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Abstract Owing to economic conditions, removable den-
tures remain popular despite the discomfort and reduced
chewing efficiency experienced by most denture wearers.
However, there is little evidence to confirm that the level
of mucosal load exceeds the pressure pain threshold. This
discrepancy stimulated us to review the current state of
knowledge on the biomechanics of mastication with com-
plete removable dentures. The loading beneath dentures was
analyzed in the context of denture foundation characteristics,
salivary lubrication, occlusal forces, and the biomechanics
of mastication. The analysis revealed that the interpretation
of data collected in vivo is hindered due to the simultane-
ous overlapping effects of many variables. In turn, problems
with determining the pressure beneath a denture and analyz-
ing frictional processes constitute principal limitations of in
vitro model studies. Predefined conditions of finite element
method simulations should include the effects of oblique
mastication forces, simultaneous detachment and sliding of
the denture on its foundation, and the stabilizing role of bal-
ancing contacts. This review establishes that previous inves-
tigations may have failed because of their unsubstantiated
assumption that, in a well-working balanced occlusion, force
is only exerted perpendicular to the occlusal plane, allowing
the denture to sit firmly on its foundation. Recent improve-
ments in the simulation of realistic biomechanical denture
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behavior raise the possibility of assessing the effects of den-
ture design on the pressures and slides beneath the denture.
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1 Introduction

Edentulism affects 30-70% of older people, especially
those less prosperous (Miiller et al. 2007). Acrylic dentures,
also referred to as mucous-borne, soft-tissue-supported, or
removable dentures, in which the mucosal membrane forms
the prosthetic foundation, are the most commonly used treat-
ment for restoring the dentition.

Unfortunately, the use of removable complete dentures
is associated with a high failure rate. Problems with com-
minution of foods (inefficiency of chewing) and instability
of a denture on its foundation (poor retention and stabiliza-
tion) associated with pain sensations are the most frequently
reported causes of treatment failure or denture discomfort
(Garrett et al. 1996; Kawano et al. 1996). Studies of the
causes of denture discomfort have been undertaken with the
aim of improving treatment outcomes. However, the correla-
tion between the clinical assessment of dentures and patients’
judgment ranges from no correlation (Wolff et al. 2003),
to weak correlation (Carlsson et al. 1967), to statistically
“fair” correlation (Fenlon et al. 2002) to significant correla-
tion (Fenlon et al. 1999a). The results of in vivo studies are
difficult to interpret because their assessment of discomfort is
based on multiple denture functions summarized by a single
score (Carlsson et al. 1967). Even when the different func-
tions are defined and scored separately, the scoring is subject
to the simultaneous effects of the many variables in the oral
cavity (Fenlon et al. 1999a). Assessment of a denture based
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on the patient’s perceived comfort could merge biomechan-
ical and completely non-mechanical variables such as per-
ceived individual aesthetics and overall satisfaction (Stober
et al. 2012; Matsuda et al. 2014).

Objective evaluation methods of masticatory function in
denture wearers have been developed by measuring masti-
catory performance and efficiency (Garrett et al. 1996; Tok-
makci et al. 2013; Yamaga et al. 2013), with electromyo-
graphic observation of muscle activity (Garrett et al. 1996;
Tokmakci et al. 2013) and masticatory forces and frequency
(Lundgren and Laurell 1984; Garrett et al. 1996). In practice,
chewing with a denture is evaluated by the wearer to a lesser
extent by the efficiency of food comminution, and more as
a matter of perceived comfort (Garrett et al. 1996), which
is strongly related both to the level of pain in the soft tissue
supporting the denture and to salivary lubrication (Wolff et
al. 2003; Matsuda et al. 2009). It is noteworthy that more than
80 % of denture wearers suffer from pain resulting from over-
loading of the soft tissues beneath a denture (Szentpetery et
al. 2005). Many biomechanical problems, such as the use of
ill-fitting or poorly maintained dentures (Okuma et al. 2004;
Fenlon et al. 1999b), can interfere with the biomechanics
of dentures under masticatory loads. Denture discomfort has
been linked to parafunctional activity; however, it remains
only an assumption due to the lack in the study (Kumar 2014)
of any reference to the known pain pressure thresholds of
the soft tissue that supports dentures (Ogimoto et al. 2002;
Tanaka et al. 2004; Ogawa et al. 2004). During functions of
speech, facial expressions, swallowing and resting, a den-
ture could cause discomfort simply as a foreign body, even
without tissue overloading. Studies using statistical analysis
to investigate the influence of clinical variables on patients’
satisfaction (Yamaga et al. 2013) are not the right tool for dis-
covering the mechanisms of load transfer and pain creation.

Some studies related to denture wearing postulate the sep-
aration of different aspects of denture biomechanics associ-
ated with loads involved in normal wear, speech, swallowing,
or mastication (Saber-Sheikh et al. 1999). In clinical studies,
basic variables such as occlusal forces, denture displacement,
and foundation conditions are barely acknowledged if at all
(Garrettetal. 1996; Miyashitaetal. 1998; Yamagaetal. 2013;
Polyzois et al. 2014; Kumar 2014) making it impossible to
discover more than the known principle that denture move-
ment during function is undesirable. Even if the variables
could be measured in vivo, the efficiency of mastication is
influenced by individual neuromuscular control associated
with oral stereognosis (Garrett et al. 1996), which hinder
the purely biomechanical phenomenon of mastication load
transfer.

Consequently, attempts have been made to examine the
functional characteristics of dentures with the aid of physi-
cal models and computer analysis with finite element meth-
ods (FEM). The outcome of such analyses is determined
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by predefined conditions of the model and the assessment
criteria for the biofunctionality of a denture working on its
foundation.

The aim of this paper was to review current evidence
regarding occlusal load transfer and pain creation with com-
plete removable soft-tissue-supported dentures, and to estab-
lish simulation conditions and physical criteria for the objec-
tive assessment of denture comfort during mastication. The
hypothesis tested in the review was that pain mechanism
investigations are unsuccessful as a result of the unsubstan-
tiated assumption that under well-working balanced occlu-
sion, force is only exerted perpendicular to the occlusal plane,
allowing the denture to sit firmly on its foundation.

2 Denture foundation
2.1 Criteria of pain and mucous membrane injuries

The mechanical characteristics of the foundation can be
described as the cushioning properties (resilience) that endow
an ability to bear sustained or cyclic compression. Low
resilience is widely postulated as the main determinant of
failure in treatment with removable dentures (Kimoto et al.
2007). Most treatment failures are associated with lower den-
tures whose stabilization conditions are markedly poorer than
those of upper dentures (Ozcan et al. 2005; Wolff et al. 2003).

The levels of continuous pressure that can be harmful
in terms of mucosal ischemia and development of pressure
ulcers vary across the literature. According to some authors,
this value is 275 kPa (Kydd et al. 1971). However, another
study (Akazawa and Sakurai 2002) showed that pressure
ulcers can develop even at pressures of 50-150 kPa; such
pressures were associated with a significant (up to 15%)
decrease in blood perfusion acting for at least 20 seconds.
Another researcher (Maruo et al. 2010) considered pressures
of 67.5-90.8 kPa to be harmful to mucosal tissues. One study
(Maruo et al. 2010) revealed that exposure of soft tissues to
pressures of a magnitude detrimental to blood flow can induce
the atrophy of alveolar processes. The perfusion of tissues
turned out to be significantly better in the case of cyclic loads
(Akazawa and Sakurai 2002; Okada et al. 2010). Mechanical
stimulation of the palatal mucosa with a pressure of approx-
imately 50 kPa repeated over a period of 12 min (960 cycles)
may induce an increase in the blood flow (Ono 1990; Okada
et al. 2010). However, this compression magnitude (Okada
et al. 2010) does not fit with the expected mastication pres-
sures. Denture wearers often masticate despite their pain.
Therefore, higher pressures, corresponding to the pressure
pain threshold (PPT), should be defined as harmful in the
case of tissues exposed to cyclic loads. However, the val-
ues of cyclic pressures that are traumatic for the masticatory
mucosa are not known.
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The PPT of the mucosal membrane is the most impor-
tant property of the denture foundation (Ogimoto et al.
2002; Tanaka et al. 2004; Ogawa et al. 2004). Similar val-
ues relating to painful pressure for the masticatory mucosa
have been documented by several researchers: 370-1,800
kPa (Abe et al. 1998), 399-1,873 kPa (Ogawa et al. 2004)
270-1,720 kPa (Isobe et al. 2013), and 686-1,372 kPa
(Miyashita 1969). Recordings of the perceived intensity of
pain on a 0-50-100 scale were undertaken by Naganawa
(2013), where 50 is defined as “just barely painful” and 100
is defined as “the most pain imaginable.” The range of 50-70
is equated to a pressure of approximately 1,400-2,700 kPa
applied for 2 s. The pressure values listed in this paragraph
were estimated using the indenter tip and force reported in
each study in order to compare the studies.

Mechanical interference to the denture can lead to mucosal
injuries; this type of complication is quite frequent, as it can
affect up to 15-20% of denture wearers (Jainkittivong et
al. 2002). It is noteworthy, however, that the presence of
pain and the prevalence of mucosal injuries did not turn
out to be significantly associated (Ozcan et al. 2005). The
PPT can decrease by 40 % as a result of long-term denture
wearing (Tanaka et al. 2004), although this is only related to
the palatal mucosa; alveolar soft tissues have similar PPTs
for edentulous and dentate subjects. The average value of
PPT in the edentate state in the area of the premolar teeth,
which is exposed to the greatest occlusal forces, amounts
to approximately 630 kPa (Ogawa et al. 2004). The 2-fold
higher PPT for the edentulous palatal mucosa over the alveo-
lus (3- to 4.65-fold higher in dentate subjects) is explained by
the lack of innervation in the palatal mucosa rather than the
decreased tissue thickness in the alveolar mucosa (Tanaka
et al. 2004; Ogimoto et al. 2002). Higher bite forces corre-
late with a lower PPT, particularly in the posterior region,
and this effect is stronger in the mandible than in the maxilla
(Tanaka et al. 2004).

2.2 Mucous membrane material models

Elasticity and creep play crucial roles in the process of soft
tissue deformation. Viscoelastic behavior is associated with
fluid interchange with surrounding unstressed mucoperios-
teum and the displacement of large polymer molecules of
the soft connective tissues (Scapino 1967). Hydrated porcine
oral mucosa samples (10 mm in diameter and 1.5 mm thick)
that were subjected to Smin of 0.32 kPa static load experi-
enced a 3-fold increase in strain to 3.2 %, and in the moment
of unloading exhibited 1% elastic instantaneous recovery
(Lacoste-Ferré et al. 2011). Despite the greater precision
achieved when measuring non-living samples, the results are
influenced by a lack of body fluid perfusion.

These phenomena can be simulated by the movement of a
damper embedded in a viscous fluid and connected in parallel

to a spring (Voigt model). In living tissue, the “weaker” the
spring, the greater the deformation associated with the intra-
tissue viscous flow and the worse the ability to shape recovery
after unloading. However, a larger number of dampers with
a given viscosity of fluid (M), springs with a given elastic-
ity (E) (as in the Voigt and Maxwell models), and various
different arrangements (i.e., in series and in parallel) need
to be introduced to the model in order to simulate the true
behavior of soft tissues; a four-element model can be used.
The modulus of elasticity and viscous coefficient in a parallel
model (Maxwell) measured 1.1 MPa and 250 MPa*s, and in
serial model (Voigt), they measured 1.2 MPa and 18 MPa*s
(Tanaka 1973). Somewhat different values have also been
found (Hayakawa et al. 1994): 0.36-0.59 MPa and 667-
689 MPa*s for elements of a parallel model; and 1.41 MPa
and 56-63 MPa*s for elements of a serial model.

However, the deformations and strains under indenta-
tion tests are quite different from those beneath a denture
saddle owing to the constraints of deformation of nearly
incompressible soft tissue. The mechanical characteristics of
mucosa become markedly stiffer when measured under sur-
faces with an increased interfacial coverage (Wills and Man-
derson 1977). A higher gradient of deformation is evident
around small-diameter indenters that fall easily and deeply
into the tissue (Isobe et al. 2013; Wakabayashi and Suzuki
2013; Yoshida et al. 1999). For instance, a cylindrical rod
1.3 mm in diameter indents 0.4 mm into the tissue under a
relatively low pressure of 37.6 kPa (Wakabayashi and Suzuki
2013). However, beneath a denture saddle, despite the higher
pressure applied, the compressed zone is markedly larger
and the uncompressed tissues are more distant, even when
the denture is tilted during mastication (Zmudzki et al. 2012).
These implications are emphasized in the section about load-
ing of the denture foundation during mastication.

Indentation experiments, which impose a high gradient
of deformation over periods longer than the chewing cycle,
create conditions that force the soft tissue to undergo more
viscous flow than would occur during mastication. Although
the conditions of indentation experiments favor fluid inter-
change, the viscous flow increased the instantaneous dis-
placement from 0.36 mm at 0.1 s to 0.40 mm after 10 s
loading, an increase of only 10 % (Wakabayashi and Suzuki
2013). Another study (Yoshida et al. 1999) found that strain
recovery before a subsequent masticatory load (i.e., when
mucosal support is important) worsens with age. The authors
reported the displacement level and duration, and the inden-
ter diameter (3.1 mm); however, the pressure level cannot be
calculated because the force values were not disclosed. The
highest indenter displacements (0.3 mm) were recovered to
the level of 80 % at approximately 0.81 s and 0.44 s in the
two oldest subjects. The average time for mucosa displaced
0.3 mm to recover to 80 % in subjects beyond 50 years of age
was in the range of 0.5-0.6 s (on the basis of graphs, because
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the authors did not tabularize values). Although the statistics
indicate that mucosa worsens with age, it is hard to agree with
generalization of the results in relation to insufficient mucosal
recovery in older persons. The author (Yoshida et al. 1999)
assumed a relatively short chewing cycle period of 0.5 s as
the criterion, and 0.3 mm of displacement as the initial level,
regardless of the mucosa resilience, which was not measured.
The resilience measured with the shear modulus in the work
of Wakabayashi and Suzuki (2013) was about one-third less
(Go = 0.07 MPa) for thinner soft tissue than for the thickest
soft tissue (Gg = 0.095 MPa). This elastic variability was
assumed to explain the visible tendency for higher viscous
behavior under 10 s continuous loading for thinner soft tissue
compared with thicker soft tissue, although the possibility
of a high strain gradient was not taken into consideration.
Because it is impossible to distinguish which variable (elas-
ticity, thickness, strain gradient) had a greater influence on
the viscous flow, it is necessary to investigate the significance
of the strain gradient, especially given that the recovery rate
after 20 s unloading was similar for all the subjects. Addi-
tionally, the PPT increases almost linearly with increases in
the loading rate (Ogimoto et al. 2002). To minimize intrain-
dividual variability, a constant pressure increase of 156 kPa
per second was assumed by Ogimoto (Ogimoto et al. 2002;
Ogawaetal. 2004). However, because PPT is achieved during
mastication in practice, higher pressures are generated in a
shorter time than this assumption. In fact, studies by Yoshida
et al. (1999) and Wakabayashi and Suzuki (2013) agree that
the mucosa recovers by about 80-90 % during each chewing
cycle.

Elasticity and creep also are characterized in dynamic
compression experiments under a chewing frequency of 1 Hz
to determine the complex modulus E* (G* under shear),
consisting of the storage modulus E’, which is equivalent to
Young’s modulus, and the loss modulus E”, which is associ-
ated with the dissipative (viscous) component. The damping
factor (the amount of energy dissipated as heat through a
cycle of deformation) is also denoted as loss tangent (tan
8),i.e., E”/E’ (Saber-Sheikh et al. 1999; Lacoste-Ferré et al.
2011). Dried samples under compression had a higher stor-
age modulus E’ of 3—4 MPa, while the elasticity decreased
with hydration to 0.1-0.2 MPa (Lacoste-Ferré et al. 2011).
Some stiffening of the hydrated oral mucosa was observed
during the second series of 20- min cycling compression,
and a residual strain of 0.25 % was measured during the sta-
tic creep experiment. The deformation of samples did not
directly correspond to the creep of living tissue because of
the process of cutting and the lack of body fluid perfusion.
Dynamic cycling tests were made under a relatively small
strain of 0.01-0.2 %; thus, the measured modulus is lower
with reference to the mastication loads due to the hyperelas-
tic behavior and the surface “softness” of the rough (i.e., with
papillae) and moistened biological tissue. The low value of
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the elastic modulus noted by Lacoste-Ferré et al. 2011 cor-
responds with the shear modulus reported by Wakabayashi
and Suzuki (2013), because in both cases the initial rigidity is
acquired. In an analysis of denture soft liners (Lacoste-Ferré
et al. 2011), the authors assumed a higher value of 2.72 MPa
for the storage modulus (E) of the masticatory mucosa on the
basis of a previous in vivo investigation (Inoue et al. 1985),
although the value of load during masticatory mucosa com-
pression in the source test was not clearly stated.

However, usually one strives for a simplification of the
mathematical processes taking place in tissues during FEM
simulation of more complex three-dimensional systems, such
as denture biomechanics. In a situation with a convergence
problem caused by simultaneous large body motion and non-
linear deformation, it is necessary to decide which issue is
less important in in vivo biomechanical behavior. Although
mucosa exhibits nonlinear and time-dependent characteris-
tics, hyperelastic strain energy density functions in a sim-
plified form based on a one-dimensional test (Fung 1993)
can be applicable, but linear isotropic simplification is much
more robust. When the displacements are mainly a result
of denture movement and associated contact phenomena,
although the mucosa experiences deformation beyond the
theoretical applicability of the linear range, an approxima-
tion of the material nonlinearities avoids the difficulties with
finite element analysis because the excessively distorted ele-
ments occur at the “initial softness” of the hyperelastic curve.

The modulus of elasticity of mucosa measured with ultra-
sound is within the range of 0.91-5.93 MPa (Isobe et al.
2013), and there is broad agreement with this among mechan-
ical measurements taken 0.37-5.80 MPa (Tanaka 1973),
0.41-2.67 MPa (Nakashima 1975), 0.66—4.36 MPa (Inoue et
al. 1985), and 2.75-5.03 MPa (J6zefowicz 1970). The modu-
lus of elasticity cannot be estimated from the thickness of the
mucosa due to a lack of correlation between them (Isobe et
al. 2013; Wakabayashi and Suzuki 2013). Because lineariza-
tion of the hyperelastic curve can generate many different
elastic modulus values, the transversal line must lead appro-
priately to the stress level accompanying mastication and the
curve must be taken under the exact load rate. In these con-
ditions, tissue which has a greater ability to undergo elastic
deformation and rapid recovery allows the pressure to be
distributed more evenly. There are superior cushioning prop-
erties in the larger area under the stress—strain curve (and
transversal line); this can be ascertained by palpation and
evaluated as the more resilient mucosa. However, it must be
kept in mind that linearization of the hyperelastic curve over-
estimates stresses in low-loaded tissue and underestimates
stresses in high-loaded tissue. In addition to the studies on
the characteristics of denture-supporting tissue, there is evi-
dence (Wolff et al. 2003) that shows a lack of significant
correlation between the resilience of mucosa and denture
satisfaction when salivation is impaired.
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3 Salivary lubrication
3.1 Salivary properties in biofilm formation

The role of salivary properties is crucial as a potential deter-
minant of the functional performance of dentures. Impaired
salivation causes chewing and speaking discomfort, as well
as pain in the denture bearing tissues in complete denture
wearers (Wolff et al. 2003). Previous studies centered on the
amount of secreted saliva, the thickness of the salivary layer,
and its density and viscosity. The thickness of the salivary
layer that covers oral tissues can range from a few to more
than 100 pwm (Wolff and Kleinberg 1998). While the amount
of secreted saliva decreases with the duration of chewing, it
is not affected by chewing frequency (Dong et al. 1995). Bite
force correlates with salivary flow (Yeh et al. 2000). Stimu-
lated and unstimulated average salivary flow rate increased
from 0.45 and 0.06 mL/min, respectively, before replacement
dentures to 0.75 and 0.10 mL/min, after fitting of new com-
plete replacement dentures (Matsuda et al. 2009). Matsuda et
al. (2009) stated that salivary flow rate after denture replace-
ment increases with improvement in the maximal occlusal
force.

Saliva changes the surface of the mucosa from hydropho-
bic to hydrophilic as a result of the selective adsorption of
salivary molecules. The value of 50.5 + 2.4° for the water
contact angle of a saliva-lubricated tongue suggests that its
hydrophilicity is greater than that of a non-lubricated tongue,
for which the water contact angle is 77.3 £ 4.1° (Ranc et al.
2006). The effect of a salivary coating on surface free energy
and wettability was investigated by Sipahi et al. (2001). The
authors concluded that more wettable materials, such as light-
cured and heat-cured acrylic resins, are a good choice for
clinical use, because more wettable materials can improve
denture retention (Sipahi et al. 2001). It should be noted that
greater hydrophilicity can promote yeast adhesion to dental
materials (Kang et al. 2013). Although this correlation is not
always clear (Chladek et al. 2014), a biofilm formation study
is needed that not only takes into consideration the adher-
ence of microorganisms on different denture surfaces, but
also emphasizes how the viscosity and lubrication properties
(Ranc et al. 2006) influence denture sliding (Zmudzki et al.
2012b) rather than denture retention because of the weak cor-
relation of denture retention with chewing efficiency (Miiller
et al. 2002).

Saliva, like a many biological fluids, shows abnormality
of viscosity with shear rate, typical for non-Newtonian flu-
ids. The lubrication properties of saliva result from mucins,
statherin, and proline-rich proteins (Hahn Berg et al. 2004),
although statherin (Proctor et al. 2005) and mucins (van der
Reijden 1993) are more prominent. One study (Proctor et
al. 2005) emphasizes the amphiphatic nature of statherin
as a source of its lubrication properties. Another study

(van der Reijden 1993) showed that mucin separated from
saliva exhibits similar viscoelastic behavior to saliva; thus,
the authors conclude that mucin, because of its marked elas-
ticity and low viscosity, is important in the creation and main-
tenance of the coating on mucosa. Differences in the rheolog-
ical properties of saliva are mostly explained as a result of the
mixed internal structure of mucin and subsequently as a dis-
similarity in the saliva concentration (van der Reijden 1993).

3.2 Sliding on surface covered by saliva

An engineering-style mechanical analysis of contact inter-
action is necessary to simplify the complex phenomenon of
resistance to motion provided by the saliva coating. The fric-
tion coefficient is also used as a measure of salivary lubri-
cation, but the values of this parameter are highly variable.
In one study, the dynamic friction coefficient determined at
a velocity of 0.5 mm/s and a normal load of 0.1 N amounted
to 0.16 (£0.03) for piglet tongues covered with human
saliva and 0.25 (£ 0.03) for non-lubricated piglet tongues
(Ranc et al. 2006). It is noteworthy that stimulated saliva
secreted during chewing shows inferior lubricating properties
(Prinz et al. 2007), resulting from its lower viscosity (greater
dilution), as compared with non-stimulated saliva. The coef-
ficient of friction decreased from 0.25 to 0.1 for unstimu-
lated saliva, and from 0.33 to 0.16 for stimulated saliva, at
speeds ranging from 0.7 to 9.8 mm/s (Prinz et al. 2007). The
decrease in the coefficient of friction for both types of saliva
was explained by probable hydrodynamic effects because in
the slower speed range (0.1-0.5 mm/s), the friction was con-
stant, suggesting a boundary lubrication regime. A decrease
in the friction coefficient, proportional to an increase in nor-
mal load from 0.34 to 2.20 N, is explained in terms of possible
superficial deformation of micro-irregularities in the tissue.
However, markedly higher values of the coefficient, up to
0.45, were reported by de Wijk and Prinz (2005). Important
evidence originates from Bongaerts et al. (2007) who, despite
studying saliva samples from only two persons, showed that
the friction coefficient is to a large extent determined by
the degree of salivary hydration (or dehydration). Whereas
the friction coefficient of fresh hydrated saliva amounted to
0.02-0.06, the analogous parameter of the dehydrated mater-
ial reached 2.8-3.0, indicating strong adhesion (Bongaerts et
al. 2007). Despite many investigations, there is uncertainty
related to the frictional characteristics of the tribo pair of
denture base/mucosa, because it is not known that in vitro
studies accurately represent realistic soft contact in terms of
compliance, surface roughness, and surface chemistry (Bon-
gaerts et al. 2007). Bongaerts et al. (2007) suggested that the
much higher friction of hydrated saliva reported earlier by
de Wijk and Prinz (2005) may be the result of higher surface
roughness, although it seems that the main reason should
relate to adhesion phenomena and surface compliance, as
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well as bulk deformation generating resistance dependent on
interface shape during motion. Thus, further extensive exper-
iments with motion resistance and denture slide are required
to assess denture materials and masticatory mucosa in regard
to interfacial—and also bulk—properties and salivary wet-
ting.

4 Biting force and the biomechanics of mastication
4.1 Food comminution with complete denture

Up to 36 % of variance in chewing efficiency with normal
dentition is explained by the maximum biting (occlusal) force
generated by molar teeth and only 9 % by the characteristics
of the occlusal surface (Lujan-Climent et al. 2008). The situa-
tion is completely different in the case of removable dentures,
as the ability of wearers to comminute foods is modulated by
a number of variables.

A masticatory cycle of removable dentures approximates
1.3 (£ 0.20) Hz (Veyrune et al. 2007). It is noteworthy that
the average period of occlusal pressure (from start to fin-
ish) is quoted as 0.110-0.169 s (Okuma et al. 2004), com-
pared with the commonly accepted time of 0.5 s for half the
chewing cycle. Therefore, the duration of occlusal pressure
is shorter than the chewing cycle, which leaves a longer time
for recovery from mucosal deformation than the relatively
short time of half a chewing cycle (see Sect. 2). Movements
of the mandible and occlusal forces reflect the activity of
the mandibular muscles. While the amplitude of muscular
impulses in removable denture wearers is twice as high as
in persons with normal dentition, the two groups do not dif-
fer significantly in terms of the impulse duration (Slagter
et al. 1993). Furthermore, neither the status of the dentition
nor the texture of food seem to exert a significant effect on
the rhythm of mandibular movements. Finally, the ampli-
tude of the muscular impulse is only weakly correlated with
the degree of food comminution. Consequently, functional
assessment of dentures should not be based on the activ-
ity of muscles, owing to a lack of evident correlation with
chewing efficiency (Hayakawa et al. 2000). Muscle activity
is greater after denture delivery and decreases during adap-
tation (Tokmakeci et al. 2013). Even if there is evidence for
using the analysis of muscular activity (Tokmakci et al. 2013)
and occlusion period (Okuma et al. 2004) in evaluating adap-
tation to a denture, other essential biomechanical variables
are not taken into consideration in this method.

Settlement of a denture on its foundation can be analyzed
as a resistance to vertical detachment (defined as retention)
and horizontal load (stabilization). Retention is defined as the
force required for moving a denture from its foundation in
the direction opposite to insertion. The average retention and
stabilization forces for lower dentures amount to 0.8-3.0 and
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2.8-7.2 N, respectively (Burns et al. 1995). Higher levels of
retention (3.9—4.7 N) have been documented for upper den-
tures (Tallgren 1959). It is of note, however, that both reten-
tion and stabilization, albeit considered as the principal deter-
minants of functional comfort, are in fact weakly correlated
with chewing efficiency (Miiller et al. 2002). The lesser role
of retention and stabilization during chewing results from the
fact that the distribution of forces affecting the denture dur-
ing mastication is quite different, even if resistance against a
lateral rotating force by finger pressure on the molar section
is scored in the stability test.

4.2 Occlusal loads

Occlusal forces in the range of 65-110 N, generated at the
level of premolar and molar teeth, has been shown to be suffi-
cient for comminution of most foods (Ogata and Satoh 1995).
The incisor teeth of removable dentures are oriented in a way
that prevents their involvement in food comminution. Even
loads at the incisal region as low as 10 N cause elevation
of the denture flanges and loss of stability, although load-
bearing ability increases approximately 20 % when denture
adhesives are used (Polyzois et al. 2014). Kalra et al. (2012)
reports even greater increases in load-bearing ability (from
9.8 t0 29.3-42.9 N) in dentures rated as “poor” depending
on the type of adhesive used. Detailed information on the
distribution of occlusal forces on the masticatory surfaces
of teeth can be obtained with the aid of special occlusion
foils (Alkan et al. 2006) that allow pressure to be measured
as the degree of coloring in an elementary unit of a square
of 0.25 mm. Although the foil is thin in comparison with
other methods, and it seems to be an efficient and econom-
ical way to record pressure patterns, it is hard to agree that
its flexibility is sufficient to permit natural occlusion (Alkan
et al. 2006). In one experiment using this method (Lee et
al. 2008), the average maximum occlusal force amounted to
122 N (range 79-461 N). The occlusal forces determined
in another study (Tanaka et al. 2004) ranged from 28.2 to
166.5 N, with mean value of 97.1 N and a standard deviation
of 46.3 N. The maximum occlusal force increased from 84 to
165 N after replacement of old dentures and 2—3 adjustments
for 22 subjects who had been wearing dentures for more than
5 years (Matsuda et al. 2009).

4.3 Biomechanics of mastication

It should be noted, however, that unlike normal dentition,
denture chewing efficiency is only weakly correlated with
maximum occlusal force (Fontijn-Tekamp et al. 2000). The
maximum occlusal force at denture dislodgement is mea-
sured under stable conditions, in the so-called best biting
position (Yeh et al. 2000; Matsuda et al. 2009; Polyzois et al.
2014; Matsuda et al. 2014); hence, it is not a relevant mea-



Biomechanical factors related to occlusal load transfer

685

sure of clinical function (Koyano et al. 2012). The forces
affecting the denture during the measurements do not reflect
the stabilization associated with usual mastication and the
pain sensations beneath the denture. The method of maximal
occlusal force measurement has been adopted because under
unilateral loads, dentures dislodge excessively rapidly (Yeh
et al. 2000; Matsuda et al. 2009), in exactly the same way as
during mastication without balanced contacts.

Chewing efficiency is assessed by the degree of food parti-
cle comminution (Demers etal. 1996). In many studies, struc-
tural characteristics of dentures were analyzed on the basis
of changes in occlusal forces, muscle activity, masticatory
cycles, and mandibular displacement (Karlsson and Carls-
son 1990; Khamis and Zaki 1997). Although a certain set of
structural characteristics of a denture exerts some effect on
chewing efficiency under given foundation conditions, sig-
nificant correlations were documented solely in the case of
lingualized occlusion.

During chewing, a lower denture has to be supported by
the upper one by means of the so-called balancing contacts;
the lack of balancing contacts results in dislodgement. The
effect of balancing contacts is a prerequisite for chewing effi-
ciency (Kobayashi 1989). Food comminution results from
crushing particles over a relatively short distance, no greater
than 2—3 mm, with the involvement of lateral, but not antero-
posterior, pounding movements of the mandible. However,
most analyzed models are too simplified, as only the effect of
isolated vertical force is assumed (Kumar 2014; Takayama
etal. 2011; Kawano et al. 1993). This idealization may result
from limitations in the measurement methods, as usually only
the vertical component of force is measured, but the horizon-
tal component of force is also present as determined by cusp
shapes. The argument against simplification is that, as a result
of an occlusal contact on the balancing side, the masticatory
force is only shifted toward the interior of the arch and not
to the center (Ogata and Satoh 1995). Mastication forces are
not generated on teeth through direct contact, but through the
food; this is another explanation for the weak dependence of
mastication efficiency on the quality of the denture occlu-
sion (Koyano et al. 2012). The force direction is dependent
on the geometry and consistency of the food fragment and
can be more oblique than the 30°-35° found in the incli-
nation of artificial tooth cusps. Therefore, lateral deviation
(up to 45°) of mastication force from a vertical plane is pos-
tulated as the most appropriate, because in engineering the
most unfavorable loads should be taken into consideration
(Kenney and Richards 1998; ZmudzKki et al. 2012; Liu et al.
2013; Shim and Watts 2000; Akan et al. 2010), although the
investigations into the force angulations causing elevation of
the non-loaded flange are useful. According to the available
data, the mobility of dentures during chewing can be suc-
cessfully determined in situ, i.e., in the oral cavity. Balanc-
ing contacts were revealed to precede occlusal development

of occlusal pressures on the working side (Kobayashi 1989).
However, a relatively large displacement is observed during
the mastication phase of chewing despite optimal adjustment
of dentures to their foundations and functional balancing
(Miyashita et al. 1998; Rendell et al. 1995). In a mechan-
ical context, a “contact” is also a force. The use of the term
balancing “contact” reflects the predominance of the kine-
matic approach to a denture’s biostatics, which is usually
considered as an equivalent of its mobility. According to one
study (Chong 1983), the displacement at the working and bal-
ancing side can be as high as 1.4 and 1.6 mm, respectively.
The balancing side shows a marked tendency to detachment
and sliding on its foundation (Miyashita et al. 1998), and
importantly, displacement does not occur during opening, but
under load. Miyashita et al. (1998) documented a tendency
for a loss in chewing efficiency with hard foods (e.g., car-
rots) compared with softer foods (e.g., fish paste) as a result
of an increase in the anteroposterior mobility of a denture.
The large displacement of dentures explains the inconsisten-
cies and weak correlations between maximal occlusal force
(measured in a stable position) and masticatory efficiency.
Miyashita et al. (1998) shows that the denture’s balance is
achieved in a horizontally displaced position in relation to
the foundation, but there is no evidence that the balancing
flange sits on the foundation as the result of the balancing
contact. However, it cannot be ruled out during the last stage
of mastication without further in vivo investigations.

5 Loading of the denture foundation under mastication
forces

5.1 Experimental in vivo measurements and clinical facts

Soft tissue denture foundation loadings are commonly con-
sidered a cause of pressure ulcers. However, in practice, they
usually cause abrasions, rather than ulcers (Mackenzie and
Ettinger 1975; Martinez Diaz-Canel and Garcia-Pola Vallejo
2002). Mobility of the denture on its foundation is a potential
source of mucosal injury and discomfort, especially while
salivation is impaired (Rendell et al. 1995). The degree of
displacement is greater if the denture is not appropriately
adjusted to its foundation (Rendell et al. 1995). However, at
present, we lack experimental methods that could be used
for distinguishing between displacement resulting from the
deformation of a soft foundation and those resulting from the
detachment and sliding of the denture.

Some researchers have mistakenly taken denture dis-
placement to relate only to the deformation of the denture-
supporting tissue (Compagnoni et al. 2003). The extent of
mucosal deformation resulting from pressure exerted by a
denture saddle amounts to 0.1-0.3 mm (Kramer 2004), which
corresponds to a 5-20 % strain, depending on mucosal stiff-
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ness (Wakabayashi and Suzuki 2013). Displacements that are
greater than or similar to the mucosal thickness result from
the combined effect of displacement of the denture on its
foundation and mucosal deformation. The extent of mucosal
deformation caused by a denture saddle should not exceed
the thickness of the mucosal membrane. Severe deforma-
tion, involving the entire thickness of the mucosal membrane,
may result from loading a small area that is particularly sus-
ceptible to shape (distortional) deformation, e.g., during the
determination of resilience with the aid of an indenter (Wak-
abayashi and Suzuki 2013). It seems that Compagnoni et al.
(2003) assumed that denture displacement could be measured
as a deformation of the mucosa because of the significant
level of deformation observed in the mucosa during inden-
tation experiments. Kinesiographic methods of determining
denture displacement on its foundation are not suitable for
examining mucosal deformation, because the recorded val-
ues (0.1-0.3 mm) fit within the range of the measurement
bias.

Dentures that promote equal distribution of the soft tissue
foundation loading and mastication comfort (Garrett et al.
1996) are more acceptable, even if their use is not reflected by
a measurable improvement in chewing efficiency. Pain and
discomfort experienced beneath a denture during chewing
stimulated research on the phenomenon of masticatory load
transfer. The experimental technique enabling the assess-
ment of mucosal load beneath a denture is based on the
determination of pressure with the aid of various sensors
(Ohguri et al. 1999; Taguchi et al. 2001). However, only local
measurements can be taken this way, and thus, the global
distribution of pressure needs to be averaged. Sensors can be
constructed that enable measurements to be taken solely on
the slopes of the alveolar processes, rather than on their crests.
Recently, attempts were undertaken to determine the distrib-
ution of pressure on the entire surface of the slopes with the
aid of special sensor sheets (Kubo et al. 2009). However, only
the pressure under a short segment of a partial denture saddle
supported by evenly shaped convex alveolar processes has
been determined to date (Kubo et al. 2009). Unfortunately,
the excessive stiffness of the sensor sheet means that it can-
not be optimally adjusted to longer segments of the processes
forming the alveolar arch, or where the ridges are atrophied
or irregular in shape. Furthermore, the presence of the sensor
sheet at the denture—foundation interface disturbs the status
of soft tissue loading, especially in the case of sliding, which
is the principal risk factor for mucosal abrasion. Finally, the
above-mentioned experimental techniques cannot be used for
determining deep tissue loading or abrasive effects.

5.2 Modelling study

Finite element analysis is an established tool for the assess-
ment of the global mucosal membrane load. The equivalent
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stresses on a mucosal surface, determined according to the
Huber-Mises (H-M) hypothesis, constitute the only inter-
pretation criterion of the numeric analyses, providing infor-
mation on the degree of distortional deformation of tissues
(Kawano et al. 1990, 1993; Sato et al. 2000; Takayama et
al. 2001; Kawasaki et al. 2001; Ates et al. 2006). Surpris-
ingly, however, the pressures beneath a denture are usually
not analyzed using the finite element method. According to
the achievements in ulcer prevention techniques (Oomens
et al. 2003; Ragan et al. 2002), the above-mentioned deter-
minants of loading, i.e., shear and pressure, should not be
analyzed as separate criteria, as this can lead to misinter-
pretation of findings. Separate areas of elevated pressure and
shear were identified in the mucosa beneath a denture as well
(Kasperski et al. 2010), but the applicability of this finding
is limited due to the simplified model conditions that assume
an ideal denture foundation.

Few authors have considered the abrasive processes
beneath a denture as a criterion for the traumatic effect on
the mucosal foundation. Takayama et al. (201 1) simulated the
sliding of a denture loaded with vertical forces, but they even-
tually did not report on the contact stresses beneath the den-
ture. They reported the denture movement as neither actual
nor functional, although equivalent to the clinical examina-
tion of the stability of dentures under bilateral and unilat-
eral pressure over the occlusal surface (Gerber 1974). Small
denture movements resulted from the displaceability of the
mucosa, and small slides were associated with clenching or
swallowing; hence, the lack of realistic slides accompany-
ing mastication provides no basis for evaluating (Takayama
et al. 2011) the selection and arrangement of artificial teeth
as desirable and with good adaptation to the ridge. Another
study (Kawasaki et al. 2001), based on a numeric simulation
of a denture slide on a mucosal surface, showed that the risk
of abrasion increases when there is atrophy of the edentu-
lous alveolar ridge in the anterior mandibular segment; as a
result, the denture slides down anteriorly on its slope foun-
dation. However, the high incidence of abrasions beneath
dentures suggests that these injuries are not necessarily asso-
ciated with the characteristic slope shape of the foundation.
According to clinicians, they rather result from the mobil-
ity of denture and the degree of stabilization achieved by
balancing contacts. Mathematical modelling of the effect of
balancing contacts on the stabilization of dentures was stud-
ied by Lii et al. (2010); unfortunately, it was conducted with
assumed complete adherence of denture to the foundation.

The determined in vivo values of pressure beneath com-
plete dentures are presented in Fig. 1, and the values of
load determined in vitro are shown in Fig. 2 (Taguchi et
al. 2001; Takayama et al. 2001; Kawasaki et al. 2001; Ates
et al. 20006; Frechette 1955a,b; Perez 1967; Stafford 1978;
Roedema 1976, 1979; Ohashi et al. 1966; Watson and Abdul
Wahab 1984; Watson and Huggett 1987; Kawano et al. 1996;
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Fig. 1 Pressures on mucosal membrane beneath lower and upper den-
ture determined in vivo (Frechette 1955a, b; Perez 1967; Stafford 1978;
Roedema 1976, 1979; Ohashi et al. 1966; Watson and Abdul Wahab
1984; Watson and Huggett 1987; Kawano et al. 1996)
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Fig. 2 Results of physical and FEM investigations of bearing the
occlusal force (in Newtons) in the criteria of stresses beneath denture:
pressure (compression stress), shear stress in deep at bone (Tresca—
Guest stress), superficial stress (Huber—Mises stress) (Taguchi et al.
2001; Takayama et al. 2001; Kawasaki et al. 2001; Ates et al. 2006;
Inoue et al. 1996; Ohguri et al. 1999; Kasperski et al. 2010)

Inoue et al. 1996; Ohguri et al. 1999; Kasperski et al. 2010).
Owing to advances in the methodology of FEM modelling
and the improved simulation of mechanical characteristics of
the mucosal membrane (Kawano et al. 1990, 1993), it was
documented that, for revealing the mechanism of pain, the
implementation of the rheological model of the mucosa is
not conclusive. Its influence on the stress level was less than
10 %, while shifting of the vertical occlusal force from the
palatal to buccal side caused an increase in stress of more
than 40 % (percentages are used here because the increase
in the maximal stress at the alveolar crest from 300 kPa at
0.1 s to 320 kPa at 3 s after loading is calculated using plane
stress analysis and without data about the model thickness).
Notably, the values for pressure that were registered beneath
dentures are markedly lower than the PPT (Tanaka et al. 2004;
Ogawa et al. 2004; Miyashita 1969), which is inconsistent
with the pain and discomfort reported by the vast majority
of denture wearers. This discrepancy seems to be associ-

ated with inappropriate simulation of the loading and sup-
porting conditions of a denture. Namely, the measurements
are taken under overly stable conditions, with the working
denture being evenly supported by its foundation (Frechette
1955a). Under such conditions, one can hardly simulate the
typical elevation of a denture flange on the balancing side; in
contrast, the pressures recorded under the balancing flange,
being absent in vivo, are higher than on the working side.

5.3 FEA key futures

Zmudzki et al. (2012) used FEM to simulate the results of
mastication with a denture placed on an unfavorable foun-
dation, i.e., tilting of a denture under an oblique mastica-
tion force and a decreased area of support, with subsequent
stabilization due to the balancing contacts (Miyashita et al.
1998; Rendell et al. 1995; Chong 1983). The compression
beneath the denture is transferred in the form of a large slide,
which is in accordance with common clinical observations
of frictional mucous membrane sores and/or the impact of
reduced salivation on denture discomfort and chewing defi-
ciency (Wolff et al. 2003). Mastication load transfer was pre-
viously only recognized for linear elastic mucosa (Zmudzki
et al. 2012), and further study on the influence of viscous
flow is necessary, although the prevalent impact of denture
destabilization has been revealed (an order of magnitude)
in comparison with the slight influence (several percent) of
viscoelasticity, which was previously considered to be the
most important factor (Kawano et al. 1990, 1993). Compres-
sion notably exceeded average PPT (by 4.7 times) and only
approximately 30 N oblique occlusal force can be borne at the
PPT, which is consistent with a common decrease in chewing
efficiency in analyzed cases of unfavorable foundation con-
ditions (Slagter et al. 1993). The pressure beneath the same
denture (Zmudzki et al. 2012) that was loaded in a stable non-
realistic manner (with a vertical force of 100 N) was lower
than the PPT, although extremely unfavorable foundations
were chosen for the analysis. The force on the balancing con-
tacts is significant and decreases from 25.9 to 20.9 N when
the initial distance to the upper denture surface increases
from 0.1 to 1.0 mm (with “delayed” balancing contact). The
compression and sliding distance on the mucous membrane
increases when the balancing contact is delayed.

The augmented multiplier Lagrangian method may be
used (Zmudzki et al. 2012, 2013) in contact calculations
with an implemented linear friction model and neglecting
adhesive forces incomparably lower than mastication loads.
Using such a penalty function, in cases where there is a
marked difference in elasticity between contacting bodies,
contact stiffness and allowable penetration must be adjusted
to achieve convergence (Zmudzki 2011; Zmudzki et al.
2013b). Zmudzki et al. (2012) assumed an average friction
coefficient of 0.16; thus, the effect of friction variability on
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mucosa compression is not known, although its influence
on the biomechanics of a removable single implant-retained
denture was marked (Zmudzki et al. 2012b). Implant load
increased from 45.9 to 81.5 N when the change in the fric-
tion coefficient reached between 0.5 and 0.02. The lower
friction resulted in an increase in the load on the implant,
which could to a certain degree substitute for the balancing
contact (Zmudzki et al. 2013).

It must be emphasized that a more dense meshing does
not imply quality enhancement. Even when tied contact is
taken into account and the mesh is coherent at the inter-
face, the calculated stress increases to non-realistic values
at the singularity point as it was demonstrated in the bone
tissue margin around a dental implant neck (Zmudzki et al.
2008). In a similar manner, an increase in mesh density at
the contacting interface resulted in a concentration of the
stresses around the unfavorably positioned contact elements
(having normals not aligned with opposite contact elements)
or in a lack of convergence (Zienkiewicz and Taylor 2005).
The influence of mesh density on the contact stress values
between two cylinders, with a modulus of elasticity mimick-
ing mucosa and denture, was calculated by FEM and verified
with analytical Hertz formula in Zmudzki’s work (2013b).

6 Clinical implications

Even if Garrett’s presumption (1996) is true, “that each den-
ture wearer achieves a certain level of chewing performance
(...) not markedly affected by the clinical quality of dentures,”
chewing performance as the ability to comminute food is not
the only objective criterion because an objective assessment
can be gained from the perceived pain and discomfort accom-
panying masticatory load transfer. A further enhancement
can be made with modelling of soft tissue nonlinear behavior,
although the potential is more for scientific research, rather
than for clinical practice as the robustness of calculation is
the first demand.

The discovery of the mechanism of pain creation beneath
atilted denture, while being in balance with bilateral occlusal
forces and the reaction force of the supporting zone (depend-
ing on the inclination of denture), explains the weak corre-
lation between denture clinical scores and patient perceived
comfort, and also shows why the occlusion settings based
on the center of force in intercuspation (Kumar and D’Souza
2010), even if aided in vivo with computer force balance
(Olivieri et al. 1998), have a poor association with mastica-
tion efficiency. Simultaneously, the decrease in the denture-
supporting zone due to inclination (Zmudzki et al. 2012)
shows that masticatory ability is not part of a simple relation-
ship with foundation shape. Enlargement of the load-bearing
area (i.e., contact area) beneath an inclined denture is the
most beneficial factor in reducing pain; thus, the compliance
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of the denture soft lining material is important for improv-
ing the cushioning effect (Chladek et al. 2014; Saber-Sheikh
et al. 1999). Additionally, destabilization under mastication
loads is essential to better understand the impact of denture
adhesives, that is, testing under a stable occlusion (Polyzois
et al. 2014), as is the concept of a neutral zone and the devel-
opment of rehabilitation exercises.

Objective assessment of mastication comfort is essential
for the future investigation of the teeth’s optimal shape and
position. These studies use excessively low-pressure values
(Takayama et al. 2011; Arksornnukit et al. 2011) that are
critical for ulcer formation but not for pain and do not provide
quantifiable findings relating to the PPT (Koyano et al. 2012;
Kumar 2014).

Moreover, the possibility of assessment of occlusal load
distribution between artificial implantological supports and
the mucosa opens the way for understanding the work of
denture attachments and diminishing loads on the implants
(Zmudzki et al. 2012b, 2013).

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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