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Abstract
Arteries exhibit fully nonlinear viscoelastic behaviours (i.e. both elastically and viscously nonlinear). While elastically 
nonlinear arterial models are well established, effective mathematical descriptions of nonlinear viscoelasticity are lacking. 
Quasi-linear viscoelasticity (QLV) offers a convenient way to mathematically describe viscoelasticity, but its viscous linearity 
assumption is unsuitable for whole-wall vascular applications. Conversely, application of fully nonlinear viscoelastic models, 
involving deformation-dependent viscous parameters, to experimental data is impractical and often reduces to identifying 
specific solutions for each tested loading condition. The present study aims to address this limitation: By applying QLV theory 
at the wall constituent rather than at the whole-wall level, the deformation-dependent relative contribution of the constituents 
allows to capture nonlinear viscoelasticity with a unique set of deformation-independent model parameters. Five murine 
common carotid arteries were subjected to a protocol of quasi-static and harmonic, pseudo-physiological biaxial loading 
conditions to characterise their viscoelastic behaviour. The arterial wall was modelled as a constrained mixture of an isotropic 
elastin matrix and four families of collagen fibres. Constituent-based QLV was implemented by assigning different relaxation 
functions to collagen- and elastin-borne parts of the wall stress. Nonlinearity in viscoelasticity was assessed via the pressure 
dependency of the dynamic-to-quasi-static stiffness ratio. The experimentally measured ratio increased with pressure, from 
1.03 ± 0.03 (mean ± standard deviation) at 80–40 mmHg to 1.58 ± 0.22 at 160–120 mmHg. Constituent-based QLV captured 
well this trend by attributing the wall viscosity predominantly to collagen fibres, whose recruitment starts at physiological 
pressures. In conclusion, constituent-based QLV offers a practical and effective solution to model arterial viscoelasticity.

Keywords Arterial viscoelastic modelling · Arterial mechanics · Constituent-based quasi-linear viscoelastic modelling · 
Elastin · Collagen

1 Introduction

The viscoelastic nature of arteries has long been known 
(Bergel 1961; Dobrin 1978), with ex vivo investigations on 
the mechanical response of the arterial wall to harmonic 
loading dating as far back as the 1930s (Ranke 1934). 
Despite these observations, the majority of experimental 
ex vivo studies on arterial wall mechanics have investigated 
the arterial response to quasi-static loading after precon-
ditioning, thus considering and modelling the arterial wall 
tissue as a pseudo-elastic material (Giudici et al. 2021c). 
This choice was likely dictated by two main considerations: 
(1) the experimental challenges of performing dynamic 
experiments (van der Bruggen et al. 2021a) and (2) the dif-
ficulty of developing computational models that effectively 
capture the complex viscoelastic response of soft biological 
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tissues (Fung 1997; Amabili et al. 2019a; Franchini et al. 
2021). In vivo, however, arteries are subjected to dynamic 
loads (at least in the circumferential direction, if not both 
axially and circumferentially) (Parikh et al. 2021). There-
fore, their physiological function differs considerably from 
that observed in most experimental investigations. Indeed, 
upon dynamic loading, the arterial wall stiffens up to twofold 
compared to its quasi-static response (Amabili et al. 2019b, 
2021; van der Bruggen et al. 2021a; Franchini et al. 2021, 
2022b). Moreover, arteries may exhibit pressure-diameter/
stress–strain hysteresis (Learoyd and Taylor 1966; Amabili 
et al. 2019a; van der Bruggen et al. 2021a; Franchini et al. 
2021). In ex vivo experimental studies in which cyclic load-
ing over wide ranges of deformation is performed, hysteresis 
is evident (Franchini et al. 2021, 2022b), indicating some 
degree of energy loss between loading and unloading arms 
of the pressure-diameter/stress–strain curve. However, under 
physiological loading conditions (i.e. smaller deformation 
ranges), the hysteresis area has been shown to be relatively 
small (Hermeling et al. 2010; Giudici et al. 2021b; van der 
Bruggen et al. 2021a). Because of these important biome-
chanical aspects, investigating the viscoelastic mechanical 
properties of arteries is pivotal to further our understanding 
of arterial physiology, pathology, and (dys)function.

We previously developed and validated a biaxial testing 
set-up that allows the characterisation of the mechanical 
response of arteries under both quasi-static and dynamic 
loading conditions and using pseudo-physiological loading 
(i.e. simultaneous pressurisation and axial extension) (van 
der Bruggen et al. 2021a). This work addressed the experi-
mental considerations. However, given the complexity of the 
biomechanical data acquired therein, developing mathemati-
cal approaches to accurately capture arterial viscoelasticity 
is the next necessary step for the advancement of the arte-
rial mechanics field. While different mathematical formula-
tions to capture arterial viscoelasticity have been proposed 
(Armentano et al. 1995b; Fung 1997; Franchini et al. 2021), 
these approaches are typically either too simple to capture 
the complex viscoelastic behaviour of arteries, or too com-
plex for a practical application to experimental data.

The simplest approach to viscoelastic modelling is lin-
ear viscoelasticity (Fung 1997; Funk et al. 2000). In linear 
viscoelasticity, it is assumed that the viscoelastic response 
of a material can be modelled as the superimposed con-
tribution of a finite number of springs and dashpots (i.e. a 
discrete number of Maxwell, Voigt, or Kelvin models act-
ing in parallel). The simplicity of these models makes them 
convenient for modelling in vivo data on arterial mechanics 
and function, where the limited available mechanical data 
complicates informing more complex viscoelastic models. 
Linear viscoelasticity has been used previously to investigate 
differences in the viscoelastic behaviour between different 
locations of the arterial tree in animal models (Armentano 

et al. 1995b; Bia et al. 2005; Valdez-Jasso et al. 2009), as 
well as the effect of ageing and hypertension on arterial wall 
viscoelasticity in humans (Learoyd and Taylor 1966; Armen-
tano et al. 1995a). The linearity of these models, however, 
constitutes their major limitation (Fung 1997; Funk et al. 
2000). Indeed, arteries exhibit highly nonlinear mechanical 
behaviours (Sommer and Holzapfel 2012; Bellini et al. 2014; 
Spronck and Humphrey 2019; Giudici et al. 2021c), so that 
these simple models can only be used to capture arterial 
mechanics over small pressure/deformation ranges for which 
the linearity assumption may be reasonable.

To overcome the limitations of linear viscoelasticity, 
Fung introduced the concept of quasi-linear viscoelasticity 
(QLV) (Fung 1997). In QLV, the viscoelastic stress at any 
time instant can be calculated as the convolution integral 
over the entire deformation history between a reduced relax-
ation function and the time derivative of the elastic stress. 
The elastic stress (i.e. the response of the material if it were 
purely elastic) is defined as a function of the deformation 
using any, generally nonlinear and anisotropic, strain energy 
function (SEF) (De Pascalis et al. 2014), thus enabling the 
model to capture the nonlinear elastic behaviour of soft bio-
logical tissues (Gasser et al. 2006; Bellini et al. 2014). The 
fundamental assumption and simplification of QLV is that 
linearity is preserved in terms of material viscosity (Fung 
1997; De Pascalis et al. 2014; Berjamin et al. 2021). As in 
the classical stress-relaxation test, a relaxation function is a 
mathematical expression that captures the gradual decrease 
of the stress in a viscoelastic material over time following 
the application of a stepwise change in deformation (Zou 
and Zhang 2009; Faturechi et al. 2019). The QLV assump-
tion implies that the reduced relaxation function is a function 
of time only and is unaffected by the applied deformation 
magnitude (Fung 1997; De Pascalis et al. 2014).

QLV has been used previously to capture the viscoelas-
tic behaviour of different soft biological tissues, including 
ligaments (Funk et al. 2000; Criscenti et al. 2015), ureter 
(Wang et al. 2022), articular cartilage (Woo et al. 1980), 
and also the arterial wall (Craiem et al. 2008; Zou and 
Zhang 2011; Yang et al. 2011; Pursell et al. 2016; Kermani 
et al. 2017; Faturechi et al. 2019). However, different stud-
ies on arterial viscoelasticity suggest that the fundamental 
assumption of QLV may fall short in accurately capturing 
the complex viscoelastic response of the vessel wall. In 
particular, it has been reported that the stress relaxation 
of arteries subjected to uniaxial deformation is highly 
dependent on the magnitude and direction (i.e. circumfer-
ential or axial) of the applied deformation (Craiem et al. 
2008; Zou and Zhang 2011; Yang et al. 2011). Nonlin-
ear viscoelastic behaviour was also identified by studying 
the dynamic-to-quasi-static stiffness ratio as well as the 
hysteresis (van der Bruggen et al. 2021a; Franchini et al. 
2021), both of which were found to be strongly dependent 
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on the initial deformation state. For these reasons, fully 
nonlinear viscoelastic models have been proposed, which 
involve viscous parameters that are a continuous func-
tion of strain (Provenzano et al. 2002; Yang et al. 2011; 
Franchini et al. 2021). The accurate identification of these 
continuous functions, however, is not trivial and requires 
acquiring mechanical data over a broad range of loading 
conditions for each tested sample. As this is impractical 
from an experimental standpoint, these approaches are 
often reduced to identifying different sets of parameter 
values to describe the response to harmonic loading at dif-
ferent initial deformations and load directions (Provenzano 
et al. 2002; Yang et al. 2011; Franchini et al. 2021). Hence, 
while proving useful to analyse the measured mechanical 
data, these approaches do not allow to predict the wall 
behaviour for loading conditions which have not been 
tested.

An important limitation of the aforementioned viscoelas-
tic models consists in the attempt to describe the viscoelastic 
properties of the arterial wall tissue as a whole, neglecting its 
complex microstructural composition which is likely at the 
root of the observed viscoelastic nonlinearities. Constituent-
based viscoelasticity addresses this limitation (Holzapfel et al. 
2002; Vena et al. 2006; Thomas et al. 2009; Peña et al. 2011). 
It is based on two key concepts: (1) the viscoelastic behaviour 
of soft tissues is determined by their microstructural composi-
tion, and (2) the assumption of linearity in viscous behaviour 
is inaccurate at a whole-tissue level but may be reasonable at 
level of the individual tissue constituents (e.g. collagen, elas-
tin, and glycosaminoglycans). As the constituents’ relative 
contributions to the mechanical behaviour of the tissue are 
deformation-dependent, their different viscoelastic properties 
weight differently at different deformation levels. Therefore, 
the resulting viscoelastic behaviour is fully nonlinear and has 
the advantage of relying on a unique set of constituent-specific, 
deformation-independent model parameters. Interestingly, 
recent experimental findings seem to support the potential 
validity of constituent-based viscoelasticity. Indeed, Zou and 
Zhang (2011) reported that the load/strain dependency of the 
stress relaxation of isolated aortic elastin was much reduced 
compared to that of the intact aortic wall. Furthermore, Ama-
bili et al. (2019a) and Franchini et al. (2021) found differences 
in viscoelasticity, as assessed by the dynamic-to-quasi-static 
stiffening ratio and loss factor, between the isolated human 
aortic intima, media, and adventitia, each, in turn, different 
from that of the intact wall. They postulated that microstruc-
tural and compositional differences between layers likely were 
at the basis of the differences in viscoelastic behaviours, sug-
gesting that the viscoelastic behaviour of individual wall con-
stituents may be key to understand viscoelasticity at the intact 
tissue level. Nevertheless, while constituent-based viscoelastic 
models of the arterial wall have been proposed previously in 
theoretical studies (Holzapfel et al. 2002; Nedjar 2007; Peña 

et al. 2011), their application to model experimental data has 
so far been very limited (Peña et al. 2011).

In the present study, we aimed to develop a constitutive 
modelling framework that, by combining Fung’s QLV theory 
with that of constituent-based viscoelasticity, allows to (1) 
capture the complex nonlinear viscoelastic behaviour of the 
arterial wall using a unique set of deformation-independent 
model parameters, and (2) relate the viscoelastic mechanical 
properties at a whole-tissue level to those of its microstructural 
constituents. The performance of the proposed constituent-
based QLV (cbQLV) model was evaluated by modelling the 
viscoelastic response of the mouse common carotid artery, also 
comparing it to that of the standard QLV (sQLV) approach.

2  Methods

2.1  Kinematics

The arterial wall was modelled as an incompressible, thin, 
cylindrical membrane. As proposed previously (Bellini et al. 
2014), we chose to define the deformed state during the ex vivo 
experiments with respect to an in vivo, homeostatic reference 
configuration ( �

r
 ) rather than the unloaded configuration ( �

u
 , 

Fig. 1). We then used constituent-specific deposition stretches 
to define the pre-deformed state of the wall constituents in �

r
 . 

As wall constituents (i.e. elastin and collagen) develop and 
remodel in the in vivo state, this choice allows to define con-
stitutive model parameters that more closely reflect the con-
stituents’ behaviour in vivo. We define �

r
 as the configuration 

of the vessel at its in vivo axial length ( liv ) and at a physiologi-
cal mean arterial pressure of 100 mmHg, using cylindrical 
coordinates (�, �,Z) to denote the position of a point in this 
configuration. It is then useful to introduce the deformation 
gradient �1 , mapping the deformation from �

r
 to �

u
 (Fig. 1):

where we have used a cylindrical reference system (R,Θ,Z) 
for �

u
 . Note that, given the thin-wall assumption, all defor-

mations refer to the mid-wall coordinate. Furthermore, 
we assumed deformations to be orthotropic (i.e. no twist 
occurred in our experiments). Note, also, that because con-
stituent-specific deposition stretches are defined in �

r
 , �

u
 is 

an unloaded but not a stress-free configuration, i.e. individ-
ual constituents may be subjected to residual stresses, the 
summed contributions of which yield null stress in all three 
principal directions. The axial component of �1 is defined as 
the ratio between the unloaded length of the artery ( L0 ) and 
liv : ΛZ = L0∕liv . The circumferential and radial components 
of �1 are then derived from the incompressibility constraint:

(1)�1 = diag
[
�R

��
,
R�Θ

���
,
�Z

�Z

]
= diag

[
ΛR,ΛΘ

,ΛZ

]
,
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and ΛR = 1∕ΛZΛΘ
 (incompressibility). R

m
=

(
R
i
+ R

o

)
∕2 , 

R
i
 , and R

o
 are the mid-wall, inner, and outer radii in �

u
 ; �

m
 

and �
o
 are the mid-wall and outer radii in �

r
 . We can then 

introduce a generic loaded configuration �
c
 in cylindrical 

coordinates (r, �, z) and define the deformation gradient �2 
mapping the deformation from �

r
 to �

c
 (Fig. 1):

Once more, the axial component ( �z ) of �2 can be cal-
culated as the ratio between the vessel length in �

c
 and liv , 

while �� and �r can be derived from incompressibility:

and �r = 1∕�z�� , where r
o
 and r

m
 are the outer and mid-wall 

radii in �
c
.

2.2  Viscoelastic modelling framework

Our viscoelastic modelling framework is based on Fung’s 
QLV theory (Fung 1997). Given that in QLV a material’s 
viscoelastic behaviour is independent of the initial defor-
mation, we can introduce a reduced relaxation function Q(t) 
that is a function of time only and that defines the relaxation 

(2)Λ
Θ
=

R
m

�
m

=

√
R2
m

�2
o
−(R2

o
−R2

m
)ΛZ

(3)�2 = diag
[
�r

�ρ
,
r�θ

���
,
�z

�Z

]
= diag

[
�r, �θ, �z

]
.

(4)�� =
r
m

�
m

=

√
r2
o
−
(R

2
o
−R2

m)ΛZ

�z

�2
o
−(R2

o
−R2

m
)ΛZ

of the elastic stress following the application of a stepwise 
change in deformation; note that Q(0) = 1 . Given any defor-
mation history that maps the transition from �

r
 to �

c
 , the 2nd 

Piola–Kirchhoff (PK) stress ( � ) (i.e. the stress defined in the 
reference configuration �

r
 ) at any time t can be calculated as

where �e denotes the 2nd PK elastic stress and �(0) is the 
viscoelastic stress at beginning of the deformation history. 
Note that �(0) is in general nonzero and corresponds to the 
2nd PK stress at the beginning of each experiment. We do, 
however, assume that the time interval between experiments 
was long enough to guarantee a complete viscous stress 
relaxation at the beginning of each experiment, so that �(0) 
reflects the complete relaxation of �e at the stretch level cor-
responding to the beginning of the experiment (i.e. plateau 
phase in Supplementary information, Figure S1).

The elastic response of the arterial wall was modelled 
using a four fibre family strain energy density function ( Ψ) , 
accounting for the summed contribution of an isotropic 
matrix (mainly representing the elastin network) ( Ψ

e
 ) and 

four families of fibres (mainly representing the mechanical 
behaviour of collagen fibres) ( Ψ

c
 ) (Gleason et al. 2008).

(5)�(t) = �(0) +

t

∫
0

Q(t − s)
d�e(s)

ds
ds,

(6)

Ψ = Ψe + Ψc =
�

2

�
I1,e − 3

�1+�
+

4∑
i=1

ki
1

4ki
2

�
e
ki
2

�
Ii
4,c
−1

�2

− 1

�
,

Fig. 1  Schematic representation of the configurations and deforma-
tion gradients used in this study. Rather than defining deformations 
with respect to the unloaded configuration ( �

u
 ), the reference con-

figuration ( �
r
 ) was set to the vessel configuration at the mean physi-

ological pressure of 100 mmHg and at the in vivo axial length ( l
iv

 ). 
�
c
 defines a generic non-homeostatic configuration in which luminal 

pressure, axial length, or both are not 100 mmHg and l
iv
 , respectively. 

The deformation gradients F1 and F2 map the deformation from �
r
 

to �
u
 and �

c
 , respectively. The deposition stretch matrices �

e
 and �i

c
 

map the deformation of the elastin matrix and the collagen fibre fam-
ily i, respectively, from their stress-free configuration to �

r
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where � is an isotropic stiffness-like parameter, ki
1
 and ki

2
 

are a stiffness-like and a nonlinearity parameter for the ith 
fibre family, and � controls the functional form of the iso-
tropic matrix strain energy density function. Previous works 
have modelled elastin’s contribution as either that of a Neo-
Hookean material (i.e. � = 0 ) (Holzapfel et al. 2000; Bellini 
et al. 2014) or using � = 0.50 (Zulliger et al. 2004a, b). How-
ever, it has been shown that the mechanical response of the 
arterial elastin matrix falls in between these two modelled 
behaviours (Watton et al. 2009). Based on these findings, 
we chose to set � = 0.15 , leading to a nearly Neo-Hookean 
behaviour for the isotropic matrix. I1,e is the first invariant 
of elastin’s right Cauchy-Green tensor �

e
= �T�T

e
�

e
� (i.e. 

I1,e = tr(�
e
) ), where �

e
 is the deposition stretch matrix of 

elastin, defined as

�z,e and �
θ,e denote the axial and circumferential depo-

sition stretches of elastin and define its pre-deformed 
state in �

r
 . Hence, �

e
 maps the deformation of the elas-

tin matrix from its stress-free configuration to �
r
 (Fig. 1). 

Ii
4,c

=

[
(�T�iT

c
�i

c
�) ∶

(
�i ⊗�i

)]
 is the fourth invariant 

of the right Cauchy-Green tensor of fibre family i, where 
�i

= [0, sin�i, cos�i ] is the orientation vector of fibre family 
i, with �1

= 0◦ for axially oriented fibres , �2
= 90◦ for cir-

cumferentially oriented fibres, and �3,4
= ±� for diagonally 

(n = 2) oriented fibres, and �i
c
 is the deposition stretch matrix 

for fibre family i:

where �
c
 denotes fibre’s deposition stretch in the fibre direc-

tion, assumed to be equal for all fibre families. Similar to �
e
 , 

�i
c
 maps the deformation of the fibre family i from its stress-

free configuration to �
r
 (Fig. 1). Note that, to guarantee the 

absence of torsion in response to orthotropic deformations/
loads, the model parameters pertaining to the two diagonal 
fibre families must necessarily be equal (i.e. k3

1
= k4

1
 , k3

2
= k4

2
 , 

and �3
c
= �4

c
 ) given their symmetric orientation. Addition-

ally, for all fibre families, the nonlinearity parameter kc
2
 

replaces ki
2
 in Eq. (6) whenever Ii

4,c
< 1 . This allows to dif-

ferentiate compressive from tensile behaviours of the fibres 
while maintaining continuity in the slope of the modelled 
stress-stretch relationships. �e can be calculated as

(7)�
e
= diag

[
1

�
θ,e�z,e

, �
θ,e, �z,e

]
.

(8)�i
c
= diag

[
1

(�c)
2
cos�isin�i

, �
c
sin�i, �

c
cos�i

]
,

(9)�e = −p�−1
+ 2

�Ψ

��
,

where p is a Lagrange multiplier enforcing incompressibility 
and � = �T�.

A relevant viscoelastic property of many biological soft 
tissues is that the hysteresis behaviour is relatively insensi-
tive to the loading frequency (Fung 1997; Franchini et al. 
2021). Commonly used viscoelastic models, such as the Kel-
vin model, are formulated using a single dashpot in combi-
nation with 1 or 2 springs. As a result, the obtained relaxa-
tion function follows an exponential decay governed by a 
single time constant which leads to the hysteresis behaviour 
being highly dependent on the loading frequency (Fung 
1997). This limitation can be overcome by superimposing 
a large number of simple viscoelastic models to achieve a 
continuous relaxation spectrum (i.e. structural damping). In 
this context, Fung proposed the following reduced relaxation 
function (Fung 1997):

where � is a dimensionless parameter and �1 and �2 are time 
constants ( 𝜏2 > 𝜏1 ). Q(t) yields a relatively constant damping 
for loading frequencies in the range 1∕�2–1∕�1 (Fung 1997). 
In the sQLV theory, Q(t) is used to describe the stress relaxa-
tion of the soft biological tissue as a whole. Since G is inde-
pendent from � , this formulation assumes that the tissue’s 
viscoelastic behaviour is independent from its deformation 
state. In the present paper, we expand on Fung’s QLV theory 
by applying QLV at a constituent rather than at a whole-
tissue level. As in the sQLV formulation, we assume that 
the viscous response of elastin and collagen fibres is inde-
pendent from their deformation state but, unlike in sQLV, 
we define individual relaxation functions Q

e
(t) and Q

c
(t) for 

elastin and collagen, so that their viscous behaviours may 
differ. Using Eq. (6) and the cbQLV principle, we can then 
reformulate Eq. (5) to express the Cauchy stress (i.e. the 
stress defined in the current configuration �

c
 ) as

with i ∈ {r, z, θ} (no sum on i) and p
e
 and p

c
 Lagrange mul-

tipliers for the elastin- and collagen-borne parts of the wall 
stress. Assuming a complete relaxation of the previous stress 

(10)

Q(t) =

⎡
⎢⎢⎢⎣
1 + �

⎛
⎜⎜⎜⎝

+∞

∫
t

�2

e−m

m
dm −

+∞

∫
t

�1

e−m

m
dm

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

�
1 + �ln

�
�2

�1

��−1
,

(11)

�ii(t) =

⎧
⎪⎨⎪⎩
Sii(0) +

t

∫
0

�
Qe(t − s)

d

ds

�
−

pe

�2
i
(s)

+ 2
�Ψe(s)

��2
i
(s)

�

+ Qc(t − s)
d

ds

�
−

pc

�2
i
(s)

+ 2
�Ψc(s)

��2
i
(s)

��
ds

�
�2
i
(t) ,
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history at t = 0 , Sii(0)  can be calculated from Q
e
(t → ∞) 

and Q
c
(t → ∞):

where �j , �1,j , and �2,j with j = {e, c} indicate the parameters 
of Q

e
 and Q

c
 (Eq. 10). Because the relative contributions 

of elastin and collagen to the total elastic wall stress are 
deformation-dependent (i.e. dependent on the functional 
form and parameter values of Ψ

e
 and Ψ

c
 ), the effects of the 

two relaxation functions Q
e
 and Q

c
 on the total viscoelastic 

stress are differentially weighted at different deformations. 
For example, for deformation levels at which elastin bears 
most of the load, the wall will exhibit a viscoelastic response 
which is mostly dictated by the function Q

e
 . The opposite 

holds for collagen-dominated deformation levels. Therefore, 
while retaining the quasi-linear formulation of sQLV, the 
proposed formulation allows to capture more complex fully 
nonlinear viscoelastic behaviours.

2.3  Experimental data

The proposed viscoelastic modelling framework was used 
to capture the mechanical behaviour of the mouse carotid 
artery. Five surplus male C57BL/6 J-Glo1 wild type mice 
were euthanized at an age of 18 weeks using an overdose 
of isoflurane followed by exsanguination. Thereafter, their 
left common carotid artery was harvested for mechanical 
testing. The use of surplus animals, after euthanasia, has 
been approved by the Maastricht University Animal Ethical 
Committee (licence number: AVD1070020187086) and all 
experiments were performed in accordance with the Euro-
pean Union Directives for animal experiments. The biaxial 
testing set-up used herein is equivalent to that described and 
characterised in a previous study (van der Bruggen et al. 
2021a), except for the method used for the measurement of 
the diameter distension, here performed via a high speed 
camera (frame rate 500 Hz) rather than ultrasound scanning. 
Briefly, our biaxial set-up allows to simultaneously subject 
tubular vessels to prescribed axial stretches and intraluminal 
pressures while continuously recording the outer diameter 
via video tracking and the axial force via a load cell. The 
sampling frequency of the data acquisition (DAQ) system 
used to record all variables other than diameter was 2 kHz. 
After preconditioning (see Supplemental information), the 
vessel’s in vivo axial length ( liv,exp ) was experimentally esti-
mated as that length that guarantees decoupling between 
axial force and intraluminal pressure (Van Loon et al. 1977; 
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van der Bruggen et al. 2021a). The testing protocol involved 
three blocks of experimental steps. First, the vessel was 
subjected to three quasi-static inflation/deflation pressure 
sweeps. In these three experimental steps, the intraluminal 
pressure was slowly increased and then decreased (inflation 
rate ~ 3 mmHg/s) between 10 and 180 mmHg, while keep-
ing the artery at a constant axial length of 105%, 95%, and 
100% of liv,exp , respectively. Second, while keeping the vessel 
axially stretched to liv,exp , the vessel was subjected to trains 
of sinusoidally oscillating pressure at four different frequen-
cies ( f = 2.5, 5, 10, and 20 Hz) and at three different pres-
sure ranges: 80–40 mmHg (low), 120–80 mmHg (medium), 
and 160–80 mmHg (high). Hence, the second testing block 
yields a total of 4 × 3 = 12f –pressure combinations. Note 
that 10 Hz = 600 beats per minute is commonly assumed to 
be the physiological heart rate of mice (Leloup et al. 2016; 
Ferruzzi et al. 2018). Third, the vessel was subjected to 
five quasi-static axial force sweeps (stretch rate = 0.11  s−1) 
between Fz = 0 g and the maximum axial force reached 
during the quasi-static pressure sweep at l = 1.05 liv,exp and 
while maintaining a constant intraluminal pressure of 10, 
60, 100, 140, or 180 mmHg, respectively. The complete pro-
tocols, thus, include 20 different biaxial testing datasets (8 
quasi-static and 12 dynamic).

2.3.1  Signal alignment

Correct phase and time alignment of the measured signals 
is of importance when assessing the viscoelastic behav-
iour of a material (van der Bruggen et al. 2021a). While 
the experimental set-up used herein has been developed to 
minimise instrumentation-induced phase shifts between the 
acquired pressure and diameter signals (van der Bruggen 
et al. 2021a), the high loading frequencies that are necessary 
to assess pseudo-physiological arterial function in mice (i.e. 
heart rate ~ 10 Hz) imply that even small delays will signifi-
cantly affect the relationships between signals. In particular, 
two possible sources of delay are worth considering. First, 
the camera and the DAQ system operate independently. A 
rectangular 1 ms-long trigger pulse was generated by the 
camera when acquiring each frame, which was recorded at 
2 kHz by the DAQ for synchronisation of the two systems. 
In the worst-case scenario, this could lead to an inter-system 
phase difference of up to 0.5 ms (i.e. the sampling interval of 
the DAQ). Second, the intraluminal pressure was measured 
via a sensor placed downstream to the distal pipette to which 
the artery was tethered (van der Bruggen et al. 2021a). Con-
versely, the diameter waveform was tracked approximately 
in the centre of the vessel (i.e. nearly at the same distance 
between proximal and distal pipettes). As the pressure wave 
propagates through the vessel, this configuration leads to 
a delay between the acquired pressure and diameter wave-
forms that can be estimated as the ratio between half of the 
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vessel axial length and the propagation speed of the pressure 
waveform along the vessel. Although this delay is intrinsi-
cally axial length- and pressure-dependent, for an average 
wave speed of 5 m/s and loaded axial length of 10 mm, the 
delay is on the order of 1 ms. It is apparent that the effect of 
these delays on the signal alignment becomes more relevant 
as the loading frequency increases. Therefore, to correct for 
these delays, we assumed their effect to be negligible at the 
lowest harmonic loading frequency included in our protocol 
(2.5 Hz). Then, based on the empirical observations that loss 
factor (refer to Section 2.5 and Supplementary information, 
Figure S2) of soft biological tissues is nearly independent 
of the loading rate (Fung 1997; Franchini et al. 2021), we 
adjusted the signal alignment to attain this behaviour. In 
agreement with the analysis above, the delays needed for the 
adjustment were ≤ 2 ms.

2.4  Parameter estimation

The proposed cbQLV constitutive model comprises a total of 
eighteen model parameters. Twelve of these belong to the elas-
tic part of the model, with Ψ

e
 (Eqs. 6 and 7) including three 

model parameters (one stiffness-like parameter and two deposi-
tion stretches for the circumferential and axial direction, respec-
tively) and Ψ

c
 (Eqs. 6 and 8) involving nine parameters (one 

stiffness-like parameter and one nonlinearity parameter for each 
collagen fibre family (the two diagonal families share the same 
parameters); one orientation angle for diagonally oriented fibre 
families; one nonlinearity parameter for all compressed fibres; 
and one deposition stretch in the fibre direction). The remain-
ing six parameters belong to the viscous part of the model, 
with three model parameters for both Q

e
(t) and Q

c
(t) (Eq. 10). 

Despite the extensive static and dynamic characterisation per-
formed herein, some of these model parameters had to be con-
strained not to incur into overfitting. Pertaining the elastic part 
of the model, in a preliminary analysis, we observed that, if left 
unconstrained, �z,e tended to converge to high values (range 
7–10), suggesting that the elastin matrix is subjected to a seven-
to-tenfold elongation with respect to its stress-free configura-
tion in �

r
 . As these values are non-physiological, we chose to 

fix �z,e to liv,exp∕L0 ; i.e. we assumed elastin not to be axially 
stretched in �

u
 . Further, we chose to set kc

2
= 10−6 , thus limiting 

the collagen’s response to compression by conferring a nearly 
quadratic, rather than exponential, dependency of the collagen 
2nd PK stress on the deformation in compression. Additionally, 
we constrained the stiffness-like parameter of all fibre families 
to be equal: k1

1
= k2

1
= k

3,4

1
 . Pertaining the viscous part of the 

model, the two time constants in Eq. (10) define the frequency 
band within which the material exhibits a stable hysteresis area. 
Previous studies have shown that the identification of these time 
constants from stress-relaxation experiments is not trivial (Funk 
et al. 2000). Alternatively, an accurate estimation of �1 and �2 
would require subjecting the vessel to dynamic testing over a 

very wide range of loading frequencies (~  10–4–104 Hz). This 
last approach is hardly achievable experimentally, especially 
for high frequencies. To address this issue, we adopted a more 
pragmatic approach for the estimation of  �1 and �2 which is 
based on experimental observation of the presence of resid-
ual hysteresis effect in quasi-static protocol steps (where the 
loading rate was nearly 2 orders of magnitude lower than the 
dynamic protocol steps at the lowest frequency), suggesting that 
viscoelastic effects are not negligible even in quasi-static load-
ing conditions. Therefore, we chose to fix �1 = 10−3 s for both 
Q

e
(t) and Q

c
(t) (i.e. above the inverse of the highest loading 

frequency used in our protocol, 20 Hz), while fitting �2 to match 
the level of residual viscoelasticity observed in the quasi-static 
protocol steps. This guarantees a stable hysteresis behaviour 
within the loading frequency range 1∕�2–1000 Hz.

The fitting procedure to estimate the remaining twelve 
model parameters was carried out in three consecutive steps 
(Fig. 2). First, a purely elastic model (i.e. the eight uncon-
strained model parameters in Ψ : � , ��,e , k

1,2,3,4

1
 , k1

2
 , k2

2
 , k3,4

2
 , �3,4 , 

and �
c
 ) was fitted to the quasi-static experimental data (i.e. 

three pressure sweeps and five axial force sweeps). Loading 
and unloading curves of each protocol step were resampled 
(N = 35 datapoints for both loading and unloading) and aver-
aged to yield a representative purely elastic behaviour. Then, 
the model parameters were estimated iteratively by minimising 
the cost function

where wm is a weighting factor for protocol step m ( M = 8 
is the total number of quasi-static protocol steps), P

comp,n 
and P

exp,n are modelled and experimental pressure data 
points, P

exp
 is the average experimental pressure over the 

entire quasi-static protocol, F
comp,n and F

exp,n are modelled 
and experimental transducer force data points, and F

exp
 is 

the average experimental transducer force over the entire 
quasi-static protocol. Then, wm was set to 1 for each of the 
three pressure sweeps, while the five axial force sweeps were 
given a cumulative weight of 1. This differential weighting 
of axial and pressure sweep protocol steps was used to pri-
oritise steps conducted in pseudo-physiological loading con-
ditions in the search for material parameters. Furthermore, 
each axial sweep protocol step was attributed a relative 
weight that was proportional to the explored deformation 
space in the circumferential-axial plane (i.e. proportional to 
the length of the circumferential stretch-axial stretch rela-
tionship of each protocol step in Fig. 3C). Using Eq. (9), 
the modelled pressure and transducer force were calculated 
from thin-wall approximation of equilibrium equations in 
the radial and axial directions, respectively:

(13)
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where h = r
o
− r

i
 is the wall thickness. This first optimisa-

tion step was used to estimate and then fix �
c
 and ��,e . As 

these parameters define the degree of collagen and elastin 
prestretch in �r , we assumed that their estimation could be 
performed independently of the viscoelastic formulation.

The second step of the fitting procedure consisted of fit-
ting the complete viscoelastic model (i.e. the remaining 6 
unconstrained parameters in Ψ : � , k1,2,3,4

1
 , k1

2
 , k2

2
 , k3,4

2
 , �3,4 

given, kc
2
= 10−6 , �z,e = liv,exp∕L0 , and ��,e and �

c
 from fitting 

step 1) and � and �2 for both elastin ( �
e
 and �2,e ) and collagen 

( �
c
 and �2,c ) on all protocol steps conducted at liv,exp ; i.e. 

one quasi-static pressure sweep and twelve dynamic loops. 
The aim of this step was to estimate the viscous parameters 
that best capture the transition from quasi-static to dynamic 
behaviour at the in vivo axial stretch, especially with respect 
to the dynamic stiffening. Note that, unlike in the previous 
step, here, the loading and unloading parts of the quasi-
static data are not averaged but are both captured by the 
viscoelastic model. The model parameters were iteratively 
estimated by minimising the cost function

(14)Pcomp =

ro

∫
ri

��� − �rr

r
dr ≈

(
��� − �rr

) h

rm
, and

(15)Fcomp = �

ro

∫
ri

(
2�

zz
− ��� − �

rr

)
rdr ≈ �

(
2�

zz
− ��� − �

rr

)
rmh ,

where K
D,mod

 and K
QS,mod

 are the dynamic and quasi-static 
circumferential tangential elastic moduli derived from the 
modelled relationship for loop j , K

D,exp and K
QS,exp are cor-

responding values calculated from the experimental data, 
and J = 12 is the number of dynamic loops. For both experi-
mental and modelled curves, K

D
 was estimated as the slope 

of the linear regression of the Cauchy stress–strain dynamic 
loop, while the corresponding K

QS
 was determined as the 

mean of the slopes of the Cauchy stress–strain quasi-static 
relationship during loading and unloading in the same pres-
sure range as the dynamic loop. In order to illustrate the 
difference between cbQLV and sQLV, this second step in 
the fitting procedure was repeated for �

e
= �

c
.

The third and final step of the fitting procedure aimed to 
refine the estimation of the six unconstrained elastic model 
parameters given �

e
 , �2,e , �c , and �2,c . This was done by fitting 

the viscoelastic model onto all quasi-static data, iteratively 
minimising Eq. 13. Once more, unlike in the first optimisa-
tion step, loading and unloading parts of the protocol steps 
were considered independently.

The minimisation task of each of the three steps was 
repeated for 50 initial guesses of model parameters using 
the MultiStart function of MATLAB R2021b (MathWorks, 
Inc., Natick, MA, USA).

(16)ΠD = ΠQS +

J∑
j=1

�
KD,mod,j

KQS,mod,j

−
KD,exp,j

KQS,exp,j

�2

,

Fig. 2  Schematic representa-
tion of the three-step parameter 
fitting procedure implemented 
to estimate the 18 model 
parameters of the proposed 
constituent-based quasi-linear 
viscoelastic model. Solid, 
dashed, and dashed-dotted lines 
are used to indicate the first, 
second, and third step, respec-
tively. Underlined model param-
eters indicate fixed parameters. 
LSQ: least-squares. Brackets 
in parameter superscripts 
indicate that the parameter is 
equal for the enclosed fibre 
families: e.g. k(1,2,3,4)
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2.5  Performance of constitutive‑based quasi‑linear 
viscoelasticity and its comparison to standard 
quasi‑linear viscoelasticity

After the fitting routine was completed, the viscoelas-
tic model was used to simulate the performed biaxial 
experiments. The overall quality of the fitting was evalu-
ated using the root mean square error (RMSE), defined as 
RMSE = ΠQS∕(N ⋅M) , where N and M indicate the number 
of datapoints in each protocol step and the number of pro-
tocol steps, respectively. Then, to evaluate the ability of the 
model to capture the viscoelastic behaviour of the arterial 
wall, the dynamic-to-quasi-static stiffness ratio ( K

D
∕K

QS
 ) 

and loss factor, defined as the ratio between loss energy 
(stress–strain hysteresis area) and stored elastic energy (the 
average area underneath a quarter of a stress–strain cycle 
multiplied by 2� , see Supplementary information, Figure 
S2) (Amabili et  al. 2019a; Franchini et  al. 2021), were 
calculated for all the considered loading frequencies and 

pressure conditions, and both using the experimental and 
simulated data. The loss factor, thus, provides information 
on the efficiency of the arterial system, relating the amount 
of energy that is dissipated to the amount of elastic energy 
that is stored by the artery in a cardiac cycle.

To illustrate the differences between cbQLV and sQLV, 
we simulated the arterial viscoelastic response to a sinu-
soidal pressure waveform of 0.5 mmHg of amplitude, 
centred at pressures ranging 20–180 mmHg in 5 mmHg 
increments, and at frequencies ranging from  10–5–105 Hz 
in 0.5 increments on a logarithmic scale. Note that, given 
the choices made for �1 and �2 , a loading frequency of 10−5 
Hz (i.e. ≪ 1∕𝜏2 Hz) ensures that all viscous effects are 
negligible, so that the resulting behaviour can be consid-
ered fully static. Similarly, a loading frequency of  105Hz 
(i.e. ≫ 1∕𝜏1 = 103 Hz) yields the fully elastic response of 
the material. These simulations were used to characterise 
the response of the two viscoelastic models by evaluat-
ing the dynamic-to-static circumferential stiffness ratio 

Fig. 3  Constituent-based quasi-linear viscoelasticity (cbQLV) cap-
tures quasi-static biaxial vessel behaviours well as evidenced by the 
good agreement between experimental (exp.) and modelled (mod.) 
curves in Panels A–D. Panels A and B show the comparison between 
experimental and cbQLV-modelled curves of the quasi-static pres-
sure sweeps at constant axial stretch and panels C and D show axial 

force sweeps at constant intraluminal pressure of the carotid artery of 
mouse II. Note that the axial stretch in panels C and D is expressed 
with respect to an in vivo reference configuration. As a result, axial 
stretch = 1 is attained at the crossover point between the axial force 
sweep curves when pressure and axial force are decoupled



1616 A. Giudici et al.

1 3

( E
D
∕E

S
 ) in terms of the slope of the 2nd PK stress–Green 

Lagrange strain relationship, using f = 10−5Hz as fully 
static reference. As the QLV theory is formulated in terms 
of 2nd PK stress, E

D
∕E

S
 guarantees the best visualisa-

tion of the differences between cbQLV and sQLV. The 
elastin- and collagen-specific contributions to the wall 
viscosity were evaluated by recalculating E

D
∕E

S
 when 

setting �
c
= 0 and �

e
= 0 , respectively. Note that although 

in sQLV �
e
= �

c
 , this step was performed also in sQLV 

to illustrate the individual contribution of collagen and 
elastin.

3  Results

3.1  Constitutive‑based quasi‑linear viscoelastic 
model

The unloaded outer diameter and wall thickness of the 
tested mouse carotid arteries were 470 ± 8 μ m and 75 ± 
11 μ m (mean ± standard deviation), respectively. Figures 3 
and 4 show examples of the measured quasi-static and 
dynamic biaxial mechanical data, as well as correspond-
ing curves simulated with the proposed cbQLV model. 
The model parameters for all tested arteries are reported 
in Table 1. While due to the strong nonlinearity of the 

Fig. 4  Measured viscosity-
related effects are represented 
by the constituent-based quasi-
linear viscoelastic (cbQLV) 
model, showing comparable 
patterns between quasi-static 
and dynamic loading. Dynamic 
loops at 10 Hz and at the 
three considered pressure 
levels (80–40, 120–80, and 
160–120 mmHg) of the carotid 
artery of mouse II are shown, 
comparing experimental curves 
(panels A and B) and those 
obtained with the cbQLV model 
(panels C and D). The quasi-
static pressure sweeps at the in 
vivo axial length are also shown 
as reference to illustrate the dif-
ference between quasi-static and 
dynamic behaviour. Harmonic 
loading at 10 Hz induces sig-
nificant stiffening (i.e. increased 
stress-stretch slope) compared 
to quasi-static curves in the 
same pressure range

Table 1  Constituent-based quasi-linear viscoelastic model parameters of the n = 5 mouse carotid arteries tested in this study

Note that when �
e
= 0 , elastin behaves as a purely elastic material and a value for �2,e cannot be estimated (i.e. any value of �2,e yields the same 

modelled behaviour)
RSMED: root mean square error of the dynamic fitting (step 2 in Fig. 2);  RSMEQS: root mean square error of the quasi-static fitting (step 3 in 
Fig. 1). Note that �

z,e was fixed to the ratio between the in vivo and unloaded length of the tested artery

Sample Elastin Collagen Fit error

� [kPa] ��,e [−] �
z,e [−] �

e
 [−] �2,e [s] k

1,2,3,4

1
 [kPa] k

1

2
 [−] k

2

2
 [−] k

3,4

2
 [−] �3,4 [°] �

c
 [−] �

c
 [−] �2,c [s] RMSED [−] RMSEQS [−]

I 27.7 1.79 1.92 0.000 − 56.3 4.3 27.5 72.9 42.4 1.08 0.059 59.3 0.049 0.044
II 46.8 1.56 1.62 0.033 100.0 7.1 3.9 14.6 25.1 44.3 1.17 0.061 46.2 0.035 0.059
III 30.0 2.01 2.05 0.000 – 137.5 3.7 16.1 49.1 42.1 1.07 0.104 76.4 0.069 0.060
IV 21.7 1.84 1.83 0.000 – 62.2 0.0 3.9 8.8 42.4 1.19 0.137 20.6 0.076 0.092
V 15.2 2.07 1.92 0.000 – 86.4 3.0 3.0 19.7 44.5 1.12 0.135 17.7 0.090 0.078
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mechanical behaviour of the mouse carotid arteries the 
modelled behaviour differed slightly from the measured 
one in some areas of the biaxial deformation space (e.g. 
high-pressure range in Fig. 3B), overall, the cbQLV model 
was able to capture well the complex biaxial response of 
the mouse carotid artery (Figs. 3 and 4), with an average 
RMSE of 0.064 ± 0.020 and 0.066 ± 0.017 for the dynamic 
and quasi-static fitting (i.e. steps 2 and 3 in Fig. 2), respec-
tively. As apparent in Fig. 3, despite the inflation rate 
being ~ 2–3 orders of magnitude slower than that in vivo, 
viscoelastic effects were non-negligible in quasi-static pro-
tocol steps, with loading and unloading following clearly 
distinct paths in all tested arteries. Our cbQLV model 
attributed the viscous behaviour of the mouse carotid 
artery predominantly to the fibrous part of Ψ (representing 
mainly collagen fibres), with four of five arteries having 
�
e
= 0 (Table 1). The estimated relaxation of the elastin-

borne stress at t → +∞ was on average 6 ± 11% (Sup-
plementary information, Figure S1). On the other hand, 
the fibres’ viscoelastic constant �

c
 was 0.099 ± 0.034, 

which together with �2,c (44.0 ± 22.5 s), leads to an aver-
age stress relaxation of 49 ± 8% for the fibre-borne part 
of the stress (Eq. 11). These findings are not surprising 
when considering differences in K

D,exp∕KQS,exp between the 
tested pressure ranges (Fig. 5A). In the low-pressure range 
(80–40 mmHg), where elastin dominates the mechanical 
behaviour, the arteries underwent marginal stiffening with 

dynamic loading: K
D,exp∕KQS,exp was 1.03 ± 0.03 at the 

physiological heart frequency of 10 Hz. K
D,exp∕KQS,exp 

appeared then to increase as collagen is gradually recruited 
at higher pressures, being, on average, 1.26 ± 0.08 and 
1.58 ± 0.22 in the medium (120–80 mmHg) and high 
(160–120 mmHg) pressure range, respectively. The mod-
elled stiffness ratios followed a similar increasing trend 
with pressure: 1.07 ± 0.06, 1.32 ± 0.11 and 1.54 ± 0.15 in 
the low-, medium-, and high-pressure range, respectively, 
at 10 Hz (Fig. 5B). While modelled stiffening ratios were, 
on average, higher than experimental values at low and 
mid pressures, these differences were attributable to sam-
ples IV and V, whose quasi-static highly nonlinear, biax-
ial mechanical behaviours were more difficult to capture 
using the proposed model (Table 1). This observation also 
explains the variability of  k2

2
 and k3,4

2
 parameters between 

different arteries (Table 1).
As for the stiffness ratio, the loss factor showed consid-

erable pressure dependency, being much lower in the low 
(0.021 ± 0.013) than in the medium (0.072 ± 0.011) and high 
(0.057 ± 0.006) pressure ranges (Fig. 5D). Once more, the 
increasing trend with pressure indicates that viscous effects 
are stronger in collagen-dominated parts of the pressure-
diameter relationship. The modelled loss factor followed 
closely this trend, being 0.030 ± 0.011, 0.074 ± 0.016, 
and 0.080 ± 0.017 at 80–40, 120–80, and 160–120 mmHg, 
respectively (Fig. 5E).

Fig. 5  Constituent-based quasi-linear viscoelasticity (cbQLV) effec-
tively captures the pressure dependence of the viscoelastic properties 
of the mouse carotid artery. Dynamic-to-quasi-static stiffness ratio 
(Panels A–C) and loss factor (Panels D–F) as a function of loading 

frequency for the experimental data (Panels A and D), constituent-
based quasi-linear viscoelastic model (Panels B and E) and standard 
quasi-linear viscoelastic model (Panels C and F). Data are presented 
as mean ± standard deviation
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3.2  Comparison of constituent‑based and standard 
quasi‑linear viscoelastic models

Model parameters for the sQLV model are presented in 
Table 2. Imposing �

e
= �

c
 and �2,e = �1,e (i.e. using sQLV) 

affected the overall quality of the fitting of the experimen-
tal data, particularly increasing the dynamic fitting RMSE 
to 0.088 ± 0.033 (paired samples Student’s t-test, p = 0.035 
versus cbQLV). The viscous coefficient �

e
= �

c
 was 0.082 

± 0.030 and the time constant �2,e = �2,c was 29.6 ± 14.4 s, 
leading to a stress relaxation at t → +∞ of 44 ± 8% for both 
elastin- and fibre-borne parts of the wall stress. Note that 
this value is between the values of �

e
 and �

c
 as estimated in 

cbQLV. The ability of the sQLV model to capture the pres-
sure dependency of K

D
∕K

QS
 was considerably reduced com-

pared to the cbQLV model: K
D,mod

∕K
QS,mod

 at 10 Hz was 
1.22 ± 0.17 at 80–40 mmHg, 1.40 ± 0.12 at 120–80 mmHg, 
and 1.47 ± 0.15 at 160–120 mmHg (Fig. 5C). The residual 
pressure dependency of K

D,mod
∕K

QS,mod
 in sQLV is due to 

two factors: first, the stiffness ratio shown in Fig. 5 was eval-
uated in the current configuration; second, the applied pres-
sure pulses spanned over 40 mmHg. Indeed, when these two 
effects are removed (i.e. computing E

D
∕E

S
 in the reference 

configuration and using pressure pulses of negligible ampli-
tude; Fig. 6), the difference between sQLV and cbQLV is 
more pronounced. In sQLV, E

D
∕E

S
 is a function of the load-

ing frequency alone, displaying a pressure-independent lin-
ear relationship with the logarithm of the loading frequency 
in the range 1∕�2–1∕�1 (Fig. 6B). Conversely, in cbQLV, 
E
D
∕E

S
 becomes a function of both loading frequency and 

pressure (or initial deformation), reflecting the constituent-
specific viscoelastic properties and relative contributions to 
the total wall stress (Fig. 6A). The constituent-specific con-
tributions to the wall viscoelasticity are presented in Fig. 6C 
and E for the cbQLV model and Fig. 6D and F for the sQLV 
model.

As for the stiffness ratio, the loss factor in the sQLV 
model showed lower pressure dependency than that observed 
experimentally, being 0.055 ± 0.030, 0.075 ± 0.022 and 
0.075 ± 0.019 vs 0.021 ± 0.013, 0.072 ± 0.011 and 0.057 ± 

0.006 at 80–40, 120–80 and 160–120 mmHg, respectively 
(Fig. 5D and F).

4  Discussion

The aim of the present study was to develop a viscoelastic 
constitutive model that captures the nonlinear viscoelastic 
response of the arterial wall using a unique set of deforma-
tion-independent model parameters. This was achieved by 
applying Fung’s quasi-linear viscoelastic (QLV) formulation 
at the constituent level rather than at the whole-tissue level. 
The proposed constituent-based QLV (cbQLV) approach 
captured the nonlinear viscoelastic behaviour of the mouse 
common carotid artery well over a wide range of quasi-static 
and dynamic deformations (see Supplemental information 
Figure S6) and performed better than standard QLV (sQLV). 
Furthermore, unlike sQLV, cbQLV allowed to identify the 
preponderant role of the fibrous constituents of the arterial 
wall (i.e. mainly collagen) in determining the viscous prop-
erties of the arterial wall.

In agreement with previous studies (Craiem et al. 2008; 
Zou and Zhang 2011; Yang et al. 2011; Amabili et al. 2019a; 
van der Bruggen et al. 2021a; Franchini et al. 2021), we 
found the mouse carotid artery to exhibit a fully nonlinear 
viscoelastic behaviour. The dynamic-to-quasi-static stiffness 
ratio calculated in the current configuration (i.e. in terms 
of Cauchy stress and engineering strain) increased by more 
than 1.5-fold from the low (80–40 mmHg) to the high pres-
sure range (160–120 mmHg). These results are in agree-
ment with those found in our previous study, although there 
observed in terms of structural and not material stiffness 
(van der Bruggen et al. 2021a). Other groups have reported 
similar increasing trends of arterial wall viscosity with 
increasing deformation/load. Franchini et al. (2021) sub-
jected circumferential and axial strips of human aortic tissue 
to quasi-static uniaxial extension and harmonic loading at 
three different levels of initial stress. Similar to our experi-
mental protocol, these initial stress levels corresponded to 
low, physiological, and high pressures. They found that 

Table 2  Standard quasi-linear viscoelastic model parameters of the n = 5 mouse carotid arteries tested in this study

RSMED: root mean square error of the dynamic fitting (step 2 in Fig. 2);  RSMEQS: root mean square error of the quasi-static fitting (step 3 in 
Fig. 1). Note that �

z,e was fixed to the ratio between the in vivo and unloaded length of the tested artery

Sample Elastin Collagen Viscous Fit error

� [kPa] ��,e [-] �
z,e [-] k

1,2,3,4

1
 [kPa] k

1

2
 [-] k

2

2
 [-] k

3,4

2
 [-] �3,4 [°] �

c
 [-] �

e
= �

c
 [-] �2,e = �

2,c
[s] RMSED [-] RMSEQS [-]

I 40.7 1.79 1.92 50.9 4.5 27.6 73.5 42.4 1.08 0.046 38.6 0.062 0.049
II 53.7 1.56 1.62 6.8 3.9 14.6 25.1 44.3 1.17 0.054 50.9 0.037 0.059
III 52.9 2.01 2.05 118.9 4.4 16.6 50.7 42.4 1.08 0.079 30.8 0.114 0.076
IV 43.4 1.84 1.83 59.2 0.0 3.8 8.8 42.4 1.19 0.117 11.7 0.101 0.095
V 31.0 2.07 1.92 79.9 3.3 3.1 19.9 44.6 1.12 0.115 16.2 0.125 0.091
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the circumferential dynamic-to-quasi-static stiffness ratio 
defined in the reference configuration (i.e. in terms of 2nd 
PK stress and Green–Lagrange strain) increased by 1.25-
fold from low to high initial stress. Similar findings have 
been reported for stress-relaxation experiments. Yang et al. 
(2011), Zou and Zhang (2011), and Peña et al. (2011) sub-
jected strips of porcine aortas to uniaxial stress-relaxation 
tests in both circumferential and axial directions. They found 
that, for both tested directions, the degree of stress relaxation 
increased with the applied stretch (~ 1.5 to 2.5-fold).

Our cbQLV viscoelastic model showed good ability to 
capture the measured nonlinear viscous behaviour. The mod-
elled gradient in stiffness ratio was close to that observed 
experimentally and much higher than the ~ 1.20-fold increase 

captured by sQLV. The cbQLV model attributed the carotid 
wall viscous behaviour predominantly to the fibrous part of 
our model, which is thought to mainly reflect the mechani-
cal response of collagen fibres at high pressures. Conversely, 
elastin behaved as a purely elastic material in four of the 
five tested arteries. This result is not surprising consider-
ing how the load bearing of elastic arteries gradually shifts 
from elastin to collagen as pressure increases from sub-/low-
physiological to supra-/high-physiological levels (Wolinsky 
and Glagov 1964; Berry et al. 1975; Sokolis et al. 2006). By 
attributing negligible viscoelastic behaviour to elastin and 
considerable stress-relaxation to the fibre-borne part of the 
stress, the model was able to simultaneously guarantee neg-
ligible dynamic stiffening at low pressures and more than 

Fig. 6  Average dynamic-to-static stiffness ratios as a function of pres-
sure and loading frequency for the five mouse carotid arteries  tested 
in this study show the difference between standard and constituent-
based quasi-linear viscoelastic modelling. Panel A: constituent-based 
quasi-linear viscoelastic model. Panel B: standard quasi-linear vis-
coelastic model. Panels C and D show the contribution of elastin to 
the wall viscoelastic behaviour for the constituent-based and standard 
quasi-linear viscoelastic model, respectively. Panels E and F show 
the contribution of collagen to the wall viscoelastic behaviour for 

the constituent-based and standard quasi-linear viscoelastic model, 
respectively. Unlike in Fig. 5, here, the static and dynamic stiffnesses 
are calculated from the 2nd Piola-Kirchhoff stress–Green-Lagrange 
strain curves to show the effect of the quasi-linear viscoelasticity 
assumption. Furthermore, the amplitude of sinusoidal pressure wave-
forms was set to 0.5 mmHg to minimise the effect of the elastic non-
linearity on the calculated ratios. As inter-subject variability could 
not be effectively visualised in these graphs, individual plots are 
reported in the Supplemental Material, Figures S3 and S4
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50% stiffening above physiological pressures. Indeed, these 
findings are in agreement with previous experimental obser-
vations on the effect of enzymatic digestion of collagen fibres 
on arterial wall mechanics (Zou and Zhang 2011; Weisbecker 
et al. 2013; Schriefl et al. 2015). It has been reported that sof-
tening behaviour (i.e. changes in the shape of the stress–strain 
relationship with increasing number of loading/unloading 
cycles) of human aortic wall samples subjected to cyclic uni-
axial tensile testing is almost entirely attributable to collagen, 
and that collagen-digested medial samples exhibited a nearly 
linearly elastic behaviour with negligible softening (Weis-
becker et al. 2013; Schriefl et al. 2015). This finding is also 
consistent with the previously reported increase of the stiff-
ness ratio of the human aorta with age (Amabili et al. 2020). 
Similarly, Zou and Zhang (2011) tested the stress-relaxation 
of (1) intact, (2) decellularized, and (3) collagen-digested 
porcine aortic samples. They showed a progressive decrease 
of stress relaxation after removal of vascular smooth muscle 
cells (VSMCs) and collagen fibres. Furthermore, they found 
that the deformation-dependency of the stress-relaxation of 
the isolated aortic elastin matrix was considerably reduced 
compared to that of the intact tissue, which supports the 
validity of our cbQLV approach. These experimental findings 
suggest that, although cbQLV is likely still a simplification of 
reality (e.g. it neglects the passive contribution of VSMCs to 
the wall viscoelasticity), it may be able to effectively capture 
the different roles of elastin and collagen in the arterial wall 
viscoelastic behaviour.

Computational constitutive models are not only useful 
tools to provide a plausible micro-structurally motivated 
interpretation of complex, nonlinear, biaxial mechanical 
data; they also allow the estimation of an artery’s response 
to any prescribed loading condition. In the field of arterial 
viscoelasticity, previous fully nonlinear viscoelastic models 
have suffered from the necessity of defining deformation-
dependent viscous parameters that would allow to capture 
the fully nonlinear (i.e. nonlinearity in both elastic and vis-
cous behaviour), anisotropic behaviour of the arterial wall. 
This issue is often resolved through the definition of different 
sets of model parameters for each tested loading condition, 
yielding a model incapable of describing the wall behaviour 
over a wide range of loading conditions (Provenzano et al. 
2002; Yang et al. 2011; Franchini et al. 2021). The main 
advantage of our cbQLV approach, thus, is to capture fully 
nonlinear viscoelastic behaviours with a unique set of defor-
mation-independent model parameters. This is achieved by 
defining constituent-specific quasi-linear viscoelastic mod-
els which individually exhibit deformation-independent 
viscosity. However, because of the constituent’s relative 
contributions to the arterial wall behaviour are deformation-
dependent, their combined contributions yield deformation-
dependent viscoelasticity at the whole-wall level. A second 
advantage of cbQLV is that it is, in principle, independent 

from the knowledge of the purely static behaviour of the 
tested tissue (i.e. when viscous phenomena are null), which 
is hard to assess experimentally. In the present study, we 
used the proposed cbQLV modelling approach to capture 
the vessel responses to both quasi-static and dynamic load-
ing. Both experimental conditions were treated as ‘dynamic’ 
experiments (i.e. with the entire deformation history affect-
ing the measured stress/deformation at any time point). The 
latter aspect is particularly important when considering that 
our quasi-static measurements, conducted at loading rates 
that are more than two orders of magnitude below those 
experienced by arteries in vivo, showed considerable hyster-
esis. This suggests that viscoelastic phenomena should not 
be neglected in the quasi-static experimental protocols typi-
cally used in the field (Franchini et al. 2021), and that neither 
quasi-static loading nor unloading responses can be used to 
approximate the static behaviour. It follows that basing the 
estimation of the viscous model parameters solely on the 
dynamic-to-quasi-static stiffness ratio as an approximation 
of the dynamic-to-static stiffness ratio may lead to inaccurate 
interpretations of the viscoelastic behaviour of the arterial 
tissue (Franchini et al. 2021).

The investigation of the complex viscoelastic behaviour 
of arteries requires (1) sophisticated biaxial testing set-
ups and (2) an effective viscoelastic constitutive model-
ling framework to integrate the acquired mechanical data. 
In a previous work, our group developed a state-of-the-art 
biaxial testing set-up that allows subjecting murine arter-
ies to pseudo-physiological dynamic loading conditions 
(van der Bruggen et al. 2021a). In the present study, we 
propose an effective and convenient modelling tool to relate 
the observed macroscopic (passive) arterial behaviours to 
the mechanical properties of the arterial wall’s main struc-
tural constituents. In future studies, the combination of such 
experimental and modelling tools will allow the investiga-
tion of alterations in viscoelastic mechanical properties asso-
ciated with cardiovascular system-related diseases, particu-
larly those altering the microstructure and, consequently, 
mechanics of collagen and elastin (e.g. diabetes and hyper-
tension) (Spronck et al. 2021; van der Bruggen et al. 2021b).

4.1  Limitations

The experimental set-up used in this study was developed to 
assess the viscoelastic behaviour of arteries in pseudo-phys-
iological loading conditions with high accuracy. Neverthe-
less, as acknowledged in the Methods, some sub-sampling 
resolution time delays between the acquired waveforms may 
exist. To address this, we used the dynamic protocol steps 
at the lowest loading frequency (2.5 Hz) as reference to per-
form ad hoc alignment of the recorded signals for the other 
protocol steps, under the assumption that the loss factor of 
soft biological tissues is nearly independent from the loading 
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frequency (Fung 1997; Franchini et al. 2021). As shown 
in the Supplementary information Figure S5, however, the 
pressure dependence of dynamic-to-quasi-static stiffness 
ratio was comparable before and after the applied correc-
tion of the time delays, so that this limitation is not expected 
to significantly alter the results of our study.

In cbQLV, a fully nonlinear viscoelastic behaviour is 
achieved by superimposing the contribution of a finite 
number of sQLV models, each representing the response 
of a single wall constituent. The choice of the number and 
behaviour of the constituents inherently depends on the 
modelled tissue (Vena et al. 2006; Thomas et al. 2009). In 
this study, we assumed the passive mechanical behaviour 
of the mouse carotid artery wall to be determined by the 
summed contribution of an isotropic matrix (representing 
elastin) and four families of fibres which mainly reflect the 
behaviour of collagen. We, therefore, neglected the pas-
sive contribution of smooth muscle cells. This choice was 
made to limit the number of model parameters, as not to 
incur overfitting. Indeed, the passive mechanical response 
of smooth muscle has been previously modelled using the 
same SEF used herein for collagen (Spronck et al. 2021), 
thus making the identification of a unique set of model 
parameters impossible unless microstructural informa-
tion from microscopy data is used to constrain the param-
eter space. Nonetheless, previous studies have shown 
that smooth muscle plays an important role in the arte-
rial wall viscoelastic response, even under passive condi-
tions and that both decellurization and collagen digestion 
significantly affect the viscoelasticity of the aortic wall 
(Apter et al. 1966; Zou and Zhang 2011; Franchini et al. 
2022a). Therefore, smooth muscle cells are likely partly 
responsible for the viscous behaviour attributed here to 
collagen. Furthermore, in this study, the arterial wall was 
modelled as a thin homogeneous membrane, neglecting its 
tri-layered structure, inter-layer differences in viscoelastic 
behaviours, and the transmural stress distribution (Amabili 
et al. 2019a; Franchini et al. 2021). Given that the relative 
contribution of the arterial layers to the wall mechani-
cal response is pressure-dependent (Giudici et al. 2021a; 
Giudici and Spronck 2022), a more complex multi-layered 
cbQLV model with layer-specific parameters could further 
improve the description of the nonlinear viscoelasticity of 
arteries. Furthermore, because of the single-layer thin-wall 
assumption, treatment of residual stresses is greatly sim-
plified in our modelling framework; because of the inclu-
sion of deposition stretches in the model, each constituent 
may not be stress-free in �

u
 , but the transmural distribu-

tion of residual stresses cannot be captured (Giudici and 
Spronck 2022; Zhang et al. 2022).

The mechanical behaviour of the mouse carotid artery 
is highly nonlinear and anisotropic. To capture this behav-
iour, our model involved a relatively high number of 

unconstrained model parameters (n = 14) which were esti-
mated over three consecutive optimisation steps. Because of 
this strongly nonlinear behaviour, the estimated parameters 
may not accurately capture the true mechanics of the arte-
rial wall for loading conditions that differ considerably from 
those applied experimentally. However, our experimental 
protocol was specifically designed to yield a thorough vis-
coelastic characterisation of the artery over wide ranges of 
biaxial deformations which also include pseudo-physiolog-
ical loading scenarios (Supplemental information, Figure 
S6). Within these boundaries, our model can be expected to 
capture well the viscoelastic behaviour of the tested arteries.

Finally, in cbQLV, nonlinearity in viscous behaviour 
is provided by the fact that the relative load bearing of 
the material constituents is deformation-dependent. This 
implies that, in agreement with experimental findings of 
previous works (Peña et al. 2011; Zou and Zhang 2011; 
Yang et al. 2011; Amabili et al. 2019a; Franchini et al. 
2021), the modelled viscoelastic behaviour depends on 
both the acting pressure and the axial stretch. It is worth 
noting, however, that in our study the effect of axial stretch 
was only assessed in quasi-static protocol steps, thus pro-
viding limited information on its contribution to arterial 
viscosity. In future studies, the model accuracy could be 
further improved by subjecting the arterial wall to har-
monic loading in the axial direction and/or to harmonic 
loading in the circumferential direction at different levels 
of constant axial stretch.

5  Conclusion

In this study, we proposed a constituent-based quasi-
linear viscoelastic modelling framework for vascular 
applications. Compared to other viscoelastic modelling 
approaches, this framework (1) shows improved capture 
of fully nonlinear viscoelastic behaviours while using a 
unique set of deformation-independent model parameters, 
and (2) provides insight into the individual contributions 
of wall constituents to the wall viscoelasticity. Such model 
performance favours practical application and will, there-
fore, advance the characterisation of arterial mechanics 
under the varying loading conditions of in vivo physiology.
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