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Abstract
Cell proliferation within a fluid-filled porous tissue-engineering scaffold depends on a sensitive choice of pore geometry and
flow rates: regions of high curvature encourage cell proliferation, while a critical flow rate is required to promote growth for
certain cell types.When the flow rate is too slow, the nutrient supply is limited; when it is too fast, cells may be damaged by the
high fluid shear stress. As a result, determining appropriate tissue-engineering-construct geometries and operating regimes
poses a significant challenge that cannot be addressed by experimentation alone. In this paper, we present a mathematical
theory for the fluid flowwithin a pore of a tissue-engineering scaffold, which is coupled to the growth of cells on the pore walls.
We exploit the slenderness of a pore that is typical in such a scenario, to derive a reduced model that enables a comprehensive
analysis of the system to be performed. We derive analytical solutions in a particular case of a nearly piecewise constant
growth law and compare these with numerical solutions of the reducedmodel. Qualitative comparisons of tissuemorphologies
predicted by our model, with those observed experimentally, are also made. We demonstrate how the simplified system may
be used to make predictions on the design of a tissue-engineering scaffold and the appropriate operating regime that ensures
a desired level of tissue growth.

Keywords Tissue engineering · Mathematical modelling · Asymptotic analysis

1 Introduction andmotivation

In vitro tissue engineering aims to create functional tissue and
organ samples external to the body to replace damaged or dis-
eased tissues and organs needed inmultiple clinical therapies
(Rose and Oreffo 2002; Martin et al. 2004). By using autolo-
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gous cell sources, often seeded within a porous scaffold that
acts as a template for the developing tissue, tissue-engineered
products have many advantages over traditional approaches
such as donor tissue and organ transplantation that can
elicit an adverse immune response. The development of the
growing tissue construct—the combination of scaffold, cells
and extracellular matrix (ECM) with biological cues—often
occurs within a bioreactor. In perfusion-bioreactor systems, a
flow of culture medium (nutrient-rich fluid) is driven through
the porous scaffold. This serves two purposes. Firstly, the
flow imposes fluid mechanical forces (shear stress, pressure)
on mechanosensitive cells found in, for example, bone, carti-
lage, muscle, liver and blood vessels (Mullender et al. 2004).
The mechanical environment that cells experience affects
their differentiation, proliferation, orientation, gene expres-
sion and a host of other activities: the mechanical stimuli
are integrated into the cellular response via a process known
as mechanotransduction. For example, fluid shear stress has
been shown to enhance extracellularmatrix formation in vitro
(Bakker et al. 2004; Klein-Nulend et al. 1995; You et al.
2000), and stimulationbyhydrostatic pressure promotes stem
cell differentiation down the chondrogenic lineage to form
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cartilaginous tissues (Elder and Athanasiou 2009). Addi-
tionally, fluid flows are employed to ensure adequate solute
delivery to the cells within the porous scaffold. A variety
of dynamic flow-perfusion bioreactors have been developed,
including direct and free-flow perfusion systems, and the
rotary cell culture system (RCCS) (see Martin et al. (2004)
and references therein). By selecting an appropriate biore-
actor system, tissue engineers aim to provide the optimum
stimulatory environment for in vitro tissue growth to engi-
neer a tissue construct that remains functional for significant
periods of time.

In addition to the selection of perfusion bioreactor, the
scaffold properties are of central importance to the tis-
sue engineering approach. Scaffolds with a highly porous,
interconnected structure encourage cell penetration, vascu-
larization of the construct from the surrounding tissue (when
implanted in vivo) and efficient mass transfer of nutrients
and waste products. The scaffold material must be com-
patible with the host material so that it does not elicit an
adverse immune response upon implantation (Salgado et al.
2004). The scaffold plays the role of the extracellular matrix
(ECM) in tissues and defines its mechanical properties (e.g.
the collagen and elastin fibres present in ECM, or the calcium
hydroxyapatite that lends bone tissue its rigidity). One chal-
lenge is to select the appropriate material properties for the
scaffold (porous, poroelastic, viscoelastic, etc.) to ensure that
the cells experience the appropriate mechanical environment
when the construct is subjected to an applied load. Another
challenge is to ensure that the scaffold is sufficiently porous
without compromising itsmechanical integrity.Additionally,
the rates of scaffold degradation (e.g. due to hydrolysis) must
be matched to the rate of nascent tissue growth in vivo so
that once the construct is in vivo, the artificial scaffold is
replaced by native ECM and the mechanical integrity of the
construct is maintained. Finally, both topographical and bio-
chemical characteristics of the porous scaffold have been
exploited to enhance cell–scaffold adherence, and to direct
cell movement or differentiation (Weiss 1945; Salgado et al.
2004): for example, scaffolds can deliver growth factors
or DNA (Sipe 2002), or contain specific cellular recogni-
tion molecules (Freed and Vunjak-Novakovic 1998). For a
comprehensive discussion of scaffolds for tissue engineer-
ing applications see Atala et al. (1997), Hutmacher (2006),
Hollister (2005) and references therein.

The motivation for this work is the experimental observa-
tion that tissue growth is strongly affected by the geometrical
features of the pores in an artificial 3D tissue scaffold (Rum-
pler et al. 2008), which has formed the focus of many recent
studies (see, for example, Bidan et al. 2013; Werner et al.
2017; Lo et al. 2016; Kommareddy et al. 2010, among many
others). For example, Bidan et al. (2013) emphasized how
geometric constraintsmay guide tissue formation in vitro and
showed that optimizing scaffold architectures may improve

tissue formation independently of the scaffold material used.
Furthermore,Werner et al. (2017) systematically investigated
the influence of 3D surface curvature on cell and nucleus
morphology and the subsequent effect on the migratory and
differentiation behaviour of human mesenchymal stem cells.
Key to successful tissue engineering is the coordination of
the various cellular cues to enhance tissue growth. Mecha-
nistic mathematical modelling has an important role to play
in this regard, elucidating mechanisms and providing quanti-
tative information about the cellular microenvironment (e.g.
the shear-stress field) that is not straightforward (or even pos-
sible) to measure experimentally. Mathematical models may
be validated against measurable experimental data, such as
perfusion flow rate or bioreactor outlet nutrient concentra-
tion, and then exploited to reveal details of the mechanical
and biochemical fields within the scaffold and bioreactor
system. The quantitative models can be used to predict the
outcome of a particular experimental scenario (limiting the
need for numerous and expensive bioreactor experiments,
potentially saving time and resources) and to optimize tissue-
engineering protocols.

There has been a large body of work using mathematical
models to understand the relationship between flow, asso-
ciated transport and tissue growth in perfusion-bioreactor
systems with a porous scaffold. Numerous macroscale con-
tinuum models for bioactive porous media have been pro-
posed for artificial tissue growth, with many accounting for
the influence of fluid shear stress on tissue growth (see
O’Dea et al. (2012) and references therein). Multiphase
models account for multiple phases explicitly (e.g. fluid,
scaffold, cells, etc.). The governing equations are derived
from conservation of mass and momentum for each phase,
and appropriate constitutive laws are specified to capture the
interactions between the phases, enabling a wide variety of
biological systems to be modelled (O’Dea et al. 2010; Pear-
son et al. 2014). An alternative approach is to include the
effect of cell growth on the fluid flow implicitly, by prescrib-
ing the scaffold porosity to be a function of cell density,which
satisfies a conservation-of-mass equation (Coletti et al. 2006;
Pohlmeyer and Cummings 2013; Pohlmeyer et al. 2013;
Shakeel et al. 2013). Fluid flow through the porous scaf-
fold is then governed by Darcy’s law. In these macroscale
approaches, constitutive assumptions relate microscale pro-
cesses, such as cell growth, to macroscale parameters. Alter-
natively, homogenization techniques have been proposed
to capture the precise relationship between macroscopic
parameters in continuummodels, such as porosity, and pore-
scale growth and flow processes (Shipley et al. 2009; Penta
et al. 2014; O’Dea et al. 2015). As an alternative to con-
tinuum models, network models have been proposed for
artificial tissue growth, particularly where the scaffold bio-
material contains relatively fewpores (Krause et al. 2017a, b).
These continuum and network approaches complement com-
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putational and algorithmic approaches employed to model
various aspects of tissue engineering; see Geris (2013) for a
comprehensive review.

The above studies consider tissue growth on the scale of
the tissue construct. Although there are studies that have
mapped the shear stress at the pore scale for realistic flows
through a perfusion bioreactor (see, e.g. Raimondi et al.
2005), to the best of our knowledge, no mathematical stud-
ies have considered the interplay between fluid shear stresses
and pore curvature on cell growth at the scale of an individual
pore. In this paper, we will focus on the combined roles of
fluid shear stress and topographical cues, in particular pore
curvature, on tissue growth within a single pore of a scaffold.
The paper is laid out as follows: in Sect. 2, we introduce
a mathematical model for flow through a pore of a tissue-
engineering scaffold. The governing equations describing the
flow of nutrient-rich solution and tissue growth are presented
in Sects. 2.1 and 2.2, respectively. The model is analyzed
in Sect. 3 by using an asymptotic approach exploiting the
small aspect ratio of the pore. Asymptotic and numerical
techniques are used to obtain solutions for the tissue growth
in Sect. 4. We also discuss which initial internal pore mor-
phology gives more tissue growth in Sect. 4.4. Finally, we
conclude in Sect. 5 with a discussion of ourmodel and results
in the context of pores within a real tissue-engineering scaf-
fold.

2 Amathematical model for flowwithin a
scaffold pore

We consider a single scaffold pore lined with cells, through
which nutrient-rich culture medium flows. Over time, the
cells proliferate and the pore will constrict as the tissue layer
lining it thickens. We consider the dynamics of the system
on the timescale of cell proliferation, as the cells lining the
pore wall grow on a much longer timescale than that associ-
ated with the transport of fluid through the pore (see values
presented inTable 1 later). Thus, the porewallmay be consid-
ered stationary when considering the fluid flow, a quasi-static
assumption.

The fluid–cell-layer interface is of length L̂ and has typical
radius R̂. (Hats will be used throughout to distinguish dimen-
sional quantities from their dimensionless equivalents.) We
define the aspect ratio ε = R̂/L̂ � 1. We will explore how
modifications in fluid–cell-layer interface geometry influ-
ence the resulting tissue growth. We will assume that the
initial cell layer is sufficiently thin that its internal configu-
ration reflects the underlying substrate geometry, which we
assume to be approximately circular with small azimuthal
and axial variation. We consider the regime in which the
fluid–cell-layer interface remains nearly circularly cylindri-

cal so that deviations of the circumference geometry from
circular are small (see Fig. 1).

Nutrient is assumed to be present in excess so that no
significant depletion occurs over the length of the pore. In
many applications, the flux of fluid is held constant to ensure
a continued supply of nutrient (Pearson et al. 2014; Shakeel
et al. 2013); we assume this throughout. Specifically, we pre-
scribe the inlet flux Q̂i and the downstream pressure P̂d. The
nutrient-rich culture medium is modelled as an incompress-
ible Newtonian viscous fluid of (dynamic) viscosity μ̂ and
density ρ̂.

We work in cylindrical coordinates (r̂ , θ, ẑ), where ẑ is
aligned with the pore axis, and ei correspond to the unit
vectors in the i direction. The fluid–cell-layer interface is
described by r̂ = â(θ, ẑ, t̂), and the initial configuration r̂ =
â(θ, ẑ, 0) is prescribed.

2.1 Fluid dynamics

The fluid flow has velocity û = ûer̂ +v̂eθ +ŵeẑ and pressure
p̂. Neglecting flow inertia within the pore (Chung et al. 2007;
Lemon et al. 2006), we assume the flow is governed by the
Stokes equations. We introduce the following scalings:

û = Q̂i

π R̂2
u = Q̂i

π R̂2
(εu, εv,w), p̂ = μ̂L̂ Q̂i

π R̂4
p + P̂d,

(r̂ , â, ẑ) = L̂(εr , εa, z). (1)

The dimensionless governing flow equations are then
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+ ∂w

∂z
= 0, (5)

holding in the flow domain 0 ≤ r ≤ a(θ, z, t), 0 ≤ z ≤
1. These equations must be solved subject to the following
boundary conditions:

u = v = w = 0 on r = a(θ, z, t), (6)

enforcing no slip and no penetration at the fluid–cell-layer
interface, and the symmetry conditions

u = v = ∂w

∂r
= 0 at r = 0. (7)
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Fig. 1 Schematic diagram of a
possible geometry of a
tissue-lined pore within a
tissue-engineering construct

Tissue layer

L̂

2R̂

r̂ = â(θ, ẑ, t̂)

θ

û

ẑ

We assume that the (dimensionless) pressure drop across the
length of the pore is given by ζ(t), whichwill increasemono-
tonically to sustain the constant flux as the pore constricts
under cell growth. The system is thus closed by applying the
boundary conditions

p|z=0 = ζ(t), p|z=1 = 0, (8)

and enforcing constant fluid influx,

∫ 2π

0

∫ a

0
w(r , θ, 0, t)r drdθ = π. (9)

Note that setting ζ(t) = 1 in (8), and dropping the condition
(9), describes the alternative scenario in which the pressure
drop is constant.

2.2 Tissue growth

For the cell proliferation (tissue growth) within the pore,
we prescribe a phenomenological law based on experimen-
tal observations. Specifically, cells proliferate more quickly
when exposed to higher shear stresses at their surface
(mechanotransduction) and in regions where the underlying
substrate has higher curvature (see, for example, O’Dea et al.

(2010) and references therein; and Rumpler et al. (2008)). In
the original dimensional variables, we propose

∂ â

∂ t̂
= −λ̂κ̂ f (σ̂ŝ). (10)

Here, κ̂ = ∇̂·n is themean curvature, with ∇̂ the dimensional
gradient operator and n the unit normal to the fluid–cell-layer
interface (in the direction pointing into the fluid), given by

n = ∇̂(r̂ − â)

|∇̂(r̂ − â)| . (11)

The characteristic growth rate (m2 s−1) is given by λ̂, and the
function f captures the specific dependence of tissue growth
on the total fluid shear stress at the fluid–cell-layer interface,
σ̂ŝ . We will explore physically realistic expressions for f in
Sect. 4 and discuss the limitations of the growth law (10) in
Sect. 5.

Without the shear stress dependence ( f (σ̂ŝ) = constant),
(10) is precisely the growth law considered by Rumpler et al.
(2008). Note also that, for cylindrical pores, κ = 1/a and
(10) then implies that the rate of change of tissue volume
depends only on shear stress, i.e.
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Table 1 Dimensional and
dimensionless parameters and
approximate values (from
Rumpler et al. 2008; Shipley
and Waters 2011)

Parameter Description and formula Typical value

Q̂i Inlet flux 1 ml/min

R̂ Fluid–cell-layer interface radius 500 µm

L̂ Fluid–cell-layer interface length 2 mm

λ̂ Characteristic growth rate 3.6 × 10−14 m2/s

Wall growth time scale, R̂2/λ̂ (see (18)) 80 days

Fluid flow time scale, π R̂2 L̂/Q̂i 0.05 s

Shear stress scale, μ̂Q̂i/(π R̂3) 0.05 Pa

ε Dimensionless fluid–cell-layer interface aspect ratio 0.05–0.5

All parameters depend on the specific application; here, sample values have been taken, and λ̂ was extracted
from the gradient of projected tissue area versus time graph in figure 4b of Rumpler et al. (2008)

d

dt̂

(
π(â2|t̂=0 − â2)

)
= 2π f (σ̂ŝ). (12)

At the fluid–cell-layer surface, the stress vector τ̂ is given
by

τ̂ = σ̂ · n, (13)

where

σ̂ = − p̂ I + μ̂

(
∇̂ û +

(
∇̂ û

)T
)

(14)

is theCauchy stress tensor for the fluid,where I is the identity
matrix. The magnitude of the stress vector in the normal
direction is given by

σ̂n = τ̂ · n. (15)

The total shear stress at the fluid–cell-layer interface, σ̂ŝ, is
then given by

σ̂ŝ =
√

τ̂ · τ̂ − σ̂ 2
n . (16)

Using thenon-dimensionalizationpresented in (1) together
with the additional scales

t̂ = R̂2

λ̂
t, κ̂ = 1

R̂
κ, σ̂ŝ = μ̂Q̂i

π R̂3
σs, (17)

gives the dimensionless growth law

∂a

∂t
= −κ f (σs). (18)

The unit normal to the fluid–cell-layer interface, using (11),
is given in dimensionless form by

n = 1√
1 + 1

r2

(
∂a

∂θ

)2
+ ε2

(
∂a

∂z

)2

(
er − 1

r

∂a

∂θ
eθ − ε

∂a

∂z
ez

)
.

(19)

3 Model analysis

3.1 Asymptotic ansätze

The full system outlined in Sect. 2 can be solved numerically
for a specified growth function f . However, this would be
computationally costly, limiting the parameter ranges that
can be explored and affording only limited insight into the
effects of model parameters. We therefore take an alternative
asymptotic approach, exploiting the smallness of the typical
pore aspect ratio, ε = R̂/L̂ � 1. This enables us to make
analytical progress, leading to a more tractable model, which
can be solved cheaply to provide insights into the dynamics
of the system.

In addition to the assumption of small pore aspect ratio,
we assume that the initial cell layer is sufficiently thin that
its internal configuration reflects the underlying substrate
geometry, which we assume to be approximately circular
with small azimuthal and axial variation. This motivates rel-
egation of spatial variations in the fluid–cell-layer interface
to first (axial) and second (azimuthal and axial) order in
the aspect ratio. Below we find that the leading-order fluid
velocity is unidirectional and independent of the axial coor-
dinate z. As a result, the leading-order shear stress at the
fluid–cell-layer interface is independent of z. We make the
quasi-static assumption of slow tissue growth compared with
the timescale of nutrient transport through the scaffold, and
the further assumption that there is a plentiful supply of nutri-
ent so that all parts of the growing tissue experience the same
concentration. As a result, the cell layer grows in a spatially
uniformmanner with time to leading order in the pore aspect
ratio. Continuing the analysis to higher order in the aspect
ratio, we determine the dependence of the tissue growth on
the axial and azimuthal coordinates at first and second order
in the pore aspect ratio, respectively.

We therefore assume that the fluid–cell-layer interface
may be expressed as
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a(θ, z, t) = a0(t) + εa1(z, t) + ε2a2(θ, z, t) + O(ε3).

(20)

We further assume that a2 is of the form

a2(θ, z, t) = Λ2(z, t) cos nθ + Υ2(z, t), (21)

where Λ2(z, t) and Υ2(z, t) are functions to be determined
and n is an integer. This form corresponds to periodic per-
turbations of the pore from a circular cross section that has
n lobes. While this ansatz clearly imposes constraints on the
type of tissue growth we study, we will find that this strikes a
balance between allowing us to make substantial analytical
progress while retaining a suitable level of generality to the
form of the cross-sectional profile.

We assume that the initial fluid–cell-layer interface shape
a(θ, z, 0) is given, then determine its subsequent evolution
via Eq. (18).

In the following section, we pose asymptotic expansions
of the form

u = u0 + εu1 + ε2u2 + · · · , (22)

and similarly for v, w, p, ζ , σs and κ , and systematically
examine the system at each order to determine reduced equa-
tions.

3.2 Asymptotic analysis for the flow

3.2.1 Leading-order analysis

For the fluid–cell-layer interface configuration (20), the flow
will be independent of θ to leading order in ε. Substituting
the asymptotic expansions (22) into Eqs. (2)–(5) and condi-
tions (6)–(9) and retaining leading-order terms give a system
of equations for the leading-order velocities, u0, v0 and w0,
pressure p0, and ζ0 (the leading-order pressure at the pore
inlet, determined as part of the solution in our specified-flux
scenario):

u0 = 0, v0 = 0, w0 = ζ0

4
(a20 − r2),

p0 = ζ0(1 − z), ζ0 = 8

a40
. (23)

3.2.2 First-order analysis

At O(ε), based on the ansatz (20), we seek a θ -independent
solution to the governing equations, finding

u1 = ∂a1
∂z

ζ0

4a0
r
(
a20 − r2

)
, v1 = 0, w1 = a1ζ0

2a0

(
2r2 − a20

)
,

(24)

p1 = −4ζ0
a0

∫ 1

z
a1(z̃, t) dz̃, ζ1 = −4ζ0

a0

∫ 1

0
a1(z, t) dz. (25)

3.2.3 Second-order analysis

Considering Eq. (4) at O(ε2) motivates seeking a solution
w2 of the form

w2 =
[
Λ2

2
a1−n
0 rn cos nθ + w̃2(r , z, t)

]
ζ0. (26)

Using (4) and (6), we find

ζ0w̃2 = 1

4

∂ p2
∂z

(
r2 − a20

)
+

(
−7

4
a21 + a0Υ2

2

)
ζ0. (27)

Imposing the boundary conditions (6)–(8) and the flux con-
dition (9) gives, after some manipulation,

a40
4
p2 =

[
3a20

∫ 1

z
a21(z

′, t) dz′ − a30

∫ 1

z
Υ2(z

′, t) dz′

+1

4

∫ 1

z
a41(z

′, t) dz′
]
ζ0, (28)

ζ2 = 4

a40

[
3a20

∫ 1

0
a21(z

′, t) dz′ − a30

∫ 1

0
Υ2(z

′, t) dz′

+1

4

∫ 1

0
a41(z

′, t) dz′
]
ζ0, (29)

and the axial velocity is given by

w2 =
[
Λ2

2
a1−n
0 rn cos nθ + 1

a40

(
−3a20a

2
1 + a30Υ2

−a41
4

)
(r2 − a20) − 7

4
a21 + a0Υ2

2

]
ζ0. (30)

Note that u2 and v2 may also be determined, but are not
required in the analysis that follows.

3.2.4 Summary

The flow within the pore defined by

r = a0(t) + εa1(z, t) + ε2(Λ2(z, t) cos nθ + Υ2(z, t))

+O(ε3), 0 ≤ z ≤ 1, (31)

and driven by constant flux, is

u = (εu, εv,w) = (ε2u1 + O(ε3), O(ε3), w0 + εw1

+ε2w2 + O(ε3)), (32)

where w0, u1, w1 and w2 are given by (23), (24) and (30).
The corresponding pressure drop between z = 0 and z = 1
is ζ = ζ0 + εζ1 + ε2ζ2 + · · · , where ζ0, ζ1, ζ2 are given by
(23), (25) and (29), respectively.
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3.3 Asymptotic analysis for the tissue growth

Equation (19) yields the asymptotic expansion of the unit
normal,

n =
[
er − ε2

a2θ
r

eθ − ε2a1zez
]
r=a0

+ O(ε3). (33)

Substituting (17), (32) and (33) into (16), we obtain the
dimensionless shear stress at the fluid–cell-layer interface
as

σs(θ, z, t) = σs0(t) + εσs1(z, t) + ε2(σs2a(z, t) cos nθ

+ σs2b(z, t)) + O(ε3), (34)

where

σs0 = a0
2

ζ0, σs1 = 2a1ζ0, σs2a = nΛ2ζ0

2
,

σs2b = 1

a30

(
−6a20a

2
1 + 2a30Υ2 − a41

2

)
ζ0. (35)

The dimensionless mean curvature is given by

κ = κ0(t) + ε2κ2(z, t) cos nθ + O(ε3), (36)

where

κ0 = 1

a0
, κ2 = n2Λ2

a20
. (37a,b)

We integrate the growth-law Eq. (18), to yield an explicit
expression for the fluid–cell-layer interface shape,

a(θ, z, t) = a(θ, z, 0) −
∫ t

0
κ(θ, z, t ′) f (σs(θ, z, t ′)) dt ′.

(38)

Substituting our asymptotic expansions for a, σs and κ ,
Eqs. (20), (34) and (36), respectively, into (38), give

a0(t) = a0(0) −
∫ t

0
κ0(τ ) f (σs0(τ )) dτ, (39)

a1(z, t) = a1(z, 0) −
∫ t

0
κ0(τ )σs1(z, τ ) f ′(σs0(τ )) dτ, (40)

Λ2(z, t) = Λ2(z, 0)

−
∫ t

0

[
κ2(z, τ ) f (σs0(τ )) + κ0(τ )σs2a(z, τ ) f ′(σs0(τ ))

]
dτ,

(41)

Υ2(z, t) = Υ2(z, 0)

−
∫ t

0
κ0(τ )

[
σs2b(z, τ ) f ′(σs0(τ )) + σ 2

s1(z, τ )

2
f ′′(σs0(τ ))

]
dτ.

(42)

Here, primes denote differentiation with respect to the argu-
ment and arise due to a Taylor expansion of f , while σs0,
σs1, σs2a, σs2b, κ0 and κ2 are given by (35) and (37).

4 Results

In this section, we present simulations of themodel (39)–(42)
for a physically realistic growth law. Specifically, we choose
f (see Eq. (18)) to be of the form:

f (x) = F1 + (F2 − F1)

[
1 + tanh(m(x − σ1))

2

]

− F2

[
1 + tanh(m(x − σ2))

2

]
, (43)

where F1 < F2, σ1 < σ2 and m � 1. Based on the shear-
stress scaling in (17), σ1 and σ2 will typically be order-one
quantities (Rumpler et al. 2008). For large values of m, this
corresponds to a function that has three regions in which it
is approximately constant, connected by rapid but smooth
transition regions (see Fig. 2). Similar constitutive laws have
been considered elsewhere (see, for example, Krause et al.
2017a, b; Pearson et al. 2014). This captures low growth at
small shear stresses ( f ≈ F1 for σ < σ1), enhanced growth
at intermediate shear stress ( f ≈ F2 > F1 for σ1 < σ < σ2),
and the adverse impact of high shear stress on growth ( f ≈ 0
for σ > σ2). We note that our analysis readily generalizes
for nonzero growth, or even negative growth (capturing cell
death and degradation), for high stresses, but we do not con-
sider this here. We note that as m becomes large, gradients
in f become large (order m). However, our Taylor series
expansion in (39)–(42) remains valid, since the window over
which the gradient is large is only of width 1/m. Thus, our
asymptotic expansion in ε holds, irrespective of the size of
m.

From Eqs. (23) and (35), σs0 = 4/a30 and since the initial
leading-order term for the fluid–cell-layer interface position
a0(0) is prescribed, the leading-order shear stress, σs0, is
known initially. Therefore, in order to observe the transition
between the different growth regimes, we investigate two
possible scenarios for σ1 and σ2:

– Case (i): σ1 and σ2 are chosen such that σs0(0) < σ1 <

σ2.
– Case (ii): σ1 < σs0(0) < σ2.

In Case (i), tissue growth begins in the first (low growth-
rate) phase at a rate F1. The tissue growth leads to pore
shrinkage, hence (with the imposed constant fluid flux),
increased shear stress. The growth rate thus transitions into
the second phase, where growth occurs at a higher rate F2,
before finally transitioning into the third phase, where growth
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Fig. 2 Growth function f defined in (43) that appears in the growth
law (18), with F1 = 1, F2 = 3, σ1 = 7, σ2 = 15 for different values of
m

ceases. In Case (ii), tissue growth starts in the second phase
(at a rate F2) and, as shear stress increases, moves into the
third phase, where growth stops. Note that for most of our
simulations, we choose the values F1 = 1, F2 = 3, σ1 = 7
andσ2 = 15 for the growth function f given by (43).How the
choice of these parameters affects model results is discussed
further below.

Ourmodel contains twodimensionless geometrical param-
eters: the pore aspect ratio, ε, and the azimuthal wavenumber
n that appears in the perturbation a2 in Eq. (21). The pore
aspect ratio, ε, is unknown for the experiments of Rum-
pler et al. (2008) and varies between scaffolds: here, we set
ε = 0.2 for most of our simulations to highlight more clearly
the effects of pore shape on the tissue growth in the θ direc-
tion. This appears to be a reasonable choice, based on the
qualitative comparison made in Fig. 7 later. We consider a
range of positive integer values for n to gain insight into the
role it plays in the total amount of tissue growth and final
patterns obtained.

4.1 Case (i):�s0(0) < �1 < �2

While the system (39)–(42) may be readily solved numer-
ically for any suitably smooth differentiable function f ,
we begin by considering the specific functional form of f ,
given by (43), when m → ∞. This corresponds to the case
where the tissue growth rates undergo jump discontinuities
at critical values of the shear stress. We can then solve the
system analytically for the three separate constant-growth-
rate regions corresponding to σs < σ1 (when f = F1),
σ1 < σs < σ2 (when f = F2), and σs > σ2 (when f = 0).
Finally, we connect these regions to determine the full solu-

tion. This analytical approach provides physical insight into
the parametric dependence of the system growth.

From equations (23) and (35), σs0 = 4/a30; therefore, (37),
(39) and (43) give

a0(t) =
√
a20(0) − 2F1t for 0 ≤ t < t∗01, (44)

when σs0(0) < σ1. Here, t∗01 is the time at which σs0 = σ1,
determined by a0(t∗01) = (4/σ1)1/3, and so may be explicitly
written as

t∗01 = a20(0) − (4/σ1)2/3

2F1
. (45)

At this time, the cell growth transitions into the second phase,
where σ1 ≤ σs0 < σ2. Equation (39) then gives

a0(t) =
√
a20(0) − 2(F1 − F2)t

∗
01 − 2F2t for t∗01 ≤ t < t∗02,

(46)

where a0(t∗02) = (4/σ2)1/3 and

t∗02 = a20(0) − 2(F1 − F2)t∗01 − (4/σ2)2/3

2F2
. (47)

Equation (47) provides an explicit prediction for the time at
which tissue growth stops and its dependence on the model
parameters σ1, σ2, F1 and F2 in the limit m → ∞. We
note that, when we substitute for t∗01 using (45), there is a
rather complex dependence on each of the parameters that
appears in our tissue-growth ansatz, (43). However, impor-
tantly, order-one changes in any of these parameters will
lead to order-one changes in the time taken for the tissue
growth. This highlights the need to determine the value of
these parameters for a given experimental scenario if this
model is to form a predictive tool. We emphasize that in the
subsequent examples, the values taken for these parameters
are illustrative, but give qualitatively similar behaviour to
results in the literature. Repeating the previous procedure for
t ≥ t∗02, we obtain the leading-order fluid–cell-layer interface
position:

a0(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
a20(0) − 2F1t if 0 ≤ t < t∗01,√
a20(0) − 2(F1 − F2)t

∗
01 − 2F2t if t∗01 ≤ t < t∗02,

(4/σ2)1/3 if t ≥ t∗02.
(48)

We thus see that, to leading order, the position of the fluid–
cell-layer interface is (4/σ2)1/3. This means that, for a given
underlying pore structure, the total amount of tissue grown is
independent of F1, F2 and σ1. These additional parameters
only control the rate at which the final state is approached.
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Note that when substituting the functional form of f defined
in (43) in Eqs. (40) and (42) we find that a1 and Υ2 do
not depend on time and therefore retain their initial values
throughout, i.e. a1(z, t) = a1(z, 0) andΛ2(z, t) = Λ2(z, 0).
(This is because the integrals in (40) and (42) involve first
and higher derivatives of the growth function f , which are
thus zero.) This allows for the possibility of axial variations
in the equilibrium fluid–cell-layer interface.

Following a similar process to that used above to deter-
mine a0, Λ2(z, t) may be found from (35), (37), (41) and
(43) as

Λ2(z, t)

=

⎧⎪⎪⎨
⎪⎪⎩

Λ2(z, 0)
[
1 − 2F1t/a20(0)

]n2/2 if 0 ≤ t < t∗01,
Λ2(z, 0)

[
1 − (2(F1 − F2)t∗01 − 2F2t)/a20 (0)

]n2/2 if t∗01 ≤ t < t∗02,
Λ2(z, 0)

[
1 − (2(F1 − F2)t∗01 − 2F2t∗02)/a20 (0)

]n2/2 if t ≥ t∗02.
(49)

Thus, the evolving cross-sectional profile of the tissue struc-
ture is given by

a(θ, z, t) = a0(t) + εa1(z, 0)

+ ε2
(
Λ2(z, t) cos(nθ) + Υ2(z, 0)

)
, (50)

where a0(t) and Λ2(z, t) are given by (48) and (49), respec-
tively. Note that if the nutrient solution is supplied under
conditions of specified pressure drop rather than specified
flux (so that ζ(t) = 1), then an identical analysis holds,
except with

t∗01 = a20(0) − 4σ 2
1

2F1
, t∗02 = a20(0) − 2(F1 − F2)t

∗
01 − 4σ 2

2
2F2

.

(51)

We now compare the above (rather general) analytical
solution with numerical simulations to the system (39)–(42)
in the appropriate parameter regimes in the following analy-
sis.We relax our assumption ofm → ∞ in the expression for
the growth function f given in (43) and consider finite values
of m so that the tissue growth transitions smoothly between
the three growth rate regions as shear stress increases. We
first consider an initial fluid–cell-layer interface that is cylin-
drical to leading order, but forwhich higher-order corrections
are all chosen to be linearly decreasing along the pore axis
(see (31)):

a0(0) = 0.9, (52a)

a1(z, 0) = −z − 0.5, (52b)

Λ2(z, 0) = −z + 2, (52c)

Υ2(z, 0) = −z + 2. (52d)

We choose σ1 such that the initial leading-order shear stress
σs0(0) < σ1, and so, as the fluid–cell-layer grows, with atten-

dant increase in shear stress, we sweep through all three
regions of the growth function f , given by (43).

In the simulation illustrated in Fig. 3, the wavenum-
ber n = 4 is used in the azimuthal perturbation to the
fluid–cell-layer interfacial profile (see (21)) and the initial
fluid–cell-layer interface configuration is given by Eqs. (52).
The black curves in Fig. 3a show the numerical solution to
(39) for the leading-order fluid–cell-layer interface a0(t) ver-
sus time t , for several different values of m, while the red
graph shows the analytical solution (see (48)). Our results
here confirm that as the value of m increases, the numerical
solution to (39) converges to the analytical solution for a0
in (48). Furthermore, Fig. 3b confirms that when m � 1
(m = 1000 is used here), the numerical solution to (41)
for Λ2 is almost identical to the analytical solution in (49).
Therefore, for the remainder of the paper, we use the analyt-
ical solutions (m → ∞) to (39)–(42) for both Case (i) and
(ii).

Figure 4 illustrates the analytical results to (39)–(42)
(m → ∞) as obtained in (44)–(50) for the initial fluid–cell-
layer interface configuration in (52). (The results of Fig. 4a,
c were already shown in Fig. 3, but we now discuss them
in more detail.) The leading-order radius of the fluid–cell-
layer interface, a0(t), decreases approximately linearly with
t (Fig. 4a), which is consistent with a Taylor expansion of
(44) for small time. The leading-order shear stress, σs0, also
increases approximately linearly, until it surpasses the value
σ1 and we enter the regime of maximal tissue growth rate
(σ1 ≤ σs0 < σ2) (Fig. 4e). The fluid–cell-layer interfacial
radius then decreases rapidly so that the shear stress also
rapidly increases further, until finally it exceeds σ2 and the
growth is halted (see the solution for a0(t) in Fig. 4a).

Since the function f , given by (43), is piecewise constant
for our chosen limit m → ∞, a1 and Υ2 do not vary in time,
as discussed in our analytical work above (see Fig. 4b, d).
The evolution of Λ2(z, t) is shown in Fig. 4c (see (49)): this
function retains its linear dependence on the axial coordi-
nate z, while approaching zero smoothly as time progresses.
The evolution of the leading- and second-order shear-stress
components, σs0 and σs1, is shown in Fig. 4e, f, which are
obtained from (23) and (35).

The overall picture may be visualized by considering the
fluid–cell-layer interfacial profile at several different cross
sections along the scaffold, both initially, and when the sys-
tem has reached equilibrium (Fig. 4g, h, respectively). As
observed, the tissue will grow so that ultimately the tube is
circular in cross section, but the radius may vary along the
axis at O(ε) due to the initial choices of a1 and Υ2.

We next consider an initial configuration in which the ini-
tial profiles for a1, Υ and Λ all increase rather than decrease
with distance along the pore axis (the direction of flow):
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Fig. 3 Solutions to (39) and (41) for a0 and Λ2 in the expression
(20) for the fluid–cell-layer interface, for Case (i), Sect. 4.1. Here,
ε = 0.2, n = 4; the initial conditions are as in (52) with a0(0) = 0.9,
a1(z, 0) = −z−0.5,Λ2(z, 0) = −z+2,Υ2(z, 0) = −z+2 and growth
function f given in (43) with F1 = 1, F2 = 3, σ1 = 7, σ2 = 15. The
black graphs in a show the numerical solution for a0 for several dif-

ferent values of m, while the analytical solution (m → ∞) is given by
the red dashed graphs (see (48)). b Λ2(z, t) at several different times,
where black and red graphs are numerical (for m = 1000) and ana-
lytical (m → ∞) solutions, respectively. Here, tf = 0.25 is chosen to
be sufficiently large that the system has reached an approximate steady
state and tissue growth stops

a0(0) = 0.9, (53a)

a1(z, 0) = z − 0.5, (53b)

Λ2(z, 0) = z − 2, (53c)

Υ2(z, 0) = z − 2. (53d)

As in the previous example, during the tissue growth, the
shear stress attains values in all three regions of the domain
of the growth function f , taking the tissue growth through
regimes ofmoderate, fast, and ultimately cessation of growth.
Thefinal fluid–cell-layer interfacial profile is again circular in
cross section, though with radius that varies along the length
of the pore. The evolution towards this final configuration is
shown in Fig. 5.

4.2 Case (ii)�1 < �s0(0) < �2

When σ1 < σs0(0) < σ2, cell growth begins in the second
of the three regions of the domain of the growth function
f illustrated in Fig. 2 (fast initial growth). As in Sect. 4.1,
we examine the casem → ∞ in which analytical progress is
possible. Substituting (23), (35), (37) and (43) into (39)–(42)
and following a similar approach to that of Sect. 4.1 gives

a0(t) =
{√

a20(0) − 2F2t if 0 ≤ t < t∗0 ,

(4/σ2)1/3 if t ≥ t∗0 ,
(54)

and

Λ2(z, t) =
{

Λ2(z, 0)
[
1 − 2F2t/a

2
0(0)

]n2/2 if 0 ≤ t < t∗0 ,

Λ2(z, 0)
[
1 − 2F2t

∗
0 /a20(0)

]n2/2 if t ≥ t∗0 ,

(55)

where

t∗0 = a20(0) − (4/σ2)2/3

2F2
. (56)

Note that a1 and Υ2 again do not depend on time, i.e.
a1(z, t) = a1(z, 0) and Λ2(z, t) = Λ2(z, 0), as discussed
earlier in Sect. 4.1. As in Case (i), the position of the fluid–
cell-layer interface is given, to leading order, by (4/σ2)1/3,
(54). Hence, for a given underlying pore structure, the
leading-order amount of tissue grown will be independent
of F1, F2 and σ1. Equation (56) provides a prediction for
the time at which tissue growth stops in this regime and its
dependence on the model parameters in the limit m → ∞.
Since this scenario is simpler than Case (i), the dependence
of the time taken for the tissue to complete growth is less
complex. In particular, in this case the time to cessation of
growth is independent of σ1 and F1, and depends on F2 in
an inversely proportional fashion. Nevertheless, as outlined
in Case (i) in Sect. 4.1, there is a clear need to determine
the values for σ2 and F2 if this model is to form a reliable
predictive tool.
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Fig. 4 Analytical solution to
(39)–(42) (m → ∞) as obtained
in (44)–(50) for Case (i),
Sect. 4.1 σs0(0) < σ1 < σ2: a–d
are profiles for a0, a1, Λ2 and
Υ2, respectively, for the
fluid–cell-layer interface (20),
with ε = 0.2, n = 4 and initial
conditions (52), with
a0(0) = 0.9,
a1(z, 0) = −z − 0.5,
Λ2(z, 0) = −z + 2 and
Υ2(z, 0) = −z+ 2; e, f are shear
stresses at leading and ε orders,
σs0(t) and σs1(t) (see (23) and
(35)), respectively, and g, h are
the fluid–cell-layer interfacial
cross sections at initial and final
times (tf = 0.25, chosen to be
sufficiently large that the system
has reached an approximate
steady state and tissue growth
stops), respectively, for the
growth function f given in (43)
with F1 = 1, F2 = 3, σ1 = 7,
σ2 = 15 and m → ∞. Here,
(x, y) = (r sin θ, r cos θ). The
red dashed lines in a, e
correspond to the transition
times and the values of σ1, σ2,
respectively
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In Fig. 6, we consider an initial configuration identical to
that used in Fig. 4, given by Eq. (52), except that the leading-
order fluid–cell-layer interfacial radius is slightly smaller,
a0 = 0.8. This ensures that the initial leading-order shear
stress σs0(0) is sufficiently large to lie within the second

region of the domain of the growth function f in (43) for
identical values of σ1, σ2, F1 and F2. The tissue growth here
is initially faster than in the previous cases: the fluid–cell-
layer interfacial profile shrinks rapidly andwe quickly transit
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Fig. 5 Analytical solution to
(39)–(42) (m → ∞) as obtained
in (44)–(50) for Case (i),
Sect. 4.1 σs0(0) < σ1 < σ2: a–d
are profiles for a0, a1, Λ2 and
Υ2, respectively, in the
fluid–cell-layer interface (20),
with ε = 0.2, n = 4 and initial
conditions (53) with
a0(0) = 0.9, a1(z, 0) = z − 0.5,
Λ2(z, 0) = z − 2 and
Υ2(z, 0) = z − 2; e, f are shear
stresses at leading and ε orders,
σs0(t) and σs1(t) (see (23) and
(35)) respectively, and g, h are
fluid–cell-layer interface cross
sections at initial and final times
(tf = 0.25, chosen to be
sufficiently large that the system
has reached an approximate
steady state and tissue growth
stops), respectively, for the
growth function f given in (43)
with F1 = 1, F2 = 3, σ1 = 7,
σ2 = 15 and m → ∞. Here,
(x, y) = (r sin θ, r cos θ). The
red dashed lines in figures a, e
correspond to the transition
times and the values of σ1, σ2,
respectively
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to region three of the domain of the growth function, inwhich
growth is suppressed.

Note that, similar to what was shown in Fig. 3, excel-
lent agreement was again obtained between the numerical
solutions of the system (39)–(42) (for m = 1000) and

the analytical asymptotic prediction (54) and (55) for the
leading-order fluid–cell-layer interfacial radius a0 as a func-
tion of time and the perturbation function Λ2(z, t) versus z
at several different times (results not shown here).
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Fig. 6 Analytical solution to
(39)–(42) (m → ∞) as obtained
in (44)–(50) for Case (ii),
Sect. 4.2, σ1 < σs0 < σ2: a–d
are profiles for a0, a1, Λ2 and
Υ2, respectively, in the
fluid–cell-layer interface (20),
with ε = 0.2, n = 4 and initial
conditions (52) with
a0(0) = 0.8,
a1(z, 0) = −z − 0.5,
Λ2(z, 0) = −z + 2 and
Υ2(z, 0) = −z + 2; e, f are
shear stresses at leading and ε

orders, σs0(t) and σs1(t) (see
(23) and (35)), respectively, and
g, h are fluid–cell-layer interface
cross sections at initial and final
times (tf = 0.25, chosen to be
sufficiently large that the system
has reached an approximate
steady state and tissue growth
stops), respectively, for the
growth function f given in (43)
with F1 = 1, F2 = 3, σ1 = 7,
σ2 = 15 and m → ∞. Here,
(x, y) = (r sin θ, r cos θ). The
red dashed lines in figures a, e
correspond to the transition time
and the value of σ2, respectively (f)

0 0.05 0.1 0.15 0.2 0.25
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Time
a 0

t=0.0376

(a)

0 0.2 0.4 0.6 0.8 1
1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

z

a 1

t=0
t=0.2t

f

t=0.4t
f

t=0.8t
f

t=t
f

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

z

2

t=0
t=0.02t

f

t=0.05t
f

t=0.1t
f

t=t
f

(c)

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

z

2

t=0
t=0.2t

f

t=0.4t
f

t=0.6t
f

t=0.8t
f

t=t
f

(d)

0 0.05 0.1 0.15 0.2 0.25
7

8

9

10

11

12

13

14

15

16

Time

s0

(e)

0 0.2 0.4 0.6 0.8 1
0

50

100

150

z

s1

t=0
t=0.02t

f

t=0.05t
f

t=0.1t
f

t=t
f

-1 -0.5 0 0.5 1

x

-1

-0.5

0

0.5

1

y

z=0
z=0.2
z=0.4
z=0.6
z=0.8
z=1

(g)

1 0.5 0 0.5 1
0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

x

y

z=0
z=0.2
z=0.4
z=0.6
z=0.8
z=1

(h)

4.3 Comparison with experimental results

Figure 7 shows a direct comparison between experimental
results visualized under a confocal laser scanning micro-

scope by Rumpler et al. (2008), and analytical solutions of
our model for several different values of the polygonal cross
section n (the wavenumber in the azimuthal perturbation to
the initial fluid–cell-layer interfacial profile (see (21)). The
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results show that our model gives a reasonable qualitative
agreement with the experimental results, illustrating the ten-
dency of the fluid–cell-layer interface to become ultimately
circular, independent of the underlying pore geometry. Note
that here the experimental tissue grown (in Fig. 7a–c) is
shown after 21 days, while in our simulation the dimension-
less time at which the tissue growth is observed to stop is
tf = 0.25 (see Figs. 4–6), which corresponds to a dimen-
sional time of 20.5 days using the time scale identified in
Table 1. Furthermore, as shown in Fig. 7 (and as expected
from the form of the growth law), more tissue grows at
the corners of the scaffold structure so that the fluid–cell-
layer interface subsequently becomes more circular. This
behaviour leads to the formation of a final round fluid–cell-
layer interface, regardless of the original shape (at least for
the parameters chosen here).

4.4 Optimization and parameter sensitivity

A question of interest to tissue engineers is the optimal scaf-
fold configuration, in terms of internal pore morphology
(pore size and shape) that maximizes net tissue yield over
the course of an experiment. To answer this question, we
first identify a metric for tissue growth. The total volume
V (t) of tissue grown within the pore by time t is given by

V (t) =
∫ 1

0

∫ 2π

0

1

2

(
a2(z, θ, 0) − a2(z, θ, t)

)
dθ dz. (57)

To gain insight into the influence of the pore shape on the
tissue growth, we first consider the dependence of V (t) on
the value of n, the number of azimuthal modes in the inter-
nal fluid–cell-layer configuration within the pore, in Fig. 8a.
These results indicate that introducing regions of high curva-
ture in the fluid–cell-layer interfacial structure enables tissue
to be formedmore quickly in the structure over the intermedi-
ate growth period. During the initial growth phase, V (t) is an
increasing function of n: for t = 0.025, for example, the vol-
ume of tissue with n = 6 is approximately double that with
n = 2. However, as t increases, the volumes for all n values
equalize, and thefinal amount of tissue growth is largely inde-
pendent of the number of lobes, n. Thus, we may conclude
that if the rate of tissue growth is a primary objective, then
increasing the number of lobes in the tissue-engineering con-
struct is advantageous. However, if the concern is only with
the final volume of tissue grown, then the pore shape is less
important.

In order to further study the model’s parameter sensitivity,
we also investigate how our results depend on ε, the fluid–
cell-layer interfacial aspect ratio. A graph showing the total
amount of tissue grown within the pore, V (t), as a function
of ε, is shown in Fig. 8b. Here, our results show that the final
amount of tissue grown increases with ε (though only by

about 10% over the model’s range of validity). The variation
of total tissue grownwith ε manifests itself throughΛ2, given
by (49) and (55) for cases (i) and (ii), respectively.

The temporal dependence of tissue growth on the param-
eters F1 and F2, and σ1 and σ2 is shown in Fig. 8c, d,
respectively. The final position of the fluid–cell-layer inter-
face was seen to be given to leading order by (4/σ2)1/3

(Eqs. (48) and (54) for Cases (i) and (ii), respectively). This
indicates that for a given underlying pore structure, the total
amount of tissue grown is independent of F1, F2 and σ1 to
leading order, which is confirmed in Fig. 8c, d.

5 Conclusions

We have presented a simplified mathematical model for the
growth of tissue in a tissue-engineering scaffold to gain
insight into the effect of pore morphology on the tissue
growth. The flow of nutrient to the cells was captured by the
Stokes equations, while the cell proliferation was modelled
by a law that accounted for the effects of the underlying fluid–
cell-layer interface curvature, and fluid shear stress at the
growing tissue surface, on the rate of tissue growth. Exploit-
ing the geometrical features of a typical scaffold, namely a
structure composed of a series of pores that are nearly cylin-
drical, allowed us to proceed via an asymptotic approach that
led to a reduced system of four simple differential equations
for the tissue growth. The resulting equations were analyzed
numerically and analytically for a typical growth law, and
an analytic expression was obtained when the growth law
was piecewise constant. The analytic solution was shown to
agree with the numerics, supporting its use for rapid testing
and analysis of the system in comparisons with experimental
data from Rumpler et al. (2008).

The number of azimuthal modes in the initial fluid-cell-
layer interface profile, n (which we take as a proxy for the
shape of the underlying scaffold pore), was found to have a
minimal effect on the final amount of tissue grown. These
results suggest that focusing effort into engineering the pore
geometry may be beneficial if the rate of tissue growth is a
principal concern, but if maximizing the final volume of tis-
sue that can be grown is the main objective, then the details
of the shape of the (nearly cylindrical) pore within the scaf-
fold are not important. In contrast, the total amount of tissue
grown depends on ε, the fluid–cell-layer interface aspect
ratio, with the amount of final tissue grown increasing with
increasing ε.

The results of this work, once calibrated against available
data, offer a simple framework for testing the behaviour of
different scaffold pore geometries without the need for many
complex experiments to be conducted. The model should
ultimately allow for the prediction of regimes in which tis-
sue growth may be enhanced, offering improvements and
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Fig. 7 a–c New tissue formed in three-dimensional matrix channels
visualized under a confocal laser scanning microscope by Rumpler
et al. (2008). d–f Upstream side (z = 0) of the fluid–cell-layer inter-
facial cross section at initial and final times (tf = 0.25, chosen to be
suitably large such that the system has reached an approximate steady

state) for n = 3, n = 4 and n = 6, respectively, with ε = 0.2 and
for the initial conditions in (52) with a0(0) = 0.9, a1(z, 0) = z − 0.5,
Λ2(z, 0) = z − 2 and Υ2(z, 0) = z − 2, the growth function f given
in (43) with F1 = 1, F2 = 3, σ1 = 7, σ2 = 15 and m → ∞. Here,
(x, y) = (r sin θ, r cos θ)

additional insight into the current operating strategies used.
To compare our theoretical results with experiments requires
an estimate of λ̂, the growth-rate parameter in Eq. (10), for
the dataset under consideration. This parameter depends on
many experimental details, including cell type, the physi-
cal characteristics of the tissue-engineering scaffold and the
concentration of the nutrient in the culture fluid. In principle,
λ̂ could be measured or estimated directly from a suitable
experimental dataset, as we did for the data of Rumpler et al.
(2008). Here, λ̂ was estimated by extracting the gradient of
the projected tissue area versus time graph in Fig. 4(b) of
Rumpler et al. (2008). The time taken for the tissue to form
and the total amount of tissue grown were inherently linked
to the parameters in our tissue-growth ansatz. For this model
to form a reliable predictive tool, the parameters that appear
in the growth ansatz need to be determined experimentally.
While this is possible in principle by examining temporal
data, in this paper we had access only to final-time snap-
shots. A close collaboration between experimentalists would
be necessary to pin down these parameters more accurately,
and represents a future research direction.

The model presented in this paper has the advantage of
simplicity, but obviously fails to capture many details of the
real experimental system, which may be important in some
scenarios. For example, throughout this study, the nutrient
is assumed to be present in excess so that cells always have
sufficient nutrient to proliferate, and no significant nutrient
depletion occurs over the length of the pore. If nutrient is
present in low concentration, this may not be true. In such
cases, our model could be generalized to capture the effect
of nutrient concentration gradients (Sanaei and Cummings
2017, 2018). While significant gradients in nutrient concen-
tration are unlikely to arise at the single-pore scale, they could
certainly be present over the scale of an entire scaffold, con-
sisting of many pores. One could consider scaling-up our
model to describe an entire scaffold, with the nutrient flux
varying in both time and spatial location within the scaffold.
The growth parameter λ̂ [see (10)] would then be considered
a function of the local nutrient concentration, again informed
by available data.

Furthermore, our growth model is empirical, based purely
on experimental observations of how a tissue interface grows
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Fig. 8 Total volume of tissue, V (t) (defined in (57)) versus time,
for fluid–cell-layer interfacial profile (20), with the initial fluid–cell-
interface configuration given in (52), a0(0) = 0.9, a1(z, 0) = −z−0.5,
Λ2(z, 0) = −z + 2, Υ2(z, 0) = −z + 2 and for a several different val-
ues of the polygonal cross section n (the wavenumber in the azimuthal

perturbation to the fluid–cell-layer interfacial profile (see (21)); b fluid–
cell-layer interfacial aspect ratio ε; c F1 and F2 (see (43)); and d shear
stresses σ1 and σ2 (see (43)). In (a), ε = 0.5; in (b), n = 4 and the
growth function f is as given in Fig. 2 with F1 = 1, F2 = 3, σ1 = 7
and σ2 = 15. In (c) and (d), ε = 0.5 and n = 4. In all cases m → ∞

within pores of differing curvatures. Though these obser-
vations were validated across a range of different pores
(Rumpler et al. 2008), one could argue that a more com-
plete model is needed, which accounts for the details at the
cell scale and the underlying mechanisms that drive cells
to proliferate. Much remains to be done in terms of building
such a detailed predictivemodel, which could offer improved
insight into how the structural details of an underlying scaf-
fold impact tissue engineering outcomes. Nonetheless, we
believe that this model, which is characterized through a sim-
ple yet descriptive growth law that may be connected to data
through the growth parameter λ̂ and can be solved with min-
imal computational effort, offers some utility in addressing
scaffold design questions.
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