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Abstract
With the growing rate of traumatic brain injury (TBI), there is an increasing interest in validated tools to predict and prevent 
brain injuries. Finite element models (FEM) are valuable tools to estimate tissue responses, predict probability of TBI, and 
guide the development of safety equipment. In this study, we developed and validated an anisotropic pig brain multi-scale 
FEM by explicitly embedding the axonal tract structures and utilized the model to simulate experimental TBI in piglets under-
going dynamic head rotations. Binary logistic regression, survival analysis with Weibull distribution, and receiver operating 
characteristic curve analysis, coupled with repeated k-fold cross-validation technique, were used to examine 12 FEM-derived 
metrics related to axonal/brain tissue strain and strain rate for predicting the presence or absence of traumatic axonal injury 
(TAI). All 12 metrics performed well in predicting of TAI with prediction accuracy rate of 73–90%. The axonal-based met-
rics outperformed their rival brain tissue-based metrics in predicting TAI. The best predictors of TAI were maximum axonal 
strain times strain rate (MASxSR) and its corresponding optimal fraction-based metric (AF-MASxSR7.5) that represents 
the fraction of axonal fibers exceeding MASxSR of 7.5 s−1. The thresholds compare favorably with tissue tolerances found 
in in–vitro/in–vivo measurements in the literature. In addition, the damaged volume fractions (DVF) predicted using the 
axonal-based metrics, especially MASxSR (DVF = 0.05–4.5%), were closer to the actual DVF obtained from histopathol-
ogy (AIV = 0.02–1.65%) in comparison with the DVF predicted using the brain-related metrics (DVF = 0.11–41.2%). The 
methods and the results from this study can be used to improve model prediction of TBI in humans.

Keywords  Multi-scale finite element modeling · Axonal injury prediction · Diffusion tensor imaging · Tractography · 
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1  Introduction

Traumatic brain injury (TBI) represents a significant pub-
lic health burden in the USA. In 2013 alone, there were 
approximately 2.8 million TBI-related emergency depart-
ment (ED) visits, hospitalizations, and deaths occurred in 
the USA (Taylor et al. 2017). The rate of TBI has contin-
ued to increase, and it has been anticipated to become the 

major cause of death and disability by the year 2020, accord-
ing to the World Health Organization (Hyder et al. 2007). 
TBI could lead to acute and long-term cognitive, behavio-
ral, neurological, and possibly neurodegeneration impair-
ments (Bazarian et al. 2009). However, definite detection 
of traumatic axonal injury (TAI), which is one of the most 
prevalent pathological features of TBI, remains a clinical 
challenge. TAI typically results from biomechanical events 
that induce rapid head movement which instigates dynamic 
brain tissue deformation and stretch of the axons. Stretch-
ing the axons beyond a critical threshold can lead to axonal 
swelling, which is one of the morphological hallmarks of 
TAI pathology, and eventually axonal transport impair-
ment (Smith and Meaney 2000; Smith et al. 1999). In–vivo, 
in–vitro, and ex–vivo studies conducted on isolated nerve 
fibers or axons (Bain and Meaney 2000; Bain et al. 2001; 
Galbraith et al. 1993; Singh 2017; Singh et al. 2006, 2009), 
axonal or neuronal cultures (Bar-Kochba et al. 2016; Cullen 
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et al. 2007; LaPlaca et al. 2005; Nakadate et al. 2017; Smith 
et al. 1999), and brain culture slices (Cater et al. 2006; Elkin 
and Morrison 2007; Morrison et al. 2000) have shown that 
several biomechanical parameters related to deformations 
of axons, nerve fibers or brain tissue such as shear or axial 
strain, strain tensor components, principal strains, and their 
rates correlate with the risk of injury. With the growing rate 
of TBI and their devastating outcomes, predictive tools are 
necessary to guide the development of preventative devices, 
improve the management/treatment outcomes, and reduce 
the risk of a second injury (Control and Prevention 2015).

Finite element models (FEM) are valuable tools for pre-
dicting TBI in the intact head. They can provide estimates of 
tissue responses such as strain, stress, and their rates during 
an event, using the kinematics experienced by the head as 
input. FEM can be used either to determine tissue injury 
thresholds or to predict the possible presence and degree 
of brain injury following a head trauma incident, or both 
(Coats et al. 2012; Colgan et al. 2010; Garimella et al. 2018; 
Giordano and Kleiven 2014a, b; Giordano et al. 2017; Hajia-
ghamemar et al. 2019; King et al. 2003; Sahoo et al. 2014, 
2016; Sullivan et al. 2015; Wright et al. 2013; Wright and 
Ramesh 2012; Zhao et al. 2017). Tissue injury thresholds are 
determined by simulating a set of rapid head rotation and/
or biomechanical head impact events, with known injury 
status. The presence and degree of brain injury are predicted 
by simulating the event and using pre-determined tissue 
injury threshold criteria. Either way, these studies correlate 
kinematics and tissue responses with resulting brain tissue 
injuries. In this communication, we improve the reliability 
of the outcomes of these finite element (FE) studies in three 
respects: (1) the biofidelity of the FEM, in terms of the ana-
tomical details, material properties, and the validation pro-
cess used to evaluate the tissue response; (2) the accuracy of 
kinematic inputs; and (3) the reliability of the process used 
to develop and evaluate the tissue injury metrics.

As background, the biofidelity of the head FEMs has been 
improved over the years in several ways. From the material 
modeling perspective, most of the previous FE studies mod-
eled the brain tissue as an isotropic hyperelastic viscoelastic 
material (Chatelin et al. 2011; Coats et al. 2012; Colgan 
et al. 2010; Hajiaghamemar et al. 2019; King et al. 2003; 
Kleiven 2007; Maltese and Margulies 2016; Sullivan et al. 
2015; Takhounts et al. 2003; Zhao et al. 2017). This assump-
tion is acceptable for the gray matter which has an isotropic 
structure and material response. However, white matter from 
the corona radiata, corpus callosum and brainstem has been 
shown in many in–vitro studies (Arbogast and Margulies 
1999; Feng et al. 2013; Ning et al. 2006; Prange and Mar-
gulies 2002) to consist of aligned axonal fiber bundles pre-
dominantly and has demonstrated a mechanically anisotropic 
material behavior. Anisotropic viscous hyperelastic consti-
tutive models for brain material were developed (Chatelin 

et al. 2013; Cloots et al. 2012; Gasser et al. 2005; Wu et al. 
2019) and implemented in the FEMs in more recent stud-
ies (Colgan et al. 2010; Ganpule et al. 2017; Giordano and 
Kleiven 2014a; Sahoo et  al. 2014; Wright and Ramesh 
2012). Moreover, with the advancements of the imaging 
techniques, the biofidelity of the FEMs has been, and con-
tinues to be, improved in terms of the brain geometry and 
incorporation of more anatomical details. Recently, some 
FE studies have incorporated the information of the axonal 
orientations into the FEMs utilizing diffusion tensor imaging 
(DTI) technique (Chatelin et al. 2011; Colgan et al. 2010; 
Sahoo et al. 2016; Sullivan et al. 2015; Wright and Ramesh 
2012). In these studies, the brain tissue was modeled with 
an isotropic (Chatelin et al. 2011; Sullivan et al. 2015) or 
fiber-reinforced anisotropic (Giordano and Kleiven 2014b; 
Giordano et al. 2017; Sahoo et al. 2014; Wright and Ramesh 
2012) material, and the brain biomechanical responses were 
projected onto the dominant axonal tract orientation at each 
brain element to calculate the axonal tract-oriented response. 
The incorporation of the axonal orientation information and 
the inclusion of anisotropy into the constitutive model of 
brain tissue have been shown to improve the biofidelity and 
the injury prediction performance of the FE brain models 
(Giordano et al. 2014; Wright and Ramesh 2012). More 
recently, a method was developed that can explicitly embed 
axonal tractography at a mesoscopic spatial resolution com-
parable to diffusion tensor imaging (DTI). The embedded 
element method, which has been recently introduced to TBI 
research community for human models, includes multiple 
fiber paths in each brain element and explicitly incorporates 
the axonal fiber structural network into the brain FE models 
using tractography data (Garimella and Kraft 2017; Gari-
mella et al. 2018; Wu et al. 2019). In this paper, we improve 
the biofidelity of our pig FEM using this method, which to 
our knowledge has not been used in any animal TBI studies.

In this paper, we also pay attention to the accuracy of 
the kinematic data to enhance the credibility of FE results 
for the purpose of injury prediction. Most of the human 
FE studies have used kinematic inputs obtained from labo-
ratory accident reconstructions of sports incidents docu-
mented with limited accuracy and precision (Giordano and 
Kleiven 2014b; Kleiven 2007; Sahoo et al. 2016; Zhao 
et al. 2017). For instance, in the laboratory reconstructed 
NFL head impact dataset, which is the most common data-
set used in FE studies, there was up to 25% error reported 
in the kinematic data (Newman et al. 2005; Pellman et al. 
2003; Sanchez et al. 2019). In contrast, in this paper we 
use animal TBI studies, in which experimental head kin-
ematic data are recorded in a controlled laboratory setting, 
and the actual location and extent of axonal injury are 
available after killing. Thus, the coupling of computational 
and experimental models of animals enable the study of 
tissue deformations that lead to actual tissue injury, and 
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thresholds can be identified above which injury would 
have predicted to occur with reasonable certainty.

Finally, herein we improve the reliability of processes 
used to identify the injury risk curves and thresholds. In 
most of the previous TBI metric studies, a single train-
ing dataset was used to both develop injury curves and 
assess the discriminatory power of the metrics without 
any independent and/or cross-validation of the prediction 
performance on separate testing dataset(s), due to the lim-
ited amount of TBI data available with information on 
both the kinematic inputs and the resulting brain injuries 
(Giordano and Kleiven 2014b). This “all in” approach was 
criticized for overfitting small datasets, lacking sufficient 
evaluation and validation of performance accuracy with 
new data (Anderson et al. 2007). Recently, in a few TBI 
studies, a single (Sullivan et al. 2015) or repeated (Zhao 
et al. 2017) random training–testing splitting approaches 
have been used to split the data into randomly independent 
and non-overlapping development and validation groups 
for analysis. The prediction accuracy obtained from ran-
dom training–testing splitting can be dependent on the 
split, especially when using only a single split on a small 
dataset. Instead, we adopt the repeated k-fold cross-vali-
dation technique (Caragea et al. 2007; Yadav and Shukla 
2016), which is a common approach in data science field. 
This method can prevent overfitting and result in more 
reliable injury metrics. Repeated k-fold cross-validation 
technique is preferred over random as all data are used 
for both training and testing throughout the k iterations, 
and each datapoint is used for training k − 1 times and for 
testing exactly once at each repetition (Caragea et al. 2007; 
Yadav and Shukla 2016).

In this study, we developed an anisotropic axonal 
embedded pig head multi-scale FEM using tractography 
analysis and validated its deformations against ex–vivo 
hemisection experiment. The FEM was used to simulate 
a set of well-characterized rapid non-impact head rota-
tion pig TBI experiments in which head kinematics were 
precisely controlled and measured and the induced axonal 
injury was quantified through histopathology analysis. The 
outcomes of the simulations were used to examine differ-
ent FE-derived tissue metrics for predicting TAI following 
rapid head rotations and to determine the best predictor(s). 
Repeated k-fold cross-validation approach, along with 
several risk curve analyses and prediction performance 
criteria, was used to develop and validate the TAI cri-
teria to prevent bias and improve reliability. Finally, the 
FE-derived tissue injury thresholds were determined and 
compared with the results from in–vitro and in–vivo stud-
ies. The FE-derived tissue injury curves and thresholds 
developed in this study may be applied to human FEMs 
with similar axonal tract implementation to improve TBI 
prediction in humans.

2 � Methods

2.1 � Finite element model

A previously developed FE head model of a 4-week-old 
piglet was used as a base for this study (Coats et al. 2012; 
Sullivan et al. 2015). The brain geometry in the model was 
determined by analyzing consecutive coronal computed 
tomography (CT) images of brain and brainstem of a non-
injured perfusion-fixed ex–vivo 4-week-old piglet (512 × 512 
pixels, 1 mm thick, FOV = 15 cm) in MIMICS 9.0 (Materi-
alise, MI). The skull was created by extending the cortical 
surface of the brain outward, and falx geometry was added 
based on ex–vivo measurements. The base FEM consisted 
of brain, falx, and skull that was previously meshed in MSC 
Patran (MSC Software, Santa Ana, CA). The model also 
contains two-dimensional linear elastic spring connectors 
linking the surface nodes of the brain to the skull to mimic 
the response of the pia-arachnoid connective tissue, cerebral 
spinal fluid (CSF), and vasculature located between the brain 
and skull. The stiffness of these connectors, the brain-skull 
relative motion, and the boundary condition were previously 
identified and validated against ex–vivo experiments, and 
the convergence analysis was performed to ensure perfor-
mance stability for the model (Coats et al. 2012).

In this study, the base piglet brain FEM was transferred 
from ABAQUS (Simulia, Providence, RI) to LS-DYNA 
(v 971 R9.0.1, LSTC, Livermore, CA) and was enhanced 
by adding anatomical regions including lateral ventricles, 
corpus callosum, and white matter and embedding axonal 
structural pathways into the model. Coronal slices of the 
piglet FEM were registered to the corresponding 4-week-
old piglet brain coronal CT images based on appropriate 
slice increment and the best match of brain shape between 
FEM and CT slices, and the lateral ventricles, corpus cal-
losum, and white matter regions were segmented (Fig. 1).

The axonal fiber tractography was then performed by pro-
cessing diffusion tensor imaging (DTI) data of an uninjured 
perfusion-fixed ex–vivo 4-week-old piglet brain using the 
Advanced Normalization Tools (ANTs) and Camino soft-
ware packages to reconstruct fiber streamlines by Euler track-
ing approach and linear interpolation (Duda et al. 2014). The 
fractional anisotropy (FA) value of 0.2 and tract turning angle 
threshold of 60 degree were defined as the streamline stopping 
criteria in tractography analysis. A step size of 0.2 mm was 
used for seed map, and a FA value was calculated for each seed 
point through the streamlines. DTI scan was previously con-
ducted on a 7T Siemens magnet with a 32-channel human head 
coil (FOV: 64 × 40 × 58 mm3, resolution: 0.4 × 0.4 × 1 mm3, 
TR = 400 ms, TE = 60 ms) (Sullivan et al. 2015). The DTI 
data included a single b = 0 volume and six directional diffu-
sion weighted images acquired with b-value = 1200 s/mm2. 



1112	 M. Hajiaghamemar et al.

1 3

Tractography streamlines were then used as an input to a cus-
tom MATLAB script (V. R2015 MathWorks, Columbia, MD, 
USA), and a FEM of the axonal bundle structure comprising 
5221 tracts and 72,842 1-mm 1-D cable elements was devel-
oped. For each axonal fiber element, the average of FA values 
of streamline seed points along the element was assigned to 
the element. The axonal fiber elements were then clustered to 
eight groups depends on the FA value of the element as shown 
with different colors in Fig. 2. The percentage frequency dis-
tribution and range of FA of each group are given in Table 1. 
The FEM of axonal fiber structure was then incorporated into 
the piglet brain FEM as embedded elements using the *CON-
STRATNED_BEAM_IN_SOLID Keyword in LS-DYNA (v 
971 R9.2.0, LSTC, Livermore, CA). This keyword constrains 
both acceleration and velocity of the axonal fiber structures to 
the brain solid elements which serve as the master component. 

Fig. 1   Pig finite element model 
was enhanced by adding ana-
tomical regions including lateral 
ventricles, corpus callosum, and 
white matter tracts

Fig. 2   Steps for developing and embedding axonal structural network into pig brain finite element model

Table 1   The fractional anisotropy (FA) values and percentage fre-
quency distribution of eight groups of the axonal fiber elements

Group ID FA values % of elements 
in each group

1 0.2–0.3 2.02
2 0.3–0.4 23.78
3 0.4–0.5 30.55
4 0.5–0.6 22.83
5 0.6–0.7 13.76
6 0.7–0.8 5.11
7 0.8–0.9 1.41
8 0.9–1 0.52
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A schematic summarizing the workflow of this step is shown 
in Fig. 2. 

2.2 � Material property

For material property, considering the microstructural charac-
teristics of white matter, the brain tissue was decomposed into 
myelinated axons and a mostly isotropic matrix that has similar 
material property to that of gray matter. The isotropic brain 
tissue matrix was modeled with solid elements, and the axonal 
fiber bundles were explicitly modeled using 1-D cable ele-
ments. Both brain tissue and axonal fiber were modeled using 
hyper-viscoelastic material models and implemented in LS-
DYNA using a user-defined material model (Wu et al. 2019). 
For the brain tissue matrix material, the isotropic hyperelastic 
strain energy density function is (Wu et al. 2019):

which is an isotropic expression of the Holzapfel–Gas-
ser–Ogden (HGO) model (Gasser et al. 2005) where Ĩ1 is 
the first invariant of the isochoric right Cauchy–Green defor-
mation tensor and J = detF is the volume change ratio. G is 
the shear modulus, K is the bulk modulus, k1 is a stress-like 
parameter, and k2 is a dimensionless parameter. The strain 
energy density function for the axonal fiber is formulated as 
(Wu et al. 2019):

which is also based on the Holzapfel–Gasser–Ogden (HGO) 
model (Gasser et al. 2005). C̃ is the deviatoric component 
of the right Cauchy–Green deformation tensor, and n0a is 
the fiber bundle direction unit vector. The dimensionless 
structure parameter � accounts for the orientation distribu-
tion of the axons in a voxel-scale fiber bundle and can be 
related to FA values of the fiber bundle elements through 
Eq. (1) (Giordano and Kleiven 2014a; Wright et al. 2013), 
by assuming similarity between mechanical anisotropy and 
diffusion anisotropy.
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3
 , equivalently, FA = 0), axons are randomly oriented 

and isotopically distributed. The range of FA of each group 
of axonal fiber bundles are given in Table 1. In this model, 
the axonal fibers do not support compression and they only 
contribute their mechanical strength during tension; thus, 
their contribution to the overall mechanical response was 
neglected when they were under compression.

The temporal response of deviatoric stress was modeled 
using a quasilinear viscoelastic (QLV) mathematical frame-
work (Fung 2013), as the volumetric behavior was assumed 
to be independent of time.

where �d
e
 is the instantaneous deviatoric elastic response and 

G is the normalized or reduced relaxation function. A Prony 
series with one-time constant (n = 1) was chosen to model 
the relaxation behavior (Rashid et al. 2014). G∞ and Gi are 
the steady-state coefficient and normalized relaxation coef-
ficients of the corresponding time decades, respectively, and 
τi are the decay time constants.

The coefficients of the material model of the matrix brain 
tissue were calibrated based on a published material testing 
data of pig brain tissue (Rashid et al. 2014). The calibra-
tion process was performed through a generalized reduced 
gradient nonlinear optimization (Excel Solver®, Microsoft®, 
Redmond, WA) to minimize the sum of squared error (SSE) 
between the experimental data and model predicted stress.

To determine the material properties of axonal fiber bun-
dle, the effective stiffness ratio of Rv between the fiber con-
stitutive model and the brain matrix constitutive model was 
used with the following formulation:

where γV and Gfiber

Gmatrix

 are the volume fraction ratio and the stiff-
ness ratio of axonal fiber bundle to the brain tissue matrix, 
respectively. In the HGO material model used in previous 
studies, the strain energy density functions for the axonal 
fiber and isotropic brain matrix are coupled and therefore the 
same volume sizes were considered for both. In this study, 
the Rv ratio was used to modify the original HGO material 
model to accommodate for potential excessive material stiff-
ness and volume redundancy associated with the embedded 
element modeling approach. The stiffness ratio of 3 
( Gfiber

Gmatrix

= 3 ) and axonal fiber volume fraction of 0.5 
( �V = 0.5 ) experimentally identified by Arbogast and Mar-
gulies (1999) for pig brain were used in this study. The 
detailed material properties of axonal fiber bundles, and 
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brain tissue matrix as well as skull, lateral ventricle, skull-
brain connectors, and falx that were employed in the model 
are given in Table 2.

2.3 � Validation of pig FEM response against ex–vivo 
hemisection experiment

To validate the deformation response of the pig FEM and the 
anisotropic brain material properties employed in the model, 
the brain strain response obtained from the FEM simula-
tions was compared with the brain deformations measured 
in ex–vivo hemisection experiment that was previously per-
formed in a high strain and strain rate condition.

In the ex–vivo hemisection experiment as described in 
detail in Ibrahim et al. (2010a) and Sullivan et al. (2015), a 
head of 4-week-old piglet obtained immediately after killing 
was transected in a horizontal plane just above the supraor-
bital margin and potted into a cylindrical canister. Then, ink 
markers were placed on the cut brain surface to visualize 
brain tissue motion (Fig. 3a), a plexiglas cover plate placed 
on the cut brain surface, and 1-mm space between the brain 
surface and cover plate was filled with clear lubricant to 
ensure a frictionless boundary condition. The canister was 
then mounted onto a HYGE pneumatic actuator system 
(Bendix Corporation) and was rotated 65° at 50 rad/s. The 
ink markers were tracked with a high-speed digital camera 

Table 2   Material models and properties used in the anisotropic axonal embedded pig brain finite element model

Anatomical part Material model Material properties References

Brain tissue matrix (White mat-
ter, corpus callosum, whole 
brain)

HGO hyperelastic and quasilinear 
viscoelastic

G = 3.0478 kPa

K = 2.19GPa

k
1
= 35.767 kPa

k2 → 0
G

1
= 0.8909 kPa

G∞ = 0.109 kPa
�
1
= 0.035 s

ρ = 1.04 g/cm3

Coefficients were calibrated in this study 
based on the experimental tests per-
formed by Rashid et al. (2014)

Axonal fibers HGO Hyperelastic and quasilinear 
viscoelastic

k1 = 43.432 kPa
k2 → 0
κ depending on FA values

Properties were determined in this study 
based on the volume fraction ratio and 
the stiffness ratio of axonal fiber bundle 
to the brain tissue matrix experi-
mentally identified by Arbogast and 
Margulies (1999)

Falx Elastic E = 15,000 kPa
υ = 0.45
ρ = 1.13 g/cm3

Sullivan et al. (2015)

Lateral ventricle Kelvin–Maxwell linear viscoelastic G0 = 0.5 kPa
G∞ = 0.1 kPa
�
1
= 0.0125 s

K = 2.19GPa

ρ = 1.04 g/cm3

Mao et al. (2013)

Brain-skull connector Elastic spring k = 3460N∕mm Sullivan et al. (2015)

Fig. 3   Images of a the surface of the head of a 4-week-old pig illus-
trating ink marks on the brain tissue, b a frame from high-speed 
video demonstrating ink marks isolated by the MATLAB script and 
triads (blue lines) and their centroids (red dots) that were used for 

strain calculation, and c overlapped FEM top surface and hemisection 
brain image from high-speed video and examples of how the corre-
sponding elements for triad centroids were selected
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(HG TH, Redlake Tallahassee, FL; resolution of 0.4 mm/
pixel) at 2500 fps as shown in Fig. 3b. The velocity trace was 
measured at 10,000 Hz using two angular velocity transduc-
ers (Model ARS-06, ATA Inc., Albuquerque, NM) attached 
to the actuator side arm. The brain markers were placed into 
groups of three to form a set of triads (Fig. 3b), and the 
strain of the center of triads was computed using a custom 
MATLAB script (Ibrahim et al. 2010a; Sullivan et al. 2015).

A hemisection FEM of 4-week-old piglet brain was 
created by making a horizontal brain transection in the 
three-dimensional geometries of the pig FEM similar to 
the one in the ex–vivo hemisection physical model. Then, 
the measured rotational velocity trace from the hemisec-
tion experiment was used as the input loading conditions to 
reproduce the experiment. The triad centroids on the brain 
surface of the ex–vivo hemisection physical model were 
spatially matched to the closest corresponding element cen-
troids in the pig FEM and if a triad centroid did not cor-
respond to the exact location of an element centroid, up to 
four surrounding elements, which overlapped with the triad 
and their resultant centroid was close to the triad centroid, 
were selected as shown in Fig. 3c, and the FEM strain at 
the triad centroid location was interpolated. Then, the strain 
cumulative distribution curves extracted from the hemisec-
tion FE simulation and experiment were generated (Fig. 4). 
The Kolmogorov–Smirnov (KS) goodness-of-fit test for 
continuous distributions was performed between the two 
cumulative curves to ensure that the two curves were not 
statistically different (p value of > 0.05). Relatively good sta-
tistical correlation (p value = 0.095) was observed between 
the pig brain deformation response derived from the newly 
developed axonal tract embedded FEM and experimentally 

derived deformation (Fig. 4) with no need for further mate-
rial property adjustment.

2.4 � Animal studies

Once the axonal tract embedded pig brain FEM was 
developed and validated, the next step was to evaluate the 
capability of this FEM to predict TAI and develop tissue 
deformation TAI metrics. To that end, a well-characterized 
rapid non-impact head rotation (RNR) pig TBI model with 
biomechanical and neuropathology fidelity to human TBI 
was used (Margulies et al. 2015). This model produces a 
purely inertial non-impact head rotation in different anatomi-
cal planes at controlled rotational acceleration and velocity 
levels using the same HYGE pneumatic actuator system as 
in the ex–vivo hemisection experiment. This pig TBI model 
creates TAI which can be precisely quantified by immuno-
histopathology analysis.

For this study, a dataset containing 26 four-week-old and 
16 two-month-old pigs that were received a single, rapid 
non-impact head rotation in the axial or sagittal plane was 
selected. All protocols for these experiments were approved 
by the Institutional Animal Care and Use Committee of the 
University of Pennsylvania, where these experiments were 
previously conducted. This selected dataset contains a wide 
range of peak angular velocity (89.54–203.14 rad/s) and 
peak angular acceleration (18.43–72.36 krad/s2). The details 
about the number of animals at each age group and rotational 
direction along with the range of peak angular velocity and 
peak angular acceleration used in these experiments are 
given in Table 3.

These animals were killed at 6 hours post-injury, and their 
brains were perfusion-fixed and sectioned in 3-mm coronal 
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Fig. 4   The strain cumulative distribution curves extracted from the 
hemisection finite element simulation (blue) and ex–vivo hemisection 
experiment (black)

Table 3   Summary of the animal dataset used in this study

Pig dataset Rotational direction Peak angular 
velocity 
(rad/s)

Peak angular 
acceleration (krad/
s2)

4 weeks
N = 26

Axial/Horizon-
tal = 9

113.2–202.9 25.41–61.28

 Injured = 5
 Non-injured = 4

Sagittal = 17 118.3–145.9 30.09–100.92
 Injured = 16
 Non-injured = 1

2 months
N = 16

Axial/Horizon-
tal = 10

106.9–163.9 15.09–57.04

 Injured = 6
 Non-injured = 4

Sagittal = 6 102.7–154.5 18.44–53.55
 Injured = 2
 Non-injured = 4
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slices. Sections were then photographed, cut into 6-µm-thick 
slices, and stained for beta-amyloid-precursor-protein 
(βAPP), and areas of TAI identified by βAPP immunostain-
ing analysis were marked. The cumulative sum of marked 
areas of TAI over the whole brain was used to calculate the 
axonal injury volume (AIV) which indicates the severity 
of the axonal injury. The range of AIV calculated for this 
dataset is 0.02% to 1.65% which represents levels of TBI 
from no/very minor to mild TBI. After injury and recover-
ing from anesthesia, the animals were returned to their cages 
without need for further clinical care. Animals with AIV 
levels < 0.26% were shown to have clinically undetectable 
injury with no significant behavioral or cognitive deficits 
(Naim et al. 2010) and thus were considered as non-injured 
cases for the purpose of TAI metric development in this 
study. In summary, the animal dataset used in this study 
included 13 non-injured and 29 injured pigs.

2.5 � Simulation of animal experiments

Many studies have found that rapid deformation of brain 
tissue specially along the axonal fibers can produce axonal 
injury (Bain and Meaney 2000; Bain et al. 2001; Cullen 
et al. 2007; Guruprakash 2011; LaPlaca et al. 2005; Morri-
son et al. 2000; Shi and Whitebone 2006; Singh et al. 2009; 
Smith and Meaney 2000; Smith et al. 1999). Therefore, the 
FE model was used to compute the axonal and brain tis-
sue deformation during rapid head rotations in the pig TBI 
experiments to investigate the relationship between these 
deformations and resulting TAI. To that end, the measured 
rotational velocity time-histories of the 42 selected pig 
experiments were used as input loading conditions for the 
FE simulations to reproduce the pig experiments. The ani-
sotropic pig brain FEM as explained previously in this sec-
tion was used as the base for the FE simulations and scaled 
according to the brain mass of each animal using uniform, 
isometric mass scaling approach with the scale factor in the 
following form (Untaroiu et al. 2007):

The uniform mass scaling was used in this study because 
the details of the brain geometries were not available for the 
animals in this dataset. However, a separate dataset con-
taining 7 four-week-old and 7 two-month-old pigs, in which 
the brain geometries were available, was used to determine 
the geometry variations across subjects and examine how 
well the uniform scaling works. In this dataset, the ante-
rior–posterior (AP), lateral (L), and superior–inferior (SI) 
dimensions of the brain were measured. The coefficients of 
variation (CV = standard deviation/average) for the ratios of 
these dimensions (AP/L and SI/L) were less than 6% within 
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each age group and both combined, suggesting that uniform 
mass scaling can be used for scaling in this study. All simu-
lations were performed using LS-DYNA explicit, and model 
responses were output at every 0.1 ms. Simulations were 
run longer than angular velocity signals to let the brain to 
return to its original state. From each simulation, the first 
principal strain of every brain element and the axial logarith-
mic strain of every axonal embedded element were extracted 
at each output state, and their maximum values during the 
entire simulation were calculated as the maximum princi-
pal strain (MPS) and the maximum axonal strain (MAS), 
respectively. The element-wise strain rate was calculated 
as the first-order discrete derivative of strain between time 
points, and the element-wise product of strain and strain 
rate (SxSR) was calculated as element-wise multiplica-
tion of strain by its strain rate for each time point. For each 
simulation, the maximum value of the first principal strain 
rate (MPSR) and the maximum value of the product of the 
first principal strain and its strain rate (MPSxSR) for every 
brain element as well as maximum value of axonal strain rate 
(MASR), and maximum value of the product of axonal strain 
and its strain rate (MASxSR) for every axonal fiber embed-
ded element were also calculated over the entire duration 
of simulation. The 95th percentile values of MPS, MPSR, 
and MPSxSR of the brain elements, and the 95th percentile 
values of MAS, MASR, and MASxSR of the axonal fiber 
elements were extracted from all 42 simulations and used 
as potential TAI predictors (Table 4). The maximum 95th 
percentile was selected instead of the 100th percentile value 
to eliminate any possible computational artifacts from the 
analysis (Panzer et al. 2012). All the analyses were also per-
formed using 100th percentile values and showed similar or 
slightly worse prediction performance than 95th percentile 
results. These six metrics were examined as TAI predictors 
because several experimental studies of TAI performed in 
the isolated nerve fibers (Bain and Meaney 2000; Bain et al. 
2001) or axons (Smith et al. 1999), brain slices (Morrison 
et al. 2000), and axonal or neuronal cultures (Cullen et al. 
2007; LaPlaca et al. 2005) showed that the degree of axonal 
morphology and electrophysiological impairment of TAI 
were directly related to the magnitude and rate of brain and/
or axonal stretch.

While magnitude-based injury metrics such as MAS, 
MASR, MASxSR, MPS, MPSR, and MPSxSR have been 
shown to correlate with the degree of axonal injury as 
stated above, the extent of injury is mostly evaluated by 
the percentage of axons and/or neuronal cells that are dam-
aged (Bar-Kochba et al. 2016; Cullen et al. 2007). For this 
reason, we examined 6 new metrics that are based on the 
fraction of the axonal fibers exceeding a selected MAS, 
MASR, or MASxSR cutoff value, AF-MAS, AF-MASR, 
and AF-MASxSR, respectively, or the volume fraction of 
the brain exceeding a selected MPS, MPSR, or MPSxSR 
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cutoff value, BF-MPS, BF-MPSR, and BF-MPSxSR, 
respectively. For example, AF-MAS13, AF-MASR70, and 
AF-MASRxSR7.5 represent the fraction of the axonal fiber 
elements that passed MAS of 0.13, MASR of 70 s−1, and 
MASRxSR of 7.5 s−1, respectively. Similarly, BF-MPS30, 
BF-MPSR120, and BF-MPSRxSR28 represent the volume 
fraction of the brain elements that passed MPS of 0.30, 
MPSR of 120 s−1, and MPSRxSR of 28 s−1, respectively. 
For each of the six fraction-based metrics, wide ranges of 
possible cutoff threshold values of MPS, MPSR, MPSxSR, 
MAS, MASR, and MASxSR varied between 0.14 and 
0.34, 60 and 200 (/s), 4 and 32 (/s), 0.1 and 0.22, 10 and 
90 (/s), and 1 and 9 (/s), respectively, were examined, and 
the corresponding BF-MPS, BF-MPSR, BF-MPSxSR, 
AF-MAS, AF-MASR, and AF-MASxSR values for all 42 
dataset were calculated. Then, the area under the ROC 
curve (AUROC) and the overall prediction accuracy rate 
(PARROC), that will be described in more detail in the 
next section, were calculated for each of the six fraction-
based metrics at every selected threshold level (Fig. 5). 
AUROC and PARROC were used to evaluate the TAI pre-
diction performance of these metrics. For each of these 
six fraction-based metrics, among all the threshold values 
examined (Fig. 5), the one that led to the highest PARROC 
and AUROC was selected as the optimal cutoff threshold 
value. Between these two TAI prediction performance 
criteria, when their results are not in agreement, priority 
was given to PARROC for determining the optimal cutoff 
threshold. A similar metric in the literature is the cumula-
tive strain damage measure (CSDM) that is the fractional 
volume of the brain that exceeds a specified maximum 
principal strain threshold (e.g., BF-MPS30 is equivalent to 

CSDM30). CSDM was previously introduced as a potential 
predictor of TBI (Bandak and Eppinger 1994) and demon-
strated that can be linked to the severity of TBI (Kimpara 
and Iwamoto 2012). Similarly, the fraction-based metrics 
introduced in this study can provide an estimation of the 
volume of brain injury. The fraction of the axonal bundles/
brain predicted as damaged through FE simulations are 
required to be above a threshold value for the subject to be 
classified as injured using these 6 fraction-based metrics. 
The 12 selected FE-derived metrics used for TAI predic-
tion in this study are summarized in Table 4.

For each animal, the volume fraction of the brain that 
predicted as injured (damaged volume fraction, DVF) 
using each of the 6 fraction-based metrics was also calcu-
lated. The DVFs predicted by these 6 FE-derived metrics 
were compared to the AIV identified through histopathol-
ogy analysis for injured (n = 29) and non-injured animals 
(n = 13). For the brain-tissue-related metrics, the DVFs 
are equivalent to the values of BF-MPS, BF-MPSR, and 
BF-MPSxSR. For the axonal-related metrics, considering 
the axonal fiber-brain matrix fraction of ~ 0.5 used in our 
FEM [referring to the experimental study by Arbogast and 
Margulies (1999)], the fraction of axonal fiber predicted 
as injured (AF-MAS, AF-MASR, and AF-MASxSR) mul-
tiplied by 0.5 gives an estimation of the DVFs. To get 
the axonal fiber-brain matrix fraction of 0.5, the radius 
of 0.37 mm was used for the cross section of the axonal 
fiber elements in this study. Therefore, the DVFs based 
on the axonal-related metrics represent the volume within 
a radius of 0.37 mm around the axonal tracts that their 
MAS, MASR, or MASxSR values passed the selected 
injury thresholds.

Table 4   Summary of the 12 selected FE-derived deformation-related metrics used in this study to predict the presence or absence of traumatic 
axonal injury

Predictor candidate Description

MPS 95th percentile maximum principal strain of the brain tissue elements
MPSR 95th percentile maximum principal strain rate of the brain tissue elements, the strain rate for each element was calculated 

at every 0.1 ms time step as the discrete derivative of the 5-point moving-window-average smoothed first principal 
strain signal for each element

MPSxSR 95th percentile maximum principal strain times strain rate of brain tissue elements, strain times strain rate value for each 
element was calculated at every 0.1 ms time step by multiplying the first principal strain and its strain-rate value

MAS 95th percentile maximum axial logarithmic strain of the axonal fiber embedded elements
MASR 95th percentile maximum logarithmic strain rate of the axonal fiber embedded elements calculated similar to MPSR
MASxSR 95th percentile maximum logarithmic strain times strain rate of the axonal fiber embedded elements calculated similar to 

MPSxSR
BF-MPS30 Volume fraction of brain elements that passed MPS of 30, similar to CSDM30
BF-MPSR120 Volume fraction of brain elements that passed MPSR of 120 s−1

BF-MPSxSR28 Volume fraction of brain elements that passed MPSxSR of 28 s−1

AF-MAS13 Fraction of axonal embedded elements that passed MAS of 13
AF-MASR70 Fraction of axonal embedded elements that passed MASR of 70 s−1

AF-MASxSR7.5 Fraction of axonal embedded elements that passed MASxSR of 7.5 s−1
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2.6 � Development of TAI metrics

For each of the 12 selected TAI predictor candidates, 42 data 
points were computed from the FE simulations and a binary 
classifier was assigned to each data point to designate whether 
the animal was injured (1) or non-injured (0). Binary logistic 
regression (BLR) analysis, survival analysis with Weibull dis-
tribution, and receiver operating characteristic (ROC) curve 
analysis were then performed to examine and compare the 
abilities of the selected parameters to predict the presence or 
absence of clinically detectable TAI. These are the most com-
mon statistical methods currently used to develop injury risk 

curves and determine injury threshold values in the biome-
chanical field. The survival analysis with Weibull distribution 
is recommended over BLR analysis, especially when the dis-
tribution of the data is not normal which can lead to nonzero 
risk at zero value of predictor (Petitjean and Trosseille 2011). 
BLR risk curves (Eq. 10) and Weibull risk curves (Eq. 11) 
have distribution functions of the following form:

(10)P(x) =
ea+bx

1 + ea+bx

Fig. 5   The overall prediction accuracy rate (PARROC) and AUROC 
based on fraction-based metrics including a BF-MPS, b BF-MPSR, 
c BF-MPSxSR, d AF-MAS, e AF-MASR, and f AF-MASxSR using 

different selected MPS, MPSR, MPSxSR, MAS, MASR, MASxSR 
cutoff values to determine the optimal cutoff values resulting in the 
highest PARROC and AUROC for each of the fraction-based metrics
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where P(x) is the probability of TAI for the given value x 
of the predictor candidate, variables a and b are the regres-
sion coefficients for BLR risk curves, and α and β are scale 
and shape parameters for Weibull risk curves. The quality 
of fit for the BLR risk curves evaluated using the adjusted 
R-squared value (Mittlböck and Schemper 1998), which rep-
resent the quality of fit of the risk curves with a larger value 
indicating better fit and higher correlation with TAI. The 
Weibull risk curves were compared using the Akaike Infor-
mation Criterion (AICWeibull). Lower AICWeibull represents 
better fit model (Petitjean and Trosseille 2011).

ROC curves were also evaluated by the area under the 
ROC curves (AUROC), which is a measure of prediction 
performance with higher AUROC indicating better TAI 
predictive capability. The threshold values associated with 
50% likelihood of injury were extracted from the BLR 
curves and Weibull risk curves, and the optimal ROC 
threshold values, optimizing both specificity and sensi-
tivity giving equal weight to both (point on ROC curve 
closest to the (0, 1)), were extracted from ROC curves. 
The 50% likelihood and the optimal ROC threshold values 
were then used to evaluate the prediction performance of 
the injury metrics by calculating sensitivity, specificity, 
and overall accuracy rate with the following formulations:

where true positives (TP) and true negatives (TN) are 
the number of cases correctly identified as injured and 
non-injured, respectively. P is the number of real positive 
(injured) cases (P), and N is the number of real negative 
(non-injured) cases.

Overall, 12 criteria including AUROC, BLR R-squared, 
AICWeibull, overall prediction accuracy rate (PAR), sensi-
tivity (S), and specificity (SP) based on the optimal ROC 
thresholds (PARROC, SROC, and SPROC) and the 50% BLR 
risk thresholds (PAR50%-BLR, S50%-BLR, SP50%-BLR) and 
50% Weibull risk threshold (PAR50%-Weibull, S50%-Weibull, 
and SP50%-Weibull) were used to evaluate and compare the 
prediction performances of the 12 metrics. PARROC and 
AUROC were given the highest priority for determining 
the optimal TAI predictor.

(11)P(x) =

{

1 − e
−(

x

𝛼
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x ≥ 0

0 x < 0

}

(12)S = Sensitivity =
TP

P

(13)SP = Specificity =
TN

N

(14)PAR = overall prediction accuracy rate =
TN + TP

N + P

To obtain a more reliable evaluation of prediction perfor-
mance of the predictor candidates and prevent bias and over-
fitting of the risk curves, repeated k-fold cross-validation 
(CV) technique was used (Caragea et al. 2007; Yadav and 
Shukla 2016) in this study. In k-fold CV technique, instead 
of using all data as both the training dataset and the test 
dataset, the data were partitioned into k equal or nearly equal 
subsamples. The data for each of the 12 metrics were strati-
fied before partitioning in a way that each subsample had 
a good representative of the whole dataset in terms of the 
relative number of injured versus non-injured data points. At 
each iteration of k-fold CV, k-1 subsamples were combined 
and used as a training dataset to perform BLR, Weibull, 
and ROC analyses and determine the injury thresholds, and 
one subsample was left out as testing dataset to evaluate 
the injury prediction performance by calculating the overall 
accuracy rate, sensitivity, and specificity. For each parti-
tioning, k iterations were performed by changing the testing 
subsample one-by-one until every k subsample was used as 
the testing dataset once. The cross-validation process with 
k = 5 was used in this study that partitioned data to 79–83% 
as training and 17–21% as testing data at each iteration. A 
value of k = 5 was selected to ensure that the ‘one-in-ten’ 
rule (requiring 10 data points in each class for one predictive 
variable) was followed. To improve the reliability of the pre-
diction performance evaluation process even further, 5-fold 
CV was repeated 50 times, and the data were reshuffled, 
re-stratified, and re-partitioned before each repetition. For 
all predictor candidates, the optimal ROC threshold, 50% 
likelihood thresholds based on BLR and Weibull risk curves, 
AUROC, AICWeibull, BLR R-squared, PARROC, SROC, SPROC, 
PAR50%-BLR, S50%-BLR, SP50%-BLR, PAR50%-Weibull, S50%-Weibull, 
and SP50%-Weibull results that were obtained at all 250 itera-
tions (50 repetitions of 5-fold CV) were averaged and are 
reported in Tables 5, 6, and 7. Statistical analyses were per-
formed in MATLAB and R.

3 � Results

Simulations were run for 42 pig TBI experiments using 
the newly enhanced axonal tract embedded pig brain FEM 
to determine the optimal FE-derived metrics capable of 
predicting clinical TAI. Figure 5 shows a summary of the 
prediction performance for each of the 6 fraction-based 
metrics for different cutoff values. The prediction perfor-
mance is evaluated by the average PARROC and AUROC 
from 50-repeated 5-fold CV. For each fraction-based metric, 
the optimal cutoff values that led to the highest PARROC 
and AUROC were selected. The optimal cutoff values 
determined were 0.13, 70 (s−1), 7.5 (s−1), 0.3, 120 (s−1), 
and 28 (s−1) for MAS, MASR, MASxSR, MPS, MPSR, and 
MPSxSR, respectively. Interestingly, these optimal cutoff 
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values were the same or very similar to the thresholds that 
were obtained for magnitude-based metrics (Tables 5, 6, 7). 
For BF-MPSxSR, the cutoff values of 20 (s−1) to 28 (s−1) 
showed the same prediction capabilities. The cutoff value 
of 28 (s−1) was selected because the actual AIVs obtained 
from histopathology for these TBI experiments were small 
(< 2%) and the predicted damaged brain volume fraction for 
the MPSxSR cutoff value of 28 (s−1) (BF-MPSxSR28), as 
expected, was the smallest among the other cutoffs.

BLR, Weibull, and ROC curve analyses were performed 
for all 12 metrics, and the average and standard devia-
tion of the results for 50-repeated 5-fold CV are summa-
rized in Tables 5, 6, and 7. The probability curves for 

TAI prediction developed by BLR analysis and survival 
analysis with Weibull distribution based on these predic-
tor candidates are also illustrated in Figs. 6, 7, 8, and 9. 
In each graph, BLR and Weibull probability curves from 
the 50 repetitions of 5-fold CV (250 gray curves), devel-
oped using 79-83% of data in 250 iterations, represent a 
range of possible probability curve for TAI prediction. For 
the faction-based metrics, the BLR risk curves (Fig. 7) 
resulted in nonzero risks at zero value of the predictors 
(especially for BF-MPS30) and therefore the Weibull risk 
curves (Fig. 9) would be recommended for these metrics. 
The 12-selected metrics were compared using the 6 predic-
tion performance criteria including PARROC, PAR50%-BLR, 

Table 5   Averages and standard deviations of the results from the binary logistic regression analyses coupled with 50 repeated 5-fold cross-vali-
dation analyses (250 iterations) for predicting traumatic axonal injury based on all 12-predictor metrics

The most TAI predictive metrics are highlighted in bold

Overall prediction accu-
racy rate (PAR50%-BLR)

Sensitivity (S50%-BLR) Specificity (SP50%-BLR) R-squared 50% Likeli-
hood threshold 
(th50%-BLR)

MAS 76% ± 11% 90% ± 10% 44% ± 30% 0.35 ± 0.07 0.12 ± 0.002
MASR (s−1) 84% ± 11% 89% ± 15% 74% ± 27% 0.62 ± 0.07 66.45 ± 1.43
MAS × SR (s−1) 87% ± 10% 91% ± 10% 76% ± 26% 0.67 ± 0.07 4.87 ± 0.15
MPS 75% ± 8% 90% ± 8% 42% ± 21% 0.37 ± 0.10 0.29 ± 0.00
MPSR (s−1) 82% ± 9% 89% ± 12% 67% ± 22% 0.61 ± 0.11 140.86 ± 3.71
MPSxSR (s−1) 86% ± 8% 91% ± 9% 75% ± 19% 0.65 ± 0.09 24.91 ± 1.18
AF-MAS13 (%) 75% ± 14% 90% ± 12% 43% ± 30% 0.34 ± 0.07 3.65% ± 0.29%
AF-MASR70 (%) 82% ± 10% 82% ± 17% 81% ± 25% 0.59 ± 0.08 4.73% ± 0.52%
AF-MAS × SR7.5 (%) 87% ± 10% 91% ± 11% 77% ± 27% 0.67 ± 0.08 1.72% ± 0.15%
BF-MPS30 (%) 73% ± 12% 90% ± 12% 34% ± 29% 0.27 ± 0.06 2.49% ± 0.64%
BF-MPSR120 (%) 82% ± 13% 89% ± 17% 76% ± 25% 0.52 ± 0.10 8.92% ± 0.68%
BF-MPSxSR28 (%) 86% ± 11% 90% ± 11% 77% ± 25% 0.61 ± 0.08 3.01% ± 0.28%

Table 6   Averages and standard deviations of the results from the ROC curve analyses coupled with 50 repeated 5-fold cross-validation analyses 
(250 iterations) for predicting traumatic axonal injury based on all 12-predictor metrics

The most TAI predictive metrics are highlighted in bold

Overall prediction accu-
racy rate (PARROC)

Sensitivity (SROC) Specificity (SPROC) AUROC Optimal ROC 
threshold 
(thROC)

MAS 75% ± 14% 75% ± 17% 74% ± 27% 0.81 ± 0.04 0.13 ± 0.005
MASR (s−1) 81% ± 12% 84% ± 15% 77% ± 26% 0.93 ± 0.02 68.11 ± 1.24
MASxSR (s−1) 88% ± 11% 86% ± 14% 92% ± 16% 0.93 ± 0.02 5.86 ± 0.02
MPS 75% ± 15% 76% ± 17% 69% ± 18% 0.81 ± 0.05 0.30 ± 0.00
MPSR (s−1) 85% ± 11% 85% ± 14% 84% ± 16% 0.91 ± 0.04 146.47 ± 7.10
MPSxSR (s−1) 81% ± 12% 81% ± 16% 82% ± 19% 0.91 ± 0.03 29.31 ± 1.98
AF-MAS13 (%) 75% ± 14% 76% ± 19% 74% ± 28% 0.81 ± 0.04 5.01% ± 0.12%
AF-MASR70 (%) 84% ± 15% 86% ± 15% 77% ± 27% 0.93 ± 0.02 4.34% ± 0.38%
AF-MASxSR7.5 (%) 90% ± 10% 89% ± 13% 91% ± 20% 0.93 ± 0.02 2.58% ± 0.17%
BF-MPS30 (%) 74% ± 16% 79% ± 23% 62% ± 28% 0.78 ± 0.04 4.18% ± 0.57%
BF-MPSR120 (%) 86% ± 13% 90% ± 18% 77% ± 23% 0.89 ± 0.04 9.12% ± 2.54%
BF-MPSxSR28 (%) 87% ± 11% 86% ± 13% 90% ± 19% 0.92 ± 0.03 4.43% ± 0.38%
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PAR50%-Weibull, AUROC, AICWeibull, and BLR R-squared 
(Tables 5, 6, 7).

AUROC, which is a measure of discrimination per-
formance on the training datasets, showed average val-
ues ≥ 0.78 for all the 12 selected parameters and the aver-
age values ≥ 0.89 for the 8 metrics related to strain rate and 
the product of strain and strain rate. These high AUROC 
values indicate that any of the 12 parameters can discrimi-
nate the subjects that sustained TAI from the non-injured 
subjects. Also, higher AUROC for the strain rate-related 
metrics (SR ad SxSR) indicates that these metrics have 
higher discriminatory power for TAI than strain-based 
metrics. BLR R-squared values, which is a measure of the 
goodness of fit for the BLR curves on the training data-
sets, showed relatively high value for MASR, MASxSR, 
MPSR, MPSxSR and their optimal fraction-based metrics 
including AF-MASR70, AF-MASxSR7.5, BF-MPSR120, 
and BF-MPSxSR28 (R-squared = 0.60-0.67), indicating 
that there were high correlations between risk of TAI and 
these eight parameters and low overlap between their val-
ues for injured and non-injured cases. Lower values of 
R-squared from BLR analysis for MPS, MAS, BF-MPS30, 
and AF-MAS13 were observed (R-squared = 0.27-0.37) 
that indicates poor fit for the BLR curves for these metrics. 
Also, the lowest AICWeibul, which represent the best risk 
curve fit, were obtained for MASxSR and AF-MASxSR7.5 
metrics.

The average overall prediction accuracy rates (PARROC, 
PAR50%-Weibull, and PAR50%-BLR) and sensitivities (SROC, 
S50%-Weibull, and S50%-BLR), which represent the prediction per-
formance of the metrics in facing new data, were in the range 
of 73% to 90% for all the 12 metrics and were particularly high 
(>=85%) for the 4 metrics related to the product of strain and 

strain rate, indicating that these metrics are more predictive of 
TAI than the remaining metrics.

For each of the 12 selected metrics, the optimal ROC TAI 
threshold (Table 5, last column) determined from ROC analy-
sis and the 50%` likelihood TAI thresholds (Tables 5 and 7, last 
column) derived from BLR or Weibull analyses were similar. 
These thresholds are common and widely used in injury pre-
diction studies and thus were reported in this study. For the 
magnitude-based metrics, TAI thresholds of the axonal metrics 
were significantly lower than their corresponding thresholds of 
the brain tissue metrics, implying that the maximum principal 
strain direction of brain tissue following rapid rotation is not 
often aligned with the axonal bundles. The threshold values for 
the axonal-related fraction-based metrics indicate the percent-
age of the axonal fibers that are required to be above the cutoff 
values for the subject to be classified as injured. For instance, 
the 50% likelihood threshold of AF-MASxSR7.5 = 2.3% means 
that there is 50% probability of sustaining clinical TAI if 2.3% 
of the axonal fibers have MASxSR of 7.5 s−1 and above. The 
average and standard deviation of the damaged volume frac-
tion of the whole brain (DVF) predicted using each of the 
6 fraction-based metrics and AIV identified through histopa-
thology analysis are illustrated in Fig. 10 for injured (n = 29) 
and non-injured (n = 13) groups and were significantly higher 
(t test p value < 0.05) for the injured group compared to the 
non-injured group.

Table 7   Averages and standard deviations of the results from the survival analysis with Weibull distribution coupled with 50 repeated 5-fold 
cross-validation analyses (250 iterations) for predicting diffuse axonal injury based on all 12-predictor metrics

The most TAI predictive metrics are highlighted in bold

Overall prediction accuracy 
rate (PAR50%-Weibull)

Sensitivity (S50%-Weibull) Specificity 
(SP50%-Weibull)

AIC 50% Likeli-
hood threshold 
(th50%-Weibull)

MAS 76% ± 12% 89% ± 13% 45% ± 29% 36 ± 3 0.12 ± 0.002
MASR (s−1) 83% ± 12% 86% ± 15% 75% ± 27% 26 ± 3 67.1 ± 1.5
MASxSR (s−1) 86% ± 10% 90% ± 11% 76% ± 25% 23 ± 4 4.9 ± 0.1
MPS 75% ± 13% 89% ± 11% 41% ± 29% 36 ± 3 0.29 ± 0.00
MPSR (s−1) 81% ± 13% 87% ± 16% 70% ± 30% 27 ± 3 142.1 ± 2.9
MPSxSR (s−1) 85% ± 11% 90% ± 11% 75% ± 27% 24 ± 3 25.1 ± 0.8
AF-MAS13 (%) 75% ± 11% 89% ± 12% 42% ± 29% 36 ± 3 3.5% ± 0.3%
AF-MASR70 (%) 83% ± 12% 89% ± 15% 70% ± 29% 25 ± 3 5.3% ± 0.6%
AF-MASxSR7.5 (%) 86% ± 11% 93% ± 12% 70% ± 27% 23 ± 3 1.5% ± 0.1%
BF-MPS30 (%) 73% ± 11% 89% ± 11% 35% ± 29% 38 ± 2 2.7% ± 0.4%
BF-MPSR120 (%) 83% ± 13% 90% ± 9% 68% ± 29% 28 ± 1 7.9% ± 3.9%
BF-MPSxSR28 (%) 85% ± 11% 90% ± 12% 74% ± 27% 25 ± 2 2.3% ± 0.3%
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4 � Discussion

4.1 � Axonal tract embedded pig brain FEM

In this study, an anisotropic axonal tract embedded pig 
head FEM was developed and utilized to examine differ-
ent FE-derived tissue metrics for predicting TAI following 
rapid head rotations. As an improvement over the tract-
oriented method used in previous TBI studies in which the 
brain responses were required to project onto the averaged 
axonal fiber orientation calculated for each element, in 

the axonal-tract embedded method used herein the details 
of axonal tracts were explicitly incorporated. Embedding 
axonal tractography into brain FEM is particularly beneficial 
for investigating axonal injury prediction as it can provide 
more morphologically relevant insight into the mechanical 
responses of each individual axonal fiber over time dur-
ing the course of injury induced by rotation and/or impact 
simulations.

This study is the first to incorporate the detailed axonal 
tractography networks into an animal brain FEM using 
embedded element technique with the purpose of axonal 

Fig. 6   Binary logistic regression (BLR) TAI risk curves based on 
a MPS, b MPSR, c MPSxSR, d MAS, e MASR, f MASxSR. BLR 
curves from the 50 repeated 5-fold CV analyses (250 iterations) are 
shown in gray curves. BLR curve using the whole datapoints (29 
injured and 13 non-injured) as the training set is shown in black curve 

along with associated regression coefficients (a and b in legend) in 
each graph. The vertical black and red dash-dot lines indicate the 50% 
BLR risk thresholds and the optimal ROC thresholds, respectively. 
The depicted thresholds are the average of 50 repeated 5-fold CV 
analyses
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injury metric development. Moreover, our FE model was 
validated against in–vitro experiments performed using the 
same system and under similar loading conditions that were 
used for our TBI experiments. The center and direction of 
rotation as well as the magnitude of applied kinematics were 
precisely controlled, measured, and replicated in simula-
tions. Also, the extent and location of axonal injuries were 
precisely quantified through histopathology examinations for 
animal TBI data used in this study.

4.2 � Traumatic diffuse axonal injury prediction 
performances of FE‑derived metrics

After the development of our axonal tract embedded pig 
FEM and validation of its deformation response, the model 
was used to develop injury risk curves and predict subject-
sustained TAI with FE-derived metrics.

The conservative and rigorous approach used in the injury 
metric development and validation indicated that any of the 

Fig. 7   BLR TAI risk curves based on a BF-MPS30, b BF-MPSR120, 
c BF-MPSxSR28, d AF-MAS13, e AF-MASR70, f AF-MASxSR7.5, 
BLR curves from the 50 repeated 5-fold CV analyses are shown in 
gray curves. BLR curve using the whole datapoints (29 injured indi-

cated with red filled markers and 13 non-injured indicated with open 
blue markers) as the training set is shown in black curve along with 
associated regression coefficients (a and b in legend) in each graph. 
The vertical black and red dash-dot lines
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12 selected metrics were capable of predicting the presence 
of TAI with an overall accuracy rate of 73–90% and sensitiv-
ity of 75–93%. Evaluating the metrics on the same training 
datasets used for metrics development, which is a common 
approach in the literature, showed up to 8% higher prediction 
accuracy rates. Interestingly, for each of the fraction-based 
metric, the optimal cutoff value, obtained based on ROC 
analysis to maximize the overall prediction accuracy rate 
(PARROC) and AUROCs (Fig. 5), was the same or very close 
to the optimal ROC threshold value determined based on 
its correlated magnitude-based (95th percentile maximum 

value) metric. This similarity reassured the threshold val-
ues determined for the 6 selected magnitude-based metrics 
(MPS, MAS, MPSR, MASR, MPSxSR, and MASxSR) in 
this study. The prediction performances of fraction-based 
metrics were similar to their rival magnitude-based metrics; 
however, each has its own advantage. Magnitude-based met-
rics, especially axonal related ones, have potential to provide 
insights into the distribution of possible axonal damages 
areas, while fraction-based metrics, again especially axonal 
related one, can give an estimation of the extent/volume of 
axonal injury.

Fig. 8   Survival TAI risk curves with Weibull distribution based on a 
MPS, b MPSR, c MPSxSR, d MAS, e MASR, f MASxSR. Survival 
risk curves from the 50 repeated 5-fold CV analyses (250 iterations) 
are shown in gray curves. Survival risk curve using the whole data-
points (29 injured and 13 non-injured) as the training set is shown in 

black curve along with associated scale and shape coefficients (α and 
β in legend) in each graph. The vertical black dash-dot lines indicate 
the 50% risk level thresholds. The depicted thresholds are the average 
of 50 repeated 5-fold CV analyses
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Slightly better predictions were found for the axonal-
based metrics than metrics associated with brain tissue 
response in identifying the absence or presence of TAI 
(Tables 5, 6, 7). There are only a few computational stud-
ies in the literature that evaluated and compared the axonal 
injury prediction performances of the MAS and MPS met-
rics (Giordano and Kleiven 2014b; Sahoo et al. 2016; Sul-
livan et al. 2015) using a tract-oriented approach instead of 
an axonal embedded FE models, and similar to our find-
ings, they found that maximum axonal tract-oriented strain 

(similar to MAS in this study) performed better in predicting 
TAI in piglets (Sullivan et al. 2015) or concussion and/or dif-
fuse axonal injury in human (Giordano and Kleiven 2014b; 
Zhao et al. 2017) compared to MPS.

On the other hand, the DVF predicted by each of the FE-
derived metrics was higher than the axonal injury volume 
obtained from histopathology analysis (Fig. 8). DVFs pre-
dicted based on the axonal-related metrics, especially AF-
MASxSR7.5, were smaller than DVFs predicted based the 
brain-related metrics suggesting that incorporating axonal 

Fig. 9   Survival TAI risk curves with Weibull distribution based 
on a BF-MPS30, b BF-MPSR120, c BF-MPSxSR28, d AF-MAS13, 
e AF-MASR70, f AF-MASxSR7.5. Survival risk curves from the 
50 repeated 5-fold CV analyses (250 iterations) are shown in gray 
curves. Survival risk curve using the whole datapoints (29 injured 

and 13 non-injured) as the training set is shown in black curve along 
with associated scale and shape coefficients (α and β in legend) 
in each graph. The vertical black dash-dot lines indicate the 50% 
risk level thresholds. The depicted thresholds are the average of 50 
repeated 5-fold CV analyses
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bundle into the FEM may have improved the overprediction 
of the FE-derived brain-related metrics.

Quantitative analysis of TAI prediction capability, eval-
uated by different prediction/discriminatory performance 
criteria including PARROC, PAR50%-BLR, PAR50%-Weibull, 
AUROC, AICWeibull, and BLR R-squared (Tables 5, 6, 7), 
revealed that the metrics related to strain rate and the product 
of strain and strain rate were better predictors of TAI than the 
parameters that are solely based on strain. Only a few com-
putational studies have investigated the metrics related to 
strain rate for prediction of axonal injury (King et al. 2003; 
Sahoo et al. 2016; Sullivan et al. 2015) and most of them 
agree with our findings. King et al. (2003) reconstructed 
the 53 subject NFL dataset and showed that strain rate and 
the product of strain and strain rate in the midbrain region 
were the best injury predictors for concussion in human. 
Sullivan et al. (2015) also showed that tract-oriented strain 
rate and strain times strain rate were better predictors of TAI 
than metrics solely based on strain. Only one study found 
maximum tract-oriented strain to be a better predictor of TAI 
than maximum tract-oriented strain rate (Sahoo et al. 2016).

Many in–vitro (Bar-Kochba et al. 2016; Cullen et al. 
2007; Nakadate et al. 2017), in–vivo (Singh et al. 2009) 
and ex–vivo (Shi and Whitebone 2006) studies, that exam-
ined combinations of different strain and strain-rate mag-
nitudes, also suggested that the extent of neuronal and 
axonal injury were not solely dependent on strain but also 
highly sensitive to strain rate. For instance, Nakadate et al. 
(2017) performed stretching experiments on cultured neu-
rons to strain of 0.1, 0.15, 0.2 at strain rates of 10, 30, 50 
and 70 s−1 and found that axonal tolerance as evidenced by 
the formation of axonal swellings and bulbs was strongly 

strain rate dependent at higher strain (0.15 and 0.2) but not 
under low strain (0.1). Similarly, Cullen et al. (2007) per-
formed shear deformation (strain of 0.5) on in–vitro 3-D 
neuronal–astrocytic co-cultures at strain rates of 1, 10, and 
30 s−1 and found that neuronal viability reduced significantly 
at the highest strain rate (30 s−1) and neuronal cell death 
increased significantly at strain rates of 30 s−1 and 10 s−1 
(Cullen et al. 2007), suggesting that the extent of neuronal 
injury was significantly dependent on strain rate for the case 
of large magnitude deformation (0.5). In another in–vitro 
study, Bar-Kochba et al. (2016) found that at a strain of 0.3, 
the extent of injury as assessed by the neuronal cell death 
and neurite blebbing formation is higher at strain rate of 
75 s−1 than at strain rate of 10 s−1 (Bar-Kochba et al. 2016). 
Similarly, an ex–vivo tensile stretch study of spinal cord by 
Shi and Whitebone (2006) also showed that strain of 0.25 at 
the high rates (355–519 s−1) caused more axonal damage, 
both structurally and functionally, than very low strain rates 
(0.006–0.008 s−1) even at much higher strain (up to 1). Singh 
et al. (2009), an in–vivo tensile stretch study of spinal nerve 
roots, also found that the extent of morphological/structural 
and functional traumatic axonal injuries are dependent on 
both strain and strain rate, and axons are more vulnerable at 
higher strain rates. Although all these experimental studies 
emphasized the importance of both strain and strain rate on 
axonal injury and suggested that higher strain rate reduces 
the strain threshold for axonal injury, most of computational 
TBI studies focus solely on strain-based metrics. The results 
of the current study also stress the importance of including 
strain-rate-based metrics (SR and SxSR) and using the com-
bination of strain and strain rate for axonal injury prediction 
in the future TBI studies.

Fig. 10   The average volume 
fraction of the whole brain 
determined to have axonal 
damaged through histopathol-
ogy analyses (AIV-Histo) and 
predicted as damaged through 
FE simulations based on axonal 
fiber elements passed MAS of 
13% (DVF-MAS13), MASR 
of 65 s−1 (DVF-MASR70), or 
MASxSR of 7.5 s−1 (DVF-
MASxSR7.5), or based on 
brain elements passed MPS 
of 30% (DVF-MPS30), MPSR 
of 120 s−1 (DVF-MPSR120), 
or MPSxSR of 28 s−1 (DVF-
MPSxSR28) for 13 non-injured 
and 29 injured pigs 0
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4.3 � Traumatic diffuse axonal injury thresholds

In this study, the axial logarithmic axonal bundle deforma-
tion tolerance for TAI was found to be 0.12-0.13. This pre-
dicted MAS threshold was in good agreement with injury 
thresholds observed in many in–vivo, in–vitro, and ex–vivo 
studies of isolated axons and nerve fibers. For instance, an 
in–vivo stretch study by Kwan et al. (1992) found axial strain 
of 0.12 to be the threshold for a complete conduction block 
in peripheral nerves. Another in–vivo study by Singh et al. 
(2009) also found strains of 0.16, 0.10, and 0.09, at rate of 
0.01 mm/s, 1 mm/s, and 15 mm/s, respectively, as the thresh-
olds for 50% probability of complete conduction block in the 
spinal nerve roots causing functional axonal injuries which 
agree well with the MAS threshold determined in this study. 
In another in–vivo axonal stretch study conducted on guinea 
pig optic nerve, Bain and Meaney (2000) found the ROC 
optimal Lagrangian strain thresholds of 0.18 for occurrence 
of electrophysiological impairment and 0.21 for occurrence 
of morphological injury as evidenced by axonal swelling 
or retraction bulbs detected with NF68 immunohistochemi-
cal staining (Bain and Meaney 2000). This higher threshold 
found in their study in comparison with our results may be 
attributed to three factors. First, they reported Lagrangian 
strain while we are reporting logarithmic strain. The equiva-
lent logarithmic strain values for Lagrangian strain values of 
0.18 and 0.21 are 0.15 and 0.17, respectively. Second, they 
noted that axons in the guinea pig optic nerve are undulated 
which might have potentially increased the strain neces-
sary to produce injury (Bain and Meaney 2000). Third, they 
used NF68 immunohistochemical staining which might be 
less sensitive (Ibrahim et al. 2010b) to axonal damage than 
β-APP staining that we used in this study. β-APP has shown 
to be able to detect axonal flow disruption which can be 
occurred even before axonal structural damage that is detect-
able with NF68 staining (Ibrahim et al. 2010b). The MASR 
of 66–70 s−1 and MASxSR 5-7.5 s−1 (Tables 5, 6, 7, Fig. 5e, 
f) were also determined as the axial axonal bundle strain rate 
(SR) and strain/strain-rate combination (SxSR) tolerances 
for TAI. There is no experimental study currently available 
in the literature that examined sufficient combinations of 
strain and strain rate to measure SR/SxSR TAI threshold; 
however, many in–vitro studies (Bar-Kochba et al. 2016; 
Cullen et al. 2007; Nakadate et al. 2017) reported neuronal 
cell death, neurite/axonal swelling or bulb formations at 
strain rate ranging from 10 to 75 s−1 at different strain lev-
els. For instance, Nakadate et al. (2017) found that formation 
of axonal swelling and/or bulb, similar to pathology seen in 
TAI, significantly increased at SR of 50 s−1 and 70 s−1 (but 
not lower SR) for strain of 0.15 (SxSR = 7.5–10.5) and at SR 
of 30 s−1 and above for strain of 0.2 (SxSR = 6) when com-
pared with sham control. Although the FE-derived thresh-
olds determined in this study compared favorably to the 

tissue injury thresholds found from in–vitro studies, it should 
be acknowledged that the scale of these measurements may 
not necessarily be the same as our values obtained from the 
meso-/macroscale FEM, while the in–vivo/in–vitro thresh-
old values determined at the micro-/mesoscale levels. Also, 
the strain rates may be calculated with different processing 
methods and/or time frequencies among these experimental 
studies and ours.

The MAS thresholds determined in this study for TAI in 
piglets are also comparable with maximum tract-oriented 
strain (equivalent to MAS in this study) thresholds of 0.073-
0.146 found for human concussion or diffuse axonal injury in 
previous TBI computational studies (Giordano and Kleiven 
2014b; Sahoo et al. 2016; Zhao et al. 2017). To our knowl-
edge, there is only one human TBI computational study 
(Sahoo et al. 2016) that reported maximum axonal strain-
rate threshold for human DAI and their threshold (80 s−1) 
is comparable to the MASR threshold (66–70 s−1) that was 
found for TAI in piglets. Although these similarities between 
the TBI thresholds determined using different FEMs are 
encouraging, any translation or application of these thresh-
olds to other FEM studies should be handled with caution 
because the FEM results are dependent on various factors 
such as modeling technique, material models and properties, 
element formation, and the model response validation pro-
cess. For the strain rates, the results are also dependent on 
the output time frequencies and post-processing approaches.

A fundamental assumption in most of TBI studies is that 
the CNS tissue injury tolerances do not vary significantly 
in different species as evidenced by similarities in cellular 
structures and pathophysiology alternations of CNS tissues 
across species (Bain and Meaney 2000). The similarities 
between the deformation-related thresholds determined for 
TAI in piglet in this study and the thresholds reported for 
concussion and/or diffuse axonal injury in human in the lit-
erature support this hypothesis. Therefore, the thresholds 
for TAI in piglets determined herein may be translatable to 
human.

For the global brain tissue response, we obtained MPS 
of 0.29–0.30, MPSR of 120–146  s−1, and MPSxSR of 
24.91–29.31 s−1 as the tolerances for TAI. These thresholds 
are much higher than their axonal-related corresponding 
thresholds (S, SR, SxSR), indicating that the maximum prin-
cipal strain directions of brain tissue are not often aligned 
with the axonal bundles. Similar results were found in previ-
ous experimental and computational studies (Giordano and 
Kleiven 2014b; Sullivan et al. 2015; Tamura et al. 2007). 
For instance, Tamura et  al. (2007) in a uniaxial stretch 
study on the fresh porcine brain found much smaller (~ 1/3) 
neuronal fiber strain, which closely correlated with strain 
in the neuronal fiber direction, than the global brain tissue 
strain. In a computational study, Sullivan et al. (2015) also 
reported smaller tract-oriented strain, strain rate, and SxSR 
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thresholds than the ones for the brain tissue for predicting 
TAI in pigs. In another computational study, Giordano and 
Kleiven (2014b) also found the tract-oriented strains to be on 
average 75% smaller than the brain tissue principal strains.

4.4 � Limitations and path forward

Several limitations with the study should be acknowledged 
which are deserved for future considerations. The element 
embedding method used in this study did not allow for rela-
tive movement of the axonal fibers elements within the solid 
brain elements. While it is possible to include a slip response 
for the embedded elements, it is not known whether this 
would be an improvement in the biofidelity of the model. 
Also, the metric thresholds derived in this study determined 
the overall absence or presence of TAI based on the response 
of the whole brain but not the brain regional responses. The 
pig FEM used in this study was an idealized model in which 
only a few anatomical regions (corpus callosum, white mat-
ter, lateral ventricle) were segmented. Future studies should 
focus on investigating regional dependency of tissue toler-
ances and deriving region-specific metric thresholds. Also, 
the relatively coarse mesh of the brain FEM used in this 
study might have contributed to the higher DVF estimations 
obtained from the brain-related metrics herein. Moreover, 
the axonal injury volumes were quantified at every 3 mm 
throughout the brain in this study via histopathology analy-
sis. Finer brain slice increments can increase the resolution 
of AIV calculations and thus improve the TAI assessment 
in future studies.

5 � Summary

Although diffuse axonal injury is widely recognized as one 
of the pathological hallmark of mTBI, a complete under-
standing of tissue thresholds leading to TAI is challenging. 
These challenges are further compounded by biofidelity lim-
itations that exist in finite element modeling considering the 
anisotropy of brain tissue due to the structural distribution 
of axons. To address these challenges, in this study an ani-
sotropic piglet multi-scale brain finite element model with 
embedded axon tractorgraphy was developed, validated, and 
used for predicting axonal injury during rapid head rota-
tions. Injury thresholds derived from this model compared 
well with in–vitro and in–vivo studies investigating the 
mechanical tolerance of axonal/neuronal tissue. Predicted 
injury thresholds that were based on axonal response showed 
slightly improved TAI prediction performance with 1–7% 
higher prediction accuracy rate than metrics that were based 
on general brain tissue response. Metrics related to the prod-
uct of strain and strain rate were found to be better predic-
tors of TAI with 11–15% higher PAR than metrics that were 

solely based on strain. In addition, the axonal-related thresh-
olds, especially AF-MASxSR7.5, provided more realistic 
damaged volume fraction estimations (DVF = 0.05–10.2%, 
for AF-MASxSR7.5: DVF = 0.05–4.5%), closer to the 
actual axonal injury volume obtained from histopathol-
ogy (0.02–1.6%), than the general brain tissue thresholds 
(DVF = 0.11–41.2%). Overall, metrics related to the product 
of strain and strain rate (SxSR) were found to be much bet-
ter predictors of TAI than metrics that were solely based 
on strain. As such, the axonal injury thresholds based on 
the product of strain and strain rate should be considered in 
the future. The FE-derived tissue injury thresholds for TAI 
in piglets determined herein may be directly translatable to 
human. In addition, the modeling methodology used in this 
study can be used for modeling of TBI in humans and is 
expected to improve the TAI prediction capability of FEM 
results in humans.
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