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Abstract
A computationally efficient method is described for simulating the dynamics of the left ventricle (LV) in three dimensions. 
LV motion is represented as a combination of a limited number of deformation modes, chosen to represent observed cardiac 
motions while conserving volume in the LV wall. The contribution of each mode to wall motion is determined by a cor-
responding time-dependent deformation variable. The principle of virtual work is applied to these deformation variables, 
yielding a system of ordinary differential equations for LV dynamics, including effects of muscle fiber orientations, active 
and passive stresses, and surface tractions. Passive stress is governed by a transversely isotropic elastic model. Active stress 
acts in the fiber direction and incorporates length–tension and force–velocity properties of cardiac muscle. Preload and 
afterload are represented by lumped vascular models. The variational equations and their numerical solutions are verified by 
comparison to analytic solutions of the strong form equations. Deformation modes are constructed using Fourier series with 
an arbitrary number of terms. Greater numbers of deformation modes increase deformable model resolution but at increased 
computational cost. Simulations of normal LV motion throughout the cardiac cycle are presented using models with 8, 23, 
or 46 deformation modes. Aggregate quantities that describe LV function vary little as the number of deformation modes 
is increased. Spatial distributions of stress and strain change as more deformation modes are included, but overall patterns 
are conserved. This approach yields three-dimensional simulations of the cardiac cycle on a clinically relevant time-scale.
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1  Introduction

The mechanical pumping performance of the left ventricle 
(LV) depends in a complex way on the ventricular geom-
etry, the passive mechanical properties of the myocardium, 
the arrangement of cardiac muscle fibers, and the fibers’ 
contractile force generation. Quantitative understanding of 

the effects of these characteristics on ventricular function 
requires the use of theoretical models to simulate the dynam-
ics of the LV. Such models typically employ a continuum 
mechanics approach in which the active and passive compo-
nents of stress at each point in the myocardium are expressed 
as time-dependent functions of local myocardial strain. The 
equations of equilibrium of mechanical stresses are then 
solved using approximate methods, subject to boundary con-
ditions that include the external forces acting on the tissue.

Three-dimensional models of the LV are typically devel-
oped through the application of the finite element method 
(FEM) (Nash and Hunter 2000; Costa et al. 2001; Ker-
ckhoffs et al. 2005). In this approach, the integrals of the 
variational equations (15) are split into integrals over local 
elements, and the displacement variations �u are given in 
terms of the local element displacement functions (Zienkie-
wicz et al. 2005). The resulting large sparse matrix systems 
may be solved for the local element displacements. FEM 
simulations of LV dynamics yield detailed descriptions of 
cardiac deformation and stress. However, such models are 
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computationally demanding due to the many degrees of 
freedom (DOF) that are needed to describe local element 
displacements.

While the FEM approach is suitable for many purposes, 
some problems do not require so many DOF. For example, 
Nordbø et al. (2014) showed that, despite their use of an 
elastic FEM model with hundreds of degrees of freedom, 
the elasticity parameters of a mouse LV were identified with 
greater certainty using an objective that included only four 
aggregated quantities: LV long-axis length, short-axis diam-
eter, work, and volume. In such cases, a reduced model of 
LV kinematics would likely be sufficient and afford better 
parameter identifiability. Arts et al. (1992) demonstrated that 
13 kinematic parameters were sufficient to fit 14 markers 
recorded in a canine LV model, suggesting that, for studies 
where only limited data is recorded, a reduced approach is 
suitable. Simulations of cardiac remodeling are another area 
where a reduced model would offer an efficient alternative to 
FEM modeling. The results of a reduced model would likely 
be similar to those found using an FEM model, as changes 
to cardiac function based on remodeling are distributed over 
the myocardium.

The continued prevalence of heart failure (Benjamin et al. 
2018; Kapoor et al. 2016; Kovács 2015), among other car-
diac pathologies, has lead to increasing interest in improved 
methods for individualized quantification of cardiac func-
tion. Patient-specific computational models of the heart 
offer information beyond standard clinical indices. While 
FEM models have been effectively applied to estimate 
cardiac mechanics for specific geometries (Aguado-Sierra 
et al. 2011; Krishnamurthy et al. 2013), their theoretical and 
computational complexity impedes their widespread use. A 
simplified method that can still represent the 3D geometry 
and essential deformable characteristics of the LV would 
provide a more accessible method for use outside the mod-
eling community.

To these ends, we develop a computationally efficient 
variational method for modeling LV dynamics in Sect. 2. 
We have previously described this method for an axisym-
metric geometry (Moulton et al. 2017) and here extend it 
to more general geometries and kinematics. The equation 
of virtual work (15) is used to describe the dynamics of the 
LV. However, rather than splitting the integrals and displace-
ments into local elements as in the FEM, we describe dis-
placements according to a set of kinematic variables q that 
extend over the entire myocardial domain. The displacement 
variations �u are therefore described in terms of variations 
of these kinematic variables.

We define a non-axisymmetric unstressed myocardial 
domain �0 in prolate spheroidal coordinates. To simulate 
LV dynamics, we construct a mechanical model that incor-
porates muscle fiber orientations, active and passive stresses, 
and surface tractions. We assume the standard transversely 

isotropic elastic model. To represent the viscoelastic prop-
erties of the myocardium, the passive stress also includes a 
viscous component. The active stress acts only in the fiber 
direction and incorporates important fiber properties such as 
the length–tension and force–velocity relationships. These 
definitions are introduced into the virtual work equation, 
yielding a system of ordinary differential equations (ODEs) 
that characterize the time-dependent deformable mechanics 
of the LV. The validity of the method is evaluated by com-
parison with analytical solutions to the strong form equa-
tions. Simulations of normal cardiac function are presented 
and cardiac muscle fiber stress distributions are computed, 
demonstrating the ability of this approach to describe spatial 
variations in stress.

2 � Methods

Prolate spheroidal coordinates (�, �,�) , which provide a 
natural framework for modeling the left ventricle (Sandler 
and Dodge 1968; Wu et al. 2013; Heyde et al. 2016), are 
related to Cartesian coordinates (x, y, z) through

where � ∈ [0, 2�) is the polar angle, � ∈ [0,∞) defines the 
extension out from the ellipsoid axis (analogous to the radial 
coordinate in spherical coordinates), � ∈ [0,�] is compara-
ble to the azimuthal angle, and a defines the focal length of 
the ellipse. These coordinates are illustrated in Fig. 1. Cor-
responding coordinates (x0, y0, z0) and (�0, �0,�0) describe 
the reference configuration.

2.1 � Myocardial domain

We define the myocardial domain in the reference configura-
tion in terms of its endocardial, epicardial, and basal bound-
aries. The endocardial and epicardial surfaces are given by 
�in0(�0,�0) and �out0(�0,�0) , respectively. We define each 
surface as a set of bicubic splines:

where cin0 and cout0 denote sets of parameters.
The formulation of the bicubic spline functions f in pro-

late spheroidal coordinates is described in the supplementary 
material Section S2. We also define a function �up0(�0) that 
describes the basal boundary. We compute �up0(�0) by a one-
dimensional periodic spline function. Thus, the reference 
myocardial domain is

(1)

x = a sinh� sin � cos�

y = a sinh� sin � sin�

z = a cosh� cos �,

(2)
�in0 = f (�0,�0; cin0)

�out0 = f (�0,�0; cout0),
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The myocardial domain and bounding surfaces are illus-
trated in Fig. 2.

(3)
𝛺0 = {(𝜇0, 𝜈0,𝜙0) ∶ 𝜇in0(𝜈0,𝜙0) ≤ 𝜇0 ≤ 𝜇out0(𝜈0,𝜙0),

𝜈up0(𝜙0) ≤ 𝜈0 ≤ 𝜋, 0 ≤ 𝜙0 < 2𝜋}.

2.2 � Kinematics

The myocardium may be deformed by an arbitrary displace-
ment from reference coordinates (�0, �0,�0) to deformed 
coordinates (�, �,�) . The deformed myocardial domain � 
is the image of the reference domain �0 under such a map-
ping. In this section, we construct a mapping that describes 
LV deformations using a limited number of deformation 
modes. The contribution of these modes to LV displacement 
is determined by kinematic variables qi . We evaluate the 
ability of these modes to represent actual cardiac deforma-
tions by analysis of tagged cardiac MRI data in Sect. 2.2.4.

2.2.1 � Incompressible framework

In this section, we show how three-dimensional volume pre-
serving deformations of the LV wall can be derived, given 
specified displacements of the endocardial surface. It is 
emphasized that this analysis is independent of the choice of 
functions used to describe the shape and deformation. The 
constraint of incompressibility is directly imposed on the 
deformation modes. While this assumption is not strictly true 
(May-Newman et al. 1994; Yin et al. 1996), much of the LV 
is nearly incompressible. Imposing this constraint avoids the 
need to introduce a large bulk elastic modulus, which can result 
in numerically challenging systems of stiff equations. We fur-
ther simplify the kinematic construction by constraining the 
displacements in the � and � directions to be independent of �0:

We discuss the implications of these kinematic simplifica-
tions in Sect. 4.3. Under these assumptions, the deformation 
gradient tensor in terms of prolate spheroidal coordinates is

where the coordinate system scale factors are

These kinematic simplifications (4) yield a simplified form 
of the determinant of F , with only two nonzero terms. The 
incompressibility condition det(�) = 1 gives

(4)� = �(�0,�0) and � = �(�0,�0).

(5)F =

⎡
⎢⎢⎢⎢⎢⎢⎣

g�

g�0

��

��0

g�

g�0

��

��0

g�

g�0
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��0

0
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g�0

��

��0

g�

g�0
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��0

0
g�

g�0

��

��0

g�

g�0

��

��0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(6)
g� = g� = a

√
sinh2 � + sin2 �

g� = a sinh� sin �.

(7)
g�g�g�

g�0
g�0g�0

��

��0

(
��

��0

��

��0

−
��

��0

��

��0

)
= 1.

Fig. 1   Prolate spheroidal coordinates

Fig. 2   Diagram of the LV model. The myocardial reference domain 
�0 is determined by the bounding surfaces �in0 , �out0 , and �up0 . For 
the purposes of integrating the virtual work equations (21), the myo-
cardial boundary ��0 only includes the endocardial surface, as the 
other surfaces are assumed to be tractionless. The LV cavity is closed 
by an additional surface �0
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For convenience, we set

Inserting the scale factor definitions (6) into the incompress-
ibility condition (7) and integrating in terms of �0 yields

where the constant of integration (in terms of � ) has been 
chosen so that the left hand side is zero for � = 0 and the first 
term in the right hand side is zero if �0 = 0 . The arbitrary 
function fc(�0,�0) is chosen for consistency with displace-
ments of the endocardial wall �in0 → �in and is defined in 
the supplement, equation (S10). Equation (9) is a cubic in 
cosh� and can be solved analytically for � . We describe the 
solution in the supplementary material Section S3.

2.2.2 � Deformation mode definitions

Prolate spheroidal coordinates are naturally suited to defining 
displacement modes that describe characteristic LV deforma-
tions. Alterations to the � coordinate represent contraction 
toward or expansion away from the coordinate system axis. 
Changes to � imply elongation or shortening of the LV. Dis-
placements in the � coordinate supply LV base-to-apex torsion. 
We define three functions to describe these displacements:

(8)R(�0,�0) =
sin �

sin �0

(
��

��0

��

��0

−
��

��0

��

��0

)
.

(9)

a3R
[
cosh�

(
1

3
cosh2 � − cos2 �

)
−
(
1

3
− cos2 �

)]

= a3
[
cosh�0

(
1

3
cosh2 �0 − cos2 �0

)
−
(
1

3
− cos2 �0

)]

− fc(�0,�0),

(10)

�in(�0,�0) = �in0(�0,�0) + fs(�0,�0;q�)

�(�0,�0) = �0 + fs(�0,�0;q�)

�(�0,�0) = �0 + fs(�0,�0;q�),

where q� , q� , and q� are vectors of coefficients in the dis-
placement functions. The first function determines the 
displaced position of the endocardial wall �in . The � dis-
placement throughout the remainder of the myocardium 
is determined by the incompressibility condition (7). The 
remaining two functions directly determine changes to the � 
and � coordinates. The displacement function for each coor-
dinate is computed as a linear combination of Fourier terms:

where the one-dimensional basis functions are

Only modified cosine modes are used in the �0 direction, as 
sine functions create nonphysical deformations through the 
apex. The Fourier basis is a natural choice for the prolate 
coordinate system due to the periodicity of � . The first terms 
in this series (with k = 0 ) generate axisymmetric deforma-
tions. Terms with larger values of i develop a greater degree 
of local variations in the � coordinate, while increasing val-
ues of j and k lead to a higher degree of local variations in 
the � coordinate. Examples of deformations according to 
several modes are illustrated in Fig. 3. The total number of 
terms allowed for each index (i, j, k) determine the number 
of basis functions in the Fourier series, and therefore the 
overall deformable freedom for the coordinate under con-
sideration ( �in , � , or �).

2.2.3 � Strain measures

Computation of the deformation gradient tensor F 
(5) requires the derivatives of the prolate spheroidal 

(11)fs(�0,�0; a, b) =
∑
i,j

ai,j f
i
�0
f
j

s�0
+
∑
i,k

bi,k f
i
�0
f k
c�0

,

(12)

f i
�0
= 1 − cos[(i + 1)(�0 − �)]

f
j

s�0
= sin(j�0)

f k
c�0

= cos(k�0).

a b c d e f

Fig. 3   Examples of deformation according to single modes defined 
using the displacement functions (10) with isolated terms of (11). a 
Reference shape, b uniform expansion, c asymmetric � deformation 

which expands the lateral wall but not the septum, d uniform torsion, 
e uniform shortening, f asymmetric � deformation which lengthens 
the lateral wall while shortening the septum
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coordinate positions with respect to the reference coordi-
nates (supplementary material S26, S28). The right and 
left Cauchy–Green deformation gradient tensors are then 
C = F⊤F and B = FF⊤ . The Green and Euler-Almansi 
strains are

where I is the 3 × 3 identity matrix.

2.2.4 � Evaluation of the characteristic deformation mode 
kinematic model using cardiac MRI

As described above, we represent the kinematics of the 
LV with deformation modes that extend over the whole 
myocardium (Fig. 3). For this approach to be effective, the 
majority of LV deformation should be representable with 
relatively few modes. To illustrate that this is possible, we 
evaluated the ability of such modes to describe the motion 
of the LV observed with tagged cardiac magnetic resonance 
imaging (MRI) (see Figure S3). We analyzed two cases: 
the first from a healthy volunteer and the second from a 
patient with dilated cardiomyopathy. These data were previ-
ously published by Kar et al. (2014) and are used here with 
permission.

We estimated the deformation of the myocardium from 
the tagged MRI data using a deformable image registration 
algorithm. The myocardial walls were outlined manually 
in each imaging plane before the image registration was 
performed. The image registration method was described 
previously (Hong 2018) and is outlined briefly in the sup-
plementary material Section S6. For the purposes of this 
kinematic evaluation, we assumed the reference configura-
tion to be the end-systolic shape. While this is not the true 
reference configuration, this choice has little effect on this 
purely kinematic analysis.

To evaluate the ability of the kinematic model to repro-
duce the observed cardiac deformations, we optimized Nq 
kinematic parameters to reduce the mean error between 
model displacements and registered displacements. The 
number of kinematic parameters Nq was increased from 0 
to 85. Modes were added increasing the number of terms in 
(11). We alternated between adding terms with increased � 
and � resolution for the � , � , and � displacements. For each 
choice of Nq , we computed the displacement accounted for 
by that number of modes. The displacements were meas-
ured from end-systole to end-diastole. All rigid motion was 
removed from the problem, including the case where zero 
deformation modes were used. We computed the objective 
as the volume-averaged square displacement error:

(13)E =
1

2
(C − I) and e =

1

2
(I − B−1),

(14)O(q) =
1

Vm
∫
�0

|um(x0;q) − ur(x0)|2 dV ,

where | ⋅ | is the Euclidean norm, Vm is the myocardial wall 
volume, um is the Cartesian representation of the displace-
ment according to the selected deformation modes q , and ur 
is the displacement data registered from the cardiac MRI. 
The results of this analysis are shown in Sect. 3.1.

2.3 � Dynamics

For the purpose of modeling LV dynamics, gravitational 
and inertial effects are typically negligible (Chaudhry et al. 
1997), and the equations of virtual work (Malvern 1969) 
may be written as:

In our approach to LV kinematics, the deformed position x 
is a function of the reference position x0 and a set of time-
dependent kinematic variables: q = q(t).

Each qi defines the degree of displacement according to a 
particular mode, described in Sect. 2.2. Consequently, the 
displacement vector and strain tensor are functions of the 
reference position and the kinematic variables:

This implies that

where Nq is the number of deformation modes and �qi is 
the first variation of qi . The virtual work equation (15) then 
yields

Because the variations �qi are arbitrary, the virtual work 
equation is only generally satisfied if the system of Nq 
equations

is satisfied. The stresses and strains may also be represented 
and integrated in the reference domain:

where S is the second Piola–Kirchhoff (PK2) stress and E is 
the Green strain. This system, together with definitions for 
the myocardial domain, deformation modes, stresses, and 

(15)∫
�

� ∶ �e dv − ∫
��

t ⋅ �u ds = 0.

(16)x = x(x0, q)

(17)u = u(x0, q) and e = e(x0, q).

(18)�u =

Nq∑
i=1

�u

�qi
�qi and �e =

Nq∑
i=1

�e

�qi
�qi,

(19)
Nq∑
i=1

�qi

(
∫
�

� ∶
�e

�qi
dv − ∫

��

t ⋅
�u

�qi
ds

)
= 0.

(20)∫
�

� ∶
�e

�qi
dv − ∫

��

t ⋅
�u

�qi
ds = 0

(21)∫
�0

S ∶
�E

�qi
dV − ∫

��

t ⋅
�u

�qi
ds = 0,



1688	 B. D. Hong et al.

1 3

surface tractions, may be solved for either equilibrium states 
q or dynamic solutions of LV motion q(t).

2.3.1 � Muscle fiber directions

The helical arrangement of cardiac muscle fibers is defined 
according to observations (Streeter et al. 1969; Moulton 
et al. 2017). Measurements using diffusion tensor MRI 
(Scollan et al. 1998) could also be used. An orthogonal sys-
tem of local coordinates (s, n, f) is introduced with base vec-
tors in the fiber direction ef  , the sheet direction es—which 
lies within the muscle sheet and is perpendicular to the fiber 
direction, and en = ef × es (supplementary material Section 
S7). Quantities that are represented in terms of the local fiber 
coordinate basis may be transformed to the prolate spheroi-
dal basis using an appropriate unitary rotation matrix

Vectors v and tensors S can be transformed from fiber to 
prolate coordinate representations by

2.3.2 � Passive elastic stress

Myocardial elasticity is represented using a transversely 
isotropic material law, referred to as the “Guccione law,” 
(Nordbø et al. 2014; Hadjicharalambous et al. 2015; Xi et al. 
2011) citing work by Guccione et al. (1991). It may also be 
attributed to Chuong and Fung (1986). The elastic strain 
energy density is

where

The PK2 stress may be computed through the matrix deriva-
tive with respect to the Green strain:

These definitions imply that the PK2 stress tensor in the fiber 
coordinate (s, n, f) representation is

(22)Q =

⎡⎢⎢⎣

e� ⋅ es e� ⋅ en e� ⋅ ef
e� ⋅ es e� ⋅ en e� ⋅ ef
e� ⋅ es e� ⋅ en e� ⋅ ef

⎤⎥⎥⎦
.

(23)vprolate = Qvfiber and Sprolate = QSfiberQ
⊤.

(24)� =
1

2
ke(e

W − 1),

(25)
eW = exp[bffE

2
ff
+ bxx(E

2
nn
+ E2

ss
+ E2

sn
+ E2

ns
)

+ bfx(E
2
sf
+ E2

fs
+ E2

nf
+ E2

fn
)].

(26)Se =
��

�E
.

The fiber coordinate representation of the elastic stress is 
rotated to prolate coordinates using (23).

2.3.3 � Viscous stress

The viscous stress is calculated in the prolate spheroidal 
coordinate system. The viscous stress may be computed by 
(Moulton et al. 2017)

The time derivatives of C can be written in terms of deriva-
tives of the Green strain with respect to the deformation 
parameters q(t) using the chain rule:

Using this form, (28) becomes

2.3.4 � Active stress

The active contractile force of the cardiac muscle is assumed 
to act only in the fiber direction (Nash 1998):

We construct a simplified model for the active tension Ta 
using an activation function A(t), a length–tension relation-
ship g(�ff ) , and a linear force–velocity relationship:

where �ff  , the stretch ratio in the fiber direction, may be 
computed from the Green strain in the fiber direction as

The parameter ka determines the strength of the activation, 
while kav defines the relative magnitude of the force–velocity 

(27)Se = kee
W

⎡
⎢⎢⎣

bxxEss bxxEsn bfxEsf

bxxEsn bxxEnn bfxEnf

bfxEsf bfxEnf bff Eff

⎤
⎥⎥⎦
.

(28)Sv = kvC
−1 �C

�t
C−1.

(29)�C

�t
=

Nq∑
i=1

�C

�qi

dqi

dt
= 2

Nq∑
i=1

�E

�qi

dqi

dt
.

(30)Sv = 2kv

Nq∑
i=1

(
C−1 �E

�qi
C−1

)
dqi

dt
.

(31)[Sa]fiber =

⎡⎢⎢⎣

0 0 0

0 0 0

0 0 Ta

⎤⎥⎥⎦
.

(32)Ta = A(t)g(�ff )

(
ka + kav

��ff

�t

)
,

(33)�ff =
√

2Eff + 1.
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dependence. We assume a Gaussian length–tension 
relationship:

In this equation, Ls0 is an assumed sarcomere length in the 
unstressed myocardium, Ls,max is the length that provides 
maximal force generation, and Lsw determines the width of 
the Gaussian. The Gaussian shape was chosen to match the 
data recorded by Julian and Sollins (1975). We use a modi-
fied sine curve to approximate the time-dependence of active 
stress during systole:

The time derivative in (32) may be decomposed in terms of 
the time-dependent deformation parameters q , and (32) gives

The active PK2 stress in prolate coordinates is computed 
from (36) using the tensor rotation (23).

2.3.5 � Surface tractions and chamber volume

The traction at the endocardial surface generated by LV 
chamber pressure is

where n is the surface normal in the deformed configuration 
and Plv is the chamber pressure. The surface normals may be 
computed by taking the cross-product of the surface tangent 
vectors (supplementary material Section S8).

For the system to conserve energy, the LV chamber must 
be closed to define the cavity volume and work done by 
motion at the base must be incorporated into the virtual 
work equations. An appropriate closing surface is difficult 
to define in prolate spheroidal coordinates, and so the sur-
face �  is defined in cylindrical coordinates (supplementary 
material Section S9) as shown in Fig. 2.

2.3.6 � Virtual work differential equation system

Under the above assumptions, the virtual work equations 
(21) may be written as a system of ODEs, in which the kin-
ematic variables qi and the LV pressure Plv are functions of 
time t. The total PK2 stress can be expressed as

(34)g(�ff ) = exp

[
−(Ls0�ff − Ls,max)

2

(2Lsw)
2

]
.

(35)A(t) =

{
sind(�t∕Ta) during activation

0 otherwise.

(36)Ta = A(t)g(�ff )

⎛⎜⎜⎝
ka + kav

Nq�
i=1

��ff

�qi

dqi

dt

⎞⎟⎟⎠
.

(37)T = Plvn,

where

For convenience, we introduce

where the two terms of �i give the work done at the endo-
cardial surface and at the base of the LV (supplementary 
material Section S9.2).

With these definitions, the virtual work system (21) 
yields

(38)

S = Se + Sa + Sv

= Se + Sa,0 +

Nq∑
j=1

(
Sa,qj

dqj

dt
+ Sv,qj

dqj

dt

)
,

(39)

Sa,0 = Q

⎡
⎢⎢⎣

0 0 0

0 0 0

0 0 kaAg

⎤
⎥⎥⎦
Q⊤

Sa,qj = Q

⎡
⎢⎢⎢⎣

0 0 0

0 0 0

0 0 kavAg
𝜕𝜆ff

𝜕qj

⎤
⎥⎥⎥⎦
Q⊤

Sv,qj = 2kv

�
C−1 𝜕E

𝜕qj
C−1

�
.

(40)

�i,j = ∫
�0

�E

�qi
∶ (Sv,qj + Sa,qj ) dV0

�i = ∫
�0

�E

�qi
∶ (Se + Sa,0) dV0

�i = ∫
��0

�u

�qi
⋅ (v�0 × v�0

) d�0d�0

+ ∫
�

�u

�qi
⋅ (vl1 × vl2) durd�0,

(41)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�1,1
dq1

dt
+⋯ + �1,Nq

dqNq

dt
+ �1 − �1Plv = 0

�2,1
dq1

dt
+⋯ + �2,Nq

dqNq

dt
+ �2 − �2Plv = 0

⋮

�Nq,1

dq1

dt
+⋯ + �Nq,Nq

dqNq

dt
+ �Nq

− �Nq
Plv = 0.
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This system has Nq equations and Nq + 1 unknowns, q and 
Plv . An additional equation represents conservation of blood 
volume

where qmv is the flow into the LV through the mitral valve 
and −qaov represents the flow rate of the blood exiting the 
LV through the aortic valve. The expressions for qmv and qaov 
depend on the models chosen for the other components of 
the circulatory system.

Under equilibrium conditions, the time derivatives van-
ish and the pressure Plv becomes a constant, reducing the 
ODE system (41) to a nonlinear algebraic system for q:

where i = 1,… ,Nq . The solution to this nonlinear system 
may be approximated by a nonlinear solver such as Newton’s 
method.

2.3.7 � Numerical solution of the virtual work system

The system (41,42) is an initial value problem for q and 
Plv . We solve this system by setting initial values of q0 , 
determining the pressure Plv in that state, and integrating in 
time using an explicit scheme such as a Runge–Kutta (RK) 
method. Time is discretized as t = m�t . When solving for 
the m + 1 time step, the values of the coefficients � , � , and 
� are computed at time step m. The reference myocardial 
domain �0 is discretized into a N� × N� × N� grid to facili-
tate the numerical evaluation of the coefficients (40). The 
volume integrals are approximated using a Simpson’s rule 
that integrates through �0 , �0 , and �0 , in that order (supple-
mentary material Section S11).

2.4 � Dynamic model solution verification

To validate the proposed approach, we describe two sets 
of simulations. In the first, we validate the model by com-
parison to analytic equilibrium solutions to the strong form 
equations (Malvern 1969):

and demonstrate the ability of the proposed approach to 
accurately reproduce these solutions. In the second part, we 
show the ability of the characteristic deformation model to 
produce realistic simulations of the cardiac cycle.

(42)
�Vlv

�q1

dq1

dt
+⋯ +

�Vlv

�qnq

dqnq

dt
− qmv + qaov = 0,

(43)�i − �iPlv = 0,

(44)
div � + b = 0

t = �n on ��,

2.4.1 � Comparisons using the strong form 
of the equilibrium equations

We verify the variational method solutions using two types 
of analytic solutions. In the supplementary material Sec-
tion S12, we evaluate the ability of the model to solve for 
the deformation of an infinitely extended hollow cylinder. 
Here, we test the ability of the variational method described 
in Sect. 2.3 to recover an exact solution derived from the 
strong form of the equilibrium equations (44). In the absence 
of viscous and active stress terms, the strong form of the 
equilibrium equations requires

Typically, the body force b represents gravity. Here, how-
ever, we set

where �ef = �e(qf ) is the elastic stress associated with a 
chosen set of kinematic variables q = qf  (supplementary 
material Section S13). Also, we set the surface tractions to 
correspond to the chosen elastic stress field

where nf  is the outward surface normal in the deformed con-
figuration at the desired solution state qf  . The modified form 
of the virtual work system (21) including the body force bf  
and the traction tf  is

where the traction tf  acts over the full myocardial boundary. 
Under these assumptions, the solution to (48) should recover 
the chosen kinematic variables qf  . The solution is obtained 
using the Fourier-series deformation model described in 
Sect. 2.2.2 with a set of Nq = 37 deformation modes. The 
resulting equilibrium solutions are compared to the original 
assumed solution.

(45)div �e + b = 0.

(46)b = bf = −div �ef ,

(47)t = tf = �efnf ,

(48)∫
�0

S ∶
�E

�qi
dV − ∫

�

bf ⋅
�u

�qi
dv − ∫

��

tf ⋅
�u

�qi
ds = 0,

Fig. 4   Simplified preload and afterload model using variable resist-
ance valves. The pressures in the pulmonary veins Ppv and systemic 
veins Psv are assumed to be constant for simplicity
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2.4.2 � Cardiac cycle simulations

To illustrate the degree of kinematic freedom that is required 
for describing cardiac dynamics, we simulate the cardiac 
cycle in two cases. First, we simulate the full cardiac cycle. 
Second, we examine the fiber stretch and stress distributions 
under end-systolic and end-diastolic equilibrium conditions. 
In both sets of simulations, we compare models that use the 
Fourier-series deformation modes (11) with 8, 23, and 46 
DOF.

We use simplified lumped-parameter models (Moulton 
et  al. 2017) (supplementary material Section S10) to 
describe the preload and afterload systems, as illustrated 
in Fig. 4. The aortic valve (AOV) and mitral valve (MV) 
are modeled by variable resistances that have a nonlinear 
dependence on the pressure variable Plv (S67,S66). The full 
system (41,42) therefore requires a nonlinear solver to evalu-
ate the derivative terms necessary for the time integrator. 
We use Newton’s method to evaluate the time derivatives 
(supplementary material Section S11).

3 � Results

3.1 � Evaluation of the kinematic model using cardiac 
MRI

As described in Sect. 2.2.4, we evaluated the ability of the 
kinematic modes (see Sect. 2.2.2) to describe LV motion 
measured from tagged cardiac MRI. We show the result of 
that analysis in Fig. 5.

We found that 6 deformation modes were sufficient to 
reduce the mean displacement error from a maximum of 
5.8 mm to 1.1 mm in the normal case and from 4.0 mm to 
1.4 mm in the pathological case. We computed the mean 
displacement error as the volume-averaged error

where | ⋅ | is the Euclidean norm, Vm is the myocardial wall 
volume, um is the Cartesian representation of the displace-
ment according to the selected N deformation modes q , 
and ur is the displacement data registered from the cardiac 
MRI. Thus, 6 deformation modes were capable of account-
ing for 81% of the deformation in the healthy case and 64% 
in the case of dilated cardiomyopathy. When the number of 
deformation modes was increased to 19, these percentages 
increased to 86% and 76%, respectively. We computed the 
deformation accounted for as the mean error reduction

The percentages of deformation accounted for (averaged 
across both cases) by the first 4 displacement modes were 
35%, 11%, 12%, and 7%. The first three modes (that account 
for over 50% of the deformation across these two examples) 
were, respectively, uniform expansion, uniform twist, and 
uniform elongation. Diminishing returns were observed after 

(49)E(q;N) =
1

Vm
∫
�0

|um(x0;q) − ur(x0)| dV ,

(50)
E(q;0) − E(q;N)

E(q;0)
⋅ 100%.

Fig. 5   Top: mean displacement error between registered MRI dis-
placements and those produced by the optimized kinematic model 
with an increasing number of modes Nq calculated using (49). Bot-
tom: deformation accounted for with Nq deformation modes calcu-
lated using (50). Curve a used data from a healthy volunteer, while 
curve b used data from a patient with dilated cardiomyopathy

Fig. 6   Deformed model solutions to the forced virtual work system 
(48) used for validating the numerical solutions. a Model solution 
with N� = 10 integration points. With only ten integration points in 
the � direction, the model has not yet converged to the analytic solu-
tion (c). b Model solution with N� = 20 , showing convergence to the 
expected solution (c). c Analytic solution generated using the forcing 
term b in the strong form equations (44)
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10 deformation modes as each additional deformation mode 
yielded less than a 1% error reduction.

3.2 � Comparisons using the strong form 
of the equilibrium equations

As shown in the supplementary material Figure S5, the pro-
posed variational approach accurately predicts the deformation 
of the hollow cylinder. Here, we test solutions to the virtual 
work system (43) using the body and traction forcing terms 
described in Sect. 2.4.1. The expected solution has qf = 0 
except q1 = q2 = q15 = q30 = 0.1 and q16 = −0.1 . These 
parameters were chosen to provide significant asymmetric 

variation in all three coordinates ( � , � , and � ). The expected 
solution is graphed along with the model solutions in Fig. 6. 
The computation is repeated at several levels of resolution in 
the numerical integration grid in the �0 direction to illustrate 
numerical convergence to the expected solution. The displace-
ment error is defined as the average distance between the posi-
tions at the expected solution qf  and the model solution q:

The kinematic variable error is defined as the mean absolute 
difference between the computed and the expected solution:

The convergence of these variables is shown in Fig. 7.

3.3 � Cardiac cycle simulations

Figure 8 illustrates simulations of the cardiac cycle. The 
values of material parameters of the LV and the parameters 
of the lumped circulatory system were chosen to reproduce 
normal cardiac function (supplementary material Tables S1 
and S2). The three simulations illustrate changes to cardiac 
function and deformation as the number of kinematic param-
eters is increased.

Figure 9 shows fiber stretch ratios �ff  at end-systole and 
end-diastole computed using (33) as well as the PK2 stress 
in the fiber direction Sff  . The surface plots illustrate local 
variations in the kinematic and dynamic quantities at the 
endocardial wall. The three simulations demonstrate changes 

(51)ex =
1

Nnodes

Nnodes∑
i=1

|xi(q) − xi(qf )|.

(52)eq =
1

Nq

Nq∑
i=1

|qi − qfi|.

Fig. 7   Log–log plots of the deviations between model and exact solu-
tions with increasing resolution of the � integration grid ( × ). Upper 
plot: Average displacement deviation. Lower plot: Mean absolute 
deviations of kinematic variables. The slopes of the plotted linear 
regression lines indicate the convergence order for each case

Fig. 8   Simulations of normal 
cardiac function under varia-
tions in the number of kinematic 
variables q . The deformation 
model described in Sect. 2.2.2 is 
used with a Nq = 8 , b Nq = 23 , 
and c Nq = 46 deformation 
parameters. Lines plotted 
together with the LV shapes 
illustrate LV deformations and 
do not indicate the resolution of 
the numerical integration grid

a b

c d
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to the fiber stretch and stress distributions as the number of 
kinematic variables is increased.

4 � Discussion

The development of theoretical models for LV mechan-
ics has been an active area of investigation for decades. A 
variety of approaches have been used, ranging from varying 
elastance models, in which the geometry of the LV is not 
explicitly represented, to finite element models based on 
detailed descriptions of LV geometry. While this work has 
provided important insights into cardiac mechanics, all such 
models have limitations in terms of their applicability. The 
simpler models have limited ability to make use of informa-
tion about LV shape and motion, while the more complex 
models involve challenging issues of parameter specification 
and impose heavy computational requirements. The goal of 
the present work is to develop approaches for modeling LV 
mechanics that can incorporate information about LV shape 
and deformation, as derived, for example, from echocardi-
ography, and yet are computationally efficient so that they 

can be used to simulate the cardiac cycle with computational 
times that would be compatible with clinical applications.

4.1 � Kinematics

In previous work, we developed models for LV mechanics 
based on a cylindrical model (Moulton and Secomb 2013) 
and an axisymmetric spheroidal model (Moulton et  al. 
2017). In both cases, three deformation modes (radial and 
axial contraction, and torsion) were used to represent the 
dominant modes of LV deformation during the cardiac cycle. 
An important feature of these models was that the assumed 
deformation modes inherently conserve myocardial volume. 
Therefore, the resulting systems of equations do not involve 
stiff constraints resulting from the very high bulk modulus 
of cardiac tissue, allowing more efficient numerical solution. 
However, both of these models were restricted to geometries 
with rotational symmetry about a central axis. In the present 
model, this constraint is relaxed, and non-axisymmetric ref-
erence LV shapes and non-axisymmetric modes of defor-
mation are simulated. The deformation modes retain the 
property of conserving myocardial volume. The number of 
deformation modes is increased relative to the earlier mod-
els, with an arbitrary number of Fourier-series modes.

We evaluated this kinematic model using two tagged MRI 
data sets. The results are graphed in Fig. 5. We found that, 
in a normal volunteer, 5 modes were sufficient to capture 
80% of the deformation from end-systole to end-diastole. 
In a patient with dilated cardiomyopathy, 10 modes were 
sufficient to capture 70% of the deformation. This illustrates 
that the majority of LV deformation was accounted for with 
relatively few deformation modes. This analysis suggests 
that the characteristic deformation model could be effec-
tively employed to study cardiac function in both normal 
and pathological cases.

The notion of understanding the heart in terms of a lim-
ited number of modes has previously been developed using 
the Cardiac Atlas Project database, which includes more 
than 3000 cardiac MRI studies (Fonseca et al. 2011). This 
database has largely been analyzed using principal com-
ponent analysis (PCA) of LV shapes at end-systole and 
end-diastole (Zhang et al. 2014). Farrar et al. (2016) dem-
onstrated that the first 5 modes of the PCA were able to 
account for 58% of the end-systolic to end-diastolic motion 
in asymptomatic populations. Their result that 5 modes are 
sufficient to recapitulate much of the cardiac motion agrees 
well with our analysis. In this work, we developed deforma-
tion modes using a first principles approach by constructing 
a geometry and deformation modes in prolate coordinates 
that are naturally suited to the LV shape. While these modes 
are sufficient to recapitulate much of the cardiac deforma-
tion in two tagged MRI data sets, kinematic modes with 
improved physical relevance could be developed through a 

a b c

Fig. 9   Distributions of stretch ratios �ff  and deviatoric PK2 stress 
( Sff  ) in the fiber direction at end-systole (I, III) and end-diastole (II, 
IV). Values are recorded at the endocardial wall. The deformation 
model described in Sect. 2.2.2 is used with a Nq = 8 , b Nq = 23 , and 
c Nq = 46 deformation parameters
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statistical analysis of cardiac motion across a large imaging 
database (such as the PCA used by Farrar et al. 2016).

4.2 � Dynamics

In order to validate the dynamic model and its numerical 
solution, we applied three tests. First we compared the model 
solution to the analytic solution for an incompressible cyl-
inder of a Mooney–Rivlin material under expansion. Figure 
S5 shows that the model accurately predicts the deviatoric 
stresses with only five integration points in the � direction. 
Isotropic stresses contribute no work in incompressible 
deformations, and are therefore not computed within the 
model framework. However, the isotropic stress may be 
computed from the model solution. Figure S5 shows that 
the isotropic stress computed in the model solution agrees 
well with the analytic result. Secondly, we constructed an 
exact solution to the strong form equations using asym-
metric deformation modes, and demonstrated that the vari-
ational approach converged to the strong form solution as the 
numerical integration grid was resolved (Fig. 7). Because 
the strong form solution is independent of the virtual work 
formulation, these simulations verify the virtual work system 
(41), as well as the numerical implementation.

The third type of test involved simulations of normal car-
diac function (Fig. 8). We computed three model solutions 
with varying degrees of kinematic freedom. Simulation a 
had Nq = 8 degrees of freedom and required 2.3 seconds per 
cardiac cycle to compute in parallel on an Intel i9-7980XE 
workstation with 18 cores clocked at 2.6 GHz. Simulation 
b had Nq = 23 degrees of freedom and required 9.1 s/cycle, 
while simulation c had Nq = 46 and required 27 s/cycle. By 
comparison, (Kerckhoffs et al. 2007) reported that individual 
time steps with an FEM model required 2 min to compute. 
This implies that each cardiac cycle computed with 400 time 
steps (the temporal resolution used here) would require 13 h. 
While recent advances in parallel computing would likely 
improve that estimate, the method presented here still pre-
sents an efficient alternative, especially in the cases where 8 
or 23 deformation modes are used.

Despite the variation of the degrees of freedom and con-
sequent computation time increases, only minor differences 
are visible in the cardiac cycle PV-loop between simulations 
(Fig. 8). End-diastolic and end-systolic shapes are similar in 
terms of aggregated parameters: volume, long-axis length, 
and short-axis radius. The work done with 8 deformation 
modes (1.084 J/cycle) differs from the work done with 46 
deformation modes (1.028 J/cycle) by 5.1% . In addition, 
the volume, long-axis length, and short-axis radius at end-
diastole differ by 0.7% , 0.6% , and 2.6% , respectively. These 
simulations support the use of a restricted set of deforma-
tion modes to represent LV dynamics, since the inclusion of 
additional modes had only small effects on these parameters. 

This result suggests that, for studies based on aggregated 
parameters or limited data, the model with 8 modes would 
be adequate.

Figure 9 shows the effects of varying the number of defor-
mation modes on distributions of stress and strain. Rows 
(I) and (II) show that all three models have similar mean 
stretch ratios in the fiber direction. However, as the number 
of kinematic variables is increased, more localized spatial 
variations are developed with greater magnitude. These 
variations result from the nonsymmetric initial shape of the 
LV. The PK2 fiber stress distributions (III, IV) show similar 
trends. The stress at end-systole is almost linearly correlated 
with the fiber stretch �ff  due to the stretch dependence of the 
active stress generation described in Eq. (32).

4.3 � Limitations and future development

In the approach presented here, some restrictions are 
imposed on the allowable deformation modes. The func-
tions �(�0,�0) and �(�0,�0) mapping the reference to the 
deformed configuration are assumed to be independent of 
�0 . This assumption makes possible the integration of (7) 
with respect to �0 , giving an implicit algebraic equation (9) 
for �(�0, �0,�0) . At the same time, this assumption largely 
restricts shearing motions within the myocardium to the 
torsional component. The approach presented here could 
be extended to allow the other two components of shear 
deformation. In that case, � , � and � would all be functions 
of �0 , �0 and �0 , and the � mapping would not be expressible 
in algebraic form.

While providing a natural framework for describing the 
LV geometry and kinematics, the prolate spheroidal coordi-
nate system suffers from limits to the deformable freedom 
allowed through the apex due to the singularities at the axis. 
While the incompressible kinematic model described in 
Sect. 2.2.1 is dependent on this choice, the variational for-
mulation used to compute LV dynamics in terms of a limited 
number of kinematic variables is not. It would be possible to 
describe a geometry and analogous kinematic model in any 
curvilinear coordinate system, such as spherical or Cartesian 
coordinates, and the formulation of the dynamic model pre-
sented in Sect. 2.3 would apply.

As shown in Fig. 5, a relatively small number of modes 
accounts for a large proportion of the deformation, as defined 
in terms of displacement error. The stress and strain depend 
on derivatives of the displacement field and, consequently, 
are more strongly affected by inclusion of higher-order dis-
placement modes. A substantially larger number of modes 
would be required to achieve numerical convergence of the 
stress and strain fields. The present model is not well suited 
for computing stress and strain at high spatial resolution, for 
which a FEM approach would be more suitable.
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While we have only described the mechanics of the LV, 
the framework developed here is naturally extendable to a 
bi-ventricular geometry. The right ventricle can be directly 
added to the variational equations (15). Displacement modes 
can be constructed separately for the RV, although motion 
continuity would be required at the LV-RV boundary. Fur-
ther, with appropriate simplified models for the heart valves, 
this approach could be extended to produce efficient simula-
tions of a four-chamber heart model. The kinematics of each 
additional chamber would primarily be described by defor-
mation modes that extend only over that region, implying 
that the increase in computational cost would be generally 
additive.

A simplified description of myocardial activation and 
force generation is used. The model for active force takes 
into account the length–tension and force–velocity char-
acteristics of cardiac muscle. The Frank–Starling effect, in 
which force generation depends on end-diastolic fiber strain, 
is not included, although this effect can be represented by a 
simple modification to (32) (Moulton et al. 2017). The time-
dependence of force generation during systole is represented 
by a spatially independent activation function A = A(t) , and 
the effects of the time-dependent spatial spread of activation 
are not included here. Such effects could be introduced in 
the present approach by using a spatially varying activation 
function A = A(x, t) , provided that the deformation modes 
were chosen to accommodate the resulting cardiac motions.

4.4 � Conclusion

A method for simulating LV dynamics using a limited num-
ber of deformation modes, which was originally developed 
for axisymmetric geometries (Moulton et al. 2017), is here 
extended to general three-dimensional LV shapes and defor-
mations. The method is computationally efficient: simulation 
of one cardiac cycle using the 23 deformation mode model 
takes approximately 9 s on a personal computer. Addition of 
modes beyond this number has only slight effects on overall 
parameters describing LV function, although local distribu-
tions of stress and strain are still affected. The method is 
suitable for a range of applications in which FEM simula-
tions at high spatial resolution would be computationally 
impractical. Such applications include systemic explora-
tion of effects of changing parameters describing cardiac 
mechanics, estimation of such parameters from echocardio-
graphic imaging data, simulations performed over multiple 
cardiac cycles, and estimation of spatially dependent fiber 
stresses and strains for use in models of cardiac remodeling.
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