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Abstract
The amplitudes and phase lags of tides or tidal currents, which are collectively known as tidal harmonic constants (THCs), cannot
be interpolated linearly and separately.Mistreatment for the interpolations could occur, and indeed, it is seen even in the literature.
This note clarifies this topic by providing correct formulas to interpret THCs. One has to perform a nonlinear and coupled
interpolation of THCs to have equivalence to the liner interpolation in the time domain.

Similarly, tidal current ellipse parameters (ep-parameters) cannot be interpolated linearly and separately. To interpolate ep-
parameters, this note recommends that one should first convert them to amplitude and phase lag parameters (ap-parameters) and
then use the nonlinear and coupled interpolants proposed herein to interpolate the ap-parameters, followed by converting the
results back to ep-parameters.

Examples are provided to illustrate the problems and MATLAB functions are provided in Appendix as interpolating tools.
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1 Introduction

Tidal heights or currents at a location with a single tidal con-
stituent frequency ω can be described as follows:

u tð Þ ¼ acos ω t−ϕð Þ ð1Þ
where a and ϕ are the amplitude and the phase lag, respectively,
and the value of ω can be assigned based on astronomic knowl-
edge. The amplitude and phase lag at one location are constant
in time; therefore, they are also collectively referred to as tidal
harmonic constants (THCs). Often, interpolations of THCs
must be performed. For example, given two pairs of THCs at
two locations, say (a1, ϕ1) and (a2, ϕ2) at x1 and x2, we may
want to interpolate them to obtain a new pair of THCs at a point
somewhere in between.

An incorrect approach is to interpolate the amplitudes and
phase lags linearly and separately. For amplitude, one might
calculate as follows:

a ¼ αa1 þ βa2 ð2Þ

where α and β are interpolation weights, and their sum is equal
to one. For phase lag, one might calculate as follows:

cosϕ; sinϕð Þ ¼ αcosϕ1 þ βcosϕ2;αsinϕ1 þ βsinϕ2ð Þ ð3Þ
ϕ ¼ atan2 sinϕ; cosϕð Þ ð4Þ
where atan2 is an inverse function of the tangent and provides
angles ranging from −π to π (e.g., Park et al. (2012)). However,
this is not correct as we will see in the next section. This incorrect
approach could even be carried over to intenerating tidal current
ellipse parameters (Byun andHart 2017). To clarify the confusion,
this note is dedicated to presenting correct THC interpolants.

The next section will derive correct THC interpolants. The
BExamples^ section will provide examples for 1-D and 2-D
interpolations to demonstrate how the interpolants are applied
and to illustrate the differences from the results obtained using
the incorrect interpolants as of Eqs. (2), (3), and (4). Five
MATLAB functions for the THC interpolations are presented
in Appendix.

2 Nonlinear and coupled interpolants
for THCs

This section derives two interpolants for amplitudes and phase
lags, respectively. The interpolants will be nonlinear and
coupled in term of given amplitudes and phase lags (ap-
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parameters). The starting point for the derivation is a linear
interpolation in terms of the time functions of tidal heights or
currents as expressed by Eq. (1). It is emphasized here from
the outset that to have a linear interpolation in the time do-
main, one has to perform a nonlinear interpolation in the ap-
parameters domain (which may also be referred as the spec-
trum domain). This is understandable because the ap-
parameters work together nonlinearly to affect tidal heights
and currents.

Suppose that at x = x1 and x = x2 (assuming x2 > x1), two
pairs of THCs, (a1, ϕ1) and (a2, ϕ2), are known, with which
we can describe tidal height (or a current component) at these
two locations as follows:

u1 tð Þ ¼ a1cos ω t−ϕ1ð Þ; ð5Þ
u2 tð Þ ¼ a2cos ω t−ϕ2ð Þ: ð6Þ

Also, suppose that we would like to know u(t) at x some-
where in between x1 and x2 by a linear interpolation of u1(t)
and u2(t), i.e.,

u tð Þ ¼ αu1 tð Þ þ βu2 tð Þ ð7Þ
where α and β are interpolation weights, with α = (x2 − x)/
(x2 − x1) and β = 1 − α (interpolation in the time domain).
Further, assume that we do not wish to perform interpo-
lation for every point of time; rather, we wish to perform
interpolation once and directly on the two pairs of THCs
to obtain a new pair of THCs at x (interpolation in the
spectrum domain). When the new pair of THCs interpo-
lated from the spectrum domain is inserted into Eq. (1),
the resulting time series u(t) will be identical to the one
interpolated in the time domain using Eq. (7). This is the
mathematical setup for the problem. Now, let us solve it.

In fact, it can be easily solved by expanding Eq. (7) as
follows:

u ¼ αa1cosϕ1 þ βa2cosϕ2ð Þcosω t
þ αa1sinϕ1 þ βa2sinϕ2ð Þsinω t ð8Þ

Equation (1) can be rewritten as follows:

u tð Þ ¼ acosϕcosω t þ asinϕsinω t: ð9Þ

By equating the coefficients of cosωt and sinωt from the
right-hand sides of the above two equations, we obtain the
following:

acosϕ ¼ αa1cosϕ1 þ βa2cosϕ2 ð10Þ

asinϕ ¼ αa1sinϕ1 þ βa2sinϕ2 ð11Þ

from which we can solve for a and ϕ as follows:

ϕ ¼ atan2 αa1sinϕ1 þ βa2sinϕ2; αa1cosϕ1 þ βa2cosϕ2ð Þ ð12Þ

a ¼ αa1sinϕ1 þ βa2sinϕ2

sinϕ
ð13Þ

¼or αa1cosϕ1 þ βa2cosϕ2

cosϕ
ð14Þ

Note that by using atan2 (in MATLAB) instead of atan
in Eq. (12), the amplitude a values in Eqs. (13) and (14)
are guaranteed to be positive. Equations (12) and (13) (or
Eq. (14)) are the correct interpolants to interpolate THCs.
The time series reconstructed from so interpolated THCs
will observe the linear interpolation in the time domain as
specified in Eq. (7). This will not be the case if Eqs. (2) to
(4), or any other formulas, are used as interpolants
instead.

When 2-D interpolations are required, the 1-D interpolation
can be applied in one direction first, and the results can be
further interpolated in another direction. This process will be
illustrated in examples 2 and 3 in the next section.

This paper is meant as a short note paper and could end
here now. However, to help readers better intuit the problem
and observe the consequences of correct and incorrect inter-
polations graphically, some examples are provided in the next
section. The examples will also bring in MATLAB functions
for THC interpolation, which should be useful for ocean
modelling community.

3 Examples

This section shows three examples, one for a 1-D interpolation
and two for 2-D interpolations. Five MATLAB functions
listed in Appendix for the THC interpolations will also be
briefly introduced.

3.1 Example 1: 1-D interpolation

Let ω = 2π/Twith T = 12 h for the semi-diurnal frequency, let
a1 = 1.50 m and ϕ1 = 45.00 deg at x1 = 0, let a2 = 2.00 m,

and ϕ2 = − 45.00 degat x2 = 1 (the unit of the coordinates is
understood because it is not relevant to the interpolation prob-
lem here). Suppose at xi = 0.6, we want to know the THCs by
interpolation. First, we need to calculate the interpolation
weights of α and β according to the following:

α ¼ x2−xi
x2−x1

; ð15Þ

β ¼ 1−α ¼ xi−x1
x2−x1

: ð16Þ

By substituting the given x1, x2, and xi, we have α = 0.35
and β = 0.65. With the given (a1, ϕ1) and (a2, ϕ2), we then
have the following:
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ϕ ¼ atan2 ‐0:5480; 1:2905ð Þ ¼ − 0:4016

¼ − 23:0089deg ¼or 336:9911deg ð17Þ
a ¼ −0:5480= −0:3909ð Þ ¼ 1:4020 m ð18Þ

In comparison, using the interpolants of Eqs. (2)–(4), we
obtain values of a = 1.8250 m and
ϕ ¼ −16:6992 deg¼or 343:3008 deg, which differ greatly
from the correct values.

Figure 1 shows the four time series of u1 and u2 and two
versions of the interpolated ui that represent the correct and
incorrect versions. The green curve (the correct interpola-
tion) always remains between the two data curves (blue
and black), which is most evident when the green curve
runs through the points where the black and blue curve
intersect. This is what we expect from a liner interpolation
in the time domain between the two data curves. If linear
interpolation is performed for every point of time accord-
ing to Eq. (7), the result will be the same as the green
curve. However, the red curve (the incorrect interpolation)
sometimes travels even beyond the envelope of the two
data curves; in fact, it violates the liner interpolation re-
quired by Eq. (7) all the time.

List 1 and List 2 in Appendix are two MATLAB functions
interp1_w and THCinterp1, which are used for this example.
The function interp1_w calculates the interpolation weights of
the given coordinates for a set of data points (x) and coordi-
nates for the interpolation points (xi). The function
THCinterp1 implements the 1-D interpolation using Eqs.
(12) and (13).

3.2 Example 2: 2-D interpolation of amplitudes
and phase lags

This example demonstrates how the 1-D interpolants can
be extended for a 2-D interpolation. The top two panels of
Fig. 2 show amplitudes (left panel) and phase lags (right

panel), with the original THC data defined on the grid
points printed in blue. The interpolation problem here is
to interpolate the original THC data on to the centers of
the cells as indicated by the circles. The MATLAB func-
tion THCinterp2mat in List 3 of Appendix is used for
interpolation. It applies the 1-D interpolants of Eqs. (12)
and (13) twice. The first application is in the x-direction,
where the amplitudes and phase lags on each of the hor-
izontal lines are interpolated to the middle points of each
segment marked by the Bx^ on the horizontal lines. With
the interpolated amplitudes assigned on the Bx^ points,
the 1-D interpolation is applied again but in the y-direc-
tion. In terms of spatial coverage, this bi-directional ap-
proach is the same as a standard bi-linear interpolation in
the sense that they both apply a one-dimensional
interpolant twice. However, in terms of interpolants used,
the bi-directional approach proposed here is different from
the standard bi-linear interpolation. The former uses a
nonlinear interpolant, and the latter uses a linear
interpolant.

The interpolated results are printed in green beneath the
circle points. For comparison, the results obtained using the
incorrect 1-D interpolants of Eqs. (2)–(4) in the above bi-
directional approach are also printed in red above the circles.
To see how the time series will differ using these correct and
incorrect THCs, let us focus on the shaded cell on the second
row and fourth column of the top two panels. From the cor-
rectly and incorrectly interpolated amplitudes and phase lags
shown in the middle of the cell, we can reconstruct two ver-
sions of the time series. We can also use the amplitudes and
phase lags shown on the four corners of the cell to reconstruct
four data time series. All the time series are shown in the
bottom panel in green, red and gray, respectively. Since the
interpolation point is in the center of the cell, the correct inter-
polated value is an arithmetical average of the four gray curves
at each time step, as is the case with the green curve. The red
curve is clearly incorrect.

Fig. 1 Four time series of u1 and
u2 and two versions of ui that
represent the correct and incorrect
interpolations. The correct
interpolation (green) is recon-
structed from the amplitude and
phase lags interpolated using Eqs.
(12) and (13). The incorrect in-
terpolation (red) is reconstructed
using Eqs. (2)–(4)
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The function THCinterp2mat assumes that xx and yy are
gridded data coordinates and the interpolation points of xxi and
yyi are also gridded. There are also cases where we need to
interpolate from gridded data points to irregular points. The
MATLAB function THCinterp2 provided in List 4 in
Appendix satisfies this need. This function also works for cases
where the interpolation points are gridded points as well; how-
ever, the computational speed will be slightly slower than using

THCinterp2mat. Interpolations from irregular points to irregular
points can be also considered but are not addressed further here.

3.3 Example 3: 2-D interpolation of tidal current
ellipse parameters

For tidal current, we can generally neglect its weak vertical
component and focus on its two strong horizontal

Fig. 2 2-D interpolation of tidal harmonic constants. The top left and
right panels show amplitudes and phase lags, respectively. The original
data are shown in blue on the corners of the cells, and interpolated data are
shown in green and red in the centers of the cells. The green values are
correctly interpolated using Eqs. (12) and (13), and the red values are
incorrectly interpolated using Eqs. (2) and (4). Using the correct and
incorrect amplitudes and phase lags shown in centers of the two shaded

cells, we can reconstruct two versions of time series. The correct one in
green and the incorrect one in red are shown together with the four data
time series reconstructed using the original data shown on the four corners
of the same cells. The incorrectness of the red curve becomes evident
when it moves out of scope of the four data curves. The green curve
consistently remains in between the four data curves.
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components, u and v. Referring to Eq. (1), we see that to
describe u and v, we need two pairs of parameters, (au, ϕu)
and (av, ϕv). Interpolations on these ap-parameters can be per-
formed with Eqs. (12) and (13), following the procedures
illustrated by the above two examples.

On the other hand, by plotting v against u, we will see an
ellipse. Therefore, tidal currents can also be described by el-
lipse parameters (ep-parameters). The ap-parameters and ep-
parameters can be converted into each other by using the
ap2ep and ep2ap MATLAB functions developed by Xu
(2000, 2002). One might work out a set of interpolants that
can be directly applied to ep-parameters, but such a set might
be very complicated. It is better to convert ep-parameters to
ap-parameters first, then using Eqs. (12) and (13) as the
interpolants, and then convert the results back to the ep-pa-
rameters. The MATLAB function THCepinterp2 shown in
List 5 in Appendix assumes these steps.

Figure 3 illustrates an interpolation of tidal ellipses. Four
data ellipses are provided at four corners of a grid cell. The
ellipse drawn on the center of the cell is interpolated from the
four data ellipses. The interpolation can be performed by call-
ing THCepinerp2 in this way:

EPi ¼ THCepinerp2 xx; yy;EP; xi; yið Þ ð19Þ

where

xx ¼ 0 1
0 1

� �
; yy ¼ 0 0

1 1

� �
; ð20Þ

are two matrices containing the coordinates of the four grid
points, and the EP is a MATLAB structure with the ep-
parameters of the data ellipses as its fields:

EP:SEMA ¼ 0:8333 0:5912
1:1587 0:6428

� �
; EP:INC ¼ 62:9095 108:5705

50:4532 135:0000

� �
;

EP:ECC ¼ 0:4220 −0:6338
0:3688 0:5090

� �
; EP:PHA ¼ 203:5677 204:2242

104:2663 141:8655

� �
;

ð21Þ

where the four fields EP.SEMA, EP.INC, EP.ECC, and
EP.PHA contain the lengths of the semi-major axes, the
orientations (inclinations) of the semi-major axes, the ec-
centricities,1 and the phase angles of the four data ellipses,
respectively. The phase angle of a tidal ellipse indicates a
time that is expressed as an angle (= time × frequency)
when the tidal current reaches its maximum speed. The
interpolation point is the center of the cell, which means
that xi = 0.5 and yi = 0.5.

As we can see, the interpolated ellipse is much smaller than
any of the four data ellipses. This seems surprising but it is
actually correct, because the u- and v-time series represented
by the four ellipses are out of phase to a large degree. Figure 4
shows time series of u-components (top panel) and v-compo-
nents (bottom panel) reconstructed from the data ellipses (in
gray) and from the interpolated ellipse (in green). Since the

Fig. 3 Tidal current ellipse
parameter interpolation. The data
ellipses distributed at the four
corners of the grid cells and the
interpolated ellipse at the center of
the cell are shown. The
interpolation is performed by the
function THCepinerp2 as
provided in List 5 of Appendix

1 Due to a historical reason in oceanography, the eccentricity is defined as the
ratio of the semi-minor axis to the semi-major axis of the ellipse, which is
different to the usual mathematical definition. Its negative value indicates that
the ellipse traverses in a clockwise rotation.
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interpolation point is in the center of the cell, the green
curve for the u-component should simply be an arithmet-
ic average of the four gray curves of the u-components;
so is the green curve for the v-component. As we can see,
the four time series at the four corners of the cell have
very different phases, which causes their average in the
middle of the cell to have a much smaller amplitude.
This example demonstrates the importance of treating
tidal ellipse interpolation appropriately.

The semi-major axes of the ellipses are shown in the
range of [0, 180°) in Fig. 3. The semi-minor axes are
shown 90° from the semi-major axes, and they are either
counter-clockwise or clockwise depending on whether
the eccentricity is positive or negative. The inclinations
of the semi-major axes do not have to be in the direction
as shown. Their opposite directions could have well
been chosen as the inclinations. However, to choose
the inclinations to be in the range of [0, 180°) is conven-
tional, the so-called the northern axis convention
(Foreman 1978, p. 13). The ap2ep and ep2ap functions
have two versions. The one provided by Xu (2000) al-
lows inclinations in the range of [0, 380°), whereas the
revised version by Xu (2002) adopts the northern axis
convention. Both versions will give the same ap-
parameters however. Therefore, no matter which version
one may prefer, the interpolation will not be affected.

4 Conclusions

The amplitude and phase parameters (ap-parameters)
for tidal heights and tidal currents cannot be interpo-
lated in space as though they are independent quanti-
ties—errors arise when they are interpolated separate-
ly and linearly. This note paper provides correct non-
linear and coupled interpolation interpolants: Eqs.
(12) and (13) (or (14)), together with examples and
MATLAB functions. When these interpolants are
used, the time series reconstructed from the interpo-
lated ap-parameters are identical to those obtained by
interpolating the tidal height or current time series.

Similarly, the tidal current ep-parameters cannot be
interpolated linearly and separately. First, they should
be converted to ap-parameters. Then, the nonlinear
and coupled interpolants can be used to interpolate
the ap-parameters, followed by converting the results
back to ep-parameters.

The MATLAB functions listed in Appendix provide
tools to interpolate THCs. These functions relieve uses
from the complexity of the interpolations and provide
an easy user interface. The function THCepinterp2 is a
tool for interpolating tidal ep-parameters, a procedure
that can otherwise be quite complicated and prone to
error.

Fig. 4 Time series of u and v
reconstructed from the four
original tidal ellipses in gray and
the interpolated ellipse in green.
Because the interpolation point is
at the center of the cell, the green
curve is an average of the four
gray curves
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Appendix: MATLAB functions
for interpolating THCs

List 1 Function interp1_w for calculating the interpolation
weights.

1 function W = interp1_w(x, xi) 
2 % interp1_w:  Outputs 1-D interpolation weights and associated info. 
3 % 
4 % Inputs: x:  the data points for the interpolation
5 %         xi: the points for the interpolation
6 % Output: W:  a structure with fields for interpolation weights for 
7 %             alpha and beta and the indices i1 and i2 to locate the 
8 %             interpolation data.
9 %

10 % Zhigang Xu, 2017/Jan/03

11 [x, n]=sort(x);    % sort x in ascending order and 
 % re-arrange amp and phi.

12 if min(xi) < x(1) || max(xi) > x(end) 
13    error('There are interpolation points outside the range of x!') 
14 end
15 dx=diff(x); 

16 if any(dx)==0 
17    error('x must be distinct!') 
18 end

19 i=1:numel(x); 
20 jmax=numel(xi); 
21 W.alpha=nan(size(xi)); 
22 W.beta=nan(size(xi)); 
23 W.i1=zeros(size(xi)); 
24 W.i2=zeros(size(xi)); 

25 for j=1:jmax 
26     x0=xi(j); 
27     i1=max(i(x0>=x)); i2=min(i(x0<=x)); 
28     x1=x(i1); x2=x(i2); dx=x2-x1; 
29     if dx==0 
30        W.alpha(j)=1; 
31     else
32        W.alpha(j)=(x2-x0)/dx; 
33     end
34 W.beta(j)=1-W.alpha(j); 
35 W.i1(j)=n(i1); 
36 W.i2(j)=n(i2);         
37 end % % of the function
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List 2 Function THCinterp1 for performing 1-D interpola-
tions of tidal harmonic constants

3 % Inputs
4 %        x: the 1-D spatial coordinates where the amplitudes and phase
5 %            lags are defined.
6 %        amp and phi: amplitudes and phase lags defined on x
7 %        xi: the coordinates for the interpolations. 
8 %        isdeg: a logical variable to indicate if phi is input in 
9 %               degrees or not (then in radians). Its default value is

10 %               true.    
11 % Outputs:
12 %        amp and phi, the interpolated results.
13 %
14 % Zhigang Xu, 2017/Jan/03

15 if nargin<5, isdeg=true; end
16 if isdeg, phi=phi*(pi/180); end

17 W=interp1_w(x,xi); 
18 i1=W.i1; i2=W.i2; 
19 alpha=W.alpha; 
20 beta=W.beta; 
21 acpd=amp.*cos(phi); 
22 aspd=amp.*sin(phi); 

23 acp=alpha.*acpd(i1)+beta.*acpd(i2);  
24 asp=alpha.*aspd(i1)+beta.*aspd(i2); 

25 phi=atan2(asp, acp); 
26 amp=asp./sin(phi); 

27 if isdeg 
28    phi=phi*(180/pi); id=phi<0; 
29    phi(id)=phi(id)+360; % so that ampi is within the range[0 360);
30 end
31 end % end of the function

1 function [amp,phi]=THCinterp1(x,amp,phi,xi,isdeg) 
2 % THCinterp1: 1-D interpolation of tidal harmonic constants (THC).
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List 3 Function THCinterp2mat for performing 2-D tidal
harmonic constant interpolations. Both the data coordinate
points and interpolation points must be gridded

List 4 Function THCinterp2 for performing 2-D tidal har-
monic constant interpolations. The data coordinate points
must be gridded, whereas the interpolation points do not have
to be gridded

1 function[amp,phi]=THCinterp2mat(xx,yy,amp,phi,xxi,yyi,isdeg) 
2 % THCinterp2mat: Tidal Harmonic Constant (THC) 2-D interpolant.
3 % Inputs:
4 %        xx, yy:     2-D grid coordinate matrices
5 %        amp, phi:   amplitudes and phase lags defined on xx and yy
6 %        xxi, yyi:   submatrices within xx and yy in which 
7 %                    interpolated amplitudes and phases are needed.
8 %        isdeg,      an optional logical variable to indicate if phi 
9 %                    is input in degrees or not. Its default value

10 %                    is true. 
11 % Outputs: amp, phi: the interpolated amplitudes and phase lags.
12 %
13 % Zhigang Xu, 2017/Jan/06

14 if nargin<7, isdeg=true; end
15 if isdeg,phi=phi*(pi/180);end
16 x=xx(1,:); xi=xxi(1,:); 
17 y=yy(:,1); yi=yyi(:,1); 

18 %% Interpolation in the x-direction
19 acp=amp.*cos(phi); asp=amp.*sin(phi); 
20 W=interp1_w(x,xi); j1=W.i1; j2=W.i2; 
21 [m,~]=size(asp);  
22 alpha=ones(m,1)*W.alpha;  beta=ones(m,1)*W.beta; 
23 acp=alpha.*acp(:,j1)+beta.*acp(:,j2);  
24 asp=alpha.*asp(:,j1)+beta.*asp(:,j2); 

25 %% Interpolation in the y-direction
26 W=interp1_w(y,yi); i1=W.i1; i2=W.i2;     
27 [~,n]=size(asp);  
28 alpha=W.alpha*ones(1,n); beta=W.beta*ones(1,n); 
29 acp=alpha.*acp(i1,:)+beta.*acp(i2,:);   
30 asp=alpha.*asp(i1,:)+beta.*asp(i2,:); 
31 phi=atan2(asp, acp); amp=asp./sin(phi); 

32 %% output
33 if isdeg 
34    phi=phi*(180/pi); id=phi<0; 
35    phi(id)=phi(id)+360; % so that phi is within the range[0 360);
36 end

37 end % 
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1 function [amp,phi]=THCinterp2(xx,yy,amp,phi,xxi,yyi,isdeg) 
2 % THCinterp2: Tidal Harmonic Constant (THC) 2-D interpolant.
3 % Inputs:
4 %        xx, yy:     2-D grid coordinate matrices
5 %        amp, phi:   amplitudes and phase lags defined on xx and yy
6 %        xxi, yyi:   coordinates of a set of points within xx 
7 %                    and yy in which interpolated amplitudes and
8 %                    phases are needed. Note that xxi and yyi can be
9 %                    matrices or both column or row vectors.

10 %        isdeg,      an optional logical variable to indicate if phi 
11 %                    is input in degrees or not (then in radians). 
12 %                    Its default value is true.
13 % Outputs: amp, phi: the interpolated amplitudes and phase lags.
14 %
15 % Zhigang Xu, 2017/Jan/06

16 if nargin<7, isdeg=true; end
17 if isdeg,phi=phi*(pi/180);end
18 x=xx(1,:); y=yy(:,1);  

19 %% Interpolation in the x-direction
20 acp=amp.*cos(phi); asp=amp.*sin(phi); 
21 [xi, g]=numunique(xxi); 
22 if ~isrow(xi) 
23   xi=xi.';    
24 end
25 W=interp1_w(x,xi); j1=W.i1; j2=W.i2; 

26 [m,~]=size(asp);  
27 alpha=ones(m,1)*W.alpha;  beta=ones(m,1)*W.beta; 
28 acp=alpha.*acp(:,j1)+beta.*acp(:,j2);  
29 asp=alpha.*asp(:,j1)+beta.*asp(:,j2); 

30 %% Interpolation in the y-direction
31 yi=yyi(g{1}); 
32 if ~iscolumn(yi), yi=yi(:);end
33 W=interp1_w(y,yi); 
34 yiold=yi; 
35 amp=nan(size(xxi)); 
36 phi=nan(size(xxi)); 

37 for c=1:numel(xi) 
38 yi=yyi(g{c}); if ~iscolumn(yi), yi=yi(:);end
39 renewW=true; 
40 if numel(yi)==numel(yiold); 

if sum(yi-yiold)==0,renewW=false;end
41 end
42 if renewW,  
43    W=interp1_w(y,yi); yiold=yi; 
44 end
45 i1=W.i1; i2=W.i2;     
46 alpha=W.alpha; beta=W.beta; 
47 ac=alpha.*acp(i1,c)+beta.*acp(i2,c);   
48 as=alpha.*asp(i1,c)+beta.*asp(i2,c); 
49 p=atan2(as, ac);  
50 phi(g{c})=p; 
51 amp(g{c})=as./sin(p); 
52 end

53 %% output
54 if isdeg 
55    phi=phi*(180/pi); id=phi<0; 
56    phi(id)=phi(id)+360; % so that phi is within the range[0 360);
57 end
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List 5 Function THCepinterp2 for performing 2-D interpo-
lations of the tidal ellipse parameters

1 function EP=THCepinterp2(XX, YY, EP, xi, yi, isdeg)  
2 % Inputs
3 %       XX, YY: two matrices for rectangular grid points coordinates.
4 %               They should be created by meshgrid function.
5 %
6 %       EP:     a structure with fields for the tidal current tidal
7 %               ellipse parameters SEMA, ECC, INC, and PHA. 
8 %               See ap2ep and ep2ap (Xu,2000; Xu,2002).
9 %

10 %       Xi, Yi, coordinates of the interpolation points. They can be
11 %               matrices for the rectangular grid points or vectors
12 %               for the irregular points.
13 %
14 %       isdeg,  an optional argument to indicate whether the phase and
15 %               inclination angles (PHA and INC) are input in degrees
16 %               or not (then in radians). Its default value is true.
17 %
18 % Outputs:
19 %         EP: a structure with fields for the tidal current tidal
20 %             ellipse parameters SEMA, ECC, INC, and PHA. See ap2ep 
21 %             and ep2ap (Xu,2000; Xu,2002).
22 %
23 % Zhigang Xu, 2017/Jan/08
24 if nargin<6, isdeg=true; end

25 SEMA=EP.SEMA; ECC=EP.ECC; INC=EP.INC; PHA=EP.PHA; 
26 [Au, PHIu, Av, PHIv]=ep2ap(SEMA, ECC, INC, PHA); 

27 [Au, PHIu]=THCinterp2(XX, YY, Au, PHIu, xi, yi, isdeg); 
28 [Av, PHIv]=THCinterp2(XX, YY, Av, PHIv, xi, yi, isdeg); 

29 [SEMA,  ECC, INC, PHA]=ap2ep(Au, PHIu, Av, PHIv); 
30 EP.SEMA=SEMA; EP.ECC=ECC; EP.INC=INC; EP.PHA=PHA; 
31
32 end % of the function
33
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