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Abstract
In the present research, we provide a brief description and assessment of the oceanic fields analyzed in the newly developed 
eddy-resolving quasi-global ocean reanalysis product, named the Japan Coastal Ocean Predictability Experiments-Forecasting 
Global Ocean (JCOPE-FGO). This product covers the quasi-global ocean with a horizontal resolution of 0.1° × 0.1°. Valida-
tions of analyzed temperature and salinity fields by JCOPE-FGO against in situ observations revealed that our product can 
capture various aspects of observed hydrographic structures in the world ocean, including frontal structures near the surface 
and thermohaline properties of water masses, as well as their spatiotemporal variability. Furthermore, we have assessed 
dynamical fields analyzed in JCOPE-FGO using satellite altimeters and surface drifters, and found that our product can 
represent the mean state and variability of the upper ocean circulation in many regions. A notable feature of JCOPE-FGO 
is the inclusion of an updated global river runoff, and impacts of river forcing have been assessed by an additional reanaly-
sis experiment without river forcing. We found that the removal of continental river discharge leads to dramatic changes 
in the near-surface salinity and related fields around river mouths of large rivers, but large changes are mostly confined to 
narrow regions near the coast. As an example of the substantial impact of river runoff, we discuss the dispersion of low-
salinity water from the Mississippi river to the Gulf of Mexico: a comparison between the analyzed salinity fields from both 
reanalysis products with those from satellite observations demonstrated that the inclusion of river runoff is essential for an 
accurate representation of its seasonal variability. Several key issues that warrant further improvements are discussed for 
future development.
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1 Introduction

An accurate description of the oceanic state is essential for 
understanding the climate system, particularly at lower fre-
quencies, since the ocean serves as a large reservoir and 
conveyor of heat and water. Furthermore, a continuous mon-
itoring of the oceanic state is of paramount importance for 
socioeconomic activities, such as fisheries, weather forecast-
ing, ship navigation, and marine rescue. For the above cited 
reasons, one of the key goals in operational oceanography is 
to obtain a dynamically consistent oceanic state and forecast 

its future evolution. A wide range of assimilation methods 
have been proposed to effectively incorporate information 
derived from in situ and satellite observations into ocean 
general circulation models (OGCMs). Recent advances in 
observational techniques, increase in computational power, 
and development of elaborated numerical schemes for 
OGCM and data assimilation have enabled us to routinely 
monitor the state of world oceans. Various ocean reanalysis 
products are also available, both at a global (Balmaseda et al. 
2008, 2013; Carton and Giese 2008; Chassignet et al. 2009; 
Toyoda et al. 2013; Zuo et al. 2017; Carton et al. 2018; Lel-
louche et al. 2021) and a regional (Usui et al. 2006, 2017; 
Miyazawa et al. 2009; Oke et al. 2013) scale: these products 
have been extensively used for studies of physical ocean-
ography and climate sciences, and contributed to a deeper 
understanding of the role played by the ocean.

Recently, a growing body of evidence demonstrated 
that frontal-scale oceanic variability, such as mesoscale 
eddies, and associated modulations of current fields, plays 
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important roles in water mass formation, air-sea interaction, 
and transports of heat/freshwater/biogeochemical tracers 
(Dong et al. 2014; Zhang et al. 2014; Ma et al. 2016). As a 
source of stochasticity, mesoscale variability interacts with 
large-scale circulation through nonlinear processes (Pierini 
2006; Taguchi et al. 2007; Arbic et al. 2014; Sérazin et al. 
2015, 2016). Indeed, recent modelling studies with high-
resolution OGCMs have pointed out that characteristics of 
spatiotemporal variability in sea surface height (SSH) fields 
are remarkably different depending on the horizontal reso-
lution of OGCMs (Sérazin et al. 2015; Penduff et al. 2018; 
Close et al. 2020), due to the emergence of intrinsic vari-
ability at mesoscales (from 10 to 100 km). More in detail, 
the intrinsic oceanic variability has been demonstrated to not 
only affect the characteristics and predictability of mesoscale 
eddy fields, but also to alter that of large-scale circulation 
in the global ocean (Nonaka et al. 2016, 2020; Sérazin et al. 
2016; Leroux et al. 2018). Growing interests into mesoscale 
variability and its roles in the global ocean motivated us 
to expand the model domain of the Japan Coastal Ocean 
Predictability Experiments (JCOPE) system, which is a 
regional ocean monitoring and forecasting system for the 
western North Pacific, to the global ocean. Even with the 
current generation of supercomputers, constructing an eddy-
resolving ocean reanalysis product for the global ocean is 
still a challenging task in terms of computational require-
ments. Indeed, most of the state-of-the-art products are still 
at eddy-permitting resolution (with horizontal resolutions 
of 1/3°–1/4°) (Balmaseda et al. 2015), although several 
operational centers have started to provide eddy-resolving 
(~ 1/10°) regional (Miyazawa et al. 2009; Oke et al. 2013; 
Usui et al. 2017) and global products (Chassignet et al. 2009; 
Metzger et al. 2014; Lellouche et al. 2018, 2021).

The JCOPE system is a dynamical ocean monitoring and 
forecasting system configured for the western North Pacific at 
eddy-resolving resolutions: it has been continuously developed 
by the Japan Agency for Marine-Earth Sciences and Tech-
nology (JAMSTEC), with several versions released with dif-
ferent horizontal resolutions and data assimilation schemes 
(Miyazawa et al. 2009, 2017). The JCOPE system has been 
routinely used for nowcasting and forecasting of ocean state 
around Japan on a daily basis to provide information for social 
communities: it can realistically capture temperature, salinity, 
and current fields within the western North Pacific (Miyazawa 
et al. 2009) and has been widely used to investigate various 
aspects of the upper ocean circulations in the area (Soeyanto 
et al. 2014; Mitsudera et al. 2018; Aoki et al. 2020). Further-
more, the JCOPE system has been used for socio-economic 
application studies, such as the dispersion of radionuclide 
around Japan (Miyazawa et al. 2012a, 2013), and the migration 
of Japanese eel (Chang et al. 2015). Given the promising skills 
of the JCOPE system in the western North Pacific, we have 
extended its model domain to the global ocean, by developing 

a new eddy-resolving quasi-global ocean reanalysis product, 
the JCOPE Forecasting Global Ocean (JCOPE-FGO). In the 
present manuscript, we provide an overview of its basic for-
mulation, as well as the validation of its analyzed fields from 
1993 to 2021.

One key novel aspect of our newly developed product is the 
use of an updated river forcing: the JCOPE-FGO incorporates 
river runoff forcing with a daily resolution into the OGCM, 
whereas climatological or monthly mean forcing have been 
adopted in most of other existing products. River forcing used 
in our system are based on the JRA55-do, which is a state-of-
the art dataset of historical river discharge rates and is used for 
the coordinated Ocean Model Intercomparison Project (OMIP) 
(Suzuki et al. 2018; Tsujino et al. 2018). Inclusions of refined 
river forcing may be important for an accurate representation 
of near-surface salinity and other related fields especially in 
coastal regions. Indeed, several regional and global stud-
ies have examined the impact of continental river runoff by 
comparing two sets of OGCM experiments with and without 
river runoff, pointing out that near-surface salinity is strongly 
affected by the intrusion of freshwater from large rivers, such 
as the Amazon and Ganges/Brahmaputra (Han et al. 2001; 
Masson and Delecluse 2001; Yaremchuk et al. 2005; Huang 
and Mehta 2010; Gévaudan et al. 2022). However, these stud-
ies are mostly based on OGCMs with relatively coarse reso-
lutions; thus, several important factors, such as continental 
shelves around the coast and dispersions of coastal freshwater 
by mesoscale eddies, may not be accurately represented. To 
assess the impact of river discharge on the representation of 
the analyzed oceanic fields, we have conducted an additional 
reanalysis experiment that does not incorporate river runoff 
into the OGCM. By comparing it with the reference reanaly-
sis product, here we evaluate the impact of river runoff upon 
the analyzed oceanic fields, with a specific focus on coastal 
salinity.

This paper is organized as follows. In Sect. 2, we describe 
basic formulations of the OGCM (Sect. 2.1), the three-dimen-
sional variational (3DVAR) method (Sect. 2.2), and procedures 
for the assimilation cycle (Sect. 2.3) used in the present version 
of the JCOPE-FGO. Section 3 presents validations of the ana-
lyzed fields in the JCOPE-FGO against assimilated and inde-
pendent observations. The impact of river runoff is discussed 
in Sect. 4 using an additional reanalysis product that does not 
include river discharge forcing. Summary and perspective for 
future development and applications are provided in Sect. 5.

2  Data and methods

2.1  Ocean model configuration

The OGCM used in this system is the third-generation model 
of JCOPE (JCOPE-T; Varlamov and Miyazawa 2021), which 
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has been developed based on the Princeton Ocean Model 
with a generalized coordinate of sigma (POMgcs) (Mellor 
et al. 2002). The source code of this model is optimized for 
massive parallel calculation with Message Passing Interface. 
As shown in Fig. 1, the model covers the global ocean from 
75°S to 75°N except for the Arctic Ocean, with a horizontal 
resolution of 0.1° × 0.1°. No sea ice model and tidal forcing 
are included in the present version. The model has 44 sigma 
levels for the vertical direction, while bottom topography 
(color shading in Fig. 1) is taken from the bathymetry data-
set of ETOPO5, after a spatial smoothing is applied to miti-
gate errors in the calculation of the pressure gradient force 
(Mellor et al. 1994). The northern and southern boundaries 
are closed, and a non-slip condition is imposed along conti-
nental boundaries. In regions near the northern and southern 
artificial boundaries, temperature and salinity fields of the 
whole water column are restored to the monthly climato-
logical values of the World Ocean Atlas 2013 (WOA13). 
The restoring timescale along these boundaries are set to 
1 day, and it gradually increases to infinity at a latitudinal 
distance of 5° from the boundaries. Similar temperature and 
salinity restoring with a nudging timescale of 30 days are 
also applied to the following marginal seas to avoid spurious 
model drift: the Mediterranean, Black, Baltic, and Red Sea, 
as well as the Persian Gulf and Okhotsk Sea, as in several 
other ocean reanalysis products (Usui et al. 2006; Miyazawa 
et al. 2009). This restoring of temperature and salinity leads 
to a better representation of water masses spreading from 
Arctic regions and marginal seas such as the Okhotsk water 
(Mitsudera et al. 2004); however, it acts to suppress their 
temporal variations that may potentially alter density strati-
fication and circulation. We have adopted the flux-corrected 
transport scheme (Boris and Book 1973) to calculate the 
tracer advection term, while the fourth order scheme (McCa-
lpin 1994) is used for the baroclinic pressure gradient. A 

biharmonic viscosity of 1.0 ×  109  m4  s−1 and a diffusivity of 
1.0 ×  108  m4  s−1 are added to suppress computational noise. 
In addition, the turbulent closure scheme of Furuichi et al. 
(2012), a modified version of the Mellor-Yamada scheme, is 
used to calculate vertical viscosity and diffusion coefficients.

Surface-forcing fields are taken from hourly meteoro-
logical fields from the National Centers for Environmental 
Prediction Climate Forecast System (NCEP-CFS) (Saha 
et al. 2010, 2014); its first version (CFSv1) has been used 
from January 1993 to December 2010, while the second 
version (CFSv2) has been employed from January 2011. 
These forcing fields include downward longwave radiation, 
surface wind/air temperature/humidity, cloudiness, and pre-
cipitation. The turbulent heat and freshwater fluxes at the sea 
surface, as well as the wind stress, are computed by these 
meteorological fields, and modelled sea surface temperature 
(SST) and surface currents using the bulk formulae of Li 
et al. (2010). In addition, the daily river discharge obtained 
from the JRA55-do dataset (Suzuki et al. 2018; Tsujino et al. 
2018) is used to represent the freshwater input from rivers to 
the open ocean. In the present system, only large rivers with 
their annual mean discharge rates exceeding 1.0 ×  103  [m3 
 s−1] are incorporated; locations of individual river mouths 
are depicted by red dots in Fig. 1. Here the freshwater flux 
at the sea surface is represented as the virtual salt flux, 
and river runoff is added to precipitation values at the grid 
points adjacent to each river mouth, following methodology 
adopted in other studies (Huang and Mehta 2010).

2.2  3DVAR

To smoothly assimilate satellite and in situ observations 
into the OGCM, we apply the same 3DVAR scheme of the 
original JCOPE2 system (Miyazawa et al. 2009) to obtain 
the analysis value. The state vector � represents temperature 
and salinity from the sea surface to 1500 m depth at each 
grid point; the 3DVAR scheme seeks to minimize the cost 
function J, which can be defined as:

where �� denotes the first guess value; � is the background 
error covariance matrix; ��

�
, ��

�
, ��

����
, and ��

���
 are column 

vectors representing observed in situ temperature, salin-
ity, satellite sea surface height anomaly (SSHA), and SST, 
respectively; and ��,��,�����, and ���� are the corre-
sponding operators that project the model state to observations 
(see below for details). In addition, ��,��,�����, and ���� , 
denote respective observation error covariance matrices. 
Based on the first guess and observed values, the analysis 
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Fig. 1  The model domain of the JCOPE-FGO. The bottom topogra-
phy used in the model (from ETOPO5 data) is represented by color 
shading. Locations of river mouths incorporated into the model are 
indicated by red dots, and the size of each dot represents the value of 
annual mean discharge rate (in m.3/s; see legends)
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value that minimized the cost function (1) is obtained by a 
conjugate gradient method.

Due to computational constraints, analysis is made on a 
1/3° × 1/3° horizontal grid that covers the OGCM domain, 
and the 3DVAR analysis is separately conducted for 23 
subdomains shown in Fig. 2. There are overlapping areas 
around borders of subdomains, and values over overlapping 
domains are linearly weighted to ensure smooth transitions 
across borders following Fujii and Kamachi (2003a). Fur-
thermore, to efficiently represent hydrographic properties, 
the state vector is expressed in terms of the temperature-
salinity coupling empirical orthogonal function (T-S cou-
pling EOF; Fujii and Kamachi 2003b). After normalizing 
temperature and salinity at each vertical level, T-S coupling 
EOFs are separately calculated for each subdomain, based 
on historical archives of temperature and salinity profiles 
from the World Ocean Database 2013 (WOD13) (Levitus 

et al. 2013). Here, the first 12 EOFs are retained in the pre-
sent configuration, which explain more than 90% of the total 
observed temperature and salinity variability over individual 
subregions. The T-S coupling EOF scheme has been adopted 
by several operational ocean reanalysis systems (Usui et al. 
2006; Miyazawa et al. 2009; Toyoda et al. 2013) and is 
shown to successfully represent various water mass proper-
ties of the global ocean (Fujii and Kamachi 2003b, a).

To project the modelled fields to three-dimensional tem-
perature �� (and salinity �� as well as SST ���� , we adopt 
the bilinear interpolation scheme. The projection of SSHA 
( ����� ) is nonlinear, and it consists of two steps. First, we 
compute the dynamic height from model’s temperature 
and salinity fields assuming the reference depth of 2000 m. 
Second, satellite SSHAs are added to the climatological 
dynamic height field computed from the temperature and 
salinity of the WOA13. Then, they are compared in terms 
of cost function to estimate the analysis values of tempera-
ture and salinity; thus, the model’s SSH field is not directly 
incremented in our scheme.

Formulations of error covariance matrices are also basi-
cally similar to those adopted in the JCOPE2. The back-
ground error covariance matrix represented in the normal-
ized T-S EOF subspace is specified as a Gaussian function:

where dx and dy represent zonal and meridional distances 
between the grid points, and Sx ( Sy ) denotes zonal (meridi-
onal) scale. In our system, Sx and Sy are specified as shown 
in Fig. 2b, c, respectively, based on statistical results by 
Kuragano and Kamachi (2000). The observation covari-
ance matrices of in situ temperature and salinity, satellite 
SSHA, and SST are assumed to be diagonal matrices, as in 
Miyazawa et al. (2009). The first guess value, �� , is obtained 
by blending temperature and salinity calculated by OGCM 
and climatological values. For more detailed settings and 
formulations of the 3DVAR scheme, readers are referred to 
Miyazawa et al. (2009).

Data sources for in situ and satellite observations are as 
follows: temperature and salinity profiles are obtained from 
the delayed-mode archive of the Global Temperature-Salin-
ity Profile Program (GTSPP; see http:// www. nodc. noaa. 
gov/ GTSPP/ index. html). The SSHA satellite is acquired 
from along-track SSHA data of the Ssalto/Duacs altimeter 
products, released by CMEMS; the satellite SST is from the 
Merged satellite and in situ data Global Daily Sea Surface 
Temperatures (MGDSST) (Kurihara et al. 2006) provided 
by the Japan Meteorological Agency.
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Fig. 2  a Allocation of model subdomains used for 3DVAR analysis 
of JCOPE-FGO. Areas with more than two subregions overlap are 
indicated by purple shading. b, c Spatial distribution of b zonal and 
c meridional scales (in km) used for the background error covariance 
matrix
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2.3  Assimilation cycle

The assimilation cycle interval corresponds to 7 days: pro-
cedures archived during one cycle of assimilation are sche-
matically summarized in Fig. 3. First, the OGCM is initial-
ized from the end of the previous assimilation cycle and 
integrated forward for 4 days to obtain the first guess value 
located at the midpoint of the assimilation window. Then, 
the 3DVAR scheme is used to synthesize the model’s state, 
as well as observed and yield analysis values of temperature 
and salinity at the midpoint. Considering the fact that typical 
repeat cycles of satellite altimeters are around 10 days, the 
time windows of satellites SSHA and SST are set to 9 days 
(− 4 day to + 4 day), whereas that of the GTSPP temperature 
and salinity are 19 days (− 9 day to + 9 day) due to limited 
number of profiles particularly at earlier periods of the rea-
nalysis. Finally, the model is again restarted from the final 
state of the previous assimilation cycle and integrated for-
ward for 7 days with incremental corrections for every time 
step. Here, incremental corrections are applied following the 
incremental analysis update (IAU) methodology by Bloom 
et al. (1996), in which the difference between the first guess 
and analysis values divided by 7 days is smoothly added 
to tendency equations of temperature and salinity during 
integrations. The reanalysis of JCOPE-FGO has been made 
from January 1993 to present, and all outputs are available 
as daily-averaged values. We present reanalysis results per-
formed between January 1993 and December 2021.

In addition to this reference reanalysis product, we have 
constructed an additional product that has the same con-
figuration as the original one, except that it does not include 
river runoff forcing: this additional experiment spanning 
from January 1993 to December 2018 is referred to as 
“NoRIV” reanalysis and will be used to assess the impact 
of river runoff in Sect. 4.

3  Validation of reanalysis product

3.1  Temperature and salinity

As a first step to validate JCOPE-FGO, climatological views 
of analyzed sea surface temperature (SST) and salinity (SSS) 
are shown in Fig. 4. Gross features of the climatological SST 
pattern, such as the cold tongue in the eastern equatorial 
Pacific, the warm pool extending from the western equatorial 
Pacific to the Indian Ocean, and the sharp SST fronts in the 
western boundary current regions, are adequately analyzed 
with JCOPE-FGO (Fig. 4a). Similarly, the large-scale pat-
terns of climatological SSS fields, including their subtropi-
cal maxima, fresh pools around the tropical rain bands and 
Bay of Bengal, and the distinct interbasin contrast between 
the Atlantic and Pacific (with higher SSS in the Atlantic than 
in the Indo-Pacific sectors), are also well analyzed. In addi-
tion, JCOPE-FGO reasonably represents the general features 
of the observed upper ocean circulation and mesoscale eddy 
fields (Fig. 4c, d), as we will discuss in detail in Sect. 3.2.

To quantitatively assess how and to which extent our 
product can reproduce observed temperature and salinity 
fields, the mean bias, correlation, and root mean square 
errors (RMSE) of SST and SSS with respect to profiles in 
the GTSPP archive are presented in Fig. 5. Note that these 
reference observations are assimilated in JCOPE-FGO; thus, 
they are not totally independent from each other. However, a 
good agreement between analyzed and assimilated fields is a 
necessary condition to demonstrate the skills of the reanaly-
sis product; thus, we perform this comparison as a bench-
mark test. To construct the global maps of statistical metrics 
described above, individual profiles in the GTSPP archive 
within the analysis period (January 1993 to December 2021) 
are binned into a 1° × 1° grid covering the model domain, 
while corresponding reanalysis fields for each location and 
date of observations are interpolated using daily outputs 
of JCOPE-FGO. Due to inhomogeneous distributions of 

Fig. 3  Schematic diagram illus-
trating assimilation cycles of 
JCOPE-FGO (see the main text 
for details (Sects. 2.2 and 2.3))
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observational platforms, the number of observations is not 
spatially uniform: relatively large numbers are found near 
the coastlines of the northern hemisphere and along major 
ship tracks (Fig. 5a, b).

The mean bias of SST (Fig. 5c) is less than 0.5 °C in 
most part of the global ocean except for several regions 
near the coast (e.g., south of Japan, east coast of the USA). 
The correlation between observed and analyzed SST is also 
close to unity in most regions (Fig. 5e), suggesting that our 
product can adequately capture the mean fields and tem-
poral variability of SST. The RMSEs of SST between the 
observation and JCOPE-FGO are relatively large around the 
western boundary current regions (Fig. 5g): this may reflect 
strong intrinsic variability associated with strong mesoscale 
eddy activities (see Fig. 4d) (Bishop et al. 2017; Small et al. 
2020).

Compared to SST, relatively large SSS biases of JCOPE-
FGO are found in several locations (Fig. 5d): specifically, 
fresher biases are seen in the eastern equatorial Pacific, Bay 
of Bengal, and eastern tropical Atlantic, whereas saltier 
biases are found in the Gulf Stream and Kuroshio Exten-
sion regions. The correlation coefficients between SSS of 
JCOPE-FGO and that of observations are also lower than 
SST, although they are still statistically significant in most 
part of the global ocean, and are especially high in the trop-
ics (Fig. 5f). RMSEs of SSS are less than 0.3 psu in most 
part of the global ocean, but regions with prominent bias 
(e.g., eastern tropical Pacific, the Bay of Bengal) and strong 
mesoscale eddy activities (e.g., Gulf stream regions) tend to 
have large values of RMSEs (Fig. 5h). These results suggest 
that the product broadly captures the observed spatiotempo-
ral variations in SSS, even though there are several regions 
with relatively large biases. Such disagreement between 

JCOPE-FGO and observed fields are likely to be caused by 
multiple factors, such as limited numbers of salinity obser-
vations used to constrain the model (Fig. 5a, b), weaker 
dependence of salinity upon atmospheric forcing compared 
to temperature (Mignot and Frankignoul 2003; Kido et al. 
2021), and deficiencies in OGCM and 3DVAR schemes. 
Although a detailed investigation on the origin of model 
bias for each region is beyond the scope of the present study, 
a careful and coordinated assessment of the aforementioned 
factors will be helpful for possible improvements in repre-
sentation of SSS fields of the future versions.

To assess the reliability of the analyzed subsurface tem-
perature and salinity fields, we have carried out similar vali-
dation procedures with the GTSPP for each vertical level 
from the surface to 1500 m depth (Fig. 6). Results for all 
profiles in the global ocean (Fig. 6a, b) show that the verti-
cal structures of mean temperature and salinity analyzed in 
JCOPE-FGO are broadly consistent with those of the GTSPP 
(Fig. 6a, b, represented by black and red curves). This can 
be confirmed from the fact that globally averaged tempera-
ture biases are lower than 1 °C (Fig. 6a, blue curve), while 
those that regard salinity are lower than 0.1 psu (Fig. 6b, 
blue curve). The RMSE of temperature is relatively large 
(~ 1.5 °C) between 100 and 200 m depth, compared to other 
depths, presumably due to large temperature variations asso-
ciated with vertical displacements of thermocline (Fig. 6a, 
green curve). The RMSE of salinity is large (~ 0.7 psu) near 
the surface: this may be due to relatively large errors in SSS 
as discussed above (Fig. 6b; see also Fig. 5). These results 
demonstrate that JCOPE-FGO can reasonably reproduce 
thermohaline structures in the global ocean.

To better delineate regional features, similar compari-
sons between analyzed temperature and salinity and GTSPP 

Fig. 4  Climatology of sea 
surface temperature (a: in °C), 
salinity (b: in psu), height 
(SSH) (c: in m), and eddy 
kinetic energy (EKE) (d: in 
 m2/s2) at the sea surface from 
JCOPE-FGO, averaged over 
January 1993–December 2021. 
Note that EKE is calculated 
from surface geostrophic cur-
rents derived from SSH fields; 
thus, regions near the equator 
are masked out in d 
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archives have been conducted regarding several key regions 
that exhibit characteristic water mass structures (Fig. 6c-j). 
In the equatorial Pacific, JCOPE-FGO has positive (nega-
tive) temperature biases near 100 to 200 m (400 to 500 m) 
depth (Fig. 6c), which correspond to the lower part of the 
thermocline, suggesting that the analyzed thermocline in the 
JCOPE-FGO is too shallow compared to observations. Such 
thermocline bias is a common problem for other OGCMs 
and ocean reanalysis products (Usui et al. 2006; Balmaseda 
et al. 2008): a too low vertical resolution and misrepresenta-
tions of vertical mixing processes in OGCMs are most the 
likely factors at the origin of this problem. Furthermore, 
thermohaline properties of water masses found in subtropi-
cal oceans, such as the Subtropical Mode Water in the west-
ern North Pacific (Fig. 6e, f) and Atlantic oceans (Fig. 6g, h) 

(Hanawa and Talley 2001), are analyzed in detail within the 
JCOPE-FGO, although temperature in the upper (lower) part 
of the thermocline are too warm (cold) compared to in situ 
observation. In addition, JCOPE-FGO reasonably captures 
hydrographic structures of subtropical salinity maximum 
regions (Fig. 6i, j). In the present research, we have care-
fully checked hydrographic structures in other parts of the 
global ocean and found that qualitative features seen in 
GTSPP observations are reasonably represented in JCOPE-
FGO throughout the analysis period (both before and after 
the launch of the Argo network around 2004). The overall 
agreement of mean temperature and salinity fields between 
JCOPE-FGO and GTSPP demonstrates that our product can 
realistically represent spatiotemporal patterns of upper ocean 
thermohaline structures in most part of the global ocean, 

Fig. 5  Comparison of SST and 
SSS between the GTSPP and 
JCOPE-FGO. The number of 
temperature and salinity profiles 
from January 1993 to December 
2021 per 1° × 1° grid is shown 
in a and b, respectively. Mean 
bias (i.e., JCOPE-FGO minus 
GTSPP) of SST and SSS are 
shown in c and d, respectively, 
whereas correlations (e, f) and 
root mean squared errors (g, h) 
are displayed in the lower two 
panels. In e and f, only correla-
tion coefficients statistically sig-
nificant at the 99% confidence 
level are plotted
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although some quantitative biases, possibly due to deficien-
cies of OGCMs and the 3DVAR scheme, have been found 
in several regions. A more comprehensive assessment using 
independent in situ observations (e.g., intensive observa-
tion campaigns) would be helpful to understand regional 
features.

3.2  Sea level and velocity fields

In order to assess dynamical fields analyzed in JCOPE-FGO, 
we have constructed climatologies of sea surface height 

(SSH) and eddy kinetic energy (EKE), as for SST and SSS. 
Here, EKE is calculated from surface geostrophic currents 
obtained from SSH fields, as follows:

where f  is the Coriolis parameter, g is the gravitational 
acceleration, and h′ represents SSH anomaly (obtained by 
subtracting climatological values) (Qiu and Chen 2013). 
Several important signatures of the upper ocean circulation, 
such as swift zonal currents near the equator, the western 

(3)EKE =
1

2

(

u
�2

g
+ v

�2

g

)

=
1

2

[

(

−
g

f

�h
�

�y

)2

+

(

g

f

�h�

�x

)2
]

,

Fig. 6  Comparison of temperature and salinity vertical profiles from 
JCOPE-FGO and GTSPP archives. a and b represent temperature and 
salinity for the whole domain, with black (red) curves representing 
the mean values of GTSPP (JCOPE-FGO) (bottom axis). Mean biases 
of JCOPE-FGO (blue curves) and root mean square errors between 
JCOPE-FGO and GTSPP (green curves) (top axis) are also shown. c, 

d Same as in a and b, but for the equatorial Pacific (120°E–80°W, 
5°S–5°N). e, f Same as in c and d, but for the western North Pacific 
(135°–180°E, 20°–40°N). g, h Same as in c and d, but for the western 
North Atlantic (80°W–40°W, 20°–40°N). i, j Same as in c and d, but 
for the eastern South Pacific (120°W–80°W, 32°–20°S)

606



Ocean Dynamics (2022) 72:599-619

1 3

boundary currents (e.g., the Kuroshio, Gulf Stream, and 
Agulhas current), and the Antarctic Circumpolar Current 
(ACC), can be qualitatively inferred from the climatologi-
cal map of SSH fields (Fig. 4c). In addition, our product 
reasonably captures the distribution of mesoscale eddies in 
the global ocean, with large values in the western bound-
ary current regions, such as the Kuroshio and Gulf stream 
(Fig. 4d). Generally, the amplitude of EKE in JCOPE-FGO 
is comparable to that derived from satellite altimetry data 
and other eddy-resolving ocean reanalysis products: indeed, 
the globally averaged EKE from JCOPE-FGO is 0.0084  m2/
s2, while that calculated from the observed SSHA with the 
same method is 0.010  m2/s2. However, some quantitative 
discrepancies between JCOPE-FGO and observation do 
exist at regional scales, and this could be due to implicit 
spatial smoothing applied in the 3DVAR scheme (note that 
analysis grid of 3DVAR is 1/3° × 1/3°) as well as misrepre-
sentations of related dynamical fields (e.g., horizontal and 
vertical shear of large-scale currents).

Next, climatology of surface velocity is similarly con-
structed from JCOPE-FGO (Fig. 7) to better describe the 
upper-ocean circulation. The global map of horizontal 

current fields (Fig. 7a) demonstrates that the major currents 
in the world oceans have been reasonably analyzed. Seasonal 
changes in surface currents, such as the Somali Current in 
the western Indian Ocean and the Wyrtki Jet in the equato-
rial Indian Ocean, are also correctly analyzed in the JCOPE-
FGO (figures not shown). Since our model has a horizontal 
resolution of 0.1°, fine structures of jets flowing in the west-
ern boundary current regions are adequately represented, as 
inferred from magnified plots of current fields (Fig. 7b-e).

To understand how our reanalysis product can realistically 
track the temporal variation in SSHA, we have calculated 
correlation coefficients and RMSEs between SSHAs from 
JCOPE-FGO and those derived from the CMEMS gridded 
product (Fig. 8). We note that the CMEMS SSHA is used to 
correct analyzed temperature and salinity fields via 3DVAR 
scheme, but the SSH field is not directly incremated in our 
configuration (see Sect. 2.2). Since the OGCM employed in 
this system is a volume-conserving model with the Bouss-
inesq approximation, a globally uniform steric effect due 
to thermal expansion of seawater is not explicitly included 
in terms of sea level fields (Greatbatch 1994; Griffies et al. 
2014). Indeed, the globally averaged SSH is almost constant 

Fig. 7  a Surface velocity from 
JCOPE-FGO averaged over 
January 1993–December 2021. 
The current speed is represented 
by color shading, whereas zonal 
and meridional velocities are 
shown by vectors. b–e As in 
a, but with magnified views in 
the western North Pacific (b), 
North Atlantic (c), South Indian 
Ocean (d), and South Atlantic 
(e). Locations of passages used 
to estimate volume transports 
(Table 1) are indicated by green 
lines
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in time in JCOPE-FGO, while it increases steadily in time 
in the satellite altimeter. Thus, we removed linear trends of 
SSHAs both from JCOPE-FGO and satellite altimeter prior 
to calculation of skill metrics.

The globally averaged value of correlation coefficients 
is 0.71, and their values are especially high in the tropi-
cal Pacific and Indian Ocean (Fig. 8a). High correlations 
in the Indo-Pacific region may reflect the fact that SSHA 
variability in these regions is predominantly caused by wind-
driven baroclinic waves (Timmermann et al. 2010; Roberts 
et al. 2016). Correspondingly, RMSEs are very small at 
lower latitudes (Fig. 8b). Our product is also skillful at rep-
resenting time evolution of SSHA in midlatitude oceans; 
statistically significant correlation coefficients are found 
even near the western boundary current regions (Fig. 8a), 
despite the presence of strong intrinsic variability (Fig. 8b, 
see also Fig. 1a by Nonaka et al. 2020). These results sug-
gest that corrections of temperature and salinity fields via 
assimilation of satellite SSHA actually lead to correct rep-
resentations of SSHA. The spatial pattern of correlation 
map of SSHA fields (Fig. 8a) is broadly similar to other 
ocean reanalysis products with eddy-permitting OGCMs 
(for example, see Fig. 2b by Balmaseda et al. 2015), but our 
product seems to better track variability in the extratropical 
oceans (e.g., the Kuroshio Extension and Agulhas Current 

regions) possibility, owing to higher horizontal resolution 
of the OGCM.

However, several regions with relatively low correlations 
of SSHA have also been detected, such as the eastern North 
Pacific (around 150°–120°W, 30°–45°N), the southern part 
of tropical Atlantic Ocean (around 40°W–20°E, 15°–5°S), 
and the southeastern tropical Pacific (120°–80°W, 30–15°S). 
These regions are characterized by relatively weak tempo-
ral variability of SSHA; thus, the signal-to-noise ratio is 
smaller than in other regions. More detailed investigations 
are required to understand the origin of these discrepancies. 
Possible remedies are more elaborated domain decomposi-
tions for the 3DVAR scheme (Fig. 2a), adjustment of spatial-
scale parameters (Fig. 2b, c), and use of ensemble technique 
to better utilize information provided by the satellite altim-
etry data.

While the model’s SSHA fields do not explicitly include 
the increasing trend associated with the thermal expansion 
of water column, it is possible to diagnostically calculate the 
steric sea level height from three-dimensional density fields 
(Greatbatch 1994; Griffies et al. 2014). To demonstrate this 
point, we have computed the steric sea level height at each 
grid point by vertically integrating density anomalies from 
the bottom to the surface, and their long-term trends are 
compared with those from satellite observation (Fig. 9a-c). 
The overall increasing trends of the observed SLA, as well 
as some regional features (e.g., enhanced sea level rising in 
the Kuroshio regions and weaker sea level rise in the eastern 
equatorial Pacific), are also captured in the steric sea level 
height fields of the JCOPE-FGO. The temporal evolution 
of globally averaged sea level anomalies in the observation 
also agrees well with that of steric height of the JCOPE-
FGO (Fig. 9c), apart from some quantitative discrepancies. 
This again confirms that the JCOPE-FGO can reasonably 
analyze three-dimensional temperature and salinity fields 
both at regional and global scales.

The dynamical fields of JCOPE-FGO have been further 
evaluated by comparing surface current fields with inde-
pendent observations obtained by drifting buoys. For this 
purpose, we have adopted the quality-controlled 6-h interpo-
lated surface drifting buoys provided by the NOAA Global 
Drifter Program (NOAA GDP data) (Lumpkin and Centu-
rioni 2019) as reference data. Similar to the validation of 
temperature and salinity fields, all drifter data from January 
1993 to December 2021 are binned into a 1° × 1° horizontal 
grid; comparisons are made on a daily basis at each grid 
point and corresponding location to calculate statistical met-
rics (i.e., mean bias, correlation, and RMSE).

The mean bias of surface current fields of JCOPE-FGO 
with respect to the NOAA GDP drifter data are generally 
negligibly small in most part of the global ocean, except 
for its zonal component in the equatorial Pacific. To the 
west of the dateline in the equatorial Pacific, JCOPE FGO 

Fig. 8  a Correlation and b RMSE of sea-level anomalies between 
FGO and the CMEMS gridded SLA. In a, only correlation coeffi-
cients statistically significant at the 99% confidence level are plotted
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produces a too strong westward current compared to the 
drifter observation, whereas the westward current is weaker 
than the observation to the east (Fig. 10a). Such biases in 
the equatorial currents may be due to inaccuracies in wind 
forcing and misrepresentation of vertical stratification. Other 
regional features in surface current biases, such as slight 
southward shift of Gulf Stream to the east of the Cape Hat-
teras, and weaker southwestward current off the Brazilian 
coast around 30°S have also been detected, but the overall 
patterns of the mean surface current fields in JCOPE-FGO 
compare well with those obtained from observation.

Additionally, the correlation coefficients of zonal and 
meridional currents between the JCOPE-FGO and NOAA-
GDP drifters are reasonably high and statistically signifi-
cant in many areas of the global ocean, further demonstrat-
ing the skill of our product in representing surface current 

fields. The correlation coefficients of zonal currents are 
generally larger than that of meridional currents, espe-
cially in the tropics: this is presumably due to the larger 
magnitude (and hence larger signal-to-noise ratio) of the 
zonal than that of the meridional component. RMSEs 
between JCOPE-FGO and NOAA-GDP are large over 
regions with strong currents and mesoscale eddies, such 
as the western boundary current regions and equatorial 
Pacific. The spatial patterns of metrics of current fields 
(Fig. 10) largely agree with those of SSHA fields (Fig. 8), 
implying that both validations against assimilated (i.e., 
satellite SSHA) and independent (i.e., drifter data) obser-
vation give consistent results.

Due to the scarcity of available observations, it is not 
possible for us to validate spatiotemporal variability of 
subsurface current fields on a global scale. Instead, we 
calculated vertically integrated volume transports across 
several major sections using JCOPE-FGO and compared 
these values with historical estimates (Table 1). First, 
the time-averaged volume transport of the Indonesian 
throughflow agree well with direct estimates (15.7 Sv in 
the JCOPE-FGO, whereas it corresponds to 15 Sv accord-
ing to Sprintall et al. 2009). Furthermore, we have checked 
volume transports across each section (e.g., the Lombok 
strait), which also match well with observations. Values 
of volume transports of major western boundary currents 
(here we compared Kuroshio, Gulf Stream, and Agulhas 
Currents) are consistent with historical estimates by direct 
observation (Fig. 7b-d, Table 1). In addition, the mean 
northward volume transport across 26.5°N in the upper 
1000 m, which is a measure of the strength of the Atlantic 
Meridional Overturning Circulation (AMOC), is 13.6 Sv; 
this is close to the observational estimates of about 17 Sv 
(Cunningham et al. 2007; Karspeck et al. 2017). The ver-
tical structure of the time-mean AMOC stream function 
at that latitude seen in the observation, with a northward 
flow in the upper 1000 m and southward return flow in 
the deeper layer, is also correctly captured in the JCOPE-
FGO (figure not shown). However, the Kuroshio Current 
flowing south of Japan (31.3 Sv) seems to be somehow 
underestimated compared to the direct observation (42 Sv; 
Imawaki et al. 2001). Volume transport of ACC across the 
Drake passage exceeds 100 Sv in JCOPE-FGO (109 Sv), 
but it is lower than the estimate from direct observation 
(141 Sv; Koenig et al. 2014) (Table 1). It is not easy to 
articulate the reason responsible for the underestima-
tions, but differences in estimation periods, contributions 
from small-scale features not adequately captured in the 
observation, and implicit spatial smoothing made by the 
3DVAR scheme are possible factors. Further validations 
of our product against directly observed three-dimensional 
current fields will be helpful for a more comprehensive 
evaluation.

Fig. 9  a Spatial pattern of linear trends of sea-level anomalies dur-
ing the period of January 1993–December 2021 calculated from the 
CMEMS. b As in a, but for that of steric sea-level height of JCOPE-
FGO. c Time series of globally averaged sea-level anomalies from 
CMEMS (red line) and steric sea level of JCOPE-FGO
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4  Impact of river runoff forcing

4.1  Global impact

To assess the impact of river discharge on representations 
of upper ocean fields, we have constructed a twin rea-
nalysis product that does not include river forcing in the 
OGCM (referred to as the NoRIV product), as described 
in Sect. 2.3. Using outputs from both products, we firstly 
compare global maps of climatological SSS and SSH fields 
in Fig. 11: interestingly, both the original JCOPE-FGO 
and NoRIV runs exhibit a broadly similar spatial pattern 

of mean SSS fields, and their differences are not evident 
in a global-scale view (Fig. 11a, c). Indeed, differences 
in SSS between the two runs are mostly confined to nar-
row coastal regions near river mouths of large rivers (see 
Fig. 1 for their specific locations); as expected, the original 
JCOPE-FGO has lower SSS compared to the NoRIV run. 
SSS differences between the two runs are less than 1.0 psu 
in open ocean areas with depth greater than 1000 m, but 
they reach more than 3.0 psu over continental shelves adja-
cent to river mouths (Fig. 11e). Similar salinity differences 
have been found below the sea surface, but they rapidly get 
weaker as depth increases and become negligibly small at 
depths greater than 100 m. Differences in climatological 

Fig. 10  a, b Mean errors of 
surface zonal (a) and meridional 
(b) currents from JCOPE-FGO 
relative to the NOAA drifter 
data (i.e., the JCOPE-FGO 
minus observation). c, d As in 
a and b, but for correlations 
between JCOPE-FGO and 
NOAA drifter data. e, f As in c 
and d, but for root mean square 
errors (RMSE)

Table 1  Time-mean volume 
transport through several major 
passages (in Sv = 1.0 ×  106 
 [m3/s]) (see Fig. 7 for locations 
of each passage)

Name of passage JCOPE-FGO Observations

Indonesian throughflow 15.7 15.0 (Sprintall et al. 2009)
Kuroshio south of Japan (ASUKA-line) 31.3 42 (Imawaki et al. 2001)
Gulf Stream off the Cape Hatteras 53.2 54.5 (Heiderich and Todd 2020)
Agulhas Current across 34°S 83.5 84 (Beal et al. 2015)
ACC Drake Passage 109 141 (Koenig et al. 2014)
Meridional transport at 26.5°N in the upper 1000 m 13.6 17 (Cunningham et al. 2007)
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SSH between the two runs are also not clear for most areas 
(Fig. 11b, d), but there are several regions with systemati-
cally higher SSH in the original run than the NoRIV run, 
such as the East China Sea and Southeast coasts of the 
USA (Fig. 11f). These changes in salinity and SSH asso-
ciated with river forcing may alter the evolution of tem-
perature by modifying density stratification and currents; 
however, differences in temperature between the two runs 
were rather limited (less than 1.0 °C for most part of the 
ocean), since the same information on thermal fields are 
incorporated and used to correct the model’s temperature. 
Therefore, impacts of large rivers are mostly found in near-
surface salinity fields of narrow coastal regions adjacent to 
river mouths, and their influence do not effectively spread 
out to open ocean areas.

The association between regions with large SSS dif-
ferences between the two runs and coastal shelves can be 
seen from magnified views of SSS and bottom topography 
around river mouths of major rivers (Fig. 12). For exam-
ple, the signature of low-salinity water along the Missis-
sippi-Alabama coast, associated with freshwater inputs 
from the Mississippi River, is clearly seen in the original 
JCOPE-FGO (Fig. 12a), whereas it is completely absent 
in the NoRIV run (Fig. 12b). The low-salinity water found 

in the original JCOPE-FGO is mostly confined to areas 
with depths shallower than 400 m, as inferred from the 
map of bottom topography (Fig. 12c, d). Such features are 
also captured by satellite observation and high-resolution 
regional ocean model simulations (Schiller et al. 2011; 
Fournier et al. 2016), as we will discuss in detail in the 
next subsection. Furthermore, the original JCOPE-FGO 
captures similar spreading of low-salinity waters over shal-
low areas for other rivers. For example, freshwater from 
the Amazon River is advected northwestward along the 
coast of South America by the North Brazilian Current 
(Fig. 12e-h), whereas low-salinity water flowing into the 
Bay of Bengal is transported along the east coast of India 
by the East India Coastal Current (Fig. 12i-l). On the other 
hand, the low-salinity water originating from the Yang-
tze River spreads to broader regions of continental shelf 
of the Yellow Sea (Fig. 12m-p). Such offshore spreading 
of freshwater is particularly evident during few months 
after the corresponding river runoff reaches its seasonal 
maximum; however, low-salinity water is mostly confined 
to coastal area for other seasons. These distinct imprints 
of large rivers in the world ocean have been detected by 
satellite SSS observations (Fournier et al. 2017; Fournier 
and Lee 2021); results from our sensitivity experiments 

Fig. 11  a, b Climatology of a 
sea surface salinity (SSS; in 
psu) and b sea surface height 
(SSH; in m) from the original 
JCOPE-FGO. c, d As in a and 
b, but for the run without river 
forcing (NoRIV run). e, f Dif-
ferences in climatological e SSS 
and f SSH between the original 
JCOPE-FGO and the NORIV 
reanalysis product
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suggest that an explicit incorporation of river forcing into 
the OGCM is essential for an accurate representation of 
these features.

Our results demonstrating localized natures of riverine 
fresh water is in a stark contrast with previous modelling 
studies that have stressed the importance of their non-local 
effect (Huang and Mehta 2010). Nevertheless, these results 
were primarily based on non-eddy-resolving or eddy-permit-
ting OGCMs that are not able to properly resolve mesoscale 
eddies and detailed topographical features, such as continen-
tal shelves. For this reason, the effect of freshwater inputs 
from rivers may be artificially exaggerated in these studies 
with respect to the actual ocean. However, as a counterclaim 
of our statement, one may argue that relatively small dif-
ferences in SSS between the two reanalysis runs over off-
shore regions are due to implicit corrections of SSS by the 
data assimilation process, and true impacts of river forcing 
may potentially be underestimated in the present sensitivity 

experiments. That is, if some portions of low-salinity signals 
associated with river runoff are captured by in situ observa-
tions, their information will be used to correct the model’s 
SSS to produce river-induced low-salinity signals, regardless 
of with and without an explicit inclusion of river discharge 
into the OGCM.

To explore this alternative possibility, we have compared 
analysis increments (i.e., the analysis value minus first-guess 
value) that are added to correct the model’s SSS for both 
runs (Fig. 13). The spatial pattern of the analysis incre-
ments for the SSS from the original JCOPE-FGO (Fig. 13a) 
is very similar to that from the NoRIV run (Fig. 13b), with 
relatively large values (0.2–0.3 psu) in the tropical Atlantic 
and western North Pacific. If signatures of rivers captured 
by observations are used to correct the analysis fields, the 
analysis increments added in the NoRIV run should be more 
negative compared to that of the original JCOPE-FGO, since 
the former would require more corrections to implicitly 

Fig. 12  a–c Magnified view of climatology of SSS from the original 
JCOPE-FGO (a), the NoRIV run (b), and differences between the 
original and NoRIV run (c) near the river mouth of the Mississippi 

River. The OGCM bathymetry used in both configurations is shown 
in d. e–h As in a–d, but for the Amazon River. i–l As in a–d, but for 
the Bay of Bengal. m–p As in a–d, but for the Yangtze River
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represent unresolved effects of freshwater inputs from rivers. 
However, differences in analysis increments between the two 
runs are considerably smaller than their total values for most 
areas (lower than 0.02 psu), suggesting that corrections asso-
ciated with observationally captured riverine waters seem to 
be of secondary importance (Fig. 13c). Few exceptions are 
narrow regions with positive differences (i.e., corrections 
applied to the NoRIV run are more negative compared to the 
original JCOPE-FGO), such as the eastern part of the tropi-
cal Atlantic and northwestern part of the Bay of Bengal. In 
these areas, low-salinity waters associated with river plumes 
captured by observations may be used to correct model’s 
salinity fields both in the original and NoRIV runs. It is dif-
ficult to quantitatively discuss how such implicit SSS correc-
tions in both runs affect our estimations of impacts of river 
discharge upon salinity fields, but they are limited to small 
areas near the coast. We have also tested a limited number of 

experiments with and without river forcing using the same 
OGCM without data assimilation and found that impacts 
of data assimilation are minor at least in our model. Based 
on the above results, we conclude that the small magnitude 
of SSS differences between the two runs over areas away 
from the coast is not solely an artifact arising from data 
assimilation, although the total influence of river discharge 
may be potentially underestimated in some regions where 
low-salinity signals associated with river runoff are partly 
captured by the observation. Further assessments with dif-
ferent eddy-resolving OGCMs (both with and without data 
assimilations) are necessary to assess the validity of our 
findings presented above.

4.2  An illustrative example: offshore spreading 
of Mississippi River plume

As a typical example showing the significant impact of river 
discharge, we focus on the spreading of low-salinity water 
from the Mississippi River to the Gulf of Mexico. Due to its 
physical and biological importance, dynamics of the Missis-
sippi River plume and its interaction with large-scale ocean 
circulation in the bay have been extensively investigated, 
both by observational and modelling approaches (Morey 
2003; Morey et al. 2003; Schiller et al. 2011; Fournier et al. 
2016; Brokaw et al. 2019).

To illustrate how realistically the original JCOPE-FGO 
can reproduce the observed low-salinity signals associated 
with riverine fresh water, we compared the analyzed SSS 
fields of the two runs with the observed state derived from 
the Soil Moisture and Ocean Salinity (SMOS) satellite. 
Here, we use the Level-3 debiased version 5 gridded prod-
uct released by LOCEAN and ACRI-st work, as Ocean 
Salinity Center of Expertise for CATDS (CATDS CEC-
OS) (Boutin et al. 2018) as the reference field. As a typi-
cal example showing the dispersal of freshwater from the 
Mississippi River to the bay, snapshots of SSS and SSH 
from satellite observations and original/NoRIV runs of 
JCOPE-FGO in June 2014 are shown in Fig. 14. From the 
SMOS SSS fields, distinct low-salinity water (with salinity 
lower than 32 psu) associated with the Mississippi River 
plume is clearly found along the Louisiana-Mississippi-
Alabama coast (Fig. 14a). Such signatures are also well 
captured by JCOPE-FGO, but they are totally missing 
in the NoRIV run (Fig. 14c, e). During this period, the 
Loop Current flowing from the Yucatan Peninsula extend 
northward to reach the continental shelf of around 28°N 
(Fig. 14b), and associated anticyclonic circulation trans-
ports low-salinity water southward along the West Florida 
Shelf (Fig. 14a) (Brokaw et al. 2019). Such southward 
spreading of low-salinity water is again well captured in 
the original JCOPE-FGO, but not present in the NoRIV 
run, as also seen from the map of SSS differences between 

Fig. 13  a Long-term mean differences between the analyzed and first-
guess sea surface salinity (SSS; in psu) from the original JCOPE-
FGO. b As in a, but for the run without river forcing (NoRIV run). 
Differences between a and b are shown in c 
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the two runs (Fig. 14g). Interestingly, the detachment of 
anticyclonic eddy at the edge of the Loop Current (88°W, 
27°N) detected in the CMEMS observation (Fig. 14b) is 
more pronounced in the original JCOPE-FGO (Fig. 14d) 
compared to the NoRIV run (Fig. 14f). This implies a 
possibility of mutual interactions between river plume 
waters and the Loop Current system (Schiller et al. 2011). 
However, due to strong intrinsic variability arising from 
the nonlinear nature of the current, differences in SSH 
between the two experiments are not limited to the region 
(Fig. 14h); thus, it is difficult to draw robust conclusions 
on the origins of differences in dynamical fields of the 
two runs. Further sensitivity experiments using increased 
ensemble members with perturbed initial conditions will 
be helpful to elucidate their detailed dynamics, which 

will be an interesting application of the newly developed 
system.

Remarkable SSS differences between the original and 
NoRIV runs are evident for other periods: the former 
compares well with the SMOS observation. To illustrate 
this point, Fig. 15 shows the time series of SSS averaged 
over the northern part of the Gulf of Mexico (89°–83°W, 
28°–29.5°N, see Fig. 14c  for its geographical location) 
(Fig. 15b), as well as the discharge rate of Mississippi River 
(Fig. 15a) from JRA55-do. The observed SSS exhibits a 
pronounced seasonal cycle, with the highest (lowest) peak 
around boreal winter (summer) (Fig. 15b). This can be natu-
rally understood as a delayed response to seasonal changes 
in river discharge rate, which reaches its seasonal maximum 
(minimum) around May (October) (Fig. 15b). The distinct 

Fig. 14  a, b Spatial distribu-
tions of SSS (a) and SLA (b) in 
June 2004 derived from satellite 
observation. SSS data is from 
SMOS, whereas SLA is from 
CMEMS gridded product. c, d 
As in a and b, but those derived 
from the JCOPE-FGO. Surface 
horizontal current fields are also 
shown in d by vectors. e, f As in 
c and d, but from the JCOPE-
FGO NoRIV. Differences 
between the original FGO and 
NoRIV reanalysis are shown 
in g and h. The red box shown 
in c represents the region used 
for area averaging to make time 
series in Fig. 15
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seasonal cycle of SSS is correctly analyzed in the original 
JCOPE-FGO, although its amplitude is slightly underesti-
mated compared to the SMOS (Fig. 15b, black curve). In 
contrast, SSS averaged over the same region in the NoRIV 
run exceeds 36.0 psu throughout the period, and no well-
defined seasonal variation is observed (Fig. 15b, red curve). 
This can be confirmed from the fact that the correlation coef-
ficient between the SMOS SSS and JCOPE-FGO is 0.88, 
whereas it declines to 0.32 in the case of NoRIV run. These 
results clearly demonstrate that an explicit incorporation 
of river discharge forcing is essential for better simulation 
of coastal salinity and related oceanic fields even for data-
assimilated ocean reanalysis product.

5  Summary and discussion

We have developed a new ocean reanalysis product, the 
JCOPE-FGO, that covers the global ocean from 75°S to 
75°N with a horizontal resolution of 0.1° × 0.1°. In the 
JCOPE-FGO system, information obtained from in situ 
temperature/salinity profiles and satellite observations of 
SST and SSHA are dynamically incorporated into an eddy-
resolving OGCM with the 3DVAR scheme, as well as esti-
mates of three-dimensional oceanic states from January 1993 
to December 2021 are provided. Through comprehensive 
validations of analyzed oceanic fields of the JCOPE-FGO 
against various types of available observations, we find that 
the product can realistically represent spatial distributions of 
water mass structures and dynamical fields in most part of 
the global ocean, although some quantitative discrepancies 

are also identified over several specific regions. The tempo-
ral variations in these fields are also correctly captured both 
in the tropical and extratropical oceans. This indicates that 
the product serves as a useful tool for monitoring changes 
in oceanic state and understanding their physical origins.

A unique feature of this product is the use of a refined 
global river discharge dataset; its impact upon the represen-
tation of oceanic fields is investigated in detail by conduct-
ing a twin experiment that does not include river forcing 
(NoRIV run). A comparison of SSS between the original and 
NoRIV runs reveals that impacts of large rivers upon salin-
ity are mostly confined to narrow coastal regions near river 
mouths. Such limited offshore spreading of freshwater from 
rivers is somewhat different from results based on OGCMs 
with relatively coarse resolution: this may reflect the fact 
that an accurate representation of topographical features near 
the coast with higher resolution is crucial for better represen-
tation of low-salinity signals associated with river discharge. 
The importance of river forcing is further demonstrated by 
an example focusing on the spreading of freshwater from 
the Mississippi River to the Gulf of Mexico. Comparisons 
of analyzed fields from the two reanalysis runs with satel-
lite observations reveal that the complex interplay between 
the low-salinity water and the Loop Current is realistically 
represented in the original JCOPE-FGO compared to the 
NoRIV run. Thus, an explicit incorporation of river forcing 
in the present system is beneficial for better representations 
of coastal salinity and related fields.

Although JCOPE-FGO can reasonably capture the 
observed oceanic variability both at large and small spatial 
scales in the global ocean, several notable biases do exist in 
several regions. There are several remedies that may poten-
tially lead to better representations of observed oceanic 
fields. In terms of the OGCM, an increased number of ver-
tical layers, adoption of refined vertical mixing schemes, and 
use of different atmospheric forcing fields would be helpful 
to mitigate the model biases found in the present version. In 
addition, an explicit incorporation of tidal forcing as well 
as sea ice processes may also be advantageous for better 
representation of regional-scale variability. Incorporation of 
Arctic regions in the model domain and use of an explicit 
sea ice model may lead to a better representation of tempo-
ral variations in water mass structures over the polar region 
and their spreading to lower latitudes, such as the “Great 
Salinity Anomaly” (Dickson et al. 1988; Belkin et al. 1998) 
and related processes. Regarding data assimilation, tuning 
of tilling allocations and assimilation parameters, use of 
the spatial scale-dependent 3DVAR algorithm (Miyazawa 
et al. 2017, 2021), and assimilations of additional variables, 
such as satellite SSS data (Martin et al. 2019), may boost 
the skill of this system. Implementations of more advanced 
data assimilation schemes, such as the ensemble Kalman 
filter (EnKF) (Miyazawa et al. 2012b) and four-dimensional 

Fig. 15  a Time series of volume transport of Mississippi River 
derived from the JRA55-do dataset (in  [m3/s]). b Time series of area-
averaged SSS (in psu) over the region near the river mouth of Mis-
sissippi River (89°–83°W, 28°–29.5°N) from SMOS satellite obser-
vation (gray curve), the original JCOPE-FGO (black curve), and 
JCOPE-FGO_NoRIV (red curve). Correlation coefficients between 
SMOS and JCOPE-FGO/FGO_NoRIV are shown in the lower left
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variational method (4DVAR) (Usui et al. 2015), will also be 
a possible direction for future development. Similar ocean 
reanalysis products with eddy-resolving resolution have also 
been developed by several research groups (Chassignet et al. 
2009; Metzger et al. 2014; Lellouche et al. 2018, 2021), 
and a multi-product intercomparison approach may also be 
helpful for understanding the origins of biases (Balmaseda 
et al. 2015).

Since the JCOPE-FGO covers quasi-global ocean with 
an eddy-resolving resolution, it can be used to investigate a 
wide range of oceanic phenomena from regional to global 
scales, such as dynamics of river plumes, variability of 
mesoscale eddies, and basin-scale circulations. It may also 
be utilized as a boundary forcing of nested regional ocean 
models and biogeochemical tracer models. Furthermore, 
as in other regional JCOPE products, the JCOPE-FGO can 
be used as an ocean forecasting system by initializing the 
OGCM with analyzed fields obtained by assimilation cycles. 
Indeed, we are planning to conduct a series of retrospective 
forecast experiments and explore the potential predictabil-
ity of various oceanic fields from a global perspective. It 
is hoped that this product and its updated versions will be 
widely used for a variety of studies on physical oceanogra-
phy, climate dynamics, and other related fields.
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