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Abstract
The global tide is simulated with the global ocean general circulation model ICON-O using a newly developed tidal module,
which computes the full tidal potential. The simulated coastal M2 amplitudes, derived by a discrete Fourier transformation of the
output sea level time series, are compared with the according values derived from satellite altimetry (TPXO-8 atlas). The
experiments are repeated with four uniform and sixteen irregular triangular grids. The results show that the quality of the coastal
tide simulation depends primarily on the coastal resolution and that the ocean interior can be resolved up to twenty times lower
without causing considerable reductions in quality. The mesh transition zones between areas of different resolutions are formed
by cell bisection and subsequent local spring optimisation tolerating a triangular cell’s maximum angle up to 84°. Numerical
problems with these high-grade non-equiangular cells were not encountered. The results emphasise the numerical feasibility and
potential efficiency of highly irregular computational meshes used by ICON-O.
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1 Introduction

Numerical modelling of global ocean dynamics using a regu-
lar (structured) grid generally leads to two problems: first, the
meridional convergence, i.e. the impossibility to uniformly
resolve the sphere. Though rotated spherical coordinates are
shifting the North Pole onto a land mass (e.g. Marsland et al.
2003) to avoid the most severe computational problems, the

fact remains that the resolution varies in a way, which is not
exclusively oriented along oceanographic criteria. This also
points to the second problem: oceanic fluxes exist on a broad
band of scales. Thereby, fluxes caused by smaller scale pro-
cesses like the flow through a strait or a western boundary
current can have crucial consequences up to the basin-scale.
However, simulations with sufficiently high-resolution struc-
tured grids, that would resolve these small scales, are too
costly to be performed effectively.

Hence, unstructured grid ocean modelling became an at-
tractive alternative, because it offers the possibility to circum-
vent the pole problem and at the same time to freely vary the
resolution within the model domain. In the early 1990s, finite
element ocean models, being inherently affiliated with un-
structured grids, like ADCIRC (Luettich Jr et al. 1992) in-
spired the ocean modelling community. More recent finite
element model developments are FESOM (Danilov et al.
2004), SELFE (Zhang and Baptista 2008) or SLIM (White
et al. 2008). However, because of their fundamental conser-
vation property in combination with comparable low compu-
tational costs, finite volume models mostly remained the tool
of choice. This explains the ground-breaking impact of the
UnTRIM model (Casulli and Walters 2000) which uses finite
volumes on a so-called unstructured orthogonal grid contain-
ing cells which form arbitrary convex polygons within the
horizontal plane. A number of similar model developments
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followed, e.g. ELCIRC (Zhang et al. 2004), FVCOM (Chen
et al. 2015) or SCHISM (Zhang et al. 2016), whereas all these
models use polygonal cells which share each lateral surface
with exactly one neighbour cell. Such a grid is called confor-
mal (e.g. Ives 1982).

Non-conformal grids normally consist of cuboids defined
and uniformly oriented in Cartesian coordinates with cells
having more than six neighbours if they border a region of
higher spatial resolution. This geometrically rather simple
structure reduces the computational costs and facilitates the
handling of temporally variable refinements, i.e. dynamic
mesh adaptions (Khokhlov 1998). Therefore, non-conformal
grids are popular within the engineering sciences (e.g. Iousef
et al. 2017) whereas oceanographic applications were per-
formed by Popinet and Rickard (2007) (dynamic horizontal
mesh refinement), Backhaus (2008) (static, vertical refine-
ment) and Logemann et al. (2013) (static three-dimensional
refinement). The latter model (CODE) shows a cross-scale
spectrum from Icelandic fjords up the North Atlantic basin
scale and was successfully applied in studies of regional
oceanography and regional marine biology.

However, in the field of climate science, recent global
ocean model developments all use finite volumes on confor-
mal grids. Being the oceanic part of an earth system model
MPAS-Ocean (Ringler et al. 2013) uses Voronoi tessellations,
i.e. basically hexagonal cells, with an Arakawa C-grid stag-
gering, with scalar variables at the cell centre and normal
components of the velocity vector at cell boundaries
(Arakawa 1966). FESOM2 (Danilov et al. 2017) uses trian-
gular cells with an Arakawa B-grid staggering, i.e. whereas
the scalar variables (e.g. pressure, temperature, salinity) are
defined on the triangle vertices the flow vector is located at
the cell (triangle) centre. This, at first glance surprising, stag-
gering can be traced back to the avoidance of a numerical
problem, which is related to the triangular C-grid staggering.
A numerical mode, which leads to checkerboard pattern in the
divergence field of the horizontal flow, was first mentioned by
Stuhne and Peltier (2009) and clarified theoretically by
Danilov (2010) whereas Wolfram and Fringer (2013) discuss
different filtering solutions.

Finally, as part of the German ICON climate and weather
modelling initiative (Giorgetta et al. 2018; Crueger et al.
2018), the ocean model ICON-O was developed (Korn
2017), which uses a triangular C-grid. This model overcomes
the triangular C-grid dilemma by using a new discretisation
technique, which integrates ideas of Finite Elements, Finite
Differences and Mimetic Finite Differences and provides a
new way to control the divergence noise without violating
the discrete conservation conditions.

This paper investigates the performance of ICON-O run-
ning on different global triangular computational meshes.
These meshes will be either uniform with different resolutions
or locally refined with a large horizontal resolution range

between 148 and 7 km, i.e. with a local resolution increase
up to a factor of 21. The mesh refinement is performed by the
edge-bisection (quadtree) method wherein the original trian-
gular cell obtains three new vertices at the midpoints of its
edges. These three new vertices are connected with three
new edges thereby dividing the old cell into four new cells.

Under the term “performance”, we understand two aspects:
first, the stability, i.e. the question whether ICON-O is able to
run on a certain grid and to produce physically meaningful
results, and second, the model’s ability to use an irregular grid
in an efficient way. In this paper, we define efficiency as the
quality increase of a simulation (i.e. reduction of the error
metric) caused by the replacement of a uniform grid by an
irregular one having the same number of grid cells.

Our numerical experiments can be seen as a continuation of
the work of Stuhne and Peltier (2009) who had successfully
implemented a twofold edge-bisection refinement for the
Hudson Bay region and showed that their triangular C-grid
model tolerated the related sharp resolution jumps from 74 to
28 to 14 km. In our study, we will apply up to four edge-
bisection refinements with much smaller spacing between
the jumps, i.e. with much higher horizontal resolution gradi-
ents. The basic numerical problem with high resolution gradi-
ents is caused by the fact that the originally nearly
equiangularly shaped triangular cells are distorted which leads
to growing numerical errors and, in the case of ICON-O, even
to runtime errors if the triangle’s maximum angle is greater
than 90°. Certainly, there exist other more sophisticated mesh
refinement techniques reducing the sharpness of the resolution
jumps (e.g. Engwirda 2017). Furthermore,Walko and Avissar
(2011) developed a row of algorithms to reduce the sharpness
between regions of different edge-bisection refinements.
However, the basic idea of this paper is to test the ICON-O
performance on computational meshes, which are not geomet-
rically optimal.

The oceanographic background of our experiments is the
fact that barotropic tides are the dominant dynamic process
along the greatest parts of the world ocean’s coasts. Questions
related to coastal protection, marine traffic, fishery, coastal
ecology and coastal carbon fluxes are strongly connected to
coastal tides. Therefore, besides testing the model, we also try
to find the direction towards an optimal mesh for the simula-
tion of the global barotropic tide along the coast, whereas this
optimisation would be defined with regard to the precision of
the coastal tidal wave simulation and the associated computa-
tional costs.

2 The model

ICON-O is a global ocean general circulation model based on
finite volume numerics. The surface of the sphere is divided
into triangular cells with a C-grid staggered distribution of
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variables. In the vertical direction, it uses a z-coordinate axis.
Besides computing the ocean state, it includes the computa-
tion of the dynamics and thermodynamics of sea ice. This is
performed by a coupling with the sea ice model FESIM
(Danilov et al. 2015), which uses the viscous-plastic rheology
after Hibler (1979). For a detailedmathematical and numerical
description of ICON-O, the reader is referred to Korn (2017).

In order to parameterise the horizontal turbulent viscosity
AH, used for the traditional Laplace formulation of viscosity,
the following option was chosen:

AH ¼ 104 m2s−1 þ 0:3 m s−1
ffiffiffiffiffiffiffiffiffiffiffi
Δs Δx

p
ð1Þ

withΔs being the length of the triangle edge connected to the
velocity point and Δx the distance between the two adjacent
triangular circumcentres. This linear relation between the grid
spacing and the exchange coefficients reminds to
Smagorinsky’s (1963) approach, though this also considers
the velocity shear. The topic of optimizing the velocity closure
by biharmonic, or a combination of harmonic and biharmonic
operators or flow dependent closures such as the Smagorinsky
and the Leith closure is the subject of ongoing research. The
coefficient for horizontal tracer diffusion KH is set to zero and
only the flux limiter in the flux-corrected transport scheme
provides a local diffusive effect. The model uses a constant
bottom drag coefficient of 0.003. The vertical turbulent vis-
cosity and diffusivity are parameterised by the modified
Richardson number dependent so-called PP scheme
(Pacanowski and Philander 1981). Here, the vertical shear is
directly computed at the edges (velocity points) whereas the
stratification is interpolated from the two ambient cells onto
the edge.

The water column is resolved by 60 layers, which have a
thickness between 15mwithin the upper 150 m and 200 m for
the depth range below 2000 m. This relatively high vertical
resolution near the surface is necessary for a realistic represen-
tation of the coastline. The model topography is derived from
the 1′ global relief model ETOPO1 (Amante and Eakins
2009). ICON-O uses a static land sea mask; a wetting-drying
algorithm is yet not included.

2.1 Tidal dynamics

Ocean tides are the results of the gravitational forces of the
moon and the sun acting on a unit mass at the earth’s surface.
Using the geometry given in Fig. 1 and denoting by j either
moon M or sun S, we calculate the gravitational force fg at
point P with

fg ¼ G mj

R′2
ð2Þ

withG being the gravitational constant,mj the moon’s or sun’s
mass, R’ the distance between P and the respective celestial

body. Furthermore, the geometry gives:

R′2 ¼ r2 þ R2
j−2 r Rj cos γ ð3Þ

with Rj being the distance between the earth’s centre
and the respective celestial body. The angle γ is located
between the vector from the earth’s centre to the celes-
tial body and the vector from the earth’s centre to the
reference point P on the earth’s surface (Apel 1987).
Hence, it follows

f g ¼
G mj

r2 þ R2
j−2 r Rjcosγ

ð4Þ

This force is mostly balanced by the centrifugal force fc
caused by the earth’s rotation around the centre of mass of
the earth/celestial body system with the angular velocityΩj. It
is

f c ¼ Ω2
j R j−rcosγ
� � ð5Þ

With Keppler’s third law (complete balance at the earth’s
centre)

G mj

R2
j

¼ Ω2
j R j ð6Þ

if follows

f c ¼
G mj

R2
j

−
G mj rcosγ

R3
j

ð7Þ

Now, we introduce the tidal potential Φ whose negative
horizontal gradient is equal to the tide generating horizontal
component of the difference between fg and fc.

−∇hΦ ¼ f g− f c
� �

h
ð8Þ

Based on Eqs. (4) and (7), it follows

Φ j ¼ Φ0 j 1þ r
Rj

cosγ− 1−
2 r
Rj

cosγ þ r
Rj

� �2
" #−1=2

8<
:

9=
; ð9Þ

with Φ0j =G mj/Rj (Apel 1987). Spherical geometry leads to:

γ ¼ arccos sin φð Þsin α j
� �þ cos φð Þcos α j

� �
cos ϕ j

� �� � ð10Þ

where φ denotes the geographical latitude of the reference
point, αj the declination of the celestial body, and ϕj its azi-
muth phase which depends on time and the longitude of the
reference point. Finally, αj, ϕj and Rj are determined by the
ephemeris of Duffett-Smith and Zwart (2011). The effects of
loading and self-attraction (LSA) are neglected in this first
version of the module.
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We have introduced the horizontal tide-generating acceler-
ation a!T into the equations of motion and added a new mod-
ule to the model codewhich computes the full tidal potentialΦ
as the sum of the moon’s and sun’s contribution,
Φ =ΦM + ΦS.

Following Love (1909), the horizontal vector a!T is de-
rived from the tidal potential Φ with:

a!T ¼ − 1þ k2−h2ð Þ∇!hΦ ð11Þ

After Thomas (2002), the two Love numbers k2 and h2
satisfy:

1þ k2−h2 ¼ 0:69 ð12Þ

i.e. we assume a 31% reduction of the tide-generating ac-
celeration caused by the tidal deformations of the solid earth.

The reader may wonder why we have implemented the full
tidal potential (Eq. 9) and avoided the more traditional and
less expensive way of forcing the model by a single or a suite
of the most important partial tides (e.g. Stuhne and Peltier
2009). The answer is that the “full approach”, apart from being
in a sense more straightforward, provides broad frequency
tidal dynamics, which include nonlinear interactions between
the partial tides. These lead to signals like the M4-tide, which
can reach substantial amplitudes (Weis et al. 2008). Though
these components are not relevant for the present study, we
preferred to develop a tidal module, which covers the entire
spectrum. The “full approach”, the full baroclinic dynamics
resolved by the comparatively fine vertical grid resolution
with 60 layers and the meteorological forcing (see
Section 2.3) are features, which are certainly not necessary
for the study of the efficient simulation of barotropic tides.
Rather they are development steps of ICON-O preparing fu-
ture experiments. However, the results of this study should not
be influenced by the partly excessive complexity of our
computations.

As already stated by Weis et al. (2008) regarding their full
tidal potential approach, it should be noted that tidal predic-
tions produced by such a model, even after the inclusion of the
LSA terms, will still be far away from the precision of current
tidal models using data assimilation techniques like OTIS
(Egbert and Erofeeva 2002) or HAMTIDE (Bosch et al.
2009).

2.2 Grid generation

The computational mesh’s basic geometrical structure is, as
the model’s name already suggests, the regular icosahedron,
which has 12 vertices (one at the north pole, ten evenly dis-
tributed at 26.565°N and 26.565°S and one at the south pole),
30 edges and 20 equilateral triangle faces (cells) (Wan 2009).
This very coarse global grid is further recursively refined with
the edge-bisection method, resulting four triangles for each
original one.

If these refinements are performed for all grid cells, the
grid conserves the regular icosahedron’s uniform, essential-
ly equiangular structure. If only a part of the cells is
refined, the grid becomes irregular, i.e. the resolution will
vary considerably within the grid. In this case, unrefined
cells adjacent to refined cells have to be split—not into
four but into two new cells. Thereby, the newly defined
vertex of the refined cell, which bisects one of the trian-
gle’s edges, a so-called hanging node, is connected to the
triangle’s opposing vertex. This way, the hanging node is
removed and the mesh remains conformal (Walko and
Avissar 2011). Figure 2 illustrates these two ways of cell
refinement, edge-bisecting (quadtree) and halving.

After such an irregular grid is created one problem remains,
which has to be solved before the ICON-O simulation can
start: as Fig. 2 shows, the cells in the transition zone between
different refinement levels have lost the equiangularity of
those cells they were created of. Nevertheless, triangular cells

Fig. 1 Geometry for tidal force resolution on a unit mass located at point
P on the earth’s surface. Rj and R’ are the vectors between the earth’s
centre and the celestial body and between P and the celestial body

respectively. r denotes the vector from the earth centre to P and γ the
angle between r and Rj (after Apel 1987)
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with a maximum angle greater than 90°, i.e. with
circumcentres laying outside the triangle, are not suitable for
the model numerics and cause immediate runtime errors.
These are caused by the distance between the velocity points
at the cell boundaries and the tracer points, which are defined
at the cell’s circumcentre. This distance approaches zero if the
maximum angle approaches 90°. Therefore, oriented at the so-
called “spring optimisation” by Tomita et al. (2002), an algo-
rithm was developed which contains a stepwise movement of
the vertices of those cells with a maximum angle larger than
84°. The accelerating forces of this movement can be thought
of as caused by springs, which connect the vertices along the
edges. After the maximum angle of all triangles is brought
below 84°, a practical value that combines numerical stability
with an uncomplicated spring-algorithm, the grid is stored and
ready to be loaded by the ocean model.

In the present paper, we discuss the same global tide sim-
ulation carried out on different computational meshes. All
these meshes are based on a fivefold edge-bisection refine-
ment of the regular icosahedron. Hence, after the fivefold
refinement, the number of cells is 20 × 45 = 20,480. After in-
terpolating the topography onto the mesh, 4751 cells, either
dry cells not neighbouring a wet cell or wet cells not having a
connection to the ocean, were removed. Finally, the number of
grid cells of our uniform basis mesh, provided with the name
uni00 and shown in Fig. 3, is 15,729. The mean horizontal
resolution, defined as the spacing of cell centres, of the uni00
grid is 139 km. It varies between 124 and 142 km. The max-
imum angle of the triangles, a heritage of the original icosa-
hedron, is 72°. On average, the triangles’ maximum angle is
64°. Hence, uni00 is an essentially regular grid consisting of
essentially equilateral (equiangular) triangular cells.

Fig. 2 Model grid southwest of Iceland with wet (dry) cells coloured blue
(brown) showing the two steps of grid refinement. a) The uniform basic
grid. b) The grid after a first refinement of coastal cells. The maximum

angle of some triangles is greater than 90°. c) Before (red) and after
spring-optimisation (black). Now, the maximum angle of all cells is less
than 84°. d) Zoom into figure c)
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The next three uniform grids, uni01, uni02 and uni03, are
simply formed by further overall edge-bisection refinements.
Hence, the resolution increases to 69 km (uni01), 35 km
(uni02) and 17 km (uni03), whereas the grid’s triangle shape
statistics remain unchanged. The number of cells, i.e. columns
consisting of 60 prisms (depth layers), increases to about
60,000 (uni01), 240,000 (uni02) and 950,000 (uni03). Grid
uni03 is also shown in Fig. 3.

The remaining 16 grids (experiments) are highly irregular
grids. Within these, some areas remain at the 139 km resolu-
tion of the uni00 grid, which always is the starting point of the
grid generation, whereas other areas experiencing a three- to
fourfold edge-bisection refinement, i.e. reaching a resolution
of 14 to 7 km. Following Lyard et al. (2006) regarding the
computational mesh design for modelling tides, the spatial
criteria determining whether a cell is refined are either the
coastal, i.e. an oceanic (water depth > 0 m) cell is refined if
it contains at least one coastline point defined before in the 1′
topography matrix, or it is the slope criterion, i.e. the oceanic
cell is refined if the low-pass filtered absolute value of the
horizontal depth gradient exceeds a certain threshold. A third
refinement criterion is the neighbourhood of a just refined cell,
which leads to a certain broadening of the selected refinement
area. In the case of multiple grid refinements, this broadening
controls the sharpness of resolution transition zones. Hence, in
our grid generation program, a set of three integers: kb, rc and

rt defines the structure of the irregular grid, with kb being the
number of steps broadening the selected refinement areas, rc
the maximal refinement level of coastal cells and rt the max-
imal refinement level for cell fulfilling the slope criterion.
Hence, we decided to name the 16 irregular grid experiments
irrkbrcrt.

Although one could guess certain (kb, rc, rt) settings being
favourable for the simulation of coastal tides, e.g. a high value
of rc should be crucial, our idea was to test arbitrarily selected
settings enabling the experiments to indicate independently
the most efficient grid. Hence, some grids focus on coastal
refinements (irr241, irr230, irr240) some on topographic
slopes (irr313, irr224, irr213), most use sharp resolution gra-
dients but some use rather broad transitions (irr431, irr432).
The maximum refinement level is either 3 or 4. The number of
cells lays between 205,722 (irr230) and 510,731 (irr242)
which are 22% and 54% respectively of the cell number of
regular level 3 grid uni03. The reader is referred to Table 1 for
more specific information about the different grids.

Figure 4 shows histograms of the cell’s maximum angle of
four different meshes. According to Korn and Linardakis
(2018), an equiangular mesh offers the best numerical charac-
teristics. Hence, the uniform grid uni03 shows something of
an ideal distribution with the highest frequency in the 63°–64°
interval and only few cells with a maximum angle above 67°.
In contrast, the irregular grid irr241, generated by a fourfold

Fig. 3 Selection of computational meshes used in the experiments.
uni00: uniform basic low-resolution (124–142 km)mesh. uni03: uniform
high-resolution (16–18 km). irr313: irregular with refinements up to
14 km along large topographic gradients. irr241: refinements up to

7 km along the coast. irr431: coastal refinements up to 14 km and smooth
transitions. irr230: similar to irr431 but with sharp transitions and com-
plete ignorance of topographic slope refinement
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coastal and onefold slope refinement, shows a flattened 63–
64°maximum and a near-uniform spread of smaller frequen-
cies towards greater angles until it drops abruptly at the 83°-
84° interval. The comparison of the histograms of grid irr230
(threefold coastal refinement) and irr240 (fourfold coastal re-
finement) provides an insight into the mesh geometry’s devel-
opment during the alternating steps of refinement and subse-
quent spring-optimisation. It shows that the fourth refinement
caused a slight frequency reduction in the ideal range between
60° and 67°, a slight increase in the 69°–80° range and another
frequency drop between 80° and 83°. Furthermore, the local
80°–81° maximum of the irr230 grid moved to 78°–79° at
irr240. Apparently, the additional spring-optimisation opera-
tions performed after the fourth refinement step caused a fur-
ther improvement even of those cells, which had been created
during the first three refinement steps. irr240 generally con-
tains more optimisation work.

2.3 Experimental setup

The four uniform (uni00–uni03) and the sixteen irregular
grids (irrkbrcrt) are eponyms of the respective ICON-O simu-
lations, which are, apart from the different grids, set up

identically. They start at the date 2001-01-01 00:00, use a time
step of 60 s and a spin-up period of 30 days for the tidal
forcing. The model was operated in the “ocean only” mode,
i.e. not coupled with an atmosphere model.

The atmospheric forcing consists of the synthetic cyclic
year of Röske (2006), a data set that also provides climatolog-
ical runoff values. The ocean is assumed initially at rest. The
initial temperature and salinity fields were taken from the
0.25° resolution World Ocean Atlas 2013 data set (Locarnini
et al. 2013; Zweng et al. 2013). Here, winter season fields of
period 2005–2012 were selected and interpolated onto the
model grid. Thereafter, the temperature data was converted
to potential temperature referenced to the sea surface pressure
following the algorithm of Fofonoff and Millard Jr (1983),
which is based on the work of Bryden (1973). The sea surface
salinity (SSS) field derived from the initial data is used by a
relaxation scheme preventing the simulated SSS to drift too
far away from observations.

Soon after the spin-up phase the barotropic tides
reach a quasi-stationary state, so that we decided to start
a half-hourly output (snapshots) of the sea surface ele-
vation field at 01-05-2001 00:00 and end this at 12-05-
2001 00:00.

Table 1 Summary of the results of the 20 experiments. kb, rc, and rt are
gridding parameters explained in Section 2.2. dxmin, dxmax denote the
minimum and maximum grid spacing (distance between neighbour cell
centres). αmean denotes the mean value of the maximum angle of each
triangle cell, P70, P75, P80 the percentage of cells with a maximum angle
above 70°, 75° and 80° respectively. ē denotes the mean difference

between the simulated coastal M2-amplitude and those from the TPXO-
8 data set. sx denotes the standard deviation of ē. c is the Pearson corre-
lation coefficient between the modelled and the TPXO-8 data. scRMS
denotes the “scaled centred root mean square difference” defined in
Section 3

Experim. kb rc rt Number of cells dxmin [km] dxmax [km] αmean [°] P70 [%] P75 [%] P80 [%] ē [m] sx [m] c scRMS [m]

uni00 – – – 15,729 123.69 141.82 64.08 0.31 0.00 0.00 0.2784 0.7773 0.4177 0.6116

uni01 – – – 60,786 62.19 70.70 64.07 0.31 0.00 0.00 0.3153 0.7773 0.5035 0.5758

uni02 – – – 239,819 31.10 35.35 64.07 0.31 0.00 0.00 0.2288 0.6430 0.6074 0.5116

uni03 – – – 945,995 15.55 17.67 64.07 0.31 0.00 0.00 0.1097 0.5326 0.6511 0.4820

irr213 2 1 3 290,140 14.20 147.84 66.93 19.22 12.45 7.50 0.1852 0.7454 0.4954 0.6101

irr223 2 2 3 313,521 14.21 147.84 66.79 18.22 11.80 7.10 0.1747 0.5853 0.6294 0.4954

irr224 2 2 4 412,995 7.05 147.84 67.28 22.09 13.93 6.50 0.1555 0.5724 0.6307 0.4946

irr230 2 3 0 205,722 13.94 147.92 67.36 22.19 14.73 9.17 0.1818 0.5779 0.6429 0.4856

irr231 2 3 1 217,338 13.94 147.84 67.12 20.60 13.60 8.45 0.1703 0.5646 0.6541 0.4791

irr232 2 3 2 255,836 14.02 147.84 66.83 18.43 12.10 7.78 0.1586 0.5557 0.6579 0.4770

irr233 2 3 3 366,910 14.21 147.84 66.58 16.82 10.96 6.54 0.1420 0.5424 0.6600 0.4748

irr240 2 4 0 460,599 7.03 147.92 67.73 26.22 16.80 6.14 0.1213 0.5125 0.6828 0.4587

irr241 2 4 1 472,235 7.03 147.84 67.61 24.29 16.18 5.94 0.1107 0.5027 0.6907 0.4541

irr242 2 4 2 510,731 7.03 147.84 67.43 24.01 15.24 5.56 0.0961 0.4936 0.6940 0.4523

irr313 3 1 3 360,545 14.21 147.41 66.30 14.74 9.51 5.87 0.1653 0.7331 0.5152 0.6061

irr323 3 2 3 378,310 14.23 147.40 66.18 13.82 8.96 5.66 0.1685 0.5850 0.6272 0.4978

irr331 3 3 1 263,376 14.34 147.02 66.50 17.15 10.76 4.23 0.1516 0.5612 0.6509 0.4838

irr332 3 3 2 305,262 14.34 147.40 66.24 15.13 9.49 3.87 0.1525 0.5570 0.6529 0.4810

irr423 4 2 3 424,298 14.18 146.91 65.78 11.43 7.30 4.48 0.1665 0.5841 0.6238 0.4990

irr431 4 3 1 295,246 14.24 146.91 66.06 13.16 8.68 5.66 0.1519 0.5577 0.6497 0.4826
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3 Results

The purpose of our experiments is to test the model’s ability to
simulate global barotropic tides on different computational
meshes. For this, we concentrate on the most important tidal
constituent – the M2 tide and compare the respective coastal
amplitudes with the corresponding values from the TPXO-8
data set (Egbert and Erofeeva 2002). The TPXO-8 has a spa-
tial resolution of 2′ and is created by a generalised inverse tidal
model, which assimilates the TOPEX/Poseidon satellite altim-
etry data. The precision of the TPXO-8 amplitudes is less than
1 cm for the open ocean and less than 4 cm for high coastal
amplitudes. Therefore, it is suitable to serve as a near obser-
vational reference when calculating the coastal M2 amplitude
error e of our simulations. This is done in the following way:
first, the simulated M2 amplitude for each grid cell is deter-
mined by a discrete Fourier transformation of the output sea
level time series (Fig. 5). In a second step, for each coastal

point i of the 2’ TPXO-8 matrix (213,575 points), the nearest
wet ICON cell k is determined. The two corresponding M2
amplitudes, TPXOi and ICONk, define the error ei:

ei ¼ ICONk−TPXOi ð13Þ

Consequently, the mean error ē, the standard deviation sx,
and the Pearson correlation coefficient c are computed with

e ¼ 1

N
∑ei ð14Þ

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ ei−e
� �2

N

vuut
ð15Þ

c ¼
∑ TPXOi−TPXO
� �

ICONk−ICON
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ TPXOi−TPXO
� �2

∑ ICONk−ICON
� �2

r ð16Þ

Fig. 4 Probability histograms of
the triangular cell’s maximum
angle αmax for four different
meshes. uni03: uniform mesh
after a threefold refinement with a
maximal αmax of 72° and a mean
αmax of 64.1°. irr241: irregular
mesh after fourfold coastal
refinement. irr230 irregular mesh
after a threefold coastal
refinement. irr240: like irr230 but
with one further coastal
refinement. The bars’ overlap is
coloured dark grey
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whereas N = 213,575 denotes the number of analysed coastal
points, and TPXO , ICON the mean values of TPXOi and
ICONk. Finally, we define the scaled centred root mean
square difference scRMS with

scRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ TPXOi−TPXO

� �
− TPXO

ICON
ICONk−ICON

� �h i2
N

vuut

ð17Þ

Hence, scRMS can be interpreted as the reduced stan-
dard deviation of e in the case of adjusted values of

ICONk so that ICON = TPXO. The oceanographic
meaning of scRMS is that this error metric rather de-
scribes the model’s ability to capture the structure of the
M2 amplitude field neglecting a general over- or under-
estimation of amplitudes that could be handled quite
easily within a model fitting procedure, e.g. through a
variation of friction parameters.

Fig. 5 Amplitude of the M2 tidal
constituent given by the TPXO-8
dataset (Egbert and Erofeeva
2002) and simulated in experi-
ment uni00 (low-resolution uni-
form mesh), uni03 (high-
resolution uniform mesh) and
irr241 (mesh with coastal refine-
ment). The bottom row shows the
difference between the ICON
simulations uni03 and irr241 and
the TPXO-8 data
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3.1 Uniform grids

The first simulation was performed on the uni00 grid, i.e. the
uniform triangular mesh with a mean resolution of 139 km,
which forms the basis of all other grids used within this study.
The comparison of the resulting M2 amplitude field with the
TPXO-8 data shows that the key structures were correctly
reproduced (Fig. 5). For example, even the two amphidromic
points north-west and east of Iceland are reproduced.
Generally, the M2 amplitude is over-estimated by the model.
Along the coasts we find e = 28 cm and scRMS = 61 cm. This
over-estimation even increases in the uni01 experiment after
the first edge-bisection refinement to a mean resolution of
69 km. Here, e rises to 32 cm. However, the increase of the
correlation c from 0.42 to 0.50 and the decrease of scRMS to
58 cm indicate an improved reproduction of theM2 amplitude
structure caused by the higher spatial resolution. This trend
continues within experiments uni02 (35 km resolution) and
uni03 (17 km): scRMS is further reduced to 51 cm and 48 cm
respectively, c increases to 0.61 and 0.65 and also the initial
over-estimation now develops in the right direction with e =
23 cm in uni02 and 11 cm in uni03 (Fig. 5 and Table 1).

In order to illustrate the functionality of the entire tide
model also comprising all other tidal constituents, we have
plotted the uni03 sea surface elevation at the position of
Reykjavik, Iceland, and compared it with the astronomical
tide prediction of the NOAA (2000). Figure 6 shows a tem-
porally variable amplitude difference between 5 and 50 cm
and a rather constant phase error of around − 1.7 h.

3.2 Irregular grids

Figure 7 shows the scRMS of all 20 experiments as a function
of the number of grid cells. The uniform grid experiments,
uni00 – uni03, are symbolised by red dots connected by a
red line. Regarding the irregular grid experiments, irrkbrcrt,
symbolised by green and blue dots, the key criterion is wheth-
er their points lay above or below the red line. A position
above the red line, obtained for irr213 and irr313, means that
the applied grid refinement is ineffective because a uniform
grid would deliver a smaller scRMS with less computational
effort, i.e. with a smaller number of grid cells. Table 1 shows
that both grids, irr213 and irr313, were made with the setting
rc = 1, i.e. with only one coastal refinement step. Remarkably,
the scRMS of both experiments (0.61 m) is above that of
uni01 (0.58 m) which has the same coastal resolution but only
one fifth of the number grid cells.

Obviously, and not surprisingly, a reduction of scRMS, i.e. of
the coastal M2 amplitude error cannot be achieved without suf-
ficient coastal mesh refinement. However, apart from the two
outliers, irr213 and irr313, who have disregarded the coastline
with rc = 1, all irregular grid experiments are below the red line,
i.e. they show at least some efficiency. Even the grids, which

still have more focus on topographic slopes but with a twofold
coastal refinement, irr223, irr224, irr323 and irr423, show a
scRMS of 0.50 m which is slightly below that of uni02 with
0.51 m. The grids with a threefold coastal refinement, irr230,
irr231, irr232, irr233, irr331, irr332 and irr431, lead to a
scRMS of 0.48 m, i.e. they reach the precision of the uni03 grid
(scRMS = 0.48m) but using only one third of the number of grid
cells. If we define the efficiency as the slope of the line
connecting the root point uni00with the experiment’s point then
irr230 with d(scRMS)/dn = −6.63 × 10−7 m is the most efficient
grid. Its setting is (kb, rc, rt) = (2,3,0), i.e. its refinements are
performed exclusively along the coast, refinement along topo-
graphic slopes is ignored and sharp resolution gradients are ac-
cepted. One could describe irr230 as the most spartan of our
settings. Finally, the grids with a fourfold coastal refinement,
irr240, irr241 and irr242, lead to scRMS = 0.45 m, 0.46 m
and 0.45 m respectively. These values are clearly below the
uni03 value of 0.48 m. Hence, the higher coastal resolution
yielded a more precise simulation while using only around
50% of the grid cells compared to uni03. Within this group,
themost efficient setting is that of irr241with (kb, rc, rt) = (2,4,1)
and d(scRMS)/dn = − 3.45 × 10−7 m closely followed by irr240
with (kb, rc, rt) = (2,4,0) and d(scRMS)/dn = −3.44 × 10−7 m.
Here, the “luxury” of around 12.000 additional cells at sharp
topographic slopes in irr241 and a slightly better mesh geometry
(Table 1) is paying off.

In order to examine the influence of grid irregularities on the
model solution, we have plotted the sea surface elevation south-
west of Iceland at various times simulated on the uniform uni03
and on the irregular irr230 grid (Fig. 8). The comparison shows
that the tidal wave arriving from the southeast was reproduced
on both grids in a similar way. The deviation between both
solutions are below 20 cm. Apart from a weak stationary wave-
like structure in the difference fields along the grid resolution
transition zone at 63°N between 21°W and 24°W (right column
of Fig. 8), disturbances like reflections or sharp stationary anom-
alies directly linked to the resolution transition zone of irr230 are
not visible. Figure 9 compares the according sea surface eleva-
tion time series at a location near the transition zone. Again, a
clear numerical disturbance is not visible. The temporally vari-
able difference remains below 10 cm and the phases differ by
around 30 min.

3.3 Summary

Our experiments show that the coastal amplitude error de-
creases with increasing coastal resolution. In fact, this depen-
dency is nearly independent of the resolution chosen for the
inner ocean. The irregular grid irr230 and the uniform grid
uni03, both resolving the coast with around 17 km, yield
nearly the same coastal amplitude error (scRMS = 0.486 m
and 0.482 m respectively) though their resolution of the inner
ocean differs sharply (148 km and 17 km respectively). The
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number of grid cells, i.e. columns consisting of 60 layers, is
205,722 for irr230 and 945,995 for uni03, i.e. the irregular
grid irr230 reduced the computational costs of a simulation

with a scRMS below 0.49 m by 78%. The grid irr241 contains
one further coastal grid refinement and consequently yields a
scRMS = 0.454 m which is clearly below the uni03 value but

Fig. 6 Simulated sea surface elevation (red curve) at the position of Reykjavik (64.268°N, 22.514°W) simulated in experiment uni03 and compared with
the values of the astronomical tide prediction (blue points) (NOAA 2000) for the period 2001-05-1 to 2001-05-11

Fig. 7 The scaled centred rms difference scRMS of the coastal M2
amplitude as a function of the number of grid cells. Results from all 20
experiments. Red dots denote simulations on uniform grids (uni00–

uni03). Green and blue dots denote simulations on irregular grids
(irrkbrcrt) with a maximal resolution of 14 km and 7 km respectively
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still uses a number of grid cells (472,235) which is 50% lower
than that of uni03.

When defining the efficiency as the scRMS reduction di-
vided by the number of additional grid cells related to the
uni00 experiment, the irregular grids irr241 from the 148–

7 km class, and irr230 from the 148–14 km class have proven
to be the two most efficient grids. Both grids are based on
economic settings, i.e. high-resolution gradients were allowed
and the refinements were performed almost exclusively along
the coastline.

Fig. 8 Simulated sea surface elevation south of Iceland showing the
arrival of the midday flood on May 2, 2001. The left column shows the
results of the uni03 experiment using a uniform high-resolution (14 km)
mesh. The middle column shows the results of experiment irr230 using a

14-km resolution only near-shore and up to 148 km in the basin’s interior.
The right column shows the difference between both experiments. The
first row shows the different grid structures. The two cells marked in red
provided the time series shown in Fig. 9
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4 Conclusions

We have developed a module for the newly developed global
ocean general circulation model ICON-O (Korn 2017), which
computes the full tidal potential and the according horizontal body
forces based on the ephemeris ofDuffett-Smith andZwart (2011).
The first tests presented here show an essential realistic simulation
of global tides.Without any tuning, the coastalM2 amplitudes are
reproduced with a scaled rms error between 62 and 45 cm de-
pending on themodel’s coastal resolution between 140 and 7 km.
A further increase of the horizontal resolution will certainly lead
to an additional decrease of the amplitude error. However, a better
representation of topography by a higher vertical resolution and
the tuning of friction parameters (bottom friction, horizontal mo-
mentum exchange) should also be effective and should substan-
tially reduce the tidal phase errors (e.g. Davies and Aldridge
1993). These show an error of around 2 h (Figs. 6 and 9), with
the simulated wave being ahead of the observed. Future versions
of the module will include the effects of loading and self-attrac-
tion, which is expected to reduce the phase error (M. Thomas,
personal communication, June 11, 2020).

Further tests relate to the performance of ICON-O simulat-
ing the global barotropic tide on 20 different triangular grids. To
summarize the results of these experiments into one sentence:
the application of highly irregular grids within ICON-O is fea-
sible and can be very efficient. The results provide no evidence
for severe grid-related numerical errors like reflections at reso-
lution transition zones or sharp stationary, grid-related pressure

anomalies. Considering the applied rather straightforward mesh
refinement technique with its partly substantial deformation of
cells, we conclude that a wide range of other methods, e.g.
JIGSAW-GEO (Engwirda 2017) or themultiple transition rows
approach of Walko and Avissar (2011) can be used as well. In
addition, the span of resolutions within one grid could probably
be driven further, i.e. beyond the used 148–7-km range. A local
horizontal resolution in the range of 1 km would enable the
simulation of internal waves. The effort of simulating baroclinic
waves generated by barotropic tides, already proposed by
Stuhne and Peltier (2009), could be taken up again by an appli-
cation of ICON-O with its improved features regarding small-
scale noise of the horizontal divergence field (Korn 2017).

Our results show that the simulation of the coastal M2 am-
plitude, i.e. the error metric we have used in this paper, predom-
inantly depends on the coastal grid size. This becomes clear if
one considers a bay with a tide amplifying shape and the ex-
pected error of a model, which does not resolve this bay. Of
course, a lower resolution of the ocean basin’s interior is linked
to losses of local precision. This can be seen at the offshore M2
amplitude error of experiment irr241 compared to that of uni03
(Fig. 5, bottom row). Hence, other error metrics of tidal simu-
lations will certainly point to a more important role of the res-
olution of the inner ocean and of a refinement along
topographic slopes like Lyard et al. (2006) propose.

Both aspects, the numerical feasibility and the successful
efficiency enhancement should encourage future users of
ICON-O to apply mesh refinement techniques even if their

Fig. 9 Simulated and observed sea surface elevation close to the position
63° 53’ N 24° 4’ W. Values from the two cells marked in red in Fig. 8.
The red curve shows results from experiment uni03 (uniform high-

resolution mesh), the blue curve results from experiment irr230 (irregular
mesh with coastal refinement) and the green curves the TPXO-8 values
referring to the above-mentioned position
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research question is not as spatially selective as our coastal M2
amplitude. Lyard et al. (2006) have shown that the global sim-
ulation of tides generally benefits from topography-related mesh
refinements. Other obvious cases of usefulness are transports
through straits, processes along shelf breaks, ridges or continen-
tal slopes and many questions of regional oceanography.
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