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Abstract Multiple length scales are involved in the devel-
opment of traumatic brain injury, where the global mechan-
ics of the head level are responsible for local physiological
impairment of brain cells. In this study, a relation between
the mechanical state at the tissue level and the cellular level
is established. A model has been developed that is based on
pathological observations of local axonal injury. The model
contains axons surrounding an obstacle (e.g., a blood vessel
or a brain soma). The axons, which are described by an aniso-
tropic fiber-reinforced material model, have several physi-
cally different orientations. The results of the simulations
reveal axonal strains being higher than the applied maximum
principal tissue strain. For anisotropic brain tissue with a rel-
atively stiff inclusion, the relative logarithmic strain increase
is above 60%. Furthermore, it is concluded that individual
axons oriented away from the main axonal direction at a spe-
cific site can be subjected to even higher axonal strains in a
stress-driven process, e.g., invoked by inertial forces in the
brain. These axons can have a logarithmic strain of about
2.5 times the maximum logarithmic strain of the axons in
the main axonal direction over the complete range of loading
directions. The results indicate that cellular level heterogene-
ities have an important influence on the axonal strain, leading
to an orientation and location-dependent sensitivity of the tis-
sue to mechanical loads. Therefore, these effects should be
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accounted for in injury assessments relying on finite element
head models.
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1 Introduction

Traumatic brain injury (TBI) can be caused by accidents, for
instance in road traffic or sports, leading to serious health
issues or even death. The incidence rate and mortality rate
in Europe are estimated to be 235 and 15.4 per 100,000 of
the population per year, respectively (Tagliaferri et al. 2006).
One of the most frequently occurring types of TBI is dif-
fuse axonal injury (DAI), which is primarily involved with
dynamic non-contact loads, although it is believed to occur
in closed head impacts as well and is associated with wide-
spread injury in the brain (Gentleman et al. 1995; Smith et al.
2003).

The most commonly used brain injury criterion, which
relates brain injury to mechanical loading, in the automotive
industry is the head injury criterion (HIC) (Versace 1971).
However, the application of HIC is limited, since it is based
on experimental data of head accelerations, in which only
anterior–posterior contact loading has been applied to human
cadavers, not accounting for head angular accelerations or
brain tissue strains and stresses. Therefore, finite element
(FE) head modeling provides a more sophisticated method
for assessing the likelihood of brain injury as a result of
a mechanical load (Brands et al. 2002; Raul et al. 2006;
Al-Bsharat et al. 1999; Takhounts et al. 2003; Kleiven 2006).
These models simulate the consequences of mechanical loads
on the head by predicting the stress and strain inside the brain.
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Tissue level Cellular level

~1 cm ~10 μm 

Head level
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Fig. 1 The length scales involved with TBI ranging from decimeters
for the head level to micrometers at the cellular level

However, at present, there is no direct link between mechan-
ical load of the tissue and cellular injury.

To investigate the mechanophysical mechanisms of TBI,
different length scales of the brain are distinguished (see
Fig. 1). At the head level, the mechanical load is applied
to and transmitted through the brain. In order to predict a
true tissue stress and strain, the geometrical details of the
brain are important because of the induced concentrations of
stress and strain in the tissue (Bradshaw et al. 2001; Cloots
et al. 2008; Lauret et al. 2009; Ho and Kleiven 2009). Even
more, these tissue level strains will lead to a mechanical load-
ing of brain cells, possibly leading to physiological damage.
Therefore, it is assumed that investigating the mechanical
phenomena at the cellular level might provide information
about the fundamental triggers of DAI. At this level, the
individual brain cells and their constituting elements can
be distinguished. Neurons and glial cells consist of a soma
(i.e., a cell body) and processes (i.e., axons and dendrites),
which extend from the soma (Marieb 1998; Nolte 2002).
Somal sizes are about 5 µm in diameter for the glial cells
and often less then 10 µm for non-pyramidal neurons and
up to 20 µm for other cortical and hippocampal neurons
(Rajkowska and Goldman-Rakic 1995; Rajkowska et al.
1998; Pierri et al. 2001; Cotter et al. 2002; Highley et al. 2003;
Hutsler 2003). Most of the somata of the neurons are found in
the cortex from which the axons extend into other parts of the
brain. Axons have a uniform diameter and can be many cen-
timeters long, whereas dendrites taper away from the soma
and rarely exceed 500 µm in length (Alberts et al. 1994). The
majority of the brain tissue volume consists of axons. Even
in the cerebral cortex, which is relatively rich in somata and
blood vessels in comparison with other parts of the brain,
about 5–10% consists of glial processes, 60–70% of neuro-
nal processes (including their boutons and spines), 10–20%
of somata and blood vessels, and the remaining part is the
extracellular space (Fenstermacher et al. 1970; Braitenberg
and Schüz 1998; Ventura and Harris 1999; Chklovskii et al.
2002).

Povlishock (1993) found that DAI is not associated with
direct mechanical tearing of axons in the white matter, but
with the discrete focal impairment of axoplasmic transport

leading to local axonal swelling and lobulation, which were
all found at locations where the axon changed its anatomical
course (e.g., near a blood vessel or a soma). Furthermore,
Povlishock observed that damaged axons could be found
intermingled with intact axons. In the current study, it is there-
fore assumed that these locally occurring injuries are caused
by locally increased strains, since the brain is loaded mechan-
ically prior to injury. Furthermore, it is assumed that axonal
orientation and the presence of inclusions (e.g., a blood vessel
or a soma) in the pathway of the axons are the main triggers
of locally increased strains.

Computational mechanical modeling of the brain at the
cellular level has been done to some extent (Arbogast and
Margulies 1999; Khoshgoftar et al. 2007; Abolfathi et al.
2009; Karami et al. 2009). These studies were mainly focused
on the relation between the tissue-level mechanical behavior
and the cellular-level structures. This study, however, focuses
on injury sensitivity as a function of the micromechanical
characteristics. The aim is to assess the relation between tis-
sue level mechanical loading and cellular level injury. Since
local axonal damage has been observed for DAI, it is hypoth-
esized that locally a higher strain occurs due to geometric or
mechanical heterogeneities, constituting a precursor of local
damage.

2 Methods

In this study, a plane strain FE model that relates tissue-
level mechanical loads to cellular-level brain injury has been
developed. In the simulations, mechanical loads representing
tissue-level deformations have been applied on a model with
a length scale that is typical for individual cells. Based on
the pathological findings mentioned in the Introduction, the
model of interest contains typically one inclusion surrounded
by axons. In order to determine which factors are critical for
axonal strain concentrations, the axonal orientations and the
mechanical properties are varied.

2.1 Geometry

The geometry of the model is based on the anatomical and
pathological observations for axonal injury. The geometry
contains a cylindrical inclusion (e.g., a blood vessel or a
soma) with a diameter of 8 µm. It is assumed that the remain-
ing part of the tissue consists of axons only. The interface
between the inclusion and the surrounding tissue is assumed
to be fully tied. The tissue surrounding the inclusion is mod-
eled as a regular continuum where the behavior in each mate-
rial point corresponds to the response of a mixture of axons.
The spatial distribution of axonal orientations is either ori-
ented or unoriented (i.e., random). For the oriented mod-
els, the axons are oriented fully uniaxially in every material
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Fig. 2 a Discretization and
b–d axonal orientations of the
model. The maximum diversion
angle ϕ is b 30◦, c 45◦, and d
60◦. The outer dimensions are
50 µm by 50 µm

ϕ

ϕ

ϕ

ba

dc

point. However, the axonal orientation in different material
points differs as shown in Fig. 2. The axons are diverting
from the inclusion, and the amount of diversion is defined
as the maximum angle ϕ between the local axon orientation
and the main axonal direction in the far field. To investigate
the influence of the diversion angle, it is chosen to model
configurations with ϕ = 30◦, 45◦, and 60◦. Also, analytical
computations of the fiber-reinforced material model, which
will be explained later, are used, representing a homogeneous
geometry (i.e., without an inclusion) with oriented fibers.
This situation is referred to as ϕ = 0◦. To study the effect of
the main axonal orientation, the principal loading direction
is varied with respect the main axonal orientation, as will be
detailed further on.

2.2 Boundary conditions

Since the part of the brain that is modeled here is in real-
ity surrounded by adjacent brain tissue, periodic boundary

conditions are adopted to include that influence (Kouznetsova
et al. 2001):

�u|�34 − �u|�12 = �u|c4 − �u|c1 (1)

�u|�23 − �u|�14 = �u|c2 − �u|c1 (2)

where ci are the corner nodes, �i j represent the boundaries
of the model as shown in Fig. 3 and �u represents the displace-
ment vector. An isochoric overall deformation is applied, in
which the principal strain direction is varied. This direction is
indicated by the angle θ with respect to the global 1-direction
of the model that corresponds with the main axonal direction.
The deformation gradient tensor prescribed is defined as

F̄ = λ̄ �m1 �m1 + 1

λ̄
�m2 �m2 + �m3 �m3 (3)

in which λ̄ = 1.01 is the globally applied stretch ratio and
the vectors �mi (for i = 1, 2, 3) can be expressed in terms
of the Cartesian vectors �e j (for j = 1, 2, 3) and the angle
θ . The deformation gradient tensor is imposed on the unit
cell in a standard manner through the displacements of the
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a b

Fig. 3 a Labeling of the corner nodes and the boundaries. b Schematic
representation of the deformation defined by the loading angle θ and
the periodic boundary conditions

corner nodes c1, c2, and c4. This way, only the average defor-
mation of the model is prescribed, whereas the exact local
deformations follow from the equilibrium conditions and the
heterogeneity of the model.

2.3 Mechanical properties

The mechanical behavior of brain tissue is not homogeneous
throughout the brain. One marked aspect of the mechanical
properties that shows interregional variation is the degree
of anisotropy. Areas in which the axons are more aligned
have a higher fractional anisotropy (FA), which is a mea-
sure to quantify the morphological anisotropy (Snook et al.
2005), as well as a higher mechanical anisotropy (Prange
et al. 2000; Prange and Margulies 2002; Hrapko et al. 2008).
Inside each axon, fibers are aligned in the direction of the
axon itself (Alberts et al. 1994). These fibers are the neuro-
filaments, and they provide the axon its mechanical strength.
The mechanical response of the brain tissue with a fibrous
microstructure is described with the following anisotropic
strain energy potential (Simulia, Providence, RI 2008):

W = G ( Ĩ1 − 3) + K

(
J 2 − 1

4
− 1

2
ln J

)

+ k1

2k2

N∑
α=1

(
ek2〈Ẽα〉2 − 1

)
(4)

where the third term on the right hand side is the Holzapfel-
Gasser-Ogden form (Gasser et al. 2006) with

Ẽα = κ( Ĩ1 − 3) + (1 − 3κ)( Ĩ4α − 1) (5)

In Eq. (4), W is the strain energy per unit of reference vol-
ume, K is the bulk modulus, G is the shear modulus N is
the number of fiber families, Ĩ1 is the first invariant of the
isochoric Cauchy-Green deformation tensor, J = det(F) is

the volume ratio, and k1, k2, and κ are material parame-
ters for describing the behavior of the fibers. Furthermore,

Ĩ4α = C̃ : �n0α �n0α where C̃ = J− 2
3 C is the isochoric part of

the right Cauchy-Green deformation tensor C and �n0 is the
fiber direction vector in the reference configuration with unit
length. The material parameter κ describes the dispersion
of the fiber orientations around the preferred fiber direction
�n0α . The two limits of κ are 0 for fully aligned fibers (i.e., full
transverse anisotropy) and 1

3 for randomly orientated fibers
(i.e., isotropy). The Macaulay brackets 〈·〉 impose 〈Ẽα〉 to
become 0 if Ẽα is negative, and therefore, the fibers con-
tribute only in tension and not in compression. The Cauchy
stress tensor is then expressed as

σ = σ h + σ d (6)

The hydrostatic part is given by

σ h = K

2

J 2 − 1

J
I (7)

and the deviatoric part is

σ d = 1

J

(
GB̃

d + 2k1

N∑
α=1

ek2〈Ẽα〉2〈Ẽα〉

(
κB̃

d + Ĩ4α(1 − 3κ)(�nα �nα)d
) )

(8)

where I is the unit tensor, and B̃
d

is the deviatoric part of the

isochoric Finger tensor B̃ = J− 2
3 B.

The material properties of the part consisting of axons only
and the corresponding geometrical conditions are summa-
rized in Table 1 for three different configurations. The mate-
rial properties of the fiber-reinforced oriented axons are based
on the study performed by Ning et al. (2006). Also, two other
configurations are used: fiber-reinforced unoriented axons
and oriented axons without fiber reinforcement. The fiber-
reinforced oriented configuration results in anisotropic tis-
sue behavior, whereas the other two configurations result in
isotropic tissue behavior. For the fiber-reinforced unoriented

Table 1 Brain tissue material properties and maximum fiber diversion
angle ϕ for three configurations

Configuration G (Pa) k1 (Pa) κ ϕ

Without With
inclusion inclusion

Fiber-reinforced tissue with

Oriented axons 12.7 121.2 0 0◦ 30◦/45◦/60◦

Unoriented axons 12.7 121.2 1
3 N/A N/A

Tissue without fiber 12.7 0 0 0◦ 30◦/45◦/60◦
reinforcement,
but with oriented axons
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axons, isotropy is caused by the random distribution of axons,
which can be found closer to or within the cerebral cortex.
For the oriented axons without fiber reinforcement, however,
the fiber contribution to the stiffness is ignored. Note that this
reduces Eq. 8 to a Neo-Hookean constitutive equation. The
main reason to include the latter isotropic configuration is
to investigate the separate effects of anisotropic stiffness and
oriented axonal stretching. The material model is further sim-
plified by using one fiber family (i.e., N = 1) and therefore,
the axons are locally fully aligned. However, the fiber orienta-
tion can be spatially heterogeneous, as described previously.
Furthermore, fiber contribution to the stiffness is assumed to
be linear, and therefore the non-linear parameter k2 → 0 is
used. With these assumptions, Eq. (4) can be rewritten as

W = G ( Ĩ1 − 3) + K

(
J 2 − 1

4
− 1

2
ln J

)
+ k1

2
〈Ẽ1〉2 (9)

The bulk modulus K is assumed to be constant over the whole
volume of the tissue and is reported to range from 2.1 GPa
(McElhany et al. 1976) to 2.5 GPa, based on the velocity
of the dilatational waves in brain tissue of approximately
1550 ms−1 measured in ultrasonic experiments (Goldman
and Hueter 1956; Etoh et al. 1994; Lin et al. 1997). In this
study, a bulk modulus of 2.5 GPa is chosen.

The inclusion is assumed to be isotropic, and its mate-
rial properties are based on the surrounding tissue. In case
the inclusion represents a cross-section of a soma, which is
assumed to consist of similar material as the axons, the mate-
rial properties are the same as the fiber-reinforced unoriented
configuration for the brain tissue (see Table 1). For other cases
(e.g., blood vessels), the material properties of the inclusion
are varied in order to investigate the mechanical influence of
the inclusion stiffness on the surrounding axons.

2.4 Numerical approximation

The model has been developed within Abaqus 6.8–2
(Simulia, Providence, RI 2008). A geometrically non-linear
approach is adopted using a model that contains 1,076 quadri-
lateral bilinear elements with hourglass control and reduced
integration because of the near incompressibility of brain
tissue.

2.5 Output quantities

This study is especially focussed on the local consequences of
a global mechanical load on brain tissue. As mentioned previ-
ously, DAI is found to be related to discrete focal impairment
of axons (Povlishock 1993). Therefore, a relative measure of
the axonal strain with respect to a global load measure is
used. The axonal strain ε is defined as the maximum loga-
rithmic strain in the axonal direction, which is the material
1-direction for oriented axons and the maximum principal

Table 2 Summary of the output measures

Output measure Description

λ̄ Applied tissue stretch
ε̄ = ln(λ̄) Applied tissue strain
ε Maximum axonal strain
ε̃ = ε

ε̄
Maximum axonal strain relative

to the applied tissue strain
ε̄σ = ε

(σ̄11−σ̄22)
Maximum axonal strain relative

to the applied tissue stress
ε̄σ,ref Reference axonal strain relative

to the applied tissue stress
ε̃σ = ε̄σ

ε̄σ,ref
Normalized maximum axonal strain

relative to the applied tissue stress

strain direction for unoriented axons. By taking the maximum
principal tissue strain ε̄ = ln(λ̄), which is imposed on the
boundaries, as the global load measure, the relative strain
becomes ε̃ = ε

ε̄
.

During realistic loading conditions responsible for DAI,
however, the tissue deformation is strongly driven by stress,
because of the inertial forces acting on the brain. Therefore,
also the maximum local strain with respect to the global nor-
mal stress difference in the tissue is considered. This mea-
sure is representative for a process driven by a uniaxial stress
and is defined as ε̄σ = ε

(σ̄11−σ̄22)
, where σ̄11 and σ̄22 are

the homogenized stress components in the rotated coordi-
nate system { �m1, �m2}, which are computed as in Kouznetsova
et al. (2001). This normal stress difference corresponds to the
maximum in-plane shear stress. Then, the axonal strain rela-
tive to the applied stress is normalized with this quantity for a
reference situation, ε̃σ = ε̄σ

ε̄σ,ref
, where the reference situation

is the homogeneous fiber-reinforced tissue with unoriented
axons. The above-mentioned output measures are summa-
rized in Table 2.

Besides relative or absolute axonal strains, an invariant
stress measure will be used as well to investigate the influ-
ence of the global loads. For this, the equivalent stress

σ eq =
√

3
2σ d : σ d is used, in which σ d is the deviatoric

part of the Cauchy stress tensor σ .

3 Results

This study is concerned with the global mechanical influ-
ences on axonal injury and therefore, the results, including
the field plots, depict the tissue part that consists of axons,
but not the inclusion. Figure 4 shows the results of the simu-
lations with oriented fiber-reinforced axons and a maximum
diversion angle of 45◦ at three different loading angles. For
both the equivalent stress and the axonal logarithmic strain, it
is obvious that the values decrease for higher loading angles.
Furthermore, at the same loading angles, maximum values
are located similarly for the stress and strain fields. At a
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Fig. 4 Equivalent stress (upper row) and axonal logarithmic strain
(lower row) fields of the fiber-reinforced model with a maximum diver-
sion angle of ϕ = 45◦, and principal loading directions at an angle of

θ = 0◦, 45◦, and 90◦. Note that the stress and strain in the inclusion are
not shown in these field plots
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Fig. 5 The maximum relative local axonal strain as a function of the
principal loading angle θ for the oriented fibers with maximum diver-
sion angles of ϕ = 30◦, 45◦, and 60◦

loading angle of θ = 0◦, all axonal strain values are positive
(i.e., all the axons are stretched), whereas all axonal strain
values are negative (i.e., all the axons are compressed) at
θ = 90◦.

In Fig. 5, the maximum relative axonal strains, which were
defined previously, are plotted as a function of the loading
angle for the configurations with the oriented fibers. Unori-
ented fiber configurations as well as the homogeneous ori-

ented fiber configuration are not shown, because the relative
strain in these cases has a value of 1 over the entire range
of loading directions. The highest maximum axonal strain
relative to the globally applied strain is about 1.2 for the
fiber-reinforced case. This value is obtained when the tissue
is loaded in the main axonal direction. Large axonal strains
are found for a small range of loading angles. In case of no
fiber reinforcement, the local strain is never above the glob-
ally applied strain, and the maximum relative strain decreases
depending on the maximum diversion angle. The maximum
relative strain is more dependent on the loading direction for
lower maximum diversion angles.

The maximum axonal strain relative to the applied stress
normalized by a reference value for homogeneous tissue is
depicted in Fig. 6 as a function of the loading angle for con-
figurations with oriented fibers. Unoriented fiber configura-
tions are not shown, because the normalized relative strain in
these cases has a value of 1 over the entire range of loading
directions. The results of the model without fiber-reinforced
axon are the same as for the axonal strain relative to the
tissue level strain. For loading angles above approximately
θ = 45◦, this is also the case for results of simulations with
the fiber-reinforced axons. At around a 45◦ loading angle,
the fiber-reinforced tissue reaches a normalized maximum
axonal strain relative to the applied stress that is 2.4, 2.5, and
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Fig. 6 The maximum local axonal strain relative to the applied stress
as a function of the principal loading angle θ for the oriented fibers with
maximum diversion angles of ϕ = 0◦, 30◦, 45◦, and 60◦

2.8 times the value obtained at the loading direction in the
main axonal direction (i.e., θ = 0◦) for ϕ =30◦, 45◦, and
60◦, respectively. For lower loading angles, the normalized
maximum strains relative to the applied stress are lower than
for the 45◦ loading angle, because of the stiffening effect of
the fibers that are oriented closely toward the loading angle.
For higher loading angles, however, the normalized maxi-
mum strain relative to the applied stress decreases, because
it is affected by the decrease in the axonal strain relative to
the applied strain. The homogeneous oriented fiber config-
uration (i.e., ϕ = 0◦) has a peak value at around θ = 36◦,
which is 1.7 times the value obtained at θ = 0◦. For higher
loading angles, the normalized maximum axonal strain rela-
tive to the applied stress drops to lower values more rapidly
than the heterogeneous orientations (i.e., ϕ = 30◦, 45◦, 60◦).
Furthermore, it is observed that the peak values for the heter-
ogeneous configurations are a factor of 1.8–2.2 with respect
to the peak value reached for the homogeneous configura-
tion. For the loading direction in the main axonal direction,
the normalized maximum strain relative to the applied stress
for the heterogeneous cases is increased by a factor 1.3–1.4
with respect to the homogeneous case.

In Fig. 7, the strain in the axonal direction is displayed for
the simulations with ϕ = 45◦ at a 0◦ loading angle for two
different values of the relative inclusion stiffnesses, which
is defined as Ginclusion

Gtissue
= k1,inclusion

k1,tissue
. For all cases, it can be

noticed that a higher relative inclusion stiffness results in
higher axonal strains. If only the subset of the three different
configurations with a relative stiffness of 1 are compared to
each other, it is observed that axonal alignment causes a heter-
ogeneous strain field. Axonal alignment only leads to locally
lower axonal strains, whereas alignment in combination with
fiber reinforcement causes locally higher axonal strains. In
case the relative stiffness is 10, the axonal strain distribu-
tion is similar for both the fiber-reinforced unoriented axons
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Fig. 7 Strain in the axonal direction for the simulations with a load-
ing angle θ = 0◦ and different relative stiffnesses of the inclusion. For
the oriented configurations, a maximum diversion angle of 45◦ is used.
Note that the strain in the inclusion is not shown in these field plots
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Fig. 8 Axonal strain relative to the applied strain as a function of the
stiffness of the inclusion with respect to the tissue stiffness for the sim-
ulations with a maximum diversion angle of ϕ = 45◦ at a loading angle
of θ = 0◦

and the oriented axons without fiber reinforcement (i.e., the
two situations with isotropic tissue behavior). Maximum val-
ues are located equatorial as well as polar to the inclusion.
However, the locations with lower axonal strain in the latter
configuration are similar to those observed for the situation
with a relative stiffness of 1. The configuration with fiber-
reinforced oriented axons and an inclusion stiffness 10 times
the surrounding tissue results in maximum values that are
located equatorial to the inclusion only.

In order to investigate the influence of the stiffness of the
inclusion on the axonal strain more carefully, the maximum
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relative axonal strain is plotted against the relative inclusion
stiffness in Fig. 8. For a high relative stiffness of the inclusion
and fiber-reinforced oriented axons, the maximum axonal
strain can exceed 1.7 times the global maximum principal
tissue strain. This value is approximately 1.4 for the fiber-
reinforced unoriented axons as well as for the oriented axons
without fiber reinforcement.

4 Discussion

From the results of all simulations, the most general observa-
tion is that the heterogeneities in the mechanical properties of
brain tissue induce axonal strains higher than the applied tis-
sue strain. The maximum local strains are all found near a stiff
inclusion for axons aligned with the principal strain direc-
tion. The principal strain direction has an important influ-
ence on the results. For the fiber-reinforced oriented axons,
the highest maximum axonal strains relative to the princi-
pal tissue strain are found at a 0◦ loading angle, which is
the main axonal direction. However, the highest normalized
maximum axonal strain relative to the principal tissue stress
occurs at a loading angle of approximately 45◦ independently
of the three different maximum diversion angles for the het-
erogeneous configurations. For the homogeneous case with
fiber-reinforced oriented fibers, this occurs at about 36◦. The
reason the loading direction of the maximum axonal strain is
shifted away from the main axonal direction is the stiffening
effect of the fibers in the main axonal direction. Nevertheless,
this effect is counteracted by the decrease in the axonal strain
relative to the applied tissue strain for higher loading angles.
The heterogeneous fiber-reinforced cases result in higher nor-
malized maximum axonal strains relative to the applied stress
than for the homogeneous case. For a loading direction in the
main axonal direction, this factor is between 1.3 and 1.4 and
is caused by the heterogeneous distribution of stiffnesses. For
the peak values, the factor becomes 1.8–2.2. Here, also the
fiber diversion angles have an influence on the normalized
maximum axonal strain relative to the applied stress.

In this paper, it is assumed there is a relation between
mechanical deformation and injury at an axonal level based
on the observation by Povlishock (1993) that mechanically
induced DAI results in local axonal injury positioned where
the axon changes its anatomical course. The results of the
simulations show strain concentrations under similar cir-
cumstances, which is an indication that such a relationship
might exist. Also, in experimental studies it was shown that
a mechanical load imposed on axons causes physiological or
functional impairments (Bain and Meaney 2000; Bain et al.
2001; Galbraith et al. 1993).

For the development of a model that relates the mechanical
aspects of TBI between the tissue level and the cellular level,
several assumptions were made, such as for the geometry and

the mechanical properties at the cellular level. Despite the
complexity of the real structures, a relatively simple model
geometry was adopted in order to systematically compare dif-
ferent situations within the limits set by the limited informa-
tion on the mechanical properties at the cellular level. Since
no complex loading conditions are considered, it is assumed
that the material behavior can be modeled completely elastic.
Furthermore, the applied strain levels are chosen to be small
and are well below values commonly associated with DAI.
However, under the current assumption that no large non-
linearities are present in the material behavior, the observed
strain concentrations are almost independent of the strain
level chosen. Relative quantities of predicted values are con-
sidered to be more important than absolute values making
the conclusions drawn from this study partially independent
of the chosen mechanical properties and loading conditions.

According to Lu et al. (2006), the storage modulus of glial
cell processes and pyramidal cell processes amounts to one-
third of the modulus of their respective somata. However, this
is measured by indenting the processes in a direction perpen-
dicular to the axis of the process. For the material model used
in the current study, the inclusion has a lower stiffness com-
pared to an axon in the axonal direction, but it has a higher
stiffness compared to an axon in the direction perpendicu-
lar to the axonal direction. In the latter case, this factor of
one-third is reached for a logarithmic strain of about 0.5.

Since the model is plane strain, the inclusion has in fact
a cylindrical shape, which could represent a blood vessel.
However, the initially chosen material properties are based
on the assumption that the inclusion is a soma, after which
they were varied to investigate the effect of other types of
inclusions (e.g., a blood vessel). A future study with three-
dimensional models should elucidate the effects of different
inclusion geometries with a three-dimensional nature.

In the current study, the effects of a possible undulation of
the axons have not been accounted for. Although the mechan-
ical effect of the undulation could be implemented by the
non-linear constant k2 at the tissue level, this would lead to
a violation of length scales in the current model. It has been
concluded by Bain et al. (2003) that already at zero strain,
parts of the axons are fully coupled to their surroundings,
which causes them to deform in an affine manner with respect
to their surroundings. Although the axonal strain relative to
the applied tissue stress is expected to become less dependent
of the loading direction as a result of the undulation for small
strains, it is expected to have no influence for larger strains
at which DAI could occur and the axons are not undulated
anymore.

5 Conclusion

In this study, the relation between mechanical loading of
brain tissue and axonal stretching is investigated, providing
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a bridge between different length scales involved in TBI.
Axonal strains resulting from a deformation at the tissue level
can become higher than the applied tissue strain. Values of
over 1.7 for the relative axonal strain are found in the simula-
tions with a stiff inclusion. The maximum values are reached
when the principal loading direction is aligned with the main
axonal direction. For the loading conditions that represent a
stress-driven deformation, which is more representative for
the mechanisms leading to TBI, axonal strains are shown to
be influenced heavily by the fiber reinforcement of the ax-
ons. The peak normalized maximum axonal strain relative
to the applied stress is reached when the angle between the
loading direction and the main axonal direction is 36◦ and
about 45◦ for the homogeneous and heterogeneous configu-
rations, respectively. The peak normalized maximum axonal
strain relative to the applied stress is between 1.8 and 2.2
times higher for the heterogeneous cases than for the homo-
geneous case.

In the results of the simulations, the location of the peak
strain is found close to or within the axons that deviate
from the main axonal direction. Axonal injury has also been
observed in a pathological study at locations where axons
are forced to deviate (Povlishock 1993). Factors that influ-
ence the increase of the axonal strain relative to the applied
tissue strain or stress are found to be: (i) the inclusion stiff-
ness with respect to the surrounding tissue, (ii) the axonal
orientation, (iii) the fiber reinforcement (i.e., the effect of
the neurofilaments), and (iv) the maximum diversion angle
of the axons. Factor (iii) and especially factor (iv) have an
important influence mainly on the axonal strain relative to
the applied stress.

The heterogeneities at the cellular level cause increased
axonal strains that might lead to local injury of an axon as
a result of the tissue-level mechanical load, and as a conse-
quence, a strong orientation-dependent sensitivity of axonal
stretching to tissue level deformations is found. Therefore,
FE head models should account for the effects of the mechan-
ical heterogeneities at the cellular level and this orientation-
dependent sensitivity to predict more accurately DAI by
means of anisotropic and microstructure-related injury crite-
ria. Even though the current study indicates the importance
of the cellular level with respect to TBI, more research is
needed to properly quantify such injury criteria. Because it
is not realistic to develop an FE head model with a reso-
lution typical for the axonal length scale, a proper way to
achieve this is the integration of a detailed micromechanical
model in a macroscopic head model using a multiple scale
approach, in which FE models representing different discrete
length scales of the same material are coupled. It is expected
that this will result in more realistic deformation modes and
hence also more realistic cellular-level injury predictions.
This will be the subject of future work. Depending on the
outcome of that work, the effects of the heterogeneity and

orientation of the axonal microstructure might be accounted
for in anisotropic tissue-level injury criteria. In that case, ulti-
mately, macroscopic head model simulations can account for
the cellular-level effects by merely applying these injury cri-
teria.
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