.0, Glucose 10

Fig. 1  Specimen preparation and experimental setup. a Idealized 
geometry and dimensions of the specimens. b Extracted brain tissue 
specimen prepared for testing. c Specimen glued to the upper speci-
men holder of the rheometer. d Tested loading modes. Adapted from 
Faber et al. (2022)
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2.4  Finite element model

2.4.1  Boundary value problem

The balance of linear momentum in a quasistatic setting can 
be written as div� + b = 0 , where � denotes the Cauchy 
stress tensor and b the vector of volume forces. The defor-
mation map �(�) maps the tissue from the undeformed 
(material) configuration X to the deformed configuration x . 
To describe the deformation of our specimens during test-
ing, we introduce the deformation gradient as � = ���(�) , 
which maps line elements from the material configuration 
X to the spatial configuration x. F can be uniquely decom-
posed into a rotation tensor R and a stretch tensor v so that 
� = �� with RT

R = I and v = vT . The eigenvalues of v are 
identified as the principal stretches �a and can be obtained as 
the square root of the eigenvalues of the left Cauchy-Green 
strain tensor b = FF

T.
Our goal is to find the displacement field u , defined as 

� = � − � , that solves div� + b = 0 on the region Ω , repre-
senting our specimen. The boundary surface �Ω can be split 
into a part �Ωu , where we prescribe the displacements as 
Dirichlet boundary conditions u = ū , and a part �Ω� , where 
we prescribe the tractions as Neumann boundary conditions 

Table 3  Regions and their abbreviations

Abbreviation Full name

Am Amygdala
CC Corpus callosum
CI Cortex, insula
CR Corona radiata
FC Frontal cortex
Hi Hippocampus
M Midbrain
MC Motor cortex
Me Medulla
NC Nucleus caudatus
P Pons
Pa Pallidum
Pu Putamen
TL Temporal lobe
Th Thalamus
VC Visual cortex
WM White matter
cN Cerebellar nucleus
cWM Cerebellar white matter

Fig. 2  Number of specimens extracted from the different regions in the individual brains

Table 4  Testing protocol
1 Frequency sweep At 1% strain
2 Cyclic compression/tension in z-direction Up to 15% strain
3 Compression relaxation in z-direction At 15% strain; hold time=300 s
4 Tension relaxation in z-direction At 15% strain; hold time=300 s
5 Cyclic torsional shear 3 Cycles up to an amount of shear of � = 0.15

6 Cyclic torsional shear 3 Cycles up to an amount of shear of � = 0.3
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t = �n = t̄ . As we neglect the influence of volume forces, 
we set b = 0 and obtain the boundary value problem in its 
strong form

After reformulation in its weak form and a subsequent lin-
earization, we use the finite element method (FEM) to solve 
this set of equations. The high strain values (up to 15% 
nominal strain) applied in the experiments in conjunction 
with the nonlinear stress–strain relation of the used consti-
tutive model results in a highly nonlinear problem. There-
fore, we employ an iterative solution scheme based on the 
Newton–Raphson method. We implement the finite element 
model using the open source finite element library deal.ii 
(Arndt et al. 2021). Quadratic elements were chosen based 
on a convergence analysis. We note that we have previously 
compared linear to mixed-formulation elements and did not 
observe locking behavior (Budday et al. 2020). This result 
holds valid for the quadratic elements used in the current 
work, which are even less prone to locking effects.

2.4.2  Hyperelastic constitutive model: modified one‑term 
Ogden model

To solve the boundary value problem (Eq. 1), we need to 
specify the constitutive equation relating displacements 
u to the stresses � (Nair 2009). In this study, we neglect 
time-dependent effects and focus on the time-independent, 
hyperelastic material response of brain tissue. In this case, 
the stress response depends only on the deformation state. 
To characterize the constitutive behavior of a hyperelastic 
material, a strain energy function Ψ is defined. It is then 
possible to obtain from the second law of thermodynamics 
(Holzapfel 2000) the relation

where J denotes the volume ratio J = detF . A common 
approach is to split the strain energy function into an iso-
choric and a volumetric part

based on the assumption that the material behaves different 
in shear and bulk. Based on our previous works (Budday 
et al. 2017; Budday et al. 2020), we use a reformulated ver-
sion of the Ogden model (Ogden 1972) in terms of the shear 
modulus � for the isochoric part

(1)

div� = 0

𝜕Ω = 𝜕Ωu ∪ 𝜕Ω𝜎

u = ū on 𝜕Ωu

t = �n = t̄ on 𝜕Ω𝜎 .

(2)� = J−1
�Ψ

�F
F
T ,

(3)Ψ = Ψiso + Ψvol,

with the isochoric principal stretches �̄�a = J−1∕3𝜆a , and 
the nonlinearity parameter � . The one-term Ogden model 
achieved promising results when fitting an incompressible 
analytical implementation of the model simultaneously to 
compression, tension, and shear experimental data (Bud-
day et al. 2017). In particular, it is capable of capturing the 
pronounced compression-tension asymmetry observed in 
experiments.

By applying the chain rule, it is possible to write Eq. 2 in 
terms of the principal stretches

which can be interpreted as spectral form of � with the prin-
cipal values �a = J−1�a

�Ψ

��a
 and the eigenvectors of the left 

Cauchy-Green tensor n̂a . For the principal values of the iso-
choric stress �iso a , we obtain

For the volumetric part of the strain energy, we choose a 
formulation proposed by Ogden (1972),

where the empirical coefficient in the original formulation 
has been set to 2, as introduced by Simo and Miehe (1992). 
The bulk modulus � characterizes the resistance of the mate-
rial against volume changes and is here calculated from the 
shear modulus and the initial Poisson’s ratio � through the 
relation

taken from the linear elastic regime. We note that we use 
this initial Poisson’s ratio in this context to obtain feasi-
ble estimates for the bulk modulus � , where � serves as a 
measure of the compressiblity with � = 0.5 representing the 
incompressible limit resulting in lim�→0.5� = ∞ . While as 
per definition in the finite regime, a Poisson’s ratio of � = 0.5 
is not necessarily indicating incompressible behavior (Voyi-
adjis and Samadi-Dooki 2018), we here treat it as a constant 
rather than a function depending on the chosen strain meas-
ure and the current deformation. A constant Poisson’s ratio 
is often used in the literature in the context of parameter 
identification for brain tissue (MacManus et al. 2018; Pierrat 
et al. 2018; Shafieian et al. 2009; Hosseini-Farid et al. 2019). 
Still, it has to be noted that the interpretation of its meaning 

(4)Ψiso =
2𝜇

𝛼2
(�̄�𝛼

1
+ �̄�𝛼

2
+ �̄�𝛼

3
− 3),

(5)� =

3
∑

a=1

J−1𝜆a
𝜕Ψ

𝜕𝜆a
n̂a ⊗ n̂a

(6)𝜎iso a = J−1

(

�̄�a
𝜕Ψiso

𝜕�̄�a
−

1

3

3
∑

b=1

�̄�b
𝜕Ψiso

𝜕�̄�b

)

.

(7)Ψvol = �
1

4
(J2 − 1 − 2lnJ),

(8)� = �
2(1 + �)

3(1 − 2�)
,
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remains questionable when it is applied to different constitu-
tive formulations. A comprehensive overview of constitutive 
parameters, including the Poisson’s ratio, in the context of 
finite elasticity and their relation to the partly available linear 
counterparts is given by Mihai (2017). In our case, we relate 
� to the shear modulus by Eq. 8, as the available experimen-
tal data does not contain information about the volumetric 
deformation of the specimens and we can, therefore, not 
expect to obtain reasonable values when fitting � to the data.

As it is common for soft tissues, brain tissue is often 
assumed to behave incompressibly (Budday et al. 2017; 
Feng et al. 2017). This enables the use of available closed 
form solutions for simple load cases. In this work, we fitted 
the compressible one-term Ogden model with different lev-
els of compressibility, i.e., � = {0.45, 0.49} . Thus, the free 
parameters that need to be identified are the nonlinearity 
parameter � and the shear modulus � . A slightly compress-
ible formulation circumvents numerical problems associated 
with incompressibility.

2.4.3  Boundary conditions: "glued" versus "slipping"

In our experiments, the specimens have to be glued to the 
specimen holders to enable tensile testing. Therefore, the 
bottom and upper surface are fixed, which results in an 

inhomogeneous deformation state. To check the influence of 
the glued in comparison with ideal slipping boundary condi-
tions we ran finite element simulations for both scenarios. 
In the case of ’glued,’ non-slipping boundary conditions, all 
nodes on the top and bottom surface are held fixed. For the 
slipping boundary conditions, nodes are only fixated in all 
directions along the centerline of the cylinder and can freely 
move in the plane of the bottom and top surface, where only 
the axial direction is fixed. Furthermore, they are fixed in the 
normal directions of the planes orthogonal to the cylinder 
axis to prevent rigid body motion.

2.5  Data preprocessing: The hyperelastic response

As we limit ourselves to a hyperelastic material model 
(neglecting poro- and viscoelastic effects), we need to extract 
the hyperelastic response from the experimental data, which 
shows a considerable hysteresis (see Fig. 3). The (theoreti-
cally infinitely) high or low strain rates that would be needed 
to obtain a purely hyperelastic response are not feasible in 
experiments. Figure 3 gives a short overview over the data 
after the processing steps from the raw data as it is obtained 
from the rheometer to the final processed data. We adopt here 
the assumption that the averaged loading and unloading curves 
approximate the hyperelastic response (Budday et al. 2017). 

Fig. 3  Preprocessing steps from raw data (top row) to the averaged 
unloading and loading curves representing the hyperelastic response 
(bottom row), exemplary shown for data from the first cycle of com-

pression-tension, and torsional shear for one representative specimen 
from the putamen (Pu)
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The initial moving average and lowpass filtering helps to filter 
out the high frequency noises in the measured signal. A resa-
mpling along the displacement axes enables the averaging of 
loading and unloading to finally obtain our desired results. The 
number of points is reduced to 60 points per mode so that the 
computational costs for the simulation are lowered, while the 
characteristic shape of the curve is preserved. We use either 
the data from the first or the third loading cycle to represent 
the un- and preconditioned material response, respectively. 
Together with the two used Poisson’s ratios � = {0.45, 0.49} 
this leads to a total of four parameter sets for each specimen.

2.6  Inverse parameter identification

To characterize the mechanical behavior of the tested human 
brain specimens, we inversely determine the nonlinearity 
parameter � and the shear modulus � for the modified one-
term Ogden model, as summarized in Fig. 4. In the generalized 
problem, the model G(m) depends on the parameters m and 
produces the results d,

In the real setup, our measured experimental output differs 
from the output produced using the ’true’ parameter set mtrue 
by the error �

(9)G(m) = d.

(10)G(mtrue) + � = dexp.

Our goal is now to find the optimal parameter set m∗ that 
best reproduces the output of our experiments dexp . We 
assume the error to be normally distributed � ∼ N(0, �2) 
with the mean at 0 and the standard deviation � . The solu-
tion of the identification problem will then approximate mtrue 
when a L2-Norm is used to measure the error between the 
simulated values and the experimental data following the 
maximum likelihood principle (Seber and Wild 2005). We 
measure the goodness of fit by the normalized squared error 
of experimental and model output values

where ysim and yexp denote the simulation output and the cor-
responding value measured during the experiment, respec-
tively. The approach of normalizing the squared error was 
taken from Gavrus et al. (1996) and helps to tackle numeri-
cal problems like vanishing gradients that may arise for low 
values of �2.

The parameter identification is implemented in Python 
and coupled with the finite element simulation using the.prm 
file format of the deal.ii library. We use the implementations 
of optimization routines in the SciPy Python-module (Vir-
tanen et al. 2020) and adapt them to improve computational 
efficiency by the parallel evaluation of finite element simula-
tions. We note that we have initially used the gradient-free 
Nelder-Mead algorithm (for brain 1, 2 and 3 using scipy.
optimize.minimize with the options method=’Nelder-Mead,’ 
xatol= 10−3 and fatol= 10−4 ) described by Nelder and 
Mead (1965), as we had problems with vanishing gradients 
which did not allow us to use gradient-based algorithms. 
This algorithm has already been used successfully for the 
parameter identification of brain tissue (Prevost et al. 2011; 
Hosseini-Farid et al. 2019). After the introduction of the 
aforementioned normalization factor 

∑N

i=1
(y

exp

i
)2 in �2 , those 

problems were overcome. Consequently, we switched to the 
trust region reflective algorithm, formulated by Branch 
et al. (1999), which can handle constraints and appears to 
be faster, as less iterations were needed to fulfill the set con-
vergence criterion. Our adaptation of the algorithm is mainly 
the switch to an eager evaluation of function values. This 
means that a new simulation run will be started as a new 
asynchronous thread as soon as we know that this value will 
be needed although the output might not be processed at the 
same place in the code. When the output is then actually 
needed in a later step, the return of the asynchronous process 
is awaited. Furthermore, simulation outputs are cached to 
prevent unnecessary simulation runs. The gradient is calcu-
lated using a finite forward difference scheme. Importantly, 
a preliminary global optimality study, where the optimiza-
tion algorithm was started with varying initial parameters, 

(11)�2 =

∑N

i=1
(y

exp

i
− ysim

i
)2

∑N

i=1
(y

exp

i
)2

,

Fig. 4  Parameter identification scheme. The set of material parame-
ters m̄ is updated in each iteration by the used optimization algorithm 
until a convergence criterion is met
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showed no problems of multiple local minima (Supplemen-
tary Figure S14).

In a first step, we apply the inverse parameter identifica-
tion scheme to the data from each of the 182 human brain 
specimens individually. Statistical methods allow us to 
quantify significant differences between parameter sets and 
their subgroups (regions, brains). We use the Python module 
pandas (McKinney 2010) for data analysis and the modules 
seaborn (Waskom 2021) and matplotlib (Hunter 2007) for 
visualizations. For each of the specimens, we consider the 
data from three loading modes simultaneously, i.e., com-
pression and tension loading up to 15% nominal strain as 
well as torsional shear loading up to an amount of shear of 
� = {0.15, 0.3} . We do not introduce any explicit weighing 
mechanisms into the cost function �2 . As all three modes 
contribute with the same number of data points to the resid-
ual vector, in fact, shear loading is implicitly weighed with 
a ratio of 2:1 compared to the compression and tension load-
ing. We achieved good results using this approach that can 
be justified by the maximum compression stresses reaching 
a multiple in magnitude compared to the shear stresses. We 
note that the weighing of the loading modes has an impor-
tant influence on the identification of material parameters 
and can be adjusted to the intended purpose. As we aim to 
identify a universal parameter set without having a specific 
application in mind, we did not use any explicit weighing. 
This could be reasonable, however, if a specific application 
has a known dominant loading mode.

2.7  Statistical analyses

We first check if our data is normally distributed as paramet-
ric statistical tests that rely on the assumption that the tested 
data is drawn from a normal distribution are favored for their 
higher statistical power (King and Eckersley 2019). To this 
end, we apply a Shapiro-Wilk test using the implementa-
tion provided by the SciPy Python module (Virtanen et al. 
2020) to the material parameters of the Ogden model, the 
nonlinearity parameter � and the shear modulus � , as well 
as the error of the fit in terms of the root mean square error 
(RMSE). As this analysis lead us to reject the assumption 

of a normal distribution for the material parameters, we will 
introduce the used non-parametric tests in the following. 
The Kruskal-Wallis H-test is employed as a non-parametric 
equivalent of an ANOVA to determine if the means of the 
groups defined as the anatomical regions, governing regions 
and brains are significantly different. The test is run for both 
material parameters � and � , for each group and for all four 
parameter sets separately as they are not independent. To 
identify, which governing regions should be treated as dif-
ferent regarding their hyperelastic behavior, we conduct 
pairwise post hoc tests in terms of Mann–Whitney-U tests. 
Additionally, the same test is used to quantify pairwise dif-
ferences between the parameters of the tested brains. We 
use the implementation of the method in the Python mod-
ule scikit_posthocs (Terpilowski 2019), where we use the 
Holm-Bonferroni method to control the family-wise error 
rate. By calculating the pairwise differences between the 
four parameter sets we are able to quantify the influence of 
preconditioning and the two Poisson’s ratios on the material 
parameters. To this end, we use a Wilcoxon signed-rank test. 
The returned p-value is an estimate on the probability that 
these observations come from a distribution with a mean 
value different from 0. We use the wilcoxon function in the 
SciPy Python module (Virtanen et al. 2020). We consider a 
p-value lower than 0.05 to be significant for all conducted 
tests.

3  Results

3.1  The effect of inhomogeneous deformation 
states during testing

Figure 5 demonstrates the significant influence of the bound-
ary conditions during compression and tension loadings, 
where the absolute nominal stresses for glued boundary 
conditions are twice as high as for slipping boundary condi-
tions—corresponding to homogeneous deformation states. 
The maximum local stresses visualized in Fig. 5c are an 
order of magnitude higher than in Fig. 5b, which can be 
attributed to the singularity at the edge of the fixed surface. 

Fig. 5  The direct comparison 
shows that ’glued,’ non-slipping 
boundary conditions lead to 
a stiffer response than ’slip-
ping’ boundary conditions. a 
Simulated stress-stretch results 
for the ’glued’ and ’slipping’ 
boundary conditions. b ’Slip-
ping’ boundary conditions lead 
to a homogeneous deformation 
state. c ’Glued’ boundary condi-
tions lead to an inhomogeneous 
deformation state
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We note that we only present results for compression and 
tension loadings, as the torsional loading will not be influ-
enced by the two types of boundary conditions. These results 
highlight the importance of performing an inverse param-
eter identification scheme, as presented in the following, 
instead of using closed form analytical solutions based on 
the assumption of homogeneous deformation states.

3.2  Performance of parameter identification 
scheme and general trends

Figure 6 shows an exemplary model fit for one of the speci-
mens compared to the preprocessed experimental data. The 
model well captures the experimental response, including 
the pronounced compression-tension asymmetry. Differ-
ences between the four parameter sets clearly appear in the 
scatter plots in Fig. 7, where the parameters of each speci-
men are represented by a dot. While the nonlinearity param-
eter � shows no clear trend, the change in the shear modulus 
� is already visible in this representation. For both values of 
the Poisson’s ratio � , we observe lower shear moduli when 
the model is fitted to preconditioned data. Furthermore, the 
higher Poisson’s ratio leads to a more incompressible and 
therefore stiffer behavior of the model, which is countered 

by lower shear moduli in the parameter sets for a Poisson’s 
ratio of 0.49.

We conducted an additional study to test the generaliza-
tion capabilities of the identified parameters. We fitted aver-
aged experimental data from all but one brain (here brain 
number five) for the corpus callosum and the corona radiata 
and then used the corresponding parameters to predict the 
response of the validation data from brain five. The results 
shown in Supplementary Figures S15 and S16 indicate good 
generalization capabilities with the predicted response being 
well within the standard deviation for all but the second tor-
sional shear loading mode of the corona radiata. However, 
since the deviations are observed for both fitted as well as 
predicted data this is not an indicator of limited generaliza-
tion capabilities.

3.3  Regional dependency

Figure 8 (top) shows the material parameters that were fit-
ted to the unconditioned data (first cycle) using a Poisson’s 
ratio of 0.45 averaged over the 19 anatomical regions intro-
duced in Table 3. We only plot this data set here as the other 
three cases (Poisson’s ratio 0.49 and preconditioned) show 
the same qualitative behavior (see also Supplementary Fig-
ures S1 and S2). The (anatomical) region-wise averaged val-
ues of the model parameters can be found in Supplementary 
Table S2. From the overlapping bars indicating the standard 
deviation in Fig. 8 (top), it is clear that this partitioning is too 
detailed to identify regions with distinct hyperelastic proper-
ties. Therefore, we subsequently group regions with simi-
lar parameters as well as comparable microstructures and 
locations into what we define as nine ’governing’ regions. 
We note that assigning such governing regions only based 
on their mechanical properties would not be appropriate as 
this could lead to artificially introduced regions that do not 
conform to the anatomical layout. In addition, if the micro-
structure differed significantly within a governing region, 
we would expect that the regional trends would not hold 
for a different stage during development, aging, and disease 
(Budday et al. 2020; Budday et al. 2020). Table 5 lists the 
used abbreviations as well as the assignment of regions to 
governing regions. The distribution of governing regions 
over the tested brains is shown in Fig. 9. The distribution 
over the tested brains is similar besides the Amygdala (Am) 
region, for which the data set contains only samples from 
the brains 3, 4, 5, and 7. An equal distribution is important 
for the conducted statistical analyses. Extraction locations 
as well as governing regions are visualized in Fig. 10. The 
resulting distribution of parameters in Fig. 8 (bottom) shows 
a slight improvement in terms of reducing overlapping, but 
especially the samples from the midbrain (M), the brainstem 
(BS) and the basal ganglia (BG) governing regions are still 
close in the parameter space and show overlapping standard 

Fig. 6  Exemplary fitting results for one specimen from the midbrain, 
where the preconditioned response was fitted using a Poisson’s ratio 
of 0.45
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deviations. The corresponding averaged values of the shear 
modulus � and the nonlinearity parameter � can be found in 
Supplementary Table S1.

Tables 6 and 7 list the H-statistics of the Kruskal-Wal-
lis H-test as well as the corresponding p-values when the 
detailed anatomical and governing regions were used as 
grouping variable, respectively. All p-values are below the 
significance level. While the p-values for the governing 

regions are lower than the corresponding values for the 
detailed regions, it is difficult to directly interpret this quali-
tative difference, as the results of the statistical test are 
influenced by the number of groups as well as the number 
of observations inside each group. To identify, which gov-
erning regions should be treated as different regarding their 
hyperelastic behavior, we subsequently conduct pairwise 
post hoc tests in terms of Mann–Whitney-U tests. Figure 11 
shows the corresponding results as matrix plots for uncondi-
tioned data and a Poisson’s ratio of 0.45. Specimens from the 
corpus callosum (CC) governing region show significantly 
different shear moduli in all comparisons. Shear moduli for 
the corona radiata (CR) are significantly different compared 
to the basal ganglia (BG), cortex (C), corpus callosum (CC) 
and midbrain (M), but not to the other governing regions. 
The shear moduli of the remaining seven governing regions 
do not appear to be significantly different in the conducted 
statistical tests. Multiple comparison tests for the nonlinear-
ity parameter � did not show any of the governing regions to 
have significantly different values. The other three parameter 
sets, for which the results of the multiple comparison tests 
are presented in Supplementary Figures S5 and S6, show 
the same qualitative behavior with only small variations in 

Fig. 7  Overview of the obtained 
four sets of material parameters

Table 5  Governing regions and their abbreviations with correspond-
ing anatomical regions

Abbreviation Full name Assigned regions

Am Amygdala Am
BG Basal ganglia Pa,Pu,NC
BS Brain stem Me,P
C Cortex MC,VC,CI,FC,TL
CB Cerebellum cWM,cN
CC Corpus callosum CC
CR Corona radiata CR,WM
Hi Hippocampus Hi
M Midbrain M,Th
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the number of significant comparisons. One exception are 
two significant comparisons for � for the parameter set of the 
preconditioned data and a Poisson’s ratio of 0.45, which do 
not appear for any of the other parameter sets.

3.4  Inter‑individual variation

When aiming to choose material parameters for human brain 
models, an important question is whether the parameters 

can be generalized or need to be patient-specific. Figure 12 
shows an overview of the parameters identified for the seven 
different brains. Again, we only discuss the parameter set 
of the unconditioned response using a Poissons’s ratio of 
0.45 in detail, while the results of the remaining parame-
ters can be found in Supplementary Figure S7. The shear 
moduli range from 185 Pa for brain 3 to 365 Pa for brain 4 
and the nonlinearity parameter � ranges from -18 for brain 
4 to -13 for brain 7. The brain-specific parameters are not 
spread evenly throughout the parameter space with brains 
1,4,5 and 6 having relatively high shear moduli and lying 
close together, while brain 3 and 7 show lower shear moduli. 
Brain 2 is somewhere in between these two groups. The 
p-values returned by a Kruskal-Wallis H-Test with the indi-
vidual brains as independent variable in Table 8 are below 
the significance level for both parameters � and � and for all 
four parameter sets. The results of pairwise Mann-Whitney-
U tests in Fig. 13 show that mainly the shear moduli for 
brain 3 significantly differed from all other brains, excluding 
2 and 7. Another significant comparison is found between 4 
and 7. For the nonlinearity parameter � , most significant dif-
ferences are found for brain 7. Furthermore, the comparison 
of brain 4 and 6 is reported as significant. The results for the 
other three parameter sets can be found in Supplementary 
Figures S8 and S9.

3.5  Effect of compressibility

We fitted the experimental results using different com-
pressibilities, quantified through the Poisson’s ratio � , 
which we relate to the shear modulus � of the modified 
one-term Ogden model by Eq. 8 known from the linear 
regime. We use the Poisson’s ratios 0.45 and 0.49 to ena-
ble the comparison with similar studies but would like to 
note that this does not directly conform to the definition 
in terms of the ratio of transverse and axial strain. With 
these two parameter sets, we are able to evaluate the effect 

Fig. 8  Shear modulus � and nonlinearity parameter � for the anatomi-
cal and defined governing regions, obtained by fitting the uncondi-
tioned data using a Poisson’s ratio of 0.45

Fig. 9  Distribution of speci-
mens from governing regions 
for the individual brains
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of a prefixed Poisson’s ratio on obtained material param-
eters for each specimen and to see whether one of those 
leads to lower RMSE and thus better quality of the fit. In 
the following, we only focus on the unconditioned data as 
the found relations also hold qualitatively for the precon-
ditioned data. The complete results can be found in Sup-
plementary Figure S10. Figure 14 shows the histograms 
of the pairwise differences for the unconditioned data with 
their median. The boxplot of the RMSE values puts the 
calculated differences into perspective. RMSE values for 
unconditioned data have a mean of 48 Pa for a Poisson’s 
ratio of 0.45 and 34 Pa for 0.49. The p-values of a Wil-
coxon signed-rank test in Table 9 indicate all observed 
differences as significant. The median of the difference is 
-71 Pa for the shear modulus, 4 for the nonlinearity param-
eter � and -12 Pa for the RMSE. A negative difference 
corresponds to a higher value for a Poisson’s ratio of 0.45.

3.6  Preconditioned versus unconditioned material 
parameters

We obtained separate parameter sets for the unconditioned 
and preconditioned material responses by fitting the first 
and third loading cycle of all loading modes, respectively. 

Figure 15 shows the histogram of the pairwise differences 
between the shear modulus � and the nonlinearity param-
eter � for a Poisson’s ratio of 0.45. The results for a Pois-
son’s ratio of 0.49 show the same qualitative trends and are 
visualized in Supplementary Figure S11. Table 10 shows 
the results of a Wilcoxon signed-rank test, indicating all 
observed differences as significant. The differences for the 
shear moduli and nonlinearity parameter � have both nega-
tive medians with Δ� = −74 Pa and Δ� = −2.7 , indicating 
lower values for the preconditioned data.

3.7  Averaging material parameters 
versus averaging experimental data

While we fitted the experimental output of every single spec-
imen separately in a first step to perform statistical analy-
ses, this approach is not accurate when aiming to provide 
material parameters representing the averaged response of 
each of the defined regions. Therefore, in a second step, we 
applied the parameter identification scheme after averag-
ing the experimental data over the governing regions. Fig-
ure 16 compares the parameters from both approaches for 
the unconditioned data using a Poisson’s ratio of 0.45. The 
maximum absolute relative differences are 13% for � and 
33% for � . The differences for the other three data sets can 
be found in Supplementary Figures S12 and S13. Over all 

Fig. 10  Locations of sample extraction and governing regions. Exem-
plary sample extraction is shown in the lobus frontalis (a), at the level 
of the anterior part of the anterior horns of the lateral ventricles (b), 
at the level of the foramina interventricularia (c), at the level of the 

middle of the third ventricle (d), in the region of the occipital pole 
(e), in the region of the corpus medullare cerebelli (f), at the level of 
the pons (g), and at the level of the medulla oblongata (h). The hemi-
spheres on the right side mark the governing regions
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data sets, the maximum absolute relative difference for � 
is 32%. All parameters obtained from fitting the averaged 
experimental results were within the standard deviation 
of averaging the individual specimen-specific parameters. 
Interestingly, the averaged data resulted in consistently 
higher absolute values of the nonlinearity parameter � , but 
lower shear moduli � . The parameter values obtained when 
fitting the averaged experimental results in the governing 
regions are summarized in Table 11.

4  Discussion

In this work, we have performed multi-modal large-strain 
mechanical testing of human brain tissue and have imple-
mented an inverse parameter identification scheme utilizing 
a finite element implementation of the modified one-term 
Ogden model to (i) identify mechanically distinct human 
brain regions, and (ii) provide the corresponding hyperelas-
tic material parameters for future finite element simulations. 

Fig. 11  p-values from pairwise post hoc Mann–Whitney-U tests 
comparing the shear modulus � and the nonlinearity parameter � for 
different governing regions for a Poisson’s ratio of 0.45 fitted to the 
unconditioned data

Fig. 12  Values for the shear modulus � and the nonlinearity param-
eter � as well as their standard deviation after averaging over differ-
ent individual brains for the unconditioned response and a Poissons’s 
ratio of 0.45

Table 6  Results for the Kruskal-Wallis H-test with the anatomical 
region as independent variable

� Preconditioned � �

H p H p

0.45 Preconditioned 3.27e+01 1.83e−02 9.20e+01 6.31e−12
0.45 Unconditioned 3.92e+01 2.67e−03 8.72e+01 4.61e−11
0.49 Preconditioned 3.57e+01 7.67e−03 1.05e+02 2.38e−14
0.49 Unconditioned 4.27e+01 8.79e−04 9.20e+01 6.25e−12

Table 7  Results for the Kruskal-Wallis H-test with the governing 
region as independent variable

� Preconditioned � �

H p H p

0.45 Preconditioned 1.92e+01 1.38e−02 8.07e+01 3.61e−14
0.45 Unconditioned 2.48e+01 1.65e−03 7.85e+01 9.78e−14
0.49 Preconditioned 2.35e+01 2.73e−03 9.53e+01 3.85e−17
0.49 Unconditioned 2.86e+01 3.67e−04 8.30e+01 1.21e−14

Table 8  Results for the Kruskal-Wallis H-test with the brain as inde-
pendent variable

� Preconditioned � �

H p H p

0.45 Preconditioned 1.95e+01 3.41e−03 3.65e+01 2.16e−06
0.45 Unconditioned 2.48e+01 3.65e−04 3.31e+01 1.02e−05
0.49 Preconditioned 1.59e+01 1.43e−02 2.42e+01 4.78e−04
0.49 Unconditioned 3.16e+01 1.93e−05 3.10e+01 2.57e−05
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Each specimen was tested under multiple consecutive load-
ing modes, namely cyclic compression and tension loading 
as well as cyclic torsional shear, which required to glue the 
specimens to the specimen holders during testing. Therefore, 
we have carefully analyzed the validity of assuming a homo-
geneous deformation state, as often done in the literature. 
In addition, we have investigated the effect of predefining 
different Poisson’s ratios, and have provided separate param-
eter sets for the unconditioned and preconditioned material 
responses, respectively.

4.1  The importance of an inverse parameter 
identification scheme

It is common to characterize the mechanical properties 
of materials by testing them under simple loading modes, 
where it is possible to obtain analytical solutions based 
on certain assumptions. If the deformation gradient F is 

assumed to be homogeneous (therefore describing an aff-
ine deformation) for a hyperelastic material, the stress will 
also be homogeneous and can be directly obtained from a 
constitutive relation by using Eq. 5. Whenever possible, the 
application of such closed form solutions is favorable over 
computationally expensive approaches like the finite ele-
ment method. However, it needs to be checked how well the 
assumption of homogeneous deformation approximates the 
real conditions during the experiment. The model outputs 
in Fig. 5 for slipping and non-slipping boundary conditions 
show a strong influence with approximately two times higher 
nominal stresses for the case when specimens are glued on 
the top and bottom surfaces. These results emphasize the 
importance of using an inverse parameter identification 
scheme based on a model that can accurately capture the 
boundary conditions during testing. Similar results were 
obtained by other researchers (Miller 2005; Voyiadjis and 
Samadi-Dooki 2018; Felfelian et al. 2019; Budday et al. 
2020).

4.2  Mechanically distinct brain regions

From the initially considered 19 anatomically different brain 
regions, we were able to assign nine governing regions 
grouping specimens that were extracted from anatomical 
regions with comparable microstructures as well as simi-
lar mechanical parameters. Our results indicate that from 
these governing regions at least the corpus callosum and 
the corona radiata should be modeled as distinct regions 
in mechanical models of the human brain. However, recent 
full-scale finite element simulations of the human brain 
have shown that depending on the application, also a more 
refined regional segmentation may be critical (Griffiths et al. 
2023). The corpus callosum yields the lowest shear moduli 
for all four datasets. While we obtain the cortex (C) as region 
with the highest shear moduli for a Poisson’s ratio of 0.45 
the Amygdala (Am) is the stiffest region for 0.49. Interest-
ingly, as the significant differences were only found for 
the shear modulus � , the use of a constant value for � over 
all regions may be justified when using a one-term Ogden 
model. The observed trends generally agree with previous 
studies investigating a limited number of brain regions. For 
instance, Budday et al. (2017) showed significant differences 
between the corpus callosum and both the basal ganglia as 
well as the cortex from compression, tension, and shear 
tests. Interestingly, differences between the corona radiata 
and corpus callosum were also reported as significant by 
pairwise tests but could not be confirmed by multiple com-
parisons. Another study identified viscoelastic parameters 
from indentation experiments distinguishing 12 regions with 
six of them being subregions of the cortex (Menichetti et al. 
2020). Multiple comparison tests were conducted, where 
the instantaneous shear modulus �0 for every region was 

Fig. 13  p-values from pairwise post hoc Mann–Whitney-U tests com-
paring material parameters from different brains for a Poisson’s ratio 
of 0.45 fitted to the unconditioned data
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significantly different from at least three other regions. Most 
significant comparisons were found for the corona radiata 
and the cerebellum with seven, whereas only three were 
found for the corpus callosum. The reported difference 
in the region-specific mechanical behavior of brain tissue 
when comparing indentation with compression, tension and 
shear loadings could explain the differences in the identified 
mechanically distinct regions. Specifically, data obtained 
from indentation tests do not contain information about the 
compression-tension asymmetry and can therefore not be 
used to characterize this behavior. Furthermore, regional 
trends between white and gray matter differ for indentation 
and multi-modal mechanical testing (Greiner, Reiter and 
Paulsen, 2021). Still, the corona radiata was identified as a 
mechanically distinct region in both cases.

Fig. 14  Pairwise difference for 
the shear modulus � and the 
nonlinearity parameter � and the 
RMSE between samples fitted 
with a Poisson’s ratio of 0.45 
and 0.49. Results are shown for 
the unconditioned data set. The 
boxplot (bottom right) visual-
izes the distribution of RMSE 
values

Table 9  Results of the 
Wilcoxon signed-rank test 
comparing the datasets for the 
Poisson’s ratios � = {0.45, 0.49}

Preconditioned H
0
∶= Δ� = 0 H

0
∶= Δ� = 0 H

0
∶= ΔRMSE = 0

W p W p W p

Preconditioned 2.88e+03 2.03e−14 1.13e+02 8.24e−31 2.61e+03 1.00e−15
Unconditioned 7.30e+01 4.28e−31 1.62e+02 1.83e−30 2.58e+03 6.56e−16

Table 10  Results of the Wilcoxon signed-rank tests comparing the 
datasets for un- and preconditioned data

� H
0
∶= Δ� = 0 H

0
∶= Δ� = 0

W p W p

0.45 1.76e+03 2.62e−20 8.00e+01 4.80e−31
0.49 1.24e+03 2.25e−23 8.20e+01 4.96e−31

Fig. 15  Pairwise difference in the shear modulus � and nonlinearity 
parameter � between samples fitted to the un- and preconditioned data 
for a Poisson’s ratio of 0.45
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4.3  Region‑specific parameters

After we have identified mechanically distinct regions by 
means of statistical analyses of the parameters obtained 
for each specimen individually, we subsequently provide 

(governing) region-specific hyperelastic parameters based 
on the averaged data of all specimens within the respec-
tive region, as reported in Table 11. The qualitative regional 
trends are comparable to our previous results in (Bud-
day et al. 2017), where we had reported one-term Ogden 
parameters fitted to compression, tension and shear data for 
the corpus callosum, basal ganglia, cortex and the corona 
radiata. Still, the shear moduli were substantially higher 
ranging from 4.1 fold for the basal ganglia to 9.3 fold for 
the corpus callosum in comparison with our dataset for a 
Poisson’s ratio of 0.49 and preconditioned data. This can be 
attributed to the different modeling approaches as we had 
used an incompressible analytical implementation assuming 
slipping boundary conditions. Another study (Moran et al. 
2014) reported parameters for a two-term Ogden model fit-
ted to tension, compression and shear tests of human brain 
tissue, where they distinguished the corona radiata as well 
as gray and white matter. The shear moduli, calculated as 
� = �1 + �2 , were higher for gray matter than for white mat-
ter, which can be considered to be in agreement with our 
study. We identified the lowest shear moduli for the white 
matter regions corpus callosum and corona radiata, while the 
highest values were found for the gray matter regions cortex 
and amygdala. Their reported values for the corona radiata, 
which is already contained in the white matter data but again 
introduced as a separate region, are the highest. All values 
reach more than threefold of our values.

4.4  Influence of compressibility

By fitting the experimental data with the two different fixed 
Poisson’s ratios 0.45 and 0.49, we were able to firstly investi-
gate whether one of them fitted the data better and, secondly, 
how the chosen Poisson’s ratio affects the identified remain-
ing free model parameters. We note that the Poisson’s ratio is 
here used to relate the shear modulus � to the bulk modulus 
� in terms of Eq. 8, thus actually denoting the initial Pois-
son’s ratio in the finite strain regime.

Fig. 16  Comparison between the averaged shear modulus � and non-
linearity parameter � obtained from fitting the experimental data of 
each specimen separately and those obtained from fitting the averaged 
experimental response. Results are shown for the parameter set fitted 
to the unconditioned response using a Poisson’s ratio of 0.45

Table 11  Shear modulus � and 
nonlinearity parameter � fitted 
to the experimental response 
averaged over governing regions

Gov. region Preconditioned � =

0.45
Preconditioned � =

0.49
Unconditioned � =

0.45
Unconditioned � =

0.49

� � � � � � � �

Am − 20.70 234.92 − 13.96 146.04 − 16.04 371.94 − 10.72 283.86
BG − 21.41 218.73 − 15.80 126.24 − 18.31 308.21 − 12.21 236.32
BS − 22.70 209.41 − 25.25 79.81 − 20.49 312.33 − 14.98 227.35
C − 21.10 258.77 − 17.79 136.07 − 18.18 371.68 − 12.76 279.48
CB − 22.40 171.48 − 20.72 79.49 − 19.94 254.77 − 14.11 187.94
CC − 19.04 51.80 − 14.90 29.48 − 15.87 88.97 − 11.19 66.68
CR − 24.72 132.34 − 21.60 61.47 − 22.54 191.24 − 15.18 142.67
Hi − 18.99 163.29 − 13.37 99.49 − 14.30 276.37 − 9.66 209.32
M − 22.63 182.80 − 17.83 98.31 − 18.79 282.36 − 12.48 216.84
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A potential influence on the quality of the fitting results is 
quantified in terms of differences in the root mean squared 
error (RMSE) between experimental data and model out-
put for each specimen and all loading modes. Although the 
reported negative median indicates a slightly better fit for a 
Poisson’s ratio of 0.49, the long tails in the histogram of the 
differences in Fig. 14 and Supplementary Figure S10 as well 
as the large spread in the obtained RMSE values, visualized 
by the boxplots, do not support a systematic dependency. 
This shows that the available experimental data does not 
contain enough information to characterize the volumetric 
part of the constitutive model. A parameter study on a neo-
Hookean model replicating indentation experiments varied 
the Poisson’s ratio between 0.452−0.49995 (MacManus 
et al. 2018). The increase in maximum indentation force 
by 6% was below the coefficient of variation of the experi-
mental data, also indicating that the available measurements 
are not suited to characterize the compressible behavior. In 
another study, the volumetric part of a two-term compress-
ible Ogden model was included in the fitting of tension, 
compression and shear data of human brains and a good fit 
( R2 > 0.92 ) was achieved with an initial Poisson’s ratio of 
≈ 0.42 (Moran et al. 2014). While these results first seem to 
be contradictory to others also achieving low fitting errors 
using quasi-incompressible formulations (MacManus et al. 
2018; Pierrat et al. 2018; Shafieian et al. 2009; Hosseini-
Farid et al. 2019), they are again explained by the lack of 
volumetric measurements that will cause non-unique solu-
tion if the compressible part is also fitted. Previous studies 
using image-based techniques come to the conclusion that 
the assumption of incompressible behavior can be justified 
for brain tissue (Felfelian et al. 2019; Eskandari et al. 2021).

Due to the aforementioned issues, we decided to prede-
fine two different Poisson’s ratios and our results in Fig. 14 
show that a lower compressibility for a Poisson’s ratio of 
0.49 comes along with significantly lower shear moduli 
than for 0.45, as the model yields higher forces for the same 
shear modulus and a higher bulk modulus under deforma-
tions causing volume changes, such as compression loading. 
As the obtained � values are mostly negative to capture the 
stiffer behavior in compression than in tension, the posi-
tive difference of the obtained values for a Poisson’s ratio 
of 0.49 in comparison with 0.45 mean that also the com-
pression-stiffening behavior is less pronounced for a lower 
compressibility.

Importantly, both parameter sets obtained by us using the 
Poisson’s ratios 0.45 and 0.49 are considered valid as they 
are able to replicate the measured experimental data. We 
therefore suggest to use the parameter set for a Poisson’s 
ratio of 0.49 representing quasi-incompressible behavior or, 
if the choice of the Poisson’s ratio is already fixed due to 
other constraints, the one with the closest value. As quasi-
incompressible materials are prone to cause locking effects 

in finite element simulations, a case-by-case assessment 
should be conducted to avoid such effects.

4.5  Unconditioned and preconditioned material 
behavior

While we have only focused on the hyperelastic response of 
brain tissue in this study and have neglected poro- and vis-
coelastic effects, we have identified different parameter sets 
using the first and third cycle to represent the un- and pre-
conditioned response, respectively. The results in Fig. 15 and 
Supplementary Figure S11 show substantially lower shear 
moduli for experimental data from preconditioned speci-
mens. This agrees well with previous studies highlighting 
the significant preconditioning effect of brain tissue (Budday 
et al. 2017; Prevost et al. 2011; Labus and Puttlitz 2016). 
Although our statistical tests also confirm a significant dif-
ference in the nonlinearity parameter � , the low absolute 
values of the differences indicate a similar behavior in terms 
of the nonlinearity with the preconditioned parameters yield-
ing only slightly more nonlinear behavior than the uncondi-
tioned parameters.

The appropriate parameter set for individual use cases can 
then be chosen based on the application. We note here, that 
the loading velocity of 40�m/s (translating to a strain rate 
of ≈ 10−2 1/s) in the experiments is comparably low. The 
obtained hyperelastic parameters are therefore approximat-
ing the equilibrium response. Thus, they are especially suited 
to model processes on the medium to longer time scale, 
such as brain growth and development or neurosurgery. The 
behavior of brain tissue in the aforementioned scenarios is 
best captured by the parameters using the preconditioned 
response. Nevertheless, if one wants to model impact sce-
narios related to, e.g., traumatic brain injury (TBI), and use 
a hyperelastic constitutive model, the parameters obtained 
from unconditioned data should be used. As the statistical 
analysis justifies the use of a constant � value, we provide 
the averaged values for the parameter sets obtained by fitting 
the averaged experimental response in different regions in 
Table 12.

4.6  Limitations

Its complex mechanical behavior and ultrasoft nature make 
the mechanical characterization of human brain tissue a chal-
lenging task. By choosing a hyperelastic model, we neglect 
the complex time-dependent behavior that can be observed 
in experiments (Budday et al. 2017). An alternative are poro-
viscoelastic models that capture also the biphasic nature of 
brain tissue (Greiner et al. 2021). However, currently the 
experimental data to accurately calibrate such complex mod-
els are not available and the assessment of regional trends—
the main focus of this work—would be much more difficult. 
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One of the pressing questions remaining for the mechanical 
characterization of brain tissue is to what extent parameters 
obtained from ex vivo tests can be applied to the prediction 
of the in vivo situation. In the latter, blood circulation and 
the restriction in its mobility by the bony skull capsule might 
play an important role.

The differences in obtained material parameters between 
tested brains in Fig. 12 and Supplementary Figure S7 were 
also confirmed as significant for single brains by the statisti-
cal tests. A potential reason for changes in properties could 
be metastases, as the cause of death for the concerned brains 
was metastasizing cancer. Still, other brains with the same 
cause of death did not show significantly different properties. 
Another reason could be the influence of different storage 
solutions as we obtained different nonlinearity parameters 
for the brain kept in Ringer’s solution. With the testing of 
more human brains in future, it will be possible to better 
understand such effects, including person-specific data, such 
as age, sex, and cause of death.

A concern regarding parameter identification studies is 
the non-uniqueness of obtained solutions. Although we ran 
a global optimality study, shown in Supplementary Figure 
S14 to check if this behavior is observed in our case, this is 
just an empirical approach and not a rigorous mathematical 
analysis of the problem. Therefore, there is still the potential 
of occurring local minima for different experimental values.

Finally, to conclusively characterize the compressibility 
of human brain tissue, it would be necessary to capture the 
deformation of the specimens during testing, e.g., by using 
a camera. However, with the current testing setup, this is not 
easy to implement due to the bath of PBS required to control 
the temperature and hydration of the sample.

5  Conclusion

The main goals of this work were to identify mechanically 
distinct regions in the human brain tissue and to subse-
quently provide region-specific parameters for finite ele-
ment simulations. We tested human brain specimens under 
compression, tension and torsional shear in the finite strain 
regime. By fitting the response of a finite element model 

implementation of a modified one-term Ogden model to 
the experimental data, we have inversely identified mate-
rial parameter sets, consisting of the shear modulus � and 
the nonlinearity parameter � . We have assigned the 19 ana-
tomical regions from which the specimens were extracted to 
nine governing regions based on comparable microstructures 
and parameters. Statistical analyses show that at least the 
corona radiata and the corpus callosum should be modeled 
as mechanically distinct regions with different shear moduli. 
Interestingly the nonlinearity parameter � did not show sig-
nificant differences. By fitting the first and third cycle of all 
loading modes separately, we have provided different param-
eter sets for the un- and preconditioned material responses, 
respectively. Varying the fixed initial Poisson’s ratio from 
0.45 to 0.49 leads to a significant difference in the identified 
material parameters. In this respect, additional measure-
ments are indispensable to reliably characterize the volu-
metric response of brain tissue in future. In total, we have 
provided four parameter sets with distinct material param-
eters for the defined nine governing regions in Table 11 that 
can be used for mechanical simulations of the human brain. 
The most relevant parameter set can be selected based on 
the application at hand. Due to the relatively low loading 
velocity during our experiments, the parameter sets will be 
especially suited for mechanical models capturing effects 
that are occurring on a medium to long time scale.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10237- 023- 01739-w.
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