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Abstract
We propose and analyse the properties of a new class of models for the electromechanics of cardiac tissue. The set of govern-
ing equations consists of nonlinear elasticity using a viscoelastic and orthotropic exponential constitutive law, for both active 
stress and active strain formulations of active mechanics, coupled with a four-variable phenomenological model for human 
cardiac cell electrophysiology, which produces an accurate description of the action potential. The conductivities in the model 
of electric propagation are modified according to stress, inducing an additional degree of nonlinearity and anisotropy in the 
coupling mechanisms, and the activation model assumes a simplified stretch–calcium interaction generating active tension 
or active strain. The influence of the new terms in the electromechanical model is evaluated through a sensitivity analysis, 
and we provide numerical validation through a set of computational tests using a novel mixed-primal finite element scheme.

Keywords  Orthotropic nonlinear elasticity · Mixed-primal finite element method · Kirchhoff stress formulation · Stress-
assisted diffusion · Viscoelastic response · Cardiac electromechanics

Mathematics Subject Classification  65M60 · 92C10 · 74S05 · 74F99 · 74D10

1  Introduction

In order to effectively combat cardiovascular disease, we 
need a robust scientific understanding of the mechanisms of 
the heart and the nature of such health conditions. Recent 
progress in the field is encouraging; the concept of patient-
specific treatment is no longer a distant dream, but a con-
ceivable reality and a topic of ongoing research. However, 
a major difficulty is our incomplete knowledge about the 
relationship between processes at the cellular and sub-cel-
lular level, and the performance of the organ as a whole 
(Augustin et al. 2016). Indeed, a great deal of treatment is 
still based on trial-and-error experimentation rather than a 
more fundamental scientific understanding of the changes 
responsible for the onset and progression of disease (Gök-
tepe et al. 2013). Several treatments, such as resynchronisa-
tion therapy and anti-arrhythmic medications, for example, 
are known to be ineffective or even exacerbate pathological 
conditions in some patients, for reasons that are not yet well 
understood (Jaffe and Morin 2014). One potential obstacle 
to deep understanding of cardiac function is the difficulty of 
acquiring sufficiently detailed data. Until recently, there were 
no experimental techniques capable of recording 3D cardiac 
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activity with high enough spatiotemporal resolution to pro-
vide the required level of information. However, relatively 
recent studies (see, for example, Christoph et al. 2018) have 
used optical mapping to assess electromechanical waves 
with acceptable physiological accuracy.

Computational models have thus been critical in allowing 
for extensive study of the heart even without sufficient data. 
The development of complex multiscale and multiphysics 
models, accompanied by advances in simulation and imag-
ing techniques, has enabled researchers to investigate the 
many different aspects of cardiac function and disease. The 
hope is that the knowledge gained from these models can 
contribute to new and improved treatment methods. Even 
though the problem of cardiac electromechanics has been 
the focus of a large number of modelling and computational 
studies (see, for instance, Augustin et al. 2016; Cherubini 
et al. 2012; Franzone et al. 2016; Costabal et al. 2017; Gizzi 
et al. 2015; Göktepe et al. 2013; Nobile et al. 2012; Quar-
teroni et al. 2017; Sundnes et al. 2014 and the references 
therein), there still remain many challenges in the develop-
ment of more accurate and detailed models and the accom-
panying methods.

In such a context, the large majority of the proposed 
approaches rely on continuum formulations of the complex 
microstructural interactions occurring among the heart tis-
sue components, e.g. cardiomyocytes, involving different 
scales (Quarteroni et al. 2017). The study of single cell and 
cell–cell (Lenarda et al. 2018) chemomechanical and elec-
tromechanical interactions has attempted to unveil some of 
the underlying complex features of the cardiac function, and 
different multifield nonlinear models have been gradually 
generalising classical approaches such as the monodomain 
equations and Fick’s law of diffusion. In particular, frac-
tional diffusion (Cusimano et al. 2018), nonlinear diffusion 
(Hurtado et al. 2016), and stress-assisted diffusion formu-
lations (Cherubini et al. 2017) were recently proposed to 
reproduce porous multiscale excitation phenomena within 
the framework of homogenised models for cardiac tissue. 
These studies, in fact, paved the route towards new chal-
lenging theoretical and computational problems aiming at a 
reliable in silico prediction of heart rate variability, cardiac 
repolarisation, and inducibility of life-threatening arrhyth-
mias (Phadumdeo and Weinberg 2018). At the same time, 
macroscale incompressibility, orthotropic, and hysteretic 
mechanical features have been shown to fully characterise 
the human cardiac tissue under multiaxial loading tests (see, 
for example, Gültekin et al. 2016 and references therein). 
Viscosity properties, in particular, have been incorporated 
as one spring element coupled with Maxwell elements in 
parallel endowing the model with hysteretic characteris-
tics describing the viscous response due to matrix, fibre, 
sheet, and fibre–sheet couplings through four dedicated 
dashpots (Gültekin et al. 2016). Also in this case, a porous 

medium motivation has been advanced in Yao et al. (2012), 
including the extracellular fluid filtrating through the elastic 
body, contributed by the active contractile behaviour of the 
muscle. However, complete agreement concerning the spe-
cific multiscale features involved in energy dissipation for 
the cardiac tissue, and soft biological tissues in general, is 
still lacking. The stress evolution equations for time-depend-
ent viscous behaviour are based on finite-strain viscoelastic-
ity (Holzapfel and Gasser 2001), motivated by a rheological 
analogue from Simo 1987, and endowed with equilibrium 
and non-equilibrium contributions (Lubliner 1985) in which 
the usual assumption of volume-preserving deformations 
during time-dependent responses is made.

A distinguishing feature of our approach is the introduc-
tion of the mechanoelectrical feedback (MEF) in the electric 
conductivities, through a direct dependence on the Kirchhoff 
stress. This framework, known as stress-assisted diffusion 
(SAD), is widely employed in the modelling of gels and 
polymers (Klepach and Zohdi 2014), but has only recently 
been adapted for active biological media undergoing reac-
tion–diffusion excitation (Cherubini et al. 2017), and more 
tailored for cardiac models in Loppini et al. (2018). While 
these contributions consider hyperelastic formulations cou-
pled with multiphysics activation mechanisms, we also con-
sider here the viscoelastic effects typical of soft microstruc-
tured fibre-reinforced biological tissues, and using realistic 
ventricular geometries. Fully mixed methods for the hyper-
elasticity of the cardiac tissue (that is, formulations involv-
ing stresses or strains in addition to simply displacement or 
displacement–pressure) are not yet widely employed. They 
have been introduced in Ruiz-Baier (2015) and used more 
recently in Cherubini et al. (2017), Garcia-Blanco et al. 
(2019), and Ruiz-Baier et al. (2019). In the present case, 
our model and our numerical method include a three-field 
elasticity formulation (variationally based on a modification 
of the Hu–Washizu principle (Lamichhane et al. 2006)) that 
states the governing equations in terms of stress–displace-
ment–pressure, motivated by the desire to avoid volumetric 
locking and to solve directly for additional variables of inter-
est. In particular, we solve for the Kirchhoff stress, which 
we use explicitly in our incorporation of SAD. This formu-
lation includes a pressure stabilisation term needed, in the 
lowest-order case, for triangular or for tetrahedral meshes. It 
constitutes a generalisation of the three-field formulation for 
nearly incompressible hyperelasticity, designed in Chavan 
et al. (2007) using quadrilateral meshes. Another difference 
in the present contribution is that we employ a more accu-
rate cellular model, tailored for recovering human action 
potential dynamics, restitution features under constant pac-
ing as well as sustained fibrillation behaviours and spiral 
waves breakup (Bueno-Orovio et al. 2008). While the active 
strain approach is adopted in many instances in the literature 
and is often favoured due to the practicality of measuring 
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strains directly using imaging techniques (Rossi et al. 2014), 
the active stress approach is somewhat simpler and more 
naturally incorporated in already existing models for passive 
deformation (Giantesio et al. 2019). In this work, we will 
adopt both formulations, although we find that the active 
strain formulation better reproduces physiologically accurate 
deformation regimes in ventricular geometries. To the best 
of our knowledge, no previous attempts have been made 
incorporating both active stress and active strain within a 
generalised stress-assisted reaction–diffusion formalism and 
embedding orthotropy, incompressibility and viscoelasticity 
for human cardiac ventricular domains.

This paper has been structured in the following manner. 
Section 2 lays out the elements of the mathematical model 
that describes the electro-viscoelastic function of the heart, 
including the active contraction of the cardiac muscle and 
the representation of the mechanoelectric feedback using 
stress-assisted conductivity, as well as a contribution from 
geometric nonlinearities (or geometrical feedback). The 
passive hyperelastic response of the tissue is described 
by an orthotropic exponential model, whereas the ionic 
activity which causes active contraction is incorporated 
through orthotropic active stress. Active strain will also be 
addressed. The specific structure of the governing equations 
(written in terms of stress, displacements, electric potential, 
activation generation, and ionic variables) suggests to cast 
the problem in a mixed-primal form, and to use a mixed-
primal finite element method for its numerical approxima-
tion. This is precisely the method that we outline in Sect. 3, 
which also includes a description of the consistent linearisa-
tion and implementation details. Our computational results 
in 2D and 3D, along with numerical validation and perti-
nent discussions on the modelling considerations, are then 
presented in Sect. 4. We close with a summary and some 
remarks on model limitations and ongoing extensions, col-
lected in Sect. 5.

2 � Mathematical model

2.1 � Finite‑strain cardiac mechanics

Let 𝛺 ⊂ ℝ
d , d ∈ {2, 3} , denote a deformable body with 

a piecewise smooth boundary �� , considered in its ref-
erence configuration, and let n denote the outward unit 
normal vector on �� . The kinematical description of finite 
deformations regarded on a time interval t ∈ (0, tfinal] is 
made precise as follows. A material point in � is denoted 
by x , whereas u(t) ∶ � → ℝ

d will denote the displacement 
field defining its new position in the deformed configura-
tion. The tensor � ∶= � + ∇u is the gradient (applied with 
respect to the fixed material coordinates) of the deforma-
tion map; its determinant, denoted by J = det� , measures 

the solid volume change during the deformation; and 
� = ��� and � = ��� are, respectively, the right and left 
Cauchy–Green deformation tensors on which all strain 
measures will be based (here the superscript ()� denotes 
the transpose operator). The first isotropic invariant ruling 
deviatoric effects is the scalar I1(�) = tr� , and for generic 
unitary vectors f 0, s0 , the scalars I4,f (�) = f 0 ⋅ (�f 0) , 
I4,s(�) = s0 ⋅ (�s0) , I8,fs(�) = f 0 ⋅ (�s0) are pseudo-invar-
iants of � measuring direction-specific stretch (Ciarlet 
1988).

The triplet (f 0(x), s0(x), n0(x)) represents an orthogonal 
coordinate system pointing in the local direction of the 
muscular cardiac fibres, transversal sheetlet compound, 
and normal cross-fibre direction n0(x) = f 0(x) × s0(x) . Note 
that the system is restricted to (f 0(x), s0(x)) in the two-
dimensional case, and that these directions are defined in 
the reference configuration. Constitutive relations charac-
terising the material properties and underlying microstruc-
ture of the myocardial tissue will follow the orthotropic 
model proposed in Holzapfel and Ogden (2009), whose 
strain energy density (relating the amount of energy stored 
within the material in response [joule/volume] to strain, 
and which assumes an additive decomposition into iso-
tropic, volumetric, and anisotropic contributions) and the 
first Piola–Kirchhoff stress tensor (associated with a pas-
sive, elastic deformation) read, respectively

where a, b are material constants associated with the iso-
tropic matrix response, af  and bf  rule the directional behav-
iour of the material along myocardial fibres, as and bs account 
for the cross-contribution of the fibre–sheet directions, and 
afs, bfs encapsulate the shear effects in the fibre–sheet plane. 
Moreover, the field p denotes the solid hydrostatic pressure, 
and we use the notation (u)+ ∶= u if u > 0 or zero otherwise, 
for a generic real-valued function u. This modelling choice is 
appropriate given that fibres have a quite different behaviour 
under compression or tension regimes. In addition, taking 
the positive part of the exponents in the anisotropic energy 
results in excluding anisotropic energetic contributions for 
compressed fibre configurations, which in the case of passive 
fibres should have an effect only during extension (Pezzuto 
et al. 2014). We remark here that the particular mechanisms 
of soft tissue anisotropic mechanical behaviour are still 
under investigation (Humphrey et al. 2014), and the chosen 
formulation may not be the most general one. Moreover, 

(2.1)

�pas(�) =
a

2b
eb(I1−d) +

∑
i∈{f ,s}

ai

2bi

[
ebi(I4,i−1)

2
+ − 1

]

+
afs

2bfs

[
ebfs(I8,fs)

2

− 1
]
,

�pas =
��pas

��
− pJ�−�,



636	 A. Propp et al.

1 3

full incompressibility of the tissue will be enforced in the 
present framework, and this has some advantages associated 
with the mathematical and numerical structure of the sys-
tem. Although biological tissues possess a complex porous 
structure, compression features are still being systematically 
investigated ex vivo, and a more comprehensive answer on 
the subject is still needed (McEvoy et al. 2018).

2.2 � Active stress and active strain

In physiological scenarios, the mechanical deformation is 
also actively influenced by microscopic tension generation.

Active stress model. A simple description is given in 
terms of active stresses (see, for instance, Sundnes et al. 
2014): we assume that the first Piola-Kirchhoff stress tensor 
decomposes as

where the active stress component acts differently on each 
local direction with an intensity depending on the scalar 
field of active tension Ta , that synthesises (in an homog-
enised sense) the biochemical state of myocytes (and whose 
dynamic behaviour will be specified later on). Then,

where �sn, �nn are positive constants represent-
ing the variation of activation on each specific 
direction, as proposed in Dorri et  al. (2006), and 
�f =

√
I4,f , �s =

√
I4,s, �n =

√
n0 ⋅ (�n0) are the fibre, 

sheetlet, and cross-fibre stretches. Setting appropriate mod-
els for �act is not a trivial task since the active contribution 
to the force should account for the geometric properties of 
deformation, and these undergo substantial changes during 
contraction in the finite-strain regime (Pezzuto et al. 2014). 
Details of other anisotropic activation forms can be found, 
for instance, in Rossi et al. (2014) for active strain and in 
(Usyk et al. 2000, Appendix B) for active stress descriptions, 
but they are basically responsible for additional deforma-
tion effects such as wall thickening, radial constriction and 
torsion, as well as longitudinal shortening. Note that the 
active Cauchy stress does not include a contribution on the 
diagonal entry associated with the local sheetlet direction s0 
since a stress component on this direction would counteract 
wall thickening mechanisms (Dorri et al. 2006). Moreover, 
the intensity of the active tension effect on the cross-fibre 
direction n0 is assumed to be substantially smaller than that 

(2.2)� = �pas + �act,

(2.3)

�act = J�act�
−�, with

�act =
Ta

J𝜆f
�f 0 ⊗ �f 0 +

𝜅snTa
J𝜆s𝜆n

sym(�s0 ⊗ �n0)

+
𝜅nnTa
J𝜆n

�n0 ⊗ �n0,

appearing on the off-diagonal component sym(�s0 ⊗ �n0) ; 
see Table 2. Also note that some references do not include 
a normalisation with local stretches in each term of �act

. Finally, these constitutive laws are usually not derived from 
a thermodynamic potential.

Active strain model. Next we recall the active strain model 
for ventricular electromechanics (see, for example, Cherubini 
et al. 2008). The contraction of the tissue results from activa-
tion mechanisms governed by internal variables and incor-
porated into the finite elasticity context using a multiplica-
tive decomposition of the deformation gradient into a passive 
(purely elastic) and an active part, � = �E�A , with

The coefficients �i , with i = f , s, n , are smooth scalar func-
tions encoding the macroscopic stretch in specific directions, 
whose precise definition will be postponed to (2.15). The 
inelastic contribution to the deformation modifies the length 
and potentially also the shape of the cardiac fibres, and then, 
compatibility of the motion is restored through an elastic 
deformation accommodating the active strain distortion. A 
physiological motivation for the active strain approach is 
related to the shortening of sarcomeres as a response to the 
sliding filaments of the actin–myosin molecular motor: such 
shortening is encapsulated in �A , which determines a new 
(and fictitious, or virtual) intermediate configuration that is 
regarded as a reference for the elastic deformation (Pezzuto 
et al. 2014). Therefore, the strain energy function and the 
first Piola-Kirchhoff stress tensor (after applying the active 
strain decomposition) are functions of �E only, and read, 
respectively

As in the description of (2.1) above, we again note that one 
switches off the anisotropic contributions under compres-
sion. An additional advantage is that the associated terms 
in the strain energy function (in both the pure passive and 
active strain formulations) can be shown to be strongly ellip-
tic (Pezzuto et al. 2014) (these will be the terms appear-
ing on the second diagonal block of the weak formulation 
from Sect. 3, the block corresponding to displacements); 
however, the overall problem will remain of a saddle-point 
structure. The modified elastic invariants IE

i
 are functions 

(2.4)
�A = � + 𝛾f f 0(x)⊗ f 0(x)

+ 𝛾ss0(x)⊗ s0(x) + 𝛾nn0(x)⊗ n0(x).

(2.5)

�̂ (�E) =
a

2b
eb(I

E
1
−d) +

∑
i∈{f ,s}

ai

2bi

[
e
bi(I

E
4,i
−1)2

+ − 1
]

+
afs

2bfs

[
e
bfs(I

E
8,fs

)2
− 1

]
,

� =
��̂

��
− pJ�−�.
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of the coefficients �i , as well as of the invariant and pseudo-
invariants in the following manner (Rossi et al. 2012)

Such dependencies are a consequence of assuming isochoric 
active deformations (Pezzuto et al. 2014), i.e. det�A = 1 , 
justified by the fact that the volume of the cardiomyocytes 
does not vary substantially during contraction. Besides, 
following Rossi et  al. 2012, previous expressions are 
obtained by assuming �s = �n and making use of the fact 
that I1 = I4,f + I4,s + I4,n , as well as that �E = ��

−1
A

 , with

 Accordingly, the active strain, and consequently the force 
associated with the active part of the total stress, will receive 
contributions acting on the three main directions. The cal-
cium-based activation signal travels up to four times faster 
along the fibre axis than in the sheet and normal directions, 
and this fact further motivates the use of orthotropic active 
strain (Rossi et al. 2014).

2.3 � Viscoelasticity and equations of motion

Extension and shear tests demonstrate the importance of 
incorporating viscoelastic effects in models for cardiac pas-
sive mechanics (Gültekin et al. 2016). In the heart, the extra-
cellular fluid filtrating through the elastic solid is one of the 
main generators of the viscoelastic effects of the tissue (Yao 
et al. 2012). Viscous effects are also tied to cross-bridge 
processes identified in Ca2+ activated fibres (Maughan et al. 
1998) and have a well-established literature as well as a 
consistent methodology for their implementation (the stress 
update algorithm that uses a convolution integral represen-
tation) developed for general soft tissues (Holzapfel and 
Gasser 2001). From the viewpoint of kinematics, it suffices 
to relate stress to strain rates. Decomposition of the spatial 
velocity gradient w = u̇ into the rate of deformation and spin 
tensors yields the relation

IE
1
= I1 − �f

�f + 2

(1 + �f )
2
I4,f − �s

�s + 2

(1 + �s)
2
I4,s

− �n
�n + 2

(1 + �n)
2
I4,n ,

IE
4,f

=
(
1 + �f

)−2
I4,f , IE

4,s
=
(
1 + �f

)
I4,s,

IE
8,fs

=
(
1 + �f

)−1∕2
I8,fs .

det�A = (1 + 𝛾f )(1 + 𝛾s)(1 + 𝛾n) ,

�
−1
A

= � −
𝛾f

1 + 𝛾f
f 0 ⊗ f 0

−
𝛾s

1 + 𝛾s
s0 ⊗ s0 −

𝛾n
1 + 𝛾n

n0 ⊗ n0 .

and a simplified rheological Kelvin–Voigt model for the 
viscous component of the Cauchy stress can be defined as 
follows (see, for example, Karlsen 2017):

which depends on the history of the isotropic contribution to 
the Cauchy stress. Here, 𝛿, 𝛽 > 0 are model parameters. In 
this way, after a pull-back operation, we see that

is the total first Piola-Kirchhoff stress tensor that includes � 
defined from either (2.1)–(2.2) or (2.5), and the viscoelastic 
contributions.

More advanced rheologies can be easily incorporated 
in the context of active stress formulations as done in, e.g. 
(Katsnelson et al. 2004), as the generalised Hill–Maxwell 
model recently proposed in Cansiz et al. 2017, as in the per-
turbed equations of harmonic wave motion using springpot-
based models with fractional order derivatives from Capilnasiu 
et al. 2019, or as in the thermodynamical electro-viscoelastic 
models that use statistical fibre distributions (Pandolfi et al. 
2017; Gizzi et al. 2018). We will, however, confine the pres-
entation to (2.7) without introducing stochasticity of the ani-
sotropic components.

Irrespective of the activation formalism one adopts (active 
strain or active stress), the balance of linear momentum and 
the incompressibility constraint (allowing only isochoric 
motions) are written together in the following way, when posed 
in the inertial reference frame and under transient mechanical 
equilibrium, 

 where �0, � are the reference and current medium density, b 
is a smooth vector field of imposed body loads, �tt denotes 
the second time derivative, and the divergence operator in 
(2.8a) acts on the tensor fields row by row. The balance of 
angular momentum translates into the condition that the 
Kirchhoff stress tensor � = �tot�

� must be symmetric, 
which is in turn encapsulated into the momentum and con-
stitutive relations (2.8a), (2.1), (2.5).

Defining

�̇ = ∇w� + �(∇w)�,

(2.6)�visc = 𝛿e𝛽
̇I1�̇,

(2.7)�tot = � + J�visc�
−�,

(2.8a)��ttu − � ⋅ �tot = �0b in � × (0, tfinal],

(2.8b)�J − �0 = 0 in � × (0, tfinal],

G =

⎧
⎪⎪⎨⎪⎪⎩

G(u,Ta) ∶=
��

��
�� + J�visc + �act�

�

for active stress,

G(u, �) ∶=
��̂

��
�� + J�visc

for active strain,



638	 A. Propp et al.

1 3

as the contribution to the Kirchhoff stress that does not 
involve pressure, we then have

Stating the balance equations in terms of Kirchhoff stress, 
displacements, and pressure suggests that at the level of 
writing finite element schemes, we will use mixed methods 
respecting the same structure. Additionally, setting boundary 
conditions for the motion of the left ventricle is not trivial, 
as the organ is known to slightly move and twist during the 
heartbeat. In our case, Eqs. (2.8a)–(2.8b)–(2.9) will be sup-
plemented with mixed normal displacement and traction 
boundary conditions 

 where ��D , ��N , ��R conform a disjoint partition of the 
boundary. The condition (2.10a) means that we constrain the 
normal motion along the normal direction with respect to 
the surface ��D . The term pN in (2.10b) denotes a (possibly 
time dependent) prescribed boundary pressure associated 
with endocardial blood pressure, which is uniform over the 
deformed counterpart of ��N , and it is applied in the normal 
direction to the epicardium in the deformed configuration. 
However, owing to Nanson’s formula (Ciarlet 1988), this 
contribution regarded on the reference configuration depends 
on the cofactor of the deformation gradient and therefore, the 
boundary condition is nonlinear in the undeformed configu-
ration; moreover, the traction written in terms of the Kirch-
hoff stress tensor is t = ��−�n . Also note that the Robin 
conditions (2.10c) account for stiff springs connecting the 
cardiac medium with the surrounding soft tissue and organs 
(whose stiffness is encoded in the scalar � ). More sophisti-
cated boundary conditions that consider an interaction with 

(2.9)� = G − pJ�.

(2.10a)u ⋅ n = 0 on ��D × (0, tfinal],

(2.10b)��
−�n − pNJ�

−�n = 0 on ��N × (0, tfinal],

(2.10c)��
−�n + �J�−�u = 0 on ��R × (0, tfinal],

the pericardium can be also imposed (Fritz et al. 2014). A 
sketch of a mono-ventricular domain specifying boundary 
surfaces and fibre directions is depicted in Fig. 1.

2.4 � Monodomain equations

In the context of electromechanical processes, the propaga-
tion of electric potential v is governed by the following reac-
tion–diffusion system, known as the monodomain equations 
(see, for example, Franzone et al. 2014), which are cast here 
in the reference configuration. The current conservation is 
written only in terms of the transmembrane potential, and 
the coupling with additional ionic quantities is encoded in 
the vector r⃗ (here we use ⋅⃗  instead of bold to denote vector 
fields of dimension other than d) 

 Here, � is the ratio of membrane area per tissue volume, 
and Iext is a spatiotemporal external stimulus applied to the 
medium. We will adopt the minimal model for human ven-
tricular action potential, proposed in Bueno-Orovio et al. 
(2008) and fitted to capture restitution curves, conduction 
velocity, spiral/arrhythmic dynamics, and complex behav-
iour typical to nonlinear dynamical systems, used later for 
cardiac alternans in Gizzi et al. (2013). That model was, 
however, tailored originally for the case of isotropic con-
ductivity � = D� , and so the extended fully coupled model 
discussed below will be able to accommodate a wider class 
of propagation patterns and will also constitute a generali-
sation over other recent models for stress-assisted diffusion 
(Cherubini et al. 2017; Loppini et al. 2018).

(2.11a)
𝜒𝜕tv − ∇ ⋅ {�(v,�,�) ∇v} = g(v, r⃗) + Iext

in 𝛺 × (0, tfinal],

(2.11b)dr⃗

dt
= m⃗(v, r⃗) in 𝛺 × (0, tfinal].

Fig. 1   Schematic representation 
of a mono-ventricular domain 
where (2.10a) is imposed on 
the basal cut, (2.10b) on the 
endocardial surface, and (2.10c) 
on the epicardium. The left 
panel depicts the fibre field 
and the right panel the sheetlet 
directions (in this case, parallel 
to the normal direction of the 
epicardium)
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Specification of the ionic currents and gating variables 
can be found in Appendix 1.

Boundary and initial conditions for (2.11) correspond to 

 and (2.12b) can be combined with suitable initial pacing, 
especially needed in more complex and more physiologi-
cally accurate cell models. The minimal model, as proposed 
in Bueno-Orovio et al. (2008), has a heterogeneous charac-
ter that we do not consider in our study. Their description 
contains separate parameter sets that are able to reproduce 
experimental results for the epicardium, mid-myocardium, 
and endocardium, as well as parameter sets that mimic the 
results of two more complicated ionic models for human 
ventricular cells. For simplicity (and also as a consequence 
of lack of personalised experimental data), we use the 
parameter set developed for the epicardium (see values in 
Table 2), assuming that it is consistent throughout the car-
diac wall. Extension to the heterogeneous case can be readily 
incorporated into the present framework.

2.5 � Stress‑assisted conduction

The mechanoelectrical feedback (the process where the cur-
rent mechanical state of the deforming solid modifies both 
the excitability and electrical conduction of the tissue) is 
here introduced in the conductivity tensor, through a direct 
dependence on the Kirchhoff stress (which constitutes one 
of the main novelties in our approach, stemming as a gen-
eralisation of the anisotropy induced by stress proposed in 
Cherubini et al. (2017) and later used for simplified 2D car-
diac electromechanics in Loppini et al. (2018)). In addition, 
due to the Piola transformation (yielding a transformation 
of the diffusion tensor using the deformation gradients), the 
conductivity tensor also depends nonlinearly on the defor-
mation gradient (actually, the term J�−1 constitutes a strain-
based modification of tissue conductivity, also referred to as 
geometric feedback in Franzone et al. (2016))

where the nonlinear conductivity (self-diffusion depending 
on v) accounts for porous media electrophysiology follow-
ing the development in Hurtado et al. (2016), but appropri-
ately modified to incorporate information about preferred 

(2.12a)�(v,�,�) ∇v ⋅ n = 0 on �� × (0, tfinal],

(2.12b)v(0) = 0, r⃗ = [1, 1, 0] in 𝛺 × {0},

(2.13)
�(v,�,�) =[D0 + D1v]J�

−1 + D0∕2Jf 0 ⊗ f 0

+ D2J�
−1
��

−�,

directions of diffusivity according to the microstructure 
of the tissue (encoded in the second term defining � ). The 
parameter D0 signifies the usual diffusion for isotropic 
materials, whereas D1 and D2 represent the intensity of the 
porous media electrophysiology and of the stress-assisted 
diffusion, respectively. An additional term in the nonlinear 
self-diffusion (e.g. D3v

2 , as in Gizzi et al. (2017), Ruiz-Baier 
et al. (2019)) eventually leads to very slight modifications 
in conduction patterns, and we have therefore decided not 
to include it. Tuning D1 is sufficient to, if needed, calibrate 
the speed and action potential duration at the depolarisation 
plateau phase.

It is useful to point out that both the nonlinear self-dif-
fusion term and the SAD argument derive from rigorous 
thermodynamical principles, formulated under specific 
assumptions for porous materials. In particular, nonlinear 
self-diffusion is naturally related to the transport of chemi-
cals within porous media, while classical models of stress-
assisted diffusion for general materials (Aifantis 1980) also 
consider the transport of diffusing species within solids 
exhibiting finite strains. For the specific case of cardiac 
tissue, both approaches are justified by the multiple scales 
involved in the transport of ions and generation and propaga-
tion of action potential within the cell and across different 
cells (Lenarda et al. 2018). In particular, we can mention 
the role of intercalated discs and gap junctions between 
communicating cells or the presence of the ephathic cou-
plings in the extracellular space (Ly and Weinberg 2018), 
as well as micro-invaginations on the cell membrane known 
as microtubules and microdomains (Miragoli et al. 2016). 
All of these emerging effects contribute to the macroscopic 
nonlinearities and additional anisotropies considered in the 
diffusion tensor herein and which could be further analysed 
through a consistent multiscale homogenisation study, as 
well as validated using an experimental dataset.

It is important to remark that the solvability of the mono-
domain equations (2.11a)–(2.11b) depends on the proper-
ties of � . In particular, the stress-assisted diffusion tensor 
needs to remain symmetric and uniformly elliptic, which 
is a non-trivial condition, given the dependence on stress 
and on voltage. A thorough sensitivity analysis (but for a 
simpler dependence on stress) can be found in Cherubini 
et al. (2017). Here, we perform a much lighter calibration, as 
mentioned later in Sect. 4. Comparisons between the effects 
of SAD and the more conventional mechanoelectrical feed-
back through stretch-activated currents have been reported 
in Loppini et al. (2018).
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2.6 � Activation and excitation–contraction coupling

When using the active stress approach, we will adopt a sim-
ple description where the active tension is generated by ionic 
quantities (calcium) as well as by local fibre stretch. That is, 
we propose a regularised active tension model of the form

with 𝛼̂ = 𝛼1D0 , and �(Ta, r⃗, I4,f ) = Ta − 𝛼2r3 + 𝛼3I4,f  , where 
�1, �2, �3 = 0.1�2 are positive model constants. As calcium 
concentration is not readily available in the phenomenologi-
cal cellular model we are employing, we use r3 as a proxy 
for intracellular calcium (Bueno-Orovio et al. 2008). In 
addition, a linear dependence on the calcium proxy and on 
the local stretch is sufficient in our setting to qualitatively 
capture the dynamics of active tension.

On the other hand, in the framework of active strain, a con-
stitutive equation for the activation functions �i in terms of the 
microscopic cell shortening � is expressed as follows (see, for 
example, Barbarotta et al. 2018):

and the specific relation between the myocyte shortening � 
and the dynamics of slow ionic quantities (in the context of 
our phenomenological model, only r⃗ ) is made precise using 
the law

which does not require an explicit dependence on local fibre 
stretch, as the sliding of myofilaments is driving the dynam-
ics of the functions �i . We employ the nonlinear reaction 
term �̂(𝜉, r⃗) = K1(1 + r3)

−1 + K2𝜉 , and we make the dis-
tinction that � and �̂  characterise the evolution of the acti-
vation in the approaches of active stress and active strain, 
respectively.

3 � Numerical method and implementation

3.1 � Mixed‑primal weak form

Restricting to the case of an active strain model with Robin 
conditions (2.10c) on the whole boundary for the mechanical 
layer (that is ��R = �� ) and the boundary and initial condi-
tions (2.12a)–(2.12b) for the electrical layer, we proceed to 
take the inner product of the differential equations (2.8a), 
(2.8b), (2.9), (2.11), (2.16) with adequate test functions, and 
to integrate by parts whenever appropriate. We then arrive at 
the following weak form of the problem: for t > 0 , find 
(� , u, p) ∈ �

2
sym

(�) ×�1(�) × L2(�)  a s  w e l l  a s 
(v, r⃗, 𝜉) ∈ H1(𝛺) × L2(𝛺)3 × L2(𝛺) such that

(2.14)𝜕tTa = 𝛼̂𝛥Ta + �(Ta, r⃗, I4,f ) in 𝛺 × (0, tfinal],

(2.15)
�f (�) = �, �s(�) = (1 + �)−1(1 + K0�)

−1 − 1,

�n(�) = K0�,

(2.16)
d𝜉

dt
= �̂(𝜉, r⃗) in 𝛺 × (0, tfinal],

where �2
sym

(�) ∶= {� ∈ �
2(�) ∶ � = �

�} , and where the 
case for an active stress formulation necessitating an active 
tension model is addressed similarly (however, the regularity 
of Ta(t) is then H1(�) ). Theoretical aspects regarding the 
coupling of elasticity and stress-assisted diffusion problems 
have been recently addressed in the context of mixed-primal 
and mixed-mixed formulations in Gatica et al. (2018), but 
only for the case of simplified linear three-field elasticity and 
steady diffusion.

The spatial discretisation will follow a mixed-primal 
Galerkin approach based on the weak formulation (3.1). 
Details on the finite-dimensional spaces and linearisation 
procedure are laid out in Appendix 2.

The motivation for using three-field elasticity formula-
tions is the need to produce robust solutions with balanced 
convergence orders for all variables. In addition, these meth-
ods are robust in the incompressible regime; they are not 
subject to volumetric locking (Lamichhane and Stephan 
2012); and most importantly, they provide direct approxima-
tion of variables of interest, albeit at a higher computational 
cost. Another advantage of using the Kirchhoff stress is that 
this tensor is symmetric, and, for simpler material laws, is 
a polynomial function of the displacements (whereas first 
and second Piola-Kirchhoff stresses are rational functions 
of displacement) (Chavan et al. 2007). Solving in terms of 
stresses proves particularly useful, as this variable partici-
pates actively in the electromechanical coupling through 
the stress-assisted diffusion. Moreover, for the lowest-order 
method characterised by l = 0 , the matrix system associ-
ated with (B.1) has fewer unknowns than the discretisation 
that uses piecewise quadratic and continuous displacement 

(3.1)

∫𝛺

[� − G + pJ�] ∶ � = 0 ∀� ∈ �
2
sym

(𝛺),

∫𝛺

𝜌𝜕ttu ⋅ v + ∫𝛺

��
−� ∶ ∇v

+ ∫𝜕𝛺

𝜂�−�u ⋅ v = ∫𝛺

𝜌0b ⋅ v ∀v ∈ �
1(𝛺),

∫𝛺

[J − 1]q = 0 ∀q ∈ L2(𝛺),

∫𝛺

𝜕tv w + ∫𝛺

�(v,�,�) ∇v ⋅ ∇w

− ∫𝛺

[
g(v, r⃗) + Iext

]
w = 0 ∀w ∈ H1(𝛺),

∫𝛺

(
𝜕t r⃗ ⋅ s⃗ + 𝜕t𝜉 𝜑

)
− ∫𝛺

(
m⃗(v, r⃗) ⋅ s⃗ + 𝓁(𝜉, r⃗)𝜑

)
= 0

∀(s⃗,𝜑) ∈ L2(𝛺)3 × L2(𝛺),
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approximations and piecewise linear and discontinuous pres-
sure approximations [and which is a popular locking-free 
scheme for hyperelasticity in the displacement–pressure 
formulation, utilised for stress-assisted diffusion problems 
in the recent work (Loppini et al. 2018)]. The importance of 
casting the equations of motion in terms of the coupling var-
iables has been already emphasised in Ruiz-Baier (2015) in 
the context of cardiac electromechanics, which demonstrates 
that the computation of output indicators of interest (such 
as conduction velocities) may suffer from loss of accuracy 
if one simply postprocesses stress or strain from discrete 
displacements as approximations in the geometric feedback.

3.2 � Solver structure and implementation details

According to the separation (through an outer fixed-point 
scheme) between electrophysiology and solid deformation 
solvers, nonlinear mechanics will be solved using the New-
ton–Raphson method stated above, and an operator splitting 
algorithm will separate an implicit diffusion solution (where 
another Newton iteration handles the nonlinear self-diffusion) 
from an explicit reaction step for the kinetic equations, turning 
the overall solver into a semi-implicit method. Such a strategy 
is feasible since the Jacobians associated with the reaction and 
excitation–contraction models do not possess highly varying 
eigenvalues (otherwise one would need to include these terms 
in the Newton iteration). Updating and storing of the inter-
nal variables � and r⃗ will be done locally at the quadrature 
points. We solve the linear systems arising at each Newton 
iterate by the Krylov iterative method GMRES, preconditioned 
with an incomplete LU(0) factorisation (except for the linear 
systems in the convergence tests in Sect. 4.1, which will be 
solved with the direct method SuperLU), and the iterates are 
terminated once a tolerance of 10−6 (imposed on the �∞ norm 
of the non-preconditioned residual) has been achieved. The 
mass matrices associated with the discretisation of the mono-
domain equations are assembled in a lumped manner, which 
reduces the amount of artificial diffusion and violation of the 
discrete maximum principle (Quarteroni et al. 2017). All rou-
tines have been implemented using the finite element library 
FEniCS (Alnæs et al. 2015).

4 � Computational results

4.1 � Mesh convergence

We begin with the numerical validation of our mixed-primal 
method on a problem slightly simpler than (2.8), (2.11), 
(2.14), but that still retains the main ingredients of the model. 
These include orthotropic active mechanics, nonlinear 

reaction–diffusion with stress-assisted diffusion, and a non-
linear excitation–contraction coupling.

A convergence test is generated by computing errors 
between smooth exact solutions and approximate solutions 
using the first-order and the second-order methods discussed 
in Sect. 3. Let us consider the following closed-form solutions 
to a steady-state counterpart of the variational form (3.1) for 
the electromechanics equations, also assuming the absence of 
viscoelastic effects, and defined on the domain � = (0, 1)2 
with the fibres/sheetlets defined as f 0 = (0, 1)�, s0 = (−1, 0)�

Then, the Kirchhoff stress � and forcing terms (volumetric 
load, an additional external stimulus, and the active tension 
source) are computed from these smooth solutions, the bal-
ance equations, relations (2.2), (2.3), (2.13), and using the 
following simplified constitutive equations

Note also that the incompressibility constraint for this test 
is J = Jex , where Jex is computed from the exact displace-
ment. Here, we also prescribe Dirichlet boundary conditions 
for displacements, transmembrane potential, and active ten-
sion (incorporated in the discrete trial spaces). Errors due to 
fixed-point iterations are avoided by taking a full monolithic 
coupling and computing solutions using Newton–Raphson 
iterations with an exact Jacobian. On a sequence of six 
uniformly refined meshes, we proceed to compute errors 
between the exact and approximate solutions computed with 
methods using l = 0 and l = 1 . Kirchhoff stress and pressure 
errors are measured in the L2−norm, whereas for the remain-
ing variables, the errors are measured in the H1−norm. The 
obtained error history is reported in Table 1, where we 
observe an asymptotic O(hl+1) decay of the error for each 
field variable. This behaviour corresponds to the optimal 
convergence according to the interpolation properties of the 
employed finite element subspaces (Chavan et al. 2007).

4.2 � Parameter calibration

For the following 2D simulations, we will initially consider 
tissue slabs of 50 × 50 mm2 , and set fibre and sheetlet direc-
tions simply as f 0 = (1, 0)� , s0 = (0,−1)� . The initiation, 
maintenance, prevention, and treatment of so-called reen-
trant waves are major focus of the current research due to 

u(x, y) = 0.1

(
sin(�x) cos(�y)

cos(�x) sin(�y)

)
,

p(x, y) = 0.1 sin(�x) sin(�y),

v(x, y) = 1 + 0.1 cos(�x) cos(�y),

r(x, y) = 0.1 cos(�x) sin(�y) sin(�x),

Ta(x, y) = 1 + 0.1 cos(�x) sin(�y).

m(v, r) = v − r2, g(v, r) = (v − 1)vr, �(Ta, r) = −Ta + r.
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their implication in atrial and ventricular fibrillations (Fran-
zone et al. 2014). We are thus interested in investigating 
the formation of spiral reentrant waves in our model setup, 
following the S1-S2 stimulation protocol. We first excite the 
tissue with a symmetric stimulus labelled S1. An asymmet-
ric stimulus labelled S2 is then applied during the vulnerable 
window near the end of the refractory period, when some 
of the tissue has recovered excitability, but depolarisation is 
still blocked elsewhere. This causes unbalanced excitation, 
which can lead to the formation of a spiral wave. We will 
define the spiral front as the edge of the spiral wave, where 
the excitation front meets the repolarisation waveback of the 
action potential. In our simulations, both waves have non-
dimensional amplitude 3 and duration 3 ms. The S1 stimu-
lus is a planar wave created by exciting the entire left edge 

of the tissue, and the S2 stimulus is a square wave created 
by exciting the bottom left quadrant at t = 330, ms. In 3D, 
the same general protocol can be used, but the S1 stimulus 
excites the entire bottom section (below some value of the 
z−coordinate) while the S2 stimulus excites the bottom left 
octant at t = 335 ms. Here, we use the active stress approach, 
and the boundary conditions for the visco-elastodynamic 
equations correspond to (2.10c). The formation and evolu-
tion of the spiral wave on a deforming domain can be seen 
in Fig. 2. The spiral is initiated by the diffusion of voltage 
and transport of ionic entities from the S2 stimulus into the 
leftmost section of the tissue, which has recovered enough 
excitability after S1. The wave then spreads outwards in all 
directions, occupying the entire tissue except for the region 
that was just excited by the S2 wave. 

Table 1   Test 1: Error history (errors on a sequence of successively refined grids and convergence rates) associated with the mixed finite element 
method (B.1) applied to a steady-state electromechanical coupling under active stress, and using different polynomial degrees l ∈ {0, 1}

(a) Hyperelasticity variables

DoF h ‖� −�h‖0,� rate ‖u − uh‖1,� rate ‖p − ph‖0,� rate

l = 0

77 0.7071 43.252 – 0.0576 – 30.161 –
253 0.3536 27.137 0.6725 0.0342 0.6345 19.030 0.6647
917 0.1768 12.535 1.1140 0.0216 0.7615 9.2110 1.0471
3493 0.0884 6.2636 1.0012 0.0118 0.8751 4.8012 0.9401
13637 0.0442 1.9169 1.1727 0.0071 0.9516 1.9631 1.3817
53893 0.0221 0.9841 0.9907 0.0042 0.9737 0.9206 0.9858
l = 1

221 0.7071 19.481 – 0.0146 – 6.0355 –
789 0.3536 7.9032 1.3034 0.0037 1.7593 1.5809 1.4581
2981 0.1768 2.6409 1.8079 0.0011 1.7809 0.4120 1.7269
11589 0.0884 0.7277 1.9033 4.11E−4 1.8065 0.1353 1.8813
45701 0.0442 0.2063 1.9182 1.09E−4 1.9330 0.0382 1.9602
181509 0.0221 0.0569 1.9466 3.12E−5 1.9522 0.0094 1.9571

(b) Electrophysiology variables

DoF h ‖v − vh‖1,� rate ‖r − rh‖1,� rate ‖Ta − Ta,h‖1,� rate

l = 0

77 0.7071 0.1528 – 0.1926 – 0.1623 –
253 0.3536 0.0902 0.7601 0.1069 0.8499 0.0847 0.8824
917 0.1768 0.0491 0.8769 0.0573 0.8968 0.0433 0.9673
3493 0.0884 0.0282 0.8016 0.0317 0.9536 0.0218 0.9896
13637 0.0442 0.0153 0.9304 0.0172 0.9612 0.0121 0.9446
53893 0.0221 0.0084 0.9587 0.0091 0.9843 0.0067 0.9562
l = 1

221 0.7071 0.0329 – 0.0583 – 0.0469 –
789 0.3536 0.0102 1.5043 0.0152 1.7317 0.0133 1.6300
2981 0.1768 0.0029 1.7608 0.0039 1.8809 0.0035 1.7095
11589 0.0884 8.03E−4 1.7849 0.0010 1.9021 9.25E−4 1.8822
45701 0.0442 2.31E−4 1.8964 2.70e−4 1.8966 2.41E−4 1.8907
181509 0.0221 6.11E−5 1.9598 7.05e−5 1.9604 6.86E−5 1.9649
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Next, since we are using the active stress formulation 
in this case, we proceed to evaluate �1, �2 , the parameters 
governing active tension in (2.14), and � , the stiffness 
parameter from (2.10c). We conduct a simple sensitivity 
analysis by increasing or decreasing either �1, �2 , or � by 
one order of magnitude, holding the others constant at their 

reference values ( �1 = 10 , �2 = 0.5 , and � = �a = 0.001N/
cm2 , as listed in Table 2). This simple analysis therefore 
does not test for compounding or interaction effects. We 
also consider a smaller slab of size 12 × 12 mm2 . The 
parameter �1 contributes to producing smoother active 
tension profiles, while �2 controls the range of their 

Table 2   Model parameters for the electro-viscoelastic model (2.8), (2.11), (2.16), (2.14). Values are taken from Cherubini et  al. (2017), Gao 
et al. (2015), Rossi et al. (2014), Bueno-Orovio et al. (2008), and the transmembrane potential v is dimensionless

Viscoelasticity constants

a = 0.236 [N/cm2] af = 1.160 [N/cm2] as = 3.724 [N/cm2] afs = 4.010 [N/cm2]
b = 10.81 [–] bf = 14.15 [–] bs = 5.165 [–] bfs = 11.60 [–]
p0 = 0.1 [N/cm2] � = 10 [ms] � = 22.6 [N/cm2 ms] �stab = 0.25 [–]
�a = 0.001 [N/cm2] �b = 0.01 [N/cm2] �sn = 0.6 [–] �nn = 0.03 [–]
�0 = 0.001 [N/cm2]

Electrophysiology constants

v0 = 0 [–] vv = 1.55 [–] v−
2
= 0.03 [–] vso = 0.65 [–]

v3 = 0.908 [–] �1 = 0.3 [–] �−
1
= 0.006 [–] �o = 0.006 [–]

�2 = 0.13 [–] k−
2
= 65 [–] k3 = 2.099 [–] kso = 2.045 [–]

r∗
2,∞

= 0.94 [–] �2,∞ = 0.07 [–] �−
1,1

= 60 [–] �−
1,2

= 1150 [–]
�−
2,1

= 60 [–] �−
2,2

= 15 [–] �fi = 0.11 [–] �o,1 = 30.02 [–]
�o,2 = 0.996 [–] �so,1 = 2.046 [–] �so,2 = 0.65 [–] �3,1 = 2.734 [–]
�3,2 = 16 [–] �si = 1.888 [–] �+

1
= 1.451 [–] �+

2
= 200 [–]

� = 1 [–]

Activation and excitation–contraction coupling constants

D0 = 1.171 [cm2/s] D1 = 0.9 [cm2/(s mV)] D2 = 0.01 [cm2/(s Pa)] K0 = 5 [–]
K1 = −0.015 [–] K2 = −0.15 [–] �1 = 10 [–] �2 = 0.5 [–]

Fig. 2   Evolution of voltage after S2 stimulus, of S1-S2 protocol, showing formation of a reentrant spiral wave on the deforming viscoelastic tis-
sue, computed using the active stress approach
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magnitude. These effects are visible in Fig. 3. We found 
that larger values of �1 produced smoother gradients in 
pressure and stress, while larger values of �2 produced, 
in average, higher magnitude displacement, Kirchhoff 
stress, and pressure, as well as some more subtle changes 
in ionic quantities. Parameter � determines the stiffness 
of the springs supporting the tissue, and so decreasing � 
resulted in an increase in the maximum values of magni-
tude of displacement, stress, and pressure, as expected. 
However, these differences were minimal, even across the 
three orders of magnitude tested ( � = 1E−4 to � = 0.01 ). 
The effects on ionic entities were even smaller, for both 
the hyperelastic and viscoelastic cases, and therefore, plots 
are not shown.

Computational experiments reveal a window of values of 
D2 for which our method converges. In the 2D hyperelastic 
case, we found that the upper bound for D2 is approximately 
D2 = 2.1E−2 cm2∕(s Pa), with the linear solver failing to 
converge for larger values. In these simulations, the Kirch-
hoff stress achieved an L2−norm of between 0.006 and 0.6. 
In turn, the viscoelastic case was able to accept slightly 
larger values of D2 , up to D2 = 2.2E−2 cm2∕(s Pa), with the 
L2−norm of stress falling between 0.001 and 0.5. A possible 
explanation is the loss of coercivity or monotonicity in the 
stress-assisted diffusion coupling, as explored in Cherubini 
et al. (2017).

The numerical method used for these tests is character-
ised by the time step, mesh size, polynomial degree, and 
stabilisation constant �t = 0.01 ms, h = 0.3534 mm, � = 0 , 
�stab = 2.5 , respectively.

4.3 � Locking‑free property

We next proceed to assess the performance of the proposed 
mixed formulation for the mechanical problem. In this 
example, we solve only for (2.8) without the acceleration 
term (otherwise present in all other simulations), using the 
active stress approach with a fixed value for the active ten-
sion and without the contribution from the viscous stress 
(2.6). We proceed to compare the deformation achieved by 
the mixed formulation with that of an asymptotic solution 
and the approximate solution generated by a more stand-
ard pressure-displacement finite element formulation. We 
consider different stabilisation parameter values and mesh 
refinements.

We perform two sets of computations. First, we under-
take Cook’s membrane benchmark test for a fully incom-
pressible Holzapfel–Ogden material (as was similarly done 
for nearly incompressible Saint Venant–Kirchhoff and neo-
Hookean solids in (Chavan et al. 2007, Test II)), where we 
set an active tension of Ta = 0.07 . This test involves apply-
ing an upward in-plane shear load t = (0, 100)� to the right 
edge of a tapered panel with a clamped left edge, and 
measuring the vertical deformation of the upper right ver-
tex. The domain is defined as the convex hull of the set 
{(0, 0), (48, 44), (48, 60), (0, 44)} (see the sketch in Fig. 4a), 
and the fibre and sheetlet fields are f 0 = (1, 0)� and 
s0 = (0,−1)� , respectively. Secondly, we consider a 3D 
system suggested in (Land et al. 2015, Test I) as a simple 
benchmark for passive cardiac mechanics, and therefore, 
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Fig. 3   Profiles of Ta taken across a smaller slab of tissue at y = 6mm and t = 432ms . These plots evaluate the effect of �1 and �2
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we set Ta = 0 . The problem consists in computing the 
deformation of a point at the right end of a beam defined 
by the domain � = (0, 10) × (0, 1) × (0, 1)   mm (see 
Fig. 4b), where the fibre direction is f 0 = (1, 0, 0)� . Instead 
of (2.1), the material is characterised by the transversally 
isotropic strain energy density proposed by Guccione et al. 
(1995) [which is the material law used in the benchmark 
test from Land et  al. (2015)]: �pas = a∕2(eQ − 1) , with 
Q = bf E

2
ff
+ bt(E

2
ss
+ E2

nn
+ E2

sn
+ E2

ns
) + bfs(E

2
fs
+ E2

sf
+ E2

fn
+ E2

nf
) , 

where a = 2 kPa, bf = 8 , bt = 2 , bfs = 4 , and the Eij denote 
entries of the Green–Lagrange strain tensor � , rotated with 
respect to a local coordinate system aligned with f 0, s0, n0 . 
The beam is clamped at the face x = 0 , a pressure of 
pN = 0.004 kPa is imposed on the bottom face z = 0 , and 
the remainder of the boundary is considered with traction-
free conditions. According to (2.10b), the pressure bound-
ary condition changes with the deformed surface orienta-
tion, and its magnitude scales with the deformed area.

The outcome of these tests in Fig. 5a, b shows a rapid 
convergence of our first- and second-order methods, while 
the computations using a pressure-displacement formu-
lation and the Taylor–Hood finite elements (the well-
known ℙ2 − ℙ1 pair of continuous and piecewise quad-
ratic approximations of displacements and continuous and 
piecewise linear approximations for pressure) display a 
somewhat slower convergence to the asymptotic deflec-
tion of the membrane. Using discontinuous pressures (the 
ℙ2 − ℙ

disc
1

 pair) rectifies the convergence, but at a higher 
computational cost. Quite similar results were obtained 
for the beam (where the reference value is the average 
of the reported simulations from the study in Land et al. 
(2015)). Moreover, Fig. 5c, d shows the vertical deflec-
tions as a function of the number of vertices discretising 
the left side of the membrane and of the small edge of 

the beam, respectively. They indicate that the obtained 
results are consistent for varying values of the stabilisation 
parameter, �stab , and the observed behaviour also confirms 
that our method is locking-free.

4.4 � Stress‑assisted diffusion and conduction 
velocity

In addition to determining a suitable parameter range for D2 
that ensures solvability of the discrete monodomain equa-
tions, we also investigated the effect of D2 on the tissue’s 
response to spiral wave dynamics. As in the second part 
of Sect. 4.2, this time the domain is a square slab of width 
12mm aligned with the canonical axes. We employ the 
active stress approach and use Robin boundary conditions 
for the viscoelasticity problem. The fibres assume the fixed 
direction f 0 = (1, 0)� and the sheetlets s0 = (0,−1)� , and the 
Holzapfel–Ogden material law is considered. The mesh size 
is approximately h = 0.085 mm and the time step is �t = 0.1

ms. We use the lowest-order finite element method and the 
stabilisation parameter is �stab = 2.5.

Figure 6 shows the differences in the ionic quantities 
between simulations with a very small contribution of SAD 
( D2 = 1 E−5 m2∕(s Pa)) and a more prominent, but still 
mild SAD contribution ( D2 =7.5E−3 cm2∕(s Pa)). The snap-
shots correspond to the time t = 444 ms, when the spiral 
tip has not yet formed. A closer inspection suggests that 
these contrasts were due to a difference in conduction veloc-
ity induced by SAD. In Fig.   7a, b, we see that conduc-
tion velocity was higher for larger values of D2 (meaning 
a larger SAD contribution). When the wave first emerged, 
the peak action potential was more advanced for the case 
of reduced D2 , but the large D2 peak eventually caught up 

Fig. 4   Domain sketches and 
sample meshes for the deflec-
tion of Cook’s membrane for 
an Holzapfel–Ogden material 
with constant active stress (a) 
and deflection of a 3D beam for 
a Guccione–Costa–McCulloch 
material with the active stress 
component set to zero (b)

(a) (b)



646	 A. Propp et al.

1 3

to and surpassed it, which is a phenomenon also observed 
in the active tension curves. The ionic quantities followed 
the same trend. Indeed, an analysis similar to that which 
produced Fig.  7a, b revealed that the overall profiles of the 
ionic quantities were highly similar between the two cases 
compared in Fig. 6, but differed in the speed at which they 
are transported through the tissue. 

We also remark that the effect of changing conduction 
velocities was not spatially consistent. For some param-
eter values, SAD increases conduction velocity in the fibre 
(horizontal) direction, but actually decreased conduction 
velocity in the vertical and diagonal directions. This resulted 

in a noteworthy effect on the growth of the spiral wave. Fig-
ure 7c–e shows a comparison of the spiral wave in the vis-
coelastic case for three different values of D2 . The upper right 
area of the spiral is slightly more vertical in the simulation 
with a larger value of D2 than in the other cases, suggest-
ing that propagation of the voltage is somewhat hindered in 
that direction. We also observe a slightly more pronounced 
deformation of the right side of the domain due to the two-
way coupling between tissue motion and electrophysiology. 
A similar effect was seen in the hyperelastic case.

As in other studies, here we observe that conduction 
velocity is sensitive to spatiotemporal discretisation. In 
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Fig. 5   Convergence of the deflection of Cook’s membrane for an 
Holzapfel–Ogden material with constant active stress (a, c) and 
deflection of a 3D beam for a passive Guccione–Costa–McCulloch 

material (b, d). Maximal vertical deflection with respect to the mesh 
resolution for different numerical schemes (a, b), and different values 
of the stabilisation constant (c, d)



647An orthotropic electro‑viscoelastic model for the heart with stress‑assisted diffusion﻿	

1 3

Table 3, we include the results of a simple convergence 
test for conduction velocity, similar to the benchmark test 
conducted in Ruiz-Baier et al. (2019). We calculated the 
horizontal propagation of the action potential using differ-
ent time steps and mesh refinements. Differently to the case 
of nonlinear diffusion without SAD from Ruiz-Baier et al. 
(2019), the experiment reveals that lower resolutions pro-
duce larger conduction velocities than the physiological val-
ues. This test also confirms that with our time step and mesh 
resolution ( 0.1ms , and above 200, 000 DoF, respectively), 
conduction velocity is in the expected physiological range, 
whereas larger time steps will systematically fail to capture 
the dynamics of the ionic model.

4.5 � Scroll waves on mono‑ventricular geometries

For the ventricular geometries, we test both the active strain 
and active stress formulations. We start from patient-specific 
left ventricular geometries [available from Warriner et al. 
(2018), Lamata (2018)] and rescale them using approxi-
mately the same dimensions as the idealised ventricles stud-
ied in Ruiz-Baier et al. (2019). The segmentation process is 
outlined in Fig. 8. From there we define boundary labels and 
produce volumetric tetrahedral meshes of varying resolu-
tions. The domain boundaries are set as sketched in Fig. 1: 
the basal cut corresponds to ��D , the epicardium to ��R , 
where the Robin boundary conditions (2.10c) are defined 
with a spatially varying stiffness

and the endocardium to ��N  ,  where we set 
pN(t) = p0 sin

2(�t) , representing the variation of endocardial 

�(y) =
1

yb − ya
[�a(yb − y) + �b(y − ya)],

pressure. The constants ya, yb are the vertical components of 
the apical and basal locations, and 𝜂a < 𝜂b denotes the stiff-
ness sought at the apex and base, respectively (assuming that 
the contact of the muscle with the aortic root is more resist-
ant to traction than the more flexible pericardial sac and sur-
rounding organs). In addition, since fibre and sheetlet fields 
for mono-ventricular geometries are not usually extracted 
from MRI data, we generate them using a mixed-form adap-
tation to the Laplace–Dirichlet rule-based method proposed 
in Wong and Kuhl (2014), Rossi et al. (2014).

After the S2 stimulus excites a group of cells in the lower 
left octant at t = 335 ms, a spiral wave forms and sweeps 
around both sides of the ventricle, the two sides merging 
at approximately t = 415 ms. Simultaneously, we see con-
traction of the apical region in the upwards direction, com-
plemented by torsion and thickening of the ventricle wall. 
Figure 9 shows the propagation of the action potential on 
the deforming ventricle, with the original ventricle geom-
etry shown with reduced opacity for comparison. The S2 
stimulus occurs on the apex, and the nascent scroll wave is 
not visible until the two arms of the wave interact. For these 
tests the mesh size was approximately h = 0.24 mm and the 
time step �t = 0.1ms. We have employed the lowest-order 
finite element method l = 0 and the stabilisation parameter 
is taken as �stab = 25 (Fig. 10).

In addition, and similarly to the 2D case, incorporating 
SAD impacted the propagation of the spiral wave anisotropi-
cally. In the fibre direction, SAD led to earlier advancement 
of the spiral. In the transverse direction, the non-SAD case 
advanced earlier. Figure 11 shows the difference in voltage for 
the two cases (along with the actual voltage profile, for refer-
ence). The effect seen in the fibre direction (indicated by the 
white arrows) was not seen in the other directions. For these 

Fig. 6   Differences in ionic quantities from varying SAD parameter D2 at t = 444ms . Quantities r̂i indicate the profiles with D2 =7.5E−3, and r̃i 
the profiles associated with D2 =1.0E−5 (dimensions are as in Table 2)
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tests, we have used the active strain formulation and we have 
included viscoelastic effects, as well as inertial contributions.

4.6 � Effects due to viscoelasticity

In order to quantify the discrepancies between hyperelastic 
and viscoelastic effects, we conduct a series of simula-
tions using the coupled model on a 3D slab of dimensions 
50 × 50 × 10 mm3 using a tetrahedral mesh of h = 0.25 mm, 
also setting �t = 0.1  ms, �stab = 25 , and f 0 = (1, 0, 0)� , 
s0 = (0, 1, 0)� . These tests are conducted using the active 
stress formulation, and we consider inertial effects. We 
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Fig. 7   a, b Propagation of action potential v and active tension Ta , 
measured by taking the profile over a horizontal line segment cross-
ing the upper half of the tissue at y = 7mm . Comparison is provided 

for two different values of D2 . c, d, e Effect of D2 on the potential 
wave at t = 444ms in the viscoelastic case

Table 3   Convergence of conduction velocity with respect to temporal 
and spatial discretisation

Convergence of conduction velocity, mm/ms

DoF h (mm) �t = 0.3ms 0.1ms 0.05ms 0.01ms

27038 0.3817 0.1130 0.1032 0.1015 0.0994
108576 0.1909 0.0754 0.0705 0.0654 0.0637
170919 0.1527 0.0733 0.0657 0.0632 0.0620
246456 0.1273 0.0701 0.0632 0.0601 0.0589
554960 0.0849 0.0649 0.0553 0.0551 0.0550
1204362 0.0768 0.0610 0.0552 0.0550 0.0547
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apply a S1 stimulus on the face x = 0 , and after t = 92ms , 
the propagation front has reached the state shown in 
Fig. 12a, plotted on the deformed configuration (which 
was computed with a full electro-viscoelastic model). The 
boundary conditions for the viscoelasticity are of Robin 
type everywhere on the boundary. At that time, in panels 
(b,c) we depict snapshots of the approximate solutions 

obtained using the hyperelastic and viscoelastic models 
with their baseline parameter values as reported in Table 2, 
and shown over a line segment crossing the tissue slab 
parallel to the x−axis. We show profiles of the mechanical 
entities ( x−components of displacement and pressure), as 
well as potential and r3 . For reference, we also include the 
results obtained using a model without SAD contributions 

Fig. 8   Segmentation and mesh personalisation process from Warriner 
et  al. (2018), Lamata (2018). Semi-automatic segmentation by 3D 
extrapolation (yellow surface and contours) of 2D segmentation con-
tours (red contours and projections) (a); surface mesh template (b); 

and resulting mesh (white surface) overlaid with the segmentation 
surface colour coded by the distance between them (jet colour map, 
from 0 mm in blue to 1 mm in red) (c). Used with permission

Fig. 9   Evolution of voltage after S2 stimulus (at t = 335ms ), showing formation of a scroll wave on a contracting ventricle, using the active 
strain model. The shadow of the undeformed ventricle geometry is shown for comparison
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(that is with D2 = 0 ). We note that the curves produced 
without SAD are substantially lagged (as expected from 
the choice of diffusion parameters) with respect to the 
two other cases that display no major discrepancies. The 
remaining panels in the figure show pointwise transients of 
the main mechanical and electrical fields measured on the 
point (x0, y0, z0) = (25, 25, 10) . The evolution of the elec-
tric and activation fields remains very similar in all three 
cases; for instance, the shape of the action potential is 
almost not modified after adding SAD or viscous contribu-
tion and for the other fields also very subtle differences are 
observed. (The calcium concentration was slightly shifted 
to the left in the hyperelastic and viscoelastic cases.) The 
changes are more pronounced in the Frobenius norm of 
the Kirchhoff stress, the displacement magnitude, and the 

pressure (panels g,h,i). These computations suggest that 
viscous effects will result in a decreased displacement, 
stress, and pressure (similar conclusions were drawn in 
Pandolfi et al. (2017), but not in the context of models for 
ventricular viscoelasticity). These discrepancies, however, 
are qualitatively small, and this observation was robust 
to every parameter combination that we tested, consist-
ent spatially and in time. The application of a viscous 
model also had consequences related to performance. 
For instance, in the tests mentioned above, the average 
number of Newton iterations needed to reach convergence 
was systematically lower in the viscous case than in the 
hyperelastic case. This behaviour is expected as for simple 
viscoelastic models the tangent problem is essentially a 

Fig. 10   Snapshot at t = 600ms of field variables plotted on the deformed domain and less opaque undeformed mesh. Here we have also used the 
active strain approach
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rescaled version of the elastic stiffness, which contributes 
to improving the stability of the linearised system. 

We next proceed to investigate the effects of changing the 
viscosity parameters. The parameter � from (2.6) exerted 
minimal influence over the observed dynamics. Even for 
the five orders of magnitude tested, from � = 0.1 ms to 
� = 10,000 ms, the differences in displacement, voltage, 
and all other variables were of less than 0.1%. This could be 
because of the low rates of change of deformation that we 
see in our simulations. We also tested values of � across three 
orders of magnitude, from � = 2.26 to � = 2260 (in units 
N/cm2

⋅ms). As expected, increasing this quantity, thereby 
increasing the viscoelastic contribution to the Cauchy stress, 
magnified the differences between the hyperelastic and vis-
coelastic cases (essentially magnifying the effects seen in 
Fig. 12). Additional simulations (not reported here) also 
showed that higher values of � not only reduced the magni-
tude of � , u , p, but also smoothed their profiles, reducing 
the distances between peaks and troughs. Even if no sub-
stantial differences were encountered in terms of conduction 
velocity, the calcium transients displayed generally higher 
values in the viscoelastic case.

4.7 � Viscoelastic versus hyperelastic effects 
under passive inflation and active contraction

Much more evident differences can be observed in terms 
of the true stress �f = �f 0 ⋅ (��f 0) when plotted against 
the local stretch in the fibre direction, �f =

√
I4,f  . Such a 

comparison has been conducted in Gültekin et al. (2016) 
for idealised geometries, and it was specifically designed 

to study hysteresis effects due to viscous contributions 
to orthotropic passive stress. For the inflation tests, we 
will restrict to � = 1 ms and � = 22.6 N/cm2

⋅ms. These 
values, considered in Karlsen (2017) (and using units of 
[s] and [Pa s], respectively), ensure that the viscoelastic 
component is large enough to have a visible effect, but 
does not completely overwhelm the dynamics of the tis-
sue. Here, we consider the left ventricular domain used in 
Sect. 4.5 and proceed to analyse a stress–stretch response 
on two points near the basal surface on the endocardium 
and epicardium, portrayed in Fig. 13a. The mechanical 
parameters were taken differently from those in Table 2; 
here, we focus on the patient-specific constants estimated 
from healthy myocardial tissue at 8 mmHg end-diastolic 
pressure using chamber pressure-volume and strain data 
taken in vivo (Gao et al. 2015). The modified values for 
this particular test are a = 0.02096  N/cm2 , b = 3.243 , 
af = 0.30634  N/cm2 , bf = 3.4595 , as = 0.07334  N/cm2 , 
bs = 1.5473 , afs = 0.03646  N/cm2 , bfs = 3.39 , and we 
set �stab = 10 . In the simulation, we impose a sinusoidal 
endocardial pressure of maximal amplitude 0.1 N/cm2 
(approximately 8 mmHg) and run a set of transient simu-
lations over the interval from 0 to 300 ms. This configura-
tion constitutes an inflation and deflation process where 
the majority of the fibres are acting in traction, whereas 
sheetlets work under a compression regime. Plots (b, c) 
in Fig. 13 illustrate the stress–stretch response (in terms 
of the true stress). The behaviour on the epicardial point 
shows an exponential stiffening and is quite similar to 
what was observed in Gültekin et al. (2016), as for both 
stress measures in the viscoelastic case there is evidence 

Fig. 11   Effect of SAD on spiral wave propagation, using the active 
strain formulation. Panels a, b show voltage and c shows the differ-
ence between the SAD and non-SAD cases vSAD − vnon-SAD (which 

has a different scale). The action potential wave using SAD moved 
along the fibre direction ahead of the non-SAD case



652	 A. Propp et al.

1 3

of hysteresis effects (that are, by definition, not present in 
the hyperelastic case). Slight deviations from the reference 
results in Gültekin et al. (2016) may be related to the fact 
that we are using a full electromechanical model, a differ-
ent viscoelastic contribution, and different material param-
eters. On the endocardial point, we observe even more 
marked differences between the two cases, probably since 
we do not expect symmetry in the motion patterns for a 
non-ellipsoidal geometry. Other qualitative differences in 
the motion patterns include a more marked wall thicken-
ing, and an overall lower pressure (also more evenly spread 

throughout the endocardium, showing a smoother profile 
than the one produced in the hyperelastic case). Pressure 
on the epicardium was higher in the viscoelastic case.

As a final test, we analyse the differences between the 
viscoelastic and hyperelastic case under active contrac-
tion. We employ the ventricular geometry again, impos-
ing Robin boundary conditions on the epicardial surface 
and zero normal displacements on the basal cut, and use 
the active strain approach. We use �stab = 10 , and more 
pronounced viscoelastic effects encoded in � = 5  ms 
and � = 80.25 N/cm2 ms. The active contraction of the 

(a)

0 10 20 30 40 50

-2

-1.5

-1

-0.5

0

0.5

1

(b)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(c)

50 100 150 200 250 300 350 400
0

0.5

1

1.5

(d)

50 100 150 200 250 300 350 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(e)

50 100 150 200 250 300 350 400

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(f)

50 100 150 200 250 300 350 400

0.5

1

1.5

2

2.5

3

(g)

50 100 150 200 250 300 350 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(h)

50 100 150 200 250 300 350 400

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

(i)

Fig. 12   Comparison of field variables between hyperelastic and vis-
coelastic cases on a line parallel to the x axis (sketched in a) taken 
at t = 92ms (b, c); and pointwise evolution of field variables on the 
point (x0, y0, z0) (d–i) for the cases of hyperelasticity without SAD, 

with the baseline case of SAD but without viscous stresses, and the 
viscoelastic case (line, dashed, and dashed-dotted curves, respec-
tively). For these tests, we have used the active stress formulation
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ventricle is initiated by an ectopic beat and impose a 
sinusoidal endocardial pressure but with larger amplitude 
0.25 N/cm2 and simulate the process for approximately 
two cycles (from 0 to 700 ms). Figure 14 reveals a higher 
asynchrony in the tissue deformation and stresses between 
the hyperelastic and viscoelastic case. This is observed 
visibly from the motion of the ventricle in panel (a), but 
also from the transients extracted on an epicardial point 
near the apex and measuring true stress in the fibre direc-
tion, the local fibre stretch, the displacement magnitude. 
This effect was milder in the Frobenius norm of the Kirch-
hoff stress tensor.

5 � Concluding remarks

We have introduced a model for the active contraction of 
cardiac tissue. We focused on incorporating the mechanoe-
lectric feedback through stress-assisted diffusion, accounting 
for a porous-media-type nonlinear diffusivity, and including 
inertial terms in the equations of motion. The three-field 
equations of motion of a viscoelastic orthotropic material are 
coupled with a four-variable minimal model for human ven-
tricular action potential using both active strain and active 
stress approaches. We have also proposed a new stabilised 
mixed-primal numerical scheme written, in particular, in 
terms of the Kirchhoff stress. The non-trivial effects of both 
viscoelasticity and stress-assisted diffusion in our model 
suggest that they may play an important role in governing 
cardiac function and its response to external stimuli.

An important remark is that the active strain approach 
seems to be much more robust than the active stress formula-
tion, at least in the present context. In order to obtain compa-
rable results with the active stress approach, we had to spend 
quite a lot of effort finding the correct scaling in (2.3). Once 
this is achieved, we observed that there is no substantial dif-
ference in the output quantities. This is why our numerical 
tests have focused a little bit more on the active stress, since 
it is somewhat more challenging than the other case.

Further additions will be mostly focused on multiscale 
microstructural coupling, which will provide a more physi-
ological justification of the model in terms of complex 
phenomena involved in mechanoelectrical interactions. 
One example would be to include poroelastic effects rep-
resenting perfusion of the myocardial tissue. Developing 
a thermodynamically consistent description of stress-
assisted diffusion is also a pending task, in which elec-
tromechanical coupling with the surrounding torso and 
organs would represent another level of interaction. Such 
formulation under electromechanical coupling (and includ-
ing nonlinear and stress-assisted diffusion) will require 
state-of-the-art tools of multiscale homogenisation (Cyron 

et al. 2016) as well as dedicated multiscale numerical 
methods (Gandhi and Roth 2016).

More confident now in obtaining accurate and reliable 
numerical solutions, our forthcoming contributions will 
target an exhaustive computational analysis of restitution 
curves and realistic activation patterns, e.g. accounting for 
Purkinje fibres and cellular heterogeneity, with the purpose 
of characterising spatiotemporal alternans patterns (Gizzi 
et al. 2013) in the presence of multiple mechanoelectric 
feedback effects. Practical applications of the present study 
rely on the antitachycardia pacing protocols, as well as 
on the (still today not completely understood) effects of 
mechanical loads, including cardiac massage, tissue dam-
age, and remodelling at different scales during atrial flutter 
(Masé et al. 2008). Estimates of energy dissipation and 
heat production would be further investigated, widening 
the validity of these models to non-equilibrium thermody-
namical systems. The simulation of mechanically induced 
ectopic activity, as well as prediction of the risk of sudden 
cardiac death, is also part of our long-term goals. For the 
sake of model validation, we are also interested in mar-
rying our results to experimental observations obtained 
through elastography, using, for instance, the novel 
approach advanced in Capilnasiu et al. (2019).
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Details on the minimal ionic model

The ionic currents consist of three general terms, phenom-
enologically constructed (without particularisation to the 
ionic species that generate them)

g(v, r⃗) = gfi(v, r⃗) + gsi(v, r⃗) + gso(v, r⃗),
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where the adimensional fast inward, slow inward, and slow 
outward currents are, respectively, given by

and the kinetics of the gating variables r⃗ are given by

Here, H is the Heaviside step function, and the time con-
stants and steady-state values are defined as:

Mixed‑primal fully discrete finite element 
scheme

We restrict the presentation to the active stress formulation 
using a smoothed model for active tension (stressing that the 
case of active strain and other boundary conditions follows 
a similar treatment). Let us denote by Th a regular partition 
of � into simplicial elements K (pairwise disjoint triangles 
in 2D or tetrahedra in 3D) of maximum diameter hK , and 
define the mesh size as h ∶= max{hK ∶ K ∈ Th} . Let us also 
denote by Eh the set of interior facets of the mesh, and by [[⋅]]e 

𝜒 gfi(v, r⃗) = −r1H(v − 𝜃1)(v − 𝜃1)(vv − v)∕𝜏fi,

𝜒 gsi(v, r⃗) = −H(v − 𝜃2)r2r3∕𝜏si,

𝜒 gso(v, r⃗) =
(v − v0)(1 −H(v − 𝜃2))

𝜏o
+H(v − 𝜃2)∕𝜏so,

m⃗(v, r⃗) =

⎛
⎜⎜⎝

(1 −H(v − 𝜃1))(r1,inf − r1)∕𝜏
−
1
−H(v − 𝜃1)r1∕𝜏

+
1

(1 −H(v − 𝜃2))(r2,inf − r2)∕𝜏
−
2
−H(v − 𝜃2)r2∕𝜏

+
2

((1 + tanh(k3(v − v3)))∕2 − r3)∕𝜏3

⎞
⎟⎟⎠
.

𝜏−
1
= (1 −H(v − 𝜃−

1
))𝜏−

1,1
+H(v − 𝜃−

1
)𝜏−

1,2
,

𝜏−
2
= 𝜏−

2,1
+ (𝜏−

2,2
− 𝜏−

2,1
)(1 + tanh(k−

2
(v − v−

2
)))∕2,

𝜏so = 𝜏so,1 + (𝜏so,2 − 𝜏so,1)(1 + tanh(kso(v − vso)))∕2,

𝜏3 = ((1 −H(v − 𝜃2))𝜏3,1 +H(v − 𝜃2)𝜏3,2,

𝜏o = ((1 −H(v − 𝜃0))𝜏o,1 +H(v − 𝜃0)𝜏o,2,

r1,inf =

{
1, v < 𝜃−

1

0, u ≥ 𝜃−
1

,

r2,inf = ((1 −H(v − 𝜃0))(1 − v∕𝜏2,∞) +H(v − 𝜃0)r
∗
2,∞

.

the jump of a quantity across a given facet e ∈ Eh . The spe-
cific finite element method we use here is based on solving 
the discrete weak form of the hyperelasticity equations using 
piecewise constant approximations of the symmetric Kirch-
hoff stress tensor, piecewise linear approximation of dis-
placements, and piecewise constant approximation of (solid) 
pressure. The transmembrane potential in the electrophysiol-
ogy equations is discretised with Lagrange finite elements 
(piecewise linear and continuous functions), and the remain-
ing ionic quantities are approximated by piecewise constant 
functions. More precisely, we use the finite-dimensional 
s p a c e s  ℍh ⊂ 𝕃

2
sym

(𝛺)  ,  �h ⊂ �1(𝛺)  ,  Wh ⊂ H1(𝛺)  , 
Qh ⊂ L2(𝛺) , Zh ⊂ L2(𝛺)3 defined (for the case of a generic-
order approximation l ≥ 0 ) as follows:

where ℙl(K) denotes the space of polynomial functions of 
degree s ≤ l defined locally on the element K. Assuming 
zero body loads, and applying a backward differentiation 
formula (BDF) for the time integration, we end up with the 
following fully discrete nonlinear electromechanical prob-
lem, starting from the discrete initial data v0

h
, n0

h
, T0

a,h
 . For 

each n = 0, 1,… , nmax : find
(�n+1

h
, un+1

h
, pn+1

h
) and (vn+1

h
, r⃗n+1

h
, Tn+1

a,h
) such that

ℍh ∶= {�h ∈ 𝕃
2
sym

(�) ∶ �h|K ∈ ℙl(K)
d×d,∀K ∈ Th},

�h ∶= {vh ∈ �
1(�) ∶ vh|K ∈ ℙl+1(K)

d,∀K ∈ Th,

vh ⋅ n = 0 on ��D},

Qh ∶= {qh ∈ L2(�) ∶ qh|K ∈ ℙl(K),∀K ∈ Th},

Wh ∶= {wh ∈ H1(�) ∶ wh|K ∈ ℙl+1(K),∀K ∈ Th},

Zh ∶= {�h ∈ L2(�) ∶ �h|K ∈ ℙl(K),∀K ∈ Th},

(B.1)
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h
)
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∑
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Fig. 13   Comparison between hyperelastic and viscoelastic defor-
mation under passive inflation. True stress in the fibre direction 
�f = �f 0 ⋅ (��f 0) , measured according to local stretch on two points 
on the epicardium (b) and endocardium (c) [points indicated in panel 
(a)]. The plots in panels (d, e) show transients of mechanical outputs 
(Frobenius norm of the Kirchhoff stress, true stress on fibre direction, 
local stretch, and displacement magnitude) at the point (x0, y0, z0) ; 
and plots (f, g) display their counterparts in point (x1, y1, z1) . For 
these tests we have used only inertial effects and passive hyperelastic 
or viscoelastic contributions

◂
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where �stab is a positive pressure stabilisation parameter 
required to enforce solvability of the discrete problem. This 
is the tetrahedral counterpart of the finite element method 
for quadrilateral meshes studied in Chavan et al. (2007) and 
recently used in the context of cardiac electromechanics in 
Ruiz-Baier et al. (2019). Notice that the boundary condi-
tion (2.10a) is incorporated as an essential condition on the 
displacement space, whereas the traction boundary condi-
tion (2.10b) on the remainder of the boundary ��N appears 
naturally as the last term in the second equation of (B.1).

Linearisation of the mechanical problem

The coupling between activated mechanics and the elec-
trophysiology solvers will be performed using a segregated 
fixed-point scheme. At each time step, the nonlinear alge-
braic sub-system for the mechanics defined by the first three 
equations in (B.1) is linearised, adopting the following form 
(where the time indices have been dropped for the sake of 
notation).

S t a r t i n g  f r o m  t h e  i n i t i a l  g u e s s 
(� k=0

h
, uk=0

h
, pk=0

h
) = (�n

h
, un

h
, pn

h
) , for k = 0, 1,… find stress, 

displacement, and pressure increments (�� k+1
h

, �uk+1
h

, �pk+1
h

) 
such that

and then update � k+1
h

= �
k
h
+ �� k+1

h
 , uk+1

h
= uk

h
+ �uk+1

h
 , 

pk+1
h

= pk
h
+ �pk+1

h
 . Here, Rk

�
,Rk

u
,Rk

p
 are tensor, vector, 

(C.1)
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Fig. 14   Comparison between hyperelastic and viscoelastic effects 
under contraction, using the active strain approach and � = 5 ms and 
� = 80.25 N/cm2 ms. Panel a has side views of the deformed domain 

for viscoelastic (hollow blue) and hyperelastic (dark red dots) at three 
different times, and panels b, c show transient of mechanical outputs 
extracted from a point on the lower epicardial surface
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and scalar residuals associated with the Newton–Raph-
son linearisation at the previous step k, and �k

h
= � + ∇uk

h
 , 

Jk
h
= det�k

h
 . Next we introduce the following linear maps 

(related to the Gâteaux derivatives of the solution operator)

as well as the bilinear forms and linear functionals

Then, dropping all iteration indices and making abuse of 
notation, the tangent problem (C.1) (now also restricted to 
pure displacement boundary conditions) can be recast as the 
mixed variational form

The stability and convergence analysis of (C.2) will be stud-
ied in a forthcoming contribution.
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