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Abstract
This paper aims to construct a general framework of coupling tumor–bone remodeling processes in order to produce plausible 
outcomes of the effects of tumors on the number of osteoclasts, osteoblasts, and the frequency of the bone turnover cycle. 
In this document, Komarova’s model has been extended to include the effect of tumors on the bone remodeling processes. 
Thus, we explored three alternatives for coupling tumor presence into Komarova’s model: first, using a “damage” parameter 
that depends on the tumor cell concentration. A second model follows the original structure of Komarova, including the 
tumor presence in those equations powered up to a new parameter, called the paracrine effect of the tumor on osteoclasts 
and osteoblasts; the last model is replicated from Ayati and collaborators in which the impact of the tumor is included into 
the paracrine parameters. Through the models, we studied their stability and considered some examples that can reproduce 
the tumor effects seen in clinic and experimentally. Therefore, this paper has three parts: the exposition of the three models, 
the results and discussion (where we explore some aspects and examples of the solution of the models), and the conclusion.

Keywords Bone remodeling · Tumor · Coupling tumor–bone · Komarova’s model · Osteoclasts · Osteoblasts

1 Introduction

Understanding bone physiology is crucial in grasping 
the correct operation of the whole metabolic process in 
humans and, in general, all species. Bone metabolism 
is essential in the regulation of minerals, proteins, and 
hormones. Remarkably, all the processes related to bone 
turnover due to bone metabolism are produced by a very 
well-regulated cycle called bone remodeling. This cycle 
is carried out in a temporal period when a basic multicel-
lular unit (BMU) can make the continuous replacement 
of bone matrix regulated by two critical cells: osteoblasts 
and osteoclasts. Bone remodeling occurs permanently 
in discrete and random locations in the skeleton, both in 
space and in time, starting with the resorption of the bone 
matrix by osteoclasts and continuing with the formation of 
a new structure throughout the osteoblast’s performance 
(Bonfoh et al. 2008; Martin and Ng 1994; Günther and 
Schinke 2000; Parfitt 1994).This entire has been studied in 
the recent period, and it has been shown that the complex-
ity of the process is the result of several key factors that 
take place in the process itself. This includes continuous 
operations that provide a survival advantage as the result 
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of coordination between metabolic and mechanical regu-
lators, which affect the BMU activity (Bolamperti et al. 
2022). Recent studies have also shown that expansion 
of osteoprogenitor cell is an integrated process with the 
resorption, and this expansion is initiated by osteoclasts 
(Delaisse et al. 2020). This dynamic process behind bone 
remodeling is modified by mechanical loads, hormones, 
and pathological processes such as bone cancer and tumors 
(Burr 2002; Parfitt 2002).

Pathological processes can produce imbalances in the 
bone remodeling cycle in terms of period, number of cells 
present in the BMU, bone matrix and quality (Barkaoui et al. 
2017). Thus, crucial diseases can produce an imbalance in 
the bone remodeling cycle: osteoporosis, osteomalacia, 
osteomyelitis, Paget, bone tumors, and multiple myeloma, 
among others (Barkaoui et al. 2017). Hence, a better com-
prehension of the bone remodeling process and the coupling 
with those diseases allows understanding new perspectives 
and possibilities for dealing with tumor development treat-
ments and maintaining bone quality.

Certain bone diseases can reduce mass bone, such as 
multiple myeloma, which is considered as a type of can-
cer developed in white cells, also known as plasma cells. 
These cells help the immune system fight against infections 
by producing antibodies that attack the suspicious elements 
in the blood system. In this specific disease, cancer cells 
are accumulated in the bone marrow, reducing the number 
of healthy blood cells and producing abnormal proteins 
that cause unbalanced metabolism (Brigle and Rogers 
2017). Although the origin of the myeloma has not been 
completely understood, it is hypothesized that blood cells 
are formed abnormally in bone marrow, leading to fatigue, 
fractures, and a malfunctioning of the immune system and 
bone remodeling cycle (Joshua et al. 2019). This results in 
antibodies being accumulated in the body, causing kidney 
damage and reducing bone density (Brigle and Rogers 2017; 
Joshua et al. 2019). In addition, metastasis commonly pre-
sents in the bone due to primary tumors produced in the 
prostate, colorectal, thyroid, breast, and lung, among others 
(Fornetti et al. 2018). If primary tumor cells migrate to the 
bone for making metastasis, the probability of curing the 
condition is dramatically reduced, and associated morbidi-
ties become relevant, i.e., pain, fracture risk and hypercalce-
mia. In 1889, Stephen Paget hypothesized how tumor cells 
favor certain organs to boost their spreading, especially the 
bone (Fornetti et al. 2018). These findings and the close 
relationship between bone remodeling and bones reveal the 
importance of understanding the coupling process between 
tumors and bone turnover. Indeed, the understanding of how 
tumors and bone are impacted each other remains unclear 
(Fornetti et al. 2018).

Diseases such as osteosarcoma can produce new abnor-
mal bone mass, corresponding to bone cells that grow 

excessively and take advantage of bone remodeling process 
for its expansion. In fact, bone cells have a modification in 
their DNA, changing the information about how, when, and 
where these cells should produce new bone, and as a result, 
those modified cells can invade and destroy healthy tissues 
(Corre et al. 2020). In addition, primary tumors grow until 
they produce bone metastasis which will lead to insufficient 
bone apposition, which in turn is translated into osteolysis 
with the loss of mechanical properties (Garbayo et al. 2004).

From a computational point of view, Komarova et al. 
(2003) have established a dynamical system, representing 
the coupling between the cellular and molecular process 
from the bone remodeling perspective. Regarding the cel-
lular function, Komarova et al. have proposed the interac-
tion of osteoblasts and osteoclasts (Komarova et al. 2003). 
The paracrine and autocrine effects on cellular behavior 
were considered from a molecular perspective. Thereaf-
ter, Komarova’s laboratory presented a new mathematical 
model that is centered on the Parathyroid Hormone, which 
can allow the regulation of the bone remodeling cycle 
(Komarova 2006). These previously mentioned works have 
been explored extensively in bone remodeling field and they 
have analyzed in order to test multiple scenarios and hypoth-
eses vis-á-vis bone turnover. For instance, Zumsande et al. 
studied the dynamical system developed by Komorova and 
its stability (Zumsande et al. 2011); and Ryser et al. extended 
the Komarova’s model to include a complete list of molec-
ular mechanisms like osteoprotegerin (OPG) and nuclear 
factor ligand (RANKL) represented in five nonlinear par-
tial differential equations (Ryser et al. 2010). Additionally, 
Komarova’s model was broadened to include the effect of 
multiple myeloma disease as presented in (Burr 2002; Ayati 
et al. 2010). In those papers, the authors found how tumors 
increased the number of osteoclasts in the bone remodeling 
process, concluding that the matrix decreased its density.

This paper aims to construct a general framework of cou-
pling tumor–bone remodeling processes in order to plausible 
results of the effects of tumors on the number of osteoclasts, 
osteoblasts, and the frequency of the bone turnover cycle. 
Here, Komarova’s model has been extended to include the 
effect of tumors on the bone remodeling processes. Thus, 
we explored three alternatives for coupling tumor presence 
into Komarova’s model: first, using a “damage” parameter 
that depends on the tumor cell concentration. A second 
model follows the original structure of Komarova, includ-
ing the tumor presence in those equations powered up to 
a new parameter, called the paracrine effect of the tumor 
on osteoclasts and osteoblasts; the last model is replicated 
from (Ayati et al. 2010) in which the impact of the tumor is 
included into the paracrine parameters. Through the mod-
els, we studied their stability and considered some examples 
that can reproduce the tumor’s clinical and experimental 
effects observed. Therefore, this paper has three parts: the 
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exposition of the three models, the results and discussion 
(where we explore some aspects and examples of the solu-
tion of the models), and the conclusion. The authors hope 
this paper will serve as a cornerstone that can then be used as 
a research framework for those who want to run mathemati-
cal models of a coupling tumor–bone remodeling process as 
a silicon laboratory of possible effects.

2  Materials and methods

We used Komarova’s model, which consists of two nonlin-
ear differential equations. These equations are regulated by 
biochemical factors called paracrine and autocrine (Eq. (1) 
(Komarova et al. 2003). In addition, one equation for forma-
tion and resorption in the system of equations allows quan-
tifying the bone mass in each time step. 

 where x1 and x2 are the number of osteoclasts and osteo-
blasts, respectively, gij is the paracrine factor on the cell j 
due to the presence of i-cell, and z is the bone mass percent-
age, that has taken into account the difference between the 
number of osteoclasts/osteoblasts and its steady state (named 
xi ), i.e., 2yi =

(
xi − xi

)
+ ∣

(
xi − xi

)
∣ . Three extended models 

of Komarova’s one are presented here, coupling the bone 
remodeling model with another equation that considers the 
tumor growth. The coupling terms used in Komarova’s equa-
tion have different structures for each framework and can 
include more parameters, as shown in the following sections.

The entire process is depicted in diagram in Fig. 1; each 
color indicates a different stage of the process and how 
the article is structured. This diagram presents the main 
steps followed for the modeling process. The procedure 
consists in using the Komarova’s base model and adding 
or modifying with new terms the model, to generate a new 
one. Then, a stability analysis is done. From this analysis, 
different scenarios and behaviors are obtained for the vari-
ation of the different parameters of each model. Having 
this, solutions are mathematically computed and classified 
according to their temporal behavior. These behaviors can 
be compared to the physiological or pathological scenarios 
in real cases. Finally, some conclusions are shown for the 
models and their limitations. The entire process is depicted 
in diagram in Fig. 1, each color indicates a different stage 

(1a)
dx1

dt
= �1x

g11
1
x
g21
2

− �1x1

(1b)
dx2

dt
= �2x

g12
1
x
g22
2

− �2x2

(1c)
dz

dt
= −k1y1 + k2y2 of the process and how the article is structured. This dia-

gram presents the main steps followed for the modeling 
process. The procedure consists in using the Komarova’s 
base model and adding or modifying with new terms the 
model, to generate a new one. Then, a stability analysis is 
done. From this analysis different scenarios and behaviors 
are obtained for the variation of the different parameters 
of each model. Having this, solutions are mathematically 
computed and classified according to their temporal behav-
ior. These behaviors can be compared to the physiological 
or pathological scenarios in real cases. Finally, some con-
clusions are shown for the models and their limitations. 
The entire process is depicted in diagram in Fig. 1, each 
color indicates a different stage of the process and how 
the article is structured. This diagram presents the main 
steps followed for the modeling process. The procedure 
consists in using the Komarova’s base model and adding 
or modifying with new terms the model, to generate a new 
one. Then a stability analysis is done. From this analysis 
different scenarios and behaviors are obtained for the vari-
ation of the different parameters of each model. Having 
this, solutions are mathematically computed and classified 
according to their temporal behavior. These behaviors can 
be compared to the physiological or pathological scenarios 
in real cases. Finally, some conclusions are shown for the 
models and their limitations.

Fig. 1  General procedure
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2.1  Tumor affecting the activity of cell production 
or removal

Komarova’s model is revisited to include a new term or ele-
ment: the tumor effect on the osteoclasts and osteoblasts rate. 
In addition, the tumor equation is similar to that given by Ayati 
et al. (2010). Accordingly, the original differential equations 
are modified, and it is included the tumor rate as follows: 

where x1 = x
1
(t) and x2 = x2(t) are the number of osteoclasts 

and osteoblasts, respectively; �̂I(w) and �̂J(w) represent the 
activity either cell production or removal, respectively, 
depending on the tumor (Eq. 3). The tumor is represented 
by w = w(t) . In addition, gij describes the net effectiveness 
of osteoclast -or osteoblast- derived autocrine or paracrine 
factors (Komarova et al. 2003). Also, μ represents the tumor 
cell proliferation rate, Lw is the upper limit value for the 
tumor cells, and � is a scaling constant of tumor growth. It 
is necessary to complement Eq. (2) and (3) with the initial 
conditions, given by: 

In Eq. (2), the effect of the tumor (w) is included in cell 
production or removal activity. Now, Eq. (3) can be divided 
by Lw , obtaining:

Using Eq. (5), values for D can be defined by w∕Lw , then 
Eq. (5) can be written as follows:

On the other hand, �̂I(D) and �̂J(w) could have a general 
structure, for instance �̂i(w) , given by (7):

(2a)
dx1

dt
= �̂1(w)x

g11
1
x
g21
2

− �̂1(w)x1

(2b)
dx2

dt
= �̂2(w)x

g12
1
x
g22
2

− �̂2(w)x2

(3)
dw

dt
= μwlog

(
�
Lw

w

)

(4a)x1(0) = x10

(4b)x2(0) = x20

(4c)w(0) = w0

(5)
d(w∕Lw)

dt
= μ

(
w

Lw

)
log

(
�
Lw

w

)

(6)
dD

dt
= μDlog

(
�

D

)

Where f (w) can be chosen in different ways, but here, a 
“logistic” form was chosen, such that:

Thus, w can be replaced with D (with 0 ≤ D < 1 ) in Eq. (2). 
Therefore, Eqs. (2) and (3) will become (9): 

where �̂I(D) and �̂J(w) can be studied with different 
combinations the potential biological characteristics of the 
effect of the tumor on the bone remodeling process and can 
be selected from different scenarios provided in Table 1. 
In Eq. (9d), z = z(t) is the bone mass; ki is the normal-
ized activity of bone resorption and formation (for i = 1

and i = 2 , respectively); and yi = yi(t,D) is the numbers of 
cells that are resorbing or forming bone. Also, this fourth 
equation (9d) shows the bone mass change which remains 
the same as in Komarova et al. (2003) and is expressed as 
a percentage of the initial mass, according to osteoclasts 
and osteoblasts numbers, as follows (repeated):

(7)�̂i(w) =

⎧
⎪⎨⎪⎩

�if (w) multiplicative form
�i

f (w)
inversemultiplicative form

�i original form

(8)f (w) = k

(
wmax − w

wmax

)
= k(1 − D)

(9a)
dx1

dt
= �̂1(D)x

g11
1
x
g21
2

− �̂1(D)x1

(9b)
dx2

dt
= �̂2(D)x

g12
1
x
g22
2

− �̂2(D)x2

(9c)
dD

dt
= μDlog

(
�

D

)

(9d)
dz

dt
= −k1y1 + k2y2

Table 1  Original model parameters

Scenarios �̂1(D) �̂2(D) �̂1(D) �̂2(D)

0 �1 �2 �1 �2
1 �1

(1−D)
�2(1 − D) �1

(1−D)
�2(1 − D)

2 �1(1 − D) �2
(1−D)

�1(1 − D) �2
(1−D)

3 �1
(1−D)

�2(1 − D) �1(1 − D) �2
(1−D)

4 �1(1 − D) �2
(1−D)

�1
(1−D)

�2(1 − D)

5 �1
(1−D)

�2 �1 �2

6 �1 �2 �1(1 − D) �2
7 �1

�2
(1−D)

�1 �2

8 �1 �2 �1 �2(1 − D)



929A coupled mathematical model between bone remodeling and tumors: a study of different scenarios…

1 3

In addition, those xi and D are the unique nontrivial steady-
state numbers of cells and tumor damage percentage, respec-
tively. xi and D will be obtained in the next section called 
stability analysis.

2.1.1  Stability analysis

G i v e n  E q .  ( 9 a )  t o  ( 9 c ) ,  dx1

dt
= fx1 (x1, x2,D)  , dx2

dt
= fx2 (x1, x2,D) , and dD

dt
= fD(D) , we can define x1 , x2 , 

D which will be the steady states, resulting from the solu-
tion of fx1 (x1, x2,D) = 0 , fx2 (x1, x2,D) = 0 , and fD(D) = 0 . 
Therefore, using Eq. (9), the steady states can be obtained 
as follows: 

where � = g12g21 − (1 − g11)(1 − g22) and 0 ≤ 𝜎 < 1 . In 
Table 2, there are the steady states for all the scenarios 
proposed for this model.

As shown in Table 2, the steady states can be written, 
in a general form, as follows: 

where each hi(�) can be found using Table 2. Thus, the 
dynamical system behavior was studied through the 
approach followed by Murray (2002). The Routh Hurwitz 
approach is employed to study the system’s stability. 
Therefore, the Jacobian J

(
x1, x2,D

)
 , associated with the 

system of equations Eqs. (9a),(9b), can be defined, which 
may be obtained by employing the partial derivative of 

(10)2yi =
(
xi − xi

)
+ ∣

(
xi − xi

)
∣

(11a)x1 =

(
�̂1(�)

�̂1(�)

)(1−g22)∕�
(
�̂2(�)

�̂2(�)

)g21∕�

(11b)x2 =

(
�̂1(�)

�̂1(�)

)g12∕�
(
�̂2(�)

�̂2(�)

)(1−g11)∕�

(11c)D = �

(12a)x1 = h1(�)

(
�1
�1

)(1−g22)∕�
(
�2
�2

)g21∕�

(12b)x2 = h2(�)

(
�1
�1

)g12∕�
(
�2
�2

)(1−g11)∕�

(12c)D = �

each equation such that J
(
x1, x2,D

)
=

�fi
�xj

||||(x1,x2,D)
 . Hence, 

the entries of the Jacobian are obtained as follows:

(13)

J11 = g11�̂1(�)h
g11−1
1 (�)hg212 (�)

(

�1
�1

)

− �̂1(�)

J12 = g21�̂1(�)h
g11
1 (�)hg21−12 (�)

(

�1
�1

)

g11(1−g22)+g12(g21−1)
�

J13 =
��̂1(D)
�D

]

D=�

hg111 (�)hg212 (�)
(

�1
�1

)

g11(1−g22)+g12g21
�

(

�2
�2

)

g21
�

−
��̂1(D)
�D

]

D=�

h1(�)
(

�1
�1

)(1−g22)∕�( �2
�2

)g21∕�

J21 = g12�̂2(�)h
g12−1
1 (�)hg221 (�)

(

�1
�1

)

g22+g12−1
�

(

�2
�2

)

g22 (1−g11 )+g21 (g12−1)
�

J22 = g22�̂2(�)h
g12
1 (�)h(g22−1)2 (�)

(

�2
�2

)

− �̂2(�)

J31 = 0 = J32

J33 = −
μ

ln10

Table 2  Steady-state solutions in each scenario

Scenarios Steady states

0, 1, and 2
x1 =

(
�1
�1

)(1−g22)∕�
(

�2
�2

)g21∕�

x2 =
(

�1
�1

)g12∕�
(

�2
�2

)(1−g11)∕�

D = �

3
x1 = (1 − �)

2(1−g22−g21)
�

(
�1
�1

) (1−g22)
�

(
�2
�2

) g21

�

x2 = (1 − �)
2(−1+g11+g12)

�

(
�1
�1

) g12

�
(

�2
�2

) (1−g11)
�

D = �

4
x1 = (1 − �)

2(−1+g22+g21)
�

(
�1
�1

) (1−g22)
�

(
�2
�2

) g21

�

x2 = (1 − �)
2(1−g11−g12)

�

(
�1
�1

) g12

�
(

�2
�2

) (1−g11)
�

D = �

5 and 6
x1 = (1 − �)

(1−g22)
�

(
�1
�1

) (1−g22)
�

(
�2
�2

) g21

�

x2 = (1 − �)
g12

�

(
�1
�1

) g12

�
(

�2
�2

) (1−g11)
�

D = �

7 and 8
x1 = (1 − �)

g21

�

(
�1
�1

) (1−g22)
�

(
�2
�2

) g21

�

x2 = (1 − �)
(1−g11)

�

(
�1
�1

) g12

�
(

�2
�2

) (1−g11)
�

D = �
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The Jacobian given in (13) has three invariants, which can 
be written using the determinant and trace of the original 
two Komarova’s model equations, i.e., employing the minor 
( M33 ) of J given by p =M33 = J11J22 − J12J21 and the trace 
of the submatrix of the first two columns and rows, called 
q = J11 + J22 . Furthermore, the characteristic equation will 
be:

Using the notation given in Murray (2002), the invariants of 
the matrix given by the Jacobian are defined:

Hence, using the Routh–Hurwitz conditions (Murray 2002), 
the system has its eigenvalues on the left complex semi-
plane, and therefore, the real part of those eigenvalues is 
negative in order to ensure the stability of the system if the 
following constraints are fulfilled:

Through Eq. (16), it is possible to study the system’s stabil-
ity and search for parameters that must be used. However, 
in this work, one of the main purposes is to investigate the 
effect of tumor growth on the physiologically bone remod-
eling process. Accordingly, the physiological bone remod-
eling parameters given in Ryser et al. (2010) and reported 
in Table 3 were used, such that it is possible to maintain the 
real negative eigenvalues. Thus, a different behavior of the 
bone remodeling process in the presence of a tumor may be 
obtained.

(14)�3 − �2
(
p+J33

)
+
(
J33p + q

)
� − J33q = 0

(15)
a1 = −

(
p+J33

)
a2 = J33p + q

a3 = −J33q

(16)a1 > 0; a3 > 0; a1a2 − a3 > 0

It is possible to ensure stability in some scenarios using 
the stability analysis and parameters given in 3. If param-
eters are fixed using Table 3, it is unnecessary to execute 
the stability analysis to obtain the range of any parameter. 
Scenarios that exhibit stability are shown in Table 4. It is 
important to remark that the stability is given due to the 
negative real part of the Jacobian’s eigenvalues (13).

2.2  Tumor with Komarova’s structure

Komarova’s model is revisited, including a new term: the 
tumor effect on the osteoclasts and osteoblasts rate. Accord-
ingly, the original differential equations are modified, and it is 
included the tumor rate that also employs two new parameters, 
named g31 and g32 , as follows: 

Hence, one scenario was considered, that can be varied by 
employing different parameters that should be out of the stabil-
ity zone in the cancer case.

2.2.1  Stability analysis

Similar to the foregoing procedure, it is necessary to under-
stand the stability starting from steady states given by values 
x
1
 , x

2
 and D , which can be obtained using the solution of 

(17a)
dx1

dt
= α1x

g11
1
x
g21
2
Dg31 − �1x1

(17b)
dx2

dt
= �2x

g12
1
x
g22
2
Dg32 − �2x2

(17c)
dD

dt
= μDlog

(
�

D

)

Table 3  Parameters used in this 
work

Parameter Action Value

α1 Osteoclast production rate 3 osteoblasts day−1 (Komarova et al. 2003)
α2 Osteoblast production rate 4 osteoblasts day−1 (Komarova et al. 2003)
�1 Osteoclast removal rate 0.2 osteoclasts day−1 (Komarova et al. 2003)
�2 Osteoblast removal rate 0.02 osteoclasts day−1 (Komarova et al. 2003)
g11 Osteoclast autocrine regulation 1.1 (Komarova et al. 2003)
g21 Osteoblast-derived paracrine regulation − 0.5 (Komarova et al. 2003)
g12 Osteoclast-derived paracrine regulation 1 (Komarova et al. 2003)
g22 Osteoblast autocrine regulation 0 (Komarova et al. 2003)
k1 Normalized activities of bone resorption 0.093 % osteoclasts−1day−1 (Komarova et al. 2003)
k2 Normalized activities of bone formation 0.0008 % osteoblasts−1day−1 (Komarova et al. 2003)
� Scaling constant of tumor growth 0.05, 0.10, 0.20, 0.40, 0.80, 0.99 

dimensionless[used in all the models here pre-
sented] (computed)

μ Rate of tumor growth 0.005 day−1 (Ayati et al. 2010)
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f x1

(
x
1
, x

2
,D

)
= 0 , f x2

(
x
1
, x

2
,D

)
= 0 , and fD

(
D
)
= 0 . 

Thus, the steady states can be obtained using the following 
equations : 

Employing (18), it is possible to write those equations 
as follows: 

Additionally, the Jacobian defined J
(
x1, x2,D

)
 can be 

associated with (17a) to (17c), which may be obtained by 
employing the partial derivative of each equation such that 
J
(
x1, x2,D

)
=

�fi
�xj

||||(x1,x2,D)
 , obtaining the entries of the Jaco-

bian as follows:

(18a)x
1
=

(
�
1

�
1

)(1−g22)∕�
(
�
2

�
2

)g21∕�

�
g31−g31g22−g21g32

�

(18b)x
2
=

(
�
1

�
1

)g12∕�
(
�
2

�
2

)(1−g11)∕�

�
g32g11−g31g12−g32

�

(18c)D = �

(19a)x1 = m1(�)

(
�1
�1

)(1−g22)∕�
(
�2
�2

)g21∕�

(19b)x2 = m2(�)

(
�1
�1

)g12∕�
(
�2
�2

)(1−g11)∕�

(19c)D = �

Equations (14), (15), and (16), and Table 1 were used for 
conducting a stability analysis in pursuit of g31 and g32. In 
contrast, it is necessary to obtain the values of sigma, g31, 
and g32 and the zone of stability with the first model, as it 
is shown in Fig. 2.

2.3  Tumor affecting the Komarova’s structure 
through the paracrine and autocrine 
parameters

Ayati et al. (2010) proposed a mathematical approach 
based on Komarova’s model. In that model, the paracrine 
and autocrine effects change depending on the tumor cell 
density. Also, the equation for tumor cells is based on a 
logarithmic law given by (21c). The model that they pro-
posed was also implemented in two dimensions. Here, a 

(20)

J11 = g11�1m
g11−1
1 (�)mg21

2 (�)
(

�1
�1

)

�g31 − �1

J12 = g21�1m
g11
1 (�)mg21−1

2 (�)
(

�1
�1

)

g11(1−g22)+g12(g21−1)
�

(

�2
�2

)

g11+g21−1
�

�g31

J13 = �1g31m
g11
1 (�)mg21

2 (�)
(

�1
�1

)

g11(1−g22)+g12g21
�

(

�2
�2

)

g21
�

�g31−1

J21 = g12�̂2(�)h
g12−1
1 (�)hg221 (�)

(

�1
�1

)

g22+g12−1
�

(

�2
�2

)

g22 (1−g11 )+g21 (g12−1)
�

J22 = g22�2m
g12
1 (�)m(g22−1)

2 (�)
(

�2
�2

)

�g32 − �2

J23 = g22�2m
g12
1 (�)m(g22−1)

2 (�)
(

�2
�2

)

�g32 − �2

J31 = 0 = J32

J33 = −
μ

ln10

Table 4  Types of eigenvalues 
and stability for the first model

Stability type Scenario (values for � , following table 3)

Type of eigenvalue 1 2 3 4 5 6 7 8

Stable
∀i(Re

{
𝜆i
}
< 0)

 ∃i(Im
{
�i
}
≠ 0) 0.05

0.10
0.20
0.40

0.05
0.10
0.20
0.40

0.05
0.10
0.20
0.40
0.80

 ∀i(Im
{
�i
}
= 0) 0.80

0.99
0.80
0.99

0.99

Stable
∃i(Re

{
�i
}
= 0) and 

one Re
{
𝜆i
}
< 0)

 ∃i(Im
{
�i
}
≠ 0) 0.05

0.10
Unstable
∀i(Re

{
�i
}
≥ 0)

For all �
(Table 3)

For all �
(Table 3)

0.20
0.40
0.80
0.99

For all �
(Table 3)

For all �
(Table 3)
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similar model will be proved with two possibilities, (1) 
the model for cancer cells used in Ayati et al. (2010) and 
(2) the structure used in this paper. The equations imple-
mented are (21): 

 where g̃11(D) = g11

(
1 + r11

D

�

)
 , g̃21(D) = g21

(
1 + r21

D

�

)
 , 

g̃12(D) = g12∕
(
1 + r12

D

�

)
 , g̃22(D) = g22 − r22

D

�
 , with rij as 

constants. There are four new parameters compared to the 
original Komarova’s model. In Eq. (21), it is possible to 
calculate the difference from previous equations because 
values for gij have been changed conveniently to reproduce 
cancer’s effects on the biochemical environment of the bone 
remodeling process. In fact, the term rij

D

�
 produces the cou-

pling between tumor and osteoclasts/osteoblasts interactions. 
A complete study of the stability of that model is presented 
in Ayati et al. (2010), and in this paper it is repeated employ-
ing a new methodology.

(21a)
dx1

dt
= α1x

g̃11
1
x
g̃21
2

− �1x1

(21b)
dx2

dt
= �2x

g̃12
1
x
g̃22
2

− �2x2

(21c)
dD

dt
= μDlog

(
�

D

)

2.3.1  Stability analysis

The stability analysis uses the steady states given by x
1
 , x

2
 

and D , which can be obtained by using the solution of 
f x1

(
x
1
, x

2
,D

)
= 0 , f x2

(
x
1
, x

2
,D

)
= 0 , and fD

(
D
)
= 0 . 

Using Eq. (18), the steady states are obtained as follows: 

where  Λ = (g12 ∕(1+r12))( g21(1+r21)) − (1−g11(1+r11))
(1−g22+r22) . Using the previously indicated methodology, 
the Jacobian can be obtained with the entries given by:

Equations (21a), (21b), and (21c), and Table 3 were used 
for running a stability analysis searching r11 , r12 , r31 and r22 . 
By contrast four parameters were obtained using the second 
model, which require a hypersurface that cannot be repre-
sented here, because of that limitation. In Fig. 3, the surfaces 
for some values of r21 are represented.

3  Results and discussion

All simulations were performed in Python language with 
Google Colab − Team compiler version 1.0.1 (Perron and 
Furnon, Or-tools).The effects of tumor growth on the 
physiological bone remodeling process were modeled. 
In the first model proposed and analyzed in this paper, 
the tumor’s influence on the osteoclasts and osteoblasts 
was studied throughout terms associated with damage. A 

(22a)x
1
=

(
�
1

�
1

) 1−g22+r22

𝚲
(
�
2

�
2

) g21(1+r21)

𝚲

(22b)x
2
=

(
�
1

�
1

) g12

𝚲(1+r12 )
(
�
2

�
2

) 1−g11(1+r11 )

𝚲

(22c)D = �

(23)

J11 = g̃11(�)�1x
g̃11(�)−1

1
x
g̃21(�)

2
− �1

J12 = g̃21(�)�1x
g̃11(�)

1
x
g̃21(�)−1

2

J13 = �1x
g̃11(�)

1
x
g̃21(�)

2

(
ln
(
x
1

) �g̃11(D)

�D

|||||D=�
+ ln(x

2
)
�g̃21(D)

�D

|||||D=�

)

J21 = g̃12(�)�2x
g̃12(�)−1

1
x
g̃22(�)

2

J22 = g̃22(�)�2x
g̃12(�)

1
x
g̃22(�)−1

2
− �2

J23 = �2x
g̃12(�)

1
x
g̃22(�)

2

(
ln
(
x
1

) �g̃12(D)

�D

|||||D=�
+ ln(x

2
)
�g̃22(D)

�D

|||||D=�

)

J31 = 0 = J32

J33 = −
μ

ln10

Fig. 2  Stability regions for the second model: blue: null imaginary 
part, all real part negative; orange: one root real negative and two 
complex with real negative part; green: one root real negative and two 
pure imaginary
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second model employed a multiplicative term of tumor 
density in Komarova’s original model. Finally, those 
models were compared with Ayati’s one (Ayati et  al. 
2010). The tumor’s influence on the paracrine and auto-
crine signaling was included. In the first model, the tumor 
influence on the bone remodeling process was included 
as a function of � and � , i.e., proliferation and removal 
terms, respectively. Therefore, � and � were conveniently 
changed from a constant value (from Komarova’s original 
model) to a new function that depends on the tumor cell 
density and can reproduce effects such as over-prolifera-
tion or reduction in bone mass. The removal of bone mass 
is observed due to a high proliferation of osteoclasts or 
unbalanced activity of the BMU, similar to metastasis or 
multiple myeloma (Brigle 2017). Similarly, it is possible 

to have an uncontrolled increase in abnormal bone mass, 
like osteoblastoma (Bokhari 2012). The models presented 
used the underlying Komarova’s model due to its versa-
tility for reproducing bone remodeling processes and its 
simplicity of its concept behind the mathematics. Figure 4 
shows the osteoclast and osteoblast graphs, the bone mass 
process, and the phase portrait of osteoclasts, represent-
ing the limit cycle under the parameters considered in 
Table 3. This model corresponds to scenario 0, which in 
Table 1 corresponds to the first model presented. In Fig. 4, 
the physiological bone remodeling process shows a limit 
cycle with a repetitive and stable process with a perfect 
balance between osteoblasts and osteoclasts, producing a 
continuous removal and construction of the bone mass. 
The normal bone mass presents periodic solutions with 

Fig. 3  Stability surfaces for parameters r11 , r12 , r31 and r22 in model 3
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physiological oscillation. Moreover, osteoblasts and osteo-
clasts have the same periodicity with a maximum ampli-
tude of approximately 800 and 12 cells, respectively. Bone 
increases and decreases in mass due to the net effect of 
formation and resorption given by Eq. 9. It is important 
to mention that the nontrivial steady state (under param-
eters of Table 3) is provided by 1.1586 and 231.7238 for 
osteoclasts and osteoblasts, respectively. Additionally, the 
eigenvalues do not exhibit a real part ( ℜ𝔢{0} = 0 ); thus, 
regular periodic cycles are obtained, as shown in Fig. 4. 
Complete stability analysis of Komarova’s model can be 
found at Komarova et al. (2003). All models simulated 
here used 1.1586 + 10.0000 and 231.7238 for osteoclasts 
and osteoblasts, respectively, as initial conditions.

Figure 5 shows the tumor evolution through time, corre-
sponding to Eq. 9 for different values of � . Here it is possible 
to observe how � represents the maximum value at which the 
system is stabilized. Employing this model, similar to that 

Fig. 4  Results for the original bone remodeling process using the Komarova’s model under the parameters given in Table 3

Fig. 5  Results for the tumor cell evolution for different values of �
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used by Brigle (2017), it is possible to study the influence of 
tumor growth on the bone remodeling process represented 
by Komarova’s model.

Using the three models, it is possible to simulate the influ-
ence on tumor cell’s growth during bone remodeling pro-
cess. Although a plethora of examples and outcomes may 
be produced depending on the type of eigenvalues, in this 
document just a few were considered.

3.1  Tumor affecting the activity of cell production 
or removal

This model considers the effect of rewriting terms � (rate of 
proliferation) and � (rate of removal) from constant values to 
a new deal that depends on the tumor growth called D. �(D) 
and �(D) can increase if the new function is the multiplica-
tion of the constant previous value times 1

1−D
 , or decrease if 

the constants multiply the factor 1 − D . The value of D will 
be in the range of 0 to 1; therefore, the resulting scenarios 
combine the constant times, depending on the value of D. It 
is not necessary to include additional autocrine or paracrine 
parameters, as in models 2 and 3 these factors were included.

Regarding the results consigned in Table 4, the stability 
analysis showed that the tumor has different effects depend-
ing on the functions �(D) and �(D) . Scenarios 2, 3, and 6 
exhibited damped oscillations of osteoblasts and osteoclasts 
that converge to the nontrivial steady states. Scenario 2 has 
terms �1(1 − D) and �1(1 − D) for osteoclasts production 
and removal, respectively. The production and the removal 
are decreased because the tumor grows over time. On the 
other hand, it produced increased osteoblasts production and 
removal values. These results correspond to those found in 
tumors installed into the bone that produces a short remotion 
of damaged cells (throughout the osteoclasts) and produce 
excessive new osteoblasts. The net bone mass apposition is 
decreasing, behavior that can be observed in some bone dis-
eases, such as osteoarthrosis, where excess osteoblasts can 
produce chondrocytes apoptosis (Song et al. 2021). Simi-
larly, some tumors, such as multiple myeloma, can reduce 
bone mass due to a decreasing of the formation of bone 
cells (Joshua et al. 2019). Results showed a decrease in the 
bone remodeling period for the osteoclasts and osteoblasts, 
similar to those of Ayati et al. (2010). However, the solution 
converged to the nontrivial steady state, independent of � as 
noted in 2, given by 1.1586 and 231.7238 for osteoclasts and 
osteoblasts, respectively. This convergence corresponds to 
the negative real eigenvalues found in the stability analysis 
that promotes damped convergent oscillations compared to 
the original Komarova’s model, which oscillates regularly 
in a limit cycle. Although the steady state is independent of 
� , it is possible to observe the effect when � = 0.05 is used 
(Fig. 6), in comparison with � = 0.4 (Fig. 7) where the con-
vergence is achieved faster. Therefore, the bone mass was 

decremented substantially until 87% through values k1 and 
k2 used in Eq. 9 and taken from Table 3.

Scenario 3 has terms �1
1−D

 and �1(1 − D) for osteoclasts 
production and removal, respectively. The production is 
increased, and the removal is decreased because tumor 
grows over time. On their part, �2(1 − D) and �2

1−D
 produce 

declining values of osteoblasts production and an increasing 
removal of osteoblasts. Although eigenvalues are negative 
and they have an imaginary part, the phase portrait in Figs. 6 
and 7 shows the location of the pair osteoclast, osteoblasts 
in a region far from the biological sense. In addition, the 
temporal evolution of osteoclasts and osteoblasts graphs 
shows a convergence trend over time. In Fig. 7, results 
showed a temporary decrease in bone mass followed by a 
slight growth of the mass. The solution for osteoclasts and 
osteoblasts converged to the nontrivial steady state, depend-
ing on � = 0.05 as noted in Table 2, given by 1.7022 and 
307.2492, respectively. By contrast, for � = 0.4 (Fig. 7), the 
convergence was achieved faster, reaching a steady state of 
53.4325 and 3847.1469 osteoclasts and osteoblasts, respec-
tively, which does not have sense in the biological frame-
work evaluated. However, it is possible to interpret that the 
results did not have sense after 1000 days when bone mass 
starts showing negative values. In other words, this scenario 
shows how � affects the bone remodeling process; as greater 
is as faster the failure in bone mass exchange is produced. 
This result is in line with metastasis treatments, in which the 
bone remodeling cycle and bone mass apposition are pro-
moted through bisphosphonates to avoid patient morbidity 
(Sindhi and Erdek 2019).

Scenario 6 uses the original Komarova’s model with one 
change in parameter �1(1 − D) , which reduces the removal 
of osteoclast of the system. Figures 6 and 7 show the con-
vergence of osteoclasts and osteoblasts to values that depend 
on � , and in both cases, bone mass apposition grows through 
time. Figure 6 shows how osteoclasts and osteoblasts (for 
� = 0.05 ) reach the steady state of 1.3171 and 263.4278, 
respectively. In comparison, Fig. 7, for � = 0.40 exhibits 
values for those cells of 4.1549 and 830.9837. The increas-
ing bone mass represents the unbalanced remodeling pro-
cess which ponderates the osteoblast functioning, similar 
to metaplasia (Villegas et al. 2009) or carcinomas (Koyama 
et al. 2021).

Scenarios 1, 4, 7, and 8 are shown in Fig. 8 for � = 0.05 . 
In particular, these scenarios exhibit one pure negative real 
eigenvalue and two other eigenvalues with a real positive 
part, except scenario 7, which has a limit cycle due to the 
existence of two pure imaginary eigenvalues. In scenario 1, 
shown in the continued blue line, the nontrivial steady state 
(which does not depend on the � value) is given by 1.1586 
and 231.7238 for osteoclasts and osteoblasts, respectively. 
The response oscillates, increasing the number of BMU 
cells, then, the oscillation is lost, and the system is attracted 
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to a value of zero for osteoclasts and osteoblasts. Bone mass 
density achieved a value of 102% and did not oscillate over 
time. This behavior can be compared to some diseases that 
do not correspond to tumor or cancer cases. For instance, 
Legg-Calve-Perthes disease is common in children (Rich-
ard Bowen et al. 1984). This disease is characterized by the 
reduction in blood supply in the bone, producing a lack of 
bone precursors cells; meanwhile, the tissue is maintained 
and not renewed. Because the bone is constantly under 
mechanical loads, the bone accumulates fractures produc-
ing a mechanical collapse. Figure 9 showed that, similar to 
scenario 1, scenarios 4 and 8 exhibit oscillation lost over 
time. However, the difference is that those oscillate one extra 
cycle, and the period of the cycle grows along the time. 
The nontrivial steady state (it does depend on the � value, 
following Table 4) is given by 0.7886 and 174.7634 (sce-
nario 4) and by 1.0866 and 228.7713 for osteoclasts and 
osteoblasts, respectively. The final value of the BMU cell 

numbers is null. Scenario 7 exhibits a limit cycle with a non-
trivial steady state given by x1 = 1.0866 and x2 = 228.7713 
(depending of � ). It shows a limit cycle similar to Komaro-
va’s original model with reduced steady-state values com-
pared to the physiological model. Consequently, the osteo-
clasts’ maximum value is reduced, producing an unbalanced 
process that augments bone mass construction. This case can 
represent the process of bone growth and fracture repair after 
the endochondral stage (Gerber and Ferrara 2000) (Fig. 8).

Figure 9 shows the scenarios 1, 4, 7, and 8 for � = 0.80 . 
Increasing � from 0.05 to 0.80 produced, in Scenarios 1, 4 
and 8, a decreased number of cycles for BMU cells. By con-
trast, the scenario 7 exhibits a damped oscillation due to one 
negative eigenvalue, although the other two eigenvalues have 
pure imaginary ones. The unbalanced osteoclast-osteoblasts 
system produced an uncontrolled increase in bone mass.

Figure  10 shows the scenario 5, which exhibits one 
pure real negative eigenvalue and two pure imaginaries 

Fig. 6  Results for osteoclasts, osteoblasts, bone mass, and the phase portrait for scenarios 2, 3, and 6 under � = 0.05
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eigenvalues for � = 0.05, 0.10 . In those cases, results show 
a limit cycle with the pairs (osteoclast, osteoblast) for the 
nontrivial steady states given by (1.3171, 263.4278) and 
(1.5078, 301.5535) for � = 0.05, 0.10 , respectively. How-
ever, due to the original Komarova’s parameter for bone 
mass evolution, the bone mass is increased because of the 
excess of osteoblasts in both cases. For � = 0.20, 0.40 , the 
positive eigenvalues produce the oscillation of osteoblasts 
and osteoclast growing over time. Thus, it is an unstable 
behavior that can be seen in carcinomas (Zanoletti et al. 
2015).

3.2  Tumor with Komarova’s structure

The second model presented considers the tumor cell uni-
tary density and includes two new paracrine parameters. 
This parameters call g31 and g32 take into account how the 
tumor affects the evolution of osteoclasts and osteoblasts. 

Equations (17) show a structure similar to Komarova’s 
model. The solution to those equations requires that g31 and 
g32 can be picked from an infinite number of values, but 
using the stability analysis and selecting a few whose results 
are stable. In Fig. 11, results for different combinations of 
the paracrine factors are shown for a value of � = 0.05 . For 
scenario with g31 = −0.10 and g32 = 0.00 , it is observed that 
the result is stable by Routh–Hurwitz conditions. It has a 
damped oscillation due to one pure real negative eigenvalue 
and two others with negative real part, with steady states 
given by (0.5479, 490.0362), for osteoclasts and osteoblasts, 
respectively. The bone mass grows in the first cycles due to 
the high initial value of osteoblasts, but it is reduced over 
time due to the decreasing of bone cells. It can be com-
pared to the previous models, where there was a reduction 
in the bone remodeling activity producing a decrease in 
bone mass. It also shows the versatility of the first model, 
which does not use additional parameters. Thus, the result 

Fig. 7  Results for osteoclasts, osteoblasts, bone mass, and the phase portrait for scenarios 2, 3, and 6 under � = 0.40
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is similar to the structure that exhibits the myeloma (Pour 
Hájek et al. 2011). An infinite number of combinations 
can be obtained using Table 3. By using g31 = −0.05 and 
g32 = 0.00 , we observed damped oscillations with a steady 
state given by (0.7967, 336.9763), where an increase in 
osteoclasts, diminution of osteoblasts, and a high frequency 
in the bone remodeling cycles is observed, compared to the 
previous example. Finally, using parameters g31 = −0.10 and 
g32 = −0.01 , it is possible to determine the way in which g32 
has an effect that tends to decrease the number of osteoblasts 
(Fig. 11).

3.3  Tumor affecting the Komarova’s structure 
through the paracrine and autocrine 
parameters

Ayati et al. (2010) proposed to include new parameters 
affecting the paracrine and autocrine values. That model was 

created thinking about the presence of myeloma in bone. 
The new model consider the fact of rij as modifiers of gij in 
function of the tumor cell density, i.e., g̃ij = g̃ij(gij, rij,D) . In 
the example presented in this paper, a combination of rij as 
shown in Fig. 12 was used. The term rijD∕� was added to 
elevate or reduce the paracrine and autocrine factors in the 
function of tumor cells. Results showed damped oscillations, 
similar to models 2 and 3. Initially, the system increases 
the osteoclasts and osteoblasts, but over time, it is coupled 
with the tumor, producing a drop in the BMU cells until 
it achieves a steady state. g12 = 0 = g21 were assumed for 
the simulations. Then, values of g11 = 0.005 , g22 = 0.2 
were considered to obtain the steady state x1 = 4.9938 and 
x1 = 315.9015 ; in the second case, g11 = 0.005 , g22 = 0.25 
were used to obtain the steady state x1 = 7.8122 and 
x1 = 343.0589 ; in the third case g11 = 0.010 , g22 = 0.20 
were implemented to obtain the steady state x1 = 5.1403 and 
x1 = 323.6118 ; finally, g11 = 0.010 , g22 = 0.25 were used to 

Fig. 8  Results for osteoclasts, osteoblasts, bone mass, and the phase portrait for scenarios 1, 4, 7 and 8 under � = 0.05
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obtain the steady state x1 = 7.668 and x1 = 353.6606 . In all 
cases, the bone mass decreases over time as the tumor grows. 
It is important to remark that stability analysis can pick infi-
nite combinations of parameters that can mimic multiple 
pathological scenarios.

4  Conclusion

Exploring new mathematical models for predicting and stud-
ying the evolution of tumors and cancer has been widely 
used (Medina (2018) Altrock et  al. (2015) Botesteanu 
et al. (2016) Simmons et al. (2017) Kimmel (2010)). The 
goal has been to establish as many scenarios possible for 
predicting the effects of tumors on different tissues. They 
were conceived to study the spread, growth and localization 
of the different tissues. They were conceived to study the 

spread, growth and localization of the different tissues. This 
paper specifically focused on the bones, where the effect of 
tumors on the bone remodeling cycle has been researched. In 
experimental and clinical investigations, observations have 
shown that the number of osteoclasts can increase over time. 
For instance, Panaroni et al. (2017) reported the imbalance 
between the formation and resorption produces osteolysis, 
which is the pathogenesis that runs into myeloma. Thus, the 
proliferation of osteoclasts is accompanied by a reduction 
in the production of osteoblasts Yang et al. (2022) Panaroni 
et al. (2017). Moreover, multiple myeloma is not only char-
acterized by high blood calcium levels and fractures, but also 
associated with conditions such as anemia, hypercalcemia, 
and renal insufficiency (Yang et al. 2022). Researchers have 
studied bone tissue as a tumor microenvironment (Kähkönen 
et  al. 2021). This biological and chemical environment 
is home to the metastatic process. The bone imbalance 

Fig. 9  Results for osteoclasts, osteoblasts, bone mass, and the phase portrait for scenarios 1, 4, 7 and 8 under � = 0.80
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classifies metastasis as the osteolytic process characterized 
by an imbalance producing excess resorption (Kähkönen 
et al. 2021) due to an increase in osteoclasts or reduction in 
the bone remodeling process (Coleman 2006), which is com-
mon in lung and breast cancer. A positive imbalance in favor 
of formation is due to osteoblastic (osteosclerotic) metas-
tasis (Coleman 2006) Kähkönen et al. (2021). This type of 
metastasis is common in prostate and pathological forma-
tion of new bone. Accordingly, models described herein may 
mimic those possibilities vis-á-vis relationship between bone 
remodeling process and tumor growth. Moreover, models 
mentioned above may help to prove scenarios and types of 
tumors, propose and test treatments “in silico,” and be a 
framework for projecting the tumor effect on the remodeling 
process in time for predicting the process. Therefore, these 
models can propose altering the cycle by promoting differen-
tiation, reducing the frequency of remodeling, or increasing/

decreasing the bone mass deposition in a mathematical 
laboratory. Although the exact (and numerical) relationship 
between tumor and bone remodeling process is unknown, 
this paper proposes, analyzes and compares three approaches 
to bone remodeling - tumor coupling. In the first model, 
the factor (1 − D) is located as a numerator (decreasing the 
effect) or denominator (increasing the impact) of the prolif-
eration (for �i-parameters) and removal (β − j-parameters) 
terms. The model can reproduce the increase in osteoclasts 
in scenario 3, similar to the multiple myeloma or osteoly-
sis processes reported Kähkönen et al. (2021) Coleman 
(2006). By contrast, a positive imbalance in bone formation 
is presented in scenario 6, similar to osteosclerotic diseases. 
Moreover, scenarios 1, 4, 7, and 8 showed different possible 
disorders associated with bone remodeling processes. But 
overall, the remodeling process is lost due to the tumor’s 
presence. The second model includes the tumor cell density 

Fig. 10  Results for osteoclasts, osteoblasts, bone mass, and the phase portrait for scenario 5 under � = 0.05 , � = 0.10 , � = 0.20 , and � = 0.40
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as a factor in the formation of osteoblasts and osteoclasts, 
which is influenced by paracrine factors called g31 and g32 . 
This model can also reproduce the frequency formation 
change of the bone remodeling process due to the tumor 
and produce a reduction in bone formation due to the relative 
imbalance between osteoclasts and osteoblasts. Similarly, 
the third model, reported by Ayati et al. (2010), can repro-
duce multiple myeloma. Overall, we have described models 
ranging from the lowest to the greatest number of parameters 

used in equations. The first and second models can be used 
for modeling the tumor effect on the remodeling process for 
osteosclerotic and osteolytic processes. The third model is 
a good choice for modeling a complex process like multiple 
myeloma. In the future, the coherence and usability of these 
models should be studied in cancer treatments as well as 
in other environmental factors such as hypoxia, metabolic 
defects, and growth/aging processes.

Fig. 11  Results for osteoclasts, osteoblasts, bone mass, and the phase 
portrait for the second model under � = 0.05 . Three scenarios were 
studied with different parameters following the stability analysis. In 

blue g31 = −0.10 , g32 = 0.00 ; in orange g31 = −0.05 , g32 = 0.00 ; and 
in green g31 = −0.10 , g32 = −0.01
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A recent model has been developed by Rapisarda et al. 
(2019), where a coupling for the mechanical and biological 
modeling of bone is presented in a way that the stimulus 
for this dynamic system is included, with a porosity fac-
tor and a differentiating form of osteoblasts and osteocytes 
(Corte et al. 2020). Some suggestions for future works are 
the improvement in the signaling and stimulus for the bone 
remodeling process, which supports the objective of this 
paper. Some other recent works include a not so well under-
stood dynamics of the bone remodeling under metabolic 

diseases with today’s treatments. One of these is the one 
done by Kameo et al. (2020), where an in silico model was 
developed to understand how a perturbation on a specific 
molecule produce an effect on the bone metabolic dynam-
ics over time, which provides a powerful tool for predicting 
certain drug effects on the metabolic bone dynamics for an 
specific disease. Oumghar et al. (2020) provide a technical 
review of these sort of models, aiming to provide a timely 
and critical analysis of the models developed for the bone 
remodeling process, focusing in models that address bone 

Fig. 12  Results for osteoclasts, osteoblasts, bone mass, and the phase portrait for the second model under � = 0.05 . The figure shows all the 
parameters used in the simulation
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diseases. Suggestions from these authors is to develop new 
models for 1D or 2D geometries, to represent the BMU evo-
lution of damaged bone.

Despite the essential insights that this research can give 
to the academic community dedicated to the cancer research, 
we should mention some limitations that have to be con-
sidered in future works. First of all, the model herein con-
signed is based on the Komarova’s one (Komarova et al. 
2003) which is an abstraction of the reality and the param-
eter referenced therein are obtained from Stability analy-
sis. Those parameter respond to and fit the number of cells 
involved into the basic multicellular unit, i.e., initial number 

of osteoblasts and osteoclasts, the bone oscillation, and the 
period of time for mass replacement, Komarova et al. could 
formulate a mathematical model and the parameters could 
represent the experimental observation. Employing a similar 
approach, the modification of the Komarova’s seminal model 
was made using parameters that come from the stability 
analysis. Thus, future works must contrast the mathematical 
model (and the parameters) and the experimental evidence. 
It is important to remark that the exact relationship between 
the tumor growth and bone remodeling process is unknown. 
Hence, different metabolic processes and other mechanical 
conditions can modify the BMU, making the result of these 

Fig. 13  Diagram for a quick comparison between the models and the results obtained
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models diverge from the actual remodeling process behavior. 
In future works, the model should be extended to include 
mechanical environment and the drugs that can be used for 
improving the bone mass or reduce their quality. This would 
require extending the model to a continuum one where this 
dynamic process would resolve around the BMU. Each of 
the modifications should be compared with actual tumor dis-
eases and other techniques as statistics and machine learn-
ing could help us for identifying the model variations and 
its parameters. Another limitation lies in the variations. In 
this paper we proposed three plausible possibilities from a 
biological point of view, as previously described. However, 
all the potential verification to the model or, even to change 
the Komarova’s model as a paradigm in the BMU repre-
sentation, must be verified. In future works, we will use the 
models herein proposed to represent in the continuum (2D 
and 3D) the effect of the mechanical loads into the BMU 
and their relationship with the bone mass quality. The chal-
lenge will be to find a way to include stress and strains in 
Komarova’s model, and how Komarova’s model can modify 
the macrostructure of the bone, i.e., we will propose a multi-
scale model for representing tumor growth in bone.

Finally, Fig. 13 shows the entire process with details. 
At the top of the diagram the Komarova’s base model is 
shown with its equations. From this model, a first alterna-
tive for coupling the tumor with a “damage” parameter 
is shown where variations of the base model are colored 
with green for the second differences with Komarova’s 
base model are shown in blue and in the third one with 
red. In the following part, the final equations from stability 
analysis are shown and then the results obtained from said 
equations, in which the temporal behavior is shown for the 
bone mass density in several scenarios. This is a schematic 
representation of the entire process with the main steps 
and results obtained.
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