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Abstract
In this paper an existing in vivo parameter identification method for arteries is extended to account for smooth muscle activity. 
Within this method a continuum-mechanical model, whose parameters relate to the mechanical properties of the artery, is 
fit to clinical data by solving a minimization problem. Including smooth muscle activity in the model increases the number 
of parameters. This may lead to overparameterization, implying that several parameter combinations solve the minimization 
problem equally well and it is therefore not possible to determine which set of parameters represents the mechanical proper-
ties of the artery best. To prevent overparameterization the model is fit to clinical data measured at different levels of smooth 
muscle activity. Three conditions are considered for the human abdominal aorta: basal during rest; constricted, induced by 
lower-body negative pressure; and dilated, induced by physical exercise. By fitting the model to these three arterial conditions 
simultaneously a unique set of model parameters is identified and the model prediction agrees well with the clinical data.
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1 Introduction

Cardiovascular diseases are the leading cause of death in 
the western world (Mozaffarian et al. 2016; Wilkins et al. 
2017). People at risk of developing cardiovascular diseases 
are generally found by evaluating a risk score which com-
prises several biomarkers such as age, sex, blood pressure, 
etc. (Vlachopoulos et al. 2015; Curry et al. 2018). Risk 
scores are, however, not flawless, and there is a constant 
search for better ways to assess the risk for cardiovascular 
disease development. One risk marker, which has attracted 
a lot of attention in recent years, is arterial stiffness (Laurent 
et al. 2012; Van Sloten et al. 2014).

Arterial stiffness reflects the mechanical properties of 
the arterial wall as a whole, and its constituents and their 
arrangement in particular. From a mechanical point of 
view, elastin, collagen and smooth muscle cells are the most 

important wall constituents (Holzapfel et al. 2000). While 
elastin and collagen build up an extracellular network pro-
viding passive structural integrity to the arterial wall, the 
embedded smooth muscle cells modulate arterial stiffness 
through their ability to actively contract or relax in the short 
term and by synthesis of new extracellular matrix proteins in 
the long term (Rhodin 2014). The ability to actively change 
arterial stiffness within seconds is not only essential for vital 
blood flow circulation but also helps to counteract negative 
effects of cardiovascular diseases and their development. 
During early hypertension an increased vasoactivity stiffens 
the arterial wall which returns the transmural stress gradient 
back to its normotensive value (Fridez et al. 2002; Sehgel 
et al. 2013; Humphrey and Wilson 2003). With sustained 
hypertension the arterial wall adapts slowly by growth and 
remodeling and the vasoactivity returns back to baseline 
values (Matsumoto and Hayashi 1996; Fridez et al. 2002).

Several measures have been introduced to assess arterial 
stiffness in the clinic. The most prominent one is to deter-
mine the pulse wave velocity between the carotid and the 
femoral artery (Bramwell and Hill 1922). This noninvasive 
method is simple to use but averages the arterial stiffness 
over the aorta and assumes a constant stiffness despite 
the distinctive nonlinear stiffening behavior of the arterial 
wall (Roach and Burton 1957). Other popular measures 
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such as the pressure-strain elastic modulus Ep (Peterson 
et al. 1960) and the stiffness index β (Kawasaki et al. 1987) 
suffer similar limitations. Furthermore, all of these arte-
rial stiffness measures are blood-pressure dependent (Zieff 
et al. 2019) and do not distinguish between arterial wall 
constituents.

To address these shortcomings several research groups 
have proposed methods that use continuum-based mechani-
cal models whose parameters are related to the stiffness of 
the arterial wall constituents (Masson et al. 2008; Spronck 
et al. 2015; Smoljkić et al. 2015; Wittek et al. 2016; Heu-
sinkveld et al. 2018; Gade et al. 2019; Schulze-Bauer and 
Holzapfel 2003). The model parameters are identified by 
fitting the model’s response to clinical measurements which 
typically comprise time-resolved pressure-radius pairs and 
information about the cross-sectional wall area. Information 
about the in situ axial prestretch, axial force, perivascular 
support, the stress-free reference configuration, and the level 
of smooth muscle activity is missing, however. This limited 
amount of in vivo obtainable data restricts the number of 
model parameters which can be uniquely identified (Stål-
hand and Klarbring 2005; Reesink and Spronck 2019). Intro-
ducing too many model parameters leads to overparameteri-
zation, meaning that a (nonlinear) parameter combination 
can be continuously changed without affecting the objective 
function value. This makes it impossible to determine which 
set of parameters represents the mechanical properties of 
the artery. To prevent overparameterization the complexity 
of the continuum-mechanical models is reduced and a com-
mon simplification concerning smooth muscle activity is to 
either neglect it (Smoljkić et al. 2015; Wittek et al. 2016; 
Heusinkveld et al. 2018; Gade et al. 2019; Schulze-Bauer 
and Holzapfel 2003) or to account for it but fix some model 
parameters to values reported in the literature (Spronck et al. 
2015). An exception is the method proposed in Masson et al. 
(2008). Their model requires 14 parameters to be identified, 
however, making it very questionable whether a unique solu-
tion has been obtained (Spronck et al. 2015).

It was hypothesized in Reesink and Spronck (2019) that 
smooth muscle activity can be included without causing 
overparameterization if the arterial model is fit to multi-
ple in vivo data sets collected at different levels of vascular 
tone. To the best of the author’s knowledge this idea has not 
been implemented yet. In this paper we therefore extend 
the mechanical model in Gade et al. (2019) to account for 
smooth muscle activity and fit the model to in vivo data sets 
collected at rest and while the artery was in a constricted and 
a dilated condition.

The paper is structured as follows. First the mechanical 
model from Gade et al. (2019) is described and extended 
to account for smooth muscle activity. Afterward the 
fitting procedure by means of solving a multi-objective 
minimization problem is discussed. The material used in 

this study is introduced next, followed by the results sec-
tion. The paper is concluded with a discussion and a final 
conclusion.

2  Mechanical model for arteries

The mechanical model in Gade et  al. (2019) treats an 
artery as a homogeneous, incompressible, residual stress-
free, thin-walled cylinder. Ex vivo in the absence of exter-
nal loads, the artery has an inner radius Ri , wall thickness 
H, and a length L. This state is taken to be the stress-free 
reference configuration. In situ the artery is stretched to 
a length l, which is taken to be constant throughout the 
cardiac cycle (Van Loon et al. 1977; Weizsäcker et al. 
1983), and the inner radius and wall thickness are denoted 
ri and h, respectively. In this deformed configuration, the 
artery is exposed to the blood pressure P and an axial 
force, where the latter cannot be measured in vivo. A con-
sequence of incompressibility in combination with the 
constant length l is that the deformed cross-sectional area 
A=2�rih + �h2 is constant.

In the deformed configuration two sets of stresses are cal-
culated for an artery: equilibrium stresses depending on the 
in vivo data and the unknown axial force; and constitutively 
determined stresses depending also on the model parameters 
to be identified.

2.1  Equilibrium stresses

By stating global equilibrium in the deformed configuration, 
the arterial stress state reduces to a principal stress state with 
components in the circumferential, axial and radial direction, 
i.e., Laplace laws. The circumferential and axial stress are

and

respectively. The radial stress is assumed to be zero due to 
the thin-walled assumption, i.e., �Lp

rr =0 . The axial force 
F̄red in Eq. (2), also referred to as the reduced axial force 
(Holzapfel et al. 2000), is reported to be approximately con-
stant at the in situ axial prestretch in the physiological pres-
sure range (Van Loon et al. 1977; Weizsäcker et al. 1983). 
The magnitude of F̄red is unknown and was estimated in 
Gade et al. (2019) since it could not be uniquely identified 
from a single in vivo data set.

(1)�
Lp

��
=

Pri

h

(2)𝜎Lp
zz

=
𝜋r2

i
P + F̄red

𝜋h
(
2ri + h

) ,
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2.2  Constitutively determined stresses

In order to determine the arterial stress state constitutively 
the kinematic relationship is needed. Using the cylindri-
cal base vectors �� , �z , and �r the deformation gradient F 
describing the deformation out of the reference configuration 
into the deformed configuration becomes

where �� , �z , and �r are the three principal stretches. The 
three stretches must satisfy the constraint

to comply with the assumed incompressible behavior and, 
therefore, only two stretches can be independently deter-
mined. The circumferential stretch is defined in the mid-wall 
as

where the axial stretch is taken as an independent variable. 
The radial stretch is implicitly given by Eq. (4) (Gade et al. 
2019).

The behavior of the arterial wall is additively split into 
two parts: a passive and an active part (Hill 1938). The pas-
sive response of the arterial wall is derived from a strain 
energy density function Ψ describing the (passive) interac-
tion of fibers and cells. The active part �act is associated 
with the (active) contraction of smooth muscle cells. The 
constitutive equation in terms of the Cauchy stress tensor 
� thus reads

where the superscript mod denotes model, p is a Lagrange 
multiplier arising from the incompressibility constraint 
in Eq. (4), � denotes the second-order identity tensor, and 
�=�T� is the right Cauchy-Green stretch tensor.

The Lagrange multiplier p can be calculated from the 
radial component in Eq. (6) by taking �rr=0 , cf. Section 2.1. 
The specific forms of Ψ and �act are introduced in the fol-
lowing sections.

2.2.1  Passive arterial response

The passive behavior of the arterial wall is modeled using 
the HGO strain energy density function Ψ (Holzapfel et al. 
2000). This strain energy is additively decomposed into an 
isotropic part Ψiso and an anisotropic part Ψaniso . The iso-
tropic part is associated with noncollagenous matrix material 

(3)� = 𝜆𝜃�𝜃 ⊗ �𝜃 + 𝜆z�z ⊗ �z + 𝜆r�r ⊗ �r,

(4)det� = ���z�r = 1

(5)�� =
2ri + h

Ri +

√
R2
i
+ �zh

(
2ri + h

) ,

(6)�
mod = −p� + 2�

�Ψ

��
�
T + �

act,

such as elastin and is taken as the classical neo-Hookean 
model (Treloar 1943)

where c>0 and I1= tr � . The anisotropic part is associated 
with the embedded collagen fibers which are assumed to 
belong to one of two mechanically equivalent fiber families 
oriented along the referential unit vectors � and � . Both 
fiber families are assumed to be symmetrically arranged 
around the circumferential direction with the pitch angle 
±� in the reference configuration, so

The strain energy of the fiber families is given by

where

and k1, k2>0 . The pseudo-invariants I4 and I6 are equal to the 
squared stretch along each fiber family, and using Eqs. (3), 
(8), and (10), it holds that

The collagen fibers are assumed to only support tensile 
loads and buckle in compression (Holzapfel et al. 2000). The  
anisotropic contribution Ψaniso is, therefore, omitted from 
Ψ if I4, I6<1.

2.2.2  Active arterial response

The ability of an artery to actively constrict and dilate the 
lumen by changing the contracted state of the smooth mus-
cle cells inside the wall gives rise to an active stress �act . 
Smooth muscle cells are reported to be primarily oriented in 
the circumferential direction (Dobrin 2011; Rhodin 2014), 
and following Rachev and Hayashi (1999) we take

where S is the generated isometric stress (per unit reference 
area) related to the level of smooth muscle activation, and 
f is a function accounting for the parabolic length–tension 
relationship of smooth muscle (Price et al. 1981; Cox 1978; 
Dobrin 1973) which satisfies max f =1 . Smooth muscle cells 
are reported to contract slowly, on the order of ten seconds 
or more until peak tension, but are able to maintain this state 
for long periods of time (Somlyo and Somlyo 1992; Dobrin 
2011). We, therefore, consider vascular smooth muscle cells 
to contract at mean arterial blood pressure (MAP) and keep 

(7)Ψiso = c
(
I1 − 3

)
,

(8)� = cos � �� + sin � �z, � = cos � �� − sin � �z.

(9)Ψaniso =
k1

2 k2

(
ek2 (I4−1)

2

+ ek2 (I6−1)
2

− 2
)
,

(10)I4=� ⋅ ��, I6=� ⋅ ��,

(11)I4 = I6 = �2
�
cos2� + �2

z
sin2�.

(12)�
act = S𝜆𝜃f �𝜃 ⊗ �𝜃 ,
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this state until the mechanical and/or chemical environment 
changes. Accordingly we evaluate the length–tension rela-
tionship at MAP and take

where �opt
�

=1.4 is the optimal stretch for maximum force 
generation (Rachev and Hayashi 1999) and �=0.45 con-
trols the width of the parabola-like exponential function. The 
value for � is chosen such that the length–tension relation-
ship in Eq. (13) resembles the parabola suggested in Rachev 
and Hayashi (1999) well in the relevant interval given by 
0.8≤��≤1.4.

3  Parameter identification method

Let a pressure-radius data set consisting of blood-pressure 
and inner-radius pairs 

(
Pqj, ri,qj

)
 at j=1,… , n time points for 

arterial condition q=1 (basal), 2 (constricted), 3 (dilated) be 
given together with information about the cross-sectional area 
A. The equilibrium and constitutively determined stresses in 
Sect. 2 are then defined down to, respectively, the reduced 
axial force F̄red and the model parameters: Ri , �z , c, k1 , k2 , � , 
and Sq . The last parameter Sq is the isometric stress for arterial 
condition q. Note that the model parameters associated with 
the deformation 

(
Ri, �z

)
 and the passive material 

(
c, k1, k2, �

)
 

do not depend on the arterial condition.
All model parameters are identified by minimizing a nor-

malized sum of the weighted least-squares differences between 
the equilibrium and constitutively determined stresses for each 
arterial condition. The weighted least-squares difference for 
arterial condition q is defined as

where �=
(
Ri, �z, c, k1, k2, �

)
 . The weighting factors for the 

three conditions are w1=0.5 and w2=w3=1.0 . Hence, the 
axial part of the individual objective �q is only considered 
for the basal condition justifying the use of a single reduced 
axial force instead of one for each arterial condition. Fur-
thermore, the closer a weighting factor is to zero, the more 
the axial part will dominate the individual objective and 
as a consequence the deviation of the constitutive model’s 
response from a constant reduced axial force with magnitude 
F̄red is penalized, see Discussion. By choosing w1=0.5 , an 
approximately constant reduced axial force is obtained for 

(13)f = f
�
�MAP
�

�
= exp

⎡
⎢⎢⎣
−

�
�
opt

�
− �MAP

�

�2
2�2

⎤
⎥⎥⎦
,

(14)

𝜀q(𝜅, F̄red, Sq) =

n∑
j=1

{
wq

[
𝜎mod
𝜃𝜃

(𝜅, Sq, ri,qj)

− 𝜎
Lp

𝜃𝜃
(ri,qj,Pqj)

]2
+ (1 − wq)[

𝜎mod
zz

(𝜅, ri,qj) − 𝜎Lp
zz
(ri,qj,Pqj, F̄red)

]2}

the basal condition while still achieving a high agreement in 
the circumferential direction.

The parameter identification for a given subject is done 
for the three arterial conditions simultaneously, making it 
a multi-objective minimization problem with the individ-
ual objectives �q . One way to handle it numerically is to 
minimize a weighted sum of the individual objectives, thus 
reducing the problem to a single-objective minimization 
problem. This approach is greatly affected by the magni-
tude of the individual objectives relative to each other and 
some form of normalization is typically needed. Without 
normalization the arterial condition with the highest objec-
tive function value dominates the parameter identification 
and the resulting best-fit parameters would only represent 
this condition well. Here we adopt a normalization scheme 
based on so-called Utopia and Nadir points to provide equal 
weight to each arterial condition (Mausser 2006).

The normalized sum of the individual objectives is

where S=
(
S1, S2, S3

)
 and �Utopiaq  and �Nadir

q
 are the Utopia and 

Nadir point for condition q, respectively.
The Utopia point is the lowest least-squares difference 

if only arterial condition q is considered, i.e., the objective 
function value when minimizing Eq. (14). The correspond-
ing minimization problem is, however, overparameterized, 
and no unique solution for the parameter vector 

(
�, F̄red, Sq

)
 

is obtained. Instead, the closely related (Utopia) minimiza-
tion problem is solved: 

where the superscripts min and max denote lower and 
upper bound, respectively, and �̂�q is given by Eq. (14) with 
wq set to 0.99. Hence, a completely passive arterial behavior, 
i.e., Sq=0 , is assumed and a reduced axial force of 1 N in 
combination with a weighting factor of 0.99 is used for every 
condition to stabilize the minimization. The unique param-
eter vector �∗

q
 that minimizes (�q) is then used to calculate 

the Utopia point, i.e., �Utopiaq =�q(�
∗
q
, 1, 0).

The Nadir point of condition q is the least-squares dif-
ference when the parameter vector of another Utopia point 
is used to evaluate �q . Hence, the Nadir point of condition 
q=1 (basal) is

The Utopia and Nadir points are best-case and worst-case 
values, and it is easy to see that in Eq. (15), each individual 
objective is bounded by

(15)𝜀
(
�, F̄red, S

)
=

3∑
q=1

𝜀q
(
�, F̄red, Sq

)
− 𝜀

Utopia
q

𝜀Nadir
q

− 𝜀
Utopia
q

,

(16)�Nadir
1

= max
[
�1
(
�
∗
2
, 1, 0

)
, �1

(
�
∗
3
, 1, 0

)]
.
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providing equal weight to each pressure-radius loop. Note 
that the lower and upper bounds in Eq. (17) are only approx-
imate due to the Utopia and Nadir point calculation, see 
Discussion.

The complete parameter identification problem reads: 

 The fitting ranges for the model parameters are motivated 
by experimental observations but adjusted so that they do 
not become active when solving (ℙ)) , see Table 1. The lower 
limit for �z is set to 1.0 to prevent buckling because this phe-
nomenon is not considered in the mechanical model.

(17)0 ≲
𝜀q
(
�, F̄red, Sq

)
− 𝜀

Utopia
q

𝜀Nadir
q

− 𝜀
Utopia
q

≲ 1,

3.1  Implementation

The parameter identification problem ( ℙ ) and the Utopia 
problems ( �q ) are nonlinear and nonconvex. Such problems 
generally possess local solutions which are not global solu-
tions (Nocedal and Wright 1999). We, therefore, adopt the 
heuristic method used in Gade et al. (2019): (i) solve ( ℙ ) 
and ( �q ) using 100 starting points generated using Latin 
Hypercube sampling and take the solution with the lowest 
objective function value as the global solution; (ii) use the 
analytical gradient and Hessian of Eq. (15); (iii) and make 
( ℙ ) and ( �q ) more balanced by replacing c, k1 , k2 and � by 
scaled counterparts according to

The minimization problems are solved in MATLAB R2019b 
(The MathWorks Inc., Natick, MA, USA). A MultiStart class 
is defined to solve the minimization problems from the gen-
erated starting points using the interior-point optimization 
algorithm of the function fmincon. The analytical gradient 
and Hessian of Eq. (15) are determined with MApLe 2015.1 
(Maplesoft, Waterloo, Ontario) and supplied to fmincon.

A minimal working example of the parameter identifica-
tion method is found in the supplementary material.

4  Material

The material for this study is taken from Sonesson et al. 
(1997) and comes from the abdominal aorta of two healthy, 
non-smoking Caucasian females. Subjects I and II are 24 and 
26 years of age, respectively. The blood pressure and inner 
radius were measured simultaneously in the supine posi-
tion using a catheter (invasive) and an echo-tracking system 
(noninvasive), respectively. Figure 1 shows the measurement 

(18)c = ec̃, k1 = ek̃1 , k2 = ek̃2 , 𝛽 = arcsin

√
𝛽.

Table 1  Fitting ranges for the parameter identification (Horný et  al. 
2011, 2014; Ferruzzi et  al. 2011; Gade et  al. 2019; Rachev and 
Hayashi 1999; Schulze-Bauer et al. 2003)

Parameter Unit Min Max

R
i

[mm] 1 20
�z [−] 1 1.5
c [kPa] 0.0001 1000
k
1

[kPa] 0.0001 1000
k
2

[−] 0.0001 1000
� [deg] 0 90
F̄
red

[N] 0 1.5
S [kPa] 0 150

Fig. 1  Schematic drawing of the experimental setup for simultaneous measurement of blood pressure and inner radius in the abdominal aorta 
during rest, lower-body negative pressure, and physical exercise
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setup, and for more details about the data acquisition, the 
reader is referred to the original paper and Sonesson et al. 
(1994). Besides performing the measurements at rest, Son-
esson et al. (1997) collected pressure and radius data while 
the aorta was in a constricted and a dilated condition1. The 
constricted condition was obtained by placing the subject’s 
lower body in a hermetically sealed chamber and reducing 
the pressure inside to near vacuum. This lower-body nega-
tive pressure technique causes pooling of blood in the lower 
extremities resulting in vasoconstriction (Vukasovic et al. 
1990; White et al. 1996). The dilated condition was achieved 
by physical exercise (Green et al. 2017; MacDougall 1994) 
by means of asking the subject to clench their fists four times. 
The study was approved by the Ethics Committee at Lund 
University, Sweden, and all subjects gave informed consent.

The raw measurements are reduced to two to seven 
pressure-radius loops once the abdominal aorta has reached 
a stable state in the respective condition. From this data 
pressure-radius loops consisting of n=100 equidistant data 
points are created for each subject and aortic condition fol-
lowing Stålhand (2009). The pressure-radius loops for sub-
jects I and II are presented in Figs. 2  and 3, respectively.

For each pressure-radius loop, MAP is calculated accord-
ing to Tortora and Derrickson (2012)

where Pdia and Psys are the diastolic and systolic blood pres-
sure, respectively.

Neither the deformed wall thickness nor the deformed 
wall cross-sectional area were recorded in Sonesson et al. 
(1997). The deformed wall cross-sectional area is, therefore, 
estimated as A=20.52+0.58 ⋅ age , where A is in mm2 and 
age is in years (Åstrand et al. 2011). The equation has been 
determined by evaluating the age-dependent increase of the 
intima-media area in the female abdominal aorta provided 
in Åstrand et al. (2005) and the assumption that the adventi-
tia comprises one-third of the arterial wall (Holzapfel et al. 
2007). The cross-sectional areas are accordingly estimated to 
34.44 mm2 and 35.60 mm2 for subjects I and II, respectively.

5  Results

For both subjects I and II, three pressure-radius loops meas-
ured at different levels of vascular tone are available, see 
Sect. 4. Hence, three levels of smooth muscle activation are 
included in the parameter identification and ten parameters 
are identified for each subject. Solving the minimization 
problems took less than 2 min on a hexa-core 2.9 GHz CPU 

(19)PMAP = Pdia +
1

3

(
Psys − Pdia

)
,

Table 2  Identified parameters for subjects I and II

Parameter Unit Subject I Subject II

R
i

[mm] 5.99 6.69
�z [–] 1.32 1.15
c [kPa] 22.51 54.59
k
1

[kPa] 25.79 52.22
k
2

[–] 1.72 7.50
� [deg] 35.27 37.58
F̄
red

[N] 1.18 1.28
S
basal

[kPa] 61.19 55.58
S
constricted

[kPa] 136.80 93.56
S
dilated

[kPa] < 0.01 28.37

Fig. 2  Measured pressure-radius loops and model predictions for 
subject I. The solid red lines are the model predictions of the three 
arterial conditions considered within the parameter identification. The 
arterial behavior outside the measured pressure-range is predicted and 
shown as the dashed red lines for each condition

Fig. 3  Measured pressure-radius loops and model predictions for 
subject II. The solid red lines are the model predictions of the three 
arterial conditions considered within the parameter identification. The 
arterial behavior outside the measured pressure-range is predicted and 
shown as the dashed red lines for each condition

1 The measurements in the dilated condition were not published in 
Sonesson et al. (1997).
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and at least 70% of all starting points converged to the same 
solution with the lowest objective function value for each 
subject. The identified model parameters are summarized in 
Table 2. Additional details about the Utopia and Nadir points 
are provided in the supplementary material.

In order to compare the measured pressure-radius data 
and the identified reduced axial force with the model predic-
tion, the model blood pressure Pmod and the model reduced 
axial force Fmod

red
 are introduced. These two quantities are cal-

culated by replacing the Laplace stresses in Eqs. (1) and (2) 
with the constitutively determined stresses given by Eqs. (3), 
(5), (6), (7), (9), (11), (12), and (13), as

and

Figures 2 and 3 show the comparison of the measured 
pressure-radius loops and the model predictions for subjects 
I and II, respectively. In order to quantify the agreement 
between the predicted and the measured pressure-radius 
loops, Table 3 displays for each arterial condition the coef-
ficient of determination (Nash and Sutcliffe 1970)

where P̄q is the mean of Pqj . To further put the agreement 
into perspective, Table 3 also contains the coefficient of 
determination in case the model parameters are identified 
for each arterial condition individually, as when computing 
the Utopia point in Sect. 3.

In Fig. 4, the arterial models behavior in terms of the 
reduced axial force is displayed for both subjects. As can 
be seen, the predicted reduced axial force is approximately 
constant in the basal condition for both subjects.

6  Discussion

In this study the possibility to account for smooth muscle 
activity in a continuum-mechanical model is evaluated. To 
prevent overparameterizaton the model is fit simultaneously 
to three pressure-radius loops measured at different levels 
of smooth muscle activity. Although pressure-radius data 
are available in the basal, constricted and dilated condition 
for 19 subjects, only two young females are included in this 
study. The reason for this limitation is the necessity to fit 

(20)Pmod = �mod
��

h

ri

(21)Fmod
red

= �mod
zz

�h
(
2ri + h

)
− �r2

i
Pmod.

(22)R2
q
= 1 −

n∑
j=1

(
Pqj − Pmod

qj

)2

n∑
j=1

(
Pqj − P̄q

)2
,

the mechanical model to all three arterial conditions simul-
taneously. If only two conditions are considered, e.g., basal 
and constricted, the parameter combination can be continu-
ously changed without affecting the objective function value, 
indicating that the problem is overparameterized, see sup-
plementary material for an example. The resting and con-
stricted arterial conditions give stable pressure-radius loops 
over consecutive cardiac cycles. In contrast, the physical 
exercise frequently caused unstable pressure-radius loops 
possibly due to varying smooth muscle tone or measurement 
errors such as involuntary motion of the ultrasonic probe. 
Furthermore, the pressure-radius measurements during rest 
and lower-body negative pressure were repeated and we only 

Fig. 4  Identified reduced axial force and model prediction for both 
subjects. The colors red and blue are used for subjects  I and II, 
respectively

Table 3  Agreement of the measured pressure-radius loops and the 
model predictions in terms of R2 ∈ (−∞, 1] , where 1 represents a 
perfect fit. The column denoted ‘combined’ represents the case when 
the model parameters are identified considering all arterial condi-
tions, cf. Table 2. The column ‘individual’ represents the case when 
the model parameters are identified using only the respective arterial 
condition, as when computing the Utopia point in Sect. 3

Condition Combined R2 Individual R2

Subject I Basal 0.94 0.94
Constricted 0.96 0.97
Dilated 0.94 0.94

Subject II Basal 0.97 0.98
Constricted 0.96 0.97
Dilated 0.98 0.98



1554 J.-L. Gade et al.

1 3

consider subjects whose repeated measurements agree2. 
Unfortunately it was only for the two included subjects that 
the data of all three arterial conditions contained stable pres-
sure-radius loops over consecutive cardiac cycles and whose 
repeated measurements agreed with each other. In a future 
study it is, therefore, recommended to induce the dilated 
state by, e.g., pharmacological intervention (Boutouyrie 
et al. 2011) or the isometric handgrip exercise (Atkinson 
et al. 2015) to create a more stable pressure-radius response.

The proposed mechanical model in combination with 
the minimization scheme satisfactorily fits the measured 
pressure-radius loops at multiple levels of arterial tone, see 
Figs. 2 and 3, and the reduced axial force is reasonably con-
stant in the basal condition, see Fig. 4. Additional figures 
showing the circumferential and axial stress as a function of 
the circumferential stretch are found in the supplementary 
material for both subjects.

The identified parameters for the passive part of the arte-
rial wall are in the same range as what has been reported pre-
viously for the human abdominal aorta (Horný et al. 2011, 
2014; Ferruzzi et al. 2011; Schriefl et al. 2012; Gade et al. 
2019). Only the identified axial prestretch of subject II is 
slightly lower than what is to be expected for a 26-year-old 
(Horný et al. 2011). However, the deformed inner radius is 
quite large for subject II and the basal pressure-radius loop 
agrees better with the middle-aged population (Sonesson 
et al. 1994) which may explain the discrepancy.

To the best of the author’s knowledge, no information 
about the reduced axial force of the abdominal aorta in 
young females has been published. The identified forces 
have, however, a similar magnitude compared to the abdomi-
nal aorta of older subjects (Gade et al. 2019), the human tho-
racic aorta (Schulze-Bauer and Holzapfel 2003), and aged 
human iliac arteries (Schulze-Bauer et al. 2003).

The identified smooth muscle activations agree nicely 
with the levels suggested for basal muscular tone under 
normal physiological conditions, S=50 kPa , and maximal 
contraction, S=100 kPa , in case of subject II (Rachev and 
Hayashi 1999). For subject I, the calculated values are 
higher, especially under maximal contraction, cf. 
Sconstr.=136.80 kPa in Table 2. Despite the apparent higher 
smooth muscle activation for subject  I, the generated 
active stress is instead larger for subject II, cf. Table 4. 
This is related to the length–tension relationship which is 
only f

(
�MAP
�,constr.

)
=0.44 for subject I but 0.65 for subject II. 

This suggests that the smooth muscle cells are at a more 
contraction efficient length for subject II. With respect to 
the dilated arterial condition, it appears that clenching the 
fist four times resulted in a complete relaxation of smooth 
muscle cells for subject  I, but created a much smaller 
response for subject  II. This behavior is expressed in 
Figs. 2 and 3 where the pressure-radius loop in the dilated 
state is shifted substantially to higher radii for subject I but 
barely changed for subject II.

The values of the smooth muscle activation must, how-
ever, be interpreted with caution. The active stress depends 
on the product Sf. If the length–tension relationship is 
changed, the identification would result in a different 
smooth muscle activation such that the product remains 
constant. It is therefore difficult to compare the identi-
fied smooth muscle activation with other studies besides 
Rachev and Hayashi (1999). This is particularly true if 
a different smooth muscle model is used (Zulliger et al. 
2004; Spronck et al. 2015).

The generated active stress at MAP during the three arte-
rial conditions is summarized in Table 4 for both subjects. 
To the best of the author’s knowledge this is the first study 
that presents in vivo stress values resulting from smooth 
muscle contraction for the human abdominal aorta. Com-
pared to other arteries and other species, the values reported 
herein are in the same range (Dobrin 1978; Murtada et al. 
2012; Cox et al. 1976). According to Table 4 the active stress 
accounts for a considerable part of the total stress in the cir-
cumferential direction already in the resting condition. This 
suggests that even for the elastic abdominal aorta, smooth 
muscle tonus is important and should be accounted for.

Figures 2 and 3 unequivocally show that the human 
abdominal aorta can modulate its stiffness by altering 
smooth muscle tonus. This is especially pronounced for 
subject I for which not only the deformation reduces with 
smooth muscle contraction but also the shape of the pres-
sure-radius loop changes substantially. While the defor-
mation of the dilated condition is primarily governed by 
collagen, a shift toward the isotropic matrix is visual in 
the basal and constricted conditions, see Fig. 2. In order 
to illustrate the effect of smooth muscle contraction on 

Table 4  Generated active stress �act and total circumferential stress 
��� at MAP

Condition �act [kPa] ��� [kPa]

Subject I Basal 32.93 51.72
Constricted 49.15 42.72
Dilated < 0.01 111.66

Subject II Basal 40.66 103.98
Constricted 60.20 94.68
Dilated 24.60 145.06

2 One measurement was performed during the physical exercise and 
another one directly afterward. Due to the dynamic nature of the exer-
cise only the latter measurement contained stable pressure-radius 
loops.
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arterial deformation behavior even further, the arterial 
model together with the identified parameters is used to 
predict the aortic behavior outside the physiological range 
for each degree of smooth muscle activation. This behavior 
is illustrated as the dashed red lines in Figs. 2 and 3. As 
one can see, the effect of smooth muscle activity is largest 
for low blood pressure and with increasing deformation, 
the three curves approach each other.

The statement that the abdominal aorta can modulate its 
stiffness stands in contrast to Sonesson et al. (1997) who 
used the same data set but concluded that the stiffness is 
unaffected by the sympathetic reaction due to lower-body 
negative pressure. Although Sonesson et al. (1997) based 
their conclusion on evaluating 19 subjects, compared to 
the two out of the 19 in this study, they assessed arterial 
stiffness in terms of Ep , β and pressure change-in-diameter 
curves. The stiffness measures Ep and β describe the aver-
age slope of the pressure-radius relationship. As can be 
seen in Figs. 2 and 3 the average slope, which the model 
prediction represents, is almost identical for the resting and 
constricted condition and only differs in the dilated condi-
tion. Consequently Ep and β are very similar in the resting 
and constricted condition and is only markedly higher in the 
dilated condition, see Table 5. Therefore, if only the rest-
ing and constricted condition are used to evaluate the effect 
of smooth muscle activity on arterial stiffness, no differ-
ence can be observed based on Ep and β . Similarly, if one 
evaluates the pressure change-in-diameter behavior no dif-
ference can be observed since the curves collapse on each 
other. These stiffness quantities, however, completely ignore 
the shift of the pressure-radius loops toward lower, in case 
of smooth muscle contraction, and higher radii, in case of 
relaxation. This highlights their inability to truly quantify 
arterial stiffness and the need for new alternatives, possibly 
based on continuum-based mechanical models such as the 
one used herein.

The choice to combine the passive mechanical model 
from Gade et al. (2019) with a variant of the active model 
from Rachev and Hayashi (1999) is based on their simplicity 
and the low amount of model parameters which need to be 

identified. Furthermore, the in vivo parameter identification 
method in Gade et al. (2019) has been (numerically) vali-
dated using a large data set.

The major difference between the passive mechani-
cal model in Gade et al. (2019) and the ones used in other 
parameter identification methods (Masson et  al. 2008; 
Spronck et al. 2015; Smoljkić et al. 2015; Heusinkveld et al. 
2018) is the treatment of an artery as a thin-walled rather 
than a thick-walled structure. Although the geometry of an 
artery clearly resembles a thick-walled structure (Holzapfel 
et al. 2000), the existence of residual stress homogenizes 
the stress/stretch through the thickness (Takamizawa and 
Hayashi 1987; Fung 1991). This is further enhanced by 
smooth muscle activity (Rachev and Hayashi 1999; Hum-
phrey and Wilson 2003) and results in an almost constant 
stress field throughout the arterial wall which is assumed 
in a thin-walled tube. Hence, the thin-walled assumption 
reproduces the arterial stress field to a high degree while 
allowing for easy analytical calculation of the gradient and 
Hessian of the objective function (15) which is beneficial for 
the parameter identification.

Another limitation is the assumption that an artery is 
only subjected to the blood pressure from within the lumen 
and prestretched in the axial direction. The in vivo load-
ing situation is, however, more complex since an artery is 
constrained in its radial direction by surrounding tissue, 
organs, and bones (Humphrey 2002). This constraint is com-
monly incorporated by applying a perivascular pressure to 
the outside of an artery (Masson et al. 2008; Wittek et al. 
2016). The perivascular pressure, which is reported to range 
from 0.67 − 0.93 kPa in a normal population (De Keulenaer 
et al. 2009), reduces the transmural pressure and, therefore, 
decreases the stress state that the arterial wall experiences. 
Although it is trivial to extend the used arterial model to 
account for perivascular pressure, because P in Eqs. (1) and 
(2) represents the transmural pressure, the outside of an 
artery is assumed to be traction free and as a consequence 
arterial stiffness is slightly overestimated. This assumption 
is done to avoid using population averaged data for the indi-
vidual person, if it is not essential. Furthermore, perivascular 
pressure depends on the blood pressure (Humphrey and Na 
2002) and hence differs between the three arterial condi-
tions: it is largest in the dilated condition and smallest in the 
constricted condition3.

More advanced models to account for smooth muscle 
activity have been proposed and used to study the active 
behavior of arteries (Zulliger et  al. 2004; Kroon 2009; 

Table 5  Arterial stiffness in terms the pressure-strain elastic modulus 
Ep and the stiffness index β

Condition Ep [kPa] �[−]

Subject I Basal 20.21 5.86
Constricted 22.63 7.89
Dilated 57.11 16.16

Subject II Basal 58.03 15.56
Constricted 56.74 18.37
Dilated 92.91 24.69

3 The perivascular pressure might be close to zero or even negative 
during lower-body negative pressure because the pressure-radius 
measurements are performed in the vicinity of the pressure chamber, 
see Sect. 4.
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Murtada et al. 2012; Stålhand et al. 2011; Schmitz and Böl 
2011). These models consider the complete time evolution 
of the smooth muscle contraction, but from an in vivo param-
eter identification point of view, it is primarily the contracted 
state which is of importance. The active model in Rachev 
and Hayashi (1999) captures the intrinsic characteristics of 
smooth muscle contraction and requires only one additional 
parameter to be identified and was thus used herein.

Fitting the mechanical model to multiple pressure-radius 
loops simultaneously is a multi-objective minimization 
problem where each pressure-radius loop has its own objec-
tive. The multi-objective problem is reduced to a single-
objective problem by summing up the individual objectives. 
There are two important aspects when solving this single-
objective minimization problem: first, the functional form of 
the individual objectives; and second, the weighting of each 
individual objective.

Regarding the functional form of the individual objec-
tives, an alternative to Eq. (14) could be:

where Pmod and Fmod
red

 are given by Eqs. (20) and (21). We 
tried using this objective, but the determination of appropri-
ate weights w11 and w12 is very challenging4. The simplest 
choice is to use wq2=0 and therefore neglect the behavior of 
the model in the axial direction. The problem then becomes 
overparameterized, however, because the parameters �z and 
� require some information about the axial direction. Even 
if a unique solution would be obtained by specifying one of 
those two parameters, e.g., by using population-averaged 
data, the behavior of the arterial model in the axial direction 
would still be unphysiological in terms of the magnitude 
of the reduced axial force and its variance throughout the 
cardiac cycle. The axial response of the arterial model must 
therefore be controlled in some way, preferably by the in 
vitro observation that the reduced axial force is approxi-
mately constant throughout the cardiac cycle (Van Loon 
et al. 1977; Weizsäcker et al. 1983) which we use.

The two parts in Eq. (23) do not describe analogous quan-
tities and their relative magnitude to each other can vary 
substantially. Even if the first part of Eq. (23) is normal-
ized by dividing it by Pqj and the second part by F̄red , the 
selection of appropriate weighting factors is not trivial. By 
converting the pressure and reduced axial force into cor-
responding circumferential and axial stresses using the 

(23)

n∑
j=1

{
wq1

[
Pmod

(
�, Sq, ri,qj

)
− Pqj

]2
+

wq2

[
Fmod
red

(
�, Sq, ri,qj

)
− F̄red

]2}
,

equilibrium Eqs. (1) and (2), both parts of the individual 
objective represent analogous quantities and one receives 
an implicit normalization since both stresses have a similar 
magnitude. Furthermore, the choice for appropriate weight-
ing factors appears more natural if both parts should equally 
contribute, cf. w1=0.5 in Sect. 3.

In order to weigh each individual objective equally within 
the parameter identification problem ( ℙ ), they are normal-
ized using their respective best-case and worst-case values, 
i.e., Utopia and Nadir points. In this study the Utopia and the 
Nadir points are calculated neglecting smooth muscle activ-
ity, i.e., only using the passive part of the mechanical model, 
and by using an estimate of the reduced axial force of 1 N . If 
the Utopia point is calculated with the complete mechanical 
model instead, its value is marginally smaller, at most 2% for 
both subjects. The corresponding minimization problem is, 
however, overparameterized and it is not straightforward to 
select the argument of the Utopia point in order to calcu-
late the Nadir point. Other possibilities such as using the 
argument of the Utopia point and identifying an individual 
smooth muscle activity and reduced axial force for the deter-
mination of the Nadir point or normalizing by simply divid-
ing �q by its Utopia point have been tested but the presented 
normalization scheme provided the best results. The well-
working normalization scheme can be appreciated by exam-
ining Figures 2 and 3, and by comparing the coefficients of 
determination in Table 3 which barely deteriorated by fitting 
the model to multiple pressure-radius loops.

7  Conclusion

In this study, an in vivo parameter identification method for 
arteries is extended to account for smooth muscle activity. 
To overcome the problem of overparameterization due to 
an increased number of model parameters, the continuum-
mechanical model is calibrated using data measured at 
multiple levels of vascular tone. Despite the simplicity of 
the mechanical model, it fits the measured pressure-radius 
loops at rest, under lower-body negative pressure and during 
physical exercise well.
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