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Abstract

A method based on the Okubo—Weiss parameter was used to detect subsurface eddies (SSEs) with an eddy-resolving ocean
general circulation model. Statistical analyses showed that SSEs are ubiquitous in the northwestern Pacific Ocean. Three regions
were found to have high probability of SSE, which are as follows: the latitudinal band between 9°N and 17°N, the Kuroshio
extension region, and the area east of the Ryukyu Islands. Although surface eddies (SEs) were found distributed widely within the
zonal band of the Subtropical Counter Current, few SSEs were found there. In contrast, few SEs were found to the east of The
Philippines, whereas SSEs were abundant. The kinetic energy contained within SSE was found comparable in magnitude with
that of SE. During 1993-2013, about 2569 and 2099 SSEs (at a depth of about 400 m) were observed to be anticyclonic and
cyclonic, respectively; thus, SSEs tended to be anticyclonic. The mean radius, lifespan, and propagation speed of SSE in this
study were about 60 km, 50 days, and 6.6 cim/s, respectively. The propagation speed showed a wave-like decrease with increasing
latitude. Some long-lived SSEs were found to persist for longer than 4 months and to move thousands of kilometers. About 89%
of SSEs were nonlinear for at least half their lifespan, which implies that SSE can trap interior fluid during translation.
Trajectories revealed that SSEs propagate nearly due west with only small meridional deflection. The findings of this study will
contribute to the enrichment of our knowledge regarding SSE in the northwestern Pacific Ocean.

Keywords Subsurface eddies - Eddy characteristics - Kinetic energy

1 Introduction

Mesoscale eddies are important in the transportation of oce-
anic heat, salt, freshwater, nutrient, and biological signatures.
Mesoscale eddies can be classified as surface-intensified
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eddies and subsurface-intensified eddies based on the vertical
distribution of their hydrographic signals. Subsurface eddies
(SSEs), which represent a special class of ocean eddy, are
characterized by having their core or maximum velocity in
subsurface water (Gordon et al. 2002). The temperature and
salinity properties of SSE are reasonably homogeneous but
distinct from those of the surrounding waters (Johnson and
McTaggart 2010; McWilliams 1985; Nauw et al. 2006).
Generally, SSEs are triggered by instability of the undercur-
rent or subduction of mode water (Oka et al. 2009; Takikawa
etal. 2005). Previous studies have proven that SSE can strong-
ly influence intermediate or deeper ocean layers by affecting
the subsurface circulation, pathways of water masses, and
redistribution of heat, salt, and momentum (Andrade et al.
2014; Colas et al. 2012; Nan et al. 2017; Pelland et al.
2013). Unlike surface eddies (SEs), which can be character-
ized using satellite altimeter data, SSEs have weak surface
expression, and they are poorly understood because of the lack
of their systematic measurement (Chaigneau et al. 2011,
Gordon et al. 2017; Johnson and McTaggart 2010). Most re-
ported eddies have survived for a significant time (of the order
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of months) and traveled considerable distance (hundreds of
kilometers) (Combes et al. 2015; Takikawa et al. 2005).
Based on Argo float data and sporadic in situ observations,
SSEs have been detected in numerous oceanic regions, €.g., as
“Meddies” in the Mediterranean Sea (McDowell and Rossby
1978; Richardson et al. 2000), “Ruddies” in the Indian Ocean
(Shapiro and Meschanov 1991), and “Cuddies” near the
California Undercurrent (Collins et al. 2013; Kurian et al.
2011; Pelland et al. 2013). SSEs also exist in the eastern
South Pacific Ocean associated with the Peru—Chile
Undercurrent (Combes et al. 2015; Hormazabal et al. 2013;
Johnson and McTaggart 2010; Thomsen et al. 2016). In con-
trast, research on SSE in the northwestern Pacific Ocean has
been limited, and only a few examples have been observed.

The ocean circulation in the northwestern Pacific Ocean is
characterized by a complex western boundary current. In the
surface layer, the North Equatorial Current bifurcates into the
northward-flowing Kuroshio and the southward-flowing
Mindanao Current (MC) as it approaches the coast of The
Philippines. A significant portion of the MC veers eastward
at the southern tip of the island of Mindanao near 5°N to form
the North Equatorial Countercurrent. In the latitudinal band of
18°-24°N, the North Pacific Subtropical Counter Current
(STCC), which is a weak and shallow eastward current, pen-
etrates into the open Pacific from 130°-180°E (Chang and
Oey 2014). Below the surface, the subsurface circulation is
dominated by several important undercurrents. Beneath the MC
and the Kuroshio, along the coast of The Philippines, are the
southward-flowing Luzon Undercurrent and northward-
flowing Mindanao Undercurrent, respectively (Hu and Cui
1989; Hu et al. 1991). The North Equatorial Undercurrent
consists of three parallel eastward-flowing jets at the depth of
approximately 500—1100 m along 9°N, 13°N, and 18°N. These
jets typically have a core velocity of 3—5 cm/s, and they are
spatially coherent from the western boundary across the North
Pacific basin to about 120°W (Qiu et al. 2015).

Takikawa et al. (2005) detected SSE to the southeast of the
Ryukyu Islands, which had thickness and width of 300 m and
100 km, respectively. In December 2013, a subsurface lens of
water from the Andaman Sea was captured in the Bay of
Bengal (Gordon et al. 2017). Nan et al. (2017) detected an
extra-large subsurface anticyclonic eddy with horizontal scale
of 470 km in the Northwest Pacific subtropical gyre. Their
analysis indicated that the SSE formed in the region of
Subtropical Mode Water and, then, propagated westward for
over 1500 km. In general, these case studies of SSE have
focused mainly on a single eddy found at a specific location
or along a section. However, such observations of SSE cannot
provide information about their spatial distribution or the roles
they might play in the ocean. More importantly, most previous
studies have focused on subsurface anticyclonic eddies
(SSAESs) with low potential vorticity, while the characteristics
of subsurface cyclonic eddies (SSCEs) remain unclear. The
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remainder of this paper is organized as follows: Section 2
briefly describes the model configuration and altimetry dataset
used in this study. The eddy detection and tracking method is
presented in Section 3. The properties of SSE, i.e., their oc-
currence frequency, kinetic energy, size, lifetime, propagation
characteristics, polarity, and nonlinearity, are presented in
Section 4. A summary of the results is provided in Section 5.

2 Model and datasets

The Oceanic General Circulation Model for the Earth Simulator
(OFES) used in this study is based on the Modular Ocean Model
ver. 3 developed by the Geophysical Fluid Dynamic Laboratory
of the National Oceanic and Atmospheric Administration
(Masumoto et al. 2004; Sasaki et al. 2008). The model utilizes
the z-level coordinate in the vertical, and it solves three-
dimensional primitive equations in spherical coordinates under
the Boussinesq and hydrostatic approximations. Its domain
extends from 75°S to 75°N, excluding the Arctic region, with
0.1° horizontal grid spacing. The vertical level spacing varies
from 5 m at the surface to 330 m near the bottom. The model
topography is generated using 1/30° bathymetry data provided
by the Ocean Circulation and Climate Advanced Modelling
project. For further details regarding the configuration and
evaluation of this model, readers are referred to Masumoto
et al. (2004) and Sasaki et al. (2008).

The OFES outputs have been analyzed in numerous earlier
studies (Aoki et al. 2007; Chen et al. 2010; Chiang and Qu 2013;
Qu et al. 2012). The results have demonstrated the promising
capability of the model in representing realistic variability of
different spatial and temporal scales in the ocean, including west-
ern boundary currents, mesoscale eddy generation near strong
current systems, as well as appropriate water masses in the
world’s ocean. This study analyzed snapshot (3d) model outputs
for the domain of the northwestern Pacific Ocean (0°—60°N,
120°-180°E) from January 1993 to December 2013.

Two types of satellite data were used to validate the OFES
data. Sea level anomaly (SLA) data used in this study were
obtained from the French Archiving, Validation, and
Interpolation of Satellite Oceanographic (AVISO) data project,
which merges the measurements of Jason, TOPEX/POSEIDON,
Envisat, GFO, ERS, and Geosat altimeters. The merged data are
interpolated onto a global grid with 1/4° resolution, and they are
archived in weekly-averaged frames. The entire dataset covers
the period 1993—present; however, only the data from 1993 to
2013 were used in this study.

The 4th release of the trajectories of mesoscale eddies pro-
duced by the Collecte Localisation Satellites/Data Unification
and Altimeter Combination System team is based on the DT-
2014 daily “two-sat-merged” SLA fields posted online by
AVISO for the 22-year period from January 1993 to April
2015. The eddy dataset provides the amplitude, radius scale,
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centroid, date of starting point, and number of points along the
eddy tracks. The trajectories in this new version of the eddy
dataset are available with time steps of 1 day, and only eddies
with a lifetime of four weeks or longer are counted. In the new
eddy dataset, rather than defining eddies by the outermost
closed contour of sea surface height, as in the previous three
eddy datasets, each eddy is defined based on connected pixels
that satisfy the specified criteria. The procedure is a modified
version of the method presented by Williams et al. (2011). A
description of the implementation of the eddy identification
procedure can be found on the following website: http://
wombat.coas.oregonstate.edu/eddies/index.html. In the
current study, we used trajectory data of mesoscale eddies
for the 21-year period from January 1993 to December 2013.

3 Eddy detection and tracking method

Several methods have been developed for detecting eddies
from satellite altimetry and model simulations. Among these,
the most popular involve the closed contour of sea surface
height (Chaigneau et al. 2009; Chelton et al. 2011) or the
Okubo—Weiss (O—W) parameter (Isern-Fontanet et al. 2003,
2004, 2006; Okubo 1970; Weiss 1991) owing to its simplicity
and computational efficiency. This study used the objective
criterion of the O—W parameter because it can identify eddies
at desired depth levels or isopycnal surfaces of model solu-
tions. The O—W parameter (W) is defined as:

W =S, +5-C, (1)
where S, = %—
components of strain, respectively, and ( = %—@ is the rel-

oy
ative vorticity. For horizontally nondivergent flow in the

2
ocean, W reduces to 4 (% +& *g—;‘) The W contour search

is typically defined as —0.2 times the standard deviation
(Isern-Fontanet et al. 2003; Pasquero et al. 2001) or taken as
a constant (Chelton et al. 2007). Considering the different
depth levels of model data, the contour search in this study
was performed using a specified threshold value (Wo=—
0.20w). Here, ow, which represents the standard deviation
of'the W field, was calculated at each time step for the selected
domain and depth to obtain the threshold W,. Parameter W
can be used to separate the flow into the following different
regions: a vorticity-dominated region (W <-W,), a strain-
dominated region (W >-W,), and a background field (|W|=
Woy). Regions, where rotation dominates deformation, have
negative W values. To reduce the W noise, the W field was
first smoothed with half-power filter cutoffs of 1.5° x 1.5°.
Only those cases for which the W contour enclosed at least
40 pixels, equivalent to an area of about 50 kmz, were consid-
ered. To be counted as an eddy, each closed contour had to

N R
2 and S, = 2 — 2 are the normal and shear
ady ox Oy

pass an eddy shape test, which is described in detail by Kurian
et al. (2011). The eddy shape error (anomaly from a fitted
circle) was calculated for each closed contour. In this study,
only those closed contours with a shape error of < 70% were
defined as eddies. Vorticity was used to differentiate cyclonic
and anticyclonic eddies. In the deep layer, eddy velocity is
very weak and the accuracy of the O—W method is decreased.
Thus, only eddies with average velocity > 5 cm/s were count-
ed in this study. This criterion has little or no effect on eddy
detection in the upper layer, whereas it improves the accuracy
of eddy detection in the deep layer. Those closed contours that
passed all the tests outlined previously were accepted as
eddies. Figure 1 shows that the W fields display a patchy
distribution. Generally, close correspondence is evident be-
tween the detected regions (blue and red circles) and closed
streamlines; however, some closed streamline domains are not
associated directly with detected regions and vice versa. This
could be the result of the strict definition of eddies in terms of
their shape and size adopted in this analysis.

Eddies were detected at each level from the surface
to about 2000-m depth. Having determined the distribu-
tion of eddies at all depth levels during 1993-2013, it
was necessary to distinguish SSEs from surface eddies
(SEs). Generally, SSEs have a very weak or nonexistent
signal at the sea surface. It should be stressed that in
distinguishing SSEs from SEs, only those eddies with
their entire body beneath the depth of 45 m were count-
ed as SSEs, i.e., those that could not be detected in the
upper eight layers of the model data. Consequently, this
study ignored some intrathermocline eddies that have
their core within the thermocline and sometimes exhibit
weak expression at the surface. Figure 2 shows the W
vertical profile of an anticyclonic SSE to the east of
Taiwan, and its horizontal distribution of the W parameter
and relative vorticity can be found in Fig. 1. After the eddies
were identified for each time step and classified as either SSE
or SE using the algorithm described previously, an automated
tracking procedure based on connected pixels that satisfy
specified criteria was applied to determine the trajectories of
the SSE at different depth levels. The center location of each
identified eddy was defined as the centroid of the outermost
closed contour of Wy,

To illustrate the model configuration, the eddy kinetic
energy (EKE) at the surface from the OFES output is
compared in Fig. 3 with that calculated from satellite data.
Here, EKE is defined as EKE = (u’2 + v’z)/2, where 1 and
v are the zonal and meridional velocity anomalies, respec-
tively. The parameters " and v can be computed from the

g A(SLA) " g 8(SLA)

;% 5 andv-% A
where g is the acceleration due to gravity and f is the
Coriolis parameter. In the OFES data, u and v are defined

SLA maps as follows: u =

’ _ ’ _ _ _
as u =u—u and v =v—v, where u and v denote the
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Fig. 1 Distribution of (a) the W parameter and (b) the relative vorticity at depth of 108 m on 29 June 2009. (¢) and (d) are the same as (a) and (b) but at
the depth of 404 m. Also shown are velocity vectors and detected anticyclonic (red circles) and cyclonic (blue circles) regions
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Fig. 3 Time-averaged eddy kinetic energy (unit cm?/s?) at the surface derived from (a) satellite data and (b) model data

average zonal and meridional velocity, respectively, of the
corresponding month from 1993 to 2013. It is important to
stress that point-wise comparison between the model EKE and
altimetry-derived EKE is meaningless because of the differ-
ence in spatial resolution; therefore, we considered the tempo-
ral average of EKE from 1993 to 2013. The amplitude and
spatial structure of the model mean EKE compare reasonably
well with those derived from satellite data, i.e., both show
maxima in the region of the Kuroshio extension and STCC.
To verify that our detection method is effective, the frequen-
cies of SE obtained from the AVISO eddy dataset and OFES
data are shown in Fig. 4a,b, respectively. Eddy frequency was
defined as the percentage of time that a point was located
within a cyclonic or anticyclonic eddy. For example, eddy
frequency at a specific location was considered about 10% if
occupied by eddies for 10 out of 100 days. The spatial distri-
bution of frequency of SE derived from the satellite data is
similar in pattern to the OFES result, although it is slightly
higher, which might be a function of different data resolution.
In regions characterized with instabilities of background cur-
rents, such as the STCC and Kuroshio extension, SEs are
found especially abundant.
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Fig. 4 Comparison of frequency (%) of surface eddies between (a) the 4th eddy dataset and (b) the OFES result
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4 Eddy characteristics
4.1 Eddy frequency

It should be stressed that calculating the frequency of SSE at a
fixed depth level might produce an underestimate because the
depth ranges of SSE vary haphazardly. To calculate SSE fre-
quency precisely, the time series of eddy vertical distribution
at each grid point of model data was extracted. Figure 5 illus-
trates a simple example of a SSE passing a location, and, to
provide a simple and effective numerical computation meth-
od, we used the Arabic numerals — 1, 1, and 0 to represent the
area of an anticyclonic eddy, cyclonic eddy, and no rotation,
respectively. Comparison of the frequency of SE and SSE
(Fig. 6a,b) reveals the interesting phenomenon that the spatial
distribution of SSE is significantly different from that of SE.
High frequency of SSE is featured in several areas, including
the latitudinal band between 9°N and 17°N, area east of the
Ryukyu Islands, and Kuroshio extension region. In addition,
observations have proven the existence of SSE within our
study area (Chiang et al. 2015; Nan et al. 2017; Takikawa
et al. 2005; Zhang et al. 2015; Zhang et al. 2017). In the
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Fig. 5 Simple example illustrating the process of a subsurface eddy
passing a point. Arabic numerals 1 and O represent area of cyclonic
eddy and of no rotation, respectively

Surface eddies
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Anticyclones

Cyclones
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Fig. 6 Frequency (%) of surface eddies (left) and subsurface eddies

(right). Upper row shows total frequency of surface and subsurface
eddies. Comparison of anticyclonic surface and subsurface eddies is
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latitudinal band of 9°—17°N, the frequency of SSE is notice-
ably elevated, especially in the area to the east of The
Philippines where it can reach 16%; however, the frequency
of SE in this band is comparatively low (about 5%). In the
region of the STCC, the opposite is true, as shown in Fig. 6.
The STCC region is rich in SE, i.e., the eddy frequency can
reach about 25%. Interestingly, with frequency of only about
2%, SSEs are rare in this area. Previous studies have shown
that the STCC is baroclinically unstable (Qiu 1999), and it has
been proven using satellite data that SEs in the STCC region
are abundant (Yang et al. 2013). In the region of the Kuroshio
extension and to the east of the Ryukyu Islands, SE and SSE
occur frequently, whereas SSEs are observed rarely to the
south of 8°N, except to the east of The Philippines.
Generally, SEs are more likely to be cyclonic, whereas this

Subsurface eddies

180°E
shown in the middle row. The lower row is the same as the middle row

but for cyclonic eddies. Here, eddy frequency is the percentage of time
when at least one eddy was passing the location
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Fig. 7 Comparison of kinetic energy (unit m3/s2) between (a) surface

eddies and (b) subsurface eddies. The kinetic energy here is calculated
by averaging the vertical integral of EKE within SSE at each time step
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is not the case for SSE. The frequency of SSAE displays a
rather similar but more striking pattern than that of SSCE. The
frequencies of SSAE and SSCE are shown in Fig. 6d.f, re-
spectively. It can be seen that SSAE is observed more fre-
quently than SSCE in areas to the east of The Philippines
and the Ryukyu Islands. In the Kuroshio extension region,
the frequency of SSAE is almost the same as that of SSCE.
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Fig. 8 Trajectories of subsurface anticyclonic eddies (SSAE; red lines)
and subsurface cyclonic eddies (SSCE; blue lines) over the 21-year period
1993-2013 for (a) lifetime >30 days, (b) lifetime > 60 days, (c)
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during 1993-2013, and, to depict the characteristics of the spatial
distribution more intuitively, we provide the picture after taking the
logarithm of the integral kinetic energy

Generally, long-lived or transitory but frequently occurring
eddies might lead to high values of frequency at a specific
location. Several mechanisms could be responsible for the
different eddy frequencies in these regions, e.g., interaction
of large-scale currents with bottom topography, coastlines,
or islands, wind forcing, vorticity input from wind stress curl,
vorticity conservation, and instability of coastal currents.
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lifetime > 90 days, and (d) lifetime > 120 days. Numbers of SSAE and
SSCE are labeled in the upper left corner of each map
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Fig. 9 (a) Number of all detected subsurface eddies (SSE) originating in each 2° x 2°region during 1993-2013. (b) Numbers of subsurface anticyclonic
eddies (SSAE; red line) and subsurface cyclonic eddies (SSCE; blue line) with lifetime > 30 days at different latitudes

4.2 Kinetic energy of SSE

The kinetic energy of mesoscale eddies is larger than the mean
current in the ocean interior, and ocean mass transport by
mesoscale eddies is comparable in magnitude with that of
the wind-driven and thermohaline circulations (Richardson
1983; Wyrtki et al. 1976; Zhang et al. 2014). Although this
study captured various SSEs with differing spatiotemporal
scales, it remains unclear what role they play and whether they
are as important as SE. To elucidate this, we integrated EKE
vertically along the vertical extension of the SE and SSE at
each time step during 1993-2013 and, then, calculated an
average. As described previously, SE reflects eddies that have
strong signals in the uppermost vertical layer of the model and
that extend to depths of dozens or even hundreds of meters.
The term SSE refers to those eddies whose entire body is
located below depths of at least 45 m. Given the large values
of kinetic energy in the Kuroshio extension, and to depict the
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Fig. 10 Distribution of average (a) radius and (b) lifetime of all the
detected subsurface eddies with lifetime > 30 days
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characteristics of the spatial distribution more intuitively, the
logarithm of integral EKE is plotted in Fig. 7. A remarkable
feature is that the mean energy of SSE is comparable in mag-
nitude with SE. In the region of the Kuroshio Current and its
extension, the energy of SSE is considerable and comparable
with that of SE, which means that SSE and SE are of equal
importance regionally. To the east of The Philippines, the ki-
netic energy of SSE is prominent, while there is little kinetic
energy associated with SE. Previous research has shown that
at least two groups of SSEs are found by subsurface mooring
near the Philippine coast; the dominate period of SSEs is
about 50-80 days (Chiang et al. 2015). These SSEs may be
related to the instability of currents and complex topography
as is the case in many other parts of the ocean. In addition, it is
worth noting that although the frequency of SSE is very small
along the equator, eddy energy is reasonably high, which
could reflect deep SSE and large amounts of EKE there.

4.3 Subsurface eddy statistics

We tracked SSE at different depth levels and analyzed their
properties based on the OFES data. Here, properties of SSE at
the depth of 404 m (about 400 m) are considered because most
of the undercurrents in the northwestern Pacific Ocean cross
this depth. Overall, 2569 SSAEs and 2099 SSCEs were de-
tected in the northwestern Pacific during 1993-2013, which
confirms the strong tendency for SSE to be anticyclonic.
Tracks of SSE with different lifespan (30, 60, 90, and
120 days) are shown in Fig. 8a—d, although only those SSEs with
displacement > 2° are shown for clarity. It can be seen that some
long-lived SSE exhibit longitudinal displacement of 15°. The
numbers of SSAE and SSCE are indicated in the upper left
corner of each panel. The predominance of anticyclonic SSE is
evident with ratios between the quantities of SSCE and SSAE of
76, 66, 59, and 69% illustrated in Fig. 8a—d, respectively. Two
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Fig. 11 Propagation characteristics of subsurface anticyclonic eddies
(SSAEs) and subsurface cyclonic eddies (SSCEs) at a depth of about
400 m with lifetime > 60 days. (left) Trajectories of SSAE and SSCE

latitudinal bands (9—17°N and 23-32°N) with high density of
SSE can be observed, which generally correspond with the fre-
quency of SSE (Fig. 6b) introduced in Section 4.1. It is worth
noting that although SSEs exist in the region of the Kuroshio
extension (Fig. 6b), only a few tracks can be found at about
400 m (Fig. 8). The reason for this might be that SSEs in this
region occur at depths above or below 400 m or that their lifetime
and transportation distance are too short to be counted. Although
tracks of SSE with lifetime < 60 days can be found in great
numbers to the east of The Philippines, there are almost no
SSE with lifespan > 120 days. A census of the locations of origin
of SSE in every 2° x 2° region during 1993-2013 is shown in
Fig. 9a. The coastal region east of The Philippines is shown as an
important place of origin of SSE (i.e., > 15 SSEs were generated
in each 2° x 2° bin). In addition, it is evident that SSAEs have
considerable numeric superiority over SSCEs in lower latitudes,
i.e., from the equator to 17°N (Fig. 9b).

The scale of SSE is defined as the radius of a circle with area
equal to the corresponding closed W, contour. The mean radius
of SSE is about 60 km, and the scale of the majority of SSE is
within the range at 40 km <radius <70 km, although several
extraordinarily large SSEs with radius > 100 km were also de-
tected. A histogram of the lifetimes of the tracks of SSE is pre-
sented in Fig. 10b. A total of 72% of SSEs can persist for 40—
50 days and that the maximum survival time of SSEs is up to
150 days. The average survival time of SSAE and SSCE is 50
and 45 days, respectively. Overall, 102 SSAEs and 52 SSCEs
survived longer than 100 days, which means that SSAEs are
more likely than SSCEs to survive for longer periods.

Trajectories of SSE referenced to a common starting point
are shown in Fig. 11(left). Generally, SSAEs have slight

Equatoward Poleward

relative to location of origin and (right) histograms of the mean
propagation angle relative to due west

tendency for equatorward deflection, i.e., about 50% of
SSAEs show equatorward deflection during their lifetime,
while 43% are deflected poleward. Conversely, SSCEs show
no obvious tendency of deflection (Fig. 11(right)). About 10
and 6% of SSAEs and SSCE:s, respectively, propagated purely
zonally (+1°). We estimated propagation speeds by tracing
the centroids of SSE along the trajectories as a function of
time. Overall, the propagation speed of SSE shows a fluctuat-
ing trend of decrease as latitude increases, i.e., from 10.5 cm/s
near the equator to 3.0-4.0 cm/s at 60°N. The mean speed of
all SSE is 6.6 cn/s. In the region of the Kuroshio extension,
SSCE move slightly faster than SSAE (Fig. 12).

1"

Translation velocity(cm/s)

L L

3 1 L 1
0 10 20 30 40 50 60

Latitude

Fig. 12 Latitudinal variation of the average westward propagation speed
(cm/s) of subsurface anticyclonic eddies (SSAE; red lines) and subsurface
cyclonic eddies (SSCE; blue lines)
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Fig. 13 Distribution of
nonlinearity parameter of
subsurface anticyclonic eddies
(SSAE; left) and subsurface
cyclonic eddies (SSCE; right).
The nonlinearity parameter is the
ratio between swirl velocity and
propagation speed
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A common measure of the nonlinearity of eddies is the u/c
ratio, where u is the average rotational speed and c is the
translation speed. Eddies characterized by a value of u/c > 1
can trap fluid in their interior and transport water properties,
such as heat, potential vorticity, and biogeochemical charac-
teristics (Chelton et al. 2007, 2011). We calculated the nonlin-
earity parameter at each time step along each eddy track, and,
then, we conducted statistical analysis. The distribution of the
nonlinearity parameter for SSAE and SSCE is shown in
Fig. 13a,b, respectively. The nonlinearity parameter ranges
from 0 to 5 with about 78 and 79% of SSAE and SSCE,
respectively, exceeding the value of 1. About 89% (37%) of
tracked SSEs are nonlinear for at least half (all) their lifetime.

5 Summary

This study investigated the characteristics of SSE in the north-
western Pacific Ocean using OFES data. The O—W method
was used to detect eddies from the velocity field of the OFES
data. Subsequently, the spatial distribution of all eddies (in-
cluding SE and SSE) at each time step of the model data was
determined. We extracted time series of vertical eddy distribu-
tion from the surface to the depth of about 2000 m at each grid
point, and we estimated the frequency of occurrence of SE and
SSE. Comparison of model output and altimeter observations
indicated that the model data and our detection algorithm
could satisfactorily reproduce eddy activities. A census of
SSE at the depth of about 400 m revealed the characteristics
of both anticyclonic and cyclonic eddies after eddy tracking.
In general, SSEs were found to exist widely in certain
areas, e.g., the Kuroshio extension region, latitudinal band
between 9°N and 17°N, and to the east of the Ryukyu
Islands, where the frequency of SSE was about 10, 16, and
8%, respectively. Comparison of the frequency of occurrence
of SSAE and SSCE revealed that while the STCC is known
for abundant SE, the occurrence of SSE in this region is rare.
Conversely, to the east of The Philippines, relatively few SEs
occur, whereas there are frequent SSEs. The identified SSEs
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were used to evaluate the kinetic energy contained in SSE,
which we found to be comparable in magnitude to that of
SE. In region such as to the east of The Philippines and in
latitudinal band 9°-17°N, the kinetic energy of SSE was
found even larger. The tracks of SSE revealed their propaga-
tion characteristics. Most of the detected SSE tended to be
anticyclonic. The average radius and lifespan of the SSE were
determined as about 60 km and 50 days, respectively. Most of
the observed SSEs were found nonlinear, which means that
SSE can have considerable impact in the movement of heat
and mass transport within the subsurface layer, especially in
some regions with abundant SSE. The dynamical mechanism
of SSE is complex, and it is often related to the regional back-
ground circulation, water mass characteristics, and/or topo-
graphic boundaries (Hormazabal et al. 2013; Nan et al.
2017; Takikawa et al. 2005).

Previous research has tended to focus on SE, and the im-
portance of SSE has been underestimated, despite the consid-
erable kinetic energy they contain. Although not visible at the
surface, SSE with large spatial structure and long lifetime can
accelerate the mixing and exchange of intermediate water. In
this research, only eddies with large spatial scale and regular
shape were detected, which could have introduced some un-
certainty in the identification process and led to underestima-
tion of the number of SSE. Because in situ data of SSE are
scarce, model data constitute the only practical resource with
which to reveal the characteristics of SSE. The census of the
properties of SSE presented here using the model output rep-
resents the first step in our analysis of SSE. The results will be
verified in future work when additional in situ observational
data of eddies become available. Furthermore, the formation
mechanisms, vertical structure, and transport of SSE in differ-
ent regions, which were not investigated here, will be pursued
in our future studies.
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