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Abstract A tumour resection normally involves a large tissue resection and bone replacement. Polyether ether ketone (PEEK)
has become a suitable candidate for use in various prostheses owing to its lightness in weight, modulus close to that of natural
bone, and good biocompatibility, among other factors. This study proposes a new design method for a rib prosthesis using the
centroid trajectory of the natural replaced rib, where the strength can be adjusted by monitoring the cross-sectional area, shape,
and properties. A custom-designed rib prosthesis was manufactured using fused deposition modelling (FDM) manufacturing
technology, and the mechanical behaviour was found to be close to that of a natural rib. A finite element analysis of the
designed rib was carried out under similar loading conditions to those used in mechanical testing. The results indicate that
the centroid trajectory derived from a natural rib diaphysis can provide reliable guidance for the design of a rib prosthesis.
Such methodology not only offers considerable design freedom in terms of shape and required strength, but also benefits the
quality of the surface finishing for samples manufactured using the FDM technique. FDM-printed PEEK rib prostheses have
been successfully implanted, and good clinical performances have been achieved.
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1 Introduction

Chest wall resections are often required when dealing
with malignant tumours, congenital deformities, or thoracic
injuries from vehicle crashes, and may lead to the risk of a rib
excision. Moreover, rib fractures are significantly increasing
as the global population continues to age. Herein, the devel-
opment of human rib replacement techniques has received
significant attention in terms of chest wall reconstructions as
a way to maintain the normal respiratory function of patients
(Moradiellos et al. 2017; Simal et al. 2016; Wang et al. 2016;
Wu et al. 2016).

Many different materials have been used thus far to fab-
ricate rib prostheses, including polytetrafluoroethylene or
a polypropylene mesh (Weyant et al. 2006), polymethyl-
methacrylate and its composites (Agrawal et al. 1998;
Vartanian et al. 2006), stainless steel, and titanium or
titanium-based alloys (Bille et al. 2012; Gonfiotti et al. 2009;
Stephenson et al. 2011). In addition, with the rapid develop-
ment of 3D printing technology, custom-designed titanium
implants have become favourable owing to their excellent
biocompatibility and features (Anderson et al. 2016; Aragon
and Perez 2016; Aranda et al. 2015; Moradiellos et al. 2017;
Rungsiyakull et al. 2015; Simal et al. 2016; Wang et al. 2016).
However, statistical results have shown a relatively high inci-
dence rate of post-operative complications (Weyant et al.
2006), reaching up to 27% for massive chest wall defects
(Berthet et al. 2012). Moreover, relevant studies (Hazel and
Weyant 2015; Weyant et al. 2006) have indicated that respi-
ratory failure may be related to the choice of rigid repair for
such defects. As a result of the significant differences in elas-
tic modulus or toughness between titanium rib implants and
real human ribs, the stress distributions of the rib skeleton will
be changed after a rib cage replacement, and a non-uniform
load transmission may cause damage to the surrounding
organs under certain unique circumstances, including a tum-
ble or slight impact. Moreover, titanium has a limitation with
regard to post-operative imaging examinations owing to the
presence of artefacts (Smeets et al. 2017). Unfortunately,
some patients may feel abnormal symptoms near the replace-
ment location when titanium alloy is used (Fage et al. 2016).
Therefore, improvements in the clinical performance of pros-
theses and a reduction in the incidence rate of post-operative
complications through the use of better-suited biomaterials
and a subject-specific design are still required.
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Polyether ether ketone (PEEK) has been widely used for
spinal fusions (Tanida et al. 2016) and cranioplasty (Garcia-
Gonzalez et al. 2015) owing to its excellent biomechanical
properties, biocompatibility, and stability, particularly its
comparable elastic modulus to that of bone. However, studies
on rib prostheses with PEEK materials have been lim-
ited. In this paper, a general prostheses design procedure
is described for patient-specific rib prostheses printed using
PEEK through a fused deposition modelling (FDM) tech-
nique. Preoperative planning was carried out to determine
the position of the tumour resection, and the geometrical
model of the replaced rib was reconstructed. A new method-
ology for designing rib prostheses was introduced, and the
centroid trajectory of a natural rib was specifically extracted
and used as a guideline for a rib prosthesis design, which is
called the C-design. For comparison purposes, a traditional
methodology for a rib design based on the original defect
model (D-design) was also constructed. The biomechani-
cal behaviours for a natural rib, D-design prosthesis, and
C-design prosthesis under similar critical rib fracture condi-
tions were analysed using the finite element method (FEM),
and then validated through mechanical testing of rib samples
fabricated using FDM. A clinical case report proved the suc-
cessful application of such prosthesis with good stability and
post-operative performance.

2 Materials and method
2.1 Clinical data and preoperative planning

A 43-year-old male patient in Tangdu hospital (the Second
Affiliated Hospital of the Fourth Military Medical University,
Shaanxi, China) complained of prolonged chest pain and was
diagnosed as having chondrosarcoma. A CT scan showed a
large tumour (11 cm x 11 cm x 6 cm) located in the left
chest wall, which had invaded the second through fifth ribs,
as shown in Fig. 1. For a better observation and prosthesis
design, using Mimics software (version 16.0, Materialise,
Inc., Leuven, Belgium), a 3D model of the chest was con-
structed from the CT data, and the tumour and corresponding
ribs were planned for resection under the premise of ensur-
ing a negative margin of 30 mm (Moradiellos et al. 2017,
Wau et al. 2016). Owing to the existence of costal cartilagi-
nous tissue at the connection points of the second and third
ribs after a full resection, the two rib prostheses needed to
be fixed to the corpus sterni using titanium screws or a steel
wire, and the remaining prostheses, the connections of which
were designed in a C shape, were tied to the surface of the
adjacent residual ribs. The assembly of all rib prostheses and
thoracic skeletons can be imitated to verify the feasibility of
the prostheses and detect the effects of clinical implantation.
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Fig. 1 Patient preoperative planning: a tumour position in the CT image, b resection plan of tumour and corresponding ribs, and ¢ chest wall

reconstruction using PEEK rib prostheses
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Fig. 2 Design flow for customized rib prosthesis: a extraction of centroid trajectory, b modification of centroid trajectory, and ¢ generation of

prosthesis

2.2 Design of rib prosthesis

According to the anatomical structure of a natural rib, the
profile of the cross section in the middle part of the rib is
approximately elliptical in shape, whereas the front and rear
ends are slightly thick and flat. The traditional design method
of rib prosthesis is to keep the implant identical to that of the
natural tissue. Although this design makes the volume and
weight of the prostheses close to their demand, the surface
topological properties of the natural rib will contribute sig-
nificantly to the stair-stepping effect in the FDM printing
process (Chakraborty et al. 2008; Chohan et al. 2017; Nela-
turi and Shapiro 2015). Moreover, removing the additional
support structures may cause microcracks on the surface and
affect the overall service performance. To solve the above
problems and improve the comprehensive performances of
prosthesis, a new rib prosthesis design method was developed
based on the centroid trajectory of a natural rib diaphysis
and variable section sweep (VSS). The prostheses models
are called centroid design (C-design) models.

The main flows of the prosthesis design include three
aspects: extraction of the centroid trajectory for the natural
ribs and cartilago costalis, modification of the centroid tra-
jectory owing to the influences of manufacturing factors, and
generation of the main body of the prosthesis through a VSS
along the centroid trajectory and the connection design. As
shown in Fig. 2, the natural centroid trajectory was extracted
using a smoothing curve successively connecting the centres
of all cross sections. The centre coordinate P; (x;, y;, Z;) can
be calculated from all discrete points of the cross-sectional
profile, as expressed in Eq. 1:

1 & 1 & 1 &
Gi=—) xnBi=—) yh=—) 0]
P =1 P p=1

n
P k=1

where n, represents the total numbers of discrete points for
the cross-sectional profile.

The natural centroid trajectory (Fig. 2a) exhibits the spa-
tial non-uniplanar distribution law owing to the influence of
heterogeneous and irregular cross sections for natural ribs
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Fig.3 a Different models for finite element analysis and b finite element mesh

Table 1 Material properties of the components used in finite element analysis

Components Elastic modulus Poisson’s Tensile strength Flexural strength References
(GPa) ratio (MPa) (MPa)
Cortical bone 12 0.3 88 76.0 +23.7 (Li et al. 2010a, b)
Cancellous bone 0.04 0.45 22 /
PEEK rib prosthesis 2.8 0.3 89 141 (Yang et al. 2017)

and cartilago costalis. For an improvement in the surface
quality, the geometric corrections in the coplanar are applied
to modify the natural centroid trajectory. The objective of
coplanar processing is to find a spatial plane to minimize
the sum of squares of the distance from the centres of the
cross section to the plane. As shown in Fig. 2b, it is assumed
that a spatial plane exists, the function equation of which is
z = f(X,) = apx + a1y + az. Therefore, the sum of the
squares of the distance can be calculated as follows:

n
S = Z (ao%; + ar§i + ay — %)
i=0

Based on the extreme value theory, when the partial deriva-
tives for function S are equal to zero, the minimum exists.
That is, % =0, (k =0, 1,2). All parameters of the plane
equation can be obtained by solving the system of linear equa-
tions. Finally, the natural centroid trajectory is projected onto
the plane to finish the coplanar modification.

A variable cross-sectional area is assigned along the
derived centroid trajectory to be adaptive to the natural rib
tissue using linear interpolation methods, applying the vari-
able section scanning function in the Creo software (version
2.0, Parametric Technology, Co., USA). For a fixation of a
rib prosthesis, when the prosthesis is attached to the remain-
ing rib, the connecting portion usually needs to extend 20-30
mm from the osteotomy surface. Moreover, a larger contact
area and good matching of the interface between the prosthe-
sis and rib diaphysis are taken as priorities under sufficient
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strength. A geometric model and the design flows for the
second rib prostheses are shown in Fig. 2c.

2.3 Biomechanical analysis of rib prosthesis

The FEM was used to investigate the biomechanical proper-
ties of the rib prostheses designed using the method presented
in this study. Meanwhile, to evaluate the comprehensive per-
formances of the prosthesis, the direct design (D-design)
model and a natural rib model were analysed and compared
with the C-design model, as shown in Fig. 3a. The D-design
model was constructed through a repair of the surface mor-
phology of resected ribs, and a design of the fixed structure
at both ends. Geometric versions of the three models were
generated through the processing of CT images using the
software Mimics and a smoothing operation using the soft-
ware Geomagic Studio (version 2012, Geomagic, Inc., USA),
and assembled according to the preoperative planning. In
this modelling process, the rib includes cortical bone and
cancellous bone, and the thickness of the cortical bone is
approximately 0.7 mm, based on (Li et al. 2010a; Mohr et al.
2007).

All material properties used in the finite element analysis
were set as given in Table 1. To reduce the influences from
manufacturing methods and FDM process parameters, the
material properties of the PEEK rib prostheses were defined
based on the results of the tensile and flexure tests, which
were conducted using an electrohydraulic servo mechani-
cal testing machine (SANS CMT4304, MTS Corp., USA)
according to ISO 527-1:2012 and ISO 178, respectively. All
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materials were assumed to be homogeneous, isotropic, and
linear elastic.

Three element sizes were used for the mesh sensitiv-
ity analysis: 0.25, 0.5, and 1 mm. A relative difference of
less than 5% was achieved across all sizes; thus, 1 mm was
selected as the overall meshing size for this study. As shown
in Fig. 4a, three geometric models were meshed automati-
cally using Hypermesh (version 12, Altair Engineering, Inc.,
USA) with an element size of 1 mm and applying a C3D6 ele-
ment type, and then solved in Abaqus (version 14, Abaqus,
Inc., USA). The outer cortical shells for each rib were mod-
elled using an inward offset with a thickness of 0.7 mm. The
contact interface between the prosthesis and rib was consid-
ered rigidly bonded to simulate the fixation with a titanium
screw or steel wire. Because it is very difficult to evaluate the
load-bearing capacity of each natural rib in vivo, this study
mainly investigated the biomechanical properties under the
extreme conditions of a rib fracture. The posterior extremity

of the rib near the transverse process was fully fixed. For the
anterior extremity or connector of the rib prostheses bound-
ing on the sternal body, the translation (U) or rotation (Ury
& URry) out of the loading plane XOY was constrained; nev-
ertheless, the rotational degree of freedom around the vertical
axis was released, as shown in Fig. 4b. A displacement load-
ing of 10 mm instead of a force loading was applied to the
anterior extremity (B) of the rib model along the vertical
axis (Y axis), representing the general compressive loading
direction of a chest when being punched (Li et al. 2010a, b).

The designed specimens were 3D printed using the FDM
technique with a self-developed 3D printer created specifi-
cally for PEEK printing (Fig. 5a), with the nozzle diameter
of 0.4mm, printing speed of 40mm/s, printing line width of
0.4mm, layer thickness of 0.2mm, nozzle temperature of
420°C, infill percentage of 100% and printing trajectories
of the contour offset scan. The printing direction is perpen-
dicular to the position of prosthesis in Fig. 5a. To evaluate
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the bending performance of the printed samples and vali-
date the finite element models, a bending test was carried out
for the 3D-printed rib prosthesis using a universal testing
machine, as shown in Fig. 5b. Both ends of the prosthe-
sis were clamped, and a vertical displacement of 10 mm
was applied through the top fixture point at a speed of 1
mm/min. Markers were attached to the surface of the rib
prosthesis beforehand, and a deformation of the rib prosthe-
sis was obtained by capturing the moving trajectory of the
marked points using a high-speed camera (i-Speed 3, Olym-
pus KeyMed, Ltd., UK). Finally, a comparison of the results
between the FEA and experimental testing was conducted to
comprehensively evaluate the mechanical properties of the
rib prosthesis.

3 Results

The results of Mises stresses and displacement for the sec-
ond rib model are shown in Fig. 6a. Among the three finite
element models, the maximum von Mises stress of the cor-
tical bone in the natural rib model reached up to 143.7 MPa,
which was twice that of the other two prosthesis models, and
exceeded the tensile yield strength (88 MPa) and bending
strength (76.0 £23.7 MPa) of cortical bone. Meanwhile, the
maximum von Mises stress of cancellous bone was over the
yield strength of the material (2.2 MPa), which may lead to
a high risk of fracture in the maximum stress position. The
patterns of stress distribution in the rib model predicted for
the two prostheses were similar to each other, and the magni-
tudes of the maximum von Mises stresses also matched well.
Regardless, the maximum von Mises stresses predicted for
all model types were below the yield strength limitation of
the materials. For the PEEK parts, the maximum von Mises
stress predicted for the C-designed model was 39.88 MPa,
which was 10% larger than those of the D-design model, but
lower than the tensile yield strength and the bending strength
of the PEEK material. In addition, as shown in Fig.6b, the
initial stiffness of natural rib calculated by FEA is close to
the experimental result from the references (Li et al.2010),
and so do the stiffness of two kinds of prostheses. However,
the stiffness of prosthesis is larger than that of natural rib
owing to the difference of elastic modulus between cortical
bone and PEEK materials.

The experimental results of the bending test for the
3D-printed PEEK rib prosthesis (Fig. 7) show that the dis-
placement reaches the maximum level at around the middle
point (Ps), and decreases gradually towards both ends, which
follows a pattern similar to that of the FEA. However, the dif-
ference in deformation between the FEA and experimental
test can reach up to 20%.

The patient underwent a complete tumour resection, and
the second and fifth ribs were partly resected according to
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the preoperative planning strategy. The size of the chest wall
defect reached 20 cm x 15 cm. Compared to the 558 g
tumour specimen, the weight of each PEEK rib prosthesis
was approximately 27 g, and the total weight was approxi-
mately 100 g. Because the fifth ribs were simply cut off from
a very short part, three rib prostheses were used during the
clinical operation, as shown in Fig. 8. The patient was dis-
charged 10 days after surgery, and a chest CT scan indicated
a stable reconstruction, with a preservation of the thoracic
morphology and excellent cosmetic results.

4 Discussion

A tumour around the chest occasionally involves a large tis-
sue resection, including the ribs, and to reconstruct the chest
wall, it is necessary to design and manufacture a biomimetic
rib prosthesis mimicking natural ribs. To realize such a goal,
a methodology was developed to reconstruct a rib prosthesis
model based on the derived centroid trajectory of the natural
rib being replaced. This methodology was specially designed
to benefit one of the 3D printing techniques, namely, FDM,
to minimize artefacts called “stepping”. The FEM was used
to analyse the biomechanical behaviour of such designed rib
prostheses and was validated experimentally.

Compared with metal prostheses (Aragon and Perez 2016;
Fraldi et al. 2010; Simal et al. 2016; Wang et al. 2016), PEEK
exhibits excellent biocompatibility, the Young’s modulus and
yield strength of which match those of cortical bone. Such
advantages make PEEK a better candidate for spinal fusion
cage and cranioplasty implants (Garcia-Gonzalez et al. 2015;
Tan et al. 2016; Tanida et al. 2016). This is the first study
wherein PEEK was fabricating rib prosthesis. Owing to the
uniform stress transmission between the prosthesis and rib, a
PEEK rib prosthesis was strongly fastened to a remaining rib,
and offered better stability and safety for certain unexpected
situations, such as a tumble or slight impact. Moreover, high
radiographic penetrability can effectively avoid interference
from artefacts during a post-operative examination. There-
fore, PEEK can be a preferred material for a rib prosthesis.

The traditional design of rib prosthesis is based on the
original surface geometric characteristics of the natural rib,
which is also called a reverse engineering methodology.
However, the topological surface properties of a natural rib
can contribute significantly to a stair-stepping effect during
the manufacturing process of FDM printing (Chakraborty
et al. 2008; Chohan et al. 2017). In this study, a new method-
ology was developed for the design of a patient-specific
PEEK rib prosthesis based on the centroid trajectory of the
replaced rib. The methodology was validated through a com-
parison to a traditional design model using the FEA and
mechanical testing on the printed rib samples based on the
FDM methodology. The maximum Mises stress predicted
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Fig. 6 a Contour plot of von Mises stress and displacement predicted for three models corresponding to three designs; b the load-displacement

curve of different models

using FEA occurred in the middle region of the rib model
for both designs, and both were found to be lower than the
yield strength of the PEEK materials. This indicates that both
designed prostheses can meet the strength requirement of ribs
during normal daily life. In addition, the maximal von Mises
stress of the C-design prosthesis was 10% larger than that of
the D-design, which may result from the difference in cross-

sectional areas for both designs. A larger cross-sectional area
is associated with a higher strength but lower stiffness of the
rib prosthesis, and therefore, the strength and stiffness can be
adjusted for the C-design prosthesis by controlling the vari-
ation in the cross-sectional area, which offers better design
freedom compared to the D-design method.
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Fig.8 Clinical implantation and post-operative effect of rib prosthesis

Meanwhile, the biomechanical evaluation of a 3D-printed
PEEK rib prosthesis was validated through experimen-
tal tests. The rule of displacement variation of PEEK rib
prosthesis was consistent with that of the FEA, and no
microcracking was observed at the position of maximal
deformation throughout the bending test. Although the dis-
placement error between the FEA and experimental test was
up to 20%, overall, these results indicate that a 3D-printed
PEEK rib prosthesis can fully meet the performance require-
ments. The possible causes of this difference are numerous,
with one being that the crystallinity of the polymer affected
the material properties, such as the yield strength and rough-
ness (Yang et al. 2017). In addition, factors including the
surface roughness and dimensional mismatch can contribute
to the difference between the FEA and mechanical testing
results (Wang et al. 2017). Therefore, it is necessary to val-
idate the actual mechanical properties for the purposes of
application and referencing. Moreover, a completed thorax
with an implanted prosthesis needs to be analysed further
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under in vivo loading conditions for better characterizing the
comprehensive mechanical behaviours of rib prosthesis.

5 Conclusion

A new methodology was developed for the design of a
patient-specific PEEK rib prosthesis that is particularly suit-
able for the FDM manufacturing technique. The results
indicate that the centroid trajectory derived from a natural rib
diaphysis can provide reliable guidance for a rib prosthesis
design. Moreover, the newly developed methodology offers
high freedom of design in terms of the cross-sectional area
and shape. The designed rib prostheses were manufactured
using FDM technology, and the mechanical behaviours of
which were found to be close to those of natural ribs. PEEK
rib prostheses were implanted successfully, and a good clin-
ical performance was achieved.
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