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Abstract
Scaffolds are microporous biocompatible structures that serve as material support for cells to proliferate, differentiate and 
form functional tissue. In particular, in the field of bone regeneration, insertion of scaffolds in a proper physiological environ-
ment is known to favour bone formation by releasing calcium ions, among others, triggering differentiation of mesenchymal 
cells into osteoblasts. Computational simulation of molecular distributions through scaffolds is a potential tool to study the 
scaffolds’ performance or optimal designs, to analyse their impact on cell differentiation, and also to move towards reduction 
in animal experimentation. Unfortunately, the required numerical models are often highly complex and computationally too 
costly to develop parametric studies. In this context, we propose a computational parametric reduced-order model to obtain 
the distribution of calcium ions in the interstitial fluid flowing through scaffolds, depending on several physical parameters. 
We use the well-known Proper Orthogonal Decomposition (POD) with two different variations: local POD and POD with 
quadratic approximations. Computations are performed using two realistic geometries based on a foamed and a 3D-printed 
scaffolds. The location of regions with high concentration of calcium in the numerical simulations is in fair agreement with 
regions of bone formation shown in experimental observations reported in the literature. Besides, reduced-order solutions 
accurately approximate the reference finite element solutions, with a significant decrease in the number of degrees of free-
dom, thus avoiding computationally expensive simulations, especially when performing a parametric analysis. The proposed 
reduced-order model is a competitive tool to assist the design of scaffolds in osteoinduction research.

Keywords  Reduced-order models · Parametric problems · Scaffold · Proper Orthogonal Decomposition · Bone 
regeneration · Osteoinduction

1  Introduction

The design of bioinstructive materials has become one of 
the major challenges in tissue engineering and regenerative 
medicine. It is based on using different material properties 
as a language to communicate with cells in order to direct 
their behaviour, for example, to promote tissue regeneration. 
Cells are sensitive to different types of stimuli from materi-
als - physical, chemical or mechanical stimuli.

In the field of bone regeneration, one example of the use 
of bioinstructive materials is material-associated osteoinduc-
tion. Some materials have the capacity to direct the differen-
tiation of mesenchymal cells towards the osteoblastic lineage 
by themselves, without the need to incorporate exogenous 
growth factors. Several material properties have been iden-
tified as playing an important role in this process, such as 
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the microstructure, chemical composition and porosity of 
the material (Barba et al. 2017, 2018; Barradas et al. 2011).

The mechanisms behind material-associated osteoinduc-
tion are not yet fully elucidated. Bohner et al. (2022) pro-
pose that the main factors contributing to osteoinduction in 
bone graft substitutes are the concentration of calcium and/
or phosphate ions in vivo, a porosity of the scaffold allowing 
bone and blood vessel ingrowth, and that the material does 
not increase the local pH. Among them, ion exchange and, 
more specifically, calcium (Ca2+) and phosphate exchange 
between the material and the surrounding fluids is one of 
the factors thought to play a key role (Habraken et al. 2016; 
Bohner and Miron 2019). The presence of calcium in extra-
cellular fluids controls biomineralisation, i.e. the precipita-
tion of biological apatite on the material surface in vivo, 
presumably incorporating endogenous proteins, which has 
been linked to the osteoinductive phenomenon (Habraken 
et al. 2016). Moreover, Ca2+ gradients are directly related to 
cell migration and growth (Tang et al. 2018). This chemical 
messenger acts as a “homing signal” that brings together 
non-differentiated cells for bone remodelling in a specific 
site and it also triggers differentiation. Indeed, mesenchy-
mal cells are known to respond to calcium and inorganic 
phosphate levels, which can stimulate their differentiation 
process into osteoblasts (Chai et al. 2011, 2012; Danoux 
et al. 2015).

In this context, the architecture of the material, i.e. the 
size and morphology of the porosity, appears as a very rel-
evant variable, as it is expected to play an important role in 
the ionic concentration distribution in the surrounding fluids. 
This may be associated to the finding that osteoinduction is 
significantly enhanced when the material, that in this context 
is commonly referred to as a scaffold as it has the role to 
support bone formation, has concave pores (Habibovic et al. 
2005; Ripamonti et al. 2007). Such behaviour was clearly 
shown in a recent study comparing the capacity of two types 
of calcium phosphate scaffolds with different pore morphol-
ogy, namely a foamed and a 3D-printed orthogonal grid of 
rectilinear strands, to trigger bone formation in a non-osse-
ous site (Barba et al. 2017), whereas significant amount of 
bone was found in the concave pores of the foamed scaf-
fold, very little bone was formed in the linear pores of the 
3D-printed structure. This observation may be the result of 
very complex phenomena involving cells, growth factors and 
ions. However, determining ionic transport and distribution 
of ions through a scaffold geometry is key to clarify the 
effect that different physical parameters can have on oste-
oinduction. Numerical simulation offers the possibility to 
test different scaffold designs and specific properties while 
reducing experimental efforts, time and cost (Guyot et al. 
2014; Van hede 2021; Santamaría et al. 2013).

The transport phenomenon is modelled by an advection-
diffusion equation that governs the transport of species in a 

fluid, for instance, chemical species through a scaffold for 
“feeding” the cells to differentiate. This leads to computa-
tionally demanding parametric models (Spencer et al. 2013), 
often unaffordable, to be used as a tool for scaffold analysis 
and design. Reduced-order models are able to drastically 
lessen such costs, converting these computational models 
into an affordable tool to support tissue engineering research.

Reduced-order models (ROM) are based on discover-
ing a low-dimensional manifold where the family of para-
metric solutions lies, and using this information to solve 
the problem with a significantly lower number of degrees 
of freedom (Ortega-Gelabert et al. 2020; Díez et al. 2020; 
Rozza 2014; Pagani et al. 2018). Within ROM techniques, 
the Proper Orthogonal Decomposition (POD) (Berkooz et al. 
1993; Patera and Rozza 2007; Quarteroni and Rozza 2014) 
is highly appreciated in the scientific community because of 
its effectiveness and friendly implementation. POD identi-
fies a linear space of reduced dimension by performing a 
Singular Value Decomposition (SVD) on a representative 
set of solutions or snapshots. The parametric problem is then 
solved in the reduced space by means of a Reduced Basis 
approach.

Here, we propose a parametric model for the distribu-
tion of Ca2+ in the interstitial fluid across scaffolds. The 
free parameters account for uncertain input data, with values 
ranging in relatively large intervals. This allows checking 
different responses associated with different possible scenar-
ios (flow patterns, diffusion properties...). Two types of real-
istic scaffolds are considered as benchmarks of application: 
a foamed and a 3D-printed structured. The scaffold geom-
etry is expected to play a key role in the final concentration 
of Ca2+. Regions in the domain with a high concentration 
of Ca2+ in the numerical solutions are identified as regions 
where bone is expected to form. The obtained patterns are 
qualitatively compared to experimental results in the litera-
ture (Barba et al. 2017). The number of parameters in the 
model (six in total) motivates the use of a ROM for multiple 
evaluation. We study the performance of standard POD and 
local POD, accounting for both the original snapshots and 
new, quadratically generated, ones (Díez et al. 2021).

The proposed methodology is a strong tool to get insight 
on the structural, geometrical and chemical triggers control-
ing bone formation.

The remainder of the paper is organized as follows. In 
Sect. 2, we state the parametric advection-diffusion prob-
lem, present a quantity of interest for analysis and review 
the reduced-order strategy. Section 3 shows the numerical 
results, including a comparison between Ca2+ patterns in 
simulations and experimental observations for bone growth, 
and an exhaustive study for the application of the ROM. The 
paper is concluded with a discussion and conclusions on the 
suitability of the proposed methodology for the analysis of 
scaffolds in tissue engineering in Sect. 4 and 5.
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2 � Materials and methods

We aim at defining a reduced-order model for the distribu-
tion and concentration of a solute, in our case calcium ions 
(Ca2+), along the interstitial fluid volume in a scaffold geom-
etry. We consider two different realistic geometries, based 
on a foamed and a structured 3D-printed calcium phosphate 
scaffolds developed in a previous study, which were tested 
for osteoinduction by intramuscular implantation in dogs 
(Barba et al. 2017). The geometries are shown in Fig. 1.

The foamed scaffold has irregular pores with isotropic 
distribution, with a porosity of 52.3% and a highly variable 
pore diameter, with an average size of 227 �m as determined 
by micro-computed tomography. Although using the same 
material, the structured scaffold corresponds to a 3D-printed 
model and follows a geometrically structured distribution. In 
this case, the pores are more regular, with an average pore 
size of 289 �m and porosity of 54.1% (Barba et al. 2017).

Bone formation is expected to be predominant in those 
regions with high concentration of Ca2+. Using a classical 
advection-diffusion model, we account for two mechanisms:

•	 the scaffold releases ions that start filling, by diffusion, 
the interstitial fluid that goes through the geometry, and

•	 the fluid drags the ions, thus changing the concentration 
distribution.

The physical parametrisation of the numerical model is per-
formed by assuming different variations for: i) the inflow 
velocity, regarding its module and direction, ii) the fluid vis-
cosity, iii) the release rate of Ca2+ from the scaffold, and iv) 
a concentration-dependent diffusion coefficient.

Our goal is to assess the influence of the aforementioned 
parameters to the final distribution of Ca2+. The analysis 

for all possible combinations of parameters, along with the 
required nonlinear system of equations with a high number 
of degrees of freedom per each case, motivates the use of 
a ROM. The proposal presented here is to use a posteriori 
ROM, following the ideas in Díez et al. (2021).

2.1 � Parametric advection‑diffusion model

The steady nonlinear advection-diffusion problem for the 
concentration c of Ca2+ in a domain Ω , occupied by the 
interstitial fluid that passes through a scaffold, reads

where ΓI is the inlet boundary, ΓO is the outlet and ΓS is 
the portion in contact with the solid surface, such that 
�Ω = ΓI ∪ ΓO ∪ ΓS . Here, � ∶= �(c, �, �) is the diffusivity, 
v ∶= v(v, � , �) is the advection velocity, and n stands for the 
outward unit normal. The coefficient r is the release rate of 
Ca2+ from the solid surface.

Dirichlet boundary conditions are set to zero on the inlet 
ΓI (green areas in Figs. 1 and 2), in order to avoid upstream 
diffusion against the flow direction. On the outlet ΓO , we 
impose homogeneous Neumann conditions. Finally, on the 
part of the boundary which is in contact with the scaffold, 
ΓS (light red surfaces in Figs. 1 and 2), we impose Robin 
conditions to simulate a release rate of Ca2+ from the scaf-
fold towards the interstitial fluid, with rate r and up to a 
saturation concentration of c = 1.

Transient effects are not accounted for because we are 
only interested in the final steady-state distribution of ions.

(1)

⎧
⎪⎪⎨⎪⎪⎩

−� ⋅ (��c) + v ⋅ �c = 0 in Ω,

c = 0 on ΓI ,

�c ⋅ n = 0 on ΓO,

−�
�c

�n
= r(c − 1) on ΓS,

Fig. 1   Interstitial domains cor-
responding to the characteristic 
volumes for the (a) foamed 
scaffold and (b) structured scaf-
fold. Green faces indicate the 
inlet faces, where concentration 
is set to 0. Light red surfaces 
correspond to the scaffold-fluid 
interface where Robin condi-
tions are imposed. The domains 
are representative volumes of 
dimensions 750 × 600 × 530 
�m3 for the foamed domain, and 
1930 × 2040 × 1960 �m3 for the 
structured one
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The parametrisation of the model accounts for six param-
eters in total. The election of these parameters is discussed 
next.

•	 Inflow velocity field, v(v, � , �) . The velocity of the fluid 
through the scaffold is strongly dependent on several fac-
tors, for instance the scaffold location and how it interacts 
with the surrounding tissue. To the authors’ best knowl-
edge, when a scaffold is implanted, both the flow direc-
tion and the velocity module are uncertain, and therefore 
are taken as parameters to explore their variation. The 
parametrisation of the angles ( � and � ) enables to account 
for the relative orientation of the scaffold within the sur-
rounding tissues. The resulting molecules distribution 
might be highly dependent on the flow direction. With 
this in mind, we propose a parametrisation for the inflow 
velocity, following the scheme in Fig. 2. The advection 
velocity v is given by a combination of the normalized 
velocity fields vx , vy and vz , coming from potential flows 
in X, Y and Z directions, respectively, that is 

 with v the velocity module, and � , � the combination 
angles of the input flow. The module v is parametrized 
in the range [1, 60] �m∕s and � , � are taken in [10◦, 80◦] . 
These ranges have been chosen by numerical experimen-
tation, covering cases in which the final distribution pre-
sents highly differentiated patterns.

•	 Concentration-dependent diffusivity, �(c, �, �) . Diffu-
sion modelling is receiving strong attention in this field 

(2)
v(v, � , �) = v(sin � cos � vx + sin � sin � vy + cos � vz),

during last decades. Several models and studies have 
been developed to elucidate the molecular diffusion pro-
cess (Spencer et al. 2013; Lee et al. 2013; Karande et al. 
2004), from assuming a constant-free diffusion value, 
to permeability, structure, scale-dependent diffusivities 
in porous media, or crowding-dependent diffusivities, 
among others (Tartakovsky and Dentz 2019; Offeddu 
et al. 2020; Han and Herzfeld 1993). We propose a con-
centration-dependent diffusivity, for which an increase 
in the concentration c implies a decrease in diffusivity, 
namely 

 where DSE stands for the constant Stokes-Einstein diffu-
sion coefficient of Ca2+ and � is an adimensional param-
eter taking values in [0, 1]. The value of DSE is obtained 
through the Stokes-Einstein equation 

 with kB = 1.38 ⋅ 10−23 JK−1 the Boltzmann constant, 
T = 37◦C the temperature, � = 114 pm the ionic radius 
of Ca2+ (Manhas et al. 2017) and � the viscosity of the 
fluid (which is also taken as a parameter in the model). 
The parameter � models the relation between the diffu-
sivity and the existing concentration of ions in the fluid. 
Note that � = 0 implies a constant diffusivity with value 
DSE in the whole domain, while for � = 1 diffusivity is 
reduced by one order of magnitude in fully crowded 
regions (where c = 1 ) with respect to regions with no 
presence of ions (where c = 0 ). For 𝛼 > 0 the problem 
becomes nonlinear and is solved by applying the Picard 
scheme with a stopping tolerance of 10−8 for the relative 
Euclidean norm.

•	 Interstitial fluid viscosity, � . The range of values for the 
fluid viscosity � is set to [5 ⋅ 10−4, 1.5 ⋅ 10−3] Pa⋅ s, which 
accounts for the range of admissible fluid types. For 
instance, the viscosity of PBS is � = 7 ⋅ 10−4 Pa⋅ s (Man-
has et al. 2017), for deionized water it is � = 1 ⋅ 10−3 
Pa⋅ s (Santamaría et al. 2012), and for blood plasma, it 
takes value in � = 1.1 − 1.3 ⋅ 10−3 Pa⋅ s (Késmárky et al. 
2008). Thus, within the considered range, it is possible 
to analyse how realistic values of viscosity can modify 
the distribution of Ca2+.

•	 Release rate of Ca2+ from the scaffold, r. The release 
rate r appears in the Robin boundary condition in (1). 
Note that a higher value of r implies a faster release 
of ions into the fluid. For this analysis, the values of r 
vary in the interval [0.5, 2] m/s, since its extreme val-
ues already show high differences in final concentration 
distributions. The parameter r is taken constant, but the 
model accepts more complex definitions.

(3)�(c, �, �) = DSE10
−�c,

(4)DSE =
kBT

6���
,

Fig. 2   For the domain within the foamed scaffold, the direction of the 
velocity for the input flow (red arrows) is parametrized with angles 
� and � . Green faces indicate the inlet faces, ΓI . Opposite faces cor-
respond to the outlet, ΓO . The setting is analogous for the structured 
domain
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Summarizing, the considered parameters are six: the mod-
ule v and the input angles � , � for the velocity field of the 
interstitial fluid, the viscosity of the fluid � , the parameter � 
defining the relation between the diffusivity and the concen-
tration, and the release rate r in the Robin boundary condi-
tion on ΓS.

Recall that the chosen parameters (and corresponding 
model behaviour) for this study do not necessary fit with 
a complex extracellular environment in the scaffold (due 
to lack of experimental insights). Nevertheless, the main 
objective here is to show the potential capabilities of the pro-
posed numerical methodology, by using critical parameters 
in complex scaffolds design studies, with mainly residual 
computational cost.

2.2 � Foamed and structured scaffolds geometry

The described parametric advection-diffusion model is 
solved for two real scaffolds: foamed and 3D-printed struc-
tured, see Fig. 1a and  1b, respectively. The corresponding 
domains Ω are the regions through the scaffolds occupied by 
the interstitial fluid. Green faces indicate the inlet faces on 
ΓI , where the Dirichlet boundary condition c = 0 is imposed 
(as described in Fig. 2), while brown surfaces correspond to 
the topological scaffold-fluid interface ΓS , where the release 
of ions from the scaffold is modelled by means of a Robin 
boundary condition.

The 3D finite element models for the two scaffolds were 
developed from real scaffolds, scanned and segmented by 
means of a �-CT and the software 3Dslicer, from which an 
.stl file of the fluid volumes (inverted from the solid scaf-
fold) were obtained. The final linear tetrahedral (C3D4) 
meshes were developed using Gmsh for mesh preparation 
and Abaqus CAE to label the boundaries. For the sake of 
analysis, a characteristic volume of both foamed and struc-
tured scaffold fluid domains were used, with a total of 37 752 
and 45 542 nodes, respectively.

2.3 � Quantity of interest: volume ratio

Cell differentiation may occur faster in regions of the domain 
with a high concentration of ions. As a quantity of intersest 
(QoI) to compare the performance of the two scaffolds, we 
measure the percentage of volume of interstitial fluid with 
a concentration of Ca2+ above 90% . Since the maximum 
concentration is c = 1 (see the boundary conditions in (1)), 
this means computing the volume where c > 0.9.

To calculate such volume ratio, we take

where VΩ is the total volume of the complete domain Ω of 
interstitial fluid.

(5)QoI = V∕VΩ ⋅ 100,

2.4 � Reduced Order Models based on Proper 
Orthogonal Decomposition

In this section, we present an overview of the applied 
reduced-order methods. The methods are based on a Proper 
Orthogonal Decomposition (POD) for the family of solu-
tions of the boundary value problem in (1), and follow some 
of the ideas proposed in Díez et al. (2021). The reader is 
referred to Díez et al. (2021) for a deeper numerical descrip-
tion of the complete series of methodologies, where also a 
novel POD strategy based on nonlinear Principal Component 
Analysis is described (out of scope of the current work).

For the problem at hand, we focus on the well-known 
standard POD, and its extension to local POD (where we 
account only for local information near the solution) and 
quadratic POD (which incorporates some quadratic terms 
into the approximation).

2.4.1 � Standard POD

The finite element discretization of problem (1) leads to a 
nonlinear system of equations, that is

being c ∈ ℝ
� the nodal solution of concentration on the 

computational mesh, with � degrees of freedom. The input 
matrix K , vector f  and the solution c depend on the vector 
of parameters � ∈ ℝ

�
�.

The nonlinear system (6) is solved in a Picard iterative 
scheme. This consists in subsequently updating an approxi-
mation c��� into an approximation c��� such that

until convergence.
Recall that here the number of parameters is �

�
= 6 , as 

discussed in Sect. 2.1. Thus, the family of solutions lies in a 
manifold of dimension six (at most) in the much larger space 
ℝ

� . The idea behind POD is to identify a linear subspace 
of lower dimension k containing the manifold of solutions, 
with �

�
≤ k ≪ � , by doing a Principal Component Analysis 

(PCA) of a representative family of solutions, the so-called 
training set. Afterwards, subsequent solutions are computed 
in the PCA reduced space, reducing the degrees of freedom 
from � to k.

Consider a sampling of the parametric space �i for 
i = 1,… , �

�
 . The corresponding full-order solutions (or 

snapshots) are denoted by ci = c(�i) . The snapshots are 
centered and assembled in a matrix X ∈ ℝ

�×�
�,

with

(6)K(�, c) c(�) = f (�),

(7)K(�, c���) c��� = f (�),

(8)X =
[
c
1
c
2
… c

�
�

]
,
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Centering the snapshots is a standard preprocess to improve 
the efficiency of PCA.

The PCA, which is based on the Singular Value Decom-
position (SVD) of the matrix, is used to eliminate possible 
redundancies in X . The SVD leads to

where U ∈ ℝ
�×� and V ∈ ℝ

�
�
×�

� are two unit matrices, and 
� ∈ ℝ

�×�
� is a diagonal matrix of eigenvalues sorted in 

descendent order, this is, �1 ≥ �2 ≥ ⋯ ≥ �
�
�
≥ 0 . The first 

�
�
 columns of matrix U , denoted by ui , are an orthonormal 

basis of the linear subspace spanned by the snapshots. The 
relevant modes in the basis are identified by choosing k such 
that

for some tolerance � . For a new sample in the parametric 
space, the corresponding solution c is then approximated by

with U⋆ ∈ ℝ
�×k and z ∈ ℝ

k the new vector of unknowns.
The POD reduced system for z is obtained in a reduced 

basis approach by

which is a system with k equations and k unknowns.
The standard POD is modified to account for local and 

quadratic approximations, in order to reduce the computa-
tional cost (in the first case) and improve the accuracy of the 
method (in the latter).

2.4.2 � Local POD

In local POD, we exploit the idea of the neighbouring snap-
shots to the new solution including most of the information 
in (12). “Closeness” is measured in the reduced space with 

(9)c
i
= ci −

1

�
�

�
�∑

j=1

cj =∶ ci − c.

(10)X = U�V�,

(11)
k∑

i=1

�i ≥ (1 − �)

�
�∑

i=1

�i,

(12)c ≃ c +

k∑
i=1

uizi =∶ c + U⋆z,

(13)
[
U⋆�K(�)U⋆

]
z = U⋆�

[
f (�) − K(�)c

]
,

the Euclidean distance in Díez et al. (2021). Here, neigh-
bours are identified in the parametric space ℝ�

� in relative 
Euclidean distance, normalizing the contribution of each 
parameter by the length of its range.

The POD is performed as usual, but with a local matrix of 
snapshots Xl that only accounts for the n < �

�
 closest snap-

shots in the parametric space. For a new point � in ℝ�
� , we 

denote by I  the set of indices for these n snapshots, this is,

The original matrix of centred snapshots X is replaced by

where the snapshots are centred by subtracting the local 
average as

Reducing the training set to neighbouring snapshots is 
intended to improve the computational speed, while retain-
ing most of the accuracy of the POD approximation.

2.4.3 � Quadratic POD

Quadratic POD is based on the use of an expanded training 
set, that incorporates quadratic combinations of snapshots. 
With this, we aim to recover information on the curvature 
of the manifold of solutions, which may be lost in the linear 
approximation from standard POD.

The original training set X ∈ ℝ
�×�

� is replaced by its 
expanded version

where ⊙ stands for the Hadamard product (component by 
component). The resulting Xq has 2�

�
+

1

2
�
�
(�

�
− 1) col-

umns. POD is performed analogously with this new training 
set.

Local and quadratic approaches can be combined by 
reducing to neighbouring snapshots first, and then adding 
their quadratic combinations into the modified training 
set.

(14)if i ∈ I, then ‖�i − �‖ < ‖�j − �‖ ∀j ∉ I.

(15)Xl =
[
c̃i …

]
∀i ∈ I,

(16)c̃i = ci −
1

n

∑
j∈I

cj, ∀i ∈ I.

(17)
Xq = [c

1
c
2
… c

�
� (c

1
⊙ c

1
) (c

1
⊙ c

2
) …

… (c
�
� ⊙ c

�
�
−1
) (c

�
� ⊙ c

�
�)],
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2.4.4 � Algorithmic description

Table 1   Units and ranges for the parameters in the model

Parameter Unit Range

v �m/s [1, 60]
� , � Degrees [10, 80]
� – [0, 1]
� Pa⋅s [5 ⋅ 10−4, 1.5 ⋅ 10−3]

r  m/s [0.5, 2]

The methodology is summarized for a clearer understanding. 
The ROM consists of an initial computationally expensive 
offline phase and a real-time online phase. The offline phase 
includes the computation of the snapshots and the dimen-
sionality reduction, and is performed once for a sampling 
of the parametric space and a tolerance � in criterion (11), 
as detailed in Algorithm 1. Then, for each new parametric 
point � , the reduced-order solution is computed in the online 
phase, following the steps in Algorithm 2. In this phase, 
we solve a reduced system at every iteration of the Picard 
scheme.
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3 � Results

In this section, we present numerical results of the pro-
posed parametric model for the concentration of Ca2+ in the 
foamed and structured scaffold geometries.

First, in Sect. 3.1, we analyse the influence of the chosen 
parameters in the model in the final distribution of Ca2+ 
ions. Next, Sect. 3.2 shows how the model is able to generate 
solutions that qualitatively match the experimental results 
published in the literature for osteoinduction in such type 
of scaffolds, thus validating our computational approach. In 
Sect. 3.3, we analyse the accuracy of the ROM as an efficient 
alternative to evaluate the model. The ROM is finally used to 

compare the performance of the two scaffolds quantitatively 
in Sect. 3.4, by computing the volume with a high concentra-
tion of Ca2+ from reduced-order solutions.

Throughout the section, parameters are expressed in the 
units in Table 1. All computations are performed using the 
open-source solver FEniCS (Alnaes et al. 2015; Langtangen 
and Logg 2017).

3.1 � Influence of parameters

The model in (1) accounts for six parameters, listed in 
Table 1. Next, we examine the influence of each of the 
parameters in the pattern of the solution. In order to do so, 

Fig. 3   Influence of the parameters in the Ca2+ high-concentra-
tion region for the foamed scaffold. Solutions correspond to a 
� = 0.5 , � = 10−3 , r = 1.25 , � = � = 45 for different values of v, b 
v = 30 , � = 10−3 , r = 1.25 , � = � = 45 for different values of � , 
c v = 30, � = 0.5, r = 1.25, � = � = 45 for different values of � , 

d v = 30 , � = 0.5 , � = 10−3 , � = � = 45 for different values of r. 
Regions with a concentration above 0.9 over 1 are plotted in grey, 
indicating the domain with expected bone formation, in contrast with 
the dark blue region, where the concentration is below 0.9. Param-
eters expressed in the units in Table 1
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we take different values for each parameter while keeping 
the rest of parameters constant.

Figure 3 shows the resulting Ca2+ high-concentration 
regions in a cross section for the foamed scaffold. Regions 
with a concentration above 0.9 over 1 are plotted in grey, 
indicating the domain with expected bone formation, in con-
trast with the dark blue region, where the concentration is 
below 0.9.

Effect of velocity v. As expected, no bone will appear 
near the inlet faces because of the entry of clean interstitial 
fluid that drags the ions across the domain. When increasing 
the velocity module in the range v ∈ [1, 60] , we observe that 

the total high-concentrated area diminishes and, therefore, 
less bone is expected to form, Fig. 3a.

Effect of � . The parameter � , appearing in the diffusivity 
expression (3), is related to a change in the pattern of bone 
formation. Recall that for � = 0 the diffusivity is constant 
in the whole domain, while for 𝛼 > 0 , diffusivity decreases 
with concentration. In Fig. 3b, cavities in the distribution 
become more pronounced for higher � , with a thinner layer 
of bone around the scaffold.

Effect the viscosity � . A slight redistribution of the grey 
region is observed when increasing the value of � in the 
range [5 ⋅ 10−4, 1.5 ⋅ 10−3] , see Fig. 3c.

Fig. 4   Influence of parameters in the Ca2+ high-concentration 
region for the structured scaffold. Solutions correspond to (a) 
� = 0.5 , � = 10−3 , r = 1.25 , � = � = 45 for different values of v, 
(b) v = 30 , � = 10−3 , r = 1.25 , � = � = 45 for different values of � , 
(c) v = 30, � = 0.5, r = 1.25, � = � = 45 for different values of � , 

(d) v = 30 , � = 0.5 , � = 10−3 , � = � = 45 for different values of r. 
Regions with a concentration above 0.9 over 1 are plotted in grey, 
indicating the domain with expected bone formation, in contrast with 
the dark blue region, where the concentration is below 0.9. Param-
eters expressed in the units in Table 1
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Effect of the release rate r. With a higher release rate 
r ∈ [0.5, 2] the ionic concentration increases faster. This 
implies a relevant growth of the high-concentration volume 
in Fig. 3d.

The same behaviour on varying these parameters can 
be inferred in the structured-scaffold domain, see Fig. 4. 
However, in this case, the total volume with a concentration 
c > 0.9 is significantly lower for all simulations.

As expected, the input flow angles � and � modify the 
distribution of Ca2+ regarding the direction of the deposi-
tion. See, for instance, how the variation of � changes the 
solution for the structured scaffold in Fig. 5. However, the 
characteristics of the deposition (presence of cavities, vol-
ume of high-concentration regions) remain similiar.

It is worth mentioning that, in both domains, the chosen 
parametrisation leads to a rich family of solutions with pat-
terns that cover a wide range of possibilities.

3.2 � Model validation: full‑order simulations vs 
experimental observations

We compare numerical simulations from the model in (1) 
with experimental results by Barba et al. (2017). Assuming 
that bone formation will be triggered in regions with a high 
concentration of Ca2+ (Tang et al. 2018), we identify the 
bone patterns around scaffolds that are observed in experi-
ments with those for high-concentration areas in the simu-
lations. For some combinations of the suggested physical 
parameters, numerical simulations from the proposed model 

Fig. 5   Influence of the inflow direction in the Ca2+ high-concentra-
tion area for the structured scaffold. Solutions for v = 30 , � = 0.5 , 
� = 10−3 , r = 1.25 , � = 45 for different values of � . Regions with 
a concentration above 0.9 over 1 are plotted in grey, indicating the 
domain with expected bone formation, in contrast with the dark blue 
region, where the concentration is below 0.9. Parameters expressed in 
the units in Table 1

Fig. 6   Experimental results obtained by Barba et  al. (2017) for a 
foamed scaffold: black areas correspond to pores (where the inter-
stitial fluid flows), grey to newly-formed bone and white to the scaf-
fold. The numerical simulations correspond to parameters (A) v = 60 , 
� = 10−3 , r = 1.25 , � = 0.5 , � = � = 45 and (B and C) v = 30 , 
� = 5 ⋅ 10−4 , r = 1.25 , � = 1 , � = � = 45 . In numerical solutions, 
regions with a concentration above 0.9 over 1 are plotted in grey, 

indicating the domain with expected bone formation, in contrast with 
the dark blue region, where the concentration is below 0.9. Param-
eters expressed in the units in Table 1. Figure adapted with permis-
sion from ACS Applied Materials & Interfaces, Volume 9(48), Pages 
41722-41736, “Osteoinduction by Foamed and 3D-Printed Calcium 
Phosphate Scaffolds: Effect of Nanostructure and Pore Architecture” 
by Barba et al. (2017). Copyright 2017, American Chemical Society
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display realistic patterns that are in agreement with those 
observed in experiments.

Our numerical simulations for the foamed scaffold are 
presented in Fig. 6, together with an experimental image 
from Barba et al. (2017), where bone formation appears 
through a foamed scaffold 12 weeks after intramuscular 
implantation in a canine model. In the image obtained by 
back-scattered electron microscopy, white areas correspond 
to the scaffold, grey areas to newly-formed bone and black 
areas to pores with no bone formation. It is possible to iden-
tify three different patterns concerning the growth of new 
bone. Some pores (marked by A) present a thick and uniform 
layer of bone around the scaffold. In bottlenecks, the layer 
becomes thinner or even inexistent (B). Finally, in some 
pores the layer of bone is irregularly distributed (C). These 
three patterns can also be seen in our family of simulations, 
correspondingly marked by A, B and C in Fig. 6.

Analogously, the comparison between experimental and 
computational results for the structured scaffold is shown in 
Fig. 7. In this case, Barba and coworkers noticed that bone 
was only formed at the intersecting filaments of the scaf-
fold. This is also the behaviour we deduct from the Ca2+ 
concentration maps in the numerical results: high-concen-
tration areas are located near intersections, marked by A in 
the figure.

Fig. 7   Experimental results obtained by Barba et  al. (2017) for a 
structured scaffold. Bone (A) only forms at the intersecting filaments 
of scaffold (B). The numerical simulation corresponds to parameters 
v = 30 , � = 10−3 , � = 1 , r = 1.25 , � = � = 45 . In numerical solutions, 
regions with a concentration above 0.9 over 1 are plotted in grey, 
indicating the domain with expected bone formation, in contrast with 
the dark blue region, where the concentration is below 0.9. Param-

eters expressed in the units listed in Table 1. Figure adapted with per-
mission from ACS Applied Materials & Interfaces, Volume 9(48), 
Pages 41722-41736, “Osteoinduction by Foamed and 3D-Printed 
Calcium Phosphate Scaffolds: Effect of Nanostructure and Pore 
Architecture” by Barba et  al. (2017). Copyright 2017, American 
Chemical Society

Table 2   Foamed scaffold. Reduced dimensions, k, and relative errors, 
Er , for the reduced-order solutions with parameters �

1
 , using a train-

ing set with 64 snapshots

Linear Quadratic

n = 64 k = 30 
Er = 1.24 ⋅ 10

−2

k = 222

Er = 8.34 ⋅ 10
−3

Local: n = 20 k = 8

Er = 5.64 ⋅ 10
−2

k = 19

Er = 3.74 ⋅ 10
−2

Local: n = 10 k = 5

Er = 6.26 ⋅ 10
−2

k = 10

Er = 4.55 ⋅ 10
−2

Table 3   Structured scaffold. Reduced dimensions, k, and relative 
errors, Er , for the reduced-order solutions with parameters �

1
 , using a 

training set with 64 snapshots

Linear Quadratic

n = 64 k = 33

Er = 3.32 ⋅ 10
−2

k = 313

Er = 1.83 ⋅ 10
−2

Local: n = 20 k = 9

Er = 5.72 ⋅ 10
−2

k = 26

Er = 3.65 ⋅ 10
−2

Local: n = 10 k = 6

Er = 9.72 ⋅ 10
−2

k = 13

Er = 6.60 ⋅ 10
−2
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3.3 � POD model evaluation

This section is devised to test the suitability of the presented 
ROM to approximate solutions for the model in (1). We 

compare the accuracy obtained with global and local POD, 
both with linear and quadratic approximations, as described 
in Sect. 2.4.

In all computations, we set a tolerance � = 10−2 in crite-
rion (11) to reduce the dimension, which implies keeping 
a 99% of the accumulated amplitude � . Errors for reduced-
order solutions are measured using the Euclidean norm with 
respect to the full-order FE solution.

We consider a coarse training set with 64 snapshots, 
corresponding to combinations of the extreme values for 
each parameter. That is, we take all the possible combina-
tions for v ∈ {1, 60} , � ∈ {10, 80} , � ∈ {10, 80} , � ∈ {0, 1} , 
� ∈ {5 ⋅ 10−4, 1.5 ⋅ 10−3} and r ∈ {0.5, 2} . This training set is 
used to approximate two new points in the parametric space.

The first point, �1 , corresponds to parameters v = 30 , 
� = 45 , � = 45 , � = 0.5 , � = 10−3 and r = 1.25 . The reduced 
dimensions k and the relative errors Er for the ROM solu-
tions are listed in Tables 2 and 3 for the foamed and struc-
tured domains, respectively.

In both scaffolds, we obtain relative errors of order 10−2 
for the reduced-order approximations, with a significant 
reduction in the number of degrees of freedom. The most 
expensive scenario in the considered reduced approxima-
tions leads to systems of size k = 222 for the foamed scaf-
fold, and size k = 313 for the structured one. These only 
correspond to 0.62% and 0.72% of the degrees of freedom 
for the full-order problems, respectively.

The differences on the errors between the analysed ROM 
alternatives are discussed next. First, the relative errors 
experience a minor decrease when including quadratic 
approximations, despite the higher computational demands. 
This behaviour suggests that mechanisms in this problem are 
simple. Thus, including information on the curvature of the 
manifold of solutions seems dispensable in this application.

When accounting only for a local approximation, with 
n = 20 or n = 10 neighbouring snapshots, we are able 
to reduce even more the dimension k of the problem. As 
expected, reducing the number of snapshots in the approxi-
mation implies an increment in the error of the reduced-
order solution. However, errors are still in the same order 
of magnitude, indicating that the closest snapshots (in the 
parametric space) include most of the information.

The second point we approximate, �2 , takes values 
v = 20 , � = 20 , � = 30 , � = 0.7 , � = 1.25 ⋅ 10−3 and r = 1.5 . 
The relative errors are shown in Tables 4 and 5. The obtained 
values are similar to the ones for �1 and therefore corrobo-
rate our observations.

Next, we enrich the training set from 64 to 729 snap-
shots, accounting for all possible combinations for three 
equidistant values in each parameter range. In this case, the 
quadratic approximation of the global POD is discarded 
for memory requirements. The amount of snapshots gener-
ated in Xq would be 266 814 , and the SVD algorithm would 

Table 4   Foamed scaffold. Reduced dimensions, k, and relative errors, 
Er , for the reduced-order solutions with parameters �

2
 , using a train-

ing set with 64 snapshots

Linear Quadratic

n = 64 k = 30

Er = 1.38 ⋅ 10
−2

k = 222

Er = 9.00 ⋅ 10
−3

Local: n = 20 k = 12

Er = 1.60 ⋅ 10
−2

k = 56

Er = 1.03 ⋅ 10
−2

Local: n = 10 k = 7

Er = 2.32 ⋅ 10
−2

k = 23

Er = 1.54 ⋅ 10
−2

Table 5   Structured scaffold. Reduced dimensions, k, and relative 
errors, Er , for the reduced-order solutions with parameters �

2
 , using a 

training set with 64 snapshots

Linear Quadratic

n = 64 k = 33

Er = 2.52 ⋅ 10
−2

k = 313

Er = 1.53 ⋅ 10
−2

Local: n = 20 k = 12

Er = 2.79 ⋅ 10
−2

k = 60

Er = 2.19 ⋅ 10
−2

Local: n = 10 k = 7

Er = 3.75 ⋅ 10
−2

k = 24

Er = 2.99 ⋅ 10
−2

Table 6   Foamed scaffold. Reduced dimensions, k, and relative errors, 
Er , for the reduced-order solutions with parameters �

2
 , using a train-

ing set with 729 snapshots

Linear Quadratic

n = 729 k = 102

Er = 8.27 ⋅ 10
−3

Local: n = 20 k = 14

Er = 9.14 ⋅ 10
−3

k = 52

Er = 8.53 ⋅ 10
−3

Local: n = 10 k = 8

Er = 1.14 ⋅ 10
−2

k = 21

Er = 9.57 ⋅ 10
−3

Table 7   Structured scaffold. Reduced dimensions, k, and relative 
errors, Er , for the reduced-order solutions with parameters �

2
 , using a 

training set with 729 snapshots

Linear Quadratic

n = 729 k = 123

Er = 1.27 ⋅ 10
−2

Local: n = 20 k = 14

Er = 1.56 ⋅ 10
−2

k = 60

Er = 1.41 ⋅ 10
−2

Local: n = 10 k = 8

Er = 2.00 ⋅ 10
−2

k = 23

Er = 1.74 ⋅ 10
−2
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require large amount of computer resources to process such 
a large training set.

Tables 6 and 7 show the errors when approximating �2 for 
the foamed and structured scaffolds with this new training 
set. As expected, we observe a gain in accuracy with respect 
to the coarser training set in all cases, at the price of a higher 
computational cost.

Finally, for parameters �2 , Fig.  8 shows the regions 
where bone is expected to form in the solutions from the 

full-order FE, the linear POD and the local-quadratic POD 
with n = 20 , in a cross section of the foamed domain for the 
training sets with 64 and 729 snapshots. We obtain a similar 
distribution to that from the reference FE solution, with a 
more evident discrepancy in the pattern for standard POD 
with the poor training set. Again, from these results we can 
deduce that enriching the training set improves the accuracy 
of the reduced-order solution. The incorporation of quad-
ratic terms into the approximation, even for local POD with 

Fig. 8   Solutions obtained with 
different ROM discretizations 
for parameters �2 ( v = 20 , 
� = 20 , � = 30 , � = 0.7 , 
� = 1.25 × 10−3 and r = 1.5 ), 
using the training sets with 
64 and 729 snapshots on the 
foamed domain. Regions with 
a concentration above 0.9 over 
1 are plotted in grey, indicat-
ing the domain with expected 
bone formation, in contrast with 
the dark blue region, where 
the concentration is below 0.9. 
Parameters expressed in the 
units in Table 1

Fig. 9   Solutions obtained with 
different ROM discretizations 
for parameters �2 ( v = 20 , 
� = 20 , � = 30 , � = 0.7 , 
� = 1.25 × 10−3 and r = 1.5 ), 
using the training sets with 64 
and 729 snapshots on the struc-
tured domain. Regions with a 
concentration above 0.9 over 
1 are plotted in grey, indicat-
ing the domain with expected 
bone formation, in contrast with 
the dark blue region, where 
the concentration is below 0.9. 
Parameters expressed in the 
units in Table 1
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n = 20 , seems to improve the quality of the solution, leading 
to more similar patterns to the reference one. This is also the 
observed behaviour in the solutions for the structured scaf-
fold domain, see Fig. 9. In this case, the differences on the 
pattern when taking a global or a local approximation are 
more notable, but we can also conclude that enriching the 
training set (with a more dense sampling of the parametric 
space or by accounting for quadratic contributions) leads to 
an improvement in accuracy.

The presented results establish the suitability of the ROM 
techniques in Sect. 2.4 as an efficient option to evaluate the 
model. The POD performs robustly even though we are 
dealing with a formulation with six parameters in three-
dimensional domains. A representative training set (with 
enough shapshots) is key to ensure accuracy of the method, 
especially for local POD.

3.4 � Approximation of high‑concentration volumes

The goal of this section is twofold. First, we will quantify 
the variation on the QoI (5) when varying the inflow veloc-
ity module v and the fluid viscosity � . Second, we analyse 
the accuracy on the QoI when using reduced-order solu-
tions for the simulations. In particular, we compare the QoI 
obtained from the global-quadratic POD solution and the 
local-quadratic POD solution with n = 10 with the QoI from 
the full-order FE solution.

The reduced-order computations are based on the coarse 
training set with 64 snapshots, corresponding to all combina-
tions for v ∈ {1, 60} , � ∈ {10, 80} , � ∈ {10, 80} , � ∈ {0, 1} , 
� ∈ {5 × 10−4, 1.5 × 10−3} and r ∈ {0.5, 2} , expressed in the 
units in Table 1. The dimension is reduced with a tolerance 
� = 10−2 in criterion (11).

Figure 10a shows the evolution of the QoI for solutions 
corresponding to velocity modules v = 1 , 20, 40 and 60 �
m/s while keeping the other parameters fixed. For both type 
of scaffolds, the QoI decreases when increasing the velocity 
v: from a 64% to a 30% in the foamed domain, and from a 
57% to an 8% in the structured domain. Note that the QoI is 
significantly larger for the foamed domain, which is consist-
ent with experimental observations by Barba et al. (2017). 
The errors on the QoI from the reduced-order solutions are 
below 1.1% for the foamed case and below 3.8% for the struc-
tured one.

We repeat the process, now varying the viscosity � . The 
evolution of the QoI for solutions corresponding to viscosi-
ties � = 5 ⋅ 10−4 , 8.3 ⋅ 10−4 , 1.17 ⋅ 10−3 and 1.5 ⋅ 10−3 Pa ⋅ s , 
with the rest of parameters constant, is depicted in Fig. 10b. 
In this case, the QoI varies slightly: from 49% to a 55% in the 
foamed domain, and from a 36% to a 33% in the structured 
domain. As discussed in Sect. 3.1, the value of � is related 
to a different distribution pattern for the concentration rather 
than a variation in the QoI. In this case, the errors on the QoI 
are below 0.8% for the POD approximations in the foamed 
domain, and below 0.4% in the structured one with respect 
to FE solutions.

The computations for the reduced-order solutions show 
the right tendency on the evolution of the QoI, which bases 
the ROM as a potential tool to analyse the parametric per-
formance of scaffolds.

4 � Discussion

This work offers a tool for numerical simulation in the 
field of tissue engineering, particularly, in the design of 
scaffolds for bone regeneration. We propose a parametric 

Structured
Structured

Foamed
Foamed

(b)(a)

Fig. 10   Evolution of the QoI a for velocity module v = 1, 20, 40 and 60, for � = 0.7 , � = 1.25 ⋅ 10−3 , r = 1.5 , � = 20 , � = 30 , b for viscosiy 
� = 5 ⋅ 10−4 , 8.3 ⋅ 10−4 , 1.17 ⋅ 10−3 and 1.5 ⋅ 10−3 , for � = 0.7 , v = 20 , r = 1.5 , � = 20 , � = 30 . Parameters expressed in the units in Table 1
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advection-diffusion model for the concentration of Ca2+ 
ions in the interstitial fluid across scaffolds, and a numeri-
cal data-assisted methodology for the efficient evaluation 
of the model.

The model accounts for six physical parameters: the mod-
ule and the angles of the input flow of the interstitial fluid, 
its viscosity, the release rate of ions from the scaffold and a 
parameter relating the diffusivity of the ions with concentra-
tion. These parameters are considered strongly relevant in 
reproducing an optimal environment for cell differentiation. 
By identifying regions with a high concentration of Ca2+ 
with regions where bone is expected to form, we are able to 
compare numerical results with the outcome in laboratory 
experiments.

Barba et al. (2017) tested different pore architectures (i.e. 
pore size and shape) on osteoinductivity using both foamed 
and 3D-printed calcium phosphate scaffolds. Foamed scaf-
folds, which are obtained from the solidification of foams, 
showed higher osteoinductive properties than the structured 
ones. As a matter of fact, in 3D-printed structured scaffolds, 
bone formation was mainly reduced to the crossing sections 
between printed strands, where concavities and tortuosities 
appear. The results of their work can be seen in Figs. 6 and 7, 
where we can clearly see that bone formation is predominant 
for the foamed scaffold. This suggests that a higher struc-
tural tortuosity may help to accumulate ions and molecules 
that induce cell differentiation. The regular geometry of the 
structured scaffold increases the flow media, and therefore 
leads to a drastic decrease in bone formation. However, 
despite the good osteoinduction in foamed scaffolds, one 
of their main drawbacks is the randomness in the structure 
creation in foams, with the consequent lack of control over 
cell differentiation.

The solutions from the proposed model show similar 
qualitative behaviour to the experimental observations 
by Barba et al. (2017). Nevertheless, the analysis for the 
multiparametric problem on a real size scaffold may be 
computationally unaffordable. Here, we propose to use a 
reduced-order model technique to drastically reduce the 
computational cost of the model for the study of scaffolds. 
In particular, we test the performance of the Proper Orthog-
onal Decomposition (POD), also accounting for local and 
quadratic approximations following the work in Díez et al. 
(2021). The tested POD methods lead to a significant reduc-
tion in the number of degrees of freedom for each model 
evaluation with respect to the full-order FE discretization. In 
the examples, the number of degrees of freedom is reduced 
by a factor of, at least, 100. Reduced-order approximations 
are shown to be robust and accurate.

The model is limited by some simplifications introduced 
as assumptions. For example, the scaffold is considered as 
a rigid body, neglecting the effect of its mechanical defor-
mation on the fluid movement. Also, we assume a constant 

release rate r, which instead could be considered as a vari-
able depending on the shear stress of the fluid, the solu-
bility of the material or the cell-associated degradation. 
Furthermore, it could also be taken into account that body 
fluids have proteins that could interact with the material 
and modify ionic release. Nevertheless, the proposed ROM 
methodology is generalizable to any alternative physical 
parametrisation required in the design of new scaffolds. 
Numerical simulations may be used to understand and rein-
force experimental results, thus reducing time and costs of 
in-vivo experimentation in tissue engineering.

5 � Conclusions

We propose a multiparametric advection-diffusion model for 
calcium distribution in the interstitial fluid through scaffolds. 
The model aims to predict bone formation for different scaf-
folds by the identification of regions with a high concentra-
tion of ions. Real-time evaluation of the model, possibly 
for multiple combinations of physical parameters, motivates 
the use of Reduced Order Model (ROM) methodologies to 
drastically reduce the computational cost and quicken the 
simulations. In particular, we analyse the performance of 
the Proper Orthogonal Decomposition (POD) with local and 
quadratic variations. Numerical results are in good agree-
ment with experimental observations reported in the litera-
ture, demonstrating the potential of the reduced-order model 
to efficiently simulate the performance of scaffolds.
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