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Abstract
Certain assemblies of fibers, called fiber bundles, play a crucial role in the statistical macroscale properties of fibrous struc-
tures like natural or artificial materials. Based on the concept of using idealized statistical fiber bundle cells (FBCs) as model 
elements, the software named FiberSpace was developed by us earlier for the phenomenological modeling of the tensile test 
process of real fibrous structures. The model fibers of these FBCs had been considered linear elastic, which was suitable 
for modeling certain textiles and composites. However, the biological tissues are multilevel structures with fiber-like build-
ing elements on every structural level where the fiber elements on the dominant level are statistical bundles of elementary 
fibers. Hence, their modeling required us to introduce model fibers of nonlinear mechanical behavior and derive the proper 
mathematical formulas for the calculation of the expected tensile force processes of the FBCs. Accordingly, we developed 
a new version of FiberSpace. The proposed nonlinear FBCs-based modeling method is essentially phenomenological that 
decomposes the measured and averaged stress–strain curve into the weighted sum of the responses of different idealized 
nonlinear FBCs. However, this decomposition can give certain information about the fibrous structure and some details of 
its damage and failure sub-processes. A special application of nonlinear E-bundles, where the measured stress–strain curve 
is expanded into a product-function series, may give another type of description for the failure process and can be applied to 
single measurements of structured failure process containing significant peaks and drops as well. The fitted phenomenological 
FBC models provide a decomposition of the measured force–strain curve, which enables to construct informative damage 
and failure maps. The applicability of the phenomenological modeling method and the fitting procedure is demonstrated 
with the tensile test data of some human and animal tissues, such as facial nerves and tendons.
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1  Introduction

Most human and animal tissues (e.g., tendon, muscle, 
bone, nerve, vein/artery, and skin or pellicle tissues) have a 
fibrous structure (Moore 1999; Neumann et al. 2019). Sim-
ilar to artificial fibrous materials, such as textiles or fiber-
reinforced composites (Bovier 2012; Fondrk et al. 1988; 
Gibson 2016; Hull 1996; Kollar 2003; Kovács and Rom-
hány 2018; Takács and Szabó 2020; Vardai et al. 2019; 
Yin 2018), they are usually examined by using continuum 
phenomenological models (Fondrk et al. 1988; Nordin 
2022; Pollintine et al. 2009) like the anisotropic linear 
elastic approach for hard materials and the isotropic Neo-
Hookean and the anisotropic Fung and Holzapfel–Gas-
ser–Ogden's (HGO) hyper-elastic models for soft materials 
(Huh et al. 2019; Sun and Sacks 2005). The mechanical 
features of fibrous materials, however, strongly depend on 
the statistical geometrical and mechanical properties of 
the building elements like fibrils, fibers, and bundles of 
them such as macro-fibrils, yarns or rovings, as well as on 
the connection between the fibers and their environment. 
Fiber bundles, especially the so-called classic type, have 
been studied since the first third of the last century and the 
results of Daniels and Jeffreys (1945), Harlow and Phoenix 
(1978), and Phoenix (Nato Advanced Study Institute on 
Mechanics of Flexible Fibre Assemblies), among others, 
have proved to be of fundamental importance. The classi-
cal fiber bundle models (FBMs) have rather widely been 
used in physics and in the brittle materials science (Hansen 
2015; Nanjo 2016). These researchers focused mainly 
on strength as a probability factor. The deformation and 
damage behavior of fibrous structures during mechanical 
tests can be modeled with the so-called fiber-bundle-cells 
(FBC) method, where the FBC model is a network consist-
ing of parallel and serial connections of statistical FBCs 
as model elements, which use linear elastic fibers (Molnar 
et al. 2012; Vas 2006a, 2006b; Vas and Rácz 2004; Vas 
et al. 2004; Vas and Tamás 2008). These fiber bundle cells 
represent different idealized and typified fiber properties 
such as fiber shape, state of deformation, connection to 
their environment (stiff or frictional grip), and the char-
acter of damage and the transmission of force. All the 
parameters determining the position, state, or strength of 
fibers are random variables. With the aid of the weighted 
parallel or serial connection of the fiber bundle cells, the 
mechanical behavior and the measured damage process of 
real fibrous systems can be modeled or identified from a 
fiber-bundle-cell model on the basis of measurements, and 
the structural properties of the systems can be determined.

A program package named FiberSpace was developed 
by the authors in Delphi Code earlier in order to help 
professionals construct a suitable linear FBC model for 

a given material or study the behavior of model struc-
tures where the model fibers were considered linear elastic 
(Molnar et al. 2012; Vas and Tamás 2008). Using FBCs 
for creating theoretical structural–mechanical models of 
fibrous structures provides a way to describe the statisti-
cal mechanical behavior of fibrous structures for different 
damage modes during mechanical tests such as tensile or 
bending tests.

Results of testing and analyzing woven fabric samples 
showed that instead of linear fiber elements, nonlinear ele-
ments had to be used for modeling tensile behavior (Vas et al. 
2013). The use of such type of bundles can be found in some 
papers dealing with other structures as well (Goh et al. 2013; 
He and Wang 2004). We had similar results when testing bio-
logical (plant, animal, and human) tissues (Hangody et al. 
2017). Hence, in order to model the tensile behavior of human 
or animal tissues, we developed the concept of nonlinear FBC 
modeling and a general approximation method based on non-
linear E-bundles in a new version of the FiberSpace software.

To demonstrate the applicability of the modeling method 
and this software, we modeled and evaluated tensile test results 
of human facial nerve and tendon samples, and analyzed them 
on the basis of some failure maps determined with the aid of 
the FBC model.

2 � Nonlinear fiber‑bundle‑cells‑based 
modeling

2.1 � Nonlinear fiber bundle cells

Studying the structure and mechanical properties of biological 
(plant, animal, and human) tissues has shown that they have a 
multilevel hierarchical structure where the fiber-like building 
elements, such as different types of fibrils are formed as the 
bundles of lower-level elements (e.g., a fibril is a bundle of the 
micro-fibrils) (Fig. 1) (Hangody et al. 2017; Hoagland 1997; 
Moore 1999; Nordin 2022). In addition, these lower-level 
elements may be crimped and/or oblique to a certain degree. 
Although their degree (micro-crimping and micro-obliquity) 
is much smaller than the degree of the higher level elements 
(macro-crimping and macro-obliquity), they may neverthe-
less strongly influence the mechanical behavior of the higher 
level elements. Therefore, even if the elementary fibers are 
linear elastic, the intermediate fibers, which are bundles of 
elementary fibers, cannot be modeled as linear, only nonlinear 
hyper-elastic materials.
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Fig. 1   Partial structural graph of biological tissues
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Hence, in order to model the tensile behavior of animal 
and human tissues, we developed modified formulas to 
describe the expected tensile force process of the different 
nonlinear fiber bundles, and built these new formulas into a 
new version of the FiberSpace software.

2.1.1 � Definitions of FBCs and the force–strain relationships 
of single fibers

Fibers in a fibrous structure that is subjected to a uniaxial 
tensile load (F) can be classified according to their geom-
etry (shape, position) and mechanical behavior (strain state, 
gripping). These fiber classes are called fiber bundle cells 
(FBCs) (Vas and Rácz 2004; Vas and Tamás 2008) (Fig. 2). 
The model fibers are assumed to be elastic and perfectly flex-
ible while they break at a random strain value. In an E-bun-
dle (E is for elastic fibers) the fibers are straight and parallel 
to the load direction, they are not strained and are ideally 
gripped. The fibers in the other bundles have some statis-
tical defect indicated by the second letter (Fig. 2). There-
fore, H is a sign for the loose (crimped, wavy, or coiled) or 

pre-strained fibers. S is for the not ideally gripped fibers or 
fiber chains made of elementary fibers glued together at their 
ends hence they may slip out of the grips created by their 
vicinity. Finally, T is for the oblique or skew fibers character-
ized by the tangent of their orientation angle.

2.1.2 � Strain of FBC fibers

Fibers of these FBCs are supposed to be perfectly flexible, 
nonlinearly elastic and to break at a random strain (εB). In a 
constant-rate elongation tensile test, the strain (ε(u)[−]) and 
the tensile force (F(u)) of fibers create stochastic processes 
as a function of the bundle strain (u[−]). The formulas for 
fiber strain (ε) and the possible crosswise contraction (W(u)) 
of the oblique fibers (used in the case of linear FBCs as well) 
are as follows (Vas and Rácz 2004):

where ε0 is the possible initial strain (if ε0 > 0, the fiber is 
pre-strained, if ε0 < 0, the fiber is crimped), T0 = tgα0 is the 
initial obliquity of the fibers (α0 is the initial orientation 
angle) and ca, cb are contraction constants. According to the 
asymptotic approximation in Eq. (2), the product of con-
stant cacb can be understood as the Poisson’s coefficient of 
the fibrous system in the case of small deformations. For 
simplicity, all the stochastic parameters and variables are 
assumed to be independent.

2.1.3 � Nonlinear tensile characteristics of FBC fibers

We chose the response of a Standard-Solid model (Phe-
nomenological Treatment of Viscoelasticity 2005; Vas 
et al. 2019) to a ramp-type stimulus as the nonlinear tensile 

(1)

�(u) = g
(
u;�0, T0

)
=
(
1 + �0

)
√√√√ (1 + u)2 + T2

0
W2(u)
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0

− 1

(2)W(u) =
1(

1 + cau
)cb ∼ 1 − cacbu(u → 0)
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Fig. 2   Classifying fibers into classes according to geometrical and 
mechanical properties and the structural schemes of the classes as 
idealized fiber bundle cells such as E-, EH-, ES-, and ET-bundles

Fig. 3   Standard-solid model 
(StS) (a) and the normalized 
theoretical shapes of possible 
responses to a stimulus of ramp 
type at different (a–c) param-
eters according to Eq. (4) (b)
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characteristic function of the fibers (Fig. 3). This model 
is created by the parallel connection of a Maxwell branch 
and a spring—or its generalized version with several Max-
well branches (Vas et al. 2019). The model is often used to 
describe the mechanical behavior of hyper-elastic or vis-
coelastic materials such as elastomers (soft rubbers). The 
ramp-type stimulus is realized by the constant-rate elonga-
tion during tensile tests.

This engineering stress response function of the Stand-
ard-Solid model (Fig. 3a) is as follows:

where E > 0 and E0 > 0 are the elastic moduli of the springs, 
η > 0 is the dynamic viscosity of the viscous element, the 
dashpot, and ε ≥ 0 and σ ≥ 0, and 𝜀̇0 are the engineering strain 
and stress, and the strain rate, respectively (Fig. 3a). v is the 
elongation rate, l0 is gauge length, and τ is the (relaxation) 
time constant of the Maxwell branch. As a formal generali-
zation of Eq. (3), we denote the constants simply by a, b, 
and c. Allowing the negative values of a makes it possible to 
obtain not only a linear (a = 0) or a concave (a > 0) function 
shape but a convex (a < 0) shape as well (Fig. 3b). Moreover, 
when a large initial curved arc of the force–strain curve is to 
be modeled, the extension of the parameter domain for the 
negative b values can provide a simple way to describe it 
(Fig. 3b: ExtP; a—asymptote). However, it should be noted 
that in practical processes, the exponential rising is just the 
initial part of a logistic curve.

Consequently, as opposed to the one-parameter (c) lin-
ear tensile force–strain curves of the single fibers used 
earlier (Molnar et al. 2012; Vas and Rácz 2004; Vas and 
Tamás 2008), the nonlinear curves are described by the next 
3-parameter (a, b, c) formula (Cleary 1979; Vas et al. 2013):

(3)𝜎(𝜀) = E0𝜀 + E𝜀0

(
1 − e

−
𝜀

𝜀0

)
, 𝜀0 = 𝜀̇0𝜏, 𝜀̇0 =

v

l0
, 𝜏 =

𝜂

E

where k(ε(u)) ≥ 0 and A0 is the cross-sectional area of the 
single fibers and K0 = c + ab is the initial tensile stiffness. 
In general, the parameters, a, b, and c are constant and may 
depend on the type of the FBC.

Obviously, this 3-parameter curve by Eq. (4) includes 
the linear one as well (c > 0, a = 0), moreover, when b > 0, 
it is asymptotically linear determined by slope c and inter-
cepts a. If the fiber breaking strain distribution is known, 
the expected fiber breaking force can be calculated as 
follows:

Besides the schematic of the bundles, Figs. 4, 5, 6, 7 
show the normalized graphic relationships for the strain 
(y = ε/εB) and the tensile force (Y = F/FB) of individual 
flexible and elastic fibers with both linear and nonlinear 
force–strain characteristics as a function of the bundle 
strain (z = u/εB). The bundle strain-dependent fiber strain, 
ε(u), and the fiber force can be considered as stimulus and 
response, respectively. On the other hand, the relation-
ship between the fiber and bundle strains, ε(u), represents 
and characterizes the mechanical connection between the 
single fiber and its material environment.

2.1.4 � Tensile force response of the FBC fibers

The fibers of the E-bundle are straight and parallel to the 
load direction and they are ideally gripped, meaning that 
they do not slip out of the grips and do not break in the 
grips (Fig. 4). Therefore, it is often called ideal fiber bun-
dle (Daniels and Jeffreys 1945; Harlow and Phoenix 1978; 
Nato Advanced Study Institute on Mechanics of Flexible 
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Fig. 4   Relationship between the strain (a) and tensile force (c) of single nonlinear fibers and an E-bundle (b) strain
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Fibre Assemblies; Vas and Rácz 2004). As a consequence 
of its properties, the strain of each fiber (ε) in the E-bundle 
is equal to that of the bundle (u). Yet the overall relation-
ship between the fiber and bundle strains is not linear if 
breakage is taken into account.

Vitiating the ideal properties of the E-bundle, one at a 
time, leads to three other bundle types which represent sta-
tistical behavior in some idealized way.

The fibers in the EH-bundle are ideally gripped but they 
may be loose (εo < 0) or pre-tensioned (εo > 0) with their 

chord remaining straight (Vas and Rácz 2004; Vas and 
Tamás 2008) (Fig. 5).

Fibers in the ES-bundle are straight and parallel but 
they may slip out of their grip at a strain level (εS) or cre-
ate fiber chains with slipping bonds (Fig. 6). The breaking 
strain-related slippage length is εL and the slippage ends at 
εSL = εS + εL. The strain level of slippage is obviously the 
minimum of those obtained at the two finer ends as well as 
at the slipping bonds if there is any. Thus, the fibers in the 
ES-bundle can produce two types of failure depending on 
their stochastic parameters: slippage if εS < εB or breakage 
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Fig. 5   Relationship between the strain (a) and tensile force (c) of single nonlinear fibers and an EH-bundle (b) strain
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if εB < εS. The slippage may model the flow in the fibrous 
structures.

The fibers are straight and ideally gripped but they 
may be oblique (the initial fiber angle, α0, is not zero, 
so T0 = tgα0 ≠ 0) in the ET-bundle (Fig. 7). The orienta-
tion angle of fibers may be a stochastic variable. In most 
cases, the expected value of the orientation angle is zero, 
meaning scattering about the load direction but a nonzero 
value means essential obliquity. The extreme case of the 
latter is when the orientation angle is a nonzero constant, 
modeling a kind of shearing.

Both the shape, position, and strength parameters of 
fibers are assumed to be independent stochastic variables. 
Consequently, the strain (ε(u)) and the tensile force (F(u)) 
of both the individual fibers and the bundles create multi-
parameter stochastic processes as a function of the bundle 
strain (u).

2.1.5 � Formulas for calculating the expected tensile force 
process of nonlinear FBCs

Knowing the relationship between the bundle (u) and 
fiber strains (ε), one can calculate the expected value of 
the tensile force of the FBCs ( E(F) = F(u) ) as a sum of 
the single fiber forces, using the suitable formulas devel-
oped. Dividing the expected value by the mean breaking 
force of fibers, the normalized tensile force of the bundle 
is calculated as follows:

where n, FB , and �B are the number, the mean breaking force, 
and the strain of fibers, respectively, and z is the bundle 
strain normalized by the mean breaking strain of fibers, 
while F1 is the bundle force related to one fiber. Accord-
ingly, normalizing the strain quantities in Eq. (1) with �B 
defines a new function:

Earlier we had developed mathematical formulas for cal-
culating the expected value of the tensile force processes 
of linear fiber bundles (Vas and Rácz 2004) and built their 
numerical realization in the software named FiberSpace (Vas 
and Tamás 2008). Based on the nonlinear tensile characteris-
tic of fibers, these mathematical relationships were modified. 
The related shape of the fiber strain by Eq. (7) and the nor-
malized version of the formulas are presented subsequently 
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for every FBC where QX is the distribution function of the 
stochastic variable X ∈ {ε0, εS, εSL, εB, T0}.

2.2 � Nonlinear E‑bundle

2.3 � Nonlinear EH‑bundle

where k(0) = 0 and k is a strictly monotonically increasing 
function according to Eq. (4). Since the fibers are perfectly 
flexible, they cannot transmit negative (compressive) force, 
hence the positive part of the tensile characteristic is calcu-
lated from the positive part of fiber strain as well:

2.4 � Nonlinear ES‑bundle

Equation (8) is valid for fiber strain in the ES-bundle as well.

2.5 � Nonlinear ET‑bundle

The initial strain (ε0) is equal to zero, thus fiber strain is as 
follows:

The force components in the direction of the tensile load 
(L) and perpendicular to that (T) are given by
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The limit of slippage resistance (εS) and the slippage 
length (εL) expressed as relative strains are independent of 
any other stochastic variables in the ES-bundle, which is 
well usable for studying different slipping or flow processes 
in general. However, when the fibers are for example mol-
ecule chains built in the crystalline part or micro-fibers of 
a short fiber-reinforced composite, slippage resistance and 
slippage length depend on the length of the fibers. In this 
case, instead of the ES-bundle, its modified versions, the 
ES1-bundle and the ES2-bundle can be used. In the ES1-
bundle, the slipping resistance is constant during slippage, 
whereas it decreases linearly in the ES2-bundle. The linear 
ES1- and ES2-bundles were applied to describe the strength 
of fiber flows and unidirectional short fiber composites (Vas 
2006a, 2006b). We plan to develop their nonlinear versions 
as a next step.
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2.6 � Modeling and decomposing tensile test results 
with parallel‑connected FBCs

We have developed an updated version of the program 
package named FiberSpace as the numerical realization of 
the nonlinear FBC-based modeling procedure, in order to 
assist the construction of a suitable FBC model for a given 
material or facilitate studying the behavior of model struc-
tures. The identification of the different statistical fiber 
bundle cells (FBCs) to be applied has been based on the 
minimization of the squared deviation between the measured 
force–strain curve and the expected tensile force process of 
the FBC model, which was created as the parallel connection 
of number-weighted fiber bundle cells.

2.6.1 � Numerical realization of nonlinear FBCs 
by FiberSpace

In Fig. 8, the normalized expected tensile force process of 
a nonlinear E-bundle can be seen together with the window 
for setting the tensile characteristic parameters of fibers as 
displayed by the novel version of FiberSpace.

The parameters (a, b, c) are the same as in Eq. (4). The 
window reveals the shape of the characteristic function as 
well. In addition, besides the exponential type characteristic 
by Eq. (4), FiberSpace offers two other modes for setting 
nonlinear fiber characteristics. One of them is a polynomial 

Fig. 8   The tensile force process of a nonlinear E-bundle and the setting window for the nonlinear fiber characteristic as visible in the FiberSpace 
program screen
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of a degree of maximum 5, the other is a numerical method 
where the measured data can be imported from MS Excel.

Figures 9 and 10 show some typical results of calculating 
the normalized expected tensile process of the basic linear 
and nonlinear FBCs. They were calculated with the same 
model parameters except for those belonging to the fiber ten-
sile characteristic. The parameters of the latter were a = b = 0 
and c = 1 for the linear FBCs while they were a = -1 and 
b = c = 1 for the nonlinear FBCs. The diagrams were cre-
ated with MS Excel. The short designations of the normal-
ized expected value, E(X), and standard deviation, D(X), 
of the stochastic variables X ∈ {εB, ε0, εS, εL, T0}, used in 
FiberSpace are the following: AE = E(εB), VE = D(εB)/AE; 
EH = E(ε0)/AE, VH = D(ε0)/AE; ES = E(εS)/AE, VS = D(εS)/
AE, EL = E(εL)/AE, VL = D(εL)/AE; ET = E(T0), ST = D(T0), 
Ca = ca and Cb = cb are the contraction parameters, while the 
parameters of the nonlinear tensile characteristic of fibers 
are: Ya, Yb, Yc with the FBC code Y ∈ {E, EH, ES, ET}.

On the basis of Figs. 9 and 10, one can conclude that, 
relating to the linear E-bundle-curve (L-E), every stochas-
tic disorder or damage decreases the expected tensile force 
values on the ascending parts and extends the range of the 
descending parts of the other linear bundles (blue curves 

for L-EH, L-ES, and L-ET). At the same time, the lat-
ter effect increases the mechanical reliability of the fiber 
bundles. On the other hand, in general, the introduction of 
nonlinear fiber characteristic decreases the tensile force 
values and modifies the shape of the initial ascending 
part of the curves while the descending part essentially 
remains similar to the linear case. In addition, the range 
of the descending part of the bundles NL-EH, NL-ES, and 
NL-ET is also wider related to that of the bundle NL-E. 
However, as can be seen in Fig. 9b, in the case of the 
EH-bundle, the slope of the descending part increases, 
which can compensate for the flattening effect of crimp-
ing and allows steeper descending. The latter can extend 
the possibilities of modeling tensile measurement results 
with FBCs.

2.6.2 � The nonlinear FBC model—parallel‑connected FBCs

The analysis of the bundle structure and the identification 
of the different statistical fiber bundle cells (FBCs) to be 
applied were based on the minimization of the squared 
deviation between the measured force–strain curve and the 
expected tensile force process of the FBC model, which was 
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Fig. 9   Normalized expected tensile force–strain curves of the E-bundle (AE = 1.0; VE = 0.2) (a) and EH-bundle (AE = 1.0, VE = 0.2; 
EH = −0.15 > 0 waviness, VH = 0.05) (b)
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created as the parallel connection of number-weighted FBCs 
(Fig. 11). This latter model is called composite bundle.

The expected value process of a composite bundle 
(Fig. 11) is calculated as the weighted sum of the compo-
nents (wk is the weighting factor, that is, the fiber number 
ratio of the k-th FBC):

Weights can be given by arbitrary nonnegative integers 
Se, Sh, Ss, St for the E-, EH-, ES-, ET-bundles, respectively 
(their sum should be positive), and FiberSpace calculates 
the weighting fraction values wk, that is, the fiber number 
fractions, as follows, for example (k = 1 can be used instead 
of k = e):

Figure 12 shows the weighted sum of the normalized 
expected tensile force processes of the linear and nonlinear 
FBCs, which are shown in Figs. 9 and 10.

The weights used for the E-, EH-, ES-, and ET-bundles 
were 10%, 30%, 50%, and 10%, respectively.

The curves well demonstrate the possible effect of nonlin-
earity regarding the tensile characteristic of the fiber. Shift-
ing to nonlinear behavior not only decreases the force values 
of the onset part of the curve but may change the shape as 
well. Among others, the slightly descending plateau of the 
ES-bundle becomes slightly ascending.

The load–strain curve of a real fibrous sample is deter-
mined with a tensile test and its normalized form can be 
imported into FiberSpace from Excel files with the aid of the 
Microsoft Component Object Model technology.

By default, FiberSpace treats the z values between 0 and 
2 with an adjustable partition. In the partitioning points, 
the normalized load–strain curve is calculated by inter-
polation on the basis of the measured strain values. The 
measured load-deformation data or the normalized result of 
modeling can be normalized or denormalized, respectively. 
The 16-model parameters used in the linear case, such as 
the 4-component weights and the data of the 12 statistical 
bundles are completed with a maximum of 12 nonlinearity 

(17)FH(z) =

4∑
k=1

wkFHk(z),

4∑
k=1

wk = 1.

(18)w1 = we = Se∕(Se + Sh + Ss + St).

parameters of the different bundle types (the maximum is 
for the case when all the FBCs have different tensile fiber 
characteristics). Consequently, including the mean breaking 
force of the fibers ( FB ) used for normalization, which may 
be unknown as well, the functional (Ψ) to be minimized in 
order to obtain the structural and mechanical data of the 
FBC model is of 29 parameters represented by vector p. The 
best approximation of a measured load-deformation curve 
F(u) can be determined with a fitting procedure based on the 
least squares method:

where Z0 is the limit of the normalized strain domain, and 
A = AE, B = nFB are the normalizing factors of the measured 
force–strain curve.

2.6.3 � Fourier approximation and the final model 
parameters

Since the FBC model may use up to 29 parameters, deter-
mining them by minimizing the deviation according to 
Eq. (19) needs suitable initial parameter values. The meas-
ured and normalized load–strain curve is approximated 
by Fourier regression so that its shape features can be rec-
ognized. On the basis of our experiences, the load–strain 
curves can be well approximated with a Fourier polynomial 
of 8 terms besides the constant.

The FiberSpace system uses the gradient method for seek-
ing the global minimum which depends on the initial values 
of the model parameters. In order to find the adequate initial 
position, we built in the so-called nearest neighbor searching 
system. The already determined Fourier coefficient vectors 
(f = [a0, a1,…, an, b1,…, bn]T) and the related parameter vec-
tors (m ∈ RP) containing the P = 29 FBC model parameters 

(19)Ψ
(
p
)
=

N∑
i=0

(
F
(
zi ⋅ A

)
B

− FH
(
zi, p

))2

→ min!
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Fig. 11   Parallel connection of the FBCs 0
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Fig. 12   Expected tensile force process of parallel-connected linear 
(a = 0, b = 0, c = 1) and nonlinear (a = −1, b = 1, c = 1) FBCs with the 
weights we = 10%, wh = 30%, ws = 50%, wt = 10%
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are stored in database Data. The input data of the deducing 
system are formed by the Fourier coefficient (f) determined 
from the normalized measured tensile force–strain curve, 
FN(z), while the output data are the initial parameters ( ̂p ) 
of the model composite bundle. The final model parameters 
(p) are obtained by minimizing the expression according to 
Eq. (21):

Finally, when d1 > 0, the vector pair (f, p) is stored in data 
as one record of the training data. This constitutes a step of 
machine learning.

2.7 � Modeling with a series of nonlinear E‑bundles

Using the FBCs introduced and discussed above leads to 
a decomposition of the measured tensile force–strain rela-
tionship. This gives information on the fiber classes of the 
fibrous structure tested and represents stochastic structural 
imperfections, such as wavy, crimped, oblique, pre-stressed 
fibers, or the possibility of fiber pullout. At the same time, 
the application of nonlinear E-bundles only may be very 
advantageous when the purpose of decomposition is to 
determine sub-bundles corresponding to certain known con-
ditions (e.g., damage/failure modes, elements of hierarchic 
structural levels).

On the other hand, the mechanical behavior of the non-
linear EH-, ES-, and ET-bundles can be decomposed into 
weighted parallel combinations of nonlinear E-bundles 
therefore the expected responses of the previous FBCs can 
be decomposed into the weighted sum of the nonlinear 
E-bundle-responses (j ∈ {E,EH,ES,ET}):

(20)
FN(z) →Fourier f →Deduction p̂ →FH

FH
(

z, p̂
)

→Minimizing FH
(

z, p
)

≈ FN(z).

where the reliability functions are the complement distri-
bution functions of the fiber breaking strain, which are of 
the same two parameter type with different expected values 
(mi = E(εBi)) and standard deviations (si = D(εBi)).

In general, in order to show and analyze the effects of 
statistical inhomogeneities in the structure, the fibers in dif-
ferent linear or nonlinear FBCs have the same mechanical 
properties but according to Eq. (21), the fibers in a series 
of E-bundles have different tensile characteristics. This 
fact makes further analysis possible. Figure 13 shows the 
approximation of normalized force responses of nonlinear 
EH- and ES-bundles with a single and two nonlinear E-bun-
dles, respectively. Using the simplest way, the large initial 
arc of the nonlinear EH-response was approximated by a 
shifted E-bundle response (Fig. 13.a; b > 0; FHE(u-u0) > 0 if 
u > u0 and = 0 if u0), however, the exponential rising (b < 0) 
could be used as well.

Uniting the different approximations, the measured tensile 
force–strain curve, F(u), can be modeled by the weighted 
parallel connection of nonlinear E-bundles (n = Σnj), hence 
it can be approximated with the expected tensile process of 
the resultant bundle:

On the other hand, Eq. (22) represents the law of total 
expectation, namely:

(21)FHj(u) ≈

nj∑
i=1

wjiFHji(u) =

nj∑
i=1

wjikji(u)Rji(u)

(22)

F(u) ≈ f (u) =

n∑
i=1

wif i(u) =

n∑
i=1

wiki(u)Ri(u),

n∑
i=1

wi = 1.
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Fig. 13   Approximating the normalized tensile response of a non-
linear EH-bundle (see Fig. 9b) (a) and ES-bundle (see Fig. 10a) (b) 
with parallel-connected nonlinear E-bundles. a a shifted E-bundle 
(a = −1, b = 1.5, c = 1.5, u0 = 0.2, m = 0.67, s = 0.2; RMSE = 1.04%, 

R2 = 0.999). b Two E-bundles (u0 = 0; w1 = 0.4; a1 = −0.8, b1 = 2.125, 
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where k(u) is the expected tensile characteristic, hence, the 
conditional expected value of f(u) and the probability of the 
condition are given by:

respectively, where Bi is the event that an arbitrary fiber 
belongs to the ith sub-bundle.

It should be noted that Eq. (22) is a finite part of a special 
function series of product-shaped terms thus the decomposi-
tion into nonlinear E-bundles is equivalent to an expansion into 
series (bundle-expansion). Moreover, taking into consideration 
that the values mi (i = 1,..,n) create a strictly monotonically 
increasing series

the sum according to Eq. (22) can be converted into an inte-
gral form as follows:

where W(m) = P(μ < m) is the distribution function of μ, 
which is the expected fiber breaking strain as a conditional 
expectancy. Taking into consideration that the tensile char-
acteristic, k(u), can be given by the relaxation spectrum, 
which characterizes the damage-less work of the material, 
one can suppose that the density function w(m) = dW/dm 
and the s(m) standard deviation function can be regarded as 
damage parameter spectra characterizing the failure process.

Here, s2(m) is a conditional variance of μ, thus it should 
obviously contain the variance of μ therefore the next expres-
sion may be suitable to use:

where s0 and ω are constants, and M = E(μ) and S = D(μ) are 
the expected value and the standard deviation of μ. This can 
be decomposed into a sum of such variances:

Note that the sum is equivalent to a polynomial of 2nd 
order like in Eq. (27).

The relaxation spectrum determines the deforma-
tion behavior in the undamaged state, while the damage 

(23)
F(u) ≈ f (u) =

n
∑

i=1
E
(

f (u)|Bi
)

P
(

Bi
)

=
n
∑

i=1
ki(u)Ri(u)wi ≤

n
∑

i=1
ki(u)wi = k(u)

(24)E
(
f (u)|Bi

)
= ki(u)Ri(u),P

(
Bi

)
= wi,

(25)m1 < m2 < … < mn

(26)F(u) ≈ f (u) =
∞

∫
0

k(u;m)R(u;m)dW(m)

(27)
s(m) =

√

s20 + �2(m −M)2,E
(

s2(�)
)

= s20 + �2E
[

(m −M)2
]

= s20 + �2S2

(28)

s2(m) =

n∑
i=1

[
s2
0i
+ �2

i

(
m −Mi

)2]
=

n∑
i=1

s2
0i
+

n∑
i=1

�2

i

(
m −Mi

)2
.

parameter spectra characterize the failure process. Fitting 
the model by Eq. (22) and determining the free parameters 
(ai, bi, ci, mi, si)(i = 1,…,n) are performed by minimizing the 
squared deviation according to Eq. (19), from the measured 
data. Taking into consideration that the series in Eq. (22) can 
be estimated from above by a kind of Prony-series that can 
be characterized by a so-called discrete relaxation spectrum 
(Hoagland 1997), {(bi; ai, ci)}, which consists of double val-
ues; besides that, the original series itself can be a damage 
or failure parameter spectrum, {(bi; mi, si)}, which contains 
double values as well. It can be easily seen that bi is a kind 
of “strain-frequency” or relaxation parameter since it can be 
expressed with the relaxation time, τi:

where u̇0 is the engineering strain rate ( u = u̇0t ), and ηi and 
Ei are the dynamic viscosity and the tensile modulus, respec-
tively, which are the parameters of the Maxwell model used 
for the tensile characteristic of the model fibers (Fig. 3a).

The nonlinear E-bundles, as the simplest FBCs, can be 
calculated even in an MS Excel environment, and we used 
them first for modeling and analyzing the results of tensile 
and acoustic emission tests (Vas et al. 2019).

2.8 � FBC model‑based damage maps and reliability 
characteristics

The FBC model fitted to tensile test measurements makes 
it possible to calculate some qualitative characteristics 
of the material, such as the reliability characteristics and 
damage maps of different weighting.

According to Eq.  (17), the resultant normalized 
expected tensile force of the FBC model is the weighted 
sum of those of the components. The gradual addition 
of the components decomposes the resultant curve into 
ranges which show the weighted fraction of the compo-
nents and the represented damage modes as a function of 
the normalized FBC strain (n = 1,…,N ≤ 4):

where N is the number of components with nonzero weight. 
The normalized form of Eq. (30) is this:

According to Eq.  (9), the normalized expected ten-
sile characteristic of the E-bundle, kHE (z), is identi-
cal with that of the fibers, consequently, the reliability 

(29)
1

bi
= u̇0𝜏i = u̇0

𝜂i

Ei

(30)FH(z)n =

n∑
i=1

wiFHi(z)

(31)fH(z)n =

∑n

i=1
wiFHi(z)∑N

i=1
wiFHi(z)
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characteristic equals the complement distribution function 
of the fiber breaking strain:

The normalized expected tensile characteristic of the 
other FBCs can be obtained by substituting the comple-
ment distribution function of the damage variables (εB, εS, 
and εBL) with the unit-step function in Eqs. (11), (13), and 
(15). For the ES-bundle, this leads to the same function 
as that of the E-bundle while for the EH- and ET-bundles, 
we obtain Eq. (33) and (34), respectively:

In this case, RHE(z) gives the fraction of the fibers intact 
at the strain considered, hence RHE(z) is the reliability 
function of the E-bundle.

The reliability characteristic of the ith component, 
RHi(z), can be obtained when its expected tensile force, 
FHi(z), is divided by the related expected tensile charac-
teristic, kHi(z), which represents the failureless behavior 
of the bundle at any strain load:

Accordingly, in a weighted sense, the reliability char-
acteristic has a similar role concerning the damage and 
failure of fibers.

The reliability characteristic of the ith component, 
RHi(z), can be obtained when its expected tensile force, 
FHi(z), is divided by the related expected tensile charac-
teristic, kHi(z), which represents the failureless behavior 
of the bundle at any strain load:

where kH(z) is the resultant expected tensile characteristic 
of the FBC model:

(32)kHE(z) =
k
(
z�B

)

k
(
�B
) ,RHE(z) = 1 − Q�B

(
z�B

)
.

(33)kHEH(z) =
1

k
(
�B
)

∞

∫
−1∕�B

|k(y(z, x))|+dQ�0

(
x�B

)

(34)

kHET ,L(z) =
1

k
(

�B
)

∞
∫
−∞

|

|

|

k
(

g
(
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))

|

|

|+
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√

(
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(
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(35)RHi(z) =
FHi(z)

kHi(z)

(36)

RH(z) =
FH(z)

kH(z)
=

N∑
i=1

wi

FHi(z)

kH(z)
=

N∑
i=1

wikHi(z)

kH(z)
RHi(z)

Similarly to Eq. (30), a kind of damage or failure map can 
be constructed by adding the component reliability charac-
teristics together gradually (n = 1,..,N):

In the case of modeling the tensile force-extension meas-
urements directly, the suitable formulas can be obtained by 
denormalizing Eqs. (30)-(38).

2.9 � Determining the normalizing parameters

In general, the aim of normalizing measured or modeled data 
is to transform them into a dimensionless coordinate system, 
reasonably into the interval [0,1] as it is for the tensile force 
in FBC modeling:

where FN and uN are the normalizing parameters that are 
suitable for the measured force (F) and strain (u) values, 
respectively.

In the ideal case, the mean breaking force ( FB ) and strain 
( �B ) of fibers are known from single fiber tensile measure-
ments, and if the total number of the fibers (N) is known as 
well, normalization can be performed like in Eq. (9):

In FiberSpace, these are denoted by AE (= uN) and B 
(= FN) (see, e.g., Fig. 12).

When the sample to be modeled is a fibrous system of 
unknown structure and it is built up of unknown fibers as 
building elements, the normalizing parameters should be 
estimated from the measured tensile force–strain curve. 
The latter can often be approximated with a non-normal-
ized (linear or nonlinear) E-bundle relationship similar 
to Eq. (9), as follows:

where k(u) is the tensile characteristic fitted to the ascending 
part of the curve and Q is the distribution function of a vir-
tual “fiber breaking strain” (εN). If εN is of symmetric distri-
bution such as normal distribution, then at the expected value 
of εN ( u = �N ), Q equals ½. This means that when the FBC 
model consists of an E-bundle, only then can uN = �N and 
FN = k(�N ) be used as normalizing parameters. Moreover, if 

(37)kH(z) =

N∑
i=1

wikHi(z).

(38)RH(z)n =

n∑
i=1

wi

FHi(z)

kH(z)
.

(39)0 ≤ FH(u) =
F(u)

FN

< 1;0 < z =
u

uN

(40)FN = N ⋅ FB; uN = �B.

(41)F(u) ≈ k(u)
(
1 − Q�N

(u)
)
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the relative SD of εN is small enough, FN = k(�N ) may be a 
correct estimation. In other cases, let us denote the coordi-
nates of the intersection point of k(u)/2 and F(u) with (u1, 
F(u1)), and the coordinates of the (global or first) force peak 
with (u*, F* = F(u*)):

These coordinates determine some lower and upper 
bounds for the normalizing parameters:

3 � Application to tensile test results 
of human tissues

In order to demonstrate the applicability of the modeling 
and evaluation methods, samples of human facial nerves 
and tendons were tested, modeled, and analyzed.

3.1 � Materials and tensile test results

3.1.1 � Human facial nerve samples

The tensile tests were performed with a Zwick Z005 com-
puter-controlled tensile tester with custom grips, where 
the nerves were rigidly fixed on steel slit rods. Test speed 
was 10 mm/min. In Fig. 14a, the arrangement of the tensile 
test of some facial nerves (Table 1) of a 59-year-old man 
(Fig. 14a) can be seen, while Fig. 14b shows the results. 
Table 2 contains the geometrical and mechanical data of 
the specimens.

The force–elongation curves in Fig. 14.b are significantly 
different, hence averaging them point by point would not 

(42)u1 ∶
1

2
k
(
u1
)
= F

(
u1
)
, u∗ ∶ max

u
F(u) = F(u∗).

(43)F∗ < k(u∗) < FN = k
(
uN

)
≤ k

(
u1
)
;u∗ < uN ≤ u1. give a reasonably usable result for modeling or analyzing. 

Therefore, both their evaluation and modeling are to be per-
formed on the individual measurements.

For modeling and analysis, the facial nerve sample Code 
BB was selected because of its large bent initial part convex 
from below and structured failure process containing inter-
esting peaks and drops.

3.1.2 � Tendon samples

Before tensile testing, the prepared human cadaver tendon 
samples (harvested within a maximum of 24 h post mortem, 
stored at −80 °C in a radio-protectant solution and subjected 
to 42 kGy dose virucidal gamma irradiation) were subjected 
firstly to a static load of 50 N for 30 s and after that, a fatigue 
load of 2000 tensile cycles. The applied waveform was sinu-
soidal, with a force between 50 and 250 N, and at a fre-
quency of 2 Hz.

The tensile testing of the samples was performed on an 
INSTRON 8872 servo-hydraulic tester (maximum load 25 
kN, gripping mode: freezing jaws (Hangody et al. 2017)) 
with a constant extension rate of 20 mm/min. Before the test, 
the samples were pre-tensioned by a tensile load of 150 N 
at this rate, in order to eliminate possible gripping errors.

In Fig. 15, the arrangement of testing and the graphical 
results of the tensile test of some tendons after fatigue are 

Fig. 14   Arrangement of the ten-
sile test of human facial nerves 
(a) and the results (b)
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Table 1   Identity codes of facial nerves tested

Code Explanation

VII Nervus facialis
VII_LS_TB VII, left side, temporal branch
VII_LS_ZB VII, left side, zygomatic branches
VII_LS_BB VII, left side, buccal branches
VII_LS_MB VII, left side, mandibular branches
VII_LS_CB VII, left side, cervical branch
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depicted while the numerical data can be found in Table 3. 
Similarly, as above, the tensile force–elongation curves are 
significantly different, thus it is reasonable to carry out mod-
eling on single measurements.

For modeling and analysis, tendon sample Code 130 was 
selected because of its specially structured failure process 
showing three large separated peaks.

3.2 � FBC modeling of the test results

Two modeling methods were used based on fiber bundles. 
One included parallel-connected nonlinear FBCs of dif-
ferent types (E, EH, ES, and ET) and the other was the 
parallel connection of a series of nonlinear E-bundles. In 
modeling, the elongation or strain at break was assumed 

to be of normal distribution. The goodness of approxi-
mation was characterized by the absolute squared error 
(denoted as Difference in FiberSpace) or the relative mean 
squared error (RMSE) and the determination coefficient 
(R2). RMSE is the square root of mean difference related 
to the maximum measured force at the given scaling, while 
R2 is the squared value of the linear correlation coefficient 
between the modeled and measured force values.

3.2.1 � Modeling the tensile behavior of a human facial 
nerve

3.2.1.1  Decomposition into  nonlinear FBCs  As mentioned 
above, the tensile test result of the left side facial nerve code 

Table 2   Geometrical and tensile test data of the left side facial nerves (nervus facialis)

Type of nerve Short code L [mm] l0 [mm] l1 [mm] t0 [mm] T0 [mm] t1 [mm] T1 [mm] Fmax [N]

Left side VII_LS TB 32 8 17 2.90 4.50 2.31 2.42 1.23
ZB 24 4 24 1.46 2.69 1.06 1.11 0.06
BB 48 24 38 1.37 2.64 0.65 0.77 8.01
MB 40 11 37 1.93 3.17 0.98 2.07 0.23
CB 34 6 12 0.98 1.70 0.62 0.68 1.21

Fig. 15   Arrangement of the 
tensile test of tendons (a) and 
the results (b)
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Table 3   Geometrical and tensile test data of the human tendons tested (Semit. + Grac. = Semitendinosus + Gracilis, ant. = anterior, Perosn. 
long. = Peroneus longus)

Code Type Width [mm] Thickness 
[mm]

Gauge length [mm] Fmax [N] Elong. at 
Fmax [mm]

Tensile stiff-
ness [N/mm]

Breaking 
elong. [mm]

126 Quadriceps 15 2 50 3251 8.5 564 15.8
127 Semit. + Grac 9 3 2487 4.2 830 7.2
128 Tibialis ant 9 3 3268 6.1 654 7.4
129 Perosn. long 9 3 2598 6.0 536 6.1
130 Achilles 16 2 3179 6.6 562 15.9
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BB was modeled and analyzed with the aid of the Fiber-
Space software.

The first step before creating an FBC model is the normal-
ization of the measured force–elongation curve, which needs 
the normalizing parameters according to Eq. (39). On the 
basis of Paragraph 2.5, for example, they can be estimated 
by fitting a simple shifted linear E-bundle to the measured 
data, as shown in Fig. 16, where the tensile characteristic 
was approximated by the inflection tangent of the rising part 

(its Equation is y = 4.65 + 1.3(x−6.61)). From fitting the lin-
ear E-bundle (a = 0), we obtained that E(εB)≈εN = 12.80 mm 
and the tangent gave at this place that E(FB)≈FN = 12.69 N, 
hence the shifting of the E-bundle response came at about 
3.03 mm.

Figure 17 shows the final approximation (red) of the 
measured and normalized force–elongation relationship 
(green) obtained by FBC modeling in the FiberSpace 
environment, together with the sine and cosine Fourier 
amplitudes as parameters (olive and green columns of 
the measured sample, and purple and blue columns of the 
approximating FBC), which were stored in the learning pro-
cess of the software. The goodness properties of approxima-
tion were RMSE = 3.39% and R2 = 0.988.

Figure 18 shows the component curves belonging to 
FBCs and the parameters are summarized in Table 4. The 
tensile characteristic parameters of all the fibers were the 
same (a = −1, b = 1, c = 1) while ET contraction parameters 
were Ca = Cb = 5, meaning a very strong contraction by the 
reduction of the free volume among fibers. An ideal normali-
zation leads to AE = 1.0. Here, a bit of correction was car-
ried out by FiberSpace (Table 4). In this case, the fiber ten-
sile characteristics found by fitting have a large initial curved 
part (b < 0), hence the EH-bundle, which models the effect 
of the crimped or loose fibers, was not needed, therefore Fib-
erSpace canceled it by giving it zero weight. According to 
the results in Table 4, only about 27% of the fibrils creating 
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Fig. 17   The result of seeking the best approximation by FiberSpace: the normalized measured (green) and modeled (red) curves as visible in the 
FiberSpace program screen
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the facial nerve behave like well-aligned and ideally gripped 
fibers (E-bundle), while 73% can be considered oblique (ET-
bundle) or not ideally gripped (ES-bundle) fibers.

Moreover, mean obliquity is not zero (ET = 0.37), mean-
ing that the oblique fibers may be aligned following a kind 
of spiral. Regarding the ES-fibers, both the mean slippage 
threshold (ES = 1.5) and the mean slippage length (EL = 2.0) 
are high, hence the majority of this type of fibers break.

In Fig. 18a, the weighted component curves can be seen, 
while in Fig. 18b, their sum gives a map regarding their 
participation in the resultant resistance force (calculated 
with Eq. (30)). Figure 19 shows the reliability map of the 
components and their sum computed with Eq. (38), which 
shows a division similar to that in Fig. 18b.

On the basis of Fig. 18, it can be stated that the fraction 
(27, 33, 40%) and role of the FBCs as sub-bundles created by 
ideal (E), oblique (ET), and slipping (ES) fibers in the force 
response are essentially similar considering the resistance 
force and so is their role regarding reliability (Fig. 19). Yet, 
the overall significant role of the oblique fibers should be 
stressed, except for very large deformations, where the slip-
ping fibers of the ES-bundle dominate mechanical behavior.

3.2.1.2  Decomposition into  a  series of  nonlinear E‑bun‑
dles  According to Fig.  17, the FBC model curve gives a 
rather good mean profile, but it does not follow the strongly 
structured failure process of such a single measurement. 
Based on the parallel connection of a series of E-bundles, 
the force response of which is given by Eqs.  (9) and (41) 
in a simple product form, the measured force–elongation 
curve can be approximated with the sum of the compo-

nent responses corresponding to Eq.  (30) (Fig.  20a). All 
this results in a decomposition of the measured profile into 
small parts as well as the area below the measured curve 
into “slices” bounded by the tensile characteristics of the 
E-bundle components (Fig. 20b). Hence, this operation is a 
kind of slicing and layering decomposition, where section-
ing and layering can follow both the different arcs in the 
rising part and the peaks and drops in the falling part of the 
measured single curve.

In this case, decomposition leads to five E-bundle com-
ponents as can be seen in Fig. 20. Their parameters are sum-
marized in Table 5. Because of the better approximation, the 
goodness properties improved significantly (RMSE = 1.64%, 
R2 = 0.9974) compared to those of the general FBC model.

Analyzing the data in Table 5 reveals that the values of 
parameter b are positive in four cases but it is negative in the 
case of component 3, meaning a steep exponential tensile 

(a) (b)
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Fig. 18   Normalized results of modeling the facial nerve BB: FBC components (a), and the map obtained by adding them (b)

Table 4   Parameters of the 
nonlinear FBC model of the 
facial nerve BB

FBC code w% AE VE ES VS EL VL ET ST

E 27.3 1.01 0.19
ES 33.3 1.50 0.40 2.00 0.05
ET 39.4 0.37 0.25

0

0,5

1

0 1 2

RH(z): Rel. char. & components

RC_E+ET+ES RC_ET+ES RC_ES

Fig. 19   Reliability characteristic of the facial nerve BB and its com-
ponents
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characteristic. In the latter case, the tensile characteristic 
of the model fibers is significantly exponential therefore 
the model parameter “c” cannot be interpreted as asymp-
totic stiffness. Moreover, this bundle is dominant because 
it describes the largest drop in force, thus it has the maxi-
mum weight (41%). The use of this kind of bundle is neces-
sary since the initial part of the measured curve has a large 
curved part (convex from below) and the E-bundles cannot 
describe that with the fiber tensile characteristic given by 
Eq. (4) if parameter b is positive, in contrast to the general 
FBC model, which can include an EH-bundle containing 
wavy or crimped fibers.

Comparing the component and resultant reliability of 
the general FBC model (Fig. 19) and the E-bundle series 
model (Fig. 21) shows that the significant difference can 
be observed mainly at larger deformations, where the latter 
can follow the structured failure process measured.

Comparing the results of general FBC modeling with 
those obtained by E-bundle modeling, one can conclude 
that the former gives a kind of internal description regard-
ing the structural inhomogeneities, while the latter pro-
vides a boundary decomposition.

3.2.2 � Modeling the tensile behavior of tendons 
after fatigue

The measured force–elongation curve of the tendon Code 
130 has three large bulky peaks, hence we modeled that with 
the parallel connection of four E-bundles (Fig. 22, Table 6). 
The good approximation is characterized by RMSE = 2.63% 
and R2 = 0.9885.

Three of the components describe the peaks while com-
ponent 1 models the initial damage and failure events, the 
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Table 5   Parameters of the 
E-bundle components

Compo-
nent code

w [%] A [N] b [1/mm] c [N/mm] K0 [N/mm] m [mm] s [mm] V [%]

1 3.0 −1.78 0.325 0.58 0 6.0 2.0 33.3
2 30.0 −3.69 0.325 1.20 0 9.8 1.0 10.2
3 41.0 −14.47 −0.095 −1.25 0.13 12.3 0.9 7.3
4 17.0 −4.00 0.325 1.30 0 15.5 0.4 2.6
5 9.0 −4.00 0.325 1.30 0 19.5 1.8 9.2
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scattering of which is the largest (33% in Table 6). The dom-
inant component is number 2 belonging to the largest peak, 
hence its weight is 70%. The visible part of the two smaller 
peaks needed large curved tensile characteristics (Fig. 22b) 
consequently the b values of the corresponding components 
3 and 4 became negative (Table 6).

Similar relations can be observed regarding component 
reliabilities (Figs. 23, 24). The dominance of component 2 
is obvious, while at the same time the last two peaks provide 
a certain reliability over 25% strain.

3.2.3 � Damage spectra of the failure process

The work of viscoelastic structural elements under load 
without damage or failure can be characterized with the 
so-called relaxation spectrum (τ), which is a relationship 
between relaxation time (a sort of reaction time), and the 
elastic modulus of parallel-connected Maxwell models. This 
is a kind of density function with a domain of [0,∞).

Based on the concept established by Eqs. (22)–(29), 
E-bundle series modeling makes it possible to characterize 
the damage and failure process of the samples tested, and 
also the reliability maps, by some relationships of spec-
trum type that may be called damage spectra. In this case, 
the mean breaking elongation or strain (m) can play the 
role of relaxation time according to Eqs. (22) and (26), 
while the dependent variable may be the weight (w) or the 
standard deviation of the breaking strain (s). Nevertheless, 
it must be taken into account that, according to Eqs. (23) 

and (24), all these are based on the conditional expected 
values and the law of total expectation applied to the ten-
sile force process.

For the sake of comparison, Figs.  24, 25, 26 show 
together the graphical results of the damage analysis of both 
human facial nerve BB and tendon Code 130.

The column diagrams in Fig. 24 show the asymptotic 
tensile stiffness (c) of the fibers characterizing the intact 
work of the E-bundle components, as well as two damage 
properties, the mean values (m) and the standard devia-
tion (s) of fiber breaking elongation or strain. The absolute 
values of facial nerve stiffness (c) increase monotonically 
(Fig. 24a and Table 5) with m as opposed to those of the 
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Table 6   Parameters of the 
nonlinear E-bundles

Component 
code

w [%] a [N] b [1/%] c [N/%] K0 [N/%] m [%] s [%] V [%]

1 16.0 26.5 1.00 28.4 54.9 15.0 5.0 33.3
2 70.0 26.0 1.00 124.4 150.4 22.2 1.8 8.1
3 7.6 −13.5 −0.14 13.5 15.4 31.9 1.3 4.1
4 6.4 −11.4 −0.12 11.4 12.7 41.5 2.4 5.8
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tendon, where the second one is much larger than the others, 
highlighting its dominance in the tensile force (Fig. 24b). In 
both cases, the mean breaking elongation or strain increases 
almost linearly confirming its applicability as independent 

spectrum variable, while the medium values of standard 
deviation are smaller than those at the edges (Fig. 24a, b).

The latter refers to the form according to the quadratic 
formula by Eq. (27). Indeed, in Fig. 25a, b, the relationship 
between the mean values and the standard deviation can be 
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seen where the measured values create a discrete line spec-
trum, which is approximated by a continuous function, s(m), 
which can be determined by fitting the formula by Eq. (27). 
The minimum point of s(m) belongs to the overall mean 
value of fiber breaking strain (M). The goodness of fitting 
was essentially satisfactory (facial nerve: RMSE = 11.6%, 
R2 = 0.85; tendon: RMSE = 12.2%, R2 = 0.82) considering 
the small amount of data.

Also, it can be observed in Fig. 25 that the m values can 
be found about the minimum places or the inflection point of 
the derivative of the resultant model tensile force (DF/Du), 
meaning that they characterize the places of intensive dam-
age. The smaller the standard deviation (SD) values are, the 
steeper changes or drops in the tensile force are modeled by 
the E-bundle component in question. This can be observed 
as well when comparing the component density functions 
of the breaking elongation or strain depicted with dotted 
lines in Fig. 26 to the SD values in Fig. 25. These are non-
weighted conditional probability density functions that are 
considered normal with parameters N(m, s2) and the com-
ponent weights are indicated by the blue columns. Besides 
them, in Fig. 26, the resultant non-conditional density func-
tion, w(m), is plotted with a solid red line, which is assumed 
to be normal with parameters N(M,S2). The expected value, 
M, is the same as in Fig. 25, but the standard deviation, S, 
was estimated to satisfy the next condition related to the 
mean breaking strain values of the component (mi):

The S value estimated in this way can be made more accu-
rate by fitting the integral form according to Eq. (26) to the 
measured force–elongation relationship.

4 � Conclusions

The idealized statistical nonlinear fiber-bundle-cells (FBCs) 
and the modeling methods developed are suitable for phe-
nomenological modeling of multilevel fibrous structures 
such as human tissues and make it possible to analyze them 
on the basis of evaluating measurements and determining 
the ratio of fibers or their bundles of different geometrical 
properties. The software FiberSpace uses composite bun-
dles constructed as the parallel connection of different non-
linear FBCs for modeling the tensile load–strain curve of 
real fibrous structures. The expert system based on Fourier 
approximation and load–strain curve classes makes it pos-
sible to find the best model parameters fast. The system can 
learn and develop itself by improving mapping and/or estab-
lishing new subclasses on the basis of the modeled results.

(44)M − 3S < min
i

mi < max
i

mi < M + 3S.

The two modeling methods developed can be applied as 
tools in different problems. The use of different FBCs with 
the same or different fiber tensile characteristics is based on 
average mechanical behavior, since in this case, the expected 
tensile processes are calculated. In this way, the FBC model 
can reveal some structural details related to statistical inho-
mogeneities, such as wavy and oblique fibers or weaker 
connections between fibers and their environment, and the 
effects of all these problems on mechanical behavior.

However, when a tensile load–strain curve is the result 
of a single measurement, its modeling and analysis may be 
performed more advantageously by decomposition based on 
a series of nonlinear E-bundles.

The biomechanical applicability of both modeling meth-
ods was shown by using them for evaluating and analyzing 
the tensile test measurements performed on some human 
tendons and facial nerves.

The proposed FBC modeling method is related to the 
evaluation of tensile tests and valid for elastic model fibers, 
however, it can be extended to bending, shearing, and torsion 
tests and for viscoelastic model fibers as well. The presented 
results may give a suitable basis for further development 
regarding the application of the statistical FBC model as 
material law in the finite element simulation of fibrous struc-
tures of real geometry, subjected to real mechanical load 
which is the long-range aim of this work.
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