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Abstract Quasi-one-dimensional microtubules (MTs) in
cells enjoy high axial rigidity but large transverse flexibil-
ity due to the inter-protofilament (PF) sliding. This study
aims to explore the structure–property relation for MTs and
examine the relevance of the beam theories to their unique
features. A molecular structural mechanics (MSM) model
was used to identify the origin of the inter-PF sliding and its
role in bending and vibration ofMTs. The beammodels were
then fitted to the MSM to reveal how they cope with the dis-
tinct mechanical responses induced by the inter-PF sliding.
Clear evidence showed that the inter-PF sliding is due to the
soft inter-PF bonds and leads to the length-dependent bend-
ing stiffness. The Euler beam theory is found to adequately
describeMT deformationwhen the inter-PF sliding is largely
prohibited. Nevertheless, neither shear deformation nor the
nonlocal effect considered in the ‘more accurate’ beam the-
ories can fully capture the effect of the inter-PF sliding. This
reflects the distinct deformationmechanisms between anMT
and its equivalent continuous body.

Keywords Microtubules · Molecular structure mechanics
model · Inter-PF sliding · Euler beam · Timoshenko beam ·
Nonlocal effect

1 Introduction

Microtubules (MTs) are a structural element and primary
organizer in the cytoskeleton of eukaryotic cells (Chretien
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and Fuller 2000). They form “tracks” on which motor pro-
teins transport organelles and construct the spindle apparatus
to facilitate cell division (Howard and Hyman 2003). They
are also responsible for maintaining the shape and provid-
ing the rigidity of the cells. The mechanics of MTs (Felgner
et al. 1996; Gao and Lei 2009; Gittes et al. 1993; Kiku-
moto et al. 2006; Li et al. 2006; Takasone et al. 2002;
Tounsi et al. 2010; Valdman et al. 2012; Zhang and Wang
2017) has been studied extensively in the last two decades,
where the length dependency of equivalent bending stiff-
ness (EI)eq was captured as a unique feature of MTs and
interpreted primarily via the continuum mechanics models
(CMMs).

TheEuler beam (EB)modelwas the first one used forMTs
(Dogterom and Yurke 1997; Gittes et al. 1993; Kurachi et al.
1995; Takasone et al. 2002; Venier et al. 1994; Vinckier et al.
1996;Wang et al. 2001). In 1993,Gittes et al.measured (EI)eq
for MTs by fitting it to experiments (Gittes et al. 1993). In
2002, using this technique Kis et al. (2002) first reported the
length-dependence of (EI)eq forMTs and attributed it to their
low shear modulus G. This theory (Kis et al. 2002) was then
used by Kasas et al. to study the effect of anisotropy on MTs
via the finite element method (Kasas et al. 2004). Pampaloni
et al. also employed the theory to understand the length-
dependent (EI)eq achieved experimentally (Pampaloni et al.
2006).

In 2006, Ru’s group developed an orthotropic shell model
for MTs (Wang et al. 2006a, b) and later compared it with the
EB model (Li et al. 2006). The length-dependent (EI)eq was
found to be a result of the extremely low G relative to the
axial Young’smodulus (Li et al. 2006). Subsequently, Ru and
his co-workers (Gu et al. 2009; Shi et al. 2008) confirmed the
relevance of the Timoshenko beam (TB) model to MTs by
comparing it with the shell model (Wang et al. 2006a, b). The
length-dependence of (EI)eq was also predicted by the TB
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Fig. 1 a A structural representation of an MT, b the major bond deformation considered for the MT, c the molecular structural model developed
for the MT and d the deformations of the elastic beams representing bonds 1 and 2 of the MT shown in (a)

model via the low G-induced transverse shear. In addition,
a higher-order shear deformation theory was used by Tounsi
et al. (2010) to understand the length-dependent (EI)eq of
MTs. This unique feature was also explained by Gao and Lei
(2009) and Fu and Zhang (2010) via the nonlocal elasticity
and the couple stress theory, respectively.

A CMM or an improved-CMM (Xiang and Liew 2011,
2012) is often chosen by researchers for a nanostructure
primarily due to the similarity between their overall geomet-
ric configurations. However, the deformation mechanisms
of discrete nanostructures may not be correctly reflected by
that of a continuous body. This, in fact, forms a fundamen-
tal issue in nanomechanics. Specifically, the inter-PF sliding
was observed experimentally for MTs (Chrétien et al. 1998;
Chretien and Fuller 2000), which originates from the weak
inter-PF interaction and is thought to be responsible for the
length-dependent (EI)eq (Kis et al. 2002; Pampaloni et al.
2006; Taute et al. 2008). Effort is thus required to further
confirm this theory and examine the relevance of the CMMs
to the inter-PF sliding of MTs.

The present paper aims to investigate this issue for the
classical and nonlocal beam models (Fu and Zhang 2010;
Gao and Lei 2009; Kasas et al. 2004; Kis et al. 2002; Li
et al. 2006; Tounsi et al. 2010). In doing this, a molecular
structural mechanics (MSM) model was employed to char-
acterize the inter-PF sliding (Chrétien et al. 1998; Chretien
and Fuller 2000; Wang et al. 2016) and compared with the
beam models in studying the vibration and bending of MTs.
The idea is to examine whether the effects of inter-PF slid-

ing can be captured by the continuum beam and nonlocal
mechanics theories. The MSM model has the proven ability
to correlate MT structures to the elastic properties (Zhang
andWang 2014), mechanical behavior (Li et al. 2017; Zhang
and Wang 2014, 2016) and particularly, the inter-PF sliding
(Wang et al. 2016) of MTs. Here, the MSM models for MTs
were introduced in Sect. 2. Section 3 discusses the numerical
results and provides a critical analysis. The new findings are
summarized in Sect. 4.

2 Characterizing techniques for MTs

2.1 MSM model for MTs

MTs of different architectures are found (Hunyadi et al.
2007), but the most common configuration is the standard
13-3 MTs (Chretien and Fuller 2000; Chretien and Wade
1991; Hyman et al. 1995). 13-3 MT structure is shown in
Fig. 1a in which N (=13) is the number of PFs, S (=3) is
the helix start number, δx is the separation distance between
two adjacent PFs, and R is the radius of the tube (Fig. 1a).
In molecular mechanics, the total potential energy U of an
MT comprises of the bond stretching energy Ur

i , the angle
bending energyUϕ

i and the dihedral angle torsional potential
energy U τ

i (Fig. 1b).

Ubonds =
∑

i=1,2

(∑
Ur
i +

∑
Uϕ
i +

∑
U τ
i

)
(1)
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The subscripts 1 and 2 denote the intra-PFα β bonds (bond
1) and the inter-PF α α (β β) bonds (bond 2) (Fig. 1a), respec-
tively. It is noted in the molecular dynamics simulations
(Enemark et al. 2008; Ji and Feng 2011) that the difference
between the inter-PF α α and β β bonds is relatively small and
can be safely neglected in modeling the mechanics of MTs.
Specifically, it was shown (Zhang and Wang 2014) that the
MSMsimulations based on this assumption can be efficiently
used to predict Young modulus and shear modulus of MTs
in agreement with existing experimental data and theoreti-
cal results. Thus, following the treatment in previous studies
(Ji and Feng 2011), the difference between α α bonds and β β

bonds is neglected in the present work. Here, the intra-PF α β

bonds can be modeled as elastic beam 1 and the inter-PF α α

(β β) bonds are treated as beam 2 (Fig. 1c). An MT (Fig. 1a)
can then be considered as a frame structure (Fig. 1c) whose
potential energy is

Ubeams =
∑

i=1,2

(∑
U A
i +

∑
UM
i +

∑
UT
i

)
(2)

whereU A
i ,U

M
i andUT

i are the strain energies in a beam due
to tension, bending and torsion (Fig. 1d). The subscripts 1 and
2 denote the strain energies of the beam 1 and 2, respectively.
The equivalency between an MT and its frame structure can
be established when the energies in Eq. 1 are equal to the
corresponding energies in Eq. 2. This condition yields

Yi Ai= kri li ,Y i Ii= kϕ
i li , Si Ji= kτ

i li , (i = 1, 2) (3)

where Yi Ai , Yi Ii and Si Ji are the extensional, bending and
torsional stiffnesses of elastic beam i , respectively. kri , k

ϕ
i and

kτ
i are the force constants for bond stretching/compression,
angle bending and torsion of MTs. li is the length of the
equivalent beam i .Once the force constants are obtained from
experiments or atomistic simulations, the beam stiffness can
be obtained based on Eq. 3.

The vibration equation of the above frame structure is as
follows (Li and Chou 2004; Tedesco et al. 1999)

Mχ̈ + Kχ = 0 (4)

where M denotes the global mass matrices, K denotes the
stiffness matrices, χ̈ denotes the acceleration vector, and χ

denotes the nodal displacement vector. For the details of M
andK readersmay refer toRefs. Li andChou (2004), Tedesco
et al. (1999) and Zhang and Wang (2014). The vibration
modes and frequency f = ω/2π can be obtained by solv-
ing the eigenvalue problem below (Zhang and Wang 2016)
via the block Lanczos algorithm.

(
K − ω2M

)
χ = 0 (5)

For the static deformation of an MT, the nodal displace-
ments can be calculated for the frame structures of MTs via
the stiffness matrix method based on the following equation

Ku = F (6)

where u is the global nodal displacements and F is the nodal
forces acting on the boundary of an MT. Solving Eq. 6 gives
the nodal displacements of the individual nodes and thus the
deformation of MTs. This MSM technique was efficiently
used in characterizing the elastic properties (Zhang andWang
2014), buckling behavior (Zhang andMeguid 2014) and free
vibration of MTs (Zhang and Wang 2016). It is found to be
in good agreement with experiments and other simulations
(Zhang and Wang 2014), and able to reflect the effect of the
inter-PF sliding on MT deformation (Wang et al. 2016).

In Deriu et al. (2007), and Ji and Feng (2011), MDSs
were performed to measure the force constants for MTs.,
kr1 = 3 nN/nm, kϕ

1 = 2 nN nm and kτ
1 = 0.04 nN nm were

obtained for the intra-PF α β bonds, and kr2 = 14 nN/nm,
kϕ
2 = 8.5 nN nm and kτ

2 = 0.17 nN nm were calculated
for the inter-PF α α (β β) bonds. However, in the literature
(Deriu et al. 2010; Kis et al. 2002; Li et al. 2006; Sept and
MacKintosh 2010; Tuszyński et al. 2005) large discrepancy
(six orders of magnitude different) is found in measuring the
shearmodulusG that is primarily determined by the inter-PF
bonds (Pampaloni et al. 2006; Wang et al. 2016). Accord-
ingly, in this study while the above intra-PF force constants
were used, those of the inter-PF bonds considered vary in a
wide range, i.e., kr2 = 14 QnN/nm, kϕ

2 = 8.5 QnNnm and
kτ
2 = 0.17 QnNnm, where the coefficient Q ranges from
10−4 to 102 and alters the effect of the inter-PF sliding (Wang
et al. 2016). These Q values were selected as they can return
a range of shear modulus G in accordance with the values
reported in the literature. Also, it should be pointed out here
that the present MSM technique is applicable only for small
deformation of MTs. No matter what Q value is considered,
this condition can be satisfied by considering a relatively low
external load or small vibration amplitude.

2.2 Shear modulus and bending stiffness measurement

In this study, the MSM simulations were performed to
measure the mechanical properties of the 13-3MTs. The
boundary conditions and loading conditions considered in
the MSM simulations were introduced below and are illus-
trated in detail in Fig. 2.

As shown in Fig. 2a, torsional deformation was obtained
for the cantilevered MT by applying circumferential force
Fc on each node of the free end. The other end is fixed by
imposing zero degree of freedom on the nodes very close
to the fixed end (their axial distance to the end is less than
3c where c is subunit repeat along PFs). The shear modulus
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342 S. Li et al.

Fig. 2 Experimental setup in the MSM simulations for a torsion, b the bending of a cantilevered MT subject to a distributed force, c the bending
of a cantilevered MT due to a concentrated load on the free end and d the vibration of a simply supported MT

G can then be calculated by FcRL/ (γ J0), where L is the
unconstrained length of theMT, γ is the torsional angle that is
measured in theMSMsimulations and J0 is the polarmoment
of inertia (J0 = (π/32) [(2R + t)4 − (

2R − t)4
]
and the

effective thickness of MTs t = 2.8 nm Deriu et al. 2010). In
general, anisotropic MTs may have different shear moduli
in circumferential (torsional) and axial directions. However,
the more detailed study based on the present MSM model
(not included in the paper) showed that the two shear moduli
exhibit the similar trend to change with Q and their values
associated with a given Q are quite close to each other. Thus
in the present study, the circumferential shear modulus G
obtained in the torsion test was used to represent the axial
shear modulus and employed in the beam models.

In addition, bending of cantilevered 13-3MTs was
achieved under two loading conditions. First a uniformly dis-
tributed transverse force q0 (N/m) is achieved on the MT by
applying a transverse force qn = q0L/Nu−nodes on each node
of the bottom PF (Fig. 2b). Here, Nu−nodes is the number
of the loaded nodes. The transverse deflection wmax of the
free end and the distributed force q0 can be measured in the
MSM simulations. Thus, (EI)eq of the MT can be calculated
based on the EB (Eq. 7) and TB (Eq. 8) theories, respectively
(Reddy and Pang 2008).

wmax = q0L4

8 (E I )eq
(7)

wmax = q0L4

8 (E I )eq

(
1 + 4 (E I )eq

GAKsL2

)
(8)

Here, A is the area of cross section; Ks = 0.72 is the shear
correction coefficient (Deriu et al. 2010; Pampaloni et al.
2006; Zhang and Wang 2014). Alternatively, a concentrated
transverse force f on the free end can be generated by apply-
ing a force fn = f /Nc−nodes on the nodes whose axial
distance to the free end is less than 3c (Fig. 2c). (EI)eq of
the MT can be obtained via the EB (Eq. 9) and TB (Eq. 10),
respectively (Arash and Wang 2012).

wmax = f L3

3 (E I )eq
(9)

wmax = f L3

3 (E I )eq
+ f L

GAKs
(10)

Additionally, simulations were performed for the transverse
vibration of the simply supported MTs. The end conditions
were achieved by fixing one node on each end of the MT
(Fig. 2d). Here, the angular vibration frequency ω can be
measured in MSM simulations and (EI)eq can be obtained
based on EB (Eq. 11) and TB (Eq. 12) theories, respectively
(Reddy 2007; Reddy and Pang 2008).

ω =
(nπ

L

)2 (
(E I )eq
m0

)1/2

(11)

ω =
(nπ

L

)2
⎛

⎜⎝
(E I )eq

m0

(
1 + n2π2(E I )eq

GAKs L2

)

⎞

⎟⎠

1/2

(12)
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Here, it is noticed that the Q-dependence of (EI)eq can be
obtained via G(Q), wmax(Q) and ω(Q) in Eqs. (7–12).

2.3 Nonlocal coefficient measurement

When the size of a structure miniaturizes across the length
scale, one would see the changes in the constitutive rela-
tions of the material in the structure. For a bulk material,
the stresses of a reference point are only a function of the
strains at the same point. However, for a nanoscale mate-
rial, the stresses of a reference point may be determined by
the strains of all points in the domain occupied by the nano-
material (Eringen 1976, 1983). Previously, effort was made
to study the bending and vibration behavior of MTs based
on nonlocal theory (Civalek and Akgöz 2010; Civalek and
Demir 2011). In particular, the length-dependence of (EI)eq
achieved forMTswas interpreted based on the nonlocal beam
models developed by incorporating the nonlocal constitutive
relations into the classical beam theories (Gao and Lei 2009).
For a cantileveredMT the bending deflectionwmax of the free
end is obtained below based on the nonlocal EB and TBmod-
els when a uniformly distributed force q0 is applied (Reddy
2007; Reddy and Pang 2008)

wmax = q0L4

8 (E I )eq

(
1 − 4(e0a)2

L2

)
(13)

wmax = q0L4

8 (E I )eq

(
1 + 4 (E I )eq

GAKsL2 − 4(e0a)2

L2

)
(14)

In addition, the angular vibration frequency ω of the simply
supported MT given by the nonlocal EB and TB models,
respectively, is shown below (Reddy 2007; Reddy and Pang
2008)

ω =
(nπ

L

)2
⎛

⎝ (E I )eq

m0

(
1 + n2π2(e0a)2

L2

)

⎞

⎠
1/2

(15)

ω =
(nπ

L

)2
⎛

⎜⎝
(E I )eq

m0

(
1 + n2π2(E I )eq

GAKs L2

) (
1 + n2π2(e0a)2

L2

)

⎞

⎟⎠

1/2

(16)

In Eqs. (13–16), the nonlocal effect is characterized by the
coefficients e0a, where e0 is considered as a material con-
stant that can be determined in experiments or the atomistic
simulations, and a is an internal characteristics length, e.g.,
lattice parameter, granular size or the distance between C–C
bonds for CNTs (Gao and Lei 2009). The values of e0a (Q)
can be calculated by usingEqs. (13–16) oncewmax(Q),ω(Q)
andG(Q) are determined in theMSM simulations. Here, the
effort is made to explain the effect of the inter-PF sliding by

Fig. 3 The initial position of an undeformed 13-3MT and the final
position of the bent MT structures with Q = 0.01, 0.1, 1, 10 and
100, respectively. The illustrated displacements in the snapshots were
enlarged 100-fold to reveal the differences. The inset shows the Q-
dependence of the shear modulus G (diamonds), the total bending
deflection of the free end (squares), the deflection due to pure bending
(circles) and the one resulting from the shear deformation (triangles).
The deflections were given by the TB model by using the values of G
shown in the inset

the nonlocal effect, i.e., e0a. Thus, in this study the constant
(EI)eq obtained when there is no significant inter-PF sliding,
i.e., Q > 1, is assumed for the MTs.

3 Result and discussion

Asmentioned in Sect. 1, different continuummechanics the-
ories are used to investigate the deformation of MTs. The
length-dependent (EI)eq was achieved and thought to be a
result of the shear deformation or the nonlocal constitutive
relations of MTs. Herein, an attempt was made to exam-
ine whether those effects proposed in the framework of the
continuum mechanics theory are able to correctly reflect the
deformation mechanisms of discrete MT structures.

3.1 Inter-PF sliding of bent MTs

In this section, we investigated the effect of the inter-PF slid-
ing on the bending deformation of MTs. To this end, we bent
a cantilevered 13-3MT by applying a concentrated force on
the free end. Here, the effect of the possible inter-PF sliding
was altered intentionally by varying the stiffness of the inter-
PF bonds in a broad range, i.e., the coefficient Q changes
from 10−2 to 102. The snapshots of the initial position (the
undeformed configuration) and the final position (the bent
configuration with the maximum transverse deflection) are
shown in Fig. 3 for the MTs with Q equal to 102, 101, 100,
10−1 and 10−2, respectively. The illustrated displacements
in the snapshots were enlarged 100-fold to reveal the differ-
ences. The transverse deflection of the free end is found to

123



344 S. Li et al.

increase when Q decreases or the inter-PF bonds become
softer. However, it rises only slightly when Q declines from
102 to 100, i.e., the inter-PF bonds are relatively stiff. The
growth becomes more significant at Q = 10−1 and turns out
to be large as Q reaches 10−2 or the inter-PF bonds become
very soft.

In the meantime, we calculated the shear modulus G
introduced for MTs in Zhang and Wang (2014). The Q-
dependency of G was plotted in the inset of Fig. 3 where
G decreases with decreasing Q. Specifically, consistent with
the above deflection change, G varies only by a few times
when Q falls in the range of [100, 102]. It, however, drops
abruptly by one to two orders of magnitude when Qdeclines
from 100 to 10−2. Thus, the stiffness of the inter-PF bond
stiffness can be approximately measured by the shear modu-
lus G quantifying the shear deformation resistance of MTs.

In addition, it was also seen from Fig. 3 that at Q = 102,
i.e., the inter-PF bond stiffness or the shear modulusG is rel-
atively high, the MT bends like a EB with the central axis (or
the neutral axis) nearly perpendicular to the cross sections.
This situation remains nearly unchanged as Q reduces from
102 to 100 and the transverse deflection grows slightly. In
contrast, when Q decreases to 10−2, i.e., the inter-PF bond
stiffness or G is one to two orders of magnitude lower, the
inter-PF sliding or shear deformation can be clearly observed
for the MT where the central axis is no longer perpendicular
to the cross section. It follows that at Q > 100, the small
transverse deflection in Fig. 3 is primarily a result of the pure
bending of the MT. By contrast, at Q = 10−2 the deflec-
tion increases greatly due to the inter-PF sliding or the shear
deformation of the MT.

Based on the aboveMSM simulations it can be concluded
that the soft inter-PF bondwill lead to the large inter-PF slid-
ing or the shear deformation, and thus additional (or greater)
transverse deflection of MT structures. The stiffness of the
inter-PF bonds or the resistance to shear deformation ofMTs
is measured by the shear modulus G that can be obtained
in the MSM simulations. This theory is qualitatively simi-
lar to the concepts of the proposed CMMs (Gu et al. 2009;
Kis et al. 2002; Li et al. 2006; Pampaloni et al. 2006; Shi
et al. 2008; Tounsi et al. 2010; Wang et al. 2006a, b) where
the shear deformation is considered for MTs. For example,
Eq. 10 obtained based on the TB model gives the transverse

deflections due to pure bending f L3

3(E I )eq
and the shear defor-

mation f L
GAKs

, respectively. Thus, Eq. 10 was employed to
quantify the MT deflections due to the pure bending and
shear deformation (or the inter-PF sliding). The results were
also plotted in the inset of Fig. 3 where at Q < 100, the
shear deflection (solid triangles) given by the TB model (G
is measured by the MSMmodel) is even larger than the total
deflection (solid squares) observed in the MSM simulations.
This finally leads to an unacceptable negative bending deflec-

Fig. 4 The Q-dependency of the shear modulus G (squares) obtained
in the MSM simulations and that of (EI)eq calculated for MT structures
with L/D = 40. (EI)eq obtained for vibratingMTs based on the EB and
TBmodels are represented by diamonds and circles, (EI)eq of bent MTs
under a uniform load given by the EB and TB models are denoted by
triangles and upside-down triangles, and the ones for bent MTs subject
to a concentrated load achieved by using the EB and TB models are
represented by squares and circles, respectively

tion (solid circles) or a negative bending stiffness of the MT.
The results suggested that though the TB model is generally
in qualitative agreement with the MSM simulations, it may
overestimate the effect of the equivalent shear deformation
or the inter-PF sliding in some particular cases. This situa-
tion thus necessitates a more comprehensive investigation on
the relevance of the classical beammodels to the mechanical
deformations of MTs.

3.2 Classical beam models for MTs

In the previous section, the bending of 13-3 MT was studied
based on the MSM model and the classical beam theories.
The inter-PF sliding of MTs was identified as the physi-
cal origin of the shear deformation considered in the TB
model for MTs. In this section, an investigation was carried
out to further examine the relevance of the beam models to
the mechanics of MTs. To this end, the Q-dependency of
(EI)eq was calculated in Fig. 4 by fitting the EB and TB
models to the MSM simulations on the vibration or bending
of MTs. Herein, 13-3 MT structures were considered where
the length L is fixed at∼0.85μm, i.e., the length-to-diameter
ratio L/D = 40, and Q varies between 10−4 and 102. The
shear modulus G is also shown in Fig. 4 to understand the
trend of (EI)eq.

In the range 100 < Q < 102, G in Fig. 4 falls in the
range of [30.8, 48.8MPa] where, as shown in Sect. 3.1, the
effect of the inter-PF sliding is very small or negligible. Thus,
(EI)eq obtained based on the frequency of MT vibration is
nearly a constant around 13×10−24 Nm2. The difference
between theEB (solid diamonds) andTB(solid circles) due to
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shear modulus G was found to be small showing that the MT
vibrates like an EB where the effect of the shear deformation
or the inter-PF sliding is trivial.

In the range 10−4 < Q < 100, G decreases greatly from
around 30.8 to 0.026 MPa as Q declines. The G-variation of
three orders of magnitude is found to be in the same range of
G values reported in the literature (Deriu et al. 2010;Kis et al.
2002; Li et al. 2006; Sept and MacKintosh 2010; Tuszyński
et al. 2005). In this process when the inter-PF bonds become
softer, the effect of the inter-PF sliding turns out to be more
significant leading tomore compliantMTstructures and thus,
a lower frequency. Accordingly, in Fig. 4, (EI)eq given by
the EB model (solid diamonds) is found to decrease with
decreasing Q. In other words, the EB model interprets the
lower frequency due to the enhanced effect of the inter-PF
sliding (or increased shear deformation due to lower G) in
terms of the decreasing (EI)eq. In other words, the EB model
is unable to reflect the real deformation mechanisms of the
discrete MT structure with softer inter-PF bonds.

In contrast to the EB model, (EI)eq obtained based on the
TB model (solid circles) climbs up when Q drops from 100

to 10−4. As shown in Sect. 3.1, the TB model is considered
to be more relevant to MTs as the shear deformation or G of
the TB can quantitatively explain the effect of the inter-PF
sliding (Chrétien et al. 1998; Chretien and Fuller 2000). Nev-
ertheless, the Q-dependence of (EI)eq (solid circles) found
in Fig. 4 is not true for the MTs. In fact, the MSM simula-
tions (the results are not shown here) showed that the axial
Young’s modulus E (≈0.8GPa) and the second moment of
inertia I are not sensitive to the change in the inter-PF bond
stiffness or the coefficient Q. In other words, (EI)eq defined
as the product of E and I should be nearly a constant inde-
pendent of Q. Thus, the predicted Q-dependence of (EI)eq
suggested again that the TBmodel overpredicts the softening
effect of the inter-PF sliding on MT structures. As a result,
(EI)eq of the TB model has to be raised to counterbalance
the overestimated effect of the inter-PF sliding (or the shear
deformation) and keep the obtained frequencies the same as
those of the MSMmodel. This observation is consistent with
the one for MT bending in Sect. 3.1.

The Q-dependence of (EI)eq was also achieved in Fig. 4
via the bending tests in theMSM simulations. The results for
the MTs subject to a distributed force (Fig. 2b) and forces
on the free end (Fig. 2c) were nearly the same and qualita-
tively similar to those obtained via the vibration of the simply
supported MTs (Fig. 2d). The major difference in these two
cases is that, at 100 < Q < 102 the constant (EI)eq ≈ 9
×10−24 Nm2 obtained in MT bending is lower than ∼13
×10−24 Nm2 measured in MT vibration. The discrepancy
can be partially attributed to the different boundary condi-
tions considered in the bending and vibration of the MTs.
These results thus support the conclusions drawnabove based
on the Q-dependence of (EI)eq achieved via MT vibration.

Fig. 5 The Q-dependency of (EI)eq obtained for bent MT structures
which are subject to a distributed transverse load and possess L/D rising
from 10 to 320

Furthermore, in Fig. 5 the Q-dependency of (EI)eq was
calculated for the uniformly loaded bending of 13-3 MT
structures whose aspect ratio L/D rises from 10 to 80. The
results were analogous to what was observed in Fig. 4, i.e.,
when Q is relatively large and the effect of the inter-PF slid-
ing is small, both the EB and TB models give nearly the
same (EI)eq ≈ 9 × 10−24 Nm2 independent of Q and the
aspect ratio L/D. In this case the (EI)eq curves given by the
two beam models nearly coincide with each other. However,
when Q decreases the (EI)eq curves of the two beam models
bifurcate at a critical value Qcr and then show the reversed
trend of (EI)eq. The values of Qcr decrease from 1 × 100 to
1 × 10−1 and 1 × 10−2 when the aspect ratio rises from 10
to 30 and 80. Further increasing the aspect ratio to 160 and
320 leads to less pronounced decreasing trend of Qcr. These
situations considered in Fig. 5 are close to the MTs found
in cells, which are usually 1–10μm long (Pampaloni et al.
2006) or aspect ratio 40–400. It is found in the figure that
Qcr, i.e., the maximum Q value associated with the substan-
tial inter-protofilament sliding, varies between 5× 10−2 and
1×10−3. The correspondingG values, as shown in Fig. 3, lie
in the range of [0.163–6.421 MPa]. These results suggested
that the upper limit of the shear modulus of MTs should be at
the order of 1 MPa, which is close to the shear modulus 1.4
MPa measured in Kis et al. (2002). The higher shear modu-
lus G is unlikely as it would prevent the inter-protofilament
sliding that has already been observed for MTs in the exper-
iments (Chrétien et al. 1998; Chretien and Fuller 2000; Dye
et al. 1993).
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It is clearly seen from Fig. 5 that, when Q < Qcr,
(EI)eq of theMTs exhibit substantial length-dependence (see
vertical dotted lines in Fig. 5), whereas when Q > Qcr,
(EI)eq remains a constant without significant Q- and length-
dependence. These results further confirmed that the inter-PF
sliding resulting from the soft inter-PF bonds is the physical
origin of the length-dependence of (EI)eq obtained based on
the classical beam theories. In other words, the MT struc-
tures behave like a EB (or TB) with a constant (EI)eq when
their inter-PF bonds are stiff and the effect of the inter-PF
sliding is very small or negligible. However, as far as the soft
inter-PF bonds are concerned or the softening effect of the
inter-PF sliding becomes substantial, the length-dependence
of (EI)eq emerges because the EBmodel is unable to account
for the effect of the inter-PF sliding or shear deformation and
the TB model overestimates its softening effect.

Here, it is clearly seen from the above analyses that
the agreement of a CMM with discrete simulations can be
achieved by using the elastic modulus or structural stiff-
nesses obtained via curve fitting. The identical numerical
values, however, do not necessarily confirm the relevance
of the CMM to the nanostructure as the curve fitting results
may not correctly imitate the physical mechanisms of MT
deformations. This is simply due to the distinct deformation
mechanisms between a discrete nanostructure and its equiv-
alent continuous body of similar geometric configuration.

3.3 Nonlocal beam models for MTs

In this section, the nonlocal effect characterized by the non-
local coefficient e0a was employed to quantify the influence
of the inter-PF sliding on MT structures, which, as shown
above, can also bemeasured by the equivalent shear modulus
G or the coefficient Q. The goal is to examine the relevance
of the nonlocal theories to the effect of the inter-PF sliding,
a unique deformation mechanism of MT structures.

In doing calculations the shear modulusG shown in Fig. 4
was used in the TBmodel, which decreaseswith declining Q.
On the other hand, constant (E I )eq associated with Q > 100

in Fig. 4 was used for both nonlocal EB and TBmodels as its
value (not the curve fitting one) does not change significantly
with Q. Here, the Q-dependence of (e0a)2 was calculated
based on Eqs. 13 and 15 (the nonlocal EB theory) and Eqs. 14
and 16 (the nonlocal TB theory) in studying the bending and
vibration of theMT structures, respectively. The results were
plotted graphically in Fig. 6.

First let us consider the results obtained from the vibration
of simply supported MTs. It was shown in Fig. 6 that (e0a)2

achieved based on the EB model (solid squares) decreases
from 942,106nm2 to a value close to 0 when Q rises from
10−4 to 100, i.e., the inter-PF bonds become stiffer and the
effect of the inter-PF sliding or the nonlocal effect decreases.
As expected, (e0a)2 finally becomes very small when Q is

Fig. 6 The Q-dependence of (e0a)2 calculated for 13-3MT structures.
The data obtained for the vibratingMT structures based on the nonlocal
EB and TB models are represented by squares and circles, respectively,
and those for the bent MTs by using the nonlocal EB and TB models
are denoted by triangles and the upside-down triangles, respectively.
Negative values of (e0a)2 shown in the figure indicate the situation
where the nonlocal beam model is not relevant for the mechanics of
MTs

further raised from 100 to 102, showing very small or negli-
gible inter-PF sliding or the nonlocal effect. In this case, as
shown in Sects. 3.1 and 3.2 theMT structures can be approx-
imately modeled as a classical EB. These seem to suggest
that the growing effect of the inter-PF sliding due to soften-
ing of the inter-PF bonds can be adequately captured by the
nonlocal EB model.

On the other hand, (e0a)2 given by the TB model (solid
circles) showed an opposite trend in Fig. 6 where negative
(e0a)2 is found at Q < 100 (inset) and it approaches 0 at
Q > 100. The latter matches the results of the EB model.
The former, however, is a trivial solution without real phys-
ical explanations. As shown in Sects. 3.1 and 3.2, the TB
model accounts for the inter-PF sliding in terms of the shear
deformation, but it overestimates its effect on MT vibration,
i.e., the MT frequency given by the TB model is even lower
than the one obtained in the MSM simulations. Thus, when
the nonlocal effect is incorporated into the TB model, neg-
ative (e0a)2 is required to upshift the frequency and make
it equal to the MSM value. Positive (e0a)2, however, signi-
fies the softening nonlocal effect on the simply supported
MTs, which further decreases the frequency. It is thus clear
that considering both the shear deformation and the nonlocal
effect may not lead to a beam model more suitable for MTs
than the one with only one of the two effects.

Next we considered the data in Fig. 6 collected for the
bending of cantilevered MTs. In this case, (e0a)2 of the non-
local EB model (solid triangles) grows with rising Q (Fig. 6)
and remains negative at 10−4 < Q < 100 where the soften-
ing effect of the inter-PF sliding is substantial. The trend of
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(e0a)2 and specifically the negative (e0a)2 obtained for the
cantilevered MTs (solid triangles) are found to be different
from those of the simply supported MTs (solid squares). The
discrepancy is due to the sensitivity of the nonlocal effect on
the end conditions of beams (Reddy and Pang 2008). While
it exerts softening influence on the simply supported beams
(e.g., a lower frequency given by Eqs. 15 and 16) it gener-
ates stiffening effect on the cantilevered ones (e.g., a smaller
bending deflection given by Eqs. 13 and 14). In contrast to
this, the inter-PF sliding always results in a more compliant
MT structure with a lower vibration frequency or a larger
bending deflection. The meaningless negative (e0a)2 is thus
a result of the reverse influence of the nonlocal constitu-
tive relations and the inter-PF sliding on the cantilevered
MTs. Thus, the nonlocal EB model, adequate for simply
supported MTs as shown above, is found to be unsuitable
for the cantilevered MT structures when the inter-PF slid-
ing is substantial. The Q-dependence of (e0a)2 given by the
nonlocal TBmodel (solid triangles) was also shown in Fig. 6
where (e0a)2 grows with decreasing Q or increasing soften-
ing effect of the inter-PF sliding.Here, the stiffening nonlocal
effect associated with positive (e0a)2 is again in contradic-
tion with the softening effect of the inter-PF sliding. Thus,
the nonlocal beammodels are unable to capture the deforma-
tion mechanisms of the cantileveredMTswith large inter-PF
sliding.

4 Conclusions

MSM simulations were performed to study the bending and
vibration of 13-3 MTs. The shear modulus G, the bend-
ing stiffness (EI)eq and the nonlocal coefficient e0a were
measured for the MT structures based on the MSM model,
CMMs and nonlocal mechanics theory. The unique features
were achieved and elucidated via the shear deformation or
the nonlocal constituent relations.

It is found that the inter-PF sliding may occur for the MT
structures in transverse bending or vibration due to the soft
inter-PF bonds whose stiffness can be measured roughly by
the equivalent shear modulus G. When G is in the order of
10 MPa (Deriu et al. 2010; Sept and MacKintosh 2010), the
inter-PF interaction is sufficiently strong to largely prevent
the adjacent PFs from sliding relative to each other. Thus, an
MT deforms as a classical EB with its central line perpen-
dicular to the cross section and its bending stiffness (EI)eq
independent of the length.

Nevertheless, at 0.01MPa< G < 10MPa (Kis et al. 2002;
Li et al. 2006) the inter-PF bonds becomemuch softer, which
yields substantial inter-PF sliding, and thus more flexible
MT structures with a lower vibration frequency or a larger
bending deflection. In particular, G in the order of 1 MPa
can be considered as an upper limit of the possible shear

modulus of MTs. It is shown that the EB is unable to reflect
this deformation mechanism. The TB model describes the
inter-PF sliding via the shear deformation but overestimates
its softening effect. Thesefinally yield the length-dependence
of (EI)eq for MTs. In addition, the nonlocal beam models are
unable to fully reflect the softening effect of the inter-PF
sliding as its effect depends sensitively on the end conditions
of MTs.

It is noted that the discrepancy between the MT structures
and the proposed continuum mechanics theories is a result
of the distinct deformation mechanisms between the discrete
MT nanostructure and its equivalent continuous body.
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Tuszyński J, Luchko T, Portet S, Dixon J (2005) Anisotropic elastic
properties of microtubules. Eur Phys J E 17:29–35. doi:10.1140/
epje/i2004-10102-5

Valdman D, Atzberger PJ, Yu D, Kuei S, Valentine MT (2012) Spectral
analysis methods for the robust measurement of the flexural rigid-
ity of biopolymers. Biophys J 102:1144–1153. doi:10.1016/j.bpj.
2012.01.045

Venier P,MaggsAC,CarlierM-F, PantaloniD (1994)Analysis ofmicro-
tubule rigidity using hydrodynamic flow and thermal fluctuations.
J Biol Chem 269:13353–13360

Vinckier A, Dumortier C, Engelborghs Y, Hellemans L (1996) Dynami-
cal andmechanical study of immobilizedmicrotubuleswith atomic
force microscopy. J Vac Sci Technol B 14:1427–1431. doi:10.
1116/1.589113

Wang CY, Guo ZG, Wang RJ, Luo Y (2016) Role of the inter-
protofilament sliding in the bending of protein microtubules. J
Biomech 49:3803–3807. doi:10.1016/j.jbiomech.2016.10.008

Wang CY, Ru CQ, Mioduchowski A (2006a) Orthotropic elastic shell
model for buckling of microtubules. Phys Rev E 74:052901.
doi:10.1103/PhysRevE.74.052901

WangCY,RuCQ,MioduchowskiA (2006)Vibration ofmicrotubules as
orthotropic elastic shells. Phys E 35:48–56. doi:10.1016/j.physe.
2006.05.008

Wang N et al (2001) Mechanical behavior in living cells consistent with
the tensegrity model. Proc Natl Acad Sci 98:7765–7770. doi:10.
1073/pnas.141199598

Xiang P, Liew KM (2011) Predicting buckling behavior of micro-
tubules based on an atomistic-continuummodel. Int J Solids Struct
48:1730–1737. doi:10.1016/j.ijsolstr.2011.02.022

Xiang P, Liew KM (2012) Free vibration analysis of microtubules
based on an atomistic-continuum model. J Sound Vib 331:213–
230. doi:10.1016/j.jsv.2011.08.024

123

http://dx.doi.org/10.1115/1.2913330
http://dx.doi.org/10.1063/1.332803
http://dx.doi.org/10.1016/j.physe.2010.01.033
http://dx.doi.org/10.1016/j.physe.2010.01.033
http://dx.doi.org/10.1016/j.bbrc.2009.07.042
http://dx.doi.org/10.1016/j.bbrc.2009.07.042
http://dx.doi.org/10.1083/jcb.120.4.923
http://dx.doi.org/10.1083/jcb.120.4.923
http://dx.doi.org/10.1007/s00707-008-0121-8
http://dx.doi.org/10.1038/nature01600
http://dx.doi.org/10.1042/BC20060059
http://dx.doi.org/10.1042/BC20060059
http://dx.doi.org/10.1083/jcb.128.1.117
http://dx.doi.org/10.1083/jcb.128.1.117
http://dx.doi.org/10.1103/PhysRevE.84.031933
http://dx.doi.org/10.1002/cphc.200300799
http://dx.doi.org/10.1002/cphc.200300799
http://dx.doi.org/10.1529/biophysj.104.055483
http://dx.doi.org/10.1103/PhysRevLett.89.248101
http://dx.doi.org/10.1002/cm.970300306
http://dx.doi.org/10.1002/cm.970300306
http://dx.doi.org/10.1063/1.1638623
http://dx.doi.org/10.1016/j.bbrc.2006.08.153
http://dx.doi.org/10.1016/j.bbrc.2006.08.153
http://dx.doi.org/10.1063/1.4986630
http://dx.doi.org/10.1063/1.4986630
http://dx.doi.org/10.1073/pnas.0603931103
http://dx.doi.org/10.1016/j.ijengsci.2007.04.004
http://dx.doi.org/10.1016/j.ijengsci.2007.04.004
http://dx.doi.org/10.1063/1.2833431
http://dx.doi.org/10.1063/1.2833431
http://dx.doi.org/10.1103/PhysRevLett.104.018101
http://dx.doi.org/10.1016/j.physe.2008.06.025
http://dx.doi.org/10.1016/j.physe.2008.06.025
http://dx.doi.org/10.1143/JJAP.41.3015
http://dx.doi.org/10.1103/PhysRevLett.100.028102
http://dx.doi.org/10.1016/j.jtbi.2010.06.037
http://dx.doi.org/10.1140/epje/i2004-10102-5
http://dx.doi.org/10.1140/epje/i2004-10102-5
http://dx.doi.org/10.1016/j.bpj.2012.01.045
http://dx.doi.org/10.1016/j.bpj.2012.01.045
http://dx.doi.org/10.1116/1.589113
http://dx.doi.org/10.1116/1.589113
http://dx.doi.org/10.1016/j.jbiomech.2016.10.008
http://dx.doi.org/10.1103/PhysRevE.74.052901
http://dx.doi.org/10.1016/j.physe.2006.05.008
http://dx.doi.org/10.1016/j.physe.2006.05.008
http://dx.doi.org/10.1073/pnas.141199598
http://dx.doi.org/10.1073/pnas.141199598
http://dx.doi.org/10.1016/j.ijsolstr.2011.02.022
http://dx.doi.org/10.1016/j.jsv.2011.08.024


Structure–property relation and relevance of beam theories for microtubules… 349

Zhang J, Meguid S (2014) Buckling of microtubules: an insight by
molecular and continuummechanics. Appl Phys Lett 105:173704.
doi:10.1063/1.4900943

Zhang J, Wang C (2017) Boundary condition-selective length depen-
dence of the flexural rigidity of microtubules. Phys Lett A. doi:10.
1016/j.physleta.2017.04.040

Zhang J, Wang CY (2014) Molecular structural mechanics model for
the mechanical properties of microtubules. Biomech Model Mech
13:1175–1184. doi:10.1007/s10237-014-0564-x

Zhang J,WangCY (2016) Free vibration analysis ofmicrotubules based
on themolecular mechanics and continuum beam theory. Biomech
Model Mech 15:1069–1078. doi:10.1007/s10237-015-0744-3

123

http://dx.doi.org/10.1063/1.4900943
http://dx.doi.org/10.1016/j.physleta.2017.04.040
http://dx.doi.org/10.1016/j.physleta.2017.04.040
http://dx.doi.org/10.1007/s10237-014-0564-x
http://dx.doi.org/10.1007/s10237-015-0744-3

	Structure–property relation and relevance of beam theories  for microtubules: a coupled molecular and continuum  mechanics study
	Abstract
	1 Introduction
	2 Characterizing techniques for MTs
	2.1 MSM model for MTs
	2.2 Shear modulus and bending stiffness measurement
	2.3 Nonlocal coefficient measurement

	3 Result and discussion
	3.1 Inter-PF sliding of bent MTs
	3.2 Classical beam models for MTs
	3.3 Nonlocal beam models for MTs

	4 Conclusions
	Acknowledgements
	References




