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Abstract
Cardiovascular tissue engineering (CVTE) aims to create living tissues, with the ability to grow and remodel, as replacements 
for diseased blood vessels and heart valves. Despite promising results, the (long-term) functionality of these engineered tis-
sues still needs improvement to reach broad clinical application. The functionality of native tissues is ensured by their specific 
mechanical properties directly arising from tissue organization. We therefore hypothesize that establishing a native-like tissue 
organization is vital to overcome the limitations of current CVTE approaches. To achieve this aim, a better understanding of 
the growth and remodeling (G&R) mechanisms of cardiovascular tissues is necessary. Cells are the main mediators of tissue 
G&R, and their behavior is strongly influenced by both mechanical stimuli and cell–cell signaling. An increasing number of 
signaling pathways has also been identified as mechanosensitive. As such, they may have a key underlying role in regulat-
ing the G&R of tissues in response to mechanical stimuli. A more detailed understanding of mechano-regulated cell–cell 
signaling may thus be crucial to advance CVTE, as it could inspire new methods to control tissue G&R and improve the 
organization and functionality of engineered tissues, thereby accelerating clinical translation. In this review, we discuss the 
organization and biomechanics of native cardiovascular tissues; recent CVTE studies emphasizing the obtained engineered 
tissue organization; and the interplay between mechanical stimuli, cell behavior, and cell–cell signaling. In addition, we 
review past contributions of computational models in understanding and predicting mechano-regulated tissue G&R and 
cell–cell signaling to highlight their potential role in future CVTE strategies.
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1 Introduction

Cardiovascular diseases are one of the leading causes of 
morbidity and mortality worldwide and represent a major 
economic and social burden to society due to healthcare 
expenditures and productivity losses (Timmis et al. 2020; 
Virani et al. 2020). Many cardiovascular diseases, such as 
coronary artery disease or calcified aortic valve disease, 
often require surgical interventions to replace or repair blood 
vessels or heart valves. The current blood vessel replace-
ment options, namely autologous vessels and synthetic vas-
cular grafts, have several limitations. Autologous vessels 
(e.g., saphenous veins) have limited availability and poor 
functionality in patients with systemic vascular diseases 
(Harskamp et al. 2013; Hess et al. 2014; McNichols et al. 
2021). Synthetic grafts are often associated with the occur-
rence of thrombosis and poor patency rate, particularly for 
small-diameter vessels (Eslami et al. 2001; Haruguchi and 
Teraoka 2003; Sarkar et al. 2006; Pashneh-Tala et al. 2016). 
Current replacement options for diseased heart valves can 
be classified as mechanical or bioprosthetic, and are associ-
ated with several drawbacks as well. Mechanical valves are 
susceptible to thromboembolic complications and require 
life-long anticoagulation treatment (Zilla et al. 2008; Lim 
et al. 2017). Bioprosthetic valves are prone to structural 
degeneration, which is generally associated with additional 
valve replacements, especially for young patients (Welke 
et al. 2011; Head et al. 2017). Most importantly, none of 
these blood vessel and heart valve replacements are able to 
grow or remodel to accommodate changing conditions and 
functional requirements. This is a great limitation especially 
for pediatric patients, who inevitably outgrow their replace-
ment and therefore require multiple reoperations.

Cardiovascular tissue engineering (CVTE) can potentially 
overcome the limitations of current replacements. This field 
aims to create living replacements that can grow, repair, 
remodel and thereby provide lifetime functionality (Langer 
and Vacanti 1993). In the classical CVTE paradigm, cells are 
isolated from the patient and seeded onto a scaffold mate-
rial within a bioreactor, to form a native-like tissue that is 
then implanted into the patient. More recently, also other 
approaches have been proposed that bypass the in vitro cell 
culture phase, and solely rely on the regenerative capacity 
of the body to induce neotissue formation directly at the 
functional site (Lee et al. 2014; Wissing et al. 2017). Due 
to the presence of living cells, such engineered tissues have 
the intrinsic ability to grow and adapt in response to chang-
ing demands.

Despite some promising examples (Sutherland et al. 2005; 
Hoerstrup et al. 2006; McAllister et al. 2009; Hibino et al. 
2010; Talacua et al. 2015), there is still a need for improve-
ment because the capacity of tissue-engineered blood vessels 

(TEBVs) and heart valves (TEHVs) to grow and adapt to 
changing circumstances is still largely unknown, and the 
remodeling processes after the implantation are still poorly 
understood. In addition, TEBVs and TEHVs do not always 
exhibit proper long-term functionality. The main functional 
problems of these tissues after implantation are, for exam-
ple, related to stenosis, thrombus formation, and calcifica-
tion (Gottlieb et al. 2010; Schmidt et al. 2010; Tara et al. 
2015; Yang et al. 2016; Sugiura et al. 2016). In addition, 
suboptimal mechanical properties of TEHVs may lead to 
the progressive development of valve insufficiency or even 
tissue rupture (Flanagan et al. 2009; Weber et al. 2013; 
Syedain et al. 2015; Reimer et al. 2017). The function of 
cardiovascular tissues is strongly correlated with their bio-
mechanical properties (Fung 1993; Nerem 2000; Sacks et al. 
2009), which are in turn directly determined by their (physi-
ological) tissue organization. Therefore, we hypothesize that 
establishing a native-like tissue organization is necessary 
for overcoming the limitations of current CVTE constructs, 
which can only be achieved in a controllable manner when 
the growth and remodeling (G&R) mechanisms of (engi-
neered) cardiovascular tissues are adequately understood.

Cells are the main drivers of G&R. Cell behavior is 
intrinsically determined by cell–cell signaling pathways and 
can be manipulated via external factors such as mechani-
cal cues (Bukoreshtliev et al. 2013; Han et al. 2018). For 
example, mechanical cues strongly affect cell differentia-
tion, proliferation, apoptosis, and matrix synthesis, all pro-
cesses that are strongly related to tissue G&R (Humphrey 
2006). However, the underlying biological mechanisms are 
still scarcely elucidated. Recent studies have highlighted an 
increasing number of mechanoresponsive characteristics of 
cell–cell signaling pathways (Hiepen et al. 2020; Stassen 
et al. 2020). Therefore, mechano-mediated cell–cell sign-
aling could explain the link between mechanical cues and 
cell behavior that determines G&R. Fully unraveling this 
interplay between mechanics and cell–cell signaling could 
open new possibilities to control cellular behavior in CVTE, 
with the purpose to induce functional G&R, by tuning both 
mechanical cues and cell–cell signaling pathways. Our 
review focuses on cell–cell signaling in vascular and valvular 
cells and does not consider other signaling phenomena, such 
as those involving inflammatory cells. In short, an enhanced 
understanding of mechano-regulated cell–cell signaling and 
the resulting increased ability to control cell behavior and 
tissue G&R may be utilized to optimize CVTE and improve 
the functional organization of engineered tissues.

Within this review, we will highlight the potential key 
role of mechano-mediated cell–cell signaling pathways in 
CVTE and the future directions in this field. In particular, 
we will first discuss the relationship between tissue organi-
zation, biomechanics, and function of native vessels and 
heart valves. Thereafter, we will discuss the obtained tissue 
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organization in previous CVTE studies, together with their 
limitations. Next, we will focus on the interplay between 
cellular behavior, mechanical cues, and cell–cell signaling 
to identify the potential role of mechano-regulation of sign-
aling pathways in G&R of TEBVs and TEHVs. Through-
out the review, we will also emphasize the past and future 
contributions of computational models in advancing under-
standing and predicting tissue G&R, cell–cell signaling, and 
CVTE strategies. Finally, we will conclude with a descrip-
tion of the challenges that remain to be addressed in CVTE 
and present an outlook on future directions. We focus on 
both blood vessels and heart valves because they are similar 
from a tissue engineering perspective, as they share many 
of the methods and techniques adopted in this field, as well 
as many of the limitations and challenges we still face. In 
addition, the G&R of both these tissues are affected by 
mechanical stimuli and cell–cell signaling pathways and the 
computational models we discuss can generally be applied 
to both tissues.

2  The organization and structure 
of cardiovascular tissues

2.1  Tri‑laminar structure in native blood vessels

The vasculature is comprised of a network of blood vessels, 
going from arteries to veins, where each type has a specific 
structure and function. Arteries enable the transport of blood 
away from the heart toward arterioles and capillaries, where 
the chemical and metabolic exchange between blood and tis-
sues occurs. In turn, blood is transported back to the heart 
through venules and then larger veins. In terms of general 
structure, both arteries and veins are composed of three lay-
ers, known as tunica intima, tunica media, and tunica adven-
titia (Fig. 1c). Each of them exhibits unique structural and 
functional features.

The tunica intima is the inner layer of blood vessels. 
This layer is composed of a single layer of endothelial cells 
(ECs), lining the vascular wall, and a basal lamina. Large 
arteries also present a subendothelial area, between the 
basal lamina and internal elastic lamina, which separates 
the tunica intima from the tunica media. ECs in the inner 
arterial layer are oriented along the axis of the vessel wall, 
which corresponds to the direction of blood flow (Langille 
and Adamson 1981). These cells act as the first barrier 
separating blood from the surrounding tissue. As such, 
ECs play crucial roles in various cardiovascular processes, 
including vasculogenesis, angiogenesis, coagulation, and 
inflammation (Cines et al. 1998). Moreover, in response 
to mechanical cues (Awolesi et al. 1995; Topper et al. 
1996), ECs secrete mediators to control vasoconstriction 
(Yanagisawa et al. 1988) and vasodilation (Furchgott and 

Zawadzki 1980), which are crucial processes for regulating 
blood pressure and flow. ECs also produce the components 
of the basal lamina to which they adhere. The basal lamina 
supports the (EC) layer and acts as selectively permeable 
barrier to regulate the passage of molecules between tissue 
layers (Arends and Lieleg 2016). It is mainly composed 
of laminin, collagen IV, perlecan, and nidogen (Fox et al. 
1991; Battaglia et al. 1992; Hopf et al. 1999). Similarly, 
ECs also produce the components of the subendothelial 
area that lies between the basal and elastic laminae, which 
contains microfibrils and collagen fibers (Gerrity and Cliff 
1972; Davis 1993) and serves as an anchor for the ECs 
to the elastic lamina. In humans, this area also contains 
intimal smooth muscle cells (Schwartz et al. 1995). It is 
not yet clear if these cells are trapped in this area during 
development or if they have a specific key function, such 
as in the development of atherosclerosis.

The tunica media is the middle layer of blood vessels. 
It is composed of several layers of vascular smooth mus-
cle cells (VSMCs), elastin sheets (lamellae), a network of 
elastic fibers, collagen fibers, and layers of several other 
extracellular matrix (ECM) proteins. In large arteries, the 
media is separated from the adventitia by an external elastic 
lamina. VSMCs are responsible for the production and the 
organization of ECM in the media layer. Enclosed within 
elastin lamellae and surrounded by collagen fibers and pro-
teoglycan-rich ECM, VSMCs are aligned in the direction of 
collagen fiber bundles (Dingemans et al. 2000; O’Connell 
et al. 2008), which are oriented in the tunica media at an 
angle of approximately 30° with respect to the circumfer-
ential direction (Holzapfel 2006). The elastin lamellae are 
protruded by thin elastin fibers, to which the VSMCs adhere. 
VSMCs play important roles in blood vessel function, devel-
opment, and homeostasis. These cells maintain the vascular 
tone through cell contraction and relaxation. Furthermore, 
VSMCs generally express a differentiated quiescent pheno-
type in healthy homeostatic vessels, and they can change 
phenotype towards a migratory and proliferative state upon 
biological and mechanical stimuli (Owens et al. 2004). This 
ability to switch phenotypes is key to regulate the G&R of 
the vessel wall.

Finally, the tunica adventitia is the outermost layer of 
the vessel wall. It consists of a collagen-rich ECM and a 
variety of cell types including fibroblasts, progenitor cells, 
and immunomodulatory cells (Stenmark et al. 2013). The 
adventitia gives stability and strength to the vessel and con-
nects the vessels to the surrounding tissues. It also provides 
nutrients and oxygen to the cells in the vessel wall, and it 
enables the removal of waste products through a network of 
small vessels called vasa vasorum (Wolinsky and Glagov 
1967). Fibroblasts are the most abundant cell type in the 
adventitia. These cells produce the adventitial ECM and 
remodel the ECM in response to stress or injury (Stenmark 
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et al. 2013). Collagen type I and type III constitute a major 
part of ECM in the adventitia (Howard and Macarak 1989). 
The main role of these collagen fibers, which are mainly axi-
ally aligned in the adventitia (Holzapfel 2006) and present a 
highly nonlinear stiffness, is to prevent the vessel wall from 
rupture at high blood pressures.

2.2  Tri‑laminar structure in native heart valves

The main function of heart valves is to maintain the uni-
directionality of blood flow during the cardiac cycle. The 
atrioventricular mitral and tricuspid valves allow blood 

flow from the atria to the ventricles in diastole and prevent 
backflow from the ventricles during systole. The semilunar 
aortic and pulmonary valves separate the ventricles from 
the aorta and pulmonary artery, respectively, and open 
during systole to allow blood flow from the ventricles to 
the arteries. The architecture and localized distribution 
of the ECM are crucial for the physiological function of 
the heart valves. In general, the belly region of semilu-
nar heart valves has a trilaminar structure composed of an 
organized ECM and interspersed valvular interstitial cells 
(VICs), covered by a monolayer of valvular endothelial 
cells (VECs) on both sides of the leaflets (Schoen 2008) 

Fig. 1  The mechanical loads on blood vessels and heart valves, and 
the schematic representation of the tissue organization a the mechani-
cal loads on arterial blood vessels b the mechanical loads on the sem-
ilunar heart valve leaflets. A 2D top view of a closed heart valve is 
shown with half of one of the leaflets highlighted, representing the 

portion of the leaflet which is visualized in the main 3D illustration. c 
tissue organization of native arterial blood vessels d tissue organiza-
tion of native semilunar heart valves e organization of in situ TEBVs 
f organization of in situ TEHVs
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(Fig.  1d). The commissures where the leaflets come 
together have a monolayer and fibrous structure (Misfeld 
and Sievers 2007). The first two layers in the belly region 
in heart valves are known as the fibrosa and spongiosa. 
The third layer is called ventricularis in semilunar valves 
and atrialis in atrioventricular valves. The atrioventricular 
valves exhibit both a ventricularis on the ventricular side 
and an atrialis on the atrial side (Gross and Kugel 1931; 
Sacks et al. 2019).

The fibrosa is located close to the outflow surface of the 
valves. It is mainly composed of circumferentially oriented 
fibrillar collagen (Latif et al. 2005; Ayoub et al. 2018). This 
dense network of collagen fibers provides strength to the 
valve (Sauren et al. 1980; Kodigepalli et al. 2020). The ven-
tricularis layer of semilunar valves and the atrialis layer of 
atrioventricular valves face the inflow side and are mainly 
composed of radially oriented elastic fibers that facilitate 
tissue movement by providing extension and subsequently 
recoil of the valve tissue (Vesely 1998). The spongiosa is 
the middle layer and mainly contains glycosaminoglycans 
(GAGs) and proteoglycans which interconnect the collagen 
and elastin fibers. This layer is histologically distinct, but if 
it is a functionally distinct layer is still under debate (Eckert 
et al. 2013; Buchanan and Sacks 2014).

The two main cell populations in heart valves are VICs 
and VECs. VICs are embedded through all three layers of 
the leaflets, while VECs line the surfaces of the valves. 
VICs are responsible for matrix maintenance, synthesis, and 
remodeling (Latif et al. 2005). They are highly plastic and 
can express various phenotypes upon injury or alterations in 
mechanical state. In mature heart valves, VICs are mainly 
quiescent to maintain the physiological valve function and 
homeostasis (Aikawa et al. 2006) and can be activated for 
valve remodeling (Liu et al. 2007a). VECs also have impor-
tant roles in physiological functioning of the valves. For 
example, VECs regulate platelet adhesion and coagulation, 
act as a functional barrier between the blood and the valve 
tissue, and interact with the VICs to regulate their pheno-
types (Butcher and Nerem 2007). VECs have different gene 
expression profiles and obtain different morphologies on dif-
ferent sides of the valves; they are elongated and flattened on 
the ventricular side and cuboidal on the arterial side of the 
semilunar valves. This difference in shape is related to the 
presence of high- and low-shear forces, respectively (Maron 
and Hutchins 1974).

2.3  Similarities and differences in tri‑laminar 
structure of vessels and valves

Blood vessels and heart valves both have a trilaminar archi-
tecture and layer-specific ECM organization which are cru-
cial for ensuring proper functionality. Both tissues contain 
one (predominantly) fibrous layer, the tunica adventitia and 

the fibrosa, which provide functional strength. The cells 
in the inner layer of both tissues, VSMCs and VICs, are 
quiescent and nonproliferative in the homeostatic state and 
can alter their phenotype to regulate vascular and valvu-
lar remodeling, respectively. However, the expression of 
α-smooth muscle actin (α-SMA) and myosin heavy chain 
is elevated in quiescent VSMCs, whereas these proteins are 
markers of activated VICs (Liu et al. 2007a). Important to 
note, however, is that even though VICs do have some con-
tractile properties, they are more fibroblast-like cells, com-
pared to VSMCs (Filip et al. 1986; Latif et al. 2015). Each 
organizational layer of blood vessels includes different cell 
types with different functions, whereas the VICs are inter-
spersed throughout all layers of the valves, and VECs cover 
the blood-contacting surfaces of the valves. In addition, the 
morphology of ECs and VECs is different based on their dif-
ferential response to shear stress (Butcher et al. 2004). ECs 
align parallel to the flow, while VECs align perpendicular 
to flow. These differences in composition are due to the dif-
ferent functions of vascular and valvular tissues.

2.4  Cardiovascular tissue biomechanics 
and functional organization

Each component and organizational feature of native blood 
vessels and heart valves contributes to ensuring proper tissue 
functionality under hemodynamic loading conditions. In this 
section, we discuss the specific hemodynamic loads acting 
on blood vessels and heart valves, the resulting mechani-
cal stimuli experienced by each tissue, and the functional 
organization adopted by each tissue to optimally accommo-
date these mechanical stimuli.

2.4.1  Blood vessel biomechanics

Blood flowing through the vessels exerts a frictional force 
acting on the inside of the vessel, which is called wall shear 
stress (Fig. 1a). Blood flow also exerts pulsating pressure 
onto the blood vessels, causing them to dilate which results 
in cyclic stress and strain in the vascular wall, both in the 
circumferential and the axial directions (Fig. 1a). The high 
elasticity and extensibility of elastin (Davis 1995) in the 
media layer allow the blood vessel to expand during sys-
tole, reducing the resistance to blood flow, and recoil during 
diastole, maintaining a pressure gradient required to drive 
the blood through the rest of the vasculature (Humphrey 
2002; Cocciolone et al. 2018). Meanwhile, the much stiffer 
collagen fibers give the vessel strength and resilience to pro-
tect against excessive strains. The helical organization of 
collagen fibers in the media layer (Sect. 2.1) ensures that 
the vessel can withstand loads in both circumferential and 
axial directions (Holzapfel et al. 2000). The collagen fib-
ers in the adventitia are initially coiled and only become 
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elastically stretched and start bearing load at high pressures. 
Under these circumstances, their relatively high stiffness 
becomes dominant in the tissue mechanical response. This 
way, the collagen fibers act as a protective sheath that allows 
normal dilation of the wall but prevents over-dilation and 
rupture (Holzapfel et al. 2000; Humphrey 2002). In addi-
tion to blood pressure, active contraction of smooth mus-
cle cells, mediating vasoconstriction and vasodilation, also 
contributes to the circumferential stress and strain in the 
vascular wall. Moreover, residual stress (and pre-stretch) is 
present within the tissue even when external loads have been 
removed. This residual stress is hypothesized to arise dur-
ing development as a result of elastin fibers being extended 
due to somatic growth after the fibers have reached maturity 
(Davis 1995; Cardamone et al. 2009). Moreover, collagen 
fibers incorporated into the tissue at a preferred deposition 
stretch might also contribute to the establishment of residual 
stresses (Humphrey and Rajagopal 2002; Cardamone et al. 
2009). From a functional point of view, it has been suggested 
that residual stress ensures the uniformity of strain and/or 
stress throughout the vessel wall (Fung 1991; Destrade et al. 
2012) and thereby facilitates the establishment of mechani-
cal homeostasis.

2.4.2  Heart valve biomechanics

A similar correlation between components and mechanical 
function can be observed in native heart valves, which are 
similarly subjected to mechanical loads due to the cyclic 
expulsion of blood from the heart. In particular, heart valve 
leaflets are subjected to wall shear stress throughout the 
entire cardiac cycle; bending as a result of the opening and 
closing of the leaflets; and pressure when the leaflets are 
closed (Fig. 1b). As a result of bending and pressure, heart 
valve leaflets experience stress and strain in both the cir-
cumferential and radial directions (Fig. 1b). During bending, 
stresses and strains are heterogeneous across the leaflet lay-
ers (Sacks et al. 2009). The high flexibility of radially organ-
ized elastin fibers in the ventricularis enables the leaflets 
to open and close by bending easily and provides the main 
restorative force (Vesely 1997). Collagen fibers in the ven-
tricularis become more recruited upon closing of the leaflets, 
resulting in a more compliant tissue in the opened state to 
allow large extensions and a stiffer tissue in the closed state 
to limit further extension (Vesely and Noseworthy 1992; 
Vesely 1997). Thus, they exhibit a similar protective role 
as in the adventitia layer of blood vessel. In the closed con-
figuration, circumferential collagen fibers in the fibrosa pro-
vide the valves with the tensile strength required to resist the 
blood pressure (Sacks et al. 2009; Ayoub et al. 2016). The 
high stiffness of these collagen fibers limits deformations 
when the valves are closed to maintain coaptation (Schoen 

and Levy 1999; Sacks et al. 2009). Taken together, the com-
bined organization and alignment of collagen and elastin 
make the valve leaflets very pliable in the unloaded state, 
enabling efficient opening and closing, and very stiff in the 
loaded state, ensuring proper valve closure. Finally, the main 
function of the components in the spongiosa appears to be 
absorbing shear stress to enable the ventricularis and fibrosa 
to move relative to each other during bending and pressuri-
zation (Schoen and Levy 1999; Sacks et al. 2009).

In conclusion, the organization of blood vessels and heart 
valves is tightly linked with the mechanical loads that they 
experience. Both the layered structure and alignment of 
fibers in these tissues ensure proper tissue function under 
physiological loading conditions. In particular, collagen 
fibers are the main load-bearing components and essential 
for providing strength, while elastin is crucial for ensuring 
flexibility. Therefore, inducing a proper tissue organization 
and adequate distribution and alignment of elastin and col-
lagen fibers within engineered cardiovascular tissues is of 
paramount importance for the functionality of these tissues. 
In addition, cellular infiltration and cell-mediated G&R are 
critical to ensure a proper ECM turnover and adaptive capa-
bilities of the tissue.

3  Growth and remodeling in cardiovascular 
tissue engineering

3.1  In vitro cardiovascular tissue engineering

In vitro CVTE aims at creating functional cardiovascular tis-
sues outside the body that can be subsequently implanted to 
replace diseased or malformed cardiovascular tissues. When 
following this in vitro approach, (preferentially autologous) 
cells are seeded onto a scaffold and afterward subjected to 
biochemical and mechanical stimuli within a bioreactor 
in order to induce tissue formation prior to implantation 
(Langer and Vacanti 1993). Many strategies have been pro-
posed to construct functional tissues in vitro. Most of them 
can be broadly categorized based on the used scaffold type, 
such as synthetic materials (e.g., polyglycolide, poly-L-lac-
tide, poly(ester-urethane)urea), natural materials (e.g., fibrin, 
collagen), and decellularized biological matrices (Pashneh-
Tala et al. 2016; Goins et al. 2019), although some strategies 
do not require scaffolds but only supports (e.g., in the case of 
sheet-based tissue engineering) (L’Heureux et al. 1998). In 
this section, we discuss the final tissue organization, in terms 
of cellular and ECM distribution, obtained with in vitro car-
diovascular tissue engineering approaches.
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3.1.1  Organization in in vitro tissue‑engineered blood 
vessels

Decellularized native matrices Decellularized native matri-
ces have often been used as scaffold material for the in vitro 
creation of TEBVs, as they immediately provide an optimal 
ECM organization and corresponding mechanical proper-
ties. In this approach, vascular tissue is harvested from an 
allogeneic or xenogeneic donor and decellularized by using 
biological agents, chemical agents, or physical methods 
(Crapo et al. 2011). Autologous cells are then seeded onto 
the preserved ECM. The tissue construct is subsequently 
cultured in vitro and, ultimately, implanted into the host. 
Animal studies have shown that this approach can yield 
confluent EC layers in the intima of the engineered vessels, 
surrounded by layers of VSMCs in the media (Kaushal et al. 
2001; Cho et al. 2005; Tillman et al. 2012). Since the decel-
lularization process generally preserves collagen fibers, the 
internal and external elastin lamina, and the dense elastic 
layers in the media, the trilaminar organization of native 
blood vessels is generally present also in these engineered 
tissues. In agreement with the concept that organization cor-
responds to function, clinical studies following this strategy 
demonstrated promising functionality of such constructs 
implanted as portal veins of pediatric patients (Olausson 
et al. 2012, 2014). However, the scarce availability of donor 
homografts and risks of zoonotic infections from xenografts 
present substantial limitations in terms of the potential for 
large-scale clinical translation.

Synthetic and natural scaffolds Polymeric scaffolds with a 
synthetic material represent a valid alternative to decellular-
ized matrices, as they in principle have an unlimited avail-
ability and they still offer the possibility to control scaffold 
properties toward native-like features. The commonly used 
synthetic polymers for vascular tissue engineering applica-
tions include polyglycolide (PGA), poly-L-lactide (PLLA), 
and poly(ester-urethane)urea (PEUU) (Niklason et al. 1999; 
Shinoka et al. 2005; Hoerstrup et al. 2006; Nieponice et al. 
2010). In vitro TEBVs using synthetic scaffolds to substi-
tute large arteries in the low-pressure circulation, e.g., the 
pulmonary artery or inferior vena cava, usually exhibit a 
cellular organization with a luminal EC layer and medial 
VSMC layers similar to native tissues (Shinoka et al. 1998; 
Watanabe et al. 2001; Hoerstrup et al. 2006; Cummings et al. 
2012). Moreover, there are no observed scaffold traces. In 
addition, elastic fibers have been observed in the medial 
layer (Shinoka et al. 1998; Watanabe et al. 2001; Hoerstrup 
et al. 2006; Cummings et al. 2012), although sometimes 
lower in content compared to native levels (Hoerstrup et al. 
2006; Cummings et al. 2012). On the other hand, the col-
lagen content and structure in these constructs is similar to 
native tissues (Shinoka et al. 1998; Watanabe et al. 2001; 

Hoerstrup et al. 2006). The native-like cell and ECM struc-
ture in these studies correspond to adequate functionality. 
Pre-clinical studies with large-diameter vessel implantations 
have demonstrated promising functionality of the engineered 
blood vessels up to 80–100-week follow-up (Hoerstrup et al. 
2006; Cummings et al. 2012). Clinical studies with pediatric 
patients have also demonstrated that grafts are mostly pat-
ent 10 years after implantation (Shinoka et al. 2005; Hibino 
et al. 2010; Shoji and Shinoka 2018). Despite these encour-
aging results, it should be noted that these engineered ves-
sels had a large diameter. As such, they were less susceptible 
to neointimal hyperplasia and thrombus formation compared 
to small-diameter grafts, and they were implanted in a rela-
tively low-pressure circulation. Thus, translating this success 
into small-diameter and high-pressure vessels is a challenge 
that still needs to be overcome (Mirensky et al. 2009).

Polymeric synthetic and natural scaffold-based 
approaches of small-diameter constructs are mostly success-
ful in achieving a native-like cellular organization, but they 
cannot yet obtain a native-like ECM organization. In gen-
eral, in vivo studies have shown that the luminal surface of 
these TEBVs is always covered by an EC monolayer (Nikla-
son et al. 1999; Swartz et al. 2005; Liu et al. 2007b; Iwasaki 
et al. 2008; He et al. 2010; Koch et al. 2010; Nieponice 
et al. 2010; Soletti et al. 2010). This may not be surprising, 
since ECs are generally seeded onto the lumen of the tubular 
constructs already during the in vitro stage (Niklason et al. 
1999; Swartz et al. 2005; Liu et al. 2007b; Koch et al. 2010). 
Dynamic preconditioning in vitro also helps to achieve a 
layered VSMC organization in the tunica media, with a cir-
cumferential orientation of VSMCs (Niklason et al. 1999; 
Seliktar et al. 2000; Iwasaki et al. 2008; He et al. 2010; 
Koch et al. 2010; Nieponice et al. 2010; Schutte et al. 2010). 
In vitro culture also promotes collagen formation (Nikla-
son et al. 1999; Swartz et al. 2005; Buttafoco et al. 2006; 
Liu et al. 2007b; Iwasaki et al. 2008; He et al. 2010; Koch 
et al. 2010; Nieponice et al. 2010; Soletti et al. 2010). Cir-
cumferentially aligned collagen fibers have been observed 
in vitro and in vivo, although not predominantly localized 
in the outer layers of engineered vessels (Swartz et al. 2005; 
Iwasaki et al. 2008; He et al. 2010; Nieponice et al. 2010). 
However, a native-like elastin content and the establishment 
of cohesive elastin sheet formation in the middle layer have 
not been achieved yet (Swartz et al. 2005; Koch et al. 2010), 
despite attempts with multi-layered synthetic scaffolds that 
slightly improved elastin deposition and organization (Iwa-
saki et al. 2008; He et al. 2010). Therefore, these constructs 
should be improved especially in terms of elastin content 
and elastin organization.

Cell‑sheet approach Another method to create in  vitro 
TEBVs consists of forming tubular grafts without using 
a scaffold or a supporting matrix. The rationale of this 
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approach is to solely use cultured cells to construct TEBVs 
without the addition of a scaffolding material (L’Heureux 
et al. 1998). In this approach, cell sheets corresponding to 
the different vessel layers are rolled around a mandrel, which 
is removed after tissue maturation. Sheet-based tissue engi-
neering has been adopted in preclinical and clinical studies 
with high success rates (L’Heureux et al. 1998, 2006; McAl-
lister et al. 2009). The preclinical studies have shown that, 
when such grafts are implanted as arterial replacements, they 
exhibit the native-like trilayer organization in terms of cells 
and ECM. Furthermore, their burst pressure is comparable 
with the native vessels, due to presence of a similar ECM 
organization (L’Heureux et al. 1998, 2006). In agreement 
with their native-like composition, it has been shown that 
the grafts can be functional and patent in the long-term 
(L’Heureux et al. 2006). The clinical studies have shown 
that this method can achieve good functionality after up to 
20 months, even when patients have underlying pathologies 
(McAllister et al. 2009; Wystrychowski et al. 2014). Over-
all, these studies show that establishing a native-like tissue 
organization is correlated with good long-term functional-
ity. A major drawback of the overall approach, however, is 
that the in vitro culture procedure is often time-consuming, 
expensive, and logistically challenging.

3.1.2  Organization in in vitro tissue‑engineered heart 
valves

Compared to in vitro vascular tissue engineering, attempts at 
establishing a native-like tissue organization in in vitro tis-
sue-engineered heart valves have been less successful so far.

Decellularized native matrices Similar to vessels, decel-
lularization of allogeneic or xenogeneic tissues, combined 
with seeding of autologous cells, has been adopted to tissue 
engineer heart valves in vitro. With this approach, valve tis-
sue is formed in vitro, which is then implanted into the host 
(Boccafoschi et al. 2015). Decellularized native matrices 
seeded with cells already have a native-like ECM organi-
zation at the start of the in vitro culture period (Schenke-
Layland et al. 2003; Cushing et al. 2005; Kim et al. 2006; 
Lichtenberg et al. 2006; Dohmen et al. 2007). This approach 
in fact preserves the collagen and elastin content of the valve 
leaflets and thus the trilaminar organization of the valves. 
However, active myofibroblast-like cells have been observed 
throughout the thickness of the leaflets in the explants, as 
well as incomplete endothelialization and thickening of the 
leaflets (Steinhoff et al. 2000; Kim et al. 2006). These out-
comes could be related to the type of cells seeded and the 
use of relatively short follow-up times. Despite these imper-
fections, clinical studies using decellularized allografts and 
xenografts seeded with autologous cells have shown good 
hemodynamic performance and functionality (Cebotari et al. 

2006; Dohmen et al. 2007, 2011). Still, the availability of 
allografts is limited, and zoonotic risks of xenografts are 
still present. In addition, there is an uncertainty regarding 
the G&R capacity of TEHVs from decellularized native 
matrices because of the limited potential for cell infiltration 
(Weber et al. 2013).

Synthetic and natural scaffolds To avoid the risk of xenoge-
neic diseases and limited supply of allografts, biodegradable 
synthetic and natural scaffolds are used as an alternative 
(Fioretta et al. 2018). This approach has shown that ECs 
generally cover the leaflet surfaces of TEHVs (Hoerstrup 
et al. 2000; Sodian et al. 2000a, 2010; Sutherland et al. 
2005; Flanagan et al. 2009), although an incomplete EC 
layer has also been reported in vitro and in vivo (Flanagan 
et al. 2007; Schmidt et al. 2010). Cells found in the internal 
layers of the leaflet are often α-SMA positive, as opposed 
to the cells in healthy native leaflets (Hoerstrup et al. 2000, 
2002; Flanagan et  al. 2007, 2009; Schmidt et  al. 2010; 
Sodian et al. 2010; Weber et al. 2011, 2012). On the other 
hand, Sutherland et al. have reported that α-SMA-positive 
cells have been detected throughout the leaflets at the time 
of tissue implantation, and these cells have localized at the 
subendothelial layer, similar to native leaflets, after 8 months 
in vivo (Sutherland et al. 2005). This observation could be 
associated with the use of longer follow-up times compared 
to other studies.

Dynamic loading increases the tissue formation and ECM 
remodeling in TEHVs (Engelmayr et al. 2006; Eckert et al. 
2011; D’Amore et al. 2016). Particularly, the combination 
of cyclic flexure and laminar flow, which better mimics the 
physiological mechanical conditions, accelerates the tis-
sue formation compared to applying either cyclic flexure or 
laminar flow (Engelmayr et al. 2006). Moreover, ECM pro-
duction is promoted by cyclic strain up to a certain thresh-
old (30%) from which a decrease in production is observed 
with a further increase in strain up to 50% (D’Amore et al. 
2016). However, the total amount of ECM produced by 
cells in TEHV is often less compared to the ECM content 
in native counterparts (Shinoka et al. 1995; Breuer et al. 
1996; Hoerstrup et al. 2002; Sodian et al. 2010). In addi-
tion, there are also still several challenges with respect to 
mimicking the native ECM organization. In particular, col-
lagen is often deposited in both the outer layers of engi-
neered leaflets instead of only the fibrosa layer (Sodian et al. 
2000b, a; Neidert and Tranquillo 2006; Flanagan et al. 2007, 
2009; Schmidt et al. 2010; Weber et al. 2011). Furthermore, 
despite their general abundance, GAGs are not always local-
ized in the middle layer (Sodian et al. 2000a; Flanagan et al. 
2007). Finally, elastin has only rarely been observed (Suther-
land et al. 2005; Sodian et al. 2010) and usually has not been 
synthesized in vitro or in vivo studies using polymeric scaf-
folds (Sodian et al. 2000b, a; Stock et al. 2000; Hoerstrup 
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et al. 2002; Neidert and Tranquillo 2006; Flanagan et al. 
2007, 2009; Schmidt et al. 2010; Weber et al. 2011).

The lack of a native-like organization often leads to a 
gradual loss of functionality after implantation. The main 
complications that have resulted in TEHV failure are leaflet 
shortening, regurgitation, and stenosis (Stock et al. 2000; 
Sodian et al. 2000a; Gottlieb et al. 2010; Schmidt et al. 
2010; Weber et al. 2011). In addition, even though the scaf-
fold changes substantially from its initial state (Eckert et al. 
2011), remnants of synthetic scaffold material have still been 
detected in some studies after explantation of engineered 
tissues (Sodian et al. 2000a; Schmidt et al. 2010), which 
creates a potential risk of calcification (Sugiura et al. 2017). 
Natural scaffolds, on the other hand, have often provided 
insufficient mechanical strength (Neidert and Tranquillo 
2006; Flanagan et al. 2007, 2009) and are generally sub-
jected to high degrees of compaction.

3.1.3  General limitations of in vitro cardiovascular tissue 
engineering

The main limitations of in vitro CVTE are the length, costs, 
and logistic challenges associated with the in vitro culture 
procedure (L’Heureux et al. 1998; Tremblay et al. 2014). 
Upscaling the production of in vitro engineered tissues to 
meet clinical demands is another significant challenge that 
is difficult to resolve (Niklason and Lawson 2020). Finally, 
in vitro engineered cardiovascular tissues often lack a native-
like tissue organization which strongly correlates with 
reduced tissue functionality. Alternative tissue engineering 
approaches not relying on in vitro cell culture have been 
recently introduced to overcome (part of) these challenges, 
as outlined in the next section.

3.2  In situ cardiovascular tissue engineering

To overcome the limitations of in vitro tissue engineering 
approaches discussed in the previous section, much atten-
tion has recently been shifted toward the in situ tissue engi-
neering approach. In situ tissue engineering is defined as 
the regeneration of tissues from a readily available scaf-
fold that is implanted directly at the functional site in the 
body (Mol et al. 2009; Wissing et al. 2017; Bouten et al. 
2018). This method relies on the presence of a resorbable 
scaffold temporarily taking over the tissue function, while 
host cells repopulate the scaffold and form new autolo-
gous tissue (Mol et al. 2009; Roh et al. 2010; Wissing et al. 
2017; Bouten et al. 2018). The choice of scaffold mate-
rial is of utmost importance. It may either consist of syn-
thetic polymers (Khosravi et al. 2015; Kluin et al. 2017) 
or be obtained by decellularizing a xenograft, allograft, or 
in vitro tissue-engineered matrix (TEM) (Dijkman et al. 

2012; Goecke et al. 2018; Wolkers and Hilfiker 2021). To 
ensure immediate availability, these decellularized scaffolds 
can be procured ahead of time and safely stored for long 
periods of time (Dijkman et al. 2012; Goecke et al. 2018; 
Wolkers and Hilfiker 2021). Scaffolds are usually acellular 
before implantation, although they may also be pre-seeded 
right before surgery (“on-the-fly”) (Hibino et al. 2011; Har-
rington et al. 2011). The decellularization process aims to 
reduce the immunogenicity of the decellularized xenografts, 
allografts, and TEMs (Goldstein et al. 2000; da Costa et al. 
2005; Dijkman et al. 2012). Nevertheless, an immunologi-
cal response is sometimes still observed due to incomplete 
decellularization or the residual presence of active inflam-
matory stimuli, especially in xenografts (Simon et al. 2003; 
Kasimir et al. 2006; Filippo et al. 2013). Synthetic scaffolds 
present the additional advantage of being highly tailorable in 
terms of material and microstructural properties, providing 
better reproducibility than grafts cultured in vitro (Breuer 
et al. 2004; Capulli et al. 2016; Fioretta et al. 2020). Finally, 
in situ tissue engineering does not require patient-specific 
cells in contrast to in vitro methods, as TEMs can be cul-
tured using readily available cell sources (Reimer et al. 2017; 
Emmert et al. 2018; Motta et al. 2019). Based on our defini-
tion of in situ tissue engineering, autografts fall outside the 
scope of the current review. Interested readers are referred 
to the following recent review articles on this topic: (Mazine 
et al. 2018; Nappi et al. 2020a, 2020b). To provide a current 
overview of the tissue organization that is achieved in in situ 
engineered tissues, we discuss some recent results of stud-
ies highlighting the composition and organization of in situ 
TEBVs and TEHVs. In particular, we focus our attention 
on recellularization, matrix synthesis, and the structure and 
distribution of cells and matrix components in the neotis-
sue. Tables 1 and 2 give an overview of the characteristics 
of these studies and their main findings in terms of tissue 
organization. 

3.2.1  Organization in in situ tissue‑engineered blood 
vessels

Cellular repopulation A key aspect in achieving a functional 
neotissue is the realization of proper repopulation of the 
scaffold with host cells. Cells infiltrate the scaffolds gradu-
ally (Tara et al. 2015; Koobatian et al. 2016; Khosravi et al. 
2016; Kirkton et al. 2019), typically from the transmural 
and transanastomotic sides in rodent models (Talacua et al. 
2015). However, it has been shown that infiltration from 
the circulation is also possible (Row et al. 2015; Talacua 
et al. 2015). This may be particularly useful for engineering 
longer vascular grafts in humans, where transanastomotic 
infiltration is rare (Talacua et al. 2015). Many studies indeed 
report the presence of host cells in explanted grafts. For 
example, they are generally well populated by ECs, resulting 
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1 3

in the formation of an extensive endothelial layer (Fig. 1e) 
(Zhu et al. 2015; Tara et al. 2015; Talacua et al. 2015; Koo-
batian et al. 2016; Yang et al. 2016; Syedain et al. 2016; 
Marosfoi et al. 2017; Kirkton et al. 2019) which has been 
shown to develop progressively over time (Zhu et al. 2015; 
Koobatian et al. 2016; Marosfoi et al. 2017). The newly 
formed endothelium is often similar to native tissue, with 
aligned ECs (Zhu et al. 2015; Koobatian et al. 2016; Yang 
et al. 2016) and a cobble-stone cell shape (Zhu et al. 2015). 
In addition to ECs, the presence of VSMCs is also very com-
mon in in situ TEBVs (Fig. 1e) (Row et al. 2015; Zhu et al. 
2015; Tara et al. 2015; Talacua et al. 2015; Koobatian et al. 
2016; Yang et al. 2016; Khosravi et al. 2016; Sugiura et al. 
2016, 2017). These VSMCs often display a mature, contrac-
tile phenotype (Zhu et al. 2015; Yang et al. 2016; Khosravi 
et al. 2016; Syedain et al. 2016; Kirkton et al. 2019). This 
mature phenotype seems to develop gradually over time, and 
several studies have shown a phenotypic switch taking place 
from undifferentiated, synthetic VSMCs to differentiated, 
contractile VSMCs (Zhu et al. 2015; Kirkton et al. 2019). 
Interestingly, very few studies seem to report on the pres-
ence of fibroblasts, which are present in the adventitia layer 
of native blood vessels. This aspect deserves more attention 
due to the role of fibroblasts in ECM production and remod-
eling (Sect. 2.1).

ECM formation The infiltrating cells have displayed the abil-
ity to deposit collagen and elastin fibers in both synthetic 
and decellularized scaffolds (Fig. 1e) (Row et al. 2015; Zhu 
et al. 2015; Tara et al. 2015; Talacua et al. 2015; Koobatian 
et al. 2016; Yang et al. 2016; Khosravi et al. 2016; Sugiura 
et al. 2016; Syedain et al. 2016). This deposition of matrix 
components may be influenced by a variety of factors. For 
example, pre-seeding decellularized xenografts with VSMCs 
enhanced collagen deposition in a sheep model (Row et al. 
2015), while cyclic stretching increased elastin production in 
a mouse model (Tara et al. 2015), confirming the importance 
of mechanical stimuli in regulating tissue G&R. The col-
lagen content in TEBVs is often extensive and similar to or 
higher than native levels (Tara et al. 2015; Koobatian et al. 
2016; Khosravi et al. 2016; Syedain et al. 2016). The elastin 
content, on the other hand, is generally lower than or similar 
to that of native vessels (Fig. 1e) (Tara et al. 2015; Yang 
et al. 2016; Syedain et al. 2016), indicating that achieving 
proper elastin deposition might be more challenging. This 
may be partly explained by the fact that elastin turnover in 
adults is much slower than collagen turnover (Langille 1993; 
Cocciolone et al. 2018), so adult host cells may not be able 
to produce elastin at the same rate as collagen. Finally, it is 
worth noting that our current understanding of tissue organi-
zation in TEHVs is limited as many studies do not take this 
aspect into consideration. This presents an additional com-
plication in the search for improved functionality of TEHVs.Ta
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Functionality and complications As may be expected from 
the generally favorable cellular repopulation and abundant 
presence of matrix components, recent studies on in situ 
TEBVs have generally been successful, resulting in pat-
ent and functional grafts (Khosravi et al. 2015, 2016; Row 
et al. 2015; Tara et al. 2015; Talacua et al. 2015; Koobatian 
et al. 2016; Yang et al. 2016; Sugiura et al. 2016). How-
ever, some complications still occasionally occur, such as 
aneurysm formation (Tara et al. 2015), graft rupture (Tara 
et al. 2015; Yang et al. 2016), thrombosis (Yang et al. 2016; 
Sugiura et al. 2016), and calcification (Yang et al. 2016; 
Khosravi et al. 2016; Sugiura et al. 2017). Some of these 
issues emphasize the key importance of an appropriate scaf-
fold degradation profile, as scaffolds degrading too slowly 
have been associated with calcification (Khosravi et al. 2016; 
Sugiura et al. 2017), and scaffold breakdown occurring too 
quickly can result in aneurysms and graft rupture if it is not 
balanced by sufficient neotissue formation (Tara et al. 2015).

Consistent with the generally favorable functionality, 
recent in situ TEBVs have presented many signs of advanced 
organization resembling that of native vessels. For example, 
a tri-laminar organization has been shown in both a pre-
clinical murine model (Yang et al. 2016) and in a clinical 
setting (Kirkton et al. 2019). In addition, a medial layer with 
organized VSMCs has been observed in several studies (Row 
et al. 2015; Talacua et al. 2015; Yang et al. 2016; Kirk-
ton et al. 2019) as well as the presence of circumferentially 
aligned VSMCs (Row et al. 2015; Zhu et al. 2015; Koobatian 
et al. 2016; Syedain et al. 2016; Kirkton et al. 2019). A cir-
cumferential alignment has also been observed for collagen 
fibers (Zhu et al. 2015; Talacua et al. 2015) and elastin fibers 
(Yang et al. 2016), which is similar to the native situation 
in the media layer.

3.2.2  Organization in in situ tissue‑engineered heart valves

Cellular repopulation Repopulation of in situ TEHVs gen-
erally seems less extensive and more variable compared to 
in situ TEBVs (Fig. 1f). For example, varying degrees of 
endothelial layer formation have been observed in TEHV 
leaflets. A few studies reported an extensive or complete 
endothelial layer (Zafar et al. 2015; Syedain et al. 2015; 
Emmert et al. 2018; Motta et al. 2018), but unfortunately 
moderate endothelialization is more common (Tudorache 
et al. 2016; Miller et al. 2016; Reimer et al. 2017; Hen-
nessy et al. 2017; Goecke et al. 2018; Fioretta et al. 2020; 
van Rijswijk et al. 2020). Interestingly, limited endothelial 
coverage is seen mostly toward the tips of the leaflets, while 
the base is more extensively populated (Fig. 1f) (Syedain 
et al. 2015; Miller et al. 2016; Reimer et al. 2017; Fioretta 
et al. 2020). This suggests that the formation of endothelial 
layers starts from the leaflet base, closer to the native tissue, 

and progresses toward the tip. This theory is supported by 
the observation that endothelial coverage seems to improve 
over time, both when comparing multiple time points within 
the same studies (Zafar et al. 2015; Kluin et al. 2017; van 
Rijswijk et al. 2020), and when comparing endothelialization 
across studies with different follow-up times (Theodoridis 
et al. 2015; Zafar et al. 2015; Miller et al. 2016; Reimer et al. 
2017; Hennessy et al. 2017; Emmert et al. 2018; Goecke 
et al. 2018; Fioretta et al. 2020; van Rijswijk et al. 2020). 
However, complete endothelialization has been reported as 
early as after 16 weeks (Motta et al. 2018), while an incom-
plete coverage has been observed even after 20 months 
(Tudorache et al. 2016), thereby demonstrating that strong 
variability in outcomes can occur and further understanding 
and improvement are therefore needed.

Repopulation of TEHVs with other cell types is simi-
larly variable and different degrees have been observed, 
from limited and partial repopulation (Theodoridis et al. 
2015; Tudorache et al. 2016; Miller et al. 2016; Reimer 
et al. 2017; Hennessy et al. 2017; Coyan et al. 2019; van 
Rijswijk et al. 2020) to extensive repopulation (Zafar et al. 
2015; Syedain et al. 2015; Kluin et al. 2017; Emmert et al. 
2018; Goecke et al. 2018; Fioretta et al. 2020). Neverthe-
less, apart from rare exceptions (Kluin et al. 2017), the DNA 
content of TEHVs is often still lower than that of native 
valves (Syedain et al. 2015; Emmert et al. 2018). Despite 
signs of repopulation progressing with time (Zafar et al. 
2015; Syedain et al. 2015; Miller et al. 2016; Reimer et al. 
2017; Emmert et al. 2018), there are examples, very similar 
to those mentioned for endothelialization, that show exten-
sive repopulation occurring after relatively short follow-up 
times (Syedain et al. 2015; Goecke et al. 2018; Fioretta et al. 
2020) and limited repopulation in more long-term studies 
(Theodoridis et al. 2015; Tudorache et al. 2016), independ-
ent of the adopted procedure. This indicates that achieving 
a more complete cellularization is not just a matter of time 
and suggests that there may be some cellular mechanisms 
underlying this process that are not yet fully understood and 
appreciated. Finally, cellular repopulation seems to be less 
prominent in decellularized xenografts and allografts com-
pared to decellularized TEMs and synthetic grafts (Weber 
et al. 2013; Theodoridis et al. 2015; Zafar et al. 2015; Sye-
dain et al. 2015; Tudorache et al. 2016; Miller et al. 2016; 
Reimer et al. 2017; Kluin et al. 2017; Hennessy et al. 2017; 
Emmert et al. 2018; Goecke et al. 2018; Coyan et al. 2019; 
Fioretta et al. 2020; van Rijswijk et al. 2020).

The cells found in the interstitium of TEHVs are typically 
identified as α-SMA-positive cells, such as myofibroblasts 
and smooth muscle cells (Theodoridis et al. 2015; Tudorache 
et al. 2016; Reimer et al. 2017; Hennessy et al. 2017; Goecke 
et al. 2018; Motta et al. 2018; van Rijswijk et al. 2020), 
although fibroblast cells have also been observed (Theodor-
idis et al. 2015; Miller et al. 2016). Spatial heterogeneity 
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of these cells in TEHVs is common and does not seem to 
be correlated with methodology. There is a clear trend of 
a higher repopulation on the ventricular side of the valve 
compared to the pulmonary or aortic side (Theodoridis et al. 
2015; Tudorache et al. 2016; Reimer et al. 2017; Hennessy 
et al. 2017; Goecke et al. 2018), as well as a higher cell den-
sity in the base and middle of the leaflets compared to the 
tip (Theodoridis et al. 2015; Syedain et al. 2015; Tudorache 
et al. 2016; Miller et al. 2016; Goecke et al. 2018; Motta 
et al. 2018, 2019). This latter finding suggests a dominant 
role for cellular infiltration from the valve root into the leaf-
lets. However, a few studies using decellularized TEMs have 
reported a more uniform cellular distribution from leaflet 
base to tip (Reimer et al. 2017; Emmert et al. 2018). In the 
study of Reimer et al. (2017) this was achieved after a rel-
atively short follow-up time of 22 weeks, suggesting that 
infiltrating cells may also originate from the blood. Interest-
ingly, cells were partially absent from the lamina fibrosa of 
pulmonary valves in some studies (Theodoridis et al. 2015; 
Tudorache et al. 2016; Goecke et al. 2018). Altogether, these 
results indicate that the cellular distribution in TEHVs is 
often dissimilar to native valves and that the underlying 
mechanisms are still largely unknown.

ECM formation In addition to cellular repopulation, it is 
important to consider the presence and distribution of matrix 
components, as these are key contributors to tissue function 
(Sect. 2.4). Collagen is the most abundant matrix compo-
nent in all studies that have analyzed the matrix composi-
tion (Zafar et al. 2015; Syedain et al. 2015; Tudorache et al. 
2016; Reimer et al. 2017; Kluin et al. 2017; Hennessy et al. 
2017; Emmert et al. 2018; Goecke et al. 2018; Motta et al. 
2018; Lintas et al. 2018; Fioretta et al. 2020; van Rijswijk 
et al. 2020). However, collagen content has been observed 
to reach native levels only occasionally (Kluin et al. 2017; 
Motta et al. 2018) and is often reported as more limited 
or at lower levels compared to the native situation (Theo-
doridis et al. 2015; Syedain et al. 2015; Kluin et al. 2017; 
Goecke et al. 2018; Fioretta et al. 2020), indicating room for 
improvement. Nevertheless, as synthetic grafts do not pos-
sess any initial collagen, the presence of collagen fibers in 
these grafts at least provides evidence of in situ deposition of 
collagen (Kluin et al. 2017; Fioretta et al. 2020). This is sup-
ported by various studies with decellularized grafts that have 
found an increase in collagen content in the explanted graft 
or the presence of procollagen molecules (Syedain et al. 
2015; Tudorache et al. 2016; Reimer et al. 2017; Hennessy 
et al. 2017; Emmert et al. 2018). On the other hand, only a 
few studies have confirmed in situ deposition of elastin in 
TEHVs (Reimer et al. 2017; Kluin et al. 2017; Fioretta et al. 
2020), although its presence has been shown on many occa-
sions in studies using decellularized scaffolds (Zafar et al. 
2015; Syedain et al. 2015; Hennessy et al. 2017; Emmert 

et al. 2018; Goecke et al. 2018; Motta et al. 2018; Lintas 
et al. 2018). Even when present, the elastin content is nev-
ertheless only sparse and lower compared to native levels 
(Reimer et al. 2017; Motta et al. 2018; Lintas et al. 2018; van 
Rijswijk et al. 2020). Furthermore, in contrast to the spatial 
distribution of cells in leaflets, clear trends in the distribu-
tion of matrix components cannot easily be identified. Only 
a few studies report more collagen and elastin presence near 
the base, and decreasing amounts toward the tip (Kluin et al. 
2017; Emmert et al. 2018). Also, a higher matrix content is 
sometimes seen on either the arterial (Kluin et al. 2017) or 
ventricular (Goecke et al. 2018; Motta et al. 2018) side of 
the leaflet of a pulmonary valve.

Tissue organization A layered organization of (part of) the 
leaflets is seen only occasionally (Zafar et al. 2015; Tudor-
ache et al. 2016; Lintas et al. 2018) and is usually absent in 
in situ TEHVs (Zafar et al. 2015; Reimer et al. 2017; Hen-
nessy et al. 2017; van Rijswijk et al. 2020). In some cases, 
the presence of a layered structure only represents the main-
tenance of the original matrix architecture in decellularized 
xeno- and allografts (Tudorache et al. 2016; Lintas et al. 
2018), while in situ layer formation from a synthetic scaffold 
is reported very rarely (Kluin et al. 2017). Interestingly, in 
the study of Emmert et al. (2018), one explant displayed a 
more advanced native-like tri-laminar organization, while 
other explants lacked such a layered structure and showed, 
for example, collagen fibers that were less aligned compared 
to native valves. Other signs of native-like remodeling are 
occasionally found in TEHVs as well, such as a dense col-
lagen layer on the arterial side (Theodoridis et al. 2015) 
and elastin presence on the ventricular side of the leaflet 
(Motta et al. 2018). Nevertheless, a suboptimal organization 
which does not resemble the native conditions appears to be 
more common. For example, a number of studies report the 
presence of collagen or elastin on both sides of the leaflet 
simultaneously (Theodoridis et al. 2015; Reimer et al. 2017; 
Kluin et al. 2017; Goecke et al. 2018) or the presence of both 
collagen and elastin together on the same side of the leaflet 
(Fig. 1f) (Reimer et al. 2017; Kluin et al. 2017). Both these 
observations represent an unphysiological organization. 
Generally, these aspects of unphysiological tissue organiza-
tion seem to occur independent of the applied procedure and 
follow-up time (Table 2).

Functionality and complications Overall, in situ heart valve 
tissue engineering has delivered promising results. An exam-
ple is the good in vivo performance of engineered pulmo-
nary valve replacements in sheep for up to one year starting 
from a synthetic scaffold (Kluin et al. 2017) or decellular-
ized TEM (Emmert et al. 2018). However, various complica-
tions have been reported as well, which may interfere with 
optimal and long-term valve functionality. One of the most 



22 C. Karakaya et al.

1 3

prominent issues is the progressive development of regur-
gitation, with moderate to severe cases reported frequently 
(Miller et al. 2016; Reimer et al. 2017; Kluin et al. 2017; 
Hennessy et al. 2017; Miyazaki et al. 2017; Soliman et al. 
2017; Motta et al. 2018; Lintas et al. 2018; van Rijswijk 
et al. 2020). Interestingly, there is also quite some variabil-
ity within experimental groups, with often only one or a 
few TEHVs developing moderate to severe regurgitation 
(Zafar et al. 2015; Tudorache et al. 2016; Kluin et al. 2017; 
Miyazaki et al. 2017; Soliman et al. 2017; Lintas et al. 2018). 
On a few occasions, the regurgitation worsened over time, 
potentially due to adverse remodeling (Syedain et al. 2015; 
Miller et al. 2016; Reimer et al. 2017; Motta et al. 2018). 
The related issue of leaflet retraction is also still common 
in recent studies (Tudorache et al. 2016; Reimer et al. 2017; 
Hennessy et al. 2017) and an important factor compromising 
valve functionality (Weber et al. 2013; Driessen-Mol et al. 
2014; Syedain et al. 2015; Reimer et al. 2017). Calcifica-
tion is another problem that has been regularly observed in 
in situ TEHVs (Theodoridis et al. 2015; Zafar et al. 2015; 
Tudorache et al. 2016; Miller et al. 2016; Reimer et al. 2017; 
Emmert et al. 2018; Fioretta et al. 2020; van Rijswijk et al. 
2020). Other complications such as stenosis (Tudorache 
et al. 2016; Miller et al. 2016; van Rijswijk et al. 2020) and 
thrombosis (Tudorache et al. 2016; Fioretta et al. 2020) are 
much less common and only occur occasionally.

3.3  Challenges in cardiovascular tissue engineering

Despite the promising results obtained via in vitro and 
in situ approaches, several challenges remain to be over-
come. Except for TEBVs exposed to low-pressure condi-
tions (Hibino et al. 2010; Wystrychowski et al. 2014; Law-
son et al. 2016), clinical translation of CVTE technologies 
has been limited. A possible factor that is slowing down the 
clinical translation is the significant outcome variability of 
engineered tissues, between and within studies (Visser et al. 
2021) (Sect. 3.2.2). For example, both extensive cellular 
repopulation in short follow-up times and limited repopula-
tion in longer periods have been reported in studies involv-
ing in situ TEHVs (Theodoridis et al. 2015; Syedain et al. 
2015; Tudorache et al. 2016; Goecke et al. 2018; Fioretta 
et al. 2020). Similarly, engineered tissues of experimental 
groups within the same studies often showed different func-
tionality, despite adopting the same procedure in all cases 
(Zafar et al. 2015; Kluin et al. 2017; Miyazaki et al. 2017; 
Soliman et al. 2017; Lintas et al. 2018).

Many TEBVs and TEHVs have not only been subopti-
mal and variable in terms of function, but also with regard 
to tissue organization. The problems in tissue organization 
are related to ECM deposition and suboptimal layer forma-
tion. In particular, elastin deposition in TEBVs and TEHVs 
is usually lower compared to their native counterparts 

(Fig. 1e—f). Specifically, elastin deposition has been almost 
absent in in vitro TEHVs. A completely native-like organiza-
tion of ECM components has also not been obtained so far, 
which may provide an explanation for the observed com-
promised functionality of TEBVs and TEHVs (Sodian et al. 
2000a; Schmidt et al. 2010; Reimer et al. 2017; Kluin et al. 
2017). A common issue for both in vitro and in situ TEHVs 
is also the presence of α-SMA-positive cells, mainly asso-
ciated with activated VICs (Liu et al. 2007a). These active 
myofibroblast-like cells continuously proliferate, migrate, 
remodel ECM, and produce cytokines, which may result in 
pathological cases such as calcification and leaflet retraction 
(Jian et al. 2003; Walker et al. 2004; Rutkovskiy et al. 2017). 
It is not yet clear whether and how the α-SMA-positive cell 
population can decrease over time to reach homeostasis in 
engineered valves. Overall, unphysiological cell activities 
and ECM properties negatively affect the functionality of 
engineered tissues, which in turn limits the potential for 
clinical translation.

The outcomes of the studies reviewed in Sects. 3.1 and 
3.2 are likely dependent on many factors including the spe-
cies and implant sites. For example, the animal models used 
in in situ TEBV studies are mainly mice and rat (Table 1), 
whereas larger animals like sheep are used in in situ TEHV 
studies (Table 2). Therefore, the responses might be species-
specific. In addition, it is not clear to what extent these ani-
mal models are optimal for testing the G&R of TEBV and 
TEHV and translating the findings into clinical applications.

Another challenge is to show that TEBVs and TEHVs 
can actually adapt to changing demands, such as in case of 
somatic growth. Although there are a few studies report-
ing that TEBVs can grow in diameter (Shinoka et al. 2005; 
Hoerstrup et al. 2006; Hibino et al. 2010; Syedain et al. 
2016), the capacity of TEBVs and TEHVs to grow and adapt 
is still largely unknown. In addition, the findings in adult 
models cannot easily be translated in pediatric application 
because of age-related differences, for example in regenera-
tive capacity and hormone profiles (Ponzi et al. 2020).

To overcome current limitations and improve the organi-
zation and function of TEBVs and TEHVs, we need a better 
and more mechanistic understanding of cardiovascular G&R. 
A mechanistic understanding and ability to predict G&R can 
ultimately help us to control the development of engineered 
tissues and achieve functional tissue organization.

3.4  Computational growth and remodeling models

Given the variability in outcome of experimental studies 
on CVTE, and the suboptimal tissue organization that is 
often still obtained (Sects. 3.1, 3.2, and 3.3), there is a clear 
need for a more detailed understanding of the G&R of engi-
neered cardiovascular tissues to guide future studies. Here, 
we define growth as changes in tissue mass and remodeling 
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as changes in tissue structure and/or material properties. 
Computational models are particularly suited to increase 
our understanding of tissue G&R, as they are capable of 
systematically testing hypotheses and thereby providing 
key insights into some of the mechanisms underlying tissue 
G&R. In addition, these models may be used to predict tis-
sue G&R, enabling researchers to optimize tissue engineer-
ing protocols in a more time- and cost-effective way com-
pared to using empirical trial-and-error approaches alone. In 
this section, we discuss several computational G&R models 
and highlight how mechanical stimuli can drive the G&R of 
blood vessels and heart valves. We also discuss the poten-
tial application of G&R models to understand and improve 
CVTE.

3.4.1  Collagen remodeling models

Collagen is the main load-bearing component of cardiovas-
cular tissues. The orientation and degree of anisotropy of 
collagen fibers are therefore key in determining the tissue 
mechanical behavior. Consequently, many computational 
remodeling models have focused mainly on predicting col-
lagen alignment and understanding the mechanisms respon-
sible for collagen remodeling. Early phenomenological 
models hypothesized that collagen fibers align along or in 
between the directions of principal stress or strain, which 
enabled them to successfully predict the collagen organiza-
tion in heart valves and arteries (Driessen et al. 2003, 2004, 
2005, 2008; Boerboom et al. 2003; Baek et al. 2006; Kuhl 
et al. 2007; Hariton et al. 2007). In more recent studies, 
models of collagen remodeling have been developed that 
accounted for the effects of cell behavior, such as contractil-
ity and cell alignment, to unravel the underlying biological 
mechanisms (Loerakker et al. 2014, 2016; Soares et al. 2014; 
Ristori et al. 2018a). These models suggest that collagen 
remodeling is driven by mechanical stimuli both directly, 
via the influence of strain, and indirectly, via mechano-
mediated cell behavior. Additionally, it has been predicted 
that mechanical stimuli provided by hemodynamic loading 
dominate the cell-mediated collagen remodeling process in 
TEHVs implanted in the aortic position, whereas the influ-
ence of contractility was predicted to be more important 
for TEHVs implanted in the pulmonary position (Loerak-
ker et al. 2016). To simulate long-term collagen remodeling 
in heart valves, the influence of topographical stimuli was 
included in a more recent study as well (Ristori et al. 2018a, 
2018b). Simulations with this model revealed that cell trac-
tion and reorientation in response to mechanical stimuli can 
potentially explain the emergence of an anisotropic collagen 
organization in fetal heart valves, while the coalignment of 
collagen fibers with cells seems vital for maintaining and 
reinforcing the adopted collagen organization over time (Ris-
tori et al. 2018a). Taken together, these modeling results 

suggest a clear and fundamental role for mechano-mediated 
cellular activity in the process of collagen remodeling in 
cardiovascular tissues.

3.4.2  Tissue growth and remodeling models

In addition to tissue remodeling, many models also incor-
porate tissue growth. To model the biological growth of a 
material, two theories are generally adopted, both of which 
are rooted in continuum mechanics. The first is often referred 
to as the theory of kinematic growth and was first conceptu-
alized by Skalak et al. (1981; 1982) and later formalized by 
Rodriguez et al. (1994). According to this theory, growth can 
be modeled by splitting the deformation of a material into 
an irreversible growth part, which is typically stress-free, 
and a reversible elastic part, which does generate stresses. In 
particular, a multiplicative decomposition of the deformation 
gradient tensor into a growth tensor and an elastic tensor is 
usually adopted. The elastic tensor ensures compatibility of 
the resulting configuration, gives rise to residual stresses, 
and accounts for elastic deformations resulting from exter-
nally applied loads. Whereas this kinematic growth theory 
generally focuses on the consequences of G&R, the theory 
of constrained mixtures, developed by Humphrey and Raja-
gopal (2002), places more emphasis on the physiological 
process of G&R. In the latter theory, biological tissues are 
modeled as a mixture of different constituents (e.g., collagen 
fibers, elastin, cells) and G&R is simulated by accounting for 
the production and removal of individual constituents. These 
constituents may each possess distinct mechanical proper-
ties, production and removal rates, and evolving stress-free 
configurations. Nevertheless, once they are deposited into 
the tissue, they are assumed to deform together with the tis-
sue as a whole. The theory of constrained mixtures is espe-
cially relevant for providing an increased understanding into 
the G&R of engineered tissues as underlying mechanisms 
can be accommodated more easily when experimental data 
are available (Gleason and Humphrey 2005; Humphrey et al. 
2007). However, this approach is computationally much 
more expensive compared to the kinematic growth theory.

3.4.3  Effects of mechanical stimuli

By implementing these theories, computational models have 
confirmed that mechanical stimuli play a fundamental role in 
tissue G&R and helped uncover several underlying mecha-
nisms. For example, for arteries, simulations have shown 
that stress correlates better with growth than strain (Taber 
and Humphrey 2001). This suggests that arterial growth may 
be stress-regulated, a hypothesis that has been adopted by 
many subsequent theoretical studies (Humphrey and Raja-
gopal 2003; Gleason and Humphrey 2005; Baek et al. 2006, 
2007; Kuhl et al. 2007; Valentín et al. 2009, 2011; Valentín 
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and Humphrey 2009). Furthermore, both intramural stresses 
and wall shear stresses can contribute to tissue G&R in these 
models. The latter can drive tissue remodeling via vasoac-
tive molecules that regulate matrix turnover (Valentín et al. 
2009). In addition, shear stresses sensed by VSMCs arising 
from interstitial flow have also been shown to affect G&R 
(reviewed in Shi and Tarbell 2011) and have been modeled 
in a number of studies (Tada and Tarbell 2000, 2002). More 
specifically, it is likely not stress itself but rather deviations 
in stress from a homeostatic target value that drive G&R of 
arterial tissue, as shown by multiple studies simulating the 
adaptation of arteries in response to altered pressure and/or 
flow (e.g., due to hypertension) (Humphrey and Rajagopal 
2003; Gleason and Humphrey 2005; Valentín et al. 2009; 
Valentín and Humphrey 2009; Karšaj et al. 2010). Neverthe-
less, it still remains uncertain whether stress or some other 
quantity acts as a target variable for mechanical homeostasis, 
thereby driving tissue G&R (Eichinger et al. 2021). Similar 
mechanisms have successfully been applied to model arterial 
adaptation after balloon angioplasty or stenting (Kuhl et al. 
2007), as well as the progression of arterial diseases such 
as cerebral aneurysm (Baek et al. 2006; Cyron et al. 2014) 
and vasospasm (Baek et al. 2007; Humphrey et al. 2007). 
The model of Rachev et al. (2011) revealed more details by 
considering radial variations in arterial G&R and showed 
that local deviations in stresses can control remodeling and 
induce a heterogeneous distribution of collagen and elastin 
in the arterial wall. In addition to stress, material stiffness 
is also an important determinant of G&R and simulations 
have suggested that anisotropic stiffness induces anisotropic 
growth in arteries, resulting in a preference of the material 
to grow in the direction of the lowest stiffness (Braeu et al. 
2019).

3.4.4  Applications in cardiovascular tissue engineering

To illustrate the benefits of adopting G&R models in tissue 
engineering applications, we discuss a few inspiring exam-
ples from the literature. G&R models have, for instance, 
been employed to perform parametric studies with the aim 
of optimizing the properties of synthetic scaffolds for tissue-
engineered vascular grafts (Courtney et al. 2006a; Engel-
mayr and Sacks 2006a; Miller et al. 2015; Szafron et al. 
2017a, 2019). This enabled the prediction of several sets 
of parameter values that result in favorable conditions, such 
as minimal compliance mismatch between the scaffold and 
host tissue (Miller et al. 2015; Szafron et al. 2019), as well 
as some specific techniques that may be employed to prevent 
high stiffness deviations during graft development which are 
detrimental to tissue outcome (Miller et al. 2015). In addi-
tion, it was shown that cells infiltrating the core of a bi-lay-
ered vascular graft were often stress-shielded, which could 
lead to a decreased matrix production and compromised 

mechanical integrity of the neovessel (Szafron et al. 2017b). 
Other models have helped researchers to design scaffolds 
for heart valve tissue engineering with a favorable degree 
of fiber anisotropy resulting in similar mechanical proper-
ties to native tissues (Courtney et al. 2006b; Engelmayr and 
Sacks 2006b). This was achieved by numerically predict-
ing the mechanical properties of these scaffolds based on 
fiber orientation. More key aspects of neotissue development 
were captured by the model of Best et al. (2019), which 
suggested that improving the properties of newly formed 
collagen reduces the likelihood of dilation and graft rupture, 
while the stiffness and degradation profile of scaffolds have 
little effect. Furthermore, Szafron and Khosravi et al. (2018) 
simulated both mechano-driven and immuno-driven growth 
of neovessels, suggesting that mechano-driven growth alone 
is not enough to explain the experimentally observed devel-
opment of vascular grafts, and that a delayed and moder-
ate immune response is desirable. Finally, computational 
modeling was able to successfully predict the performance 
and remodeling of TEHVs and motivated the design of scaf-
folds which resulted in favorable valves with significantly 
improved long-term in vivo functionality (Loerakker et al. 
2013; Emmert et al. 2018).

The examples in this section demonstrate the ability of 
computational G&R models to increase our understanding 
of G&R of vessels and valves and to guide and optimize tis-
sue engineering protocols. These models have consistently 
identified mechanical stimuli as one of the major driving fac-
tors for the G&R of cardiovascular tissues, and a clear trend 
toward more mechanistic modeling is observed. It is impor-
tant to note that many of the models discussed in this sec-
tion have been validated qualitatively by comparing model 
outcomes to experimental or clinical observations. Never-
theless, more thorough quantitative validation is needed in 
many cases to ensure the accuracy and robustness of these 
models. Most of these models have not yet focused on inte-
grating cell–cell signaling, despite this being an important 
mechanism for cell behavior and tissue G&R. The inclu-
sion of cell–cell signaling may open new possibilities to 
guide and optimize the organization of engineered tissues. 
Therefore, further efforts are needed to unravel the underly-
ing mechano-mediated biological mechanisms, such as cell 
behavior and cell–cell signaling, and incorporate these into 
computational frameworks.

4  The effects of mechanical cues on cell 
behavior

Mechanical cues have important roles in the regulation 
of cellular processes that are responsible for vascular and 
valvular G&R (Taber 2001; Humphrey 2006; Humphrey 
et al. 2014). Cardiovascular cells respond to both dynamic 
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mechanical cues arising from the hemodynamic load-
ing conditions acting on cardiovascular tissues and static 
mechanical cues such as the stiffness of the microenviron-
ment (reviewed in Chaudhuri et al. 2020; Wang et al. 2020). 
Due to the dynamic nature of the cardiovascular system, 
in this section, we discuss the experimental findings that 
show how dynamic mechanical cues, particularly stress and 
strain, affect the behavior of vascular endothelial and smooth 
muscle cells, as well as valvular endothelial and interstitial 
cells. Particular attention is given to the effects of stress 
and strain on cellular processes that are important for G&R, 
such as cell orientation, ECM synthesis and organization, 
proliferation, and apoptosis. Cell migration is another impor-
tant cellular process that is essential for obtaining proper 
recellularization of the implanted grafts. Cell migration is 
mechano-regulated as well, as extensively reviewed else-
where (Li et al. 2005; Chi et al. 2014; Campinho et al. 2020).

4.1  Vascular endothelial cells

ECs lining the luminal surface of blood vessels are exposed 
to shear stress due to blood flow and circumferential cyclic 
strain resulting from the pulsatile blood pressure. The blood 
flow is usually unidirectional and laminar, with a mean wall 
shear stress of 1–2 Pa (10–20 dynes/cm2) in the straight sec-
tions of arteries and 0.1–0.6 Pa (1–6 dynes/cm2) in veins 
(Roux et al. 2020). Yet, spatial variations in wall shear stress 
are also observed, especially in regions with curvatures and 
bifurcations. Cells in large arteries also experience cyclic 
circumferential stress of around 100–150 kPa at mean arte-
rial pressure, resulting in 10–15% strain (van Haaften et al. 
2017). These strain levels are not the same as what the cells 
feel locally. This is the reason why in in vitro studies, 5–10% 
strain is considered physiological, while 20% strain and 
higher magnitudes are considered pathological (Charbonier 
et al. 2019). Both shear stress and cyclic strain are impor-
tant direct regulators of EC morphology and physiological 
function. Prolonged changes in these mechanical cues alter 
EC morphology and function, which in turn causes vascular 
abnormalities such as intimal hyperplasia and atherosclero-
sis (GimbroneJr and García-Cardeña 2016).

ECs primarily sense the shear stress through a thin gly-
cocalyx layer that coats their luminal membrane. Glyco-
calyx also acts as a mechanotransducer of shear stress to 
the endothelial cytoskeleton and initiator of the biochemi-
cal responses (Tarbell et al. 2005; Weinbaum et al. 2007). 
Animal studies have indicated that vascular ECs orient in 
the direction of blood flow, and that this orientation is not 
uniform in arterial branches where the flow is turbulent 
(Langille and Adamson 1981; Nerem et al. 1981). These 
observations have been corroborated by in vitro experi-
ments providing more controlled flow environments. Spe-
cifically, compared to static conditions, ECs exposed to 

steady laminar flow in vitro have been shown to elongate, 
obtain an ellipsoid shape (Dewey et al. 1981), and align in 
the direction of flow (Dewey 1984; Levesque and Nerem 
1985). Moreover, it has been demonstrated that ECs reorgan-
ize the actin and myosin stress fibers (Dewey 1984) as well 
as the underlying ECM (Wechezak et al. 1985; Thoumine 
et al. 1995a) in the direction of flow. Pulsatile laminar flow 
appears to have the same effect on EC alignment and actin 
fiber organization compared to steady laminar flow condi-
tions (Helmlinger et al. 1991). The morphological changes 
and the reorganization of the cytoskeleton and ECM depend 
on the applied levels of shear stress and the time of exposure 
(Franke et al. 1984). Increasing the levels of shear stress and 
exposure time upregulates actin fiber formation and organi-
zation, resulting in better aligned ECs in the direction of 
flow. On the other hand, such an orientation and ECM reor-
ganization are not observed under oscillatory shear stress 
(Helmlinger et al. 1991; Thoumine et al. 1995b) and multi-
directional shear stress (Mohamied et al. 2015; Ghim et al. 
2018). Interestingly, ECs exposed to oscillatory shear stress 
and multidirectional shear stress are randomly oriented and 
demonstrate a similar cobblestone morphology as in static 
conditions.

Shear stress also influences the proliferation and apopto-
sis of vascular ECs. Steady laminar shear stress with higher 
magnitudes than physiological levels and pulsatile shear 
stress inhibit DNA synthesis and EC proliferation by inhib-
iting the transition from the G0/G1 toward the S phase in the 
cell cycle (Levesque et al. 1990; Akimoto et al. 2000). Low 
levels of steady laminar flow, on the other hand, lead to simi-
lar EC proliferation compared to no flow conditions. (Dewey 
et al. 1981; Akimoto et al. 2000). Laminar shear stress also 
suppresses apoptosis (Kaiser et al. 1997, 1999, Dimmeler 
et al. 1996). On the contrary, the absence of laminar shear 
stress triggers EC apoptosis in organ cultures and in freshly 
isolated ECs cultured in vitro (Kaiser et al. 1997, 1999), 
thereby showing the importance of laminar shear stress for 
EC survival. In contrast to the results obtained with laminar 
flow, turbulent flow appears to increase EC proliferation and 
apoptosis (Dardik et al. 2005). This proliferation effect is 
independent from applied shear stress levels and exposure 
time (Davies et al. 1986). Overall, these results show that 
physiological levels of laminar flow inhibit EC proliferation 
and apoptosis, promoting homeostasis in the vessel wall, 
while sub-physiological levels of laminar shear stress and 
turbulent shear stress promote EC proliferation and apopto-
sis. This could be correlated with plaque formation and ath-
erosclerosis development (Zarins et al. 1983; Cunningham 
and Gotlieb 2005).

Cyclic strain is another mechanical cue affecting vas-
cular EC proliferation and apoptosis. However, current lit-
erature studies are inconsistent with respect to the specific 
effect of strain on EC proliferation. This inconsistency 
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might be caused by differences in cell sources, cyclic strain 
levels, and exposure time between studies. For example, 
Sumpio et al. (Sumpio et al. 1987) reported that bovine 
aortic ECs increased DNA synthesis and proliferation 
when exposed to 10% cyclic strain at 0.05 Hz after 1 day 
compared to static conditions, while Woodell et al. (Wood-
ell et al. 2003) reported that application of 4% cyclic strain 
at 0.1 Hz for 4 h decreased DNA synthesis in bovine aor-
tic ECs. In addition, rabbit aortic ECs have been shown 
to decrease cell proliferation and DNA synthesis when 
exposed to 18% cyclic strain, but demonstrated an increase 
in cell proliferation at 24% and 27% cyclic strain com-
pared to unloaded samples (Upchurch et al. 1997), sug-
gesting that the effect of cyclic strain on EC proliferation 
is not necessarily monotonic. Further systematic studies 
are therefore necessary to determine and understand how 
strain regulates EC proliferation. With regard to apoptosis, 
experiments have indicated that 6% and 10% cyclic strain 
protects ECs from apoptosis induced by TNF-α and serum 
depletion (Haga et al. 2003; Liu et al. 2003). However, 
20% cyclic strain appeared not to have the same effect 
(Liu et al. 2003). These findings suggest that physiological 
levels of cyclic strain protect arterial ECs from apoptosis, 
while pathological levels promote cell apoptosis.

Regarding cell morphology, ECs elongate and orient 
perpendicular to the direction of stretch (Wang et al. 2001; 
Moretti et al. 2004), which is accompanied by the align-
ment of microtubules (Ives et al. 1986). In addition, ECs 
form actin stress fibers in response to cyclic strain (Sumpio 
et al. 1988a) and (re)orient these filaments and their cell 
shape perpendicular to the stretch direction (Dartsch and 
Betz 1989, Yoshigi et al. 2003), which is known as a strain 
avoidance response (Buck 1980; De and Safran 2008; Hsu 
et al. 2009). This (re)orientation response to cyclic stretch 
is consistent with the vessel structure and the (re)orientation 
response to shear stress. Strain in the vessel wall is circum-
ferential; hence, the tendency of ECs to (re)orient in direc-
tions perpendicular to the applied cyclic strain leads to EC 
alignment in the axial direction of the vascular wall, which 
agrees with the preferred direction of ECs due the presence 
of shear stress. Therefore, both shear stress and strain seem 
to act together in aligning ECs in the direction of flow.

The possible synergistic effects of both shear stress and 
strain on the orientation of ECs are supported by in vitro 
studies. When pulsatile shear stress and uniaxial cyclic strain 
are applied together to ECs, the elongation and alignment 
of ECs in the direction of shear stress and perpendicular to 
cyclic strain is enhanced (Zhao et al. 1995). In particular, 
actin stress fibers become thicker and more aligned when 
compared to the individual application of each stimulus. In 
another study, fluid shear stress alone had the largest effect 
on cell elongation followed by the shear stress and biax-
ial cyclic strain together (Meza et al. 2016). However, the 

differences in outcome of these studies might be related to 
the levels of shear stress and the direction of cyclic strain 
(uniaxial or biaxial), since it is known that equibiaxial strain 
does not cause an alignment (Meza et al. 2016; Sinha et al. 
2016). In addition, when the cells are exposed to anisotropic 
biaxial strain and shear stress simultaneously, the alignment 
response of ECs is dominated by anisotropic strain when 
the shear stress levels are lower than physiological levels, 
whereas physiological levels of shear stress dominate the 
alignment response (Sinha et al. 2016). Therefore, it seems 
that different levels of shear stress determine the strain-
mediated EC alignment.

4.2  Vascular smooth muscle cells

VSMCs can express different phenotypes related to vascu-
lar G&R. VSMCs generally display a quiescent contrac-
tile phenotype in healthy adult vessels. Upon changes in 
hemodynamic conditions and biochemical stimuli, VSMCs 
can switch to a synthetic phenotype that is characterized 
by increased proliferation and ECM deposition (Owens 
et al. 2004). VSMCs are located in the tunica media and 
are predominantly exposed to cyclic circumferential stress 
and strain resulting from the pulsatile blood flow (Anwar 
et al. 2012). This mechanical stress is thought to regulate 
vascular G&R by affecting VSMC orientation, proliferation, 
apoptosis, and phenotype, as well as VSMC-mediated ECM 
synthesis and degradation.

Many in vitro two-dimensional cell culture studies have 
shown that VSMCs demonstrate a strain avoidance response 
by aligning perpendicular to the direction of uniaxial 
cyclic stretch (Sumpio and Banes 1988; Kanda et al. 1992; 
Standley et al. 2002; Chen et al. 2003; Li et al. 2003). This 
alignment response is faster and stronger for higher strain 
magnitudes and frequencies (Kanda et al. 1992; Liu et al. 
2008), corresponding to physiological conditions. Moreover, 
VSMCs reorient toward a random organization again if they 
are subjected to static conditions after 48 h of stretch, show-
ing that the alignment response is reversible (Standley et al. 
2002). Cell orientation is also influenced by structural cues 
such as collagen and scaffold fibers (Guido and Tranquillo 
1993; Fioretta et al. 2014), patterned substrates (Ray et al. 
2017; Buskermolen et al. 2020), and grooved geometries 
(Lamers et al., 2010). This phenomenon is known as contact 
guidance (Dunn and Heath 1976). Its effects on cellular ori-
entation are extensively reviewed elsewhere (Tamiello et al. 
2016; Leclech and Villard 2020).

Cyclic strain also affects ECM synthesis. In fact, it has 
been shown that strain increases the production of colla-
gen and fibronectin in VSMCs (Leung et al. 1976; Sumpio 
et al. 1988b; O’Callaghan and Williams 2000; Stanley et al. 
2000). This synthesis dependence seems to require long-
term exposure to strain, as it takes 4 to 5 days to become 
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apparent (Sumpio 1988c, O’Callaghan 2000). Higher mag-
nitudes of strain increase this response (O’Callaghan 2000), 
while variations in strain frequency do not affect the results 
(Leung et al. 1976; Sumpio et al. 1988b). Cyclic strain also 
increases matrix metalloproteinase (MMP) activity, particu-
larly MMP-2 (O’Callaghan and Williams 2000; Grote et al. 
2003; Seo et al. 2013). MMP-2 is known to enable vascular 
remodeling by degrading the existing ECM, while the new 
ECM is being synthesized and organized (Galis and Khatri 
2002). The increase in MMP-2 production has also been 
validated in vivo with a rat model of aortic banding (Liu 
et al. 2015). The pressure overload via banding upregulated 
MMP-2 activity as well as the production of collagen I and 
III. Overall, these results suggest that cyclic strain promotes 
ECM synthesis and degradation in VSMCs.

The observed effects of cyclic strain on VSMC apoptosis 
have been rather consistent. Specifically, it has been shown 
that this mechanical stimulus increases apoptosis in VSMCs 
independent of strain magnitude, direction, and cell source 
(Sotoudeh et al. 2002; Wernig et al. 2003; Morrow et al. 
2005; Su et al. 2006; Guha et al. 2011; Cheng et al. 2012; 
Song et al. 2012a). On the other hand, VSMCs have shown 
a heterogeneous response to strain in terms of proliferation. 
Determining the causes of such variability is challenging. 
For example, cyclic strain increases proliferation in rabbit 
aortic and bovine aortic SMCs compared to static conditions 
(Birukov et al. 1995; Li et al. 2003; Chahine et al. 2012), 
while it decreases the proliferation of porcine aortic SMCs 
(Sumpio and Banes 1988). These findings suggest that the 
response of VSMCs might be species-specific; however, this 
hypothesis is not consistent with the variation that can for 
example be seen by investigating the cyclic strain responses 
of rat and human VSMCs. In human aortic SMCs, it has 
been reported that cyclic strain can either increase (Song 
et al. 2012a) or have no effect on proliferation (O’Callaghan 
and Williams 2000) compared to static cases. Similarly, for 
rat VSMCs, some studies reported that cyclic strain increases 
proliferation compared to unloaded samples (Wilson et al. 
1993; Standley et al. 1999; Song et al. 2012b), while others 
reported the opposite (Chapman et al. 2000; Morrow et al. 
2005; Guha et al. 2011) at similar magnitudes of strain but 
different time points. These disagreements do not appear 
to depend on the application of equibiaxial versus uniaxial 
strain (Standley et al. 1999; Chapman et al. 2000; Morrow 
et al. 2005; Song et al. 2012a). Therefore, further studies are 
necessary to identify the parameters affecting the prolifera-
tion response of VSMCs. For example, future studies might 
investigate if these variations are caused by differences in 
terms of blood vessel location in the arterial tree or different 
media supplements.

The phenotype of VSMCs is also affected by cyclic strain. 
Specific phenotypic markers such as α-SMA, calponin, 
smooth muscle protein 22-alpha, and smooth muscle myosin 

heavy chain have been used to determine the contractile phe-
notype of VSMCs (Owens et al. 2004). Cyclic strain has 
been reported to both upregulate (Reusch et al. 1996; Tock 
et al. 2003; Yao et al. 2014) and downregulate (Butcher et al. 
2006; Hu et al. 2014; Rodríguez et al. 2015; Wan et al. 2015) 
the expression of contractile proteins compared to static 
controls. An upregulation in contractile marker expression 
could be associated with lower strain magnitudes (Tock et al. 
2003) and higher frequencies applied (Yao et al. 2014) with 
regard to the studies showing a downregulation in contractile 
marker expression (Butcher et al. 2006; Hu et al. 2014; Rod-
ríguez et al. 2015). The differences in applied strain direc-
tions, exposure time, cell types, and surface coatings should 
also be taken into account. In addition, the mechanisms 
involved in the phenotypic switch of VSMCs via mechani-
cal stimulation should be further investigated.

4.3  Valvular endothelial cells

VECs have different orientation responses compared to 
vascular ECs. VECs cover the surface of valve leaflets and 
are exposed to shear stress and strain in circumferential and 
radial directions. Despite this duality in terms of mechanical 
stimuli, studies have mainly focused on the effect of shear 
stress on VEC behavior. In vivo observations have shown 
that VECs align circumferentially on both sides of aortic 
valve leaflets, hence perpendicular to flow (Deck 1986). In 
agreement with that, in vitro studies have shown that VECs 
align perpendicular to unidirectional laminar flow (Mahler 
2014) and parallel to uniaxial strain (Balachandran et al. 
2011), differently than vascular ECs (Butcher et al. 2004). 
This differential alignment response is thought to depend 
on different spatial arrangements of focal adhesion proteins 
and different signaling pathways activated in VECs versus 
vascular ECs.

Increasing evidence also suggests that there are differ-
ences in VECs in terms of morphology, gene and protein 
expression, and mechanical properties based on their loca-
tion ( aortic versus ventricular side of the valve leaflet) 
(Holliday et al. 2011; Bischoff and Aikawa 2011; Miragoli 
et al. 2014; Mongkoldhumrongkul et al. 2018). VECs on the 
ventricular side of the leaflets are more elongated and flat-
tened compared to the cuboidal shape of VECs on the aortic 
side (Maron and Hutchins 1974; Bischoff and Aikawa 2011). 
Moreover, VECs on the ventricular surface are relatively 
stiffer than the VECs on the aortic surface, which might be 
related to the presence of high and unidirectional shear stress 
on the ventricular side and low oscillatory shear stress on 
the aortic side of the valve in vivo (Miragoli et al. 2014). In 
addition, an increase in collagen and GAG production on the 
aortic side caused by oscillatory flow cannot be replicated by 
applying an identical flow pattern to the ventricular side of 
the valve (Mongkoldhumrongkul et al. 2018). Thus, VECs 
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located on different sides of the valves respond differently 
to shear stress. The mechanosensitive mechanisms regulat-
ing these different responses should be further investigated.

4.4  Valvular interstitial cells

VICs are located throughout the three layers of the valve 
leaflets. VICs exhibit a high degree of phenotypic plastic-
ity. Quiescent VICs are generally found in healthy adult 
tissues and are characterized by low proliferation levels, 
ECM synthesis, and remodeling. These cells can switch 
phenotype toward activated VICs, which are characterized 

by increased proliferation, as well as ECM production and 
remodeling (Rabkin-Aikawa et al. 2004). A maladaptive 
activation of VICs can result in an osteoblastic differentia-
tion, which is mainly associated with valve dysfunction (Liu 
et al. 2007a). This phenotypic activation is characterized by 
increased α-SMA (Liu et al. 2007a; Latif et al. 2015). Cyclic 
strain regulates the phenotypic activation of VICs, in such a 
way that increasing the strain magnitude increases α-SMA 
expression, thus VIC activation (Ferdous et al. 2013; Ayoub 
et al. 2017). The activation of VICs with pathological strain 
levels (15%) is also related to osteogenic gene expression 
and calcification (Balachandran et al. 2010; Ferdous et al. 

Fig. 2  The effects of different mechanical cues on vascular and valvular cell behavior a the effects of laminar and oscillatory shear stress as well 
as uniaxial and equibiaxial strain on vascular EC and VEC behavior, b the effects of uniaxial and equibiaxial strain on VSMC and VIC behavior

laminar    
shear stress

oscillatory 
shear stress uniaxial strain

equibiaxial 
strain

cell alignment

stress fiber 
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proliferation

apoptosis

cell alignment

ECM production 
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2013). Physiological strain levels (10%), on the contrary, 
maintain tissue homeostasis (Ferdous et al. 2013; Ayoub 
et al. 2017; Bogdanova et al. 2018).

VICs are highly sensitive to the magnitude, direction, 
and the duration of strain. For example, cell proliferation 
and apoptosis increase in VICs with the magnitude of cyclic 
stretch they are exposed to (Balachandran et al. 2009, 2012). 
The nuclear aspect ratio of mitral VICs, which is a metric 
of cell deformation, increases with increasing strain (Ayoub 
et al. 2017, 2021). In addition, increasing anisotropy of biax-
ial cyclic strain also upregulates proliferation and apoptosis 
(Gould et al. 2012). In terms of ECM synthesis and remod-
eling, VICs respond to cyclic strain by increasing total col-
lagen synthesis, depending on the magnitude and duration 
of stretch (Balachandran et al. 2006, 2009, 2012; Ku et al. 
2006; Ayoub et al. 2017). In particular, when physiological 
(10%) and pathological strain levels (20% and 30%) are com-
pared, it can be seen that physiological strain levels main-
tain the remodeling activity with respect to the homeostatic 
conditions, while pathological strain levels increase colla-
gen production and MMP expression (Balachandran et al. 
2009; Ayoub et al. 2017). VICs exposed to cyclic anisotropic 
biaxial strain generally align perpendicular to the first prin-
cipal strain direction, which also aligns the collagen fibers 
(Gould et al. 2012). On the other hand, GAG synthesis has 
been reported to decrease (Gupta et al. 2009) or not change 
(Ayoub et al. 2017) with applying 10% strain compared to 
static conditions, but increases at pathological strain lev-
els (30%) (Ayoub et al. 2017). Elastin levels do not change 
upon applying 10% cyclic stretch (Balachandran et al. 2006; 
Ayoub et al. 2017) and decrease with 30% strain (Ayoub 
et al. 2017).

In summary, mechanical cues that are applied on vas-
cular and valvular cells differently affect cellular processes 
responsible for cardiovascular G&R (Fig. 2). Understanding 
these relationships is important for regulating remodeling 
and organization in the context of CVTE. It is clear that vas-
cular ECs align parallel to flow and VSMCs align perpendic-
ular to the direction of stretch, which is consistent with the 
vessel wall structure and the applied hemodynamic loads. 
VECs show a different orientation response than vascular 
ECs by aligning perpendicular to flow. The alignment of the 
cells in response to mechanical cues is in accordance with 
the alignment of their microtubules and stress fibers. Lami-
nar shear stress is needed to maintain vascular homeostasis, 
while oscillatory shear stress increases EC proliferation and 
apoptosis, thereby potentially promoting G&R (Humphrey 
2006). With regard to VSMCs, even though strain is known 
to increase VSMC apoptosis, understanding how VSMC 
proliferation and phenotypic switches are regulated by 
strain requires further investigation as previous experimental 
observations have been inconsistent. Increased mechanistic 
understanding of how vascular and valvular cells regulate 

cardiovascular G&R and incorporating these insights into 
scaffold designs will allow more control over tissue forma-
tion and therefore better TEBV and TEHV functionality.

5  Mechano‑regulated cell–cell signaling 
pathways

Apart from the influence of mechanical cues on tissue G&R 
(Sect. 3.4) and cell behavior (chapter 4), cell behavior is 
also strongly influenced by cell–cell signaling. An increasing 
number of these signaling pathways have been identified as 
mechanosensitive. Cell–cell signaling might therefore be a 
key underlying mechanism regulating the G&R of tissues 
in response to mechanical stimuli. This is relevant in the 
context of tissue engineering, as an increased understand-
ing of these mechanisms could enable us to identify ways 
of controlling tissue G&R and cell behavior and thereby 
improve tissue engineering outcomes. In this section, we 
review mechanosensitive juxtacrine signaling pathways, 
in which direct cell–cell contact is required, and mechano-
sensitive paracrine signaling pathways, occurring at larger 
length scales. In particular, we focus our attention on signal-
ing pathways that are known to be both mechanosensitive 
and important in the development of cardiovascular tissues.

5.1  Notch signaling

Notch is an evolutionarily conserved signaling pathway 
involved in cell fate determination in most tissues of the 
human body. In mammals, the pathway consists of four 
receptors (Notch1 to Notch4), two Jagged ligands (Jagged1 
and Jagged2), and three Delta-like ligands (Dll1, Dll3, and 
Dll4). All receptors and ligands are presented on the cell 
membranes, requiring direct cell–cell contact for signaling 
to occur. Notch is activated when a ligand of one cell binds 
to a receptor of a neighboring cell, which results in the pro-
teolytic cleavage of the Notch intracellular domain (NICD) 
in the receiving cell (Fig. 3a). NICD then translocates to the 
nucleus where it acts as a cofactor for transcription of Notch 
target genes. Receptors can bind not only to ligands from a 
neighboring cell (trans-interactions) but also to ligands from 
the same cell (cis-interactions). This latter phenomenon is 
generally thought to have an inhibitory effect (Sprinzak et al. 
2010), although recent reports affirm that it can also lead to 
Notch activation (Nandagopal et al. 2019).

Notch signaling plays an essential role in the develop-
ment of almost all tissues of the human body (Artavanis-
Tsakonas et al. 1995; Gridley 2007; Rostama et al. 2014). 
It is a main regulator of cell fate decisions, proliferation, 
apoptosis, boundary formation, and regeneration (Gridley 
2007; de la Pompa 2009; MacGrogan et al. 2018). It is 
therefore not surprising that the Notch pathway is also 
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crucially involved in both the development and homeosta-
sis of the cardiovascular system (Iso et al. 2003; Gridley 
2007; de la Pompa 2009; Baeten and Lilly 2017; Mac-
Grogan et al. 2018). In the vasculature, Notch signaling 
regulates angiogenesis, EC migration and proliferation, 
barrier function, arterial-venous specification of both ECs 
and VSMCs, and modulation of the VSMC phenotype (Iso 
et al. 2003; Gridley 2007; Phng and Gerhardt 2009; Baeten 
and Lilly 2017; Polacheck et al. 2017; Mack et al. 2017). 
During cardiac development, the Notch pathway controls 
the proliferation and differentiation of cardiomyocytes, 
epithelial–mesenchymal transition, trabeculation, and 
the formation and morphogenesis of cardiac valves (de la 
Pompa 2009; MacGrogan et al. 2018).

One of the primary features of the Notch pathway is its 
ability to establish patterns in cell populations by regulating 
cell differentiation (Collier et al. 1996; Hamada et al. 2014; 
Shaya et al. 2017; Corson et al. 2017). Via Notch signaling, 
cells can instruct their immediate neighbors to adopt either a 
different or a similar phenotype. These processes are called 
lateral inhibition and lateral induction, respectively, and rely 

on negative and positive feedback loops. In the case of lat-
eral inhibition, Notch activation results in the downregula-
tion of ligand expression in signal receiving cells, preventing 
them from becoming signal sending cells themselves, thus 
creating patterns of alternating signal sending and receiving 
cells in the cell population (Sjöqvist and Andersson 2019). 
During lateral induction, on the other hand, Notch activation 
promotes ligand expression in receiving cells, enabling them 
to send signals to their neighbors, resulting in a cascade of 
Notch activation in which all cells adopt a similar pheno-
type (Sjöqvist and Andersson 2019). These processes may 
be one of the reasons for Notch ubiquity in organisms, as 
they enable the transmission of local stimuli to larger length 
scales in a versatile and controlled fashion.

Increasing evidence suggests that the Notch pathway 
is influenced by a wide variety of external bio-chemo-
mechanical stimuli. Examples include interactions with 
ECM components, crosstalk with other signaling path-
ways, mechanical cues, and pathological cues such as 
hypoxia and hyperglycemia (reviewed in LaFoya et al. 
2016). At the same time, Notch activity impacts these 

(a) (b)

Fig. 3  The effects of mechanical stimuli on cell–cell signaling path-
ways in ECs and VSMCs a the Notch signaling pathway where a 
Jagged ligand from the EC binds to a Notch receptor on the VSMC, 
resulting in the translocation of NICD to the nucleus. In the EC strain 
downregulates Notch expression, while shear stress can either up- or 
downregulate the expression of Notch, Dll, and Jagged. In the VSMC, 

strain downregulates the expression of both Notch and Jagged. b) the 
TGF-β signaling pathway where the TGF-β ligand binds to the TGF-β 
receptor and activates canonical SMAD or noncanonical (dashed 
arrow) cascades. Shear stress and strain upregulate TGF-β1 release 
from ECs, and strain upregulates TGF-β1 release from VSMCs to 
create an autocrine feedback (created with BioRender.com)
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stimuli by regulating cell behavior. Therefore, the Notch 
pathway may serve not only as a facilitator of direct 
cell–cell communication, but also as an integrator of 
micro-environmental cues (LaFoya et  al. 2016). This 
makes the Notch pathway an interesting factor to consider 
in the context of tissue engineering, as it potentially allows 
us to steer signaling interactions by manipulating these 
stimuli and thereby control tissue G&R. In the following 
paragraphs, we describe the effects of mechanical stimuli 
on Notch signaling. For a more detailed description of the 
molecular mechanisms underlying Notch mechanotrans-
duction, we refer the reader to one of our recent reviews 
(Stassen et al. 2020).

5.1.1  Effects of mechanical stimuli on Notch signaling 
in ECs

Shear stress on vascular ECs resulting from blood flow is 
an important regulator of Notch signaling (Fig. 3a). An 
increase in Notch activation is generally seen in response 
to shear stress in human ECs from different locations in 
the vascular tree (Polacheck et al. 2017; Fang et al. 2017; 
Mack et al. 2017) as well as in bovine (Wang et al. 2007) 
and murine (Tu et al. 2014) ECs. Results are less con-
clusive, however, when the receptor and ligand specific 
responses to shear stress are investigated. Upregulation of 
Notch1 (Tu et al. 2014; Jahnsen et al. 2015; Mack et al. 
2017) and Dll4 (Tu et al. 2014; Jahnsen et al. 2015; Pola-
check et al. 2017; Fang et al. 2017; Driessen et al. 2018) in 
shear stressed ECs are common. Other Notch-related pro-
teins that are known to respond to shear stress are Notch2 
(Wang et al. 2007), Notch4 (Tu et al. 2014; Jahnsen et al. 
2015; Fang et al. 2017), Dll1 (Wang et al. 2007; Tu et al. 
2014; Jahnsen et al. 2015; Fang et al. 2017), Jagged1 (Fang 
et al. 2017; Driessen et al. 2018), and Jagged2 (Fang et al. 
2017). These are typically upregulated upon exposure to 
shear stress, although in some cases also downregulated. 
For a more detailed overview of the effects of mechani-
cal stimuli on Notch signaling, see Table 3. These dif-
ferential outcomes may be explained by variations in cell 
type, shear stress magnitude, and exposure time. Indeed, 
the shear stress response of Notch signaling is known to 
depend on both the magnitude (Jahnsen et al. 2015; Fang 
et al. 2017) and exposure time (Mack et al. 2017; Dries-
sen et al. 2018) of shear stress. An interesting example is 
the study by Fang et al. (2017) who showed that Notch 
activation in human umbilical vein ECs increased with 
increasing shear stress up to a critical value, after which 
it decreased with increasing shear stress, resulting in an 
inverse V-shaped profile. Interestingly, this critical value 
of shear stress at which Notch activation is maximal, cor-
responds well to the physiological value in arterial ECs. 
This suggests an important role for shear stress-induced 

Notch signaling in arterial remodeling, as the activation 
of Notch near this critical shear stress value promoted EC 
cycle arrest and subsequent arterial specification (Fang 
et al. 2017).

Shear stress is not the only mechanical stimulus experi-
enced by vascular ECs, as they are also subjected to cyclic 
stress and strain (Sect. 2.4). The effect of cyclic strain on the 
Notch pathway in ECs has been studied by Morrow et al. 
(2007), who cultured human umbilical vein ECs exposed to 
a cyclic strain of up to 10% for 24 h. They reported a time-
dependent response, characterized by an initial upregulation 
in the levels of Notch1 and Notch4 mRNA and intracellular 
domain, followed by a return to baseline values after 24 h. 
This temporal increase in Notch activation appeared to be 
sufficient to enhance the angiogenic activity in ECs.

5.1.2  Effects of mechanical stimuli on Notch signaling 
in VSMCs

While most of the research on unraveling the interplay 
between Notch signaling and mechanical stimuli has been 
focused on ECs, some efforts have also been made to 
reveal the effects of mechanical cues on Notch signaling 
in VSMCs. The results show a remarkable contrast with 
ECs, as mechanical stimuli seem to cause a decrease in the 
expression of Notch pathway proteins in VSMCs (Fig. 3a). 
Morrow et al. (2005) reported a reduction in the mRNA 
expression of Notch1, Notch3, Jagged1, and downstream tar-
gets in VSMCs subjected to cyclic strain. The downregula-
tion of Notch1 and target gene Hes5 was shown to depend on 
both the amplitude of cyclic strain and the duration of expo-
sure. Interestingly, this downregulation was accompanied by 
inhibited proliferation and enhanced apoptosis of VSMCs, 
suggesting a regulatory role for Notch signaling in strain-
induced VSMC behavior. Similar results were obtained more 
recently by Loerakker et al. (2018), who found a downregu-
lation in gene expression of Notch3, Jagged1, and down-
stream targets proportional to the magnitude of the applied 
cyclic strain. On the other hand, no effects were observed in 
the expression of Notch1, Notch2, and Dll1. See Table 3 for 
a more detailed overview.

5.2  Eph‑ephrin signaling

Eph receptors are part of a large family of receptor tyrosine 
kinases and transduce signals by binding to ephrin ligands. 
There are 14 Eph receptors and 8 ephrin ligands (Flanagan 
and Vanderhaeghen 1998), classified into subclasses A and 
B (Gale et al. 1996). In general, EphA and EphB receptors 
interact with ephrin-A and ephrin-B ligands, respectively 
(Gale et al. 1996), although there are some exceptions (Gale 
et al. 1996; Himanen et al. 2004). Similar to the Notch path-
way, cell–cell contact between adjacent cells is generally 
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required to activate the Eph-ephrin pathway (Davis et al. 
1994), as both ligand and receptor are membrane-bound. 
Longer-distance signaling has also been observed through 
cell protrusions (Cayuso et al. 2016) or exosomes (Gong 
et al. 2016). Eph-ephrin binding can result in signal trans-
duction into the receptor-expressing cell (forward signal-
ing), into the ligand-expressing cell (reverse signaling) or 
into both cells (bi-directional signaling) (Kania and Klein 
2016; Niethamer and Bush 2019). This range of signaling 
modes makes the Eph-ephrin pathway very versatile, and 
it is involved in various processes in almost all tissues and 
organs (Kania and Klein 2016; Niethamer and Bush 2019). 
Its main roles are associated with cell migration (Krull et al. 
1997; Arthur et al. 2011), and tissue segregation and bound-
ary formation (Xu et al. 1999; Cooke et al. 2005; Rohani 
et al. 2011, 2014). In the cardiovascular system, Eph-ephrin 
signaling is key for the establishment of boundaries between 
arterial and venous cells, termed arterial-venous specifica-
tion (Tallquist et al. 1999; Adams 2003; Aitsebaomo et al. 
2008; Michaelis 2014; Kania and Klein 2016). Additionally, 
the Eph-ephrin pathway has been connected to angiogenesis 
(Tallquist et al. 1999; Michaelis 2014), vascular morphogen-
esis (Adams et al. 2001), the regulation of vessel tone (Wu 
et al. 2012), and the migration, adhesion, and proliferation 
of ECs (Michaelis 2014).

The expression of Eph receptors and ephrin ligands in the 
vasculature is influenced by mechanical cues, and this mech-
anosensitivity mainly impacts arterial-venous specification. 
For example, Xue et al. (2017) found that culturing murine 
endothelial progenitor cells on stiff substrates enhanced the 
expression of ephrin-B2, associated with an arterial fate, 
and attenuated the expression of EphB4, associated with 
a venous fate, compared to soft substrates. This indicates 
that the stiffness of the micro-environment might modulate 
arterial-venous specification via Eph-ephrin signaling. They 
identified the Ras/Mek pathway as the main mechanotrans-
duction mechanism and regulator of ephrin-B2 and EphB4. 
In addition to stiffness, shear stress has also been revealed as 
a mechanoregulator of Eph and ephrin expression. To study 
the remodeling of a vein graft used as an arterial bypass, 
human saphenous veins were exposed to arterial levels of 
shear stress ex vivo, resulting in a decrease in EphB4 expres-
sion (Berard et al. 2013; Model et al. 2014). Interestingly, 
the expression of ephrin-B2 showed no significant differ-
ence upon application of arterial shear stress alone (Berard 
et al. 2013; Model et al. 2014) and only decreased when 
the pressure was also increased to arterial levels (Berard 
et al. 2013). These results indicate that arterial shear stress 
alone causes a loss of venous identity in these cells, without 
inducing a gain in arterial identity. It is important to note 
that, despite the clear effects of shear stress on Eph-ephrin 
regulation, it is not clear whether EphB4 and ephrin-B2 are 
direct mechanosensors to shear stress, or whether they are Ta
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downstream components of a larger mechanotransduction 
cascade (Model et al. 2014), which would be similar to the 
stiffness-dependent regulation of ephrin-B2 and EphB4 gov-
erned by Ras/Mek signaling (Xue et al. 2017).

5.3  TGF‑β superfamily signaling

In addition to juxtacrine signaling, cells can communicate 
over longer distances via paracrine signaling. Cells can pro-
duce a signal via the secretion of paracrine factors that can 
diffuse over relatively short distances to induce changes in 
nearby cells. Paracrine factors bind to their corresponding 
receptors of the signal receiving cell and initiate a series 
of reactions called signal transduction cascades within the 
receiving cell, changing its behavior (Gilbert 2010). Parac-
rine signaling pathways are important regulators of cardio-
vascular development and homeostasis. A well-established 
member of paracrine signaling, transforming growth factor-β 
(TGF-β) superfamily signaling, is known to be mechano-
sensitive in vessels and valves (Li et al. 2019; Souilhol et al. 
2020; Hiepen et al. 2020). In addition, it is involved in the 
regulation of cell behavior via crosstalking with other signal-
ing pathways (Tang et al. 2010; Martin-Garrido et al. 2013; 
Chen et al. 2016). In this section, we discuss the mechano-
sensitive regulation of TGF-β superfamily signaling and its 
implications for vascular and valvular G&R.

In mammals there are at least thirty ligands of the TGF-β 
superfamily, including three TGF-β ligands (TGF-β1, 
TGF-β2, TGF-β3) and bone morphogenic proteins (BMPs) 
(Schmierer and Hill 2007). The transmembrane receptors of 
the TGF-β superfamily are categorized as type I and type II 
receptors based on their structural differences. In the canoni-
cal pathway, each ligand of the TGF-β superfamily binds 
to a specific combination of type I and type II receptors to 
initiate signaling and activate the SMAD family of transcrip-
tion factors (Heldin et al. 1997). Once the ligands bind to the 
receptors, type II receptors phosphorylate the intracellular 
domain of type I receptors, which in turn phosphorylates 
receptor-regulated SMAD (R-SMAD) proteins. Phospho-
rylated R-SMAD proteins form a complex with SMAD4, 
and this complex translocates into the nucleus where it acts 
as a transcription factor to regulate the expression of target 
genes (Fig. 3b).

Both TGF-β and BMP ligands activate similar mecha-
nisms; however, the receptors that they bind to, and the asso-
ciated phosphorylated R-SMAD proteins, are different. Type 
I and type II receptors of TGF-β ligands are TβR-I/ALK5 
and TβR-II, whereas those of BMP ligands are BMPR-IA/
ALK3, BMPR-IB/ALK6, ActR-I/ALK2; BMPR-II, ActR-
II, ActR-IIB (Shi and Massagué 2003). In addition, the 
binding of TGF-β ligands to specific receptors causes the 
phosphorylation of SMAD2 and SMAD3, whereas SMAD1 
and SMAD5 are phosphorylated when BMP ligands bind. 

Nevertheless, despite these differences, both SMAD2/3 and 
SMAD1/5 generate a complex with SMAD4 (Heldin et al. 
1997).

TGF-β superfamily signaling is a highly conserved path-
way that controls a diverse set of cellular processes, such as 
cell growth, differentiation, cell fate determination, matrix 
production, and apoptosis. It has important roles in pat-
tern formation during development, tissue remodeling, and 
homeostasis (Heldin et al. 1997; Shi and Massagué 2003). 
In the cardiovascular system, TGF-β superfamily signaling 
is, for example, necessary for endothelial–mesenchymal 
transformation for cardiac cushion formation, angiogenesis, 
VSMC recruitment to the vessels, EC and VSMC prolifera-
tion and migration, VSMC differentiation, vascular stabiliza-
tion, and cardiovascular homeostasis (Dickson et al. 1995; 
Oshima et al. 1996; Bonyadi et al. 1997; Galvin et al. 2000; 
Nakajima et al. 2000; Carvalho et al. 2007; Ramsauer and 
D’Amore 2007; Chen et al. 2009). Dysregulation of TGF-β 
superfamily signaling is associated with the development of 
several cardiovascular anomalies, including atherosclerosis, 
aneurysms, cardiac fibrosis, and calcification of the valves 
(Jian et al. 2003; Loeys et al. 2006; Gomez et al. 2009; Van 
De Laar et al. 2011).

TGF-β and BMP signaling are influenced by mechanical 
cues (Fig. 3b). Laminar shear stress significantly increases 
TGF-β1 and TGF-β3 gene and protein expression in vas-
cular ECs compared to static conditions (Ohno et al. 1995; 
Cucina et al. 1998; Song et al. 2000; Negishi et al. 2001; 
Walshe et al. 2013). In addition, ECs release TGF-β1 and 
TGF-β3 upon the application of shear stress. The effect of 
the released TGF-β1 on VSMC behavior is not clear. For 
instance, it has been shown that TGF-β1 inhibits VSMC 
growth and migration by downregulating DNA synthesis 
and causing a cell-cycle arrest (Owens et al. 1988; Mori-
saki et al. 1991; Halloran et al. 1995; Cucina et al. 1998; 
Seay et al. 2005). On the other hand, an effect of TGF-β1 
on VSMC proliferation has also been reported (Stouffer and 
Owens 1994; Schulick et al. 1998; Suwanabol et al. 2012; 
Calvier et al. 2017). In addition, the TGF-β1 released by 
ECs under low-shear (pathological) stress conditions does 
not participate in the paracrine control of VSMCs (Qi et al. 
2011). Both SMAD-dependent and SMAD-independent 
TGF-β signaling pathways are responsible for regulating the 
VSMC behavior, and the exact mechanisms for controlling 
the cell behavior are still unclear.

Oscillatory shear stress upregulates BMP4, leading to 
proliferation and the secretion of inflammatory adhesion 
molecules in vascular ECs (Sorescu et al. 2003; Zhou et al. 
2013). In agreement with this, arterial ECs increase BMP4 
expression at sites of disturbed flow compared to sites of 
laminar flow (Chang et al. 2007). Other findings suggest 
a link between shear stress-dependent BMP activation and 
disease development. For example, BMP2 and BMP4 are 
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expressed in ECs of atherosclerotic plaques (Dhore et al. 
2001), while they are absent in healthy segments of human 
arteries (Zhou et al. 2012). VSMCs exposed to cyclic strain 
increase TGF-β1 mRNA and protein expression compared 
to static controls (O’Callaghan and Williams 2000; Mata-
Greenwood et al. 2003, 2005), which in turn upregulates 
ECM production in VSMCs via an autocrine mechanism 
(O’Callaghan and Williams 2000). Cyclic strain also 
increases the production of TGF-β by vascular ECs (Baker 
et al. 2008; Dong et al. 2019). Interestingly, strain-induced 
endothelial TGF-β signaling controls VSMC proliferation 
via an autocrine feedback mechanism (Baker et al. 2008). In 
particular, autocrine TGF-β signaling in ECs regulates per-
lecan secretion in response to strain, which in turn inhibits 
the proliferation of VSMCs.

In valvular tissues, low and oscillatory shear stress upreg-
ulates TGF-β1, BMP4, and inflammatory gene expression 
in VECs (Sucosky et al. 2009; Mahler et al. 2014). These 
results are in accordance with the higher levels of SMAD1 
and SMAD5, which are activated by BMP signaling, in 
human calcified aortic valves compared to healthy valves 
(Ankeny et al. 2011). In addition, cyclic strain increases 
BMP2, BMP4, and TGF-β1 expression in aortic VICs in 
a stretch magnitude-dependent manner, while the lowest 
expression has been detected at physiological strain levels 
(Ferdous et al. 2013). Pathological levels of strain are also 
associated with increased cellular apoptosis in VICs and 
valve calcification via BMP signaling (Balachandran et al. 
2010). Overall, mechanical stimuli are important mediators 
of paracrine TGF-β and BMP signaling in cardiovascular 
homeostasis and disease. Shear stress and strain upregulate 
TGF-β in vascular ECs to regulate VSMC growth, and low 
and oscillatory shear stress upregulate BMP expression in 
ECs and VECs, related to the occurrence of pathologies. 
Strain-dependent changes in TGF-β and BMP signaling also 
alter VSMC and VIC behavior. Thus, the interplay between 
mechanical cues and TGF-β superfamily signaling is an 
important regulator of vascular and valvular cell behavior, 
which could be a target for improving and controlling engi-
neered cardiovascular tissues.

5.4  Computational cell–cell signaling models

Computational models that describe juxtacrine and parac-
rine signaling generally aim at gaining a more complete and 
detailed understanding of the mechanisms of various signal-
ing pathways. In this section, we discuss models for Notch 
signaling, Eph-ephrin signaling, and TGF-β signaling, with 
a special emphasis on models that incorporate the impact of 
these signaling pathways on tissue G&R.

5.4.1  Notch signaling models

Numerous computational models for Notch signaling have 
been developed to understand and predict Notch-regulated 
cell fate decisions and distributions (Binshtok and Sprinzak 
2018). They generally employ a set of ordinary differential 
equations that describes the time evolution of Notch pathway 
components, such as receptors and ligands, by accounting 
for their production, degradation, and interactions. Given 
the key role of Notch in tissue patterning, most Notch sign-
aling models have focused on understanding the signaling 
dynamics underlying different patterns. Model complexity 
has increased over the years by considering an increasing 
number of biological phenomena.

Early models have shown that fine-grained patterns of 
cells with alternating phenotypes, also known as “salt-and-
pepper” patterns, can be obtained from both Notch lateral 
inhibition and cis-inhibition (Collier et al. 1996; Sprinzak 
et al. 2010, 2011). Recall from Sect. 5.1 that Notch lat-
eral inhibition is a mechanism in which cells instruct their 
immediate neighbors to adopt a different phenotype, which 
requires regulation of Notch components at the gene tran-
scriptional level, resulting from Notch trans-activation (Col-
lier et al. 1996). Cis-inhibition, on the other hand, simply 
arises from the mutual inhibition of ligands and receptors 
within the same cell (Sprinzak et al. 2010). When coupled 
with trans-interactions, cis-inhibition enriches and accel-
erates pattern formation (Sprinzak et al. 2010, 2011; For-
mosa-Jordan and Ibañes 2014) and facilitates sharp tissue 
boundary formation (Sprinzak et al. 2011). More intricate 
cell patterns, such as cell clusters, stripes, and labyrinths, 
can be modeled by considering long-range cell–cell signal-
ing occurring through filopodia (Chen et al. 2014; Vasilo-
poulos and Painter 2016; Hadjivasiliou et al. 2016). Other 
models have considered the influence of other cell proper-
ties such as cell division and migration (Hunter et al. 2016; 
Tóth et al. 2017) or cell geometry and contact area (Khait 
et al. 2016; Akanuma et al. 2016; Shaya et al. 2017; Guisoni 
et al. 2017) on Notch signaling. These studies revealed, for 
example, that Notch signaling can regulate the timing of cell 
differentiation and division to create more ordered pattern-
ing (Hunter et al. 2016) and that contact area and cell size 
can bias cell fate decisions (Shaya et al. 2017). In addition 
to patterning of static cells, lateral inhibition models can be 
adopted to study dynamic processes, such as angiogenesis 
(Bentley et al. 2008, 2009, 2014; Jakobsson et al. 2010; Vega 
et al. 2020) and the development of multicellular structures 
(Mulberry and Edelstein-Keshet 2020). Whereas these lat-
eral inhibition models mostly focus on interactions between 
Notch and Delta, a number of models have also included 
other ligands, such as Jagged (Petrovic et al. 2014; LeBon 
et al. 2014; Boareto et al. 2015a, 2015b). This inclusion of 
Jagged enables the simulation of lateral induction, in which 
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Notch signaling induces neighboring cells to adopt similar 
fates (Sect. 5.1).

Some Notch models are now considering mechanical 
stimuli as an influential feature of the cellular environment 
(Riahi et al. 2015; Loerakker et al. 2018; van Engeland 
et al. 2019; Ristori et al. 2020). Building on the model of 
Boareto et al. (2015b), for example, a recent model was used 
to investigate Notch signaling in the arterial wall by simulat-
ing Notch interactions between ECs and VSMCs (Loerak-
ker et al. 2018). The experimentally derived influence of 
strain on the synthesis of Notch components in VSMCs 
(Sect. 5.1), and the correlation between Notch activation and 
VSMC phenotypes, was incorporated into the Notch model. 
Importantly, with these additions, the model could predict 
the homeostatic thickness of several types of native human 
arteries. This suggests that Notch mechanosensitivity may 
be a key regulator in the establishment and maintenance of 
arterial homeostasis and highlights the important role of the 
interplay between mechanical stimuli and cell–cell signaling 
in tissue G&R. These examples illustrate that computational 
Notch models enable the prediction and understanding of 
some crucial aspects of tissue G&R, such as cell patterning, 
division, and phenotype, thereby emphasizing the potential 
of adopting such models in future tissue engineering studies 
to improve tissue organization.

5.4.2  Eph‑ephrin signaling models

Given the crucial role of Eph-ephrin signaling in boundary 
formation (Sect. 5.2), it is not surprising that computational 
models for Eph-ephrin signaling have mainly focused on this 
phenomenon (Wong et al. 2010; Aharon et al. 2014; Taylor 
et al. 2017). These models typically adopt agent-based for-
mulations and simulate cell segregation, clustering, and pat-
terning by accounting for differences in adhesive and repul-
sive properties between cell populations, which are assumed 
to be regulated by Eph-ephrin signaling (Wong et al. 2010; 
Aharon et al. 2014; Taylor et al. 2017).

For example, Wong et al. (2010) showed that differential 
adhesion between cell populations in the intestinal crypt is 
crucial for sharp boundary formation and the positioning 
and migration of cells. Eph-ephrin signaling in the model 
regulates cell adhesion properties phenomenologically, with 
interactions between Eph and ephrin decreasing the adhesion 
strength of cells. A similar approach was adopted by Aharon 
et al. (2014), who simulated a net force of attraction and 
repulsion between cells, where attraction is attenuated when 
Eph-ephrin interactions take place. The model predicts seg-
regation of initially intermingled cell populations resulting 
from differences in adhesive properties, in good agreement 
with experimental results (Aharon et al. 2014).

Together, these models show that the complexity of Eph-
ephrin signaling can be captured well by computational 

models, enabling accurate simulation of cell segregation and 
boundary formation. Nevertheless, computational models 
of Eph-ephrin still lack the consideration of mechanics as 
an influential factor on signaling dynamics. For example, 
changes in Eph and ephrin content have been shown to be 
regulated by mechanical stimuli (Sect. 5.2). As cell adhe-
sive properties are directly linked to Eph and ephrin content 
(Wong et al. 2010) and signal strength (Aharon et al. 2014) 
in the respective models, this suggests that mechanical cues 
may have an important effect on cell adhesion and conse-
quently on cell segregation and migration, which is worth 
investigating in future studies.

5.4.3  TGF‑β signaling models

Computational models of TGF-β signaling can be devel-
oped following different strategies. Some models operate 
on a single cell level and are concerned mainly with the 
molecular dynamics of the pathway itself (Zi et al. 2012; 
Nicklas and Saiz 2013; Vizan et al. 2013). A second type of 
model focuses on tissue-level consequences of TGF-β sign-
aling, which is more relevant in the context of tissue G&R 
and will therefore be the main topic of this subsection. These 
models assume that TGF-β regulates the production of tissue 
components, such as collagen (Aparício et al. 2016; Marino 
et al. 2017; Keshavarzian et al. 2018, 2019; Khosravi et al. 
2020; Irons and Humphrey 2020; Irons et al. 2021). Two 
main approaches are typically adopted by these models: i) 
a rule-based or logic-based approach (Keshavarzian et al. 
2018, 2019; Irons and Humphrey 2020; Irons et al. 2021) or 
ii) a system of differential equations to describe the kinetics 
of signaling molecules (Aparício et al. 2016; Marino et al. 
2017; Khosravi et al. 2020). In these models, TGF-β signal-
ing is often part of a more extensive network of signaling 
pathways and molecules, such as matrix metalloproteinase, 
platelet derived growth factors, and interleukins (Aparício 
et al. 2016; Marino et al. 2017; Keshavarzian et al. 2018, 
2019; Khosravi et al. 2020; Irons and Humphrey 2020; Irons 
et al. 2021). Similar to the computational G&R models dis-
cussed in Sect. 3.4, these models are typically validated only 
qualitatively by comparing the simulation results to experi-
mental findings and quantitative validation is a crucial next 
step in future studies (Aparício et al. 2016; Keshavarzian 
et al. 2018, 2019; Irons and Humphrey 2020; Irons et al. 
2021). Finally, it is important to note that these models typi-
cally assume that the characteristic timescale of cell–cell 
signaling is much smaller than that of tissue G&R (Marino 
et al. 2017; Irons and Humphrey 2020; Irons et al. 2021).

Using such as modeling approach, Marino et al. (2017) 
simulated pathophysiological arterial remodeling as a 
result of increased macrophage activity. This suggested 
a protective role of TGF-β signaling as it reduced MMP-
driven matrix degradation and promoted VSMC-driven 
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matrix deposition to approximately re-establish homeo-
static conditions (Marino et al. 2017). Hence, the model 
was able to capture the role of paracrine signaling in arte-
rial remodeling and describe its consequences for tissue 
structure and mechanics. However, this model did not 
account for the direct influence of tissue mechanics on 
the cell–cell signaling pathways. Mechanical stimuli were 
included in two recent TGF-β signaling models of G&R 
(Khosravi et al. 2020; Irons and Humphrey 2020), extend-
ing the modeling capabilities and increasing the range 
of scenarios that can be simulated. Importantly, Khos-
ravi et al. (2020) simulated the in vivo development of a 
neovessel from a polymeric scaffold by describing tissue 
production as a function of scaffold design and pharmaco-
logical interventions. The simulation results suggest that 
treatment with TGF-β inhibitors can improve the vessel’s 
patency and reduce the risk of compliance mismatch by 
suppressing the immune response and reducing the pro-
duction of stiff collagen (Khosravi et al. 2020).

While these models (Khosravi et al. 2020; Irons and 
Humphrey 2020) account for the effects of mechanical 
stimuli on cell–cell signaling, these stimuli are fully pre-
scribed. The models do not include feedback in the other 
direction, from the altered mechanical state of the tissue 
to cell–cell signaling. Such a feedback mechanism may be 
critical for capturing long-term tissue G&R and the effects 
of sustained chemical or mechanical perturbations. This was 
demonstrated by the study of Irons et al. (2021) in which 
their previous signaling model (Irons and Humphrey 2020) 
was coupled to a constrained mixture model for G&R (see 
Sect. 3.4). This allows continuous feedback between tissue-
level mechanics and cell-level signaling activity and enables 
the simulation of tissue remodeling in response to sustained 
changes in blood pressure or flow (Irons and Humphrey 
2020). Other models have also included feedback between 
tissue mechanics and cell–cell signaling (Aparício et al. 
2016; Keshavarzian et al. 2018, 2019), which similarly ena-
bled them to investigate long-term G&R, in these cases in 
the context of aneurysm development (Aparício et al. 2016) 
and in vitro tissue engineering (Keshavarzian et al. 2019). 
These models also elucidate the role of TGF-β in these pro-
cesses. In particular, TGF-β signaling was shown to stabilize 
aneurysm development by inducing fibroblasts to increase 
collagen production (Aparício et al. 2016) and a decrease 
in TGF-β signaling was demonstrated to significantly slow 
down the growth of a tissue-engineered vascular graft (Kes-
havarzian et al. 2019).

Together, these models have increased our understand-
ing of the role of TGF-β signaling in G&R of cardiovas-
cular tissues by enabling us to study TGF-β signaling in 
scenarios that have not been investigated experimentally 
and predict resulting cell and tissue behavior in previously 
unexplored conditions. They have also demonstrated the 

value of adopting computational approaches in CVTE, for 
example by simulating the role of cell–cell signaling in 
neotissue development to identify beneficial pharmacologi-
cal interventions (Khosravi et al. 2020). Furthermore, they 
have shown that incorporating the effects of mechanical 
stimuli on cell–cell signaling, such as TGF-β, can provide 
a key mechanistic explanation of mechano-regulated tissue 
G&R, especially when bi-directional feedback between tis-
sue mechanics and cell–cell signaling is included.

In conclusion, the studies discussed in this section demon-
strate that computational signaling models can increase our 
understanding of cell–cell signaling in the context of various 
aspects of tissue G&R, such as cell patterning, differentia-
tion, proliferation, migration, and matrix production. The 
incorporation of mechanical stimuli in some recent Notch 
models and various TGF-β models has emphasized the 
importance of mechanics in tissue G&R and increased our 
understanding of underlying cell–cell signaling mechanisms 
and how we can manipulate these to achieve more organized 
and functional engineered tissues. In addition to the models 
focusing on blood vessels discussed here, interest in mod-
eling the complex mechano-regulated signaling network of 
VICs is also growing (Howsmon and Sacks 2021). We there-
fore propose that more signaling models should include the 
effects of mechanical cues and that cell–cell signaling should 
be considered more in mechanical G&R models. This would 
begin to satisfy the need of a more mechanistic description 
of G&R, observed in Sect. 3.4. In addition, attention should 
be given to including bi-directional feedback mechanisms 
between mechanics at the tissue scale and signaling activ-
ity at the cell scale, which are currently absent from most 
models. This feedback could enable long-term processes to 
be simulated, as demonstrated by several models (Aparício 
et al. 2016; Keshavarzian et al. 2019; Irons et al. 2021). 
Together, these two additions would provide a more detailed 
description of signaling dynamics and increase the range of 
behavior that can be modeled. This is valuable for CVTE 
as it may enable the identification of techniques to control 
tissue G&R and the resulting outcome of engineered tissues.

6  Summary and future perspectives

Cardiovascular tissue engineering aims to regenerate func-
tional blood vessels and heart valves, either in vitro or in situ, 
to treat various cardiovascular diseases. Despite promising 
results, this approach has not yet found wide-spread clini-
cal application. The main limitations preventing this include 
the considerable variability between study outcomes, with 
some cases exhibiting suboptimal functionality, especially 
long-term, leading to various complications. In addition, the 
adaptive capabilities of TEBVs and TEHVs have not been 
clearly demonstrated yet. Our incomplete understanding 
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of the processes and mechanisms underlying the G&R of 
engineered cardiovascular tissues hinders the discovery of 
solutions to overcome these limitations. The wide array 
of available materials, approaches, and techniques further 
complicates the search for optimal outcomes. Importantly, 
while native blood vessels and heart valves display a highly 
organized and layered structure, crucial to accommodate the 
hemodynamic loads and ensure functionality, this level of 
organization is often not seen in engineered blood vessels 
and heart valves. The importance of tissue organization for 
native tissues, together with the suboptimal organization of 
engineered cardiovascular tissues, leads to the hypothesis 
that the current limitations of CVTE may be overcome by 
achieving a more native-like organization. To this aim, the 
G&R processes of cardiovascular engineered tissues need to 
be better understood and guided.

The main mediator of tissue G&R is cell behavior, which 
refers to processes such as proliferation, apoptosis, migra-
tion, differentiation, and ECM synthesis. It is well accepted 
that cell behavior is highly influenced by mechanical stimuli 
in cardiovascular tissues (chapter 4). However, the underly-
ing biological mechanisms of this mechano-regulation are 
still largely unclear. Cell–cell signaling pathways have also 
been shown to be sensitive to mechanical stimuli (Sects. 
5.1, 5.2 and 5.3), which makes them a promising candidate 
to form the link between mechanical stimuli and cell behav-
ior, and consequently provide a biological explanation for 
mechano-mediated G&R of cardiovascular tissues.

Collectively, the studies that we have discussed in chap-
ters 4 and 5 reveal that cell–cell signaling and cell behavior 
are highly context-specific and often remarkably sensitive to 
changes in the type, magnitude, and duration of mechanical 
stimuli. This shows that cell behavior is very versatile and 
highly tuned to the cells’ local environment and mechanical 
stimuli to which they are exposed. It also shows that cells 
are part of sophisticated regulatory systems, with sensitive 
mechanical feedback loops, which play a vital role in tissue 
G&R and, particularly, in establishing and maintaining tis-
sue homeostasis. To investigate and understand this com-
plex network with variable cell responses in future tissue 
engineering studies and computational models, a systems 
biology approach and context-specific experimental data 
are required. In addition, models should be sufficiently flex-
ible to describe G&R for a wide range of environmental 
conditions.

As reviewed in chapter 3, the limitations of current tis-
sue-engineered constructs can probably be overcome, or at 
least reduced, by improving tissue G&R to establish a more 
native-like tissue organization. Given the strong effects of 
mechanical stimuli on cell–cell signaling pathways (Sects. 
5.1, 5.2, and 5.3) and cellular behavior (chapter 4), we pro-
pose that mechano-regulation of cell–cell signaling is an 
important factor to consider in future tissue engineering 

studies. In particular, by investigating mechano-regulated 
cell–cell signaling, a more detailed understanding of the 
mechanisms underlying mechano-mediated G&R of blood 
vessels and heart valves can be obtained. This knowledge 
can reveal novel methods to control tissue G&R via direct 
or indirect interventions in the signaling pathways (Fig. 4b). 
Such an increased level of control over tissue G&R in con-
cert with the development of predictive computational mod-
els of cell-mediated G&R would enable the identification 
of promising changes to tissue engineering protocols that 
can improve tissue organization and associated function, and 
subsequently accelerate clinical translation.

Deliberate manipulations of signaling pathways have 
already been recognized as an attractive strategy for tissue 
engineering (Carlson 2007; Zohorsky and Mequanint 2020). 
For example, scaffolds could be biologically activated with 
signaling molecules or growth factors to artificially induce 
or inhibit cell–cell signaling interactions in infiltrating cells 
and thereby control cell behavior to mediate tissue G&R. It 
has been shown that various signaling molecules, such as 
TGF-β and Notch pathway ligands, can be immobilized onto 
biomaterial surfaces (Mann et al. 2001; Carlson 2007; Putti 
et al. 2019a, 2019b; Zohorsky and Mequanint 2020). This 

Mechanical 
stimuli

Cell-cell signaling

Tissue growth 
and remodeling

Cell proliferation

ECM synthesis

Tissue growth 
and remodeling

Manipulate 
mechanical 

stimuli

Manipulate 
cell-cell

signaling

Control
tissue growth 

and remodeling

Improve tissue
organization and

functionality

(a)

(b)

Fig. 4  a Visualization of the interplay and feedback between mechan-
ical stimuli, cell–cell signaling, and tissue G&R in a blood vessel. b 
This interplay forms the basis of a proposed strategy to improve the 
outcome of future CVTE studies



39Mechano-regulated cell–cell signaling in the context of cardiovascular tissue engineering  

1 3

technique has already been adopted by several studies to 
promote the differentiation of mesenchymal stem cells (Wen 
et al. 2014; Dishowitz et al. 2014) and epithelial stem cells 
(Beckstead et al. 2006) using immobilized Jagged ligands. 
This Jagged-induced differentiation was critical for contin-
ued tissue development, thereby demonstrating the poten-
tial of signaling manipulations for future tissue engineering 
approaches.

Alternatively, the mechanosensitivity of cell–cell sign-
aling pathways could be utilized to indirectly control 
signaling activity, and consequent tissue G&R, by influ-
encing the mechanical stimuli that cells are subjected to 
(Fig. 4b). This method is particularly suitable for in vitro 
tissue engineering, due to the high level of control over 
mechanical conditions achieved with various techniques 
(Huang and Niklason 2014). In the context of in situ tissue 
engineering, variations in scaffold geometry and material 
properties may be adopted to alter the hemodynamic loads 
presented to the cells in vivo (Loerakker et al. 2013; Wu 
et al. 2020; Tarrahi et al. 2020). For clinical translation, 
this indirect method may be preferred over direct manipu-
lation from a regulatory perspective, as it does not require 
any active biological materials. Nevertheless, before such 
methods can successfully be applied in CVTE, some chal-
lenges might need to be addressed first. So far, many stud-
ies have investigated isolated signaling pathways or a lim-
ited selection of signaling pathways. To account for a more 
comprehensive influence of cell–cell signaling, it may be 
necessary to understand complex mechano-regulated sign-
aling networks and crosstalk between different pathways. 
This requires increased research efforts in this area, for 
example to uncover how mechanical stimuli affect multi-
ple pathways simultaneously by regulating certain shared 
downstream processes.

The consideration of mechano-regulated cell–cell sign-
aling pathways in future CVTE studies will increase the 
already large number of variables in CVTE, which means 
that relying on experimental trial-and-error approaches 
alone quickly becomes impractical. There is, therefore, a 
clear need for a more systematic approach that enables effi-
cient optimization of scaffold designs and CVTE protocols 
to identify the most promising combinations of parameters. 
We stress that computational modeling should be adopted 
in CVTE to complement the existing range of experimental 
strategies. Computational models have already been devel-
oped to enable the optimization of scaffold properties for 
tissue engineering of both blood vessels (Miller et al. 2015; 
Szafron et al. 2019) and heart valves (Loerakker et al. 2013; 
Emmert et al. 2018). Moreover, computational models have 
been successfully adopted to predict tissue G&R (Sect. 3.4) 
and unravel some of the complexities of cell–cell signaling 
pathways (Sect. 5.4). Combining these two types of models 
represents a coupling between biomechanics and systems 

biology and is an attractive opportunity for future studies, 
as it might enable the transition from a largely phenomeno-
logical description of tissue G&R to a more mechanistic 
one, motivated by cell–cell signaling pathways (Fig. 4a). The 
resulting framework would thus be able to both predict tis-
sue G&R and describe some of the underlying mechanisms, 
thereby enabling the simulation of the signaling manipula-
tions discussed in the previous paragraphs (Fig. 4b). This 
would at least partly answer the need for more biologically 
motivated G&R models that has previously been recognized 
(Miller et al. 2015; Szafron et al. 2018; Irons and Humphrey 
2020; Irons et al. 2021). A compelling recent example is the 
study by Irons et al. (2021), in which a logic-based signal-
ing model was coupled to a constrained mixture model for 
G&R which enables the modeling of bi-directional feed-
back between cell–cell signaling and tissue mechanics to 
improve our understanding of the role of signaling in G&R. 
The current model has been applied to simulate tissue G&R 
in response to hypertension, but similar models could in the 
future be used to study targeted manipulations of signaling 
pathways in CVTE.

6.1  Remaining challenges

To inform these biologically motivated computational mod-
els, there is a clear need for more quantitative experimen-
tal data on the interplay between mechanical stimuli and 
cell–cell signaling, and the role of this interplay in tissue 
G&R. These data would also be highly valuable to quan-
titatively validate many of the models which are currently 
only validated qualitatively. In addition, there is a lack of 
tools to study signaling in real time in complex physiological 
environments, limiting the availability of data. For example, 
many of the in vitro signaling studies that are discussed in 
Sects. 5.1, 5.2, and 5.3 have used relatively simple mechani-
cal conditions and only considered a limited number of time 
points. There is therefore a need for more real-time experi-
mental data on signaling between cells that are subjected to 
more complex mechanical stimuli, such as anisotropic stress 
and strain. These conditions have been shown to have an 
important effect on cell behavior (chapter 4) and are more 
representative of the in vivo conditions of cells.

Including such complex biological behavior in com-
putational models will inherently increase the number of 
model parameters. This can result in a higher uncertainty 
and difficulties regarding parameter estimation and model 
validation, especially considering the limited availability 
of experimental data. It therefore calls for a careful bal-
ance between complexity and simplicity in computational 
models, which should be tailored to specific research ques-
tions. Moreover, more complex models are associated with 
higher computational costs, especially when more complex 
geometries such as heart valves are modeled. This may 
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require the development of more efficient computational 
techniques. Examples of such techniques implemented in 
previous studies include an analytical approximation of a 
stress fiber remodeling law (Ristori et al. 2016) and homog-
enized (Cyron et al. 2016) or time-independent (Latorre and 
Humphrey 2018) versions of the constrained mixture model 
for tissue G&R.

Challenges that remain in the field of cardiovascular 
tissue engineering and limit clinical translation include a 
large variability in outcome, suboptimal tissue function and 
organization, and the question whether engineered tissues 
can grow and adapt to changing demands, as discussed in 
Sect. 3.3. Moreover, some fundamental questions, for exam-
ple regarding how cells repopulate an implanted scaffold, 
remain to be answered. An additional factor that plays a 
vital role in tissue regeneration is inflammation, which has 
been shown to be related to several cell–cell signaling path-
ways in the cardiovascular system, such as Notch and TGF-β 
signaling (Bartekova et al. 2018; Li and Kong 2020). This 
suggests that it may be important to consider the influence of 
cell–cell signaling on the inflammatory processes in future 
tissue engineering studies.

6.2  Conclusion

In conclusion, mechano-regulated cell–cell signaling 
pathways may be a crucial link to explain the interplay 
between mechanical cues, cell behavior, and tissue G&R. 
An increased understanding of these cell–cell signaling 
pathways may be leveraged to improve the tissue organi-
zation and associated function of tissue-engineered blood 
vessels and heart valves, for example by activating scaffold 
surfaces with signaling molecules to induce or inhibit signal-
ing interactions. We therefore propose that mechano-regu-
lated cell–cell signaling is an important factor to consider in 
future CVTE studies. Computational models incorporating 
both tissue G&R and mechano-regulated cell–cell signaling 
pathways can provide an efficient tool to understand and pre-
dict how the interplay between mechanical cues and cell–cell 
signaling gives rise to certain tissue organizations. This will 
allow us to identify promising sets of scaffold parameters 
and tissue engineering protocols to reduce the vast experi-
mental search space for obtaining a functional organization 
of engineered cardiovascular tissues.
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