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Abstract Trabecular bone has been previously recognized
as time-dependent (viscoelastic) material, but the relation-
ships of its viscoelastic behaviour with bone volume fraction
(BV/TV) have not been investigated so far. Therefore, the aim
of the present study was to quantify the time-dependent vis-
coelastic behaviour of trabecular bone and relate it to BV/TV.
Uniaxial compressive creep experiments were performed on
cylindrical bovine trabecular bone samples (n= 13) at loads
corresponding to physiological strain level of 2000με. We
assumed that the bone behaves in a linear viscoelastic man-
ner at this low strain level and the corresponding linear
viscoelastic parameters were estimated by fitting a gener-
alized Kelvin–Voigt rheological model to the experimental
creep strain response. Strong and significant power law
relationships (r2 = 0.73, p< 0.001) were found between
time-dependent creep compliance function andBV/TVof the
bone. These BV/TV-based material properties can be used
in finite element models involving trabecular bone to pre-
dict time-dependent response. For users’ convenience, the
creep compliance functions were also converted to relax-
ation functions by using numerical interconversion methods
and similar power law relationships were reported between
time-dependent relaxation modulus function and BV/TV.
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1 Introduction

The mechanical behaviour of bone is generally modelled
using linear time-independent isotropic elasticity (Pankaj
2013). Cellular structure of trabecular bone has led to a
number of studies which empirically relate Young’s mod-
ulus to density of the bone. Typically, in the development of
subject-specific models computed tomography (CT) attenu-
ations, which are known to relate to bone density, are used to
assign inhomogeneous elastic properties (Taddei et al. 2007;
Schileo et al. 2008; Tassani et al. 2011). In vitro valida-
tion experiments have shown that such assignment results
in satisfactory prediction of response (Yosibash and Trabelsi
2012). However, it has been recognized that the mechanical
response of bone when subjected to loads is not instanta-
neous; it is time-dependent (Schoenfeld et al. 1974; Zilch
et al. 1980). The study of time-dependent elastic behaviour,
also referred as viscoelastic behaviour, is of interest in several
contexts such as: loosening of orthopaedic implants (Norman
et al. 2006); compatibility of bone substitutes (Phillips et al.
2006); and energy absorption due to dynamic loads (Linde
et al. 1989).

Time-dependent behaviour also plays a significant role in
nontraumatic fractures or vertebral deformities (Pollintine
et al. 2009; Luo et al. 2012) due to prolonged load over time
with age and high-energy impact type fractures such as those
due to a fall (Parkkari et al. 1999). A better understanding of
the time-dependent behaviour of bone would help to further
elucidate the mechanism of such fractures. Trabecular bone
plays an important role in the stability of many implants,
e.g. treatment of proximal femoral fractures (using sliding
hip screws or gamma nails) (Jenkins et al. 2013; Goffin et al.
2013, 2014), and in total knee replacements (Meneghini et al.
2011). Fracture fixation that involves pins and screws tra-
versing through the bone can result in large stresses at the
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implant–bone interface (Cheal et al. 1992; MacLeod et al.
2012) during surgery. These bone stresses, in a relatively
short time period, may reduce due to the stress relaxation
of the bone and jeopardize the initial fixation (Norman et al.
2006), which is based on interference fit. Further cyclic load-
ing may affect the bone-implant interface mechanics as the
bone and the implant do not have the same time-dependent
response to loads, resulting in creep deformation and even-
tually implant loosening.

The viscoelastic response of trabecular bone has been
experimentally measured using: relaxation tests (Schoen-
feld et al. 1974; Zilch et al. 1980; Deligianni et al. 1994;
Bredbenner and Davy 2006; Quaglini et al. 2009) in which
time-dependent varying force due to applied constant strain is
measured over time; creep tests (Bowman et al. 1994, 1998;
Yamamoto et al. 2006) in which time-varying strain due to
applied constant load is measured over time; and dynamic
mechanical analysis (Guedes et al. 2006; Kim et al. 2012,
2013) in which the lag between sinusoidal stress and strain
is measured over a frequency range. It has been observed
that trabecular bone creeps even at smaller load levels corre-
sponding to physiological activities (Yamamoto et al. 2006;
Pollintine et al. 2009; Kim et al. 2012).

However, unlike time-independent elasticity, the link
between time-dependent viscoelastic properties of trabecu-
lar bone with bone volume fraction (BV/TV) or density have
not been previously reported. Such relationships will permit
use of viscoelastic material models in the finite element (FE)
analysis of bone and bone-implant systems where required.
It is important to note that while most commercial FE pack-
ages are capable of simulating viscoelastic behaviour, this
feature is not commonly used as the required parameters are
not readily available. This study aims to fill this gap.

Therefore, the primary objectives of the present study are:
(1) to quantify the viscoelastic properties of the trabecular
bone froma series of uniaxial compressive creep experiments
on bovine trabecular bone and to relate these to BV/TV; and
(2) use interconversion methods to establish similar mathe-
matical relations between BV/TV of the bone and relaxation
functions.

2 Materials and methods

2.1 Creep experiments

Fresh proximal femora from bovine, female, under 30
months-old when killed, were obtained from a local abat-
toir and were stored at −20◦C until utilized. The bones were
allowed to thaw to room temperature before the femoral
heads and trochanters were removed using a hacksaw. Trans-
mission radiographs were then taken of the whole femoral
head. These images indicated the trabecular principal axis

for specimen extraction. Care was taken to ensure that a
central core was extracted along this axis using a diamond
core drill bit (Starlite, Rosemont, IL, USA). Four additional
cores were extracted parallel to this first central core from
each of the two bovine femoral heads, and three cores from
another two trochanters using the diamond core drill bit.
Once extracted the cores were examined for the presence of
a growth plate, and if found this was removed during sample
preparation. A low speed rotating saw (Buehler, Germany)
was used to create parallel sections. The cylindrical bone
samples in total n = 13 were of diameter 10.6± 0.1 mm and
mean height of 25.1± 2.1 mm. The heads and trochanters
were kept hydrated while drilling in a custom made holding
clamp to mitigate temperature damage. Brass end-caps were
glued to each end of the sample using bone cement (Simplex,
Stryker, UK) to minimize end-artefacts during compression
testing (Keaveny et al. 1997). Effective length (22.2± 2.1
mm) of each specimen was calculated as the length of the
sample between the end-caps plus half the length of the sam-
ple embedded within the end-caps (Keaveny et al. 1997), and
this effective lengthwas used in calculating average strains.A
water bath filledwith phosphate-buffered solution (PBS)was
used around each sample to keep it hydrated during imaging
and through all phases of mechanical testing.

Before mechanical testing high resolution microcom-
puted tomography (μCT) scans were taken of each sample
using a Skyscan 1172 μCT scanner (Bruker microCT, Kon-
tich, Belgium). The following scan parameters were used:
voxel resolution 17.22μm, source voltage 100kV, current
100μA, exposure 1771ms with a 0.5mm aluminium filter
between the X-ray source and the specimen. Image qual-
ity was improved by using 2 frame averaging. The images
were reconstructed with no further reduction in resolu-
tion using Skyscan proprietary software, nRecon V1.6.9.4
(Bruker microCT, Kontich, Belgium). Morphometric analy-
sis was performed using CTAn software (Bruker microCT,
Kontich, Belgium), and by considering the whole volume
within each sample, the ratio of bone volume to total volume
(BV/TV) was evaluated along with other micro-indices like
trabecular thickness (Tb.Th), trabecular number (Tb.N), and
trabecular separation (Tb.Sp).

All samples were preconditioned to 0.1% apparent strain
for ten cycles (Bowman et al. 1994) and were then allowed
to recover for 30min. Creep tests were then conducted by
applying a uniaxial compressive ramp force corresponding to
0.2% (2000με) of elastic strain at strain rate of 0.01 s−1 using
Zwickmaterial testingmachine (ZwickRoell,Herefordshire,
UK). The force corresponding to 0.2% compressive strain
was held constant for 200s before unloading to zero. Prelim-
inary tests showed that the creep rate becomes constant in
less than a minute. Therefore, the creep strain response was
measured during the creep load for 200s. All the tests were
performed in compression at ambient temperature.
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2.2 Linear viscoelastic model

At low strain levels, a number of studies have reported
the stress–strain behaviour of trabecular bone to be linear
(Keaveny et al. 1994; Moore and Gibson 2002). Linear time-
independent elasticity has been themost commonmodel used
for trabecular bone though some studies suggest that some
nonlinearity in trabecular bone is initiated even at small strain
levels (Morgan et al. 2001). In this study we assumed that
the trabecular bone behaves in a linear viscoelastic manner at
low stress levels corresponding to physiological strain levels
of 2000με. The uniaxial strain at time t , ε(t), for a linear vis-
coelastic material, represented by a Boltzmann superposition
principle, is given by (Park and Schapery 1999)

ε(t) =
∫ t

0
D(t − τ)

dσ(τ)

dτ
dτ (1)

where D(t) is creep compliance and σ is the applied stress.
The creep compliance D(t) can be defined by using the gen-
eralized Kelvin–Voigt model, also referred to as the Prony
series, as

D(t) = Dg +
npr∑
j=1

Dj
(
1 − exp(−t/τ j )

)
(2)

where Dg is glassy or instantaneous elastic compliance, Dj

are transient retardation strengths, τ j are retardation times,
and npr is number of terms in the Prony series. The model
parameters Dg, Dj and τ j ( j = 1, 2, . . . , npr) were deter-
mined by minimizing the error between measurements and
Eq. 2 for each sample. This was achieved by using nonlin-
ear least-squares fit method in MATLAB (MATLAB 2015)
which iteratively improves the unknown parameter values by
minimizing the sum of the squares of the residuals between
the experimental observations and the model. The number of
Prony terms, npr = 3, was found to be sufficient to accurately
represent the experimental viscoelastic strain response for all
the samples.

2.3 Numerical interconversion

Many readers prefer to use viscoelastic properties in other
formats: relaxation functions and complex material func-
tions. For their convenience and use, creep compliance
functions obtained from experimental tests were converted to
other formats using methods proposed by Park and Schapery
(1999). The Prony series representation of the relaxation
modulus function, E(t), is given by

E(t) = Ee +
npr∑
i=1

Ei exp(−t/ρi ) (3)

where Ee is the equilibrium modulus, and Ei and ρi (i =
1, 2, . . . , npr) are the relaxation strengths and relaxation
times, respectively. Integral relationship between creep com-
pliance D(t) and relaxation modulus E(t) based on Eq. 1 is
given by

∫ t

0
D(t − τ)

E(τ )

dτ
dτ = 1 (t > 0) (4)

The unknown set of constants Ee, Ei and ρi (i = 1, 2, . . . ,
npr) in relaxation modulus function E(t) can be determined
by solving the following system of equations (Park and
Schapery 1999):

Aki Ei = Bk (summed on i ; i = 1, 2, 3) (5)

where k the number of discrete sampling points, and

Aki =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Dg exp (−tk/ρi ) + ∑npr
j=1

ρi D j
ρi−τ j(

exp−(tk/ρi ) − exp−(tk/τ j )
)

ρi �= τ j

Dg exp (−tk/ρi ) + ∑npr
j=1

tk D j
τ j

(exp−(tk/ρi )) ρi = τ j

(6)

Bk = 1 − Ee

⎛
⎝Dg +

npr∑
j=1

Dj
(
1 − exp(−tk/τ j )

)
⎞
⎠ (7)

Ee = 1

Dg + ∑npr
j=1 Dj

(8)

where tk denotes time points. The parameters Dg, Dj and
τ j ( j = 1, 2, 3) were determined from creep experiments
for each sample. The sampling points were selected at tk =
1/ωk = 10k−5 (k = 1, . . . , 10), and the relaxation time con-
stants ρi were determined by a root-findingmethod proposed
by Park and Schapery (1999). The unknown set of constants
Ei (i = 1, 2, 3) were evaluated by solving Eq. 5 using the
least-squares method.

The creep compliance functions were also converted to
complex material functions using (Park and Schapery 1999):

D′(ω) = Dg +
npr∑
j=1

Dj

ω2τ 2j + 1
(9)

D′′(ω) =
npr∑
j=1

ωτ j D j

ω2τ 2j + 1
(10)

whereD′(ω), D′′(ω) andω are storage compliance, loss com-
pliance and frequency, respectively. Dynamic loss tangent
(tan δ), a measure of magnitude of viscoelastic effects, is the
ratio of loss compliance to storage compliance as
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Fig. 1 Experimental creep responses: a creep strain, b creep compliance (creep strain/applied stress) curves for all samples

tan δ = D′′(ω)

D′(ω)
(11)

Time-independent elastic materials show zero loss tangent
(tan δ) where as viscoelastic materials exhibit high values of
tan δ. For example, the value for bone has been reported to
be in the range of 0.01–0.04 (Lakes et al. 1979; Yamashita
et al. 2001).

3 Results

The experimental creep curves corresponding to elastic
strains of 2000με for all samples are shown in Fig. 1a, and
the corresponding compliance functions (the ratio of creep
strain response to the applied stress) are plotted in Fig. 1b.
Distinct creep response was clearly observed in all the sam-
ples. The BV/TV was in the range of 0.19–0.46, and their
creep compliance after 200s of constant loadwas in the range
of 1.08×10−3–4.17×10−3 MPa−1. Steady-state creep rate,
the slope of creep strain–time curve when slope approaches
to a constant in secondary creep regime, was in the range of
0.13– 0.53με/s.

3.1 Viscoelastic compliance function

The linear viscoelastic model parameters based on 3-term
Kelvin–Voigt model or Prony series were evaluated by
minimizing the error between measurements, Fig. 1b, and
Eq. 2 for each sample and are presented in Table 1. The
glassy or instantaneous compliance (Dg) was in the range
of 9.40 × 10−4–34.36 × 10−4 MPa−1 and was found to
decrease with increasing BV/TV (φ) with a power law
relationship, Dg = 6.6 × 10−4(φ)−1.043 (r2 = 0.72,

p < 0.001) as shown in Fig. 2. This relationship is simi-
lar to the previously reported modulus–density relationships
in the literature for trabecular bone (Currey 1986; Keller
1994; Morgan et al. 2003). Similarly, the relationships of
Tb.Th, Tb.N and Tb.Sp with Dg were found to be Dg =
6.15 × 10−6(Tb.Th)−3.568 (r2 = 0.57, p < 0.001), Dg =
4.27 × 10−3(Tb.N)−1.358 (r2 = 0.69, p < 0.001) and
Dg = 8.14 × 10−3(Tb.Sp)1.854 (r2 = 0.60, p < 0.001),
respectively. The BV/TV, among all the evaluated micro-
indices, was found to be a better predictor of Dg with r2

value of 0.72. We also examined the predictive power of
BV/TV by including these indices in a multi-variable power
law relationships and found no improvement. Consequently,
we considered the relationship between the time-dependent
behaviour and BV/TV, assuming that the latter was the lone
predictor of viscoelastic response. By minimizing the error
using nonlinear least squares, the relationship between creep
compliance function, D(t), and BV/TV was found to be
(r2 = 0.73, p < 0.001)

D(t) = Aφm + A

⎡
⎣ 3∑

j=1

D̃ j
(
1 − exp(−t/τ̃ j )

)
φmt

⎤
⎦ (12)

where D̃ j ( j = 1, 2, 3) represent the dimensionless transient
compliance coefficients expressed as fractions of instanta-
neous compliance, τ̃ j ( j = 1, 2, 3) are time coefficients and
A, m, and mt are constants. All the evaluated parameters
are reported in Table 2. Three samples with BV/TV of 0.26,
0.35 and 0.46, one sample from each of the femoral head
and one sample from a trochanter, were chosen to show the
representative behaviour of the samples. The predicted vis-
coelastic response is shown in Fig. 3 for these three samples.
The maximum errors between the measured and the pre-
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Fig. 2 Instantaneous compliance, Dg, plotted against BV/TV with
power law relationship, Dg = 6.6 × 10−4(BV/TV)−1.043(r2 =
0.72, p < 0.001)

dicted values fromEq. 12were−1.8,−11.6 and 28.8%with
BV/TV of 0.26, 0.35 and 0.46, respectively. The negative
error value indicates the under-prediction of the power law
model, whereas positive error indicates the over-prediction
of the model compared to the experimentally measured vis-
coelastic response. The overall coefficient of determination
(r2) for the pooled data comprising 13 samples was 0.73.

3.2 Viscoelastic modulus function

The creep compliance functions were converted to time-
dependent relaxation functions using numerical intercon-
version methods as discussed and the resulting relaxation
modulus functions are shown in Fig. 4. The long-term or
equilibrium modulus (Ee) for all samples was in the range
of 234.8–904.6MPa and was found to follow a power law
relation with BV/TV as shown in Fig. 5. Using an approach
similar to that used for compliance functions, a relationship
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Fig. 3 Time-dependent creep compliance function, D(t), with time
for three samples. Dotted lines with same colour show the predictions
from regression model, Eq. 12. The coefficient of determination r2 was
0.73 (p < 0.001).
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Fig. 4 Time-dependent relaxation function with time for all samples

Table 2 Power law relationship parameters: D̃ j and τ̃ j ( j = 1, 2, 3) are dimensionless transient compliance and retardation time coefficients in
sec, respectively

Function Equation Parameters

Creep compliance function D(t) Equation 12 A = 6.6 × 10−4 m = −1.033 mt = −1.058

D̃1 = 0.026 D̃2 = 0.071 D̃3 = 0.093

τ̃1 = 14.237 τ̃2 = 1.255 τ̃3 = 250.0

Relaxation modulus function E(t) Equation 13 B = 2043.0 p = 1.414 pt = 1.014

Ẽ1 = 0.028 Ẽ2 = 0.049 Ẽ3 = 0.039

ρ̃1 = 8.828 ρ̃2 = 0.929 ρ̃3 = 133.23

Ẽi and ρ̃i (i = 1, 2, 3) are dimensionless transient relaxation moduli and relaxation time constants in sec, respectively. A and B are constants in
1/MPa and MPa, respectively. m, mt , p and pt are dimensionless power law coefficients
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Fig. 5 Equilibrium relaxation modulus, Ee, plotted against BV/TV
with power law relationship, Ee = 2043(BV/TV)1.414 (r2 = 0.68,
p < 0.001)
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Fig. 6 Time-dependent relaxation function, E(t), with time for three
samples. Dotted lines with same colour show the predictions from
regression model from Eq. 13. The coefficient of determination r2 was
0.68 (p < 0.001).

between time-dependent relaxation modulus function, E(t),
and BV/TV, φ, over time was found (r2 = 0.68, p < 0.001).

E(t) = Bφ p + B

[
3∑

i=1

Ẽi exp(−t/ρ̃i )φ
pt

]
(13)

where Ẽi represents the dimensionless transient moduli and
are expressed as fractions of equilibrium modulus, ρ̃i (i =
1, 2, 3) are time coefficients, and B, p and pt are constants.
All evaluated parameters are reported in Table 2, and the
resulting predicted viscoelastic response is shown in Fig. 6
for samples with BV/TV of 0.26, 0.35 and 0.46. For these
three samples, the maximum errors between the measured
and the predicted values from Eq. 13 were 3.1, −20.3, and
8.4% with BV/TV of 0.26, 0.35, and 0.46, respectively. The

coefficient of determination (r2) for the pooled data compris-
ing 13 samples was 0.68. The above can also be represented
using a rheological model as shown in Fig. 7.

3.3 Loss tangent

The creep compliance of each sample was converted to com-
plex storage modulus, loss modulus and loss tangent at a
driving frequency of 1 Hz using Eqs. 9, 10 and 11, respec-
tively. The loss tangent was found to be between 0.019
and 0.039 for all samples, similar to the values reported
previously by Guedes et al. (2006). There was no statisti-
cally significant relationship (r2 = 0.17, p = 0.16) found
between the loss tangent and the BV/TV (Fig. 8).

4 Discussion

The trabecular bone has been investigated extensively for
its mechanical properties, but its time-dependent behaviour
has received relatively little attention (Deligianni et al. 1994;
Bowman et al. 1994; Yamamoto et al. 2006; Quaglini et al.
2009). The relationships between time-independent elastic
modulus and BV/TV (or density) have been reported exten-
sively over the last two decades (Currey 1986; Keller 1994),
but similar relationships of BV/TV with viscoelastic proper-
ties have not been previously investigated to the best of our
knowledge.

In this study, we conducted creep experiments on bovine
trabecular bone samples, and the measured behaviour was
quantified using linear viscoelastic theory based on 3-term
Prony model (generalized Kelvin–Voigt model). Our study
shows that bone volume fraction can be significantly related
to creep compliance and relaxation modulus functions with
the coefficients of determination of 0.73 and 0.68 (p <

0.001), respectively. It is important to note that similar r2

values have been previously reported by studies that relate
bone density to time-independent elastic modulus (Currey
1986; Morgan et al. 2003). In fact the instantaneous elastic
compliance-BVTV relationship from the creep experiments
conducted in this study is similar to the relations reported in
the literature (Zysset 2003) with similar r2 value.

The creep strain response was to found to reach the sec-
ondary creep regimewith the steady-state creep rate (constant
slope) in under 1 min for all samples and the chosen 200s
duration was, therefore, sufficient for the determination of
linear viscoelastic properties. Bowman et al. (1994) exper-
imentally observed the creep behaviour of trabecular bone
until failure at different applied normalized stress levels
(0.5–1% elastic strains) and concluded that the creep behav-
iour of trabecular bone is nonlinearly dependent on applied
stress level. Since our tests were performed at relatively low
stresses (maximum creep strain was under 0.26%, Fig. 1a),
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Fig. 7 Kelvin–Voigt
rheological model and the
relationships of its associated
parameters with BV/TV. Ee, E1,
E2 and E3 represent elastic
moduli in MPa. η1, η2 and η3
represent viscosity coefficients
in MPa.s.
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Fig. 8 Loss tangent at driving frequency of 1Hz. There was no sig-
nificant relationship found between the loss tangent and the BV/TV,
tan δ = 0.02617(BV/TV) + 0.0234 (r2 = 0.17, p = 0.16).

and we believe that the assumption of linear viscoelasticity is
valid.

The popular FE-based simulations mostly consider the
trabecular bone as elastic material (Pankaj 2013), but to pre-
dict the stability of joint replacement and fracture fixation
implants, it is necessary to consider viscoelastic properties
for trabecular bone in FE simulations. Most commercial
FE packages have viscoelastic modelling capabilities. With
existing imaging capabilities, subject-specific BV/TV values
can be estimated permitting the application of viscoelas-
tic properties based on the relationships developed in this
study in finite element models if time-dependent behaviour
of trabecular bone is of concern. Trabecular bone provides
anchorage to orthopaedic implants, whose stability depends
not only on bone quality but also on its relaxation or creep
behaviour (Norman et al. 2006). It has been proposed that the
age related nontraumatic fractures in vertebra and height loss
are related to long term accumulated creep strains (Pollintine
et al. 2009; Luo et al. 2012). The major role of trabecular
bone is not only transferring the load but to dissipate energy
during daily activities thereby protecting the articular carti-
lage as well at the ends of long bones (Linde et al. 1989).
So the models developed in this study are likely to be used
in FE simulations aimed at enhancing the understanding of

the above and other clinical problems involving trabecular
bone. It is important to note that the relationships found here
were developed using specimens that may be much larger
than the typical element size employed in whole-bone FE
analyses. However, what we are proposing is similar to the
current practice of assigning time-independent elasticmoduli
in macro-mechanical FE models. The current practice is to
use elastic properties based on density-modulus relationships
that are almost always established using experiments or sim-
ulations on larger samples (Morgan et al. 2003). Even when
macro-mechanical properties are determined frommicro-FE
analyses (models developed from micro-CT scans), typical
volume sizes need to be around 5mmormore (Harrigan et al.
1988).

It is recognized that the individual constituents at different
hierarchical levels in the trabecular bone and its microstruc-
ture contribute to the overall viscoelastic behaviour at the
specimen level. The contribution of these constituents to the
viscoelastic behaviour is beyond the scope of this paper.
However, from our results, the microarchitectural indices
(Tb.Th, Tb.N, Tb.Sp and BV/TV) significantly relate to
mechanical behaviour of the trabecular bone, and it is evi-
dent that among all the micro-indices the BV/TV plays a
major role in predicting the viscoelastic behaviour. The lower
bound of the time range of the retardation spectrum τ1, in
Table 1, was in the order of 0.35s while τ2 and τ3 were in the
order of 5.6 and 101.4s, respectively. Since τ1 is quite small
even relatively fast strain rates (0.01 s−1, i.e., 0.2 s to reach
2000με in our tests) may allow some creep during the finite
ramp loading. Further tests at higher and lower strain rates
are necessary to verify this. The small values of τ1 indicate
that the trabecular bone experiences some part of its creep
deformation or stress relaxation in a relatively short time
period.

Our study also has a few limitations. Firstly, we have
performed creep tests on bovine samples as they were
readily available. Morgan et al. (2003) reported that the
time-independent modulus–density relationships depend on
anatomic site.Whether the viscoelastic-BV/TV relationships
depend on anatomic site and/or species is a topic of future
research. Secondly, as in many previous studies, our experi-
mentswere performed at room temperature. It is possible that
increase in temperature to 37 ◦C may have a small effect on
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the creep behaviour; currently the published data to confirm
or invalidate this is limited.

5 Conclusions

Wehave performeduniaxial creep experiments on cylindrical
bovine trabecular bone samples to quantify the viscoelastic
properties. These properties significantly relate to theBV/TV
with power law relationships (r2 = 0.73, p < 0.001) and
can be used readily in finite element simulations involving
trabecular bone.
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