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Abstract
We present a model useful for interpretation of indentation experiments on animal cells. We use finite element modeling for a 
thorough representation of the complex structure of an animal cell. In our model, the crucial constituent is the cell cortex—a 
rigid layer of cytoplasmic proteins present on the inner side of the cell membrane. It plays a vital role in the mechanical inter-
actions between cells. The cell cortex is modeled by a three-dimensional solid to reflect its bending stiffness. This approach 
allows us to interpret the results of the indentation measurements and extract the mechanical properties of the individual 
elements of the cell structure. During the simulations, we scan a broad range of parameters such as cortex thickness and 
Young’s modulus, cytoplasm Young’s modulus, and indenter radius, which define cell properties and experimental condi-
tions. Finally, we propose a simple closed-form formula that approximates the simulated results with satisfactory accuracy. 
Our formula is as easy to use as Hertz's function to extract cell properties from the measurement, yet it considers the cell’s 
inner structure, including cell cortex, cytoplasm, and nucleus.

Keywords  Cell structure · Finite element method · Elasticity · Atomic force microscopy

1  Introduction

Despite the improvements in the available equipment, meas-
uring the mechanical properties of animal cells is chal-
lenging. There are several measurement techniques precise 
enough to deform a single cell in a controlled way and read 
out the force used in the process. They include atomic force 
spectroscopy, optical traps, micropipette aspiration, among 
other techniques. (Lim et al. 2006a, b). Such experiments 
determine the apparent Young’s modulus. That means that 
the results of different experiments cannot be properly com-
pared. They depend on the type of experiment and even the 
geometrical properties of the equipment, e.g., the shape 
of the indenter in case of the AFM indentation (Calabri 
et al. 2006; Chen 2014). To extract the mechanical proper-
ties of the cell, a model is needed to describe the details of 

probe-cell interactions. This is not a trivial task because a cell 
is a complex structure consisting of multiple distinct parts.

The component responsible for most of the mechani-
cal interaction between the cell and the environment is the 
cytoskeleton. It is a scaffold-like structure of protein fila-
ments bathed in the cytoplasm. It is not practical to model the 
cytoskeleton in its whole complexity. Instead, some simplifi-
cations have to be made. It appears that for spherical cells it is 
best to divide the cytoplasm region into two parts: the dense, 
stiff outer layer of the cortical cytoplasm and the softer inner 
layer. The cortex has typically a thickness of several hundred 
nanometers, which is not insignificant compared to the other 
components of the cell. Therefore, it has to be modeled as a 
three-dimensional body to account for its nonzero bending 
stiffness. Such thin 3D structures, called shells, are nicknamed 
the prima donnas of structures in the engineering community 
(Ramm and Wall 2004), as there are no mathematical meth-
ods that would allow the derivation of an analytical formula 
properly describing their behavior. Finite element modeling 
is often the method of choice for thin 3D objects.

In this work, we present a finite element model of an ani-
mal cell, with the cortex treated as a 3D material, subjected 
to the AFM measurement with a spherical indenter. The 
analysis of the results allows for the development of a sim-
ple, closed-form formula that approximates the simulation in 
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a reasonable range of parameters with satisfactory accuracy. 
Such a formula can be very useful in extracting material 
properties from AFM measurements.

Section 2 contains the research background, review of the 
literature, and the most essential experimental and theoreti-
cal results. Section 3. Presents the general assumptions of 
our model, the methods used, and crucial observations. Our 
calculations are presented and discussed in Sect. 4. Conclu-
sions and closing remarks are given in Sect. 5.

2 � Theory and Calculations

2.1 � Multilayer cell elasticity models

In our approximation, a cell is composed of three key struc-
tures that may affect its mechanical properties. These ele-
ments are:

•	 Cortex—the membrane skeleton, located on the inner 
face of the cell membrane composed mostly of actin fila-
ments;

•	 Cytoplasm—the substance filling the interior of the cell, 
surrounding the organelles and the cytoskeleton, which 
is a rigid structural lattice made of microfilaments, inter-
mediate filaments, and microtubules;

•	 Nucleus—composed of nuclear envelope, nuclear lamina, 
nucleolus, chromosomes, nucleoplasm, etc.

The cell membrane, the vital element of each cell (made 
up of an extremely thin layer of phospholipids and choles-
terol), is characterized by relatively low stiffness. Therefore, 
it was omitted due to a negligibly small contribution to the 
overall elastic response. To ensure this approach was correct, 
we examined the influence of a 10 nm thick bilipid layer on 
cell stiffness. The results confirmed that neglecting the cell 
membrane did not alter the simulation noticeably.

Modeling a cell requires a fine balance between accuracy 
and performance. The more elaborate the model, the more 
detailed predictions it can give, at the expense of computa-
tion time. Moreover, more complex models are more difficult 
to use, since they require more knowledge from users about 
the details of an object. Bursa et al. (2006) in their review 
mention that so far three main types of modeling have been 
used:

•	 Continuum nonstructural = cell is a homogenous, iso-
tropic material;

•	 Continuum structural = cell has a structure, but each com-
ponent is homogenous;

•	 Discrete structural = cell is represented as a system of 
discrete elements (for example, a cytoskeleton model).

All these approaches have been exploited in the litera-
ture. Bursa and Fuis (2010) presented a three-dimensional 
model of eukaryotic cells consisting of the cell membrane, 
cytoplasm, cytoskeleton, and nucleus. Due to the complex 
structure, load transmission can be simulated with more 
accuracy. We take a similar approach, constructing a con-
tinuum structural model.

The experiments suggest that the elasticity of cells 
depends on their shape (Melzak and Toca-Herrera 2015). 
Caille et al. (2002) model a cell as a body consisting of two 
components—cortex and nucleus. They show differences 
between round and spread cells. For the cells discussed in 
that paper, the estimated parameter of elasticity of round 
cells is 323 Pa, while spread cells have Young’s modulus 
of 775 Pa. There is also a distinction between the estimated 
values of the elasticity parameter for the nucleus inside the 
cell (about 5 kPa) and the isolated nucleus (about 8 kPa).

The structure of the cytoskeleton influences mechanical 
properties and mechanotransduction processes. The impact 
of the cytoskeleton stiffness was presented by comparing 
normal osteoblast cells and osteosarcoma cells (Wang et al. 
2016). Young’s modulus of normal osteoblasts is greater 
than osteosarcoma-2.42 (1.08) kPa versus 0.82(0.43) kPa, 
which confirms that cancer cells have a reduced filament 
structure of actin. A decrease in stiffness is also observed 
after cells are treated with cytochalasin D, which disrupts 
the assembly of the F-actin filament.

The comparison between finite element analysis and 
experimental results was conducted for chondrocytes (cells 
in articular cartilage) using the method of micropipette aspi-
ration (Baaijens et al. 2005). This study was conducted to 
determine whether the key factor of the behavior is attrib-
uted to the intrinsic viscoelasticity of the cytoplasm or the 
biphasic effect of fluid–solid interactions between the cells. 
The results conclude that intrinsic viscoelastic phenomena 
are more important than biphasic behavior.

A comprehensive review of the cell models was given in 
the paper by Lim et al. (2006a, b). The authors of the review 
point out the lack of any universal model that would describe 
cell behavior well in all circumstances. For instance, a model 
that describes micropipette aspiration is not suitable for mag-
netic twisting cytometry (Wang et al. 1993). Even if one type 
of model fits two experiments, the material properties inserted 
into the model have to be very different (even by orders of 
magnitude) for each of the experimental cases. This discrep-
ancy suggests that the models do not reflect what happens in 
the cell correctly. Smeets et al. (2019) suggest that one of the 
biggest flaws of all the above-described models is treating the 
cortex as a pseudo-two-dimensional body with no bending 
stiffness. They show a model which assumes that thick cor-
tex and active tension can give good predictions of two pro-
cesses: micropipette aspiration and two-cell aspiration. Simi-
larly, Vargas-Pinto et al. (2013) discuss the discrepancy in the 
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apparent moduli of a cell between experiments using spherical 
and sharp indenters. By finite element modeling, they show 
that the stiff cell cortex could explain this discrepancy.

2.2 � Mechanical properties of cell components

The mechanical properties of living cells have been studied 
for many years using various experimental methods. Micro-
pipette aspiration (Mitchison and Swann 1954) is the oldest 
one. Later on, cytoindentation (Shin and Athanasiou 1999) 
and atomic force microscopy (Hoh and Schoenenberger 
1994) gained popularity. The results of these experiments 
often yield significantly different results for individual cell 
components. The literature survey on cell component prop-
erties has been summarized in Supplementary Tables 1–4. 
We complement the information contained therein with two 
important observations.

First, the cytoplasm may be assumed liquid in very long 
time scales (> 10 s), but at shorter timescales the cyto-
plasm is viscoelastic (effective strain rates in the range of 
0.1 s−1 < V/a < 2 s−1) and poroelastic at higher speeds (Hu 
et al. 2017). V/a is the ratio of velocity to the characteristic 
dimension. This ratio dictates the behavior of the material.

Second, the cortex properties are harder to obtain than 
other components. The cortex is around 200 nm thick and 
its Young’s modulus varies from 1 to 40 kPa (Maitre et al. 
2012; Cartagena-Rivera et al. 2016).

2.3 � Hertz function and other models

The most common classic theory used to determine elastic-
ity characteristics for indentation is by (Hertz, 1882). The 
aforementioned model was originally proposed to describe 
systems that satisfy some strong assumptions, including 
homogeneity of the material, isotropy, infinite thickness, 
small depth of indentation and deformations, specific probe 
geometry, etc.

The dependence of the force on the indentation in the 
Hertz model is given by:

where r is the radius of the indenter, E is Young’s modu-
lus, δ is the indentation depth, and � is the Poisson ratio.

The Hertz function is valid only for homogeneous materi-
als. Extending the classic Hertz model to be applicable to 
indenting a layered spherical object—like a cell—is chal-
lenging. The case of a thick spherical shell was investigated 
by Berry et al. (2017). The authors provided a formula that 
allows for calculating a reaction force during the indentation 
of any spherical shell. However, this formula contains free 
parameters that have to be calculated using FEM.

(1)F =
4

3

E
�

1 − �2
�

√

r�3∕2

The theories for flat-layered materials have already been 
developed (Stan and Adams 2016; Lee et al. 2018). However, 
an additional difficulty arises when the layered structure has 
nonzero Gaussian curvature, especially when the outer layer 
is stiffer than the inner layer. In that case, the geometrical-
induced rigidity phenomenon (Lazarus et al. 2012) occurs. 
Its effects have been well studied. There is also a closed-form 
formula for describing a reaction force based on the mechani-
cal properties of the consecutive layers. Unfortunately, the 
model is limited to the case of a relatively thin shell contain-
ing pressurized liquid (Vella et al. 2012). This model can 
be used to model plant cells (Beauzamy et al. 2015), which 
have rigid cell walls and are filled with cytoplasm. For animal 
cells, the cortex layer has stiffness comparable to the cyto-
plasm. Moreover, the cortex is relatively thicker. To the best 
of our knowledge, there is no generalization of multilayer 
theory for the mechanical conditions of an animal cell. In our 
approach, we check how well Hertz relation (1) described the 
simulated cell and we propose possible modifications of this 
relation to improve the compatibility.

3 � Materials and methods

Modeling was performed using the Finite Element Method 
(FEM) with the ANSYS Workbench/Mechanical environ-
ment. All simulations were performed using a static solver. 
Such an approach is valid for short time scales and small 
indentation depth when the cell behaves poroelastically (Hu 
et al., 2017) and its reaction is quasi-static (Nawaz et al. 2012).

The multiscale mesh was tetrahedral and fine-grained in 
the contact area between the cell and the spherical probe. In 
the radius of 0.7 µm around the contact point, the maximal 
mesh edge was 0.12 µm, and in the radius of 1.6 µm, no 
larger than 0.3 µm. These dimensions were chosen in such 
a way as to make the denser mesh comparable in size to the 
indenter radius. It was tested that further densification of 
the mesh does not change systematically the output of the 
simulation. The frictionless condition was chosen for the 
contact between the cell and the spherical probe.

All modeled bodies were assumed to be an isotropic 
linear elastic material. This is an appropriate assumption 
for sub-micrometer indentation depth (Garcia 2020) and 
was chosen to avoid additional parameters associated with 
non-elastic behavior in the model. The cell was modeled 
as a hemisphere of the cytoplasm surrounded by the cortex 
(Fig. 1). The cell boundary condition for the flat bottom part 
was a fixed support. The indenter moved only in the vertical 
direction.

The cortex was treated as a three-dimensional solid 
to account for its bending stiffness. The physical param-
eters of most of the components (such as elasticity), as 
well as their sizes, varied in a credible range taken from 
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the literature. The choice of range is justified in the pre-
vious section and in the supplementary tables. A set of 
average parameters was used as a reference for a typical 
setup (material properties were based on Bursa and Fuis 
2010). The outer diameter of the hemisphere (cell) is equal 
to 13.2 µm. inside the cytoplasm there was a nucleus of 
9.0 µm in diameter. The cytoplasm had a Young’s modulus 
of 0.25 kPa. The most external layer of the cortex, was 
0.3 µm thick, and had a Young’s modulus of 5 kPa; the 
nucleus had a Young’s modulus of 1 kPa. The Poisson 
ratios of the cortex, cytoplasm, and nucleus were 0.3, 0.45, 
and 0.37, respectively. The indentation was performed 
by spherical indenters of various sizes, but the radius of 
3.5 µm will be referred to as typical.

Such a model was chosen to minimize complexity while 
maintaining a realistic cell response to the AFM indenta-
tion. More complicated models were also tested. One of 
them included a 10 nm thick cell membrane. It turns out 
that the thin membrane does not contribute to the appar-
ent elasticity of the cell. Therefore, in the final model, it 
was completely omitted. A similar observation was made 
for the nucleolus. Placing a 1.15 µm nucleolus (Young’s 
modulus of the order of kilopascals) inside the nucleus 
does not change the results noticeably. Changing Young’s 
modulus of the nucleus from 1 kPa to 0.45 kPa does not 
change the result either. Ultimately, the nucleolus was 
omitted and the Young’s modulus of the nucleus was kept 
constant at 1 kPa.

4 � Results and discussion

4.1 � General remarks

This section presents the results of the simulations performed 
using the model described in Sect. 3. The results were obtained 
in ca. 750 simulation runs for various combinations of param-
eters and an additional 750 for the case of a large nucleus 
described later. The variables characterizing the cell, like 
material properties and cortex thickness, varied over a real-
istic range. The elastic modulus of cortex and cytoplasm was 
changed from 1 to 10 kPa and 0.125 to 1 kPa, respectively. The 
thickness of the cortex was varied in the range of 0.1 to 0.8 µm 
and the radius of the indenter changed between 0.5 and 7 µm.

In the following sections, we investigate how the charac-
ter of the cortex influences the measurements, we take under 
consideration different cell shapes and sizes, various nucleus 
sizes, different probe sizes, and we examine off-center load 
and friction. Finally, we propose a closed-form formula for 
the indentation force in the presence of the cortex and con-
duct a parametric study of its applicability.

4.2 � Initial validation

First, the results of our cell model were confronted with 
the simple Hertz model. As the Hertz model describes only 
homogeneous and isotropic materials, the cell model was 
simplified and the cell was made entirely of cytoplasm. The 
difference between the Hertz formula and the FEM model of 
such a cell was below 1% at every indentation depth. There-
fore, we can assume that the Hertz model approximates the 
simple FEM model well. The modifications to the cell struc-
ture will be proposed in the following sections, and they will 
be confronted with the control Hertz model.

4.3 � Cortex as 3D body

As mentioned previously in this paper, we treat the cortex as 
a solid 3D body. In this way, we can account for the influence 
of its bending stiffness in the results. To estimate the influ-
ence of bending stiffness on cell behavior, we compared the 
results obtained using two approaches to approximating the 
cortex. The first is the above-mentioned full 3D cortex with its 
real thickness; the second-modeling it as a thin 2-dimensional 
body with no bending stiffness. To mimic the 2D behavior, the 
cortex was actually modeled as an extremely thin 3D object 
so that the bending stiffness could be easily neglected. In this 
case, Young’s modulus was elevated to preserve the stretching 
stiffness of the cortex. The results are presented in Fig. 2. At 
first, the distinction may seem subtle, but at a small indentation 
depth, the reaction calculated using the full 3D model is twice 

Fig. 1   The general geometry for the simulation. The thin layer of cor-
tex (red) surrounds the cytoplasm (yellow) and the immersed nucleus 
(blue). The spherical probe (grey) is inserted to a maximum depth of 
0.5 µm
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as large as in the thin pseudo-2D model. This shows that the 
bending stiffness of the cortex cannot be neglected and there-
fore treating the cortex as a three-dimensional body is crucial.

Figure 2 presents an exemplary dependence of a reac-
tion force on the indentation depth. The simulation was 
performed using our “typical” parameters, that is Ecor = 
5 kPa and Ecyt = 0.25 Pa, cortex thickness of 0.3 µm, and the 
indenter radius of 3.5 µm. The fit from Fig. 2 shows good 
agreement with the Hertz function.

4.4 � Hertz‑like model for a cell with cortex

A Hertz-like function was fitted to results obtained for vari-
ous cortex thicknesses and indenter sizes to study how the 
cortex modifies the shape of the force-indent curve. By a 
Hertz-like function, we mean a function where the exponent 
n of the indentation (which normally is a constant value of 
1.5) is treated as a free parameter:

In this series of fits, the constant A was also treated as a 
free parameter n independently for all simulation parameter 
combinations. The dependence on the geometrical param-
eters for a typical cortex Young’s modulus is given in Fig. 3.

Finite element modeling shows that the standard exponent 
n=1.5 is the most appropriate for certain sets of cortex thick-
nesses and indenter radius. For all of the simulation runs 
exponent values n ranged from 1 to almost 2, however, for 
the majority of simulations average values were close to 1.5. 
This result proves that in comparative studies of cells char-
acterized by large variances of mechanical parameters, the 
Hertz function approximates the dependence on the indenta-
tion depth accurately.

(2)F = Adn

4.5 � Cell size

Another factor that was taken into consideration is the cell 
size. The results presented so far were obtained using our 
typical cell dimensions. Figure 4 presents the results obtained 
for a scaled-up cell. It appears that the influence of cell size 
on the results is not very pronounced. Moreover, in our simu-
lations cell size is the only geometrical parameter that is not 
scanned over. This means it can be omitted and the results 
can be obtained from scaling existing results. One can think 
of the ratio of cell size to indenter size as the vital parameter. 
The results for the scaled-up cell are equivalent to the results 
with a smaller indenter multiplied by the scale factor squared.

That way we can assume that formula (4) encapsulates all 
geometrical factors important for the indentation experiment 
on the cell with small to moderate nucleus size. The case of 

Fig. 2   The dependence of the reaction force on the indentation depth. 
The line symbolizes the Hertz function fitted to the 3D body model

Fig. 3   The dependence of the exponent n from Hertz-like function on 
the cortex thickness and the indenter radius (Eq. 2)

Fig. 4   The dependence of the reaction force on the cell size
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the large nucleus is treated separately in Sect. 4.8. The free 
parameters in the formula are a solely function of the mate-
rial properties. The use of such a formula could be very use-
ful when one wants to measure changes in the cell material 
properties due to some factor, because it allows one to omit 
the influence of the cell’s geometry. The relevance of other 
geometrical parameters is tested in the following sections.

4.6 � Cell shape

Apart from the cell size, we also investigate the cell shape. 
The thickness of the cytoplasm varies in different parts of 
the cell, so the nucleus and cortex are not concentric spheres. 
To estimate the influence of the cytoplasm layer and the 
curvature of the cell cortex, two simulations were compared. 
One was our typical cell, and the other was a cell with the 
same height only with a 50% larger radius of curvature that 
maintained the same overall height of the cell. The cortex 
thickness and nucleus were the same for both cases (Fig. 5a). 
The simulation shows that the lens-like cell with a larger 
radius of curvature varied marginally from the typical dome 
cell (Fig. 6).

4.7 � Off–center load and friction

The effects of friction and non-central indentation are 
discussed in this section. To investigate this effect, a set 
of simulations was performed. The coefficient of friction 
and horizontal distance between the center of the cell 
and the center of the indenter were varied (Fig. 5b). The 
friction coefficient turns out to be important only if the 
cell is not indented axially. What is more, in reality the 
coefficient is very small, ranging from µ=0.03 to µ=0.06 
(Dunn et al. 2007; Angelini et al. 2012). In this range, 

friction has a minimal effect even for non-axial indenta-
tion (Fig. 7). Without the presence of friction, the effect 
of non-central indentation force can be easily calculated 
based on the assumption that only radial force—normal to 
the surface—is present. The shear stress vanishes. In this 
case, the only factor that dictates the reaction force is the 
radial indentation depth. The indentation curve calculated 
in the center of the cell can be calculated according to the 
following formula:

(3)i� = R + r −

√

a2 +

(
√

(R + r)2 − a2 − i

)

Fig. 5   a Central indentation of a model cell with varying cytoplasm thickness. b Non-central indentation of the spherical cell

Fig. 6   Comparison of the indentation of our typical hemispherical 
cell (Fig. 1) and the flattened one (Fig. 5a)
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where i ‘ is the effective indentation, i—indentation in the 
y direction (vertically), R, r—cell and indenter radii, respec-
tively, and a—horizontal distance between the center of the 
cell and the center of the indenter (offset). The formula is 
derived in the appendix.

4.8 � Dependence on nucleus size

The nucleus size is a factor that varies between different 
cell types. Therefore, to check the influence of that param-
eter on the indentation, additional series of simulations were 
performed. In the simulations, the nucleus diameter was 
swept over the range from 10,5 µm to 2 µm. It appears that 
the nucleus size has a significant influence on the reaction 
force for a large nucleus. For diameters smaller than 9 μm, 
the dependence flattens (Fig. 8). This dependence is easy 
to understand. With an indentation depth of 0.5 µm, it is 
impossible to probe a nucleus whose surface is 2 μm below 
the surface of the cell or deeper. All the previous analyses 
were performed for a nucleus radius of 4.5 µm.

As there is little dependence on nucleus size smaller than 
4.5 µm, this analysis is valid for any smaller nucleus size.

Calculations for the special case of the big nucleus were 
also performed. The chosen size was 10.5 µm. The result is 
presented in Sect. 4.11.

4.9 � Dependencies on the geometrical quantities

In Sect. 4.4, it was shown that the dependence on the indenta-
tion depth can be approximated as a constant (which we call 
A ) multiplied by a power function. The exponent of the func-
tion is close to the value of 1.5, as in the Hertz mode, and does 
not depend sharply on the cell properties or the experimental 
conditions. Thus, these dependencies must be contained in 
the constant A . In our study, the power functions Eq. (2) with 
an exponent of 1.5 were fitted to the simulation results. The 
resulting apparent moduli are shown in Fig. 9

Fig. 7   The effects of friction and non-central indentation on the max-
imal reaction force for constant vertical indentation depth (in the y 
direction). The black squares correspond to the situation without fric-
tion, the red squares correspond to realistic friction (based on experi-
ments), and the green squares correspond to the largely overestimated 
friction coefficient. On the x-axis, there is a horizontal distance 
between the center of the cell and the center of the indenter. The solid 
line represents the theoretical model without friction using Eq. (3)

Fig. 8   The reaction force for 0.5  µm indentation depth for typical 
parameters as a function of the nucleus diameter

Fig. 9   Dependence of the reaction force at 0.5  µm on the indenter 
radius. The solid lines represent the Hertz function fit, and the dashed 
line is the Hertz function shifted vertically
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The original Hertz function has a square-root dependence 
on the indenter radius. As can be seen in Fig. 9, the Hertz 
function works well only for a very thin cortex. With an 
increase in the cortex thickness, the function fails to describe 
the dependence on the indenter radius. The dependence for 
the thick cortex looks like a square-root dependence of the 
Hertz function shifted by a certain value. In order to examine 
this shift closely, the dependence of reaction force on the 
cortex thickness was plotted (Fig. 10). As can be seen from 
this plot, the shift can be well described by the square func-
tion of the cortex thickness.

All of the above-mentioned observations allow us to write 
down the dependence of the reaction force on all geometri-
cal factors. We have shown in the previous section that the 
dependence on the indentation depth d could be approximated 
as d3∕2 . Combining this square dependence on the cortex 
thickness with the square-root dependence on the indenter 
radius from Hertz function yields the dependence of the reac-
tion force on the geometrical properties of the system,

Here t  is cortex thickness and p is a free parameter. In 
fits shown in Fig. 3, we treat E∗ as a free parameter for the 
pure Hertz function fitting. The function Eq. (4) has a sim-
ple form, only slightly more complicated than the original 
Hertz function. Yet for a vast parameter range, it offers a 
large improvement in the accuracy. The function very well 
approximates the combined dependence of the reaction force 
on the cortex thickness and the radius of the indenter. The 
next section presents a study that checks how well this func-
tion approximates the experimental results.

(4)F = E∗
(

r
1

2 + p ∗ t2
)

d3∕2

4.9.1 � Parametric study

In this subsection, we determine the range of cell properties 
in which our modified Hertz function is accurate. The pro-
posed function Eq. (4) was fitted to all simulation results. The 
free parameters in this function ( E∗ and p) do not depend on 
the geometrical factors, they were kept constant for the given 
cortex and cytoplasm Young’s moduli combination. These 
parameters depend solely on the properties of the material.

Assessment of the value of fit quality using R-squared 
allows one to determine the parameter range for which the 
proposed parametrizing function is valid. The function gen-
erally fits quite well, especially for the lower half of cyto-
plasm Young’s moduli range. The direct comparison of the 
global resulting formulas (4 and 5) to the data is given in 
Sect. 4.12.

Figure 11 shows the dependence of fitted parameters on 
the simulated data. Generally, the dependencies are slower 

Fig. 10   The dependence of the reaction force at 0.5  μm depth on 
the thickness of the cortex. Solid lines represent the fit of the square 
function to the data ( y0 + y1 ∗ t2−where y0 and y1 are fit parameters)

Fig. 11   Dependence of the modified Hertz function parameters on 
Young’s moduli
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than linear. Some effort was put into the functionalization 
of these dependencies in a simple form. It was found that 
the parameters E∗ and p can be expressed as Eq. (5). After 
being inserted into Eq. (4), these relations approximate the 
dependence very well.

where Ecyt and Ecor are Young’s moduli of cytoplasm and 
cortex.

4.9.2 � Large nucleus

As mentioned earlier, a similar analysis was conducted for the 
case of a large nucleus. Another ca. 750 simulations runs were 
performed, scanning the same range of parameters as previously. 
The difference was that the diameter of the nucleus was now 
considerably larger (10.5 μm). The results were analyzed in the 
same manner as described in Sects. 4.6 and 4.8. They showed 
overall trends similar to those obtained with a smaller nucleus. 
Formula (4) fits the data exceptionally well when ECOR is 2 to 
8 kPa and ECYT is 0.2 to 0.5 kPa. For the rest of the data, the fit 
is also as satisfactory as for the standard nucleus size. However, 
as shown in Fig. 8, the larger nucleus makes the cell considerably 
stiffer, so the formulas for parameters Eqs. (5) will not accurately 
describe the behavior of a large cell. Once again, the parameters 
of formula (4) were optimized for the large cell case, yielding:

(5)
E∗ = 7[Pa]1∕4E

3∕4

CYT
+ 0.069

√

ECYTECOR

p = 0.66[�m]−3∕2
�

ECOR

ECYT

�0.704

,

4.9.3 � Quality of the approximation

In this section, the accuracy of the proposed formula is 
tested. Figures 12, 13, 14 and 15 show how well relations (5) 
substituted into the formula (4) reflect the results, compared 
to the Hertz model. The Hertz model works for uniform 
materials, so for comparison we added the Hertz model for 
the cytoplasm and the cortex. The examples were selected to 
cover most of the parameter range. For the typical values of 
the parameters (Fig. 12) formula (4) fits the data adequately, 
while the Hertz function with the Young’s modulus of the 
cortex is too stiff, and with the Young’s modulus of the cyto-
plasm it is too soft. The same situation occurs when we take 
a different point from the simulation parameter space with 
a stiffer cytoplasm (Fig. 15). However, for the point with a 
very thin cortex (Fig. 13), our formula is not as precise, but 
still much better than the Hertz function with the Young’s 
modulus of the cytoplasm. Let us look at the case of another 
extreme. For a thick cortex with a fairly low Young’s modu-
lus (Fig. 14), we find that the formula still approximates the 
simulation well, but the Hertz model with Young’s modulus 
of the cortex is only slightly off. This can be explained by 
the fact that the cytoplasm cannot be probed through such 
a thick cortex.

(6)
E∗ = 37.7 ∗ [Pa]

1

2E
1

2

CYT
+ 0.102

√

ECYTECOR

p = 0.59[�m]−3∕2
�

ECOR

ECYT

�0.667

Fig. 12   Comparison of the formula (4) with (5) approximations to the 
Hertz models for ECYT​=250 Pa, ECOR=5000 Pa, R =3.5 µm, t = 0.3 µm

Fig. 13   Comparison of the formula (4) with (5) approximations to 
the Hertz models for ECYT​ = 250 Pa, ECOR=5000 Pa, R =1 µm, t = 
0.1 µm
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Previously, no closed-form formula was proposed to include 
the properties of the cortex in an animal cell indentation experi-
ment. The proposed formula (4) has some characteristic of a 
model describing an elastic ball and a spherical shell. The first part 
of the proposed formula is similar to the Hertzian contact. They 
have the same square root dependence on the indenter radius. The 
second part of the formula is reminiscent of the shell theory. The 
square dependence on the shell thickness is the same as in classi-
cal Reissner theory (Reissner 1946). Although for unpressurized 

shells the dependence gets slightly sharper for deeper indentations 
(Pogorelov 1988). When we consider the pressure in the cells, the 
Reissner theory can be extended to the deeper indentations just by 
introducing an effective Young’s modulus (Lazarus et al. 2012). 
Therefore, the dependence holds even for deep indentation for a 
lightly pressurized shell. The cytoplasm will exert some pressure 
on the cortex, so formula (4) can be interpreted as the sum of the 
Hertzian contact for the ball and the Lazarus dependence for the 
lightly pressurized shell indentation.

The proposed formula does not contain any free param-
eters, thus it can be used to extract material parameters 
(Young’s moduli of cytoplasm and cortex, more specifi-
cally the cube root of cortex Young’s modulus multiplied 
by its thickness). This does not allow us to fully character-
ize all mechanical properties of the cell, but gives a much 
better insight into the cell structure than using the Hertz 
formula. The Hertz formula yields only apparent Young’s 
modulus, which is not directly associated with any of the 
fundamental properties of the cell material or structure.

5 � Conclusions

This work focuses on modeling the indentation of the animal 
cell, while treating the cortex as a full three-dimensional body 
with its real bending stiffness. It shows that the dependence of 
the reaction force on the indenter radius is similar to the one 
from the Hertzian contact, only shifted vertically by a term pro-
portional to the squared thickness of the cortex. In other words, 
the dependence of the reaction force on the cortex thickness 
is a square function. One can imagine that during indentation, 
when the cortex ‘surrounds the probe’, it changes the size of the 
probe. By adding an extra term, we managed to regain Hertz-
like behavior with much better convergence of the model to 
the experimental data, and we maintained the simplicity of the 
proposed equations. It is also important to emphasize that the 
proposed model modification is not based on simply increasing 
complexity by adding a few free parameters, but on introducing 
corrections related to material data.

Moreover, there is a significant difference in response when 
treating the cortex as 3D in contrast to the 2D body without 
bending stiffness. The difference is more pronounced for smaller 
indentation depths. For our typical cell, there was a twofold rela-
tive difference in the applied force at a small indentation depth.

On the other hand, the influence of friction and off-center 
load is less significant. It turns out that the friction of the 
order of magnitude measured in the experiment does not 
contribute much to the force-indentation curve. Similarly, 
the maximal force measured under constant vertical indenta-
tion depth changes little between the center and the side of 
the cell. We presented the formula for computing the effec-
tive indentation depth, knowing the distance from the center 
and the vertical indentation.

Fig. 14   Comparison of the formula (4) with (5) approximations to 
the Hertz models for ECYT​ = 250 Pa ECOR = 1000 Pa, R =2 µm, t = 
0.6 µm

Fig. 15   Comparison of the formula (4) with (5) approximations to the 
Hertz models for ECYT​ = 750 Pa, ECOR = 5000 Pa, R =3.5 µm, t = 
0.3 µm
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