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Abstract The dispersion and transport of single inertial
particles through an oscillatory turbulent aquatic environ-
ment are examined numerically by a Lagrangian particle
tracking model using a series of idealised test cases. The
turbulent mixing is incorporated into the Lagrangian model
by the means of a stochastic scheme in which the inho-
mogeneous turbulent quantities are governed by a one-
dimensional k-ε turbulence closure scheme. This vertical
mixing model is further modified to include the effects
of surface gravity waves including Coriolis-Stokes forc-
ing, wave breaking, and Langmuir circulations. To simplify
the complex interactions between the deterministic and the
stochastic phases of flow, we assume a time-invariant tur-
bulent flow field and exclude the hydrodynamic biases
due to the effects of ambient mean current. The numeri-
cal results show that the inertial particles acquire perturbed
oscillations traced out as time-varying sinking/rising orbits
in the vicinity of the sea surface under linear and cnoidal
waves and acquire a non-looping single arc superimposed
with the high-frequency fluctuations beneath the nonlinear
solitary waves. Furthermore, we briefly summarise some
recipes through the course of this paper on the implemen-
tation of the stochastic particle tracking models to realisti-
cally describe the drift and suspension of inertial particles
throughout the water column.
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1 Introduction

The suspension and drift of buoyant particles, such as oil
spills and biological matters, within an oscillatory turbu-
lent fluid are frequently observed phenomena in a num-
ber of geophysical and offshore engineering applications
(Murray 1970; Fowler and Knauer 1986; Wilson 2000; Ross
2010; Drivdal et al. 2014). While light particles, i.e., bub-
bles, exhibit strong tendency to trap in the high vorticity
regions near the air-sea interface, heavy inertial particles
(with diameter > 200 μm) sink to the deep ocean due to
their tendency to accumulate in the regions of high strain
rate and low vorticity. They also have the ability to absorb
and carry carbon into the water column (Noh et al. 2006;
Fowler and Knauer 1986). Additionally, near the sea sur-
face, the vertical dispersion and horizontal spreading of
marine buoyant particles are substantially influenced by the
wave-related processes such as the residual wave-induced
flow (Stokes drift) which tilts the vertical vorticity toward
the wave direction (Leibovich and Lumley 1999; Leibovich
1997). Therefore, the detailed knowledge of mechanisms
controlling the transformation of water parcels subjected to
wave and turbulent forces is essential to better understand
the exchange physical, chemical, and biological processes
(such as the global carbon cycle and pollutant distribu-
tion) across the air-sea boundary and throughout the water
column.

Turbulence in the oceanic surface boundary layer, par-
ticularly in the regimes of breaking waves and coherent
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large-scale Langmuir circulations, is one of the most impor-
tant mechanisms which significantly controls the temporal
and spatial distributions of tracers (Noh et al. 2006). The
corresponding Lagrangian motions spread out across a wide
range of scales from energy-containing (integral) scales on
the order of mixed layer depth to the dissipative eddies of
scales on the order of millimetres (Kolmogrov scale). Sev-
eral local trapping (ejecting) events inside (from) these tur-
bulent eddies occur for an inertial particle moving through-
out the upper ocean mixed layer (Csandy 1963). Hence, the
final state of the particle in such nonlinear system reveals
a stochastic chaotic dynamics due to the inhomogeneities
of the ambient flow. Such complexity of the underlying
physics for the transportation of inertial particles in the dis-
turbed turbulent flow can be captured theoretically through
Langevin equations that relate the evolution of particle tra-
jectories (velocities) to the stochastic forces acting on them.
Wilson (2000) studied the dispersion of heavy particles in
a turbulent flow using a simple Lagrangian Stochastic (LS)
model. Noh et al. (2006) investigated the effects of tur-
bulence on particle settling by analysing the motions of a
large number of Lagrangian particles in the ocean mixed
layer in the presence of Langmuir Circulations (LCs) (Craik
and Leibovich 1976; McWilliams and Restrepo 1999).
Jansons and Lythe (1998) studied analytically the stochas-
tic effects on the Stokes drift of non-inertial particles when
they are subjected to a Gaussian white noise. Jansons (2007)
developed further the stochastic Stokes drift theory for iner-
tial particles. Restrepo (2007) incorporated the effects of
stochastic Lagrangian drift on the wave-driven circulation
models by parameterizing the nonconservative wave break-
ing effects. Tang et al. (2010) calculated the stochastic
Stokes drift for the monochromatic inertia-gravity waves
and quantified the statistics of the various moments of the
corresponding random process.

Several theoretical, numerical, and experimental studies
have shown that the point particles underneath linear and
nonlinear periodic waves experience non-closed orbits with
horizontal drifts, and particles acquire a non-looping single
arc during the passage of nonlinear solitary waves (Longuet-
Higgins 1953; Bakhoday-Paskyabi 2015; Umeyama 2012).
Nevertheless, the inertial particles extract momentum from
the wave orbital motions near the air-sea interface and accel-
erate in the form of sinking/rising helix (Constantin 2006;
Eames 2008; Santamaria et al. 2013). By moving from the
sea surface towards the mid-water depth, other forces such
as inertia and gravity start to deviate the particles from
their trajectories induced by the dominant wave oscillatory
motions. In most of the aforementioned studies, the main
focus has been the extraction of inertial (point) particle
motions within a non-turbulent flow in which the tracers
follow the dynamics organised by the deterministic phase

of fluid. In this study, the main objective is to investigate
the dispersion of a single inertial particle beneath the irro-
tational linear, nonlinear, and solitary waves by accounting
the intermittent and abrupt movements of particles per-
turbed by the turbulent diffusion processes. To prevent any
difficulty raised for singling out the interactions between
waves and inertial particles among other external active
forces, we ignore the contributions from the mean cur-
rent and implement the wave-component of instantaneous
velocity field using the known analytical solutions of linear,
nonlinear periodic, and solitary waves. Turbulent quanti-
ties in the water column are assumed either constant or
determined from an Eulerian one-dimensional (1D) vertical
ocean mixing model modified to include the wave effects
(Bakhoday-Paskyabi et al. 2012; Bakhoday-Paskyabi and
Fer 2014a).

The paper is structured as follows. In Section 2, we will
give the background mathematical formulations associated
to the surface wave field, fluid phase, and particle dispersal
phase. A stochastic numerical solver is briefly explained in
Section 3. We discuss numerical results in Section 4, and the
final section includes some conclusions.

2 Mathematical formulations

2.1 Pure wave phase

2.1.1 Regular and irregular waves

Linear wave theory (i.e., small-amplitude wave theory) is
the simplest possible water periodic wave theory for the
surface gravity waves propagating over a constant depth
D. By assuming no contributions from viscous and turbu-
lent stresses (irrotational flow assumption), and too small
wave steepness, D/λ � 1, where λ is the wavelength, the
solution of linearized form of the two-dimensional Euler
equations in the x-z plane results in the horizontal and
vertical wave orbital velocities as

ũ = c
η

D
· kD cosh k(z+D)

sinh kD
; and w̃=−cηx · sinh k(z+D)

sinh kD
,

(1)

where η = a cos(ωt − kx) is the surface elevation, a is
the wave amplitude, ω denotes the angular frequency, k

indicates the wavenumber, c is the phase speed, and ηx

represents the surface slope (Svendsen 2006; Dean and
Dalrymple 1992). An important advantage of linear theory
(over nonlinear ones) is its potential to superimpose a finite
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number of sinusoidal waves with different amplitude and
random phase to simulate irregular sea surface. Thus, one
can describe the water surface elevation as

η(x, t) =
∑

n

ηn =
∑

n

an cos(ωnt − knx − δn), (2)

where δn is a random phase, and an = √
2Sηη(fn)Δf ,

in which Sηη denotes the wave energy spectrum at fre-
quency fn. The wave energy spectrum may be obtained
from either measurements or empirical relations, as well as
numerically by solving the wave energy transport equation
(Section 2.1.2). The wavenumber, kn, and angular frequency
ωn at nth wave mode are related by the dispersion relation
ω2

n = gkn tanh(knD), and the horizontal and vertical veloc-
ities of irregular waves are determined similar to Eqs. 1
and 2.

Due to inaccuracy of linear wave predictions in the
presence of strong nonlinearity and large wave steepness,
several nonlinear wave theories such as Stokes waves, small
amplitude long waves, long waves from Boussinesq theory,
and large amplitude long waves have been widely used to
deal with the limitations of linear wave theory (Svendsen
2006). In this study, we use cnoidal waves which provide
better estimations for wave propagation than the Stokes the-
ory for the shallow water with moderate depth. The cnoidal
waves are described by Jacobi’s elliptic functions as the
analytical solutions of Boussinesq equations (under some
simplifications and approximations). The profile of surface
elevation η in this theory is given by

η =

η2︷ ︸︸ ︷
h

m

(
1 − m − E(m)

K(m)

)
+hcn2

(
2K

[
t

T
− x

λ

]
|m

)
,

(3)

where η2 is the trough elevation, h is the cnoidal wave
height,K(m) andE(m) are the complete elliptic integrals of
the first and the second kind, m is the elliptic parameter, cn
denotes the Jacobian elliptic function, and λ is the cnoidal
wavelength. The horizontal and vertical cnoidal velocities
are determined through:

ũ = 1

2
cD

(
1

3
− (z + D)2

D2

)
ηxx + c

η

D
− c

(
η2

D2
+ η2

D2

)
, (4)

w̃ = −c(z + D)

[
ηx

D

(
1 − 2η

D

)
+ 1

6
D

(
1− (z + D)2

D2

)
ηxxx

]
,

(5)

where overbar denotes time-average over a wave cycle.
In limiting case when λ/D → ∞, the cnoidal solution

approaches the solitary wave solution (Wiegel 1960;
Whitham 1974; Svendsen 2006), see more details in
Appendix A.

2.1.2 Wave-induced surface fluxes

The evolution of the surface directional energy spectrum can
be obtained numerically, in the absence of the sea surface
currents, by solving the wave energy transport equation:

∂Sηη(f )

∂t
+ cg · ∇Sηη(f ) = Sin + Sds + Snl, (6)

where Sin, Sds, and Snl correspond to the wind input, dissi-
pation, and nonlinear wave–wave interaction source terms,
respectively, cg is the group velocity, and ∇ is the two-
dimensional horizontal gradient operator. The wave energy
dissipated to the ocean, τwo, and the energy flux from the
wind to the waves, τ aw, are calculated from the following
relations

τ aw = ρwg

∫

f

Sin(f )df ; τwo = ρwg

∫

f

Sds(f )df , (7)

where ρw is the water density and Snl integrates to zero
across the whole frequency range.

2.2 Fluid phase

In this study, we only consider the contribution from the
turbulence into the Lagrangian model by a diffusion term
computed from a one-dimensional ocean mixing model as
described in Bakhoday-Paskyabi and Fer (2014a). Compo-
nents of temperature, salinity, and currents are computed
on vertical sigma grids with refined resolution near the sea
surface and bottom. Furthermore, the momentum equations
are revised to include the wave effects by decomposing the
instantaneous velocity vector, u, into the mean, ū, wave, and
turbulence components, u = ū+us+u′ where u′ represents
the turbulent fluctuating velocity vector and us = (us, vs, 0)
is the Stokes drift vector given by

us(z) = 2
∫

ωkK̂Sηη(f ) exp(−2k|z|)df , (8)

where K̂ denotes the wavenumber direction and k is the
modulus of wavenumber. Here, the wave energy spectrum is
calculated based on wave bulk information,Hs and Tp, from
the empirical Joint North Sea Wave Project (JONSWAP)
spectrum by assuming a fully developed sea.
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2.2.1 General equations of motion

Using velocity decomposition for the incompressible turbu-
lent flow, the equations of motion are obtained as

∂ū

∂t
+ ū

∂ū

∂z
+ fCor(v̄ + vs) = − 1

ρ

∂p

∂x
+ Fds,x + ∂

∂z
(u′w′), (9)

∂v̄

∂t
+ v̄

∂v̄

∂z
− fCor(ū + us) = − 1

ρ

∂p

∂y
+ Fds,y + ∂

∂z
(v′w′),(10)

where p is the hydrostatic pressure, fCor is the Coriolis
parameter, ρ is the mean density, and t denotes the time.
fCor(us, vs) is the Coriolis-Stokes force (CSF), and F ds =
(F ds,x, F ds,y) are the dissipative forces induced by the
wave breaking and wave-turbulence interaction (Bakhoday-
Paskyabi et al. 2012). u′w′ and v′w′ are horizontal Reynolds
stresses. Overbars denote time averaging.

The boundary condition at the sea surface due to the
coupling between wind and wave forces is expressed by

νt

∂ū

∂z
|z=η = 1

ρw

[τ a − τ aw], (11)

where τ a is the total wind stress. A flux boundary condition
is utilised at the bottom using the bottom stresses estimated
from the log-law (Burchard et al. 1999).

2.2.2 Equations of TKE and its dissipation

The vertical mixing model in the presence of wave-
turbulence interaction is computed using the following
wave-modified k-ε scheme:

∂Ek

∂t
= ∂

∂z

((
ν + νt

σk

)
∂Ek

∂z

)
+ Pshear + PStokes + B − ε,(12)

∂ε

∂t
= ∂

∂z

((
ν + νt

σε

)
∂ε

∂z

)

+ ε

Ek

(c1Pshear + c3B + c4PStokes − c2ε),

(13)

where ν denotes the molecular diffusivity, Pshear =
−(u′w′∂zū + v′w′∂zv̄) and B = −ν′

t ∂b/∂z are the shear
production and buoyancy term, respectively, b represents
the buoyancy vertical profile, and PStokes = −(u′w′∂zus +
v′w′∂zvs) indicates the Stokes production term.

The vertical diffusion of Turbulent Kinetic Energy
(TKE),Ek , and its dissipation, ε, are denoted by the Schmidt
numbers σk (here 1.3) and σε (ranging from 0.8 to 1.11),
respectively. c1 = 1.44, c2 = 1.97, c3 = 1 if B ≥
0 and c3 = −0.52 otherwise, and c4 = 1 (Burchard
2002; Bakhoday-Paskyabi and Fer 2014a, b). Finally, the

expressions for the eddy viscosity, νt , and diffusivity, ν′
t , are

given by νt = cμE2
k /ε, and ν′

t = c′
μE2

k /ε,where cμ and
c′
μ are the so-called stability functions which depend on the
shear, stratification, and turbulent time scale τt = Ek/ε.
We further use flux boundary condition for Ek at the sea
surface as

νt

∂Ek

∂z
= Fk, (14)

where Fk prescribes the injection of turbulent flux from
the wave field to the upper ocean (Bakhoday-Paskyabi and
Fer 2014a, b). The flux boundary condition is used for ε

at the first level below (above) the sea surface (bottom)
using ε = c30E

3/2
k / l, where l is the turbulent length scale

and c0 = 0.5544 is an empirical constant. All wave-related
modifications are implemented into the 1D General Ocean
Turbulence Model (GOTM) (Burchard et al. 1999).

2.3 Particulate phase

The dispersed phase may be described by either an Eulerian
or a Lagrangian approach. While in the Eulerian approach,
a transport equation is governed for the continuum con-
centration field, the Lagrangian representation deals with a
collection of transported particles as the dispersed phase of
flow. The Lagrangian motion of a rigid spherical point-like
particle at time t located at position Xp(t) with the total
velocity of flow, u, satisfies the equation:

dXp(t)

dt
= u(Xp(t), t),

with the initial conditions Xp(0) = (xp(0), yp(0), zp(0))
at t = 0, and u is the superimposition of the background
current and the wave-related motions, ũ in the absence of
turbulence fluctuating motions. This equation holds only for
passive tracers with a negligible size, dp → 0 where dp is
the particle diameter. These types of particles with the same
density as the continuum phase are transported by the flow
with no impact on the flow. However, the particles in several
situations fail to follow the flow as a result of inertial effects.
Point-like particles with a density smaller or larger than the
surrounding fluid show completely different dynamics than
passive tracers. While light particles (ρp < ρf ) are accumu-
lated in the regions of high vorticity, heavy particles exhibit
tendency for tracing out from the vortex regions. To govern
the translational motions of such inertial particles, Maxey
and Riley (1983) developed a model for the motion of a
small spherical rigid particle in an unsteady flow which in
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the absence of Basset force, flow curvature, and lift induced
by the velocity gradient can be expressed as

mp

dvp

dt
=

1︷ ︸︸ ︷
mf

Du(Xp(t), t)

Dt
+

2︷ ︸︸ ︷
3πdpνρf [u(Xp(t), t)−vp]

+
3︷ ︸︸ ︷

(mp − mf )g

+1

2
mf

(
Du(Xp(t), t)

Dt
− dvp

dt

)
, (15)

where mp and mf are the masses of the particle and the dis-
placed fluid, respectively, vp(Xp(t), t) denotes the particle
velocity at position Xp and time t , ν is the kinematic vis-
cosity of the fluid, and ρf and ρp are the fluid density and
particle density, respectively. Term 1 is the acceleration of
the fluid element at the position of the particle, term 2 is
the so-called Stokes force acting on particles in a viscous
flow. The third term represents the buoyancy force, and the
last term is called the added-mass which accounts for the
displacement of a certain amount of fluid when the particle
moves relative to the fluid (i.e., the particle behaves as if it
has an additional mass). This equation is valid for small
particle Reynolds number, Rep = (d|vp|)/ν. By account-
ing the terminal falling velocity, ws , of the particle in the
direction of gravity, Eq. 15 is then reduced to

dvp

dt
= β1

Du

Dt
+ 1

τp

(u − vp − ws ẑ) + β3g, (16)

where ẑ is the unit vector in the vertical direction, β =
ρp/ρf , β1 = 3/(β + 1), β3 = 2(β − 1)/(2β + 1), and
ws = g(β − 1)d2

p/(18ν). The response time of the inertial
particle, τp, and the corresponding Stokes number, St , are
given by

τp = β2
βd2

p

18νCD

and St = τp

τc

, (17)

where β2 = (2β + 1)/(2β), τc denotes a characteristic time
scale of the fluid (i.e., the Kolmogrov time scale τc = √

ν/ε

in a turbulent flow or gravity wave time scale for this study)
and CD(Rep) is a correction term for the non-Stoksian drag
(here, we set CD = 1 for the sake of simplicity). When
St � 1, the particle is considered to be inertialess coupled
to the continuous phase of flow. If St 	 1, the particle
can no longer adopt the dynamics of the flow and exhibits a
different behaviour (Fowler and Knauer 1986).

2.3.1 Langevin model

So far, the trajectories of particles have been described by
only the continuous phase of flow when there is no diffu-
sivity or turbulence-induced perturbations along their tra-
jectories. Under the influences of the vertical and horizontal
turbulent dispersions, the buoyant particles are transported

via random processes which are incorporated into the model
by including an additive dispersal stochastic term. The two-
dimensional motions of particles are then governed (in Itô
form) through the Langevin equation (Kloeden and Platen
1999):

dXp(t)

dt
= vp(Xp(t)) + ∇∗A + σ (Xp(t), t)

dWt

dt
, (18)

where the random process Xp(t) = (xp(t), zp(t)) denotes
the particle location, Wt is a vector of Wiener process at
time t , i.e., the Wiener increments, Wt+Δt − Wt , are sam-
pled as a normal distribution with mean 0 and variance Δt ,
and σ = √

2A = (
√
2Ah,

√
2Av) where A = 1/2σ · σT

is an indicator for the diffusion intensity and the diffusivity
tensor, respectively. Ah and Av are the horizontal and ver-
tical turbulent mixing coefficients, respectively, (i.e., they
are related to the turbulent eddy diffusivities and are dif-
ferent from the particle diffusivity). The first two terms on
the right-hand side of Eq. 18 are called the drifts related
to the kinetics of system, and the last term is called the
diffusion describing the effect of stochastic noise. Itô inter-
pretation, Eq. 18, is a diffusion process with transition
conditional probability density, P = P(s, x; t, z), satisfy-
ing the deterministic Fokker-Planck (FP) equation (or the
backward Kolmogorov equation) which in the absence of
the diffusivity gradient possesses the following form:

∂P

∂t
+ vp∇∗P = 1

2
∇2∗(σ 2P), (19)

where ∇∗ = (∂/∂x, ∂/∂z) denotes the spatial gradient dif-
ferential operator with respect to x and z. Particle trajectory
at each time t is determined by solving (19) together with
proper spatial (Neumann) boundary conditions (Kloeden
and Platen 1999). The most likely position of a particle at
each time t is determined by minimising a likelihood func-
tion for evolution of particle position as a Markov process.
In this study, instead of solving the deterministic equation
(19), we numerically simulate (18) for time-step which is
significantly smaller than the Lagrangian period, Δt <<

TL. In the vicinity of areas where TL → 0, the numeri-
cal schemes for solving (18) require vanishingly small time
steps. Therefore, we utilise small time steps for a Stochas-
tic Range-Kutta (SRK) technique to relatively resolve this
constraint for the known, continuous, and differentiable
turbulent eddy diffusivity along the trajectories of particles.

3 Numerical methods

All Lagrangian trajectories in this study are calculated
numerically using a four-stage Runge-Kutta method (RK),
Appendix A. Therefore, we give a brief introduction on the
general aspects of the numerical schemes for solving the
Stochastic Differential Equations (SDEs).
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The general form of solution for the d-dimensional SDE
system in Itô representation (18) with a scalar Wiener pro-
cess can be written using the following stochastic integral
equation

Xp(t) = Xp(0)+

1︷ ︸︸ ︷∫ t

t0

f(s,Xp(s))ds +

2︷ ︸︸ ︷∫ t

t0

g(s,Xp(s))dWs .

(20)

with initial value Xp(t = 0) ∈ Rd and f, g : [0, tN ] ×
Rd → Rd are drift and diffusion functions, respectively,
whereRd is the d-dimensional real number space. Term 1 is
the conventional Reimann-Stelijes integral, and the second
term is called Itô integral. Assuming a fixed time-step Δt =
(tN − t0)/N , where N > 0 is a positive integer, and an
equidistant partition of [t0, tN ] as 0 < t1 < · · · < tN , the
discrete time approximation, yt , for the stochastic process
Xp(t) at time t can be determined using the truncated Itô-
Taylor series expansion:

ytn+1
= ytn + f(tn, ytn

)I(0) + g(tn, ytn
)I(1) + [

Lgg
]
(tn, ytn

)I(11)

+ [
Lgf

]
(tn, ytn

)I(10) + [
Lf g

]
(tn, ytn

)I(01)

+[L2
gg](tn, ytn

)I(111) + ρ(tn, ytn
, Δt), (21)

where the residual term ρ satisfies E{ρ2} ≈ O((Δt)4), E{·}
denotes the mean value of {·}, and the differential operators,
Lf and Lg , are defined as follows:

Lg =
d∑

i=1

gi

∂

∂xi

[·],

Lf =
d∑

i=1

fi

∂

∂xi

[·] + 1

2

d∑

i=1

d∑

j=1

gigj

∂2

∂xi∂xj

[·].

The Itô stochastic integrals, Ij1···jm , are expressed as

Ij1···jm =
∫ t

t0

∫ τm

t0

· · ·
∫ τ2

t0

y(τ1)dW
τ1
j1

· · · dW
τm

jm
,

where dW
τi

ji
= dWji

(τi) for i = 1 . . . , m, where m denotes
the number of repeated integrals. As an example, some of
the calculated Itô integrals are listed as follows

I(0) = Δt, I(1) = ΔWn,

I(01) = ΔWnΔt − I(10),

I(11) = 1

2

(
ΔW 2

n − Δt
)

,

where ΔWn indicates the 1D Wiener process increment.
The numerical discrete approximation, Eq. 21, converges
strongly to the exact solution Xp(t) at time tN with constant
order p > 0 if there exists a positive constant Cp > 0 such
that

E{‖Xp(tN ) − ytN
‖} ≤ Cp(Δt)p, (22)

where Cp is a coefficient independent of Δt . While by
including further components of the Itô-Taylor expansion,
higher order numerical schemes can be constructed, calcu-
lations of multiple stochastic integrals and their joint laws
in the appeared higher order terms are very difficult and
time-consuming. Therefore, a great deal of attention has
been paid for developing derivative-free techniques such
as SRKs due to their ease of programming, large stability
regions, and flexible time-stepping strategy (Rößler 2010),
see Appendix A.

4 Results

In this section, the sinking/swimming process of inertial par-
ticles is investigated in an oscillatory turbulent flow. The
background mean current profile is neglected for all test
cases due to our myopic focus on the interactions between
waves and inertial particles. For simplicity, we assume that
waves and wind field propagate in the same direction (i.e.,
in the x direction), and the Coriolis parameter is set for the
latitude of 63◦. The SDEs are implemented in Fortran codes
by a non-adaptive SRK model performed on a MAC OS
X 296 10.9.5 with Intel Core i7 3 GHz CPU, and 16 GB
1600 DDR3 RAM. The Mersenne Twister (MT) method
is utilised to generate uniform pseudorandom numbers
(Matsumoto and Nishimura 1998), and Box Muller trans-
formation is used to transform the uniformly distributed
random number sequences into the standard normal ran-
dom values. We study the motions of inertial particles for
homogeneous and non-homogeneous turbulent flows under
various wind and wave forcing conditions. In the non-
homogeneous case, the turbulent diffusion is determined
from the numerical solutions of the wave-modified GOTM
model along the trajectories of inertial particles using an
interpolation technique. The stochastic-based displacements
at each computational time, t , are determined by taking an
ensemble average over a small number of realisations (i.e.,
20 stochastic paths to speed up the computations). It is noted
that for a small number of inertial particles (realisations), the
stochastic models may not be able to properly capture the
important features of underlying physics and their results
would be directly dependent on the choice of random num-
ber generator, the selected value of SEED, and the value of
time-step. The internal time-step for almost all simulation
runs is set to Δt = 0.005 s (any change in the value of time-
step will be reported wherever it is required). Meanwhile,
the resuspenssion of particles near the surface boundary is
governed using the reflecting boundary condition (see also
Rose 2010). In order to investigate the inertial particles’
responses to the turbulence-generated signals representative
of both coastal and open ocean environments, we vary the
strength of turbulence, identified here by the vertical eddy
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diffusivity, Az, from 0.05 (relatively weak) to 0.5 (strong)
m2s−1 for our idealised test cases. While near the air-sea
interface and in the presence of buoyancy effect, the turbu-
lence is statistically anisotropic, we simplify our analysis by
assuming isotropic eddy diffusivity for the relatively small
time scales (Batchelor 1970), i.e. Ah = Az, in majority
of test cases to highlight the role of vertical mixing in the
dispersion of inertial particles, due to the fact thatAz � Ah.

It is worth to mention that for the non-homogeneous test
cases, the effects of Stokes drift, under the mean sea level,
in the horizontal/vertical excursion of inertial particles are
(indirectly) accounted by the wave-modified fluid veloci-
ties as a result of including the effects of the CSF and the
Stokes shear production in the momentum and energy equa-
tions. For more details about direct effects of Stokes drift on
particles’ motions, reader is referred to Bakhoday-Paskyabi
(2015).

4.1 Lagrangian particles under homogeneous
turbulence

In Fig. 1, three buoyant particles are launched at the same
position at the sea surface, and expressions for the wave
field are derived using the wind speed at 10 m height, U10,
from Hs = 0.0248|U10|2, Tp = 0.729|U10|, and a = Hs/2
(Carter 1982). The trajectories are calculated by solving
(16) and (18) for St = 0.05, β = 1.05, and different values
of turbulent eddy diffusivities. Although in the deterministic
case, the shapes of particles’ trajectories are mainly gov-
erned by the initial conditions and parameter values (gray
trajectories, see more details in Bakhoday-Paskyabi (2015)),

the orbital looping-motions of inertial particles through the
turbulent flow are significantly pronounced in the proximity
of the air-sea interface. Particles exhibit a tendency towards
a random state when they approach the deeper depths away
from the surface as a function of wave conditions and the
strength of turbulent mixing. Away from the surface, there
are several local turning events where particles experience
both trapping into the turbulent coherent structures and ejec-
tion from the turbulent eddies (Csandy 1963). Moreover,
these crossing trajectory events may transport particles even
opposed to the wave direction in a non-orbital paths because
of the less required (Lagrangian) energy for the particles
to move towards the negative direction. Additionally, we
release two particles at 10 and 30 m below the sea sur-
face in the presence of extreme level of turbulence intensity,
i.e., Ah = Av = O(10−2) (green line) and Ah = Av =
O(10−1) (brown line), respectively, in order to highlight the
depth-dependency of particles’ responses to the wave- and
the turbulence-generated accelerations.

In Fig. 2, we present the influences of wave orbital
motions on buoyant particles in a vertically homogeneous
turbulent flow for three different values of β = ρp/ρw and
a fixed Stokes number, St = 0.05. Particles are released
from the same locations at the surface with zero initial
velocities for Av = Ah = 0.05 m2 s−1. In the proxim-
ity of the surface boundary, particles acquire spiral motions
whose frequency is equal to that of the wave’s orbit. The
strength of oscillatory modulations superimposed on the
curling trajectory of particles are damped out as soon as
particles approach deeper in the water column away from
the wave’s external forcing. The damping events, localized

Fig. 1 The trajectories of iner-
tial particles through turbulent
flow under the influence of
linear wave (a = 1.25 m,
T = 7.3, and D = 50 m for
U10 = 10 m s−1). Gray curves
show the deterministic
simulation runs (Ah = Av = 0
m2 s−1) for particles released at
the sea surface and at 10 m
below the surface. Red and blue
trajectories indicate the mean
trajectories of two heavy
particles (β = 1.05 and
St = 0.05) released at the sea
surface with variances of 0.05
and 0.1 m2 s−1, respectively.
Green and brown curves
represent the mean trajectories
of particles released at 10 and
30 m below the sea surface,
respectively. The stochastic
forces for these two particles
have been set to 0.5 and 0.05 m2

s−1, respectively
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Fig. 2 Mean trajectories of
three heavy particles with
St = 0.05 and different values
of β = 1.05 (black), 1.1 (blue),
and β = 1.15 (red). Particles are
released at the sea surface and
are encountered with the
uniform turbulence forcing,
Ah = Av = 0.05 m2 s−1.
Time-step and the total
simulation time are Δt = 0.005
s and 350 × T s, respectively.
The linear wave period and
amplitude are T = 7.3 s and
a = 1.25 m, respectively. The
water depth is set to D = 50 m

upwelling (particles’ suspension), and downwelling (rapid
sedimentation) become dominant mainly due to the emer-
gence of other acting forces including inertia, added-mass,
and buoyancy. As expected, the particle with β = 1.05 stays
suspended for a longer time and travels longer horizontal
distances than those with larger values of β.

Four light particles with different values of β and St =
0.05 released at the depth of 20 m disperse from their initial
positions both diffusively and ballistically due to the linear

wave oscillatory motions and background turbulent mixing
(Fig. 3). Although particles are small enough to follow the
instantaneous flow motions, they do not precisely mimic the
wave oscillatory forcing. Because the coexistance of par-
ticle inertia and turbulent motions will result in a velocity
nonequilibrium. The state of the velocity nonequibilirum
enables particles to experience several trapping and eject-
ing events inside the turbulent eddies as a function of β

and St due to the change of particles’ residence time within

Fig. 3 Comparisons between
mean trajectories of four light
particles under the action of
linear waves with St = 0.05 and
different values of β = 0.9 (blue
and red), 0.95 (black), 0.97
(green), and 0.99 (brown).
Simulation runs are performed
using Δt = 0.005 s for the total
simulation time of 350 × T s.
Particle with β = 0.9 with No
Stochastic (NS) forcing passes
the free surface at times 65 × T

s. For the sake of better
representation, we show and
label the trajectories when
particles travel the horizontal
distance of 30 m. The water
depth is D = 20 m and the wave
parameters are the same as those
used in the previous example
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each turbulent eddies (so-called crossing trajectory effect,
Csandy 1963). All light particles are dispersed in the direc-
tion of wave propagation and rise vertically through the
turbulent flow. Furthermore, particles tend to remain sus-
pended for a longer time with a specific distance from the
sea surface than those with no stochastic variances (blue
curve). This behavior is a result of applying the reflecting
boundary condition at the sea surface.

In order to investigate how much the strength of stochas-
tic forcing is able to influence the shape of the mean par-
ticles’ trajectories under the influence of cnoidal waves, we
vary the values of turbulent eddy diffusivity from zero vari-
ance (Ah = Av = 0 m2 s−1) to Ah = Av = 1 × 10−2

m2 s−1. Two particles with β = 1.05 and St = 0.05 are
released at the sea surface (Fig. 4a). In zero stochastic dis-
persion case, particles acquire helical patterns near the wavy
surface (black line) with a divergence from the trajectory
imposed by the wave forcing as a function of depth. The
effect of inhomogeneity, induced by the nonlinearity and
stochasticity of the diffusion process, is reflected in the
spatial distribution of particles and their relative excursion
time compared with the deterministic pathway (Fig. 4a, red
line). In Fig. 4b, we locate two light inertial particles at
rest with β = 0.95 and St = 0.05 initially at the sea bed.
As a response to the hydraulic forces (such as lift and drag

depending on the particle’s shape, size, and density) and
wave oscillatory motions, they finally overcome the gravity
and any other frictional forces by starting their horizontal
and vertical excursions towards the sea surface. Through
turbulent water which operates identically in all directions
under the isotropy assumption, the inertial particle rises
more slowly than it would through the non-turbulent water
with an intermittency level dependent directly on the level
of stochasticity and wave forcing (Fig. 4b, red line). Fur-
thermore, due to using the reflecting boundary condition at
the surface and the effects of nonlinearity, the light particle
remains suspended in an almost certain distance from the
surface for a long time.

Figure 5a illustrates the mean trajectories of two fluid
particles (i.e., β = 1) being advected by a train of soli-
tary waves for the various values of stochastic variances.
For an identical (non-dimensional) horizontal and vertical
diffusivities, the fluid particle experiences a random disper-
sion as a function of the (non-dimensional) wave amplitude,
ζ , and the strength of the stochastic variance (blue and
green lines). It is then suspended under the wave passage
for a longer time (brown dashed line), and after passing one
solitary wave cycle (black square markers) in a succession
of separated solitary waves at the base of its non-looping
orbit, particle governs a chaotic state of horizontal/vertical

Fig. 4 a Mean trajectories of two inertial particles (β = 1.05 and
St = 0.05) released at 5 m height above the bed (hab) under the influ-
ence of progressive cnoidal waves (A = 1.5 m, T = 7 s and water
depth of D = 5 m). The variances are set to Ah = Av = 0 (black
curve) for the deterministic case and Ah = Av = 1 × 10−2 m2 s−1

(red curve) for the stochastic case, respectively, and b mean trajecto-
ries of two light particles (β = 0.95 and St = 0.05) under cnoidal

waves released at the flat bed. The red curve indicates the mean trajec-
tory for the variance of 10−2 m2 s−1 and the black curve represents the
mean trajectory when the variance is set to zero. For the sake of clar-
ity and reference, we plot the deterministic and stochastic trajectories
15 m horizontally away from each other. The time-step and the total
simulation time are 10−2 and 100 × T s, respectively. The number of
realisations is set to 50 for these simulations
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Fig. 5 The trajectories of particles under solitary waves for different
stochastic forcing conditions. a Two point particles moving within the
the homogeneous turbulent flow (i.e., Âv = Âh = 0.05) and within
laminar flow; b dispersion of two heavy particles (β = 1.05 and
St = 0.05) within the turbulent flow (Âv = Âh = 0.05) and within
the non-turbulent flow; c two light particles (β = 0.95 and St = 0.05)
moving through the turbulent flow (Âv = Âh = 0.05) and within
the non-turbulent flow; and d three light particles dispersing within
the laminar flow and turbulent flow with identical/non-identical hor-
izontal and vertical eddy diffusivities. The water depth is 5 m for a

solitary wave propagating with non-dimensional amplitude and refer-
ence simulation period of ζ = 0.35 and T = 10, respectively. The
reference simulation period is used for the full motion of the fluid par-
ticle on a single arc in the absence of stochastic forcing (brown dashed
curves). We use 50 realisations for these simulations. The arrows show
the locations of particles at one reference period T and green curves
denote trajectories after one reference period. Furthermore, eddy dif-
fusivities can be normalised using c0 and D. See Appendix A for more
details

displacements. In Fig. 5b, we investigate the effects of iner-
tia on the mean trajectories of heavy particles (β = 1.05 and
St = 0.05) under the action of different levels of stochastic-
ity. Two similar inertial particles released at ẑ = 0.8, where
·̂ denotes the non-dimentionalised depth, see Appendix A,
advance horizontally-vertically after each period through a
distance known as the drift or mass transport in the direction
of wave propagation (Longuet-Higgins 1953; Bakhoday-
Paskyabi 2015). As the variance of stochasticity increases,
the mean trajectory deviates from the deterministic trajec-
tory and the particle asymptotically approaches the end
point of the deterministic pathway where it acquires long

time traps due to the turbulent dispersal. Meanwhile, these
heavy particles travel lower than they do for the fluid par-
ticles (i.e. Fig. 5a brown dashed line). Figure 5c shows
that the non-looping motions of the light particles under
the solitary waves are preserved for any level of stochas-
ticity and particle inertia. We further study the effect of
using non-identical horizontal and vertical diffusivities on
the mean trajectories of light particles. Figure 5d shows the
coupling between light particle’s motions and the turbulence
in which the extent of Brownian-like movements is directly
linked to the strength of horizontal/vertical turbulent mix-
ing. Although the generic behaviors for the movements
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Table 1 Summary of
experimental conditions
(T = Tp is the wave peak
period)

EXP U10 [m s−1] us [ms−1] Hs [m] Tp[s] Q[Wm−2] BC

1 15 0 0.0 0.0 0 NB

2 15 0.24 5.6 11.0 0 WB

3 15 0.24 5.6 11.0 +100 WB

4 15 0.24 5.6 11.0 −100 WB

5 10 0.0 0.0 0.0 0 NB

6 10 0.14 2.5 7.3 0 WB

7 10 0.14 2.5 7.3 100 WB

8 10 0.14 2.5 7.3 −100 WB

Here Q, NB, and WB stand for heat flux, with no wave breaking (NB) effect, and with wave breaking (WB)
effect, respectively

of the point/buoyant particles have been analysed through
conducting different numerical experiments, the trajectories
may be polluted by the potential statistical outliers par-
ticularly when using too few realisations for calculating
the ensemble-averaged pathway, and limitation of applying
reflecting boundary condition at the surface.

4.2 Characteristics of the wave-induced vertical mixing

In order to investigate the impacts of Stokes drift and wave
breaking on the vertical distribution of turbulent diffusion
processes, we conduct eight numerical experiments as listed
in Table 1. To extract the wave energy spectrum and Stokes
drift profile (Fig. 6b) from the wind speed, we use the JON-
SWAP empirical spectrum in which the significant wave
height and wave peak period are estimated from the empir-
ical relationships suggested by Carter (1982). The model is

set up for the water depth of 100 m with 80 m mixed layer
depth separated from a homogeneous bottom layer by a ther-
mocline thickness of 5 m and a temperature change of 5 ◦C
(Fig. 6a). The temperature profile has a constant value of
20 ◦C above 80 m. In all simulation runs, the salinity is
set constant, i.e., 35 ppt, and any density stratification is
assumed due to the temperature gradients.

The effects of Stokes drift and surface heating/cooling
in the structure of upper ocean mixing can be properly
reflected in the vertical profile of turbulent eddy viscos-
ity and diffusivity. Figure 7 illustrates different distribution
of turbulent eddy viscosity for different experiments listed
in Table 1. There exists a significant increase in the ver-
tical profile of νt in depths ranged between 10 and 65
m when the synthetic impacts of Stokes drift and wave
breaking are considered (Fig. 7b, black line) due to the
wave-induced reduction in the amount of shear production

Fig. 6 Vertical profiles of a
temperature and b Stokes drift
computed from Eq. 8 using the
wind speed and the JONSWAP
empirical wave energy spectrum
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Fig. 7 The profiles of eddy
viscosity from k-ε turbulence
closure model for experiments
listed in Table 1. Profiles of
turbulent diffusivity for EXP4
and EXP6 will be shown in
Figs. 8 and 9

near the sea surface. Furthermore, the contribution from the
surface heating weakens the vertical mixing and strength-
ens the stratification by modulating the vertical distribution
of turbulent eddy viscosity (dashed line). Alternatively, the
combined effects of surface cooling, which destroys the
stratification, and the wave effects will strengthen further
the extent of mixing as shown in Fig. 7b, red line. Figure 7c
and d similarly highlight the sensitivity of the vertical mix-
ing to the surface forcing when wind speed drops from 15
to 10 m s−1.

4.3 Langrangian particles in non-homogeneous
turbulence

So far, the eddy diffusivity felt by inertial (or point) parti-
cles has been assumed constant for all test cases which may
not be physically realistic in the presence of wind, wind-
generated gravity waves, tides, and stratification. It is thus
reasonable to consider vertically-varying eddy diffusivity to
study how much the depth dependency of stochastic forcing
is able to influence the shape of mean particles’ trajecto-
ries. In the presence of particle inertia, the fluid fluctuating
velocity may not necessarily be sensed by the fluid particles
depending on the characteristics of dispersive phase such
as the size, density, and geometry of particles. The discrep-
ancy between the fluid turbulent diffusivity and the particle
diffusivity or generally the decorrelation between continu-
ous and dispersive phases results in significant changes in
the geometry of heavy particles’ paths, which will be briefly
addressed in this section.

Vertical-horizontal distributions of particles from exper-
iments 4 and 6 (Table 1) are shown in Fig. 8a and b for
particles released at the sea surface under the action of lin-
ear waves. EXP4 and its corresponding turbulent diffusivity
(Av = ν′

t , dashed brown line) can be regarded as a sum of
wind- and wave-induced mechanical forcing, and thermal
convective forcing caused by the buoyancy effect. The tra-
jectories of three buoyant particles are shown for different
values of β generated by the background oscillatory flow
over the duration of 350×T s, where T denotes the lin-
ear wave period. After being released at the sea surface,
particles exhibit a typical tendency of greater horizontal
excursions under the action of vertical diffusion profile and
wave external forcing relative to the case of vertically uni-
form diffusivity (Fig. 2). The tendency for chaotic motions
reaches its maximum value when vertical mixing is maxi-
mum at the depth of approximately 40 m. At the base of
thermocline and very close to the sea surface and bottom
where turbulent diffusion is negligible, particles acquire a
complex geometry of localised upwelling and downwelling
in response to all external forces particularly progressive
wave orbital motions near the sea surface. Again, parti-
cles with smaller β stay suspended for a longer times and
travel longer horizontal distances than those with larger
β (Bakhoday-Paskyabi 2015). The vertical profile of eddy
diffusivity in EXP6 shown in Fig. 8b corresponds to the
only mechanical turbulence caused by the wind- and the
wave-induced shear throughout the water column. In this
experiment, wind speed drops from 15 to 10 m s−1, and the
fully developed wave field is generated correspondingly for



Ocean Dynamics (2016) 66:1429–1448 1441

Fig. 8 Mean trajectories of
three inertial particles with
St = 0.05 and different values
of β under the linear waves. The
time-invariant and
depth-dependent eddy
diffusivities (dashed brown
lines, labeled at top x-axis) are
estimated for: a EXP4 and b
EXP6 configurations. The total
simulation time is 350 × T and
Δt is set to 0.005 s

U10 =10 m s−1 using JONSWAP spectrum. Three similar
particles as shown in Fig. 8a are released in the proximity
of the sea surface. While particles acquire the typical spiral
motions, changes in the background oscillatory flow and in
the vertical distribution of eddy diffusivity lead to particles
experiencing rather slowly downward and forward displace-
ments, as a result of staying inside the turbulent eddies over
longer times (Fig. 8b).

The accurate description of stochastic forcing introduced
by Eq. 18 depends also on the size of the time-step used
in the discrete Wiener increments. Here, the ΔWtn is sam-
pled from a Gaussian distribution N (0, 1) as ΔWtn =

√
ΔtN (0, 1). The pathwise information of the particle is

then related to the choice of time-step size. Using strong
convergence criteria in Eq. 22, it is clear that the esti-
mated trajectory converges to the exact path as Δt → 0.
However, the effective choice of time-step can be achieved
by accounting different processes, i.e., vertical and hor-
izontal diffusivities, and other physical and biophysical
processes. For example, in the presence of a stationary ver-
tical diffusion process, the chosen time scale should be
confined between the Lagrangian time scale of motions and
∂−1
zz Av(z), where Av(z) = ν′

t (z) denotes the vertical pro-
file of 1D diffusivity. This parameter relates the accuracy of
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Table 2 Summary of the CPU elapsed time for different values of β

and Δt

10−4 5×10−4 10−3 5×10−3 10−2

1.05 2984 604 304 63 30

1.15 2413 520 252 51 25

the Lagrangian tracking model to the GOTM vertical grid
resolution, and the quality of the employed interpolation
and smoothing schemes. Therefore, one should consider the
sensitivity of the particle trajectory in the strong sense to
the choice of time-step and the level of induced compu-
tational complexity. In Table 2, we demonstrate the CPU
elapsed-time for different values of time-step and β. The
elapsed-time climbs exponentially up when the step size
decreases resulting in more efficient computational perfor-
mance (in terms of computational demand) of the particle
tracking method. It should be emphasised that any dis-
continuity in the turbulent diffusivity, in the presence of
the diffusivity tensor effect (18), may constrain the model
performance and accuracy, and increases significantly the
computational cost of the stochastic scheme due to the need
of the scheme to extremely small time-step size to preserve
its convergency and stability. The elapsed-time analysis for
the light particles are generally the same as that of obtained
for β > 1 and is therefore excluded here for the sake of
brevity.

The analysis of particle trajectories on the basis of lin-
ear and nonlinear regular waves ignores the influence of
wave irregularity on the movements of particles. In Fig. 9,

we assess the geometry of particles in an irregular oscilla-
tory flow generated by the JONSWAP empirical spectrum
and using Eq. 2. The effects of mean current and its super-
imposition with the wave field are also not taken into
consideration. Figure 9 illustrates the trajectories of three
particles with identical initial positions near the sea sur-
face under the irregular waves. Underneath the irregular
waves, particles experience the trapping and ejecting events
with extended regions of stochastic excursions together
with the less pronounced contributions from the wave-like
motions compared with those under the regular waves in the
proximity of the air-sea interface. This is because the tur-
bulent vortex motions substantially interact with the wave
field over a broad range of scales locally (inter-interactions
between small scales) and non-locally (interactions between
small and large scales). These interactions among differ-
ent scales lead to very complicated patterns for the res-
onance and damping mechanisms acting on the coupled
wave-turbulence-particle system with ability to change the
degree of randomness and the variability of the small-scale
processes within such a two-phase flow.

4.4 Lagrangian energy spectrum

The swimming/sinking trajectories of particles are closely
related to the state of energy transfer in the turbulent flow
under the local-isotropy assumption. These relationships
are made through two broad classes of statistical diag-
nostics: those based on real space and those based on
Fourier (wavenumber) space. The so-called structure func-
tions (SFs) and correlation functions are two categories

Fig. 9 The mean trajectories of
three inertial particles for
St = 0.05 and two values of β

(i.e., 1.05 and 1.1) for EXP6
under the influence of the
irregular (linear) waves. Here,
Δt = 0.005 and the turbulent
diffusivities are computed by the
wave-modified GOTM model
for EXP4 (only a single
β = 1.05 for the sake of clarity)
and EXP6 configurations
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of real space statistical methods. Structure functions are
determined from the time series of Lagrangian (here verti-
cal) velocity along the trajectory of each (inertial) particle,
SL

n (τ) =< |wp(t + τ) − wp(τ)|n >, where the average is
taken over time, τ is the time-lag, and n denotes the order
of SF. Under the turbulence isotropy condition for valid
ranges of frequencies, f , i.e., within the inertial subrange,
the second-order SF (scaled by ∼ τ ) corresponds to the f −2

power law and at frequencies beyond the inertial subrange,
the spectrum falls in the dissipative subrange. Figure 10a
shows the Lagrangian power spectra of vertical velocity
from EXP4 and EXP6 calculated from Eq. 16. The effects
of linear gravity waves in both cases are characterised by an

energy elevation at the wave peak period (here, 11.0 s for
EXP4 and 7.3 s for EXP6, respectively). Beyond this wave-
affected frequency band, the Lagrangian velocity power
spectrum is scaled as ∼ f −2. In the absence of turbulent
mixing, the energy drops abruptly beyond the wave-affected
subrange to the value of 10−9 with no pronounced inertial
subrange (Fig. 10b, blue line). The discrepancies between
the scaling exponent and the estimated Lagrangian energy
spectrum may be interpreted as either the oversimplifica-
tions made for the calculations of Lagrangian trajectories,
the quality of numerically generated stochastic processes,
the inappropriate choice of time steps, or uncertainty in
determining the wave-induced turbulent quantities.

Fig. 10 Power spectra of the
Lagrangian vertical velocities
along the trajectories of the
particles under the effect of
progressive linear waves for: a
eddy diffusivity estimated from
EXP4 (red) and EXP6 (blue),
respectively, and b eddy
diffusivity from EXP6 (red), and
simulation run with
no-turbulence effect (NT, blue).
Inertial subrange is
characterised by the dashed
lines with slop of −2. The time
series of particle vertical
velocity is extracted from Eq. 16
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Fig. 11 Autocorrelations of the
vertical velocity component
(estimated from Eq. 16) for two
heavy particles (St = 0.05 and
β = 1.05) under the influence of
linear waves. The turbulent
diffusivities are computed by the
wave-modified GOTM model
for EXP4 and EXP6
configurations

Before closing this section, we present the Lagrangian
auto-correlation (AC) function of the Lagrangian vertical
velocity, RL(τ), as

RL(τ) =
〈
wp(t)wp(t + τ)

〉
〈
w2

p

〉 ,

with the time-lag of τ . The form of the AC function exhibits
a general sharp drop to its first zero followed by damping
oscillations due to the background wave oscillatory motions
(not shown). We further find that the area under the graph
of RL(τ) before the first zero-crossing point is declined
compared with the one in the pure isotropic turbulence in
the absence of wave effects which influences the values of
the Lagrangian integral time scale (Tennekes and Lumely
1972). Figure 11 shows the distinction of the Lagrangian
integral time scales estimated from EXP4 and EXP6. As
expected, the area under the graph of RL(τ) before the first
zero-crossing for EXP4 is larger than the one estimated from
the EXP6 configuration.

5 Summary and conclusion

In this study, we investigated theoretically and numeri-
cally the motions of inertial particles in the ocean mixed
layer by analysing the Lagrangian dynamics of a single
inertial particle in a nontrivial turbulent flow field. The tur-
bulence in a continuum-phase flow was predicted from a
1D hydrodynamic model modified to incorporate the effects
of Coriolis-Stokes forcing, wave breaking, and Langmuir

Circulation (LC). For the sake of simplicity, we neglected
the effects of particles on the turbulent state of the carrier
phase for all simulation runs. Our investigation was focused
on determining the mean trajectory of inertial particles using
a Lagrangian Stochastic (LS) model in the absence of the
mean background current under the passage of linear (regu-
lar and irregular) and nonlinear (cnoidal and solitary) waves.
By assuming the turbulence being isotropic at each point,
the mean trajectories of inertial particles underneath all
types of the aforementioned waves were examined by vary-
ing the relative strength of particles’ heaviness, β, for a
constant value of Stokes number, St . The results found are
listed as follows:

1. Accurate choice of random number generator is the
backbone of the LS models to substantially enhance
the credibility of study by avoiding the injection of any
incorrect dispersion into the solutions. In this study,
we utilised the Mersenne Twister method to generate
uniform random numbers and the Box-Muller trans-
formation to produce the normal random numbers
from the generated uniform random values.

2. Due to the turbulence-induced noise, the precision of
higher-order Stochastic Differential Equation (SDE)
solvers may be easily shaded so that the accuracy as-
sessment between different discretization techniques
is less practical.

3. This study considered only few trials of statistical tra-
jectories in the ensemble-averaged pathway to focus
in details on the interplay between waves, inertial
particles and turbulence. For the realistic applica-
tions, the risk of statistical contaminations from using
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too few inertial particles should be mitigated using
sufficient number of particles.

4. The mean trajectories of inertial particles beneath pro-
gressive linear and nonlinear periodic waves exhibit
strong oscillatory component, specifically close to the
sea surface.

5. Under the solitary waves, the inertial particles pre-
serve their non-looping motions when subjected to the
chaotic turbulent coherence structures.

6. Including turbulent intensities results mostly in an
increase in the residence time of inertial particles with
respect to the quiescent conditions, at least for the
conducted scenarios in this study.

7. Implementation of boundary conditions influences the
trajectory of particles in the vicinity of surface and
bottom boundaries (here we employed the reflecting
boundary conditions). Therefore, the trajectories of
particles will be modulated by modifying the boundary
conditions.

8. The trajectories of inertial particles in the stratified tur-
bulent flow differ from those in the isotropic turbulent
flow because the trajectories of inertial particles reflect
anisotropy of flow in their pathways.

9. The trajectories of inertial particles under irregular
waves exhibit the extended regions of stochastic dis-
persions with less pronounced contributions from the
orbital motions, particularly away from the air-sea
interface.

10. The departure of Lagrangian power spectrum from
the scaling exponent −2 at frequencies larger than
the wave-affected frequency band may be explained
by the intermittency and anisotropy of the oscilla-
tory turbulent flow, and oversimplifications made in
this study. Furthermore, the departure from the scaling
exponent is substantially enhanced in our ideal simula-
tions when the time series of particle vertical velocity
are estimated from the finite differences of the par-
ticle vertical displacement. This necessitates further
investigation which will be addressed in more details
elsewhere.

The present work entailed a series of idealised test
cases which cannot take into account various features of
flow field, background turbulence, and particle dispersal
motions. Therefore, the practical predictions of such com-
plicated interactions need more sophisticated experiments
by including different physical and biological processes in
addition to the change of the strength of stochastic forcing
or wave field characteristics. For more realistic problems,
further investigations need to be conducted for the accurate
choice of random number simulator, interpolation tech-
nique (interpolation of mean and turbulent quantities within
the LS grid points), an appropriate degree of smoothing

operator over the vertical (horizontal) diffusivity coeffi-
cients, the suitable number of particles, and the effective
time-step size as a function of continuous phase character-
istics and the properties of the dispersal phase.
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Appendix A: Particle trajectory for solitary waves

In this paper, the velocity fields for the solitary waves are
associated to the exact solutions of the Korteweg-de Vries
(KdV) equation. Let a be a typical wave amplitude, and
L represents a typical horizontal length scale, the KdV
equation is then approximated by the surface elevation for
the wave motion predominantly in a single direction. By
defining the following non-dimensional variables:

x → Lx; z → D(z − 1); t → L
t

c0
; and η → ηa,

where c0 = √
gD, the solitary solution for the non-

dimensional KdV differential equation with the wave crest
initially located at the origin is given by the following
non-dimensional free surface equation:

η(x, t) = ζ sech2
[√

3ζ

4ξ

(
x −

(
1 + ζ

2

)
t

)]
,

where ζ = a/D indicates the non-dimensional wave ampli-
tude, ξ = D2/L2, and 0 ≤ z ≤ 1+ ζη. Using two different
length scales, i.e.,D andL, may result in difficulty for inter-
pretation of the obtained results. Therefore, we introduce a
new set of non-dimensional coordinates as

x̂ = x√
ξ
; ẑ = z; and t̂ = t√

ξ
.

The horizontal and vertical velocity components are
hence approximated in new coordinates using change of
variable as follows

û(x̂, t̂ ) = ζ

[
ψ(x, t) − z2

2
ξψxx(x, t) + O(ξ2)

]
,

ŵ(x̂, t̂) = ζ√
ξ
[−ξzψx(x, t) + O(ξ2)].

Following Whitham (1974), ψ can be estimated as a func-
tion of η:

ψ(x, t) ∼ η − 1

4
ζη2 + 1

3
ξηxx.

The resulting (non-dimensional) horizontal and vertical
velocity components at an arbitrary point (x̂, ẑ) at a certain
time t̂ can be then estimated in terms of horizontal veloc-
ity at a fixed level θ from the even bottom using Taylor
expansion of ψ about θ , i.e.:
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û(x̂, ẑ, t̂ ) = ζ

4
sech2(Θ)

{
4 + ζ [4 − 7sech2(Θ)]

−3ζ ẑ2[2 − 3sech2(Θ)]
+ 3

2
ζ 2(θ2 − ẑ2)[35sech4(Θ)− 34sech2(Θ) + 4

− 3θ2(15sech4(Θ) − 15sech2(Θ) + 2)]
}

,

ŵ(x̂, ẑ, t̂ ) = √
3ζ 3/2ẑsech2(Θ) tanh(Θ)

×
{
1 − 1

2
ζ sech2(Θ) − 3ζ

(
1

3
− θ2

2

)

×(3sech2(Θ) − 1)
}

,

whereΘ = √
3ζ/4(x̂−ct̂)where c = 1+ζ/2, and the solu-

tions of dx̂/dt̂ = û and dẑ/dt̂ = ŵ lead to an estimation for
the non-dimensional trajectory of a particle passing through
a laminar flow (Bakhoday-Paskyabi 2015). It is worth to

mention that the velocity field for the two-parameter KdV
equation depends only on a single parameter, i.e., ζ , for
solitons.

Appendix B: Stochastic Runge-Kutta scheme

A s-stage stochastic Runge-Kutta scheme for the numerical
solution of the Itô SDE (20) iswritten as follows (Rößler 2010):

ytn+1
= ytn

+ Δt

s∑

j=1

αj f(tn + μ
(0)
j Δt, Y

(0)
j )

+
s∑

j=1

γjg(tn + μ
(1)
j Δt, Y

(1)
j ), (23)

for n = 1, . . . , N with the following stages

{
Y

(0)
i = ytn

+ Δt
∑s

j=1 a
(0)
ij f(tn + μ

(0)
j Δt, Y

(0)
j ) + ∑s

j=1 b
(0)
ij g(tn + μ

(1)
j Δt, Y

(1)
j )

I(10)
Δt

,

Y
(1)
i = ytn

+ Δt
∑s

j=1 a
(1)
ij f(tn + μ

(0)
j Δt, Y

(0)
j ) + ∑s

j=1 b
(1)
ij g(tn + μ

(1)
j Δt, Y

(1)
j )

√
Δt,

(24)

where i = 1, . . . , s, B(0) = [b(0)
ij ]s×s and B(1) = [b(1)

ij ]s×s

are random matrices, and

γ T =
[
γ (1)

I(1) + γ (2) I(11)√
Δt

+ γ (3) I(10)

Δt
+ γ (4) I(111)

Δt

]

1×s

,

is a random vector including four diffusion coefficients γ (1),
γ (2), γ (3), and γ (4). A(0) = [a(0)

ij ]s×s , A(1) = [a(1)
ij ]s×s ,

and αT = [αi]1×s are matrices and drift vector associated
with the deterministic components, respectively. While such
strong approximations have been mainly constructed for

Strotonovich representation of SDEs (Burrage and Burrage
1996), Rößler (2010) recently introduced a derivative-free
SRK for path-wise approximation (strong order of 1.5) with
the corresponding Butcher tableau for s = 4 shown as
follows (SDRK4). This class of strong order 1.5 for the
stochastic elements results in a strong order of 2 for the drift
term. One of important advantages of this strong approx-
imation with respect to those introduced by Kloeden and
Platen (1999) is their substantial reduction of computational
complexity for achieving the higher order of convergence.
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When the diffusion term approaches to zero, g → 0,
soluion of Eq. 20 is reduced to the deterministic RK method
(DRK). In this study for the deterministic ODEs, we use

standard 4-stage DRK (DRK4) with the following Butcher
tableau:
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