Skip to main content
Log in

Hemodynamical analysis of MHD two phase blood flow through a curved permeable artery having variable viscosity with heat and mass transfer

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

A numerical investigation of MHD blood flow through a stenosed permeable curved artery has been done in this study. Blood flow is considered in two-phases; core and plasma region, respectively. Viscosity of the core region is considered as temperature-dependent, while constant viscosity is considered in plasma region. The governing equations of the proposed two-phase blood flow model are considered in the toroidal coordinate system. The second-order finite difference method is adopted to solve governing equations with \(10^{-6}\) tolerance in the iteration process. A comparative study of Darcy number (Da) is performed to understand the influence of permeable and impermeable wall conditions. The effect of various physical parameters such as magnetic field (M), viscosity variation parameter (\(\lambda _{1}\)), Darcy number (Da), heat source (H) and chemical reaction parameter (\(\xi\)) is displayed graphically on the flow velocity, temperature, concentration, wall shear stress and frictional resistance profiles. A comparison with published work has also been displayed through the graph to validate the present model, and it is in fair agreement with the existing work. The present study suggested that the curvature and permeability of the arterial wall raise the risk of atherosclerosis formation, while the implication of heat source on the blood flow lower this risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

\('\) :

Represent the non-dimensional quantities

rz :

Radial and axial coordinates, respectively,

t :

Time

\(R_{1},R\) :

Radius of core and plasma region, respectively,

\(L_{0}\) :

Length of the stenosis

\(R_{0}\) :

Radius of normal artery

\(u_{\mathrm{c}}, v_{\mathrm{c}},w_{\mathrm{c}}\) :

The core region dimensional velocities in \(r, \theta , z\) directions, respectively,

\(u_{\mathrm{p}}, v_{\mathrm{p}},w_{\mathrm{p}}\) :

The Plasma-region dimensional velocities in \(r, \theta , z\) directions, respectively,

\(P_{\mathrm{c}}, P_{\mathrm{p}}\) :

Pressures in core and plasma regions, respectively,

\(T_{\mathrm{c}}, T_{\mathrm{P}}\) :

Dimensional temperature in core and plasma region, respectively,

\(C_{\mathrm{c}}, C_{\mathrm{P}}\) :

Dimensional concentration in core and plasma region, respectively,

\(Q_{\mathrm{c}}, Q_{\mathrm{p}}\) :

Dimensional heat source in core and plasma region, respectively,

Gr:

Thermal Grashof number

Gm:

Solute Grashof number

M :

Magnetic field

H :

Heat source

Da:

Darcy number (Permeability parameter)

\(R_{\mathrm{c}}, R_{\mathrm{p}}\) :

Dimensional chemical reaction parameter in core and plasma region, respectively,

\(K_{\mathrm{c}}, K_{\mathrm{p}}\) :

Thermal conductivity in core and plasma region, respectively,

\(k_{0}\) :

Ratio of core and plasma region thermal conductivities

Q :

Flow rate

Sc:

Schmidt number

WSS:

Wall shear stress

\(\varepsilon\) :

Curvature parameter

\(\omega\) :

Angular frequency of the forced oscillation

\(\mu _{\mathrm{c}}, \mu _{\mathrm{p}}\) :

Viscosity of core and plasma region, respectively,

\(\lambda _{1}\) :

Core region viscosity variation parameter

\(\delta\) :

Maximum height of stenosis

\(\sigma\) :

Electrical conductivity of fluid

\(\rho _{\mathrm{c}},\rho _{\mathrm{p}}\) :

Density of core and plasma region, respectively,

\(\rho _{0}\) :

Density ratio

\(\theta _{\mathrm{c}},\theta _{\mathrm{p}}\) :

Non-dimensional temperature of core and plasma, respectively,

\(\phi _{\mathrm{c}},\phi _{\mathrm{p}}\) :

Non-dimensional concentration of core and plasma, respectively,

\(\lambda\) :

Frictional resistance or flow impedance

\(\tau _{\mathrm{w}}\) :

Wall shear stress

\(\xi\) :

Chemical reaction parameter

\(\beta\) :

Ratio of central core radius to normal artery radius

\(\zeta\) :

Slip velocity parameter

References

  • Abdel-wahed MS (2019) Magnetohydrodynamic ferro-nano fluid flow in a semi-porous curved tube under the effect of hall current and nonlinear thermal radiative. J Magn Magn Mater 474:347–354

    Google Scholar 

  • Ahmed A, Nadeem S (2017a) Effects of magnetohydrodynamics and hybrid nanoparticles on a micropolar fluid with 6-types of stenosis. Results Phys 7:4130–4139

    Google Scholar 

  • Ahmed A, Nadeem S (2017b) Shape effect of Cu-nanoparticles in unsteady flow through curved artery with catheterized stenosis. Results Phys 7:677–689

    Google Scholar 

  • Ahmed Z, Nadeem S, Saleem S, Ellahi R (2019) Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface. Int J Numer Methods Heat Fluid Flow 29(12):4607–4623. https://doi.org/10.1108/HFF-04-2019-0346

  • Akar S, Esfahani JA, Shaegh SAM (2019) A numerical investigation of magnetic field effect on blood flow as biomagnetic fluid in a bend vessel. J Magn Magn Mater 482:336–349

    Google Scholar 

  • Akbar NS, Rahman S, Ellahi R, Nadeem S (2014) Nano fluid flow in tapering stenosed arteries with permeable walls. Int J Therm Sci 85:54–61

    Google Scholar 

  • Akbarinia A, Laur R (2009) Investigating the diameter of solid particles effects on a laminar nanofluid flow in a curved tube using a two phase approach. Int J Heat Fluid Flow 30(4):706–714

    Google Scholar 

  • Ali A, Jana R, Das S (2021) Significance of entropy generation and heat source: the case of peristaltic blood flow through a ciliated tube conveying Cu–Ag nanoparticles using Phan–Thien–Tanner model. Biomech Model Mechanobiol 6:1–20

    Google Scholar 

  • Ayub M, Shahzadi I, Nadeem S (2019) A ballon model analysis with Cu-blood medicated nanoparticles as drug agent through overlapped curved stenotic artery having compliant walls. Microsyst Technol 25(8):2949–2962

    Google Scholar 

  • Barnothy MF (2013) Biological effects of magnetic fields. Springer, Berlin

    Google Scholar 

  • Beavers GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30(1):197–207

    Google Scholar 

  • Berger S, Talbot L, Yao L (1983) Flow in curved pipes. Annu Rev Fluid Mech 15(1):461–512

    MATH  Google Scholar 

  • Bit A, Alblawi A, Chattopadhyay H, Quais QA, Benim AC, Rahimi-Gorji M, Do H-T (2020) Three dimensional numerical analysis of hemodynamic of stenosed artery considering realistic outlet boundary conditions. Comput Methods Programs Biomed 185:105163

    Google Scholar 

  • Braet H, Rahimi-Gorji M, Debbaut C, Ghorbaniasl G, Van Walleghem T, Cornelis S, Cosyns S, Vervaet C, Willaert W, Ceelen W et al (2021) Exploring high pressure nebulization of Pluronic F127 hydrogels for intraperitoneal drug delivery. Eur J Pharm Biopharm 169:134–143

    Google Scholar 

  • Brill R, Jones D (1994) The influence of hematocrit, temperature and shear rate on the viscosity of blood from a high-energy-demand teleost, the yellowfin tuna Thunnus albacares. J Exp Biol 189(1):199–212

    Google Scholar 

  • Bugliarello G, Hayden JW (1963) Detailed characteristics of the flow of blood in vitro. Trans Soc Rheol 7(1):209–230

    Google Scholar 

  • Bugliarello G, Sevilla J (1970) Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorheology 7(2):85–107

    Google Scholar 

  • Buono MJ, Krippes T, Kolkhorst FW, Williams AT, Cabrales P (2016) Increases in core temperature counterbalance effects of haemoconcentration on blood viscosity during prolonged exercise in the heat. Exp Physiol 101(2):332–342

    Google Scholar 

  • Chakravarty S, Datta A (1992) Pulsatile blood flow in a porous stenotic artery. Math Comput Model 16(2):35–54

    MATH  Google Scholar 

  • Chinyoka T, Makinde O (2014) Computational dynamics of arterial blood flow in the presence of magnetic field and thermal radiation therapy. In: Advances in mathematical physics

  • Çinar Y, Şenyol AM, Duman K (2001) Blood viscosity and blood pressure: role of temperature and hyperglycemia. Am J Hypertens 14(5):433–438

    Google Scholar 

  • Das S, Barman B, Jana R, Makinde O (2021) Hall and ion slip currents impact on electromagnetic blood flow conveying hybrid nanoparticles through an endoscope with peristaltic waves. BioNanoScience 11:1–23

    Google Scholar 

  • Dean WR (1927) XVI. Note on the motion of fluid in a curved pipe. Lond Edinb Dublin Philos Mag J Sci 4(20):208–223

    MATH  Google Scholar 

  • Dean W (1928) LXXII. The stream-line motion of fluid in a curved pipe (Second paper). Lond Edinb Dublin Philos Mag J Sci 5(30):673–695

    Google Scholar 

  • Eckmann DM, Bowers S, Stecker M, Cheung AT (2000) Hematocrit, volume expander, temperature, and shear rate effects on blood viscosity. Anesth Anal 91(3):539–545

    Google Scholar 

  • Ellahi R, Rahman S, Nadeem S, Akbar NS (2014a) Influence of heat and mass transfer on micropolar fluid of blood flow through a tapered stenosed arteries with permeable walls. J Comput Theor Nanosci 11(4):1156–1163

    Google Scholar 

  • Ellahi R, Rahman S, Nadeem S, Akbar NS (2014b) Blood flow of nanofluid through an artery with composite stenosis and permeable walls. Appl Nanosci 4(8):919–926

    Google Scholar 

  • Escuer J, Aznar I, McCormick C, Peña E, McGinty S, Martinez MA (2021) Influence of vessel curvature and plaque composition on drug transport in the arterial wall following drug-eluting stent implantation. Biomech Model Mechanobiol 20(2):767–786

    Google Scholar 

  • Fry DI (1969) Certain chemorheologic considerations regarding the blood vascular interface with particular reference to coronary artery disease. Circulation 40(5s4):IV–38

  • Gijsen F, Allanic E, Van De Vosse F, Janssen J (1999) The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 curved tube. J Biomech 32(7):705–713

    Google Scholar 

  • Gorji MR, Debbaut C, Ghorbaniasl G, Willaert W, Cosyns S, Ceelen W (2021) Electrostatic precipitation pressurized intraperitoneal aerosol chemotherapy (ePIPAC): finding the optimal electrical potential. Eur J Surg Oncol 47(2):e30

    Google Scholar 

  • Guard CL, Murrish DE (1975) Effects of temperature on the viscous behavior of blood from Antarctic birds and mammals. Comp Biochem Physiol Part A Physiol 52(2):287–290

    Google Scholar 

  • Haik Y, Pai V, Chen C-J (2001) Apparent viscosity of human blood in a high static magnetic field. J Magn Magn Mater 225(1–2):180–186

    Google Scholar 

  • Ibrahim SM, Kumar PV, Makinde OD (2018) Chemical reaction and radiation effects on non-Newtonian fluid flow over a stretching sheet with non-uniform thickness and heat source. In: Defect and diffusion forum, vol 387. Trans Tech Publ, pp 319–331

  • Jayaraman G, Dash R (2001) Numerical study of flow in a constricted curved annulus: an application to flow in a catheterised artery. J Eng Math 40(4):355–375

    MathSciNet  MATH  Google Scholar 

  • Katritsis D, Kaiktsis L, Chaniotis A, Pantos J, Efstathopoulos EP, Marmarelis V (2007) Wall shear stress: theoretical considerations and methods of measurement. Prog Cardiovasc Dis 49(5):307–329

    Google Scholar 

  • Késmárky G, Kenyeres P, Rábai M, Tóth K (2008) Plasma viscosity: a forgotten variable. Clin Hemorheol Microcirc 39(1–4):243–246

    Google Scholar 

  • Makinde OD, Ogulu A (2008) The effect of thermal radiation on the heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate permeated by a transverse magnetic field. Chem Eng Commun 195(12):1575–1584

    Google Scholar 

  • Mamatha S, Raju CS, Prasad PD, Ajmath K, Makinde OD et al (2018) Exponentially decaying heat source on MHD tangent hyperbolic two-phase flows over a flat surface with convective conditions. In: Defect and diffusion forum, vol 387. Trans Tech Publ, pp 286–295

  • Medvedev A, Fomin V (2011) Two-phase blood-flow model in large and small vessels. Doklady Phys 56:610–613 (SP MAIK Nauka/Interperiodica)

    Google Scholar 

  • Mekheimer KS, Abd Elmaboud Y (2014) Simultaneous effects of variable viscosity and thermal conductivity on peristaltic flow in a vertical asymmetric channel. Can J Phys 92(12):1541–1555

    Google Scholar 

  • Mekheimer KS, El Kot M (2015) Suspension model for blood flow through catheterized curved artery with time-variant overlapping stenosis. Eng Sci Technol Int J 18(3):452–462

    Google Scholar 

  • Mishra S, Siddiqui S, Medhavi A (2011) Blood flow through a composite stenosis in an artery with permeable wall. Int J Appl Math Appl 6:58–73

    MATH  Google Scholar 

  • Mori Y (1965) Study on forced convective heat transfer in curved pipes. Int J Heat Mass Transf 8:67–82

    MATH  Google Scholar 

  • Mori Y, Nakayama W (1967) Study of forced convective heat transfer in curved pipes (2nd report, turbulent region). Int J Heat Mass Transf 10(1):37–59

    Google Scholar 

  • Nadeem S, Ijaz S (2014) Nanoparticles analysis on the blood flow through a tapered catheterized elastic artery with overlapping stenosis. Eur Phys J Plus 129(11):1–14

    Google Scholar 

  • Nadeem S, Ijaz S (2015) Theoretical analysis of metallic nanoparticles on blood flow through stenosed artery with permeable walls. Phys Lett A 379(6):542–554

    MATH  Google Scholar 

  • Nguyen N-T (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluidics Nanofluidics 12(1–4):1–16

    Google Scholar 

  • Nobari M, Mehrabani M (2010) A numerical study of fluid flow and heat transfer in eccentric curved annuli. Int J Therm Sci 49(2):380–396

    Google Scholar 

  • Padmanabhan N, Jayaraman G (1984) Flow in a curved tube with constriction-an application to the arterial system. Med Biol Eng Comput 22(3):216–224

    Google Scholar 

  • Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transf 15:1787–1806

    MATH  Google Scholar 

  • Patankar SV, Pratap V, Spalding D (1983) Prediction of laminar flow and heat transfer in helically coiled pipes. In: Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion. Elsevier, pp. 117–129

  • Ponalagusamy R (2007) Blood flow through an artery with mild stenosis: a two-layered model, different shapes of stenoses and slip velocity at the wall. J Appl Sci 7(7):1071–1077

    Google Scholar 

  • Ponalagusamy R, Selvi RT (2013) Blood flow in stenosed arteries with radially variable viscosity, peripheral plasma layer thickness and magnetic field. Meccanica 48(10):2427–2438

    MathSciNet  MATH  Google Scholar 

  • Pourmehran O, Rahimi-Gorji M, Gorji-Bandpy M, Gorji T (2015) Simulation of magnetic drug targeting through tracheobronchial airways in the presence of an external non-uniform magnetic field using Lagrangian magnetic particle tracking. J Magn Magn Mater 393:380–393

    Google Scholar 

  • Pourmehran O, Gorji TB, Gorji-Bandpy M (2016) Magnetic drug targeting through a realistic model of human tracheobronchial airways using computational fluid and particle dynamics. Biomech Model Mechanobiol 15(5):1355–1374

    Google Scholar 

  • Quemada D (1981) A rheological model for studying the hematocrit dependence of red cell–red cell and red cell–protein interactions in blood. Biorheology 18(3–6):501–516

    Google Scholar 

  • Rahimi-Gorji M, Van de Sande L, Debbaut C, Ghorbaniasl G, Braet H, Cosyns S, Remaut K, Willaert W, Ceelen W (2020) Intraperitoneal aerosolized drug delivery: technology, recent developments, and future outlook. Adv Drug Deliv Rev 160:105–114

    Google Scholar 

  • Ramanamurthy J, Prasad K, Narla V (2013) Unsteady peristaltic transport in curved channels. Phys Fluids 25(9):091903

    MATH  Google Scholar 

  • Rand PW, Lacombe E, Hunt HE, Austin WH (1964) Viscosity of normal human blood under normothermic and hypothermic conditions. J Appl Physiol 19(1):117–122

    Google Scholar 

  • Rao AR, Deshikachar K (1988) Physiological-type flow in a circular pipe in the presence of a transverse magnetic field. J Indian Inst Sci 68(7&8):247

    MATH  Google Scholar 

  • Sankar D, Hemalatha K (2007) A non-Newtonian fluid flow model for blood flow through a catheterized artery-steady flow. Appl Math Model 31(9):1847–1864

    MATH  Google Scholar 

  • Sankar D, Lee U (2010) Two-fluid Casson model for pulsatile blood flow through stenosed arteries: a theoretical model. Commun Nonlinear Sci Numer Simul 15(8):2086–2097

    MathSciNet  MATH  Google Scholar 

  • Secomb TW, Pries AR (2013) Blood viscosity in microvessels: experiment and theory. C R Phys 14(6):470–478

    Google Scholar 

  • Shahzadi I, Nadeem S (2019) Analysis of Ag/blood-mediated transport in curved annulus with exclusive nature of convective boundary. Physica Scr 94(11):115011

    Google Scholar 

  • Sharma BK, Kumawat C (2021) Impact of temperature dependent viscosity and thermal conductivity on MHD blood flow through a stretching surface with Ohmic effect and chemical reaction. Nonlinear Eng 10(1):255–271

    Google Scholar 

  • Sharma BK, Sharma M, Gaur R (2015) Thermal radiation effect on inclined arterial blood flow through a non-Darcian porous medium with magnetic field. In: Proceeding: first thermal and fluids engineering summer conference, ASTFE Digital Library, vol 17. pp 2159–2168

  • Sharma BK, Tailor V, Goyal M (2017) Heat source and soret effects on megneto-micropolar fluid flow with variable permeability and chemical reaction. Glob J Pure Appl Math 13(9):5195–5212

    Google Scholar 

  • Shukla J, Parihar R, Gupta S (1980a) Effects of peripheral layer viscosity on blood flow through the artery with mild stenosis. Bull Math Biol 42(6):797–805

    MATH  Google Scholar 

  • Shukla J, Parihar R, Gupta S (1980b) Biorheological aspects of blood flow through stenosed artery with mild stenosis: effects of peripherical layer. Biorheological 17(5):403–410

    Google Scholar 

  • Siddiqa S, Naqvi S, Hossain M, Massarotti N, Mauro A (2017) Strong temperature dependent viscosity effects on bio-magnetic fluid flow under the action of localized magnetic field and viscous dissipation. J Mol Liq 248:616–625

    Google Scholar 

  • Snyder GK (1971) Influence of temperature and hematocrit on blood viscosity. Am J Physiol Legacy Content 220(6):1667–1672

    Google Scholar 

  • Sparrow E, Beavers GS, Masha B (1974) Laminar flow in a rectangular duct bounded by a porous wall. Phys Fluids 17(7):1465–1467

    MATH  Google Scholar 

  • Sultan F, Khan NA, Qasim M, Afridi MI (2019) Numerical simulation of the flow of nano-Eyring–Powell fluid through a curved artery with time-variant stenosis and aneurysm. Nihon Reoroji Gakkaishi 47(2):75–85

    Google Scholar 

  • Sultan F, Khan NA, Afridi MI (2020) Investigation of biological mechanisms during flow of nano-Bingham–Papanastasiou fluid through a diseased curved artery. Proc Inst Mech Eng Part N J Nanomater Nanoeng Nanosyst 234(3–4):69–81

    Google Scholar 

  • Tanveer A, Hayat T, Alsaedi A (2018) Peristaltic flow of MHD Jeffery nanofluid in curved channel with convective boundary conditions: a numerical study. Neural Comput Appl 30(2):437–446

    Google Scholar 

  • Tripathi B, Sharma B (2018a) Effect of variable viscosity on MHD inclined arterial blood flow with chemical reaction. Int J Appl Mech Eng 23:3

    Google Scholar 

  • Tripathi B, Sharma BK (2018b) Influence of heat and mass transfer on MHD two-phase blood flow with radiation. In: AIP Conference Proceedings, 1975, 030009. AIP Publishing LLC

  • Tripathi B, Sharma BK (2020) Influence of heat and mass transfer on two-phase blood flow with joule heating and variable viscosity in the presence of variable magnetic field. Int J Comput Methods 17(03):1850139

    MathSciNet  MATH  Google Scholar 

  • Tripathi B, Sharma BK (2021) Two-phase analysis of blood flow through a stenosed artery with the effects of chemical reaction and radiation. Ricerche Mat. https://doi.org/10.1007/s11587-021-00571-7

    Article  Google Scholar 

  • Tripathi B, Sharma BK, Sharma M (2019) Modeling and analysis of MHD two-phase blood flow through a stenosed artery having temperature-dependent viscosity. Eur Phys J Plus 134(9):466

    Google Scholar 

  • Young D (1968) Effect of a time-dependent stenosis on flow through a tube. J Eng Ind 90(2):248–245

    Google Scholar 

  • Young D (1979) Fluid mechanics of arterial stenoses. J Biomech Eng 101(3):157–175

    Google Scholar 

  • Zaman A, Ali N, Ali I (2018) Effects of nanoparticles (Cu (Copper), Silver (Ag)) and slip on unsteady blood flow through a curved stenosed channel with aneurysm. Therm Sci Eng Prog 5:482–491

    Google Scholar 

  • Zaman A, Ali N, Sajjad M (2019) Effects of nanoparticles (Cu, TiO2, Al2O3) on unsteady blood flow through a curved overlapping stenosed channel. Math Comput Simul 156:279–293

    MATH  Google Scholar 

  • Zhang B, Gu J, Qian M, Niu L, Zhou H, Ghista D (2017) Correlation between quantitative analysis of wall shear stress and intima-media thickness in atherosclerosis development in carotid arteries. Biomed Eng Online 16(1):1–17

    Google Scholar 

Download references

Acknowledgements

One of the authors, Chandan Kumawat, is grateful to the University Grants Commission, New Delhi, for awarding a Senior Research Fellowship. We are grateful to the esteemed reviewers for their encouraging comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Core region

r Direction

$$\begin{aligned} \begin{aligned}&\frac{{\text{Re}} \;\alpha ^{3}}{\rho _{0}} \bigg(\delta ^{*}\frac{\partial u'_{\mathrm{c}}}{\partial t'}+\frac{ \delta ^{*} w'_{\mathrm{c}}}{1+\varepsilon r' \cos \theta '}\frac{\partial u'_{\mathrm{c}}}{\partial z'}+{\delta ^{*}}^{2}u'_{\mathrm{c}}\frac{\partial u'_{\mathrm{c}}}{\partial r'}\\&\qquad +\frac{{\delta ^{*}}^{2}v'_{\mathrm{c}}}{r'}\frac{\partial u'_{\mathrm{c}}}{\partial \theta '}-{\delta ^{*}}^{2}\frac{v'^{2}_{\mathrm{c}}}{r'} -\frac{\varepsilon }{\alpha ^{2}}\frac{w'^{2}_{\mathrm{c}} \cos \theta '}{1+\varepsilon r' \cos \theta '}\bigg)=-\frac{\partial P'_{\mathrm{c}}}{\partial r'}\\&\qquad +\exp (\lambda _{1}[1/2-\theta _{\mathrm{c}}])\bigg(\frac{\delta ^{*} \alpha ^{4}}{(1+\varepsilon r'\cos \theta ')^{2}}\frac{\partial ^{2} u'_{\mathrm{c}}}{\partial z'^{2}} +\delta ^{*} \alpha ^{2}\frac{\partial ^{2} u'_{\mathrm{c}}}{\partial r'^{2}}\\&\qquad +\delta ^{*} \alpha ^{2}\frac{1}{r'}\frac{\partial u'_{\mathrm{c}}}{\partial r'}-\delta ^{*} \alpha ^{2}\frac{u'_{\mathrm{c}}}{r'^{2}}+\delta ^{*} \alpha ^{2}\frac{1}{r'^{2}}\frac{\partial ^{2} u'_{\mathrm{c}}}{\partial \theta '^{2}}\\&\qquad -\delta ^{*} \alpha ^{2}\frac{2}{r'^{2}}\frac{\partial v'_{\mathrm{c}}}{\partial \theta '}+\frac{\delta ^{*} \varepsilon \alpha ^{2}}{(1+\varepsilon r' \cos \theta ')}\bigg[\cos \theta ' \frac{\partial u'_{\mathrm{c}}}{\partial r'}\\&\qquad -\frac{\sin \theta '}{r'}\frac{\partial u'_{\mathrm{c}}}{\partial \theta '}+ \frac{v'_{\mathrm{c}} \sin \theta '}{r'}\bigg] +\frac{2\varepsilon \alpha ^{2} \sin \theta '}{(1+\varepsilon r' \cos \theta ')^{2}}\frac{\partial w'_{\mathrm{c}}}{\partial z'}\\&\qquad -\delta ^{*} \varepsilon ^{2} \alpha ^{2}\frac{ \cos \theta '}{(1+\varepsilon r'\cos \theta ')^{2}}[u'_{\mathrm{c}} \cos \theta '-v'_{\mathrm{c}} \sin \theta ']\bigg)\\&\qquad -\lambda _{1} \exp (\lambda _{1}[1/2-\theta _{\mathrm{c}}])\bigg[\frac{4}{3}\delta ^{*} \alpha ^{2}\frac{\partial u'_{\mathrm{c}}}{\partial r'}-\frac{2}{3}\bigg(\frac{\alpha ^{2}}{1+\varepsilon r'\cos \theta '}\frac{\partial w'_{\mathrm{c}}}{\partial z'}\\&\qquad +\delta ^{*} \varepsilon \alpha ^{2}\big(\frac{u'_{\mathrm{c}} \cos \theta '-v'_{\mathrm{c}} \sin \theta '}{1+\varepsilon r'\cos \theta '}\big)+\delta ^{*} \alpha ^{2} \big(\frac{1}{r'}\frac{\partial v'_{\mathrm{c}}}{\partial \theta '}+\frac{u'_{\mathrm{c}}}{r'}\big)\bigg)\bigg] \frac{\partial \theta _{\mathrm{c}}}{\partial r'} \\&\qquad -\lambda _{1} \exp (\lambda _{1}[1/2-\theta _{\mathrm{c}}])\delta ^{*} \alpha ^{2} \bigg( \frac{1}{r'}\frac{\partial v'_{\mathrm{c}}}{\partial r'}-\frac{v'_{\mathrm{c}}}{r'^{2}} \\&\qquad +\frac{1}{r'^{2}}\frac{\partial u'_{\mathrm{c}}}{\partial \theta '}\bigg)\frac{\partial \theta _{\mathrm{c}}}{\partial \theta '} -\lambda _{1} \exp (\lambda _{1}[1/2-\theta _{\mathrm{c}}])\bigg(\frac{\delta ^{*} \alpha ^{4}}{(1+\varepsilon r'\cos \theta ')^{2}}\frac{\partial u'_{\mathrm{c}}}{\partial z'}\\&\qquad +\frac{\alpha ^{2}}{(1+\varepsilon r'\cos \theta ')}\frac{\partial w'_{\mathrm{c}}}{\partial r'}-\frac{\varepsilon \alpha ^{2} w'_{\mathrm{c}} \cos \theta '}{(1+\varepsilon r'\cos \theta ')^{2}}\bigg)\frac{\partial \theta _{\mathrm{c}}}{\partial z'} \end{aligned} \end{aligned}$$
(6.1)

\(\theta\) Direction

$$\begin{aligned} \begin{aligned}&\frac{{\text{Re}} \;\alpha ^{3}}{\rho _{0}}\bigg(\delta ^{*}\frac{\partial v'_{\mathrm{c}}}{\partial t'}+\delta ^{*}\frac{w'_{\mathrm{c}} }{1+\varepsilon r' \cos \theta '}\frac{\partial v'_{\mathrm{c}}}{\partial z'}+{\delta ^{*}}^{2} u'_{\mathrm{c}}\frac{\partial v'_{\mathrm{c}}}{\partial r'}+{\delta ^{*}}^{2}\frac{v'_{\mathrm{c}}}{r'}\frac{\partial v'_{\mathrm{c}}}{\partial \theta '}\\&\qquad +{\delta ^{*}}^{2}\frac{u'_{\mathrm{c}}v'_{\mathrm{c}}}{r'}+\frac{\varepsilon }{\alpha ^{2}}\frac{{w'_{\mathrm{c}}}^{2} \sin \theta '}{1+\varepsilon r' \cos \theta '}\bigg)=-\frac{1}{ r' } \frac{\partial P'_{\mathrm{c}}}{\partial \theta '}\\&\qquad +\exp (\lambda _{1}[1/2-\theta _{\mathrm{c}}])\bigg(\frac{\delta ^{*} \alpha ^{4}}{(1+\varepsilon r' \cos \theta ')^{2}}\frac{\partial ^{2} v'_{\mathrm{c}}}{\partial z'^{2}} +\delta ^{*} \alpha ^{2}\frac{\partial ^{2} v'_{\mathrm{c}}}{\partial r'^{2}}\\&\qquad +\frac{\delta ^{*} \alpha ^{2}}{r'}\frac{\partial v'_{\mathrm{c}}}{\partial r'}-\delta ^{*} \alpha ^{2}\frac{v'_{\mathrm{c}}}{r'^{2}}+\frac{\delta ^{*} \alpha ^{2}}{r'^{2}}\frac{\partial ^{2} v'_{\mathrm{c}}}{\partial \theta '^{2}}+ \frac{2\delta ^{*} \alpha ^{2}}{r'^{2}}\frac{\partial u'_{\mathrm{c}}}{\partial \theta '}\\&\qquad +\frac{\delta ^{*} \varepsilon \alpha ^{2}}{(1+\varepsilon r' \cos \theta ')}\bigg[\cos \theta ' \frac{\partial v'_{\mathrm{c}}}{\partial r'}-\frac{\sin \theta '}{r'}\frac{\partial v'_{\mathrm{c}}}{\partial \theta '}- \frac{u'_{\mathrm{c}} \sin \theta '}{r'}\bigg]\\&\qquad + \frac{2 \varepsilon \alpha ^{2} \sin \theta '}{(1+\varepsilon r' \cos \theta ')^{2}}\frac{\partial w'_{\mathrm{c}}}{\partial z'} +\delta ^{*} \varepsilon ^{2} \alpha ^{2} \frac{ \sin \theta '}{(1+\varepsilon r'\cos \theta ')^{2}}\\&\qquad [u'_{\mathrm{c}} \cos \theta '-v'_{\mathrm{c}} \sin \theta '] \bigg)-\lambda _{1} \exp (\lambda _{1}[1/2-\theta _{\mathrm{c}}]) \delta ^{*} \alpha ^{2}\bigg(\frac{\partial v'_{\mathrm{c}}}{\partial r'}-\frac{v'_{\mathrm{c}}}{r'}\\&\qquad +\frac{1}{r'}\frac{\partial u'_{\mathrm{c}}}{\partial \theta '}\bigg)\frac{\partial \theta _{\mathrm{c}}}{\partial r'} -\lambda _{1} \exp (\lambda _{1}[1/2-\theta _{\mathrm{c}}])\\&\qquad \bigg[\frac{4 \delta ^{*} \alpha ^{2}}{3}\bigg(\frac{1}{r'^{2}}\frac{\partial v'_{\mathrm{c}}}{\partial \theta '}+\frac{u'_{\mathrm{c}}}{r'^{2}}\bigg)-\frac{2}{3}\bigg(\frac{\alpha ^{2}}{r'(1+\varepsilon r'\cos \theta ')}\frac{\partial w'_{\mathrm{c}}}{\partial z'}\\&\qquad +\delta ^{*} \varepsilon \alpha ^{2} \frac{u'_{\mathrm{c}} \cos \theta '-v'_{\mathrm{c}} \sin \theta '}{r'(1+\varepsilon r'\cos \theta ')}+\frac{\delta ^{*} \alpha ^{2}}{r'}\frac{\partial u'_{\mathrm{c}}}{\partial r'}\bigg)\bigg]\frac{\partial \theta _{\mathrm{c}}}{\partial \theta '}\\&\qquad -\frac{\lambda _{1} \exp (\lambda _{1}[1/2-\theta _{\mathrm{c}}])}{1+\varepsilon r'\cos \theta ' }\bigg(\frac{\alpha ^{2}}{r'}\frac{\partial w'_{\mathrm{c}}}{\partial \theta '}+\varepsilon \alpha ^{2} \frac{w'_{\mathrm{c}} \sin \theta '}{1+\varepsilon r' \cos \theta '}\\&\qquad +\frac{ \delta ^{*} \alpha ^{4}}{1+\varepsilon r' \cos \theta '}\frac{\partial v'_{\mathrm{c}}}{\partial z'}\bigg)\frac{\partial \theta _{\mathrm{c}}}{\partial z'} \end{aligned} \end{aligned}$$
(6.2)

z -direction

$$\begin{aligned} \begin{aligned}&\frac{{\text{Re}}\; \alpha }{\rho _{0}}\bigg(\frac{\partial w'_{\mathrm{c}}}{\partial t'}+\frac{w'_{\mathrm{c}} }{1+\varepsilon r' \cos \theta '}\frac{\partial w'_{\mathrm{c}}}{\partial z'}+\delta ^{*} u'_{\mathrm{c}}\frac{\partial w'_{\mathrm{c}}}{\partial r'}+\delta ^{*} \frac{v'_{\mathrm{c}}}{r'}\frac{\partial w'_{\mathrm{c}}}{\partial \theta '}\\&\qquad +\frac{\varepsilon \delta ^{*} w'_{\mathrm{c}}}{1+\varepsilon r' \cos \theta '}(u'_{\mathrm{c}} \cos \theta '-v'_{\mathrm{c}} \sin \theta ' )\bigg)\\&\quad =-\frac{ 1}{1+\varepsilon r' \cos \theta '}\frac{\partial P'_{\mathrm{c}}}{\partial z'}+\exp (\lambda _{1}[1/2-\theta _{\mathrm{c}}]) \\&\qquad \bigg(\frac{\alpha ^{2}}{(1+\varepsilon r' \cos \theta ')^{2}}\frac{\partial ^{2} w'_{\mathrm{c}}}{\partial z'^{2}} +\frac{\partial ^{2} w'_{\mathrm{c}}}{\partial r'^{2}}\\&\qquad +\frac{1}{r'}\frac{\partial w'_{\mathrm{c}}}{\partial r'}+\frac{1}{r'^{2}}\frac{\partial ^{2} w'_{\mathrm{c}}}{\partial \theta '^{2}}\\&\qquad - \frac{\varepsilon ^{2} w'_{\mathrm{c}}}{(1+\varepsilon r' \cos \theta ')^{2}} +\frac{\varepsilon }{(1+\varepsilon r' \cos \theta ')}\bigg[\cos \theta ' \frac{\partial w'_{\mathrm{c}}}{\partial r'}\\&\qquad -\frac{\sin \theta '}{r'}\frac{\partial w'_{\mathrm{c}}}{\partial \theta '}\bigg]+ \frac{2\delta ^{*} \varepsilon \alpha ^{2} }{(1+\varepsilon r' \cos \theta ')^{2}}\bigg[\cos \theta ' \frac{\partial u'_{\mathrm{c}}}{\partial z'}\\&\qquad -\sin \theta '\frac{\partial v'_{\mathrm{c}}}{\partial z'} \bigg] \bigg)\\&\qquad -\lambda _{1} \exp (\lambda _{1}[1/2-\theta _{\mathrm{c}}])\bigg(\frac{\delta ^{*} \alpha ^{2}}{(1+\varepsilon r'\cos \theta ')}\frac{\partial u'_{\mathrm{c}}}{\partial z'}+\frac{\partial w'_{\mathrm{c}}}{\partial r'}\\&\qquad -\frac{\varepsilon w'_{\mathrm{c}} \cos \theta '}{(1+\varepsilon r'\cos \theta ')}\bigg)\frac{\partial \theta _{\mathrm{c}}}{\partial r'} -\lambda _{1} \exp (\lambda _{1}[1/2-\theta _{\mathrm{c}}]) \\&\qquad \bigg(\frac{1}{r'^{2}}\frac{\partial w'_{\mathrm{c}}}{\partial \theta '}\\&\qquad +\frac{\varepsilon w'_{\mathrm{c}} \sin \theta '}{r'(1+\varepsilon r' \cos \theta ')}+\frac{ \delta ^{*} \alpha ^{2}}{r'(1+\varepsilon r' \cos \theta ')}\frac{\partial v'_{\mathrm{c}}}{\partial z'}\bigg)\frac{\partial \theta _{\mathrm{c}}}{\partial \theta '} \\&\qquad -\frac{\lambda _{1} \exp (\lambda _{1}[1/2-\theta _{\mathrm{c}}])}{1+\varepsilon r' \cos \theta ' }\bigg[\frac{4}{3}\bigg(\frac{\alpha ^{2}}{1+ \varepsilon r' \cos \theta '}\frac{\partial w'_{\mathrm{c}}}{\partial z'}\\&\qquad +\delta ^{*} \varepsilon \alpha ^{2}\frac{u'_{\mathrm{c}} \cos \theta ' -v'_{\mathrm{c}} \sin \theta '}{1+\varepsilon r' \cos \theta '}\bigg)-\frac{2 \delta ^{*} \alpha ^{2}}{3}\bigg(\frac{\partial u'_{\mathrm{c}}}{\partial r'}+\frac{1}{r'}\frac{\partial v'_{\mathrm{c}} }{\partial \theta ' }\\&\qquad +\frac{u'_{\mathrm{c}}}{r'}\bigg)\bigg]\frac{\partial \theta _{\mathrm{c}}}{\partial z'} -Mw'_{\mathrm{c}}+\frac{{\text{Gr}} \theta _{\mathrm{c}}}{\rho _{0}}+\frac{{\text{Gm}} \phi _{\mathrm{c}}}{\rho _{0}} \end{aligned} \end{aligned}$$
(6.3)

Energy equation

$$\begin{aligned} \begin{aligned}&\frac{K_{0}}{\rho _{0} s_{0}}{\text{Re}}\; {\text{Pr}}\; \alpha \bigg(\frac{\partial \theta _{\mathrm{c}}}{\partial t'}+\delta ^{*} u'_{\mathrm{c}}\frac{\partial \theta _{\mathrm{c}}}{\partial r'}+\delta ^{*}\frac{v'_{\mathrm{c}}}{r'}\frac{\partial \theta _{\mathrm{c}}}{\partial \theta '}\\&\qquad +\frac{w'_{\mathrm{c}} }{1+\varepsilon r' \cos \theta '}\frac{\partial \theta _{\mathrm{c}}}{\partial z'}\bigg)=\bigg(\frac{\partial ^{2} \theta _{\mathrm{c}}}{\partial r'^{2}}+ \frac{1}{r'}\frac{\partial \theta _{\mathrm{c}}}{\partial r'}\\&\qquad +\frac{\alpha ^{2}}{(1+\varepsilon r' \cos \theta ')^{2}}\frac{\partial ^{2} \theta _{\mathrm{c}}}{\partial z'^{2}}\\&\qquad +\frac{\varepsilon \cos \theta '}{1+\varepsilon r' \cos \theta '}\frac{\partial \theta _{\mathrm{c}}}{\partial r'}-\frac{\varepsilon \sin \theta '}{r'(1+\varepsilon r' \cos \theta ')}\frac{\partial \theta _{\mathrm{c}}}{\partial \theta '}+\frac{1}{r'^{2}}\frac{\partial ^{2} \theta _{\mathrm{c}}}{\partial \theta '^{2}}\bigg)\\&\qquad +\frac{K_{0}}{Q_{0}}H \end{aligned} \end{aligned}$$
(6.4)

Concentration equation

$$\begin{aligned} \begin{aligned}&{\text{Re}}\bigg(\frac{\partial \phi _{\mathrm{c}}}{\partial t'}+\delta ^{*}u'_{\mathrm{c}}\frac{\partial \phi _{\mathrm{c}}}{\partial r'}+\frac{\delta ^{*} v'_{\mathrm{c}}}{r'}\frac{\partial \phi _{\mathrm{c}}}{\partial \theta '}+\frac{w'_{\mathrm{c}} }{1+\varepsilon r' \cos \theta '}\frac{\partial \phi _{\mathrm{c}}}{\partial z'}\bigg)\\&\qquad =\frac{1}{D_{0}{\mathrm{Sc}}}\bigg(\frac{\partial ^{2} \phi _{\mathrm{c}}}{\partial r'^{2}}+ \frac{1}{r'}\frac{\partial \phi _{\mathrm{c}}}{\partial r'}+\frac{\alpha ^{2}}{(1+\varepsilon r' \cos \theta ')^{2}}\frac{\partial ^{2} \phi _{\mathrm{c}}}{\partial z'^{2}}\\&\qquad +\frac{\varepsilon \cos \theta '}{1+\varepsilon r' \cos \theta '}\frac{\partial \phi _{\mathrm{c}}}{\partial r'}-\frac{\varepsilon \sin \theta '}{r'(1+\varepsilon r' \cos \theta ')}\frac{\partial \phi _{\mathrm{c}}}{\partial \theta '}+\frac{1}{r'^{2}}\frac{\partial ^{2} \phi _{\mathrm{c}}}{\partial \theta '^{2}}\bigg)\\&\qquad -\frac{\xi }{\xi _{0}}\phi _{\mathrm{c}} \end{aligned} \end{aligned}$$
(6.5)

1.2 Plasma region

r direction

$$\begin{aligned} \begin{aligned}&{{\text{Re}}\; \alpha ^{3}} \bigg(\delta ^{*}\frac{\partial u'_{\mathrm{p}}}{\partial t'}+\frac{ \delta ^{*} w'_{\mathrm{p}}}{1+\varepsilon r' \cos \theta '}\frac{\partial u'_{\mathrm{p}}}{\partial z'}+{\delta ^{*}}^{2}u'_{\mathrm{p}}\frac{\partial u'_{\mathrm{p}}}{\partial r'}\\&\qquad +\frac{{\delta ^{*}}^{2}v'_{\mathrm{p}}}{r'}\frac{\partial u'_{\mathrm{p}}}{\partial \theta '}-{\delta ^{*}}^{2}\frac{v'^{2}_{\mathrm{p}}}{r'}-\frac{\varepsilon }{\alpha ^{2}}\frac{w'^{2}_{\mathrm{p}} \cos \theta '}{1+\varepsilon r' \cos \theta '}\bigg)=-\frac{\partial P'_{\mathrm{p}}}{\partial r'}\\&\qquad +\bigg(\frac{\delta ^{*} \alpha ^{4}}{(1+\varepsilon r'\cos \theta ')^{2}}\frac{\partial ^{2} u'_{\mathrm{p}}}{\partial z'^{2}} +\delta ^{*} \alpha ^{2}\frac{\partial ^{2} u'_{\mathrm{p}}}{\partial r'^{2}}+\delta ^{*} \alpha ^{2}\frac{1}{r'}\frac{\partial u'_{\mathrm{p}}}{\partial r'}\\&\qquad -\delta ^{*} \alpha ^{2}\frac{u'_{\mathrm{p}}}{r'^{2}}+\delta ^{*} \alpha ^{2}\frac{1}{r'^{2}}\frac{\partial ^{2} u'_{\mathrm{p}}}{\partial \theta '^{2}}-\delta ^{*} \alpha ^{2}\frac{2}{r'^{2}}\frac{\partial v'_{\mathrm{p}}}{\partial \theta '}\\&\qquad +\frac{\delta ^{*} \varepsilon \alpha ^{2}}{(1+\varepsilon r' \cos \theta ')}\bigg[\cos \theta ' \frac{\partial u'_{\mathrm{p}}}{\partial r'}-\frac{\sin \theta '}{r'}\frac{\partial u'_{\mathrm{p}}}{\partial \theta '}+ \frac{v'_{\mathrm{p}} \sin \theta '}{r'}\bigg]\\&\qquad +\frac{2\varepsilon \alpha ^{2} \sin \theta '}{(1+\varepsilon r' \cos \theta ')^{2}}\frac{\partial w'_{\mathrm{p}}}{\partial z'}\\&\qquad -\delta ^{*} \varepsilon ^{2} \alpha ^{2}\frac{ \cos \theta '}{(1+\varepsilon r'\cos \theta ')^{2}}[u'_{\mathrm{p}} \cos \theta '-v'_{\mathrm{p}} \sin \theta ']\bigg) \end{aligned} \end{aligned}$$
(6.6)

\(\theta\) direction

$$\begin{aligned} \begin{aligned}&{\text{Re}}\; \alpha ^{3}\bigg(\delta ^{*}\frac{\partial v'_{\mathrm{p}}}{\partial t'}+\delta ^{*}\frac{w'_{\mathrm{p}} }{1+\varepsilon r' \cos \theta '}\frac{\partial v'_{\mathrm{p}}}{\partial z'}+{\delta ^{*}}^{2} u'_{\mathrm{p}}\frac{\partial v'_{\mathrm{p}}}{\partial r'}\\&\qquad +{\delta ^{*}}^{2}\frac{v'_{\mathrm{p}}}{r'}\frac{\partial v'_{\mathrm{p}}}{\partial \theta '}+{\delta ^{*}}^{2}\frac{u'_{\mathrm{p}}v'_{\mathrm{p}}}{r'}+\frac{\varepsilon }{\alpha ^{2}}\frac{{w'_{\mathrm{p}}}^{2} \sin \theta '}{1+\varepsilon r' \cos \theta '}\bigg)\\&\quad =-\frac{1}{ r' } \frac{\partial P'_{\mathrm{p}}}{\partial \theta '}\\&\qquad +\bigg(\frac{\delta ^{*} \alpha ^{4}}{(1+\varepsilon r' \cos \theta ')^{2}}\frac{\partial ^{2} v'_{\mathrm{p}}}{\partial z'^{2}} +\delta ^{*} \alpha ^{2}\frac{\partial ^{2} v'_{\mathrm{p}}}{\partial r'^{2}}+\frac{\delta ^{*} \alpha ^{2}}{r'}\frac{\partial v'_{\mathrm{p}}}{\partial r'}\\&\qquad -\delta ^{*} \alpha ^{2}\frac{v'_{\mathrm{p}}}{r'^{2}}+\frac{\delta ^{*} \alpha ^{2}}{r'^{2}}\frac{\partial ^{2} v'_{\mathrm{p}}}{\partial \theta '^{2}}+ \frac{2\delta ^{*} \alpha ^{2}}{r'^{2}}\frac{\partial u'_{\mathrm{p}}}{\partial \theta '}+\frac{\delta ^{*} \varepsilon \alpha ^{2}}{(1+\varepsilon r' \cos \theta ')}\\&\qquad \bigg[\cos \theta ' \frac{\partial v'_{\mathrm{p}}}{\partial r'}-\frac{\sin \theta '}{r'}\frac{\partial v'_{\mathrm{p}}}{\partial \theta '}- \frac{u'_{\mathrm{p}} \sin \theta '}{r'}\bigg]\\&\qquad + \frac{2 \varepsilon \alpha ^{2} \sin \theta '}{(1+\varepsilon r' \cos \theta ')^{2}}\frac{\partial w'_{\mathrm{p}}}{\partial z'} +\delta ^{*} \varepsilon ^{2} \alpha ^{2} \frac{ \sin \theta '}{(1+\varepsilon r'\cos \theta ')^{2}}\\&\qquad [u'_{\mathrm{p}} \cos \theta '-v'_{\mathrm{p}} \sin \theta '] \bigg) \end{aligned} \end{aligned}$$
(6.7)

z direction

$$\begin{aligned} \begin{aligned}&{\text{Re}}\; \alpha \bigg(\frac{\partial w'_{\mathrm{p}}}{\partial t'}+\frac{w'_{\mathrm{p}} }{1+\varepsilon r' \cos \theta '}\frac{\partial w'_{\mathrm{p}}}{\partial z'}+\delta ^{*} u'_{\mathrm{p}}\frac{\partial w'_{\mathrm{p}}}{\partial r'}+\delta ^{*} \frac{v'_{\mathrm{p}}}{r'}\frac{\partial w'_{\mathrm{p}}}{\partial \theta '}\\&\qquad +\frac{\varepsilon \delta ^{*} w'_{\mathrm{p}}}{1+\varepsilon r' \cos \theta '}(u'_{\mathrm{p}} \cos \theta '-v'_{\mathrm{p}} \sin \theta ' )\bigg)\\&\quad =-\frac{ 1}{1+\varepsilon r' \cos \theta '}\frac{\partial P'_{\mathrm{p}}}{\partial z'}+ \bigg(\frac{\alpha ^{2}}{(1+\varepsilon r' \cos \theta ')^{2}}\frac{\partial ^{2} w'_{\mathrm{p}}}{\partial z'^{2}} \\&\qquad +\frac{\partial ^{2} w'_{\mathrm{p}}}{\partial r'^{2}}+\frac{1}{r'}\frac{\partial w'_{\mathrm{p}}}{\partial r'}+\frac{1}{r'^{2}}\frac{\partial ^{2} w'_{\mathrm{p}}}{\partial \theta '^{2}}- \frac{\varepsilon ^{2} w'_{\mathrm{p}}}{(1+\varepsilon r' \cos \theta ')^{2}}\\&\qquad +\frac{\varepsilon }{(1+\varepsilon r' \cos \theta ')}\bigg[\cos \theta ' \frac{\partial w'_{\mathrm{p}}}{\partial r'}-\frac{\sin \theta '}{r'}\frac{\partial w'_{\mathrm{p}}}{\partial \theta '}\bigg]+ \frac{2\delta ^{*} \varepsilon \alpha ^{2} }{(1+\varepsilon r' \cos \theta ')^{2}}\\&\qquad \bigg[\cos \theta ' \frac{\partial u'_{\mathrm{p}}}{\partial z'}-\sin \theta '\frac{\partial v'_{\mathrm{p}}}{\partial z'} \bigg] \bigg) \\&\quad -M w'_{\mathrm{p}} +{\text{Gr}} \theta _{\mathrm{p}}+{\text{Gm}} \phi _{\mathrm{p}} \end{aligned} \end{aligned}$$
(6.8)

Energy equation

$$\begin{aligned} \begin{aligned}&{\text{Re}}\; {\text{Pr}}\;\alpha \bigg(\frac{\partial \theta _{\mathrm{p}}}{\partial t'}+\delta ^{*} u'_{\mathrm{p}}\frac{\partial \theta _{\mathrm{p}}}{\partial r'}+\delta ^{*}\frac{v'_{\mathrm{p}}}{r'}\frac{\partial \theta _{\mathrm{p}}}{\partial \theta '}+\frac{w'_{\mathrm{p}} }{1+\varepsilon r' \cos \theta '}\frac{\partial \theta _{\mathrm{p}}}{\partial z'}\bigg)\\&\quad =\bigg(\frac{\partial ^{2} \theta _{\mathrm{p}}}{\partial r'^{2}}+ \frac{1}{r'}\frac{\partial \theta _{\mathrm{p}}}{\partial r'}+\frac{\alpha ^{2}}{(1+\varepsilon r' \cos \theta ')^{2}}\frac{\partial ^{2} \theta _{\mathrm{p}}}{\partial z'^{2}}\\&\qquad +\frac{\varepsilon \cos \theta '}{1+\varepsilon r' \cos \theta '}\frac{\partial \theta _{\mathrm{p}}}{\partial r'}-\frac{\varepsilon \sin \theta '}{r'(1+\varepsilon r' \cos \theta ')}\frac{\partial \theta _{\mathrm{p}}}{\partial \theta '}+\frac{1}{r'^{2}}\frac{\partial ^{2} \theta _{\mathrm{p}}}{\partial \theta '^{2}}\bigg)+H \end{aligned} \end{aligned}$$
(6.9)

Concentration equation

$$\begin{aligned} \begin{aligned}&{\text{Re}}\bigg(\frac{\partial \phi _{\mathrm{p}}}{\partial t'}+\delta ^{*}u'_{\mathrm{p}}\frac{\partial \phi _{\mathrm{p}}}{\partial r'}+\frac{\delta ^{*} v'_{\mathrm{p}}}{r'}\frac{\partial \phi _{\mathrm{p}}}{\partial \theta '}+\frac{w'_{\mathrm{p}} }{1+\varepsilon r' \cos \theta '}\frac{\partial \phi _{\mathrm{p}}}{\partial z'}\bigg)\\&\quad =\frac{1}{{\mathrm{Sc}}}\bigg(\frac{\partial ^{2} \phi _{\mathrm{p}}}{\partial r'^{2}}+ \frac{1}{r'}\frac{\partial \phi _{\mathrm{p}}}{\partial r'}+\frac{\alpha ^{2}}{(1+\varepsilon r' \cos \theta ')^{2}}\frac{\partial ^{2} \phi _{\mathrm{p}}}{\partial z'^{2}}\\ {}&\qquad +\frac{\varepsilon \cos \theta '}{1+\varepsilon r' \cos \theta '}\frac{\partial \phi _{\mathrm{p}}}{\partial r'}-\frac{\varepsilon \sin \theta '}{r'(1+\varepsilon r' \cos \theta ')}\frac{\partial \phi _{\mathrm{p}}}{\partial \theta '}+\frac{1}{r'^{2}}\frac{\partial ^{2} \phi _{\mathrm{p}}}{\partial \theta '^{2}}\bigg)-\xi \phi _{\mathrm{p}} \end{aligned} \end{aligned}$$
(6.10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, B.K., Kumawat, C. & Makinde, O.D. Hemodynamical analysis of MHD two phase blood flow through a curved permeable artery having variable viscosity with heat and mass transfer. Biomech Model Mechanobiol 21, 797–825 (2022). https://doi.org/10.1007/s10237-022-01561-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-022-01561-w

Keywords

Navigation