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Abstract
The rapid spread of the finite element method has caused that it has become, among other methods, the standard tool for 
pre-clinical estimates of bone properties. This paper presents an application of this method for the calculation and prediction 
of strain and stress fields in the femoral head. The aim of the work is to study the influence of the considered anisotropy and 
heterogeneity of the modeled bone on the mechanical fields during a typical gait cycle. Three material models were tested 
with different properties of porous bone carried out in literature: a homogeneous isotropic model, a heterogeneous isotropic 
model, and a heterogeneous anisotropic model. In three cases studied, the elastic properties of the bone were determined bas-
ing on the Zysset-Curnier approach. The tensor of elastic constants defining the local properties of porous bone is correlated 
with a local porosity and a second order fabric tensor describing the bone microstructure. In the calculations, a model of 
the femoral head generated from high-resolution tomographic scans was used. Experimental data were drawn from publicly 
available database “Osteoporotic Virtual Physiological Human Project.” To realistically reflect the load on the femoral head, 
main muscles were considered, and their contraction forces were determined based on inverse kinematics. For this purpose, 
the results from OpenSim packet were used. The simulations demonstrated that differences between the results predicted 
by these material models are significant. Only the anisotropic model allowed for the plausible distribution of stresses along 
the main trabecular groups. The outcomes also showed that the precise evaluation of the mechanical fields is critical in the 
context of bone tissue remodeling under mechanical stimulations.

Keywords Femoral head · Constitutive model · Structure fabric tensor · Finite element method (FEM)

1 Introduction

As an organ, bone has a complicated structure at the macro-, 
meso-, and microscopic levels. For this reason, many 
authors have attempted to determine average material prop-
erties in line with the homogenization theory. Frequently, 
they applied the rules of combining two bounding mod-
els resulting from the Voigt's hypothesis of homogeneous 
strain (Bonfield and Li 1967) and the Reuss' hypothesis of 
the homogeneous stress (Piekarski 1973) fields. A math-
ematical model describing the microstructure of trabecular 

bone in two dimensions, using data from electron scanning 
microscopy, was first proposed by Whitehouse in 1974 
(Whitehouse 1974). In that work, a polar graph represent-
ing local mechanical (elastic) properties in various directions 
was presented. In 1984, Harrigan and Mann expanded this 
approach to three dimensions, proposing the use of a second 
order tensor for the description of directionality in ortho-
tropic materials (Harrigan and Mann 1984). In 1985, Cowin 
(Cowin 1985) developed this approach and showed that there 
is a theoretical relationship between the fourth order tensor 
of elastic constants for a porous, anisotropic material and the 
second order tensor describing its microarchitecture. Cowin 
introduced a positive-definite second order tensor, called the 
fabric tensor H , which is the stereological measure of the 
directional distribution of bone mass. A quantity defined in 
this way may be linked directly to the anisotropic proper-
ties of trabecular bone. Subsequent studies were conducted 
to confirm Cowin’s assumptions and develop the construc-
tive and practical applications of this structure–property 
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relationship (Zysset and Curnier 1995; Odgaard et al. 1997). 
These works showed that the eigen directions and values of 
fabric tensor correlate with the main directions and values 
of the tensor of local elastic properties of bone, expressed by 
the stiffness tensor C or the compliance tensor S . They also 
demonstrated thus that trabecular bone may be considered 
as locally orthotropic medium.

Among numerous models that adopt the notion of the H 
fabric tensor, the Zysset-Curnier model (Zysset 2003) for 
orthotropic trabecular bones appears to be the most universal 
and effective. In this approach, links are established between 
the results of microstructural analysis, expressed by the H 
fabric tensor, and bone properties. Zysset and Curnier intro-
duced the M fabric tensor associated with H tensor through 
the relation:

Ordering the eigenvalues hi and eigenvectors 
⇀

h
i
 of H 

in such a way that h1 ≤ h2 ≤ h3 induces the inequalities 
�1 ≥ �2 ≥ �3 where �i , are the eigenvalues of M such that 
�i = h−0.5

i
 . It appears that the eigenvector ⇀�1 coincides with 

direction characterized by the highest stiffness of the mate-
rial. In practice, in the Zysset-Curnier model, eigenvalues of 
the M fabric tensor are normalized by using their mean value 
� = Tr(M)∕3 . The normalized eigenvalues mi correspond to:

and meet the condition: m1 + m2 + m3 = 3.
The orthotropic elastic constitutive law in Zysset-Curnier 

model, based on the M fabric tensor, is defined by the fol-
lowing relations:

where: Ei—are the Young’s moduli along the axis (i = 1, 2, 
3), vij—are the Poisson’s ratios, which are defined by the 
ratio of strains in two perpendicular directions j and i, the 
direction i corresponding to the load (tension) direction, Gij

—are the shear moduli in the direction j on a surface with 
a normal ⇀e

i
 ,  � = BV∕TV  – is the volume fraction of bone 

defined as the ratio of volume occupied by bone tissue to the 
volume of the entire analyzed area (ROI – Region of inter-
est), E0 , v0 , G0—are equivalent to the material properties of 
the bone tissue (trabeculae), k , l—are the model parameters 
of density and anisotropy.

The anisotropy of the bone is dependent on the eigen-
values m1, m2, m3 of the M fabric tensor. It can be easily 
seen that in the case where m1 = m2 = m3 = 1, or Mij = �ij , this 
model leads to an isotropic constitutive law with a value for 

(1)M = H
−0.5

(2)mi =
�i

�

(3)

Ei = Eo�
k
(
m2

i

)l
,

Ei

vij
=

Eo

v0
�k
(
mimj

)l
, Gij = Go�

k
(
mimj

)l

Young’s modulus dependent on BV/TV and the Poisson’s 
ratio � = v0.

To determine accurate values for the parameters of the 
orthotropic Zysset-Curnier model, an increasingly common 
approach is to compare the results of a simulation using the 
finite element method (FEM) with the results of mechanical 
tests and their mutual correlations. Expressions (3) show that 
the tensor of elastic constants is described by eight param-
eters ( E0 , v0 , G0 , m1, m2, m3, k, l) three of which (m1, m2, m3) 
are obtained via analysis of stereological measurements of 
the bone microarchitecture. The remaining five parameters 
are determined using a fitting procedure (regression). The 
local properties of the trabeculae ( E0 , v0 , G0 ) are frequently 
evaluated using the inverse method. In this method, some 
initial values are assumed for the properties of the trabecu-
lae, and subsequently, using this approximation the global 
properties of a particular bone microstructure (most com-
monly measured in microtomography) are calculated. The 
obtained global properties of the structure are compared 
with the values measured experimentally for the same bone 
piece. The properties of the trabeculae are modified in func-
tion of obtained differences and the global properties of the 
structure are recalculated. This process is repeated until 
measured and recalculated properties are close enough. It 
is assumed that the properties of the trabeculae which are 
consistent with this best match correspond to ( E0 , v0 , G0 ) 
(Janc et al. 2020). Results obtained in the form of many sets 
of Ei , Gij , vij,� , mi , are used as input data for the optimization 
problem to determine the parameters k and l from the experi-
mental data obtained for bones with various BV/TV values.

The moduli determined by the model allow for the gener-
ation of the full form of the stiffness tensor C or the compli-
ance tensor S which considers the symmetry of orthotropic 
materials. The formula (3) provides a form for the compli-
ance matrix for this type of material:

In many works concerning determination of the states of 
stress and strain occurring in bones, only a selected fragment 
of a bone or limb is considered due to simplification. The 
load is expressed in the form of forces concentrated on and 
applied to nodes of a finite elements mesh. Such an approach 
has been applied, among others, in works of (Chen et al. 
2015) or (Marco et al. 2019). The obtained results would 
appear to be very sensitive to boundary conditions and/or the 

(4)[S] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

E1

−
�21

E2

−
�31

E3

0 0 0

−
�12

E1

1

E2

−
�32

E3

0 0 0

−
�13

E1

−
�23

E2

1

E3

0 0 0

0 0 0
1

G23

0 0

0 0 0 0
1

G31

0

0 0 0 0 0
1

G12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



741The impact of the parameters of the constitutive model on the distribution of strain in the femoral…

1 3

loads applied. Minor changes in the directions of the forces 
acting upon the structure, or in the selection of nodes where 
these forces are applied, could cause significant changes in 
the local distribution of strains and stresses. Many works in 
this subject area (particularly when it comes to simulations 
of loads on the femur) make use of the Orthoload (https:// 
ortho load. com/.) database, which specifies forces supported 
by the femoral head during typical activities such as walking 
or climbing. Such an approach has been used for instance 
in works (Yosibash et al. 2015) and (Hazrati Marangalou 
et al. 2015). In these papers, the load supported by the entire 
femoral head was reduced to a single resultant force. The 
femoral head is the site of attachment for many muscles 
and tendons, so in order to obtain a reliable estimate of the 
state of mechanical fields, these points of attachment and 
directions of muscular actions must be precisely described. 
Calculations which take into account such a distribution of 
forces have been presented, among other, in (Latifi et al. 
2014). A model so defined provides a reliable image of 
the internal state of the bone, similar to its actual behavior. 
However, it is worth noting that in the works mentioned 
above, the applied loads were stationary. Attempts have been 
made to take into account non-stationary and even dynamic 
loads, as in the papers (Carter et al. 1987) and (Hambli et al. 
2013), although these are still rough approximations of time 
dependent muscular activities during walking.

The definition of the bone elastic properties is a second 
crucial decision. In this paper, a Mean Intercept Length 
(MIL) concept is used for the description of heterogene-
ous and anisotropic bone properties. Based on MIL results, 
ellipsoids were generated describing the anisotropy of the 
microstructure associated with each finite element. The M 
fabric tensors was deduced from each ellipsoid and its eigen 
values and directions computed.

A finite element model (mesh) was constructed in which 
the forces applied were chosen so that their components in 
the bone coordinate system reflected the complex muscular 
load to which this organ is subjected. In nature, the muscle is 
attached to the bone by a tendon in such a way that its action 
is spread over a certain area of the bone. The points at which 
force is applied in a numerical model correspond to the ana-
tomical sites of muscle attachment, allowing for the proper 
modeling of internal states arising during selected phases 
of the normal walking cycle. To prevent numerical artifacts 
resulting in excessive concentration of stresses, additional 
layers of elements were created which aim to play the role 
of tendons and cartilage at the anatomical sites of muscu-
lar attachments and contact with other organs. Preprocess-
ing, processing and post-processing tasks were conducted 
in the Simulia environment (Hibbitt, Karlsson & Sorensen, 
Inc., 2000) using Abaqus ver. 6.13 software. Three material 
models were tested with different properties of porous bone 
carried out in literature: a homogeneous isotropic model, a 

heterogeneous isotropic model, and a heterogeneous aniso-
tropic model. In three cases studied, the elastic properties 
of the bone were determined basing on the Zysset-Curnier 
approach.

The principal aim of the work was to study the influence 
of the considered anisotropy and heterogeneity of the femo-
ral head on the mechanical fields, such as stresses, strains, or 
elastic strain energy density, during a typical gait cycle. The 
precise description of these quantities is crucial in modeling 
of bone remodeling process.

2  Materials and methods

2.1  Finite element models

The FEM model of the femoral head was drawn from the 
database mentioned earlier (Virtual Physiological Human 
Project). This database contains 33 measurements of femoral 
heads of donors whose average age was 77.8 ± 10.0 years. 
The measurements of all bones were made using a Scanco 
Medical tomograph (Scanco Medical AG, Brüttisellen, Swit-
zerland). For the analysis presented in this paper, the bone 
labeled FEM01567 (Javad Hazrati-Marangalou 2013) was 
used, generated from micro-CT scans with an isotropic reso-
lution of 82 µm. The bone was made available in the form 
of binarized images. This same database provided access to 
post-binarization tomographic measurements, and a finite 
element mesh made up of 97 384 tetrahedral elements of 
the C3D4 type in the Abaqus convention. The geometry of 
the bone (tomographic data) and its finite elements mesh are 
shown in Fig. 1. The mean element size was about 2.5 mm, 
to be consistent with the resolution of the tomograph used 
and the window size for the MIL calculation. This size was 
fixed thanks to the local analysis of bone parameters such as 
porosity, size of trabeculae, and average distances between 
them. It enables reproducing correctly the natural spatial 
variability of the trabecular microstructure of the bone.

To each element of the mesh were assigned parameters 
such as volume fraction (BV/TV) and quantity describing 
the internal structure of the bone (H fabric tensor) which 
are essential for the correct definition of its material proper-
ties in accordance with the Zysset-Curnier model. A sam-
ple binarized cross section of the femoral head and volume 
fractions assigned to the relevant elements of the mesh are 
shown in Fig. 2.

The parameters of the model necessary for the calculation 
of the S tensor, i.e., E0 , v0 , and G0 as well as k and l , were 
taken from the literature (Gross et al. 2013) and are sum-
marized in Table 1.

Similar values were used in other works devoted to the 
description of properties of trabecular structures, see for 
instance (Chevalier et al. 2009) or (Charlebois et al. 2010).

https://orthoload.com/
https://orthoload.com/
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Using Eq. (3), a compliance matrix was determined for 
each element of the mesh. Because of the tomograph reso-
lution, for high BV/TV values, typical for compact cortical 
bone, the trabecular structure disappears and the values of 

the three MIL eigenvalues approach 1. The constitutive rela-
tion deduced from Zysset-Curnier model becomes isotropic. 
In the present work, it was assumed that for areas with the 
BV/TV fraction exceeding 0.9, the properties are isotropic 
and correspond to that of the compact cortical bone of BV/
TV = 0.95. In turn, for very low BV/TV values, the trabecu-
lar structure becomes so porous that the determined MIL 
values do not describe the anisotropy of the structure, but 
simply the orientation of individual trabeculae. Also, for 
this reason, in areas of bone with BV/TV values lower than 

Fig. 1  Three-dimensional presentation of tomographic data for the femoral head and mesh of elements

Fig. 2  Sample intersect-section of the femoral head and BV/TV parameter distribution assigned to a finite element mesh

Table 1  Material constants used in calculations

E0[MPa] v0[−] G0[MPa] K [−] L [−]

22,500 0.3 8650.0 1.9 0.99
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0.1, the isotropic properties of the material were assumed 
corresponding to a constant bone density reflected by the 
value of BV/TV.

The constitutive model of bone was implemented using 
User MATerial (UMAT) subroutine. Before calling the 
appropriate UMAT subroutine, a Solution-Dependent Vari-
ables INItialization (SDVINI) routine was executed aiming 
to assign values to materials constants. In this subroutine, 
data are read for each element, including the volume fraction 
and eigenvectors of the M tensor. Basing on Zysset-Curnier 
model, the S tensor was determined for each element. The 
components of the stiffness matrix C, obtained by inversion 
of S, were recorded in the STATE Variables (STATEV) and 
sent to the first step of FE computation.

Point forces applied directly to the nodes of the bone 
mesh may lead to an unrealistic stress concentration at the 
site of their attachments. To smooth out the local influence 
of forces, additional layers of elements were generated to 
play the role of tendons and cartilage. Figure 3 presents the 
distribution of elements symbolizing the role of tendons and 
cartilage (in pink) and the layer of stiff elements (in blue) 
simulating the cotyloid cavity.

The mechanical properties of the elements represent-
ing the tendons and cartilage were supposed elastic and 
isotropic. Their Young’s modulus and Poisson’s ratio 
were taken from the literature, (Kot et al. 2012) and (Chen 
et al. 1996). In the calculations, the following values were 
assumed for tendons and joint cartilage: E = 5 MPa, v=0.3.

The actions of individual muscles were evaluated from 
inverse kinematics calculations performed in OpenSim using 
the model Gait2392 created by Thelen (Delp et al. 2007). 
The value of the force of each muscle attached to the femur 
was extracted. For this purpose, the “MuscleForceDirection” 

plug-in (Phillips et al. 2015) was used to obtain access to the 
topography of the attachment points of objects represent-
ing muscles and their direction of actions (force of muscle 
contraction). These values were then assigned to the FEM 
model. The name of muscles and values of muscular forces 
applied to the model for two leg configurations correspond-
ing, respectively, to 30% and 60% of the gait cycle are sum-
marized in Table 2.

It should be emphasized that the force directions are 
defined in femur bone coordinate system defined in Open-
Sim. In this coordinate system the coronal plane of the bone 
head is parallel to the YZ plane. The origin of the coordinate 
system is at the center of the bone head (see Fig. 1 and 3). 
The reaction force components in the hip joint center were 
distributed to the stiff surface elements representing the cot-
yloid cavity by using rod elements as represented in Fig. 3b.

This aimed to distribute the load onto the surface of the 
femoral head in contact with the concave surface of the coty-
loid cavity. A similar approach was also used in the paper 
of (Phillips et al. 2015). The forces of contact of the joints 
were calculated at the center of the joint using the “Joint 
Reaction” plug-in available in OpenSim (Steele et al. 2012). 
The use of such a simplified method ensures a significant 
shortening of computation time in comparison with the con-
sideration of contact over the surface of the joints. The reac-
tion force corresponding to two leg configurations studied 
are resumed in Table 3.

In this paper, the right femur was analyzed at two 
moments of motion, namely in a phase during which there 
occurs substantial load on the limb (during contact with the 
floor, the entire weight of the body is borne by the limb) and 
a phase during which the limb does not have contact with 
the floor. In both cases, the right femur is parallel to the axis 

Fig. 3  Distribution of elements which play the role of tendons and cartilage, and load on the hip joint. An additional layer of elements at sites of 
muscle attachment allows local concentrations of strains to be avoided
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of the body; thus, the orientation of the principal stresses 
should be like one another, facilitating comparison of their 
values at both instants of motion. The analyzed phases of 
motion during the gait cycle are presented in Fig. 4.

2.2  Methods

The impact of the type of the constitutive model on the 
predicted distribution of stresses and strains in the femoral 
head, for two selected moments of gait, was studied in this 
paper. Three material models were constructed with different 
properties of the porous tissue:

Model 1—heterogeneous and anisotropic: mechanical 
properties are orthotropic and determined in accordance 
with Zysset’s model. Their anisotropy results from the ori-
entation of the principal directions and values of the M and 
the volume fraction BV/TV.

Model 2—heterogeneous and isotropic: the density of 
porous tissue in all elements was estimated through BV/TV 
volume fraction determined from a binarized tomographic 
images of the bone. As a result, the values of Young’s 

modulus in various regions are different and depend on the 
estimated porosity. This value varies from 280 MPa for bone 
having BV/TV ≤ 0.1 to 18420 MPa for bone with a BV/
TV ≥ 0.9. As the bone is isotropic, its Poisson’s ratio is  
� = �O = 0.3 in accordance with Zysset model.

Model 3—homogeneous and isotropic: in this model, 
a constant porous bone density was assumed as result-
ing in homogeneous and isotropic mechanical properties 
for this tissue. The value of Young’s modulus was deter-
mined according to expression (2), using for this purpose 
the mean BV/TV volume value of the analyzed area of 
the bone. This was BV∕TV = 0.27 and its corresponding 
value for Young’s modulus was equal to E = 1835MPa . As 
above, since the properties of this bone are, by hypothesis, 
isotropic:� = �O = 0.3.

In these three material models, matching to the assump-
tions of Zysset, isotropic elastic properties with a constant 
value of Young’s modulus were assumed for cortical bone 
and Poisson’s ratio associated corresponded to the value of 
BV∕TV = 0.95 . They were, respectively:E = 22500MPa and 
� = �O = 0.3.

Table 2  Muscular forces (N) applied to the model for two leg configurations corresponding, respectively, to 30% and 60% of the gait cycle

Muscle name (according to 
OPENSIM nomenclature)

Configuration 1 Configuration 2

Direction Magnitude (N) Direction Magnitude (N)

nx ny nz nx ny nz

Glut_max1  − 0.481 0.851  − 0.208 21.547  − 0.082 0.145 0.170 3.450
Glut_max2 0.473 0.852 0.221 4.851 0.473 0.852 0.221 5.516
Glut_max3  − 0.454 0.719  − 0.525 3.017  − 0.454 0.719 −0.525 4.722
Glut_med1 0.398 0.885  − 0.238 240.442 0.336 0.928  − 0.155 7.113
Glut_med2 0.050 0.858  − 0.510 135.955  − 0.049 0.899  − 0.433 6.153
Glut_med3  − 0.205 0.701  − 0.682 119.839  − 0.309 0.705  − 0.637 163.206
Glut_min1 0.333 0.802  − 0.495 36.459 0.277 0.851  − 0.445 2.540
Glut_min2 0.173 0.810  − 0.559 39.606 0.106 0.851  − 0.512 2.767
Glut_min3  − 0.011 0.746  − 0.664 37.537  − 0.932 0.774  − 0.626 10.013
Iliacus 0.892 0.331  − 0.305 114.663 0.892 0.331  − 0.305 228.926
Pect 0.346 0.719  − 0.601 2.423 0.323 0.747  − 0.580 10.798
Perif  − 0.424 0.466  − 0.776 24.329  − 0.504 0.431  − 0.748 38.924
Psoas 0.877 0.387  − 0.283 130.575 0.877 0.387  − 0.283 261.665
Quadfem 0.002  − 0.182  − 0.983 3.729 0.076  − 0.181  − 0.980 111.287
Gem  − 0.401  − 0.231  − 0.886 1.778  − 0.360  − 0.282  − 0.888 15.389

Table 3  Reaction force components for both leg configurations

Reaction force components Configuration 1 Configuration 2

Direction Magnitude (N) Direction Magnitude (N)

nx ny nz nx ny nz

Joint Reaction Loads  − 0.153  − 0.942 0.298 1383.005  − 0.288  − 0.789 0.541 773.691
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In the femoral head, a set of areas can be distinguished 
with diverse spatial distribution of trabeculae as illustrated 
by Fig. 5a (Shivji et al. 2015). This results from the fact that 
the distinctive microstructure of the bone is optimized in 
terms of stresses and strains due to many daily activities. 
The femoral head is practically free of torsional stresses 
thanks to a spherical type of connection with the pelvis. The 
neck of the femur is submitted to the elevated compressive 
stresses. This is reflected in its locally dense mineralization. 
In the study (Basharat et al. 2015), it was pointed out that the 
absolute value of compressive stress acting on the neck of 

the femur is twice as great as the tensile stress. The greater 
trochanter is composed of thin and barely visible trabeculae 
working mainly in extension. The central area, marked with 
the letter W in Fig. 5a, with a characteristic arrangement of 
struts, is called Ward’s triangle. This area of femoral neck 
is very porous.

The above microarchitecture is reflected by the occur-
rence of specific, easily identified bands in which the bone 
trabeculae are arranged in such a way as to best bear external 
loads. In the literature, four bands are often differentiated 
in the femoral head. The two of them experience intensive 

Fig. 4  Gait phases analyzed 
for distribution of stresses in 
the femoral head. Two instants 
of movement were selected 
for analysis: Heel rise—the 
moment in which begins the 
motion of the leg backwards. 
Toe-off moment in which the 
leg is raised toward the back 
and the femur is parallel to the 
vertical axis, while the leg is not 
loaded

Fig. 5  Trabecular patterns in the proximal femur. a Lines in diagram show the main direction of trabecular groups and Ward’s triangle inside. b 
Right hip radiogram with defined colored paths along which the computation results are analyzed
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compression load, and the two remaining undergo tensile 
stresses. They are well schematized in Fig. 5a.

The first band of the primary compressive group stretches 
from the medial cortex of the neck of the femur to the upper 
part of the femoral head. The primary tensile group extends 
from the lateral cortex and ends in the lower part of the 
femoral head. The third band known as the secondary com-
pressive group stretches upwards and sideways, from the 
lower part of the femur below Adams arch in the direction 
of the greater trochanter and the upper neck of the femur. 
The band known as the secondary tensile group combines 
the areas of the lateral cortex with the area of the neck of the 
femur. This group bears the load of the hip joint through the 
femoral head in the direction of the medial cortex.

In this study, the distributions of stresses and strains 
along three paths shown in Fig. 5b) were studied, namely 
the paths passing through the center of the primary com-
pressive group (path 1), primary tensile group (path 2) and 
secondary compressive group (path 3). Path (3) was artifi-
cially lengthened to the surface of the bone (the surface of 
the greater trochanter).

The correct prediction of the fields of stresses and strains 
is especially important in the context of the metabolism of 
bone tissue. The bone tissue can change its microarchitecture 
(but also external shape) in function of mechanical loads it 
bears. In the course of such a process, there is a remodeling 
of the bone tissue resulting from subsequent actions of oste-
oclasts and osteoclasts (Sikavitsas et al. 2001). In accord-
ance with Frost’s model (Frost 2003), four thresholds of 
mechanical stimulus should be introduced for the description 
of mechanostat principles, namely MESr, MESm, MESp, 
and Fx, where the abbreviation MES stands for Minimally 
Effective Strains. These values determine zones of bone 
formation, or modeling, (values above MESm) and of its 
resorption (values below MESr). If the stimulus is within 
the zone delimited by MESr and MESm, the tissue is in bal-
ance and does not change its density. This area is known as 
the dead or lazy zone. The principal data of Frost model are 
summarized in Table 4 in the form of threshold values for 
strains, stresses, and density of elastic strain energy.

The determination of local strains and stresses requires 
knowledge of the localization tensors of these tensorial 
quantities. Their theoretical determination is not simple 
and requires in-depth knowledge of the microarchitecture 
of the bone (Janc et al. 2020).This problem can be side-
stepped by analyzing scalar quantities. Many models of 
adaptation and remodeling of bone use the elastic strain 
energy density w as a stimulus. The dependency between 
the local w and global W values of this energy is simple:

where ft is the volume fraction of bone tissue. This expres-
sion is valid in the case of a bi-phasic materials in which one 
of the phases is empty (as in the case of bone). Therefore, 
it is possible to determine the local strain energy density 
knowing its mean value determined by the FE method. We 
thus have:

The threshold values of elastic strain energy density w , 
which in many studies is assumed as a mechanical stimu-
lus, was determined from strain thresholds using Young’s 
modulus of compact bone tissue (E = 22,500 MPa). They 
are summarized in the last column of Table 2.

Numerous data from the literature indicate that for 
stresses in the range of 2–20 MPa, the tissue is in a state 
of balance. Likewise, outside of this range remodeling of 
bone tissue takes place. These values suggest that error of 
just a few MPa in computed stresses can alter the results of 
adaptation process simulation. It is worth noting that the 
authors do not specify whether the ranges provided corre-
spond to components, principal or effective stresses (such 
as von Mises equivalent stress). In function of the stimulus 
changes, the bone modifies its density accompanied by a 
reorientation in the space of its trabeculae (Geraldes et al. 
2016). This process can be interpreted at global bone level 
as an alteration of bone mechanical properties described 
by the evolution of the stiffness tensor and a reorientation 
of the axes of material symmetry. For this reason, also, the 
correct determination of the principal directions of strain 
or stress tensor seems to be crucial when modeling the 
bone adaptation process.

(5)W = ftw ≈ BV∕TVw

(6)w = (BV∕TV)−1W

Table 4  Suggested values for MES (Frost 2003)

Strain value [ � strain] Stress value 
[MPa]

Strain Energy density [MPa]

MESr The threshold range for disuse mode bone remodeling 50–100 1–2 2.8  10−5–11.25  10−5

MESm Threshold for bone remodeling 1000–1500 20 0.01125–0.02531
MESp Bones operational microdamage threshold range 3000 60 0.10125
Fx Bones ultimate strength and fracture strength 25,000 120 ∼ 1.5
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3  Results

In this section, the main results concerning stress and strain 
fields as well as the strain energy density field in femoral 
head are presented for two configurations of the leg illus-
trated by Fig. 4.

3.1  Stress and strain states versus material models 
of femoral porous bone

Figures 6 and 7 illustrate, for the three constitutive models of 
trabecular bone, the field of principal stresses in the coronal 
(frontal) plane passing through the middle of the femoral 
head. The results drawn in Fig. 6 concern the instant of heel 
rise (30% of gait cycle). First column illustrates stresses 
obtained with heterogeneous and anisotropic Hooke's law 
of porous bone, the second one with the heterogenous but 
isotropic constitutive relation for this tissue and the third one 
those for homogeneous and isotropic porous bone.

The images in the first row show the color maps of the 
major principal stress. The major principal stress (Max. 
Principal (abs) in Abaqus) is the largest absolute value 

among three principal stresses. The second row show the 
distributions of vectors of principal stresses. The legend on 
the corresponding images has been chosen so that compres-
sive stresses (negative), regardless of their values, are drawn 
in blue, while tensile stresses (positive) are drawn in red. 
The length of vectors indicates their intensity.

At 30% of the gait cycle, significant differences between 
the models occur in the shaft of the femur as well as in the 
femoral head. The anisotropic model predicts broad bands 
of heavily loaded cortical bone and adjacent porous tissue. 
The width of these bands of bone decreases by almost 
twice when comparing the anisotropic and homogeneous 
models. In the case of the isotropic heterogeneous model, 
the cortical bone locally bears greater stresses than in the 
anisotropic model. For the Zysset anisotropic model the 
distribution of the stress in the trabecular bone is highly 
contrasted (nonuniform) and reflects the spatial micro-
structure of the trabeculae arrangements. The heteroge-
neous isotropic model mirrors only partially the internal 
structure of the trabeculae. In this case, the primary com-
pressive group is quite visible, but the level of compressive 
stresses occurring in it is much lower than in the case of 
the anisotropic model. The homogeneous isotropic model 

Fig. 6  Distribution of major principal stress and eigen vectors of the stress tensor inside the femoral head for three models of elasticity at 30% of 
the gait cycle
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of trabecular bone “smooths” the stresses in the entire vol-
ume of the porous bone. The vector fields of the principal 
stresses make clear this observation. In the anisotropic 
model, the compressive load is carried by the cortical bone 
and characteristic arches in the trabecular tissue which 
are formed by the bone struts illustrated in Fig. 5. For the 
60% of the gait cycle (toe-off moment), the differences 
between models are equally significant as illustrated by 
Fig. 7. The external load carried by the bone is lower at 
this leg configuration, yet the anisotropic model allows for 
the identification of the existence of characteristic trabecu-
lar groups with an anatomically parallel arrangement of 
struts of femoral head. The heterogeneous isotropic model 
also reflects for this configuration the primary compressive 
group, although the stresses occurring within it are signifi-
cantly lower than in the anisotropic model. The situation is 
notably different in the case of the homogeneous isotropic 
model, in which the stresses in the shaft of cortical bone 
remain relatively high, yet the spongy matter also takes 
part in bearing the bending moment due to the load on 
the femoral head. In this last case the stress distribution 
does not reflect the arches of trabeculae. Rather, the entire 
area of trabecular bone can be divided into two domains: 

a compressive one on the lateral side of the bone and a 
tensile zone on the opposite medial side.

Another area with high divergence in stresses predicted 
by the models is the region where the shaft of the bone meets 
the femoral epiphysis. In this area, the secondary compres-
sive group and secondary tensile group begin. Results 
have shown that the anisotropic model predicts substantial 
stresses in this area which do not occur in the predictions 
of the other two models. In the case of 60% gait cycle con-
figuration, the differences among the models are not so sig-
nificant. The stresses are, as a rule, twice lower than for the 
phase of full load.

A second very important mechanical internal variable, 
often used in models of bone tissue remodeling, is the strain 
tensor. Frost’s original approach is based on this quantity. 
Below, thus, are presented color maps of major principal 
values and vectors of strain tensor. The major principal strain 
is defined in the same manner as the major principal stress. 
The results are illustrated by Figs. 8 and 9, respectively, at 
30% and 60% of the gait cycle. These figures are organized 
similarly to Figs. 6 and 7 illustrating the principal stress 
fields. As a result of three simulations, for first leg configu-
ration (Fig. 8), the major principal strain fluctuates within a 

Fig. 7  Distribution of major principal stress and eigen vectors of the stress tensor inside the femoral head for three models of elasticity at 60% of 
the gait cycle
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Fig. 8  Max Principal strain (Abs) fields and main vectors of strain tensor inside the femoral head for three material models of trabecular bone at 
30% of the gait cycle

Fig. 9  Max Principal strain (Abs) fields and main vectors of strain tensor inside the femoral head for three material models of trabecular bone at 
60% of the gait cycle
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range of −0.00095 to 0.0008. The anisotropic model predicts 
slightly more intense deformation of trabecular bone, in par-
ticular near the center of the femoral head. The homogenous 
and heterogeneous isotropic models predict high strains 
mainly on the lateral and medial sides of the femur shaft. 
The fibers of the lateral side are elongated whereas those on 
the medial side are shortened.

These strains are at least twice less intense for the second 
leg configuration illustrated in Fig. 9. The major principal 
strain varies between −0.0004 and + 0.0004. In the case of 
the anisotropic and homogeneous models, the color maps of 
this strain are similar for both configurations studied. The 
fields predicted by the heterogeneous isotropic model are 
considerably different. When the leg is in contact with the 
ground, the greatest strains occur in cortical bone. In the 
second limb configuration, the trabecular bone inside the 
femoral head and shaft are strained more intensely than the 
cortical bone.

The distribution of eigenvectors of strain tensor also 
differs considerably from model to model but their fields 
(not intensity) are similar for both leg configurations. In the 
anisotropic model, significant positive and negative strains 
take place inside the femoral head. The vicinity of primary 
compressive group trabeculae is especially interesting. The 
compressed trabeculae of this group (blue vectors) are sur-
rounded by the trabeculae undergoing elongation (red vec-
tors). The homogeneous model leads to a clear differentia-
tion of the lateral and medial sides. On the medial side the 
bone is subjected to intense negative strain in the direction 
tangential to the shaft. On the lateral side the strains are 
positive and tangent to the cortical bone. The heterogeneous 
isotropic model predicts negative strains in the neck of the 
femur. The corresponding vectors are parallel to primary 
compressive group of trabeculae. By comparing the fields 
of eigenvectors of the stress and strain tensors (Figs. 6 with 
8 and 7 with 9), it clearly appears that maximal stresses (in 
absolute) are mainly concentrated in the regions belonging 
to the three groups of trabeculae. Comparing to the stress 
fields, the strain fields seem to be more "disordered" for 
three material models analyzed and especially for the model 
based on the Zysset's constitutive law. Also, Figs. 6, 7, 8, 
and 9 testify that the eigenvectors of stress and strain tensors 
generally do not coincide. It means, the direction of maxi-
mal stretching (shortening) of the bone is different from the 
direction of the maximal tension (compression).

3.2  Strain energy density versus material models 
of femoral porous bone

Figure 10 presents the fields of the strain energy density 
defined by expression (6) for both configurations of leg. 
The lower and upper limits of the legend of this figure 
correspond, respectively, to MESr = 1.125  10–4 MPa and 

MESm = 1.125  10–2 MPa, values which are specified in 
Table 2.

This figure proves that for the three models and both leg 
configurations, the w sits in the Frost’s dead zone apart from 
small white areas, for which w ≥ MESm , located mainly in 
cortical bone, and black zones, for which w ≤ MESr , situ-
ated mainly in the central part of the bone shaft. It is worth 
noting that for 30% of the gait cycle in the case of the ani-
sotropic material model, the field of energy density, like the 
field of major strain of Figs. 8 and 9, is more uniform than 
in the case of the isotropic models.

4  Discussion

4.1  Anisotropy and inhomogeneity of the femoral 
hear

This paragraph is dedicated to the analysis of the elastic 
anisotropy of the femoral head predicted by combining MIL 
method and Zysset constitutive model. Figure 11 illustrates 
the changes of BV/TV and eigenvalues mi of the tensor M 
resulting along each of the analyzed paths visualized in 
Fig. 5. The position on the path is specified by parameter p, 
expressed in millimeters, and corresponding to the distance 
from the origin of the path to a point considered on it. The 
beginning and end of each path involves cortical bone; there-
fore, at the borders the eigenvalues mi of the fabric tensor, as 
well as the BV∕TV , are equal to 1. The vertical dotted lines 
in these charts delimit the thickness of the cortical tissue 
along each path.

When analyzing the primary compressive group along 
path (1), it can be seen (Fig. 6) that in this area, BV∕TV 
in the trabecular bone has a relatively high value (approxi-
mately 0.4) and that there is a considerable differentiation 
between the eigenvalues of the fabric tensor. This last obser-
vation indicates the relatively high anisotropy of the bone 
along this path.

When analyzing the differentiation in eigenvalues of the 
M tensor along the line running from the upper surface of 
the femoral head in the direction of Adams’ arch (an arch 
in the neck of the femur below the femoral head), it can 
be seen that the difference m1 − m3 in the trabecular bone 
grows in the first 5 mm and then gradually decreases to the 
point of intersection with path (3) (primary tensile group), 
which is located nearby in the center of the femoral head at 
a distance of approximately p = 20–25 mm from the begin-
ning of the first path. At this point, the density of cortical 
bone reaches its local maximum ( BV∕TV(43) = 0.52 ). An 
analysis of the ratio m1∕m3 is informative. Bearing in mind 
the dependency Ei = Eo�

k
(
mi

2
)l and the fact that l is close to 

one (l = 0.99 ≈ 1.0) , it is clear that the square of the ratio of 
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eigenvalues of M is equal to the ratio of the relevant Young’s 
moduli:

The ratio m1∕m3 attains its local minimum at the point 
p = 22  mm of greatest density ( m1∕m3(22) = 1.3 , fur-
ther it increases to its maximum value near Adams’ arch 
(p = 43 mm) where m1∕m3(43) = 2.1 and BV∕TV(43) = 0.42 . 
The ratio of corresponding Young’s moduli in these points 
are: E1∕E3(22) = 1.69 and E1∕E3(43) = 4.41 . These values 
indicate strong anisotropy of the bone along this path, espe-
cially around Adams’ arch. The anisotropy is caused by the 
very clear directionality of the trabecular bone struts which 
can be easily seen in Fig. 5b. Along the entire path, the com-
ponent m2 exhibits a slight oscillation around 1.0, resulting 
from the fact that direction 2 is perpendicular to the plane 
where the principal load occurs (it lies in the sagittal plane).

In the case of the primary tensile group (path 2), bone 
density varies from 0.105 to 0.52 and its mean value is 
estimated at BV∕TV = 0.25 . The greatest density value is 
observed at the intersection with path (1), while the low-
est value occurs between the secondary compressive group 

(7)
Ei

Ej

≈

(
mi

mj

)2

and the cortical bone of the lower part of the femoral head 
(65 < p < 115 mm). In the segments 78 < p < 98 mm of this 
path, all three eigenvalues mi are nearly equivalent. This 
means that the trabecular bone is in this place quasi-isotropic 
and has very weak mechanical properties. The three Young’s 
moduli are of the order:

At the beginning of the path (p < 70 mm), the three eigen-
values of the M tensor are significantly differentiated. In 
turn, m2 remains practically stable and close to 1 over the 
entire path. The ratio m1∕m3 is illustrated in Fig. 11. In tra-
becular bone, it varies from 1 to 2.02. It achieves this rela-
tively high value for p = 115 mm. At this point, the ratio of 
the relevant Young’s moduli is: E1∕E3(115) = 4.08 testifying 
the highly anisotropic behavior of the bone in this place. 
The density is relatively low BV∕TV(115) = 0.25 but sig-
nificantly increases with growing p. On the initial segment 
of path (2), both density and the ratio m1∕m3 vary consider-
ably (0.18<BV∕TV < 0.52 and 1.2 < m1∕m3 < 1.73 ). The 
highest value of m1∕m3 occurs at a distance of p = 50 mm, 
located at the neck of the femur. This is an area where maxi-
mal principal tensile stresses occur. This place is particularly 

(8)E1 ≈ E2 ≈ E3 = 280MPA

Fig. 10  Color maps of elastic strain energy density inside the femoral head for three constitutive models and two limb configurations (30% and 
60% of the gait cycle)
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important because of fractures frequently occurring in the 
neck of the femur (Shivji et al. 2015). This type of fracture 
arises because of the hip impacts (drops).

In the case of path (3), passing through the secondary 
compressive group and its extension, which runs from the 
lesser trochanter in the direction of the greater trochanter, 
the relative density value is quasi-constant and very low 
(mean BV∕TV = 0105 ). Everywhere where BV/TV is 
greater than 0.1, the bone has anisotropic properties and 
the ratio m1∕m3 is even in some places greater than 1.3. In 
turn, everywhere where BV∕TV ≤ 0.1 , all eigenvalues of 
the M tensor are equal to 1. It is a result of the assumption 
that for areas of bone with BV/TV ≤ 0.1, the behavior of 

the bone is isotropic. This outcome is obviously not exact 
as it can be concluded from the abrupt evolution of the 
curves of mi and BV∕TV in Fig. 11.

Thanks to the fact that on paths (1) and (2) the BV∕TV 
of the bone is higher than 0.1, it was possible to accurately 
determine the M tensor. On the other hand, on large part of 
path (3) BV/TV < 0.1. This fact leads to the isotropic con-
stitutive relation according with the Zysset-Curnier model 
assumption. As this study concentrates on the analysis of 
the impact of anisotropy of elastic properties of the bone 
on its internal mechanical state, in the following section of 
this paper only paths (1) and (2) were considered.

Fig. 11  Variability of m
i
 components of the structure tensor � and BV∕TV along various paths



753The impact of the parameters of the constitutive model on the distribution of strain in the femoral…

1 3

4.2  Stress and strain analysis along the trabeculae 
groups

As the inherent trabecular groups occurring in the femo-
ral head play a crucial role in transferring external load, an 
analysis was made of the internal state of the bone along the 
paths passing through these groups. The MESr threshold, 
introduced by Frost (Frost 2003) (see Table 4), is also indi-
cated in this figure by dotted lines. A quantitative compari-
son of the state of stresses for the three models is presented 
in Fig. 12.

Two columns of this figure refer to two bone configura-
tions studied. The figure shows the evolution of the major 
principal stress and von Mises stress along the path passing 
through the primary group.

The notion of equivalent stress was first introduced by 
Huber (1904) for isotropic materials. The equivalent stress 
is proportional to the part of the elastic strain energy den-
sity due to the change of shape of the elastic isotropic con-
tinuum. Thus, the physical sense of this notion is lost in the 
case of orthotropic (anisotropic) materials. In such a case, 
the equivalent stress proposed by (Lipinski et al. 2021) 

should be used. Their definition generalizes the definition 
of equivalent stress proposed by Hill (1998). Despite this 
remark, and because in many studies researchers utilize this 
stress measure for bones, Fig. 12 compares the equivalent 
von Mises stress along paths (1) for the three constitutive 
models of trabecular bone to allow for a comparison of our 
results with those obtained by other authors. An analysis of 
these results reveals, that as we move along path (1) from the 
femoral head to Adams’ arch, there is an increase in com-
pressive stress for both configurations. The highest stress 
gradient was obtained for the anisotropic model and the 
lowest for the homogeneous one. The discrepancies among 
the models’ predictions increase when approaching Adams’ 
arch. In the limb configuration of 30% of the gait cycle, 
the difference in major principal stress, in Adams’ arch, 
between anisotropic and homogeneous isotropic models 
riches 3 MPa. The anisotropic model predicts 4.5 MPa when 
the homogenous model leads to 1.5 MPa at the same point 
p = 40 mm. It should also be underlined that the analyzed 
configuration (30% of the gait cycle) is not the leg position 
at which the femoral head is subject to the greatest reaction 
force during the gait cycle. Simulations performed with the 

Fig. 12  Evolution of the major principal and equivalent von Mises stress along path 1 in the primary compressive group for two leg configura-
tions corresponding to 30% and 60% of the gait cycle
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OpenSim packet show that the greatest reaction force in the 
hip joint occurs when it is slightly angled backwards during 
the toe-off phase. Because the limb is angled backwards, the 
considerable stresses appear in the coronal plane but also in 
the sagittal one.

The correlation between the von Mises and major prin-
cipal stresses ( σvM ≈ −σI ) demonstrates that the compres-
sive stress dominates on this path. It is also worth noting 
that both stress measures are outside from the dead zone 
(1–20 MPa), for a large part of the path. This does not, how-
ever, mean that the tissue is in the disuse window introduced 
by Frost’s in its mechanostat theory (Frost 2003). Indeed, the 
quantities illustrated in this figure are overall stress meas-
ures, which obviously are lower than stresses carried by the 
bone tissue. Somewhat lower stresses are observed for the 
second leg configuration. In certain areas of the path, these 
stresses are less than 0.5 MPa and their maximum does not 
exceed 2 MPa. The lack of contact with the ground means 
that the loads to which the bone is subjected at this configu-
ration are a result solely of muscular actions and the gravity 
force on the suspended limb.

The primary tensile group is a stripe of trabeculae in 
which highly significant changes of BV/TV ratio and bone 
anisotropy are observed (see Fig. 11). This is caused by 
the fact that this group intersects the primary compressive 
group, which is characterized by high BV/TV ratio and 
strong anisotropy, and the secondary compressive group, 
which in contrast has very low BV/TV values. Figure 13 
shows the evolution of major and equivalent stresses on 
path (2) representing this group. The form of the graphs of 
stresses for both limb configurations (30% and 60% of the 
gait cycle) are very similar, although the stresses at 60% of 
the gait cycle are considerably lower than those at 30% of 
the gait cycle. Both isotropic models (heterogeneous and 
homogenous) predict similar results. The major principal 
tensile stress predicted by these models is higher than the 
values obtained from the anisotropic model. A distinct maxi-
mum can be seen at around p = 45–60 mm. This position 
corresponds to a part of the femoral neck characterized by 
the high value of the ratio m1∕m3 indicating highly aniso-
tropic tissue. A sharp maximum is visible for the isotropic 
model with homogeneous BV/TV distribution. The isotropic 

Fig. 13  Evolution of the major principal and equivalent von Mises stress along path 2 in the primary tensile group for two leg configurations 
corresponding to 30% and 60% of the gait cycle
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model with a mapped BV/TV predicts “smoother” evolution 
of this stress. A local maximum appears also in the case of 
the anisotropic model, but the maximum of principal stress 
is nearly two times lower than in the homogeneous model. It 
is worth noting that the three models predict stresses lower 
than the MESr.

A quantitative analysis of strains on primary compressive 
and primary tensile groups of trabeculae is shown in Fig. 14. 
In the primary compressive group, both at 30% and 60% 
of the gait cycle, the major strains predicted by the three 
models are mainly located within the limits of the dead zone 
proposed by Frost. However, it should be noted that there 
are large differences in the values of the strains forecast by 
the models. At first leg configuration, the anisotropic model 
predicts an increase in the absolute value of strain along the 
segment p = 15–30 mm. This increase is not anticipated by 
the two other models. The maximum strain here is of the 
order of 0.00095. Its position corresponds to the intersec-
tion of paths (1) and (2). This is the area where the greatest 
variation of BV/TV ratio occurs but also this is the site of 
high bone anisotropy (see Fig. 11.) The two isotropic models 
foreseen similar evolutions of major principal strain charac-
terized by a quasi-monotonous increase in this strain along 

the entire path. The maximal (in absolute) values are lower 
than those resulting from the anisotropic model, and riches 
−0.0007, −0.0008 at the end of the path. Similar evolution 
in the distribution of major principal strain was obtained for 
the second limb configuration but its level is 2.5 times lower.

In the case of path (2), the major principal strains are 
positive. Their courses are more complex. The three models 
predict three different evolutions on this path (2). The ani-
sotropic model forecast two maxima, one around p = 30 mm 
and a second one for p = 90 mm. The former is the place of 
intersection with the primary compressive group trabeculae 
while the latter belongs also to the secondary compressive 
group. This group is characterized by a very low BV/TV 
ratio. Once again, significant differences can be seen among 
the models’ predictions. The highest values of strains for 
these two sites are predicted by the anisotropic model. In the 
case of the homogeneous isotropic model, these two maxima 
are practically invisible. The heterogeneous isotropic model 
also predicts two local maxima, but they are lower in values 
of strain and shifted into the end of the path. It is worth not-
ing that the anisotropic model predicts locally more than 
two-fold higher strains than the isotropic models. Similar 
observations can be made for graphs corresponding to the 

Fig. 14  Evolution of the major principal strains along paths 1 in the primary compressive group and 2 in the primary tensile group for two limb 
positions corresponding to 30% and 60% of the gait cycle
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second limb configuration (60% of the gait cycle). The prin-
cipal difference involves the level of strains occurring which 
is, for this configuration, nearly three times lower.

As for the first path, the major strain is mainly located in 
the dead zone identified by two dotted lines in this figure. 
According to Frost’s model, the bone should not be sub-
ject to change its density, which is in contradicts with the 
observations concerning principal stresses. This apparent 
contradiction can be easily explained by the internal struc-
ture of the bone in these trabecular groups. The trabeculae 
in the groups analyzed are arranged parallel to each other. 
This means that, to a fair degree of accuracy, the local and 
global (in the sense of mean field theory) strains occurring 
in these groups are of the same magnitude. However, local 
and global stresses are fundamentally different. It can be said 
that local stresses are significantly greater than the global 
ones.

4.3  Indications concerning the choice of mechanical 
stimulus for bone adaptation simulations

Figure 15 presents the evolution of Strain Energy Density 
(SED), rescaled with BV/TV of concerned point, along 

paths (1) and (2) for both configurations of legs. Dotted 
lines in Fig. 15 indicate the thresholds of the energy den-
sity: MESr = 1.125  10–4 MPa and MESm = 1.125  10–2 MPa 
(see Table 3).

This figure testifies that, on two paths and for the three 
models and both leg configurations, the SED rests in the 
Frost’s dead zone. This observation suggests that the elastic 
strain energy density, and an appropriate measure of equiva-
lent elastic strain associated with it, are better candidates 
for the mechanical stimulus than the equivalent stresses for 
instant such as von Mises invariant. Indeed, assuming the 
correctness of the Frost mechanostat theory and supposing 
that the analyzed bone was in a state of balance, the results 
obtained indicate that stresses (principal or equivalent) are 
not the good candidate for mechanical stimulus, see Figs. 6, 
7, and 13. Namely, along a significant part of both paths, 
and for both limb configurations, the stress level is below 
the MESr threshold, contradicting the conjecture of the 
state of balance of the bone. This observation is particularly 
valid in the case of the homogeneous isotropic constitutive 
model. On the other hand, values of major strain and elastic 
strain energy density for the anisotropic model presented 
in Figs. 14 and 15 fall between the thresholds MESr and 

Fig. 15  Evolution of elastic strain energy density along paths 1 and 2 for two limb positions (30% and 60% of the gait cycle)
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MESm. In the case of the homogeneous isotropic model, 
this observation is not entirely factual on the path belonging 
to the primary tensile group of trabeculae. Indeed, for the 
limb configuration corresponding to 60% of the gait cycle, 
the major strain is lower than MESr.

Presented results thus show that both measures (major 
strain and elastic strain energy density) are better candidates 
for the mechanical stimulus in the mechanostat theory than 
stresses are. It should be remembered, however, that the 
results obtained here present only one case of bone loading. 
Remodeling and the adaptation of the bone is the result of 
the action of complex dynamic (or transient) loads in which 
not only the value of the stimulus itself is important, but 
also its frequency of occurrence (Villette and Phillips 2018).

5  Conclusions

This paper presents the results of static simulations of the 
human femur using the finite elements method subject to two 
loads specific for two particular positions of the right leg 
during the gait cycle (walking). In order to determine these 
physiological loads, a simulation of walking was conducted 
using the inverse kinematics method for the entire gait cycle. 
This simulation generated files of time dependent vectors 
of muscular forces as well as reaction forces in the hip joint 
constituting a reliable loading of the bone.

Two leg positions were selected for analysis for which 
the femoral bone appeared parallel to the axis of the body. 
A FE model of the femoral head subject to the appropri-
ate muscular and reaction forces was developed from the 
tomographic data of the bone, three constitutive models of 
trabecular bone were compared; anisotropic model based 
on Zysset's approach, with mapped BV/TV fraction and 
local orthotropic bases, isotropic model with mapped BV/
TV fraction and isotropic model with uniform mean BV/
TV fraction and corresponding Young’s modulus. Of these 
three approaches, the most advanced is the heterogeneous 
orthotropic model, based on Cowin’s theory, in which the 
anisotropic properties are correlated with bone mass spatial 
distribution.

The simulations demonstrated that differences between 
the predicted results of these models are significant. Only 
the anisotropic model allows for the plausible distribution 
of stresses along the main trabecular groups. The largest dif-
ferences were observed in areas of strong anisotropy of the 
bone which occurs in the primary compressive and primary 
tensile groups. In these trabecular groups, according to the 
Zysset model, the ratio between the greatest and smallest 
Young’s moduli can exceed 4. This anisotropy has a sig-
nificant impact on the states of strains and stresses and, as 
a result, on the level of strain energy density. On path (1), 
which is the most loaded area of the bone, near Adams’ arch, 

the relative difference between the major principal stresses 
predicted by the anisotropic model and the homogeneous 
isotropic model locally exceeds 100% for both limb con-
figurations. A similar conclusion can be reached concern-
ing the major strain along this path. However, in this case 
the greatest differences occur approximately at the halfway 
point of the path where the trabecular primary compres-
sive and tensile groups intersect in the femoral neck. This 
area is essential, as fractures of femur often occur here. 
According to the numerous studies presenting experimental 
data and numerical calculations (Mondal and Ghosh 2017; 
Tianye et al. 2019; Tano et al. 2019), this area often sees 
the initiation of fractures in a plane which, in the majority 
of cases, passes through the neck of the femur. The simula-
tions presented show that the isotropic constitutive model 
provides underestimated values of stresses and strains for 
many areas of bone. Many computation packets, which are 
commonly applied by physicians and bio-mechanicians, 
whether for bone load or for the impact of endoprosthesis 
of the hip joint on the stress distribution, make precisely use 
of this approach. These include such widely used packets 
as Materialize Mimics https:// www. mater ialise. com/ en.), 
Synopsys ScanIP (https:// www. synop sys. com/ simpl eware. 
html), MITK-GEM (http:// araex. github. io/ mitk- gem- site/) 
and Bonemat (http:// www. bonem at. org/). All these software 
assume a relationship between brightness of CT (generally 
expressed in the Hounsfield scale) and density to determine 
Young’s modulus value for isotropic modeling. These pack-
ages are also frequently used in designing the geometry of 
implants and in preparing and predicting the effects of hip 
replacement operations.

Assuming the correctness of the Frost mechanostat theory 
and supposing that the analyzed bone was in a state of bal-
ance, the results obtained indicate that stresses (principal 
or equivalent) are not the good candidate for mechanical 
stimulus. This conclusion is particularly valid in the case of 
the homogeneous isotropic constitutive modeling. On the 
other hand, values of major principal strain and fall between 
the thresholds MESr and MESm for the case of anisotropic 
and heterogeneous model of porous bone.

Until recently, limited capacities of computers prohibited 
the anisotropic and heterogeneous modeling of biological 
organs with complex internal microstructures and subjected 
to realistic loads. Currently, the computational facilities 
allow for the use of high-definition FEM meshes and pre-
cise materials data. Despite this, much software for medical 
analysis still use isotropic constitutive models for predicting 
changes taking place in bone during modelling. The increas-
ingly common use of high-resolution tomographs has meant 
that the data necessary for analysis are of considerably bet-
ter quality. This fact in turn makes possible the wider use 
of more realistic anisotropic and heterogeneous material 
modelings.

https://www.materialise.com/en
https://www.synopsys.com/simpleware.html
https://www.synopsys.com/simpleware.html
http://araex.github.io/mitk-gem-site/
http://www.bonemat.org/
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